激光检测技术研究现状与发展趋势
激光焊接技术的研究现状及发展趋势

激光焊接技术的研究现状及发展趋势一、本文概述激光焊接技术,作为一种先进的焊接工艺,自诞生以来便在多个领域展现出其独特的优势和应用潜力。
本文旨在全面综述激光焊接技术的研究现状,并探讨其未来的发展趋势。
我们将从激光焊接的基本原理出发,分析其在不同材料、不同工业领域的应用情况,总结当前激光焊接技术面临的挑战与问题,并预测其未来的发展方向。
我们还将关注激光焊接技术的创新点和发展热点,以期为读者提供一个全面、深入、前沿的激光焊接技术全景图。
通过本文的阅读,读者可以了解到激光焊接技术的最新进展,以及未来可能的技术突破和应用拓展,为相关研究和应用提供参考和借鉴。
二、激光焊接技术的研究现状激光焊接技术自诞生以来,便以其独特的优势在工业生产中占据了重要的地位。
作为一种高效、高精度、低热输入的焊接方法,激光焊接已广泛应用于汽车、电子、航空、冶金等多个领域。
目前,激光焊接技术的研究现状主要体现在以下几个方面。
激光焊接的工艺研究已经相当成熟。
研究人员通过不断优化激光功率、焊接速度、保护气体等参数,实现了对焊接过程的精确控制。
同时,针对不同材料的特性,研究人员还开发出了多种激光焊接方法,如脉冲激光焊、连续激光焊、激光填丝焊等,以满足不同行业的需求。
激光焊接设备的研究也在不断进步。
随着激光技术的快速发展,激光焊接设备的功率和稳定性得到了显著提升。
同时,设备的智能化、自动化水平也在不断提高,如机器人激光焊接系统的出现,大大提高了生产效率和质量稳定性。
激光焊接过程中的质量控制和检测技术也是当前研究的热点。
通过在线监测焊接过程中的温度、熔池形态等关键参数,可以实时调整焊接工艺参数,保证焊接质量。
同时,无损检测技术的应用也为激光焊接的质量控制提供了有力支持。
然而,尽管激光焊接技术在许多方面已经取得了显著的成果,但仍存在一些挑战和问题。
例如,对于某些高反射率或高导热性的材料,激光焊接的难度较大。
激光焊接的成本较高,也在一定程度上限制了其应用范围。
激光加工技术的应用及未来发展趋势

激光加工技术的应用及未来发展趋势激光加工技术是目前应用最广泛的高精度、高效率加工技术之一,在诸多领域发挥着重要的作用。
本文将从激光加工技术的应用、现状及未来发展趋势等方面展开分析讨论。
一、激光加工技术的应用激光加工技术的应用范围非常广泛,主要涵盖以下几个方面:1. 材料切割。
激光切割技术被广泛应用于金属、非金属材料的加工中,如通过对金属板材进行激光切割,可以高效地完成各种金属零件的制作。
2. 焊接。
激光焊接技术被广泛应用于汽车、机械、电子、航空等诸多领域,可以完成各种材料的高精度焊接,提高了产品的质量和生产效率。
3. 雕刻。
激光雕刻技术是目前应用最广泛的激光加工技术之一,被广泛应用于玉石、皮革、木材、彩金等材料的加工。
4. 理疗医疗。
激光技术在医疗领域应用的最为广泛的领域是激光治疗、激光手术、激光检测等。
二、激光加工技术的现状当前,激光加工技术已经成为了高精度、高效率的加工方法之一。
随着工业加工需求的不断增长,激光加工技术的应用范围也在不断扩大,其应用领域和发展方向也更加多样化。
目前,激光加工技术在中国的应用也非常广泛,尤其在汽车、航空、机械、电子、建筑等领域,激光加工技术的应用已经成为一种趋势。
虽然激光加工技术已经有了广泛的应用,但目前激光加工技术面临的问题也不容忽视。
例如,激光加工过程中的废气处理和粉尘处理问题、激光加工机器的成本昂贵等问题。
三、激光加工技术的未来发展趋势随着科技的不断进步,激光加工技术的应用前景也越来越广阔。
未来,激光加工技术的应用领域还将不断拓展,同时优化激光加工设备也将成为厂家竞争的重点。
未来激光加工技术的发展趋势主要体现在以下几个方面:1. 优化设备、成本更低。
未来的激光加工机将更加高效、便捷,操作起来更加人性化。
同时,通过技术革新和成本的降低,未来激光加工设备的成本会不断被压缩,这对于提高激光加工技术的普及和应用来说非常重要。
2. 更加精细化和智能化。
未来激光加工技术将更加智能化,加工精度将得到更大的提高。
2024年激光检测仪器市场发展现状

2024年激光检测仪器市场发展现状引言激光检测仪器是一种使用激光技术进行物质检测和分析的仪器设备。
随着科技的不断进步和应用领域的拓展,激光检测仪器市场正在迅速发展。
本文将对激光检测仪器市场的现状进行分析和总结。
市场规模与增长趋势激光检测仪器市场在过去几年中呈现出快速增长的趋势。
据市场研究公司的数据显示,2019年全球激光检测仪器市场规模达到XX亿美元,并预计在2025年将达到XX亿美元。
市场规模的不断扩大主要得益于以下几个因素的影响。
首先,激光技术的不断创新和进步带来了检测仪器功能的不断提升。
激光技术具有高分辨率、高精度和高灵敏度的优势,可以在微观和宏观层面上对多种物质进行准确检测和分析,满足了不同行业对精确检测的需求。
其次,激光检测仪器广泛应用于多个领域。
例如,激光检测仪器在生物医学领域被用于疾病诊断和药物研发;在环境保护领域用于监测水和空气质量;在工业领域用于材料表征和质量控制等。
这些应用领域的扩展也为激光检测仪器市场提供了更多的发展机遇。
主要产品类型和应用领域激光检测仪器市场上的产品主要包括激光光谱仪、激光显微镜、激光测距仪、激光切割仪等。
这些不同类型的仪器在不同的应用领域有着广泛的应用。
激光光谱仪是最常见的一种激光检测仪器,被广泛应用于化学分析、药物研发和环境监测等领域。
激光光谱仪通过测量物质吸收或发射光谱来获取样品的信息,具有高灵敏度和高分辨率的特点。
激光显微镜是一种利用激光束进行观察和成像的显微镜,被广泛应用于生物学、材料科学和纳米技术等领域。
激光显微镜可以实现高分辨率的成像,并且可以进行多种功能的操作,如荧光成像、蛋白质标记和细胞操作等。
激光测距仪是利用激光束测量距离的仪器,广泛应用于测绘、建筑和机器人导航等领域。
激光测距仪具有高精度和高速度的特点,可以实现对远距离和复杂环境中物体的精确测量。
激光切割仪是利用激光束对材料进行切割和加工的设备,被广泛应用于工业制造和材料加工等领域。
激光切割仪具有高效率、高精度和无接触特点,可以实现对不同材料的高质量切割和加工。
光电检测技术的发展趋势及应用前景

TECHNOLOGY TREND随着现代科学技术以及复杂自动控制系统和信息处理与技术的提高,光电检测技术作为一门研究光与物质相互作用发展起来的新兴学科,已成为现代信息科学的一个极为重要的组成部分。
光电检测技术具有测量精度高、速度快、非接触、频宽与信息容量极大、信息效率极高、以及自动化程度高等突出特点,令其发展十分迅速,并推动着信息科学技术的发展。
它将光学技术与现代电子技术相结合,广泛应用于工业、农业、家庭、医学、军事和空间科学技术等领域。
本文从光电检测技术本身特点出发,分析其发展趋势及应用前景。
1电检测技术的发展趋势1.1光电检测技术光电检测技术是光电信息技术的主要技术之一,它是以激光、红外、光纤等现代光电子其件作为基础,通过对被检测物体的光辐射,经光电检测器接受光辐射并转换为电信号,由输入电路、放大滤波等检测电路提取有用信息,再经模/数转换接口输入计算机运算处理,最后显示输出所需要的检测物理量等参数。
其工作原理如下图所示:光电检测系统工作原理图其技术主要包括光电变换技术、光信息获取与光信息测量技术以及测量信息的光电处理技术等。
光电检测技术将光学技术与电子技术相结合实现对各种量的测量,它具有如下特点:1)高精度。
光电测量的精度是各种测量技术中精度最高的一种。
如用激光干涉法测量长度的精度可达0.05μm/m ;光栅莫尔条纹法测角可达到;用激光测距法测量地球与月球之间距离的分辨力可达到1m 。
2)高速度。
光电测量以光为媒介,而光是各种物质中传播速度最快的,无疑用光学方法获取和传递信息是最快的。
3)远距离、大量程。
光是最便于远距离粗寒痹的介质,尤其适用于遥控和遥测,如武器制导、光电跟踪、电视遥测等。
4)非接触测量。
光照到被测物体上可以认为是没有测量力的,因此也无摩擦,可以实现动态测量,是各种测量方法中效率最高的一种。
1.2发展趋势从上面对光电检测技术特点的分析,并随着世界各国的激烈竞争正以日新月异的速度突飞猛进及科研技术的提高,光电检测技术的发展趋势主要表现在:高精度方向发展:检测精度向高精度方向发展,纳米、亚纳米高精度的光电测量新技术是今后的发展热点;智能化方向发展:检测系统向智能化方向发展,如光电跟踪与光电扫描测量技术;数字化方向发展:检测结果向数字化,实现光电测量与光电控制一体化方向发展;多元化方向发展:光电检测仪器的检测功能向综合性、多参数、多维测量等多元化方向发展,并向人们无法触及的领域发展,如微空间三维测量技术和大空间三维测量技术;微型化方向发展:光电检测仪器所用电子元件及电路向集成化方向发展;光电检测系统朝着小型、快速的微型光、机、电检测系统发展;自动化方向发展:检测技术向自动化,非接触、快速在线测量方向发展,检测状态向动态测量方向发展;以上这些发展趋势是现代化生产的需要,是现代科学技术发展的需要,是国防建设的需要。
激光的应用与发展趋势

激光作为新能源代表,在许多领域都有更广泛应用。
本文从激光在当今社会的地位谈起,接着介绍激光在几大领域的应用现状,最后又分析了激光器以及全球激光产业发展趋势。
激光;激光产业;发展趋势激光器的发明是20 世纪中能与原子能、半导体、计算机相提并论的重大科技成就。
自诞生到现在得到了迅速发展,激光光源的浮现是人工创造光源历史上的又一次革命。
我国激光技术在起步阶段就发展迅速,无论是数量还是质量都和当时国际水平接近。
一项创新性技术能够如此迅速地赶上世界先进行列,这在我国近代科技发展史上并不多见。
能够将物理设想、技术方案顺利地转化成实际激光器件,主要得力于长春光机所多年来在技术光学、精密机械方面的综合能力和坚实基础。
一项新技术的开发,没有足够技术支撑很难形成气候[1] 。
在熟悉的反射、折射、吸收等光现象中,反射光、折射光的强度与入射光的强度成正比,这种现象称为线性光学现象。
如果强度除了与入射光强度成正比外,还与入射光强调成二次方、三次方乃至更高的方次,这就属非线性光学效应。
这些效应惟独在入射光足够大时才表现出来。
高功率激光器问世后,人们在激光与物质相互作用过程中观察到非线性光学现象,如频率变换,拉曼频移,自聚焦,布布里渊散射[ 2]等。
气态原子、份子处于永不停息运动中(速度接近340 m/s),且不断与其它原子,份子碰撞,要“捕获”操作它们十分不易。
1997 年华裔科学家、美国斯坦福大学朱 棣文等人, 首次采用激光束将原子数冷却到极低温度, 使其速度比通常做热运动时降 低,达到“捕获”操作的目的。
具体做法是, 用六路俩俩成对的正交激光束, 用三个相互垂直的方向射向同一点, 光束始终将原子推向这点,于是约 106 个原子形成的小区,温度在 240 [3] 以下。
这样使原子的速度减至 10 m/s 两级。
后来又制成抗重力的光-磁陷阱,使原子在约 1s 内从控制区坠落后被捕获。
此项技术在光谱学、原子钟、研究量子效应方面有着广阔的应用前景。
2024年激光测距仪市场分析现状

2024年激光测距仪市场分析现状引言激光测距仪是一种利用激光测量物体距离的仪器。
随着科技的不断发展和应用领域的不断拓展,激光测距仪在工业、建筑、医疗等领域中得到了广泛的应用。
本文将对激光测距仪市场进行分析,探讨其现状和未来发展趋势。
市场规模及趋势据市场研究数据显示,全球激光测距仪市场在过去几年里呈现出了快速增长的趋势。
这主要归因于激光测量技术的不断创新和应用领域的扩大。
预计未来几年,激光测距仪市场将继续保持强劲的增长势头。
应用领域分析工业在工业领域中,激光测距仪广泛应用于精密测量和定位任务中。
例如,激光测距仪可以用于检测机械零件的尺寸和位置,以及监测生产线上的材料运输和处理过程。
随着工业自动化程度的提高,对激光测距仪的需求将进一步增加。
建筑在建筑领域中,激光测距仪常用于测量建筑物的尺寸和距离,以及绘制建筑平面图。
此外,激光测距仪还可以用于测量地面的高度差和坡度,以便进行地形分析和规划。
随着城市化进程的不断推进,建筑行业对激光测距仪的需求将持续增长。
医疗在医疗领域中,激光测距仪被广泛用于眼科手术中的角膜测量和手术导航。
通过激光测距仪的精确测量,医生能够准确评估患者的眼部状况,并选择合适的治疗方案。
随着医疗技术的不断进步,激光测距仪在医疗领域的应用前景十分广阔。
竞争格局分析目前,激光测距仪市场上存在着多家知名的厂商。
这些厂商通过不断创新和技术优势来竞争市场份额。
例如,一些公司专注于研发高精度的激光测距仪,以满足精密测量需求;另一些公司则致力于开发便携轻巧的激光测距仪,以满足移动测量需求。
竞争格局的不断演变将进一步推动市场的发展。
面临的挑战和机遇尽管激光测距仪市场前景广阔,但也面临一些挑战。
首先,价格仍然是一个关键问题。
高端激光测距仪价格昂贵,限制了一部分用户的购买动力。
其次,技术标准和法规的制定需要进一步完善,以保证激光测距仪的稳定和安全性。
然而,激光测距仪市场仍然存在着巨大的机遇。
随着物联网、人工智能等技术的发展,激光测距仪在无人驾驶、智能制造等领域中的应用前景广阔。
激光跟踪仪发展现状及未来趋势分析

激光跟踪仪发展现状及未来趋势分析激光跟踪仪是一种基于激光技术的高精度测量仪器,主要用于跟踪目标的位置、运动和姿态等信息。
它在许多领域,如航天、导航、航海、无人机、机器人等都有着重要的应用。
本文将对激光跟踪仪的发展现状进行分析,并展望其未来的发展趋势。
激光跟踪仪的发展历程可以追溯到上世纪60年代末期,当时激光技术刚刚问世,激光跟踪仪作为一种新兴的测量工具开始被应用于航天领域。
随着激光技术的逐步发展,激光跟踪仪不断提高了测量精度和速度,并扩展到了更多的领域。
目前,激光跟踪仪已经成为现代测量技术的重要组成部分。
激光跟踪仪的核心技术主要包括激光器、光电探测器、光路设计和信号处理等方面。
激光器的发展使得激光跟踪仪的测量精度有了显著提高,同时也推动了激光跟踪仪的应用范围扩大。
光电探测器的进步使得激光跟踪仪在复杂背景下能够准确地检测目标,提高了测量的可靠性。
光路设计的优化使得激光跟踪仪的成像效果更加清晰,提高了测量的精度。
信号处理的创新进一步提高了激光跟踪仪的测量速度和稳定性。
以航天领域为例,激光跟踪仪在航天器的轨道测量、姿态控制等方面发挥着重要作用。
过去,传统的测量方法主要基于雷达或者电子光学,但由于这些方法存在着各种限制,如距离远、颗粒度大、重量大等,使得测量结果不够准确。
而激光跟踪仪的应用则可以克服这些问题,具有高精度、远距离、轻便等优势。
因此,激光跟踪仪在航天领域得到了广泛的应用,并不断推动航天技术的发展。
此外,激光跟踪仪在导航、航海和无人机等领域也有着广泛的应用。
在导航领域,激光跟踪仪可以准确地测量车辆、船舶或飞机的位置和姿态信息,提供导航和定位的数据支持。
在航海领域,激光跟踪仪可以用于海洋测量和地形测量,为船舶提供准确的航行数据。
在无人机领域,激光跟踪仪可以进行无人机的目标识别和自动驾驶控制,提高了无人机的安全性和精确性。
展望未来,激光跟踪仪将继续发展和创新。
首先,激光技术本身将会取得更大的突破,例如更高功率、更小尺寸、更低成本的激光器的出现,这将进一步提高激光跟踪仪的性能。
激光技术在测量和检测中的应用

激光技术在测量和检测中的应用激光是一种具有高能量密度、高方向性、单色性和相干性的光源。
近年来,激光技术不断发展,已成为现代科学和工业技术中不可或缺的重要组成部分。
激光技术在测量和检测中的应用越来越广泛,为科学研究、生产实践和人类生活带来了重要的贡献。
一、激光测距激光测距是利用激光束的高方向性和相干性,以及激光光束的传播速度远大于声速和电磁波速度的优势,进行高精度、高速度、长距离的测量。
目前常见的激光测距技术有激光二次频测距、激光测距仪、激光测距雷达等。
激光二次频测距利用激光脉冲与物体反射回来的光脉冲的差异,测量目标的距离。
这种技术被广泛应用于测距、导航等领域。
激光测距仪是一种基于激光相位测量原理的测距技术,主要应用于环境测量、三维重建、机器人导航等领域。
而激光测距雷达则是利用激光雷达在目标表面散射的光信号,测量目标的距离、速度和方向。
二、激光光谱分析激光光谱分析是利用激光的高相干性和单色性,对物质的光谱信号进行分析。
这种技术可用于材料的光谱分析、化学分析、生物医学应用等方面。
激光光谱分析可通过激光的激发作用,对物质中的原子和分子进行激发。
激发后,物质会发射出特定的辐射光,这种辐射光被称为物质的光谱信号。
通过对光谱信号的分析,可以获得物质组成、结构等信息。
三、激光成像检测激光成像检测是利用激光的高相干性和高方向性,对物体进行高清晰度、高分辨率、三维成像的检测和观测。
这种技术在工业检测、医学影像、遥感测绘等领域得到广泛应用。
激光成像检测主要有激光雷达成像、激光干涉成像、激光散射成像等技术。
其中,激光雷达成像可以通过激光的脉冲反射测量目标表面的距离,从而获取目标表面的高分辨率三维图像;激光干涉成像则可以通过激光射入目标表面后的反射光,测量目标表面的振动状态,达到高精度测试和形变分析的目的。
四、激光材料加工激光材料加工利用激光的高功率密度、高方向性和高加工速度等优势,对材料进行切割、焊接、打孔等加工处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
激光检测技术研究现状与发展趋势
提要:激光检测学科发展现状在光电检测领域,利用光的干涉、衍射和散射进行检测已经有很长的历史。
由泰曼干涉仪到莫尔条纹,然后到散斑,再到全息干涉,出现了一个个干涉场,物理量(如位移、温度、压力、速度、折射率等)的测量不再需要单独测量,而是整个物理量场一起进行测量。
自从激光出现以后,电子学领域的许多探测方法(如外差、相关、取样平均、光子计数等)被引入,使测量灵敏度和测量精度得到大大提高。
用激光检测关键技术(激光干涉测量技术、激光共焦测量技术、激光三角测量技术)实现的激光干涉仪、激光位移传感器等,可以完成纳米级非接触测量。
可以说,超精密加工技术将随着高精密激光检测技术的发展而发展;在此基础上,提出了激光测量需解决的关键技术及今后的发展方向。
1.测量原理
1.1激光测距原理
先由激光二极管对准目标发射激光脉冲。
经目标反射后激光向各方向散射。
部分散射光返回到传感器接收器,被光学系统接收后成像到雪崩光电二极管上。
雪崩光电二极管是一种内部具有放大功能的光学传感器,因此它能检测极其微弱的光信号。
记录并处理从光脉冲发出到返回被接收所经历的时间,即可测定目标距离。
1.2激光测位移原理
激光发射器通过镜头将可见红色激光射向被测物体表面,经物体反射的激光通过接收器镜头,被内部的CCD线性相机接收,根据不同的距离,CCD线性相机可以在不同的角度下“看见”这个光点。
根据这个角度及已知的激光和相机之间的距离,数字信号处理器就能计算出传感器和被测物体之间的距离。
2.激光测量系统的应用
激光功率和能量是描述激光特性的两个基本参数,激光功率计和能量计是最常用的两类激光测量仪器。
随着激光技术的不断发展,对激光测试技术和测量仪器提出了更高要求。
由于调Q和锁模激光的出现和应用,要求测量的激光功率已从毫瓦、瓦、千瓦、兆瓦直到千兆瓦以上。
激光能量也从毫焦尔逐渐跨过千焦尔。
脉冲激光的持续时间也由毫秒、微秒、毫微秒、而缩短至微微秒量级。
光谱范围也从紫外、可见、红外扩展到近毫米波段。
激光精密测量和某些生物医学方面的研究和应用(如眼科治疗、细胞手术器等)的发展,对激光测量的精度也提出了非常高的要求。
2.1激光非球面检测技术
长期以来,非球面检测技术一直制约着非球面制造精度的提高,尤其对于高精度非球面的检测。
规的非球面检测方法如刀口阴影法、激光数字干涉法及接触式光栅测量法等,对于检测工件表面来说都有一定的局限性。
原子力显微镜是利用纳米级的探针固定在可灵敏操控的微米级尺度的弹性悬臂上,当针尖很靠近样品时,其顶端的原子与
样品表面原子问的作用力会使悬臂弯曲,偏离原来的位置。
根据扫描样品时探针偏离量或其它反馈量重建三维图像,就能间接获得样品表面的形貌图。
AFM突破了扫描隧道显微镜(STM)只能够用于扫描不容易氧化的良导体样品的限制,可以扫描导体和绝缘体。
AFM具有多种扫描模式:接触扫描模式是原子力显微镜的基本工作模式;轻敲扫描模式(Tapping Mode)特别适用于检测生物样品及其它柔软、易碎、粘附性较强的样品。
在光学系统中聚焦的激光束照射到试样表面,入射的激光束被表面反射并与由光源分离出的参考光束发生干涉,使光束发生频移,由干涉仪检测器检测出频移。
从而测量试样振动位移,从检测出的超声波可判断试样内部缺陷和微结构。
Trokel公司几年前生产了一种计算机垒息圈检验非球面的干涉仪,其操作仅比球面检验稍难。
国内也开展了相应的研究工作,也有一些产品。
如上海光机所的数字显示激光平面干涉仪,能自动测量光学平面面形质量,快速,高精度。
2.2偏心光束对焦系统
近年来,非接触式测量技术在表面测量领域得到比较广泛的应用,其中自动对焦测量已从微米尺度进入纳米尺度,在非球面检测中大大提高了非球面的测量精度,因此具有重大的研究价值和广阔的发展前景。
自动对焦是利用物体光反射的原理,将反射光照射在光电探测器上,经过光电转换而带动电动对焦装置进行对焦的方式。
偏心光束对焦精度取决于光源的质量、光电探测器对光源的敏感度及电动对焦装置的合理设计等。
根据偏心光束对焦系统设计方案进行对焦实验。
固
定光路系统与位置敏感探测器的位置,调节移动工作台上下移动,位置敏感探测器光敏面上的激光光斑也随之变化,于是电动机随之转动。
转动情况决定了偏心光束是否对焦。
当电动机停转时,即工件内表面位于物镜平面,对焦成功。
2.3激光扫描显微镜
激光扫描显微镜是融合光、机、电以及计算机和图像处理等技术的高新技术产品,它广泛应用于检测领域,已经成为这个领域强有力的研究工具。
激光共焦显微镜是利用激光光束经照明针孑L形成点光源,对标本内焦平面的每一点扫描,标本上的被照射点在探测孑L处成像,由探测孑L后的光电倍增管(PMT)接收,在计算机屏幕上迅速形成荧光图像。
由于扫描过程是逐点进行的,因此需要由电动机驱动玻片沿y平面运动。
高分辨率图像的获得,不但要求有完善的光学与精密机械系统,而且还要求玻片移动平稳,防止抖动出现,否则会影响扫描效果,这就对运动控制系统提出了较高要求。
采用基于数字信号处理技术的移动控制器很好地解决了共焦扫描显微镜的运动控制问题。
激光共焦扫描显微镜系统由光学扫描单元、数据传输及图像处理、运动控制单元和主机组成。
光学扫描单元负责对数据进行采集;数据传输及图像处理单元接收扫描数据,并对数据进行视频处理后传输给主机和显示器;运动控制单元驱动载物玻片沿预定轨迹运动,实现逐点扫描;主控制机实现对下位机的控制及数据的后处理.
3.比较国内外开展激光检测研究与应用的现状
(1)技术上——在高精度、自动化方面尚与国外有一定差距。
国内开展的工作面不如国外广泛,但所做工作也不少,而且技术上尚比较先进,有些方面还是可比的。
(2)应用上——周内应用类别不少。
但由于产品化程度不高,影响使用面。
4.激光检测的前景与设想
检测整机销售额统计缺乏连续数据,因为国际上统计方法在变、现在的方法是统计包括电源在内的“激光器”,因为包括太多的整机部分“会使激光工业和汽车工业一样庞大”。
因此在此讨论检测州激光器的销售额。
其实,激光器价值常占整机微小一部分,所以实际上的经济效益变化幅度大于这里钓统计值。
这里取用的检测庄用范围系国外激光市场评述中的“检测”、“条码扫描器”及“农业与建筑”三项之和。
在国外杂志中有关西方世界的数掘中,列出了检测用激光器销售额(台数)及年增长率和历年平均增长率,可知用激光器历年来的销售情况一直良好,稳定增长。
4.1转换元件
随着激光功率能量水平的不断提高.光热型转换元件逐渐由过去的面吸收(吸收黑层)向津吸收(半透明吸收体)发展,以避免强光辐射引起的破坏。
逐渐采用真空蒸键的热电堆和电校准加热器代替过去常用的金属丝热电堆和电阻丝.缩小了体积,使仪器更如稳定可靠。
光电元件在扩展波段方面已取得了~定成效,蓝光增强型光电二极管可响应到0.3微米,0.5微米处的响应比过去提高了一倍多。
MOS光电
二极管短波响应到0.17微米。
长波方面,用锗光电二极管可扩展到1.7微米。
一般热释电探冽器已比较成熟,国内外都有定型产品。
为消除环境变化和振动干扰的影响,国外已研制出几种补偿型元件。
为满足短脉冲高强度激光测量的需要,减少响应时间,提高耐辐射强度是十分必要的。
透明电扳和边电板结构的热释电元钟有许多优点,应充分重视。
常用的热释电元件都有吸收黑层,不太适于高强度激光测量。
利用热释电材料的体吸收效应是可取的.但现有热释电晶体宽波段内的吸收很不均匀.光谱响应受到限制.因此在热释电材料中加入适当的吸收物质,作成类似于中性吸收玻璃的半遥明热释电材料和元件将是最好的技术途径。
随着电子技术和电声技术的发展,利用光一压一电效应作强激光转换元件也许是可能的。
脉冲激光束的光压比普通党强得多。
现代电子技术有了很大的发展,高阻抗、低噪声电子器件已普遍采用.压电效应和鹾电材料研究已比较成熟。
利用适当的压电材料将光压和压一电效应联系起来,作成新型的光(压)电器件对强激光测量也许是有用的。
这种器件将涂上全反射膜县,只反射光而并不吸收,这就避免了强光破坏,而且对波长无选择性,紫外波段较灵敏。
4.2仪器整机结构
近几年国外发腥了一批单元组台式多功能的高精度仪器。
这种较先进的仪器有几种可互换的探头,以满足不同.冽量对象的需要电表指示、数字显示或自动记录都作成独立单元,便于自由选择。
实际工作中希疆测量不影响使用,而且最好能同时测出几个参数,因此通过
式分光路接收头值得推广。
电路集成化、显示数字化是近代仪器的发展趋势,这洋不仅提高了测量精度,而且使仪器性能耍加稳定可靠,使寸二维修。
4.3电校准技术和徽处理机应用使激光功率能量计大大改观。