硬盘内部结构图解

合集下载

硬盘物理结构

硬盘物理结构

硬盘物理结构先看下硬盘物理结构1 硬盘物理结构硬盘物理上主要是盘片、机械手臂、磁头、和主轴等组成. 在盘片逻辑划分上又分为磁道、扇区, 例如下图:2 盘片磁道、扇区磁道:当硬盘盘片旋转时, 磁头若保持在一个位置上, 则磁头会在盘片表面划出一个圆形轨迹, 这些圆形轨迹就叫做磁道. 以盘片中心为圆心, 由此可以划分出很多磁道来, 这些磁道用肉眼是根本看不到的, 因为它们仅是盘面上以特殊方式磁化了的一些磁化区, 硬盘上的信息便是沿着这样的轨道存放的, 盘片上的磁道由外向内依次从“0”开始进行编号.柱面:由于硬盘可以由很多盘片组成, 不同盘片的相同磁道就组成了柱面(cylinder), 如图1所示.磁头:假设有N个盘片组成的硬盘, 那么有2N个盘面(一个盘片有2面), 那么磁头也就有2N个, 即每个盘面有一个磁头.扇区:早期的硬盘盘片的盘面以圆心开始向外放射状将磁道分割成等分的弧段, 这些弧段便是硬盘的扇区(如图2). 每个扇区一般规定大小为512byte, 这里大家应该比较疑惑, 外圈周长很明显比内圈要长, 怎么可能每个扇区都是512byte?其实答案早期硬盘外圈存储比内圈存储密度低一些, 所以外圈很长但是仍然只能存储512byte, 因此如果我们知道了柱面数(磁道数) Cylinders、磁头数Heads、扇区数Sectors, 基本上硬盘的容量我们能够计算出来硬盘总容量= Cylinders * Heads * Sectors * 512byte. 但是由于早期硬盘外圈密度低, 导致盘片利用率不高, 现在的硬盘盘片则采用内外存储密度一致的方式, 每个磁道都划分成以512byte大小的弧段, 这样也造成了内外磁道上扇区数量会不一样, 外圈上的扇区数要多于内圈扇区数.硬盘寻址方式硬盘存取、读取数据, 首先要做的就是寻址, 即定位到数据所在的物理地址, 在硬盘上就要找到对应的柱面、磁头以及对应的扇区, 那么怎么寻址呢?有两种方式: CHS和LBACHS模式:CHS(Cylinder/Head/Sector)寻址模式也称为3D模式, 是硬盘最早采用的寻址模式, 它是在硬盘容量较小的前提下产生的.硬盘的C/H/S 3D参数既可以计算出硬盘的容量, 也可以确定数据所在的具体位置. 这是因为扇区的三维物理地址与硬盘上的物理扇区一一对应, 即三维物理地址可完全确定硬盘上的物理扇区. 三维物理地址通常以C/H/S的次序来书写, 如C/H/S为0/1/1, 则第一个数字0指0柱面, 第二个数字1指1磁头(盘面), 第三个数字1指1扇区, 表示该数据位于硬盘1盘面上的0磁道1扇区. 现在定位已完成, 硬盘内部的参数和主板BIOS之间进行协议, 正确发出寻址信号, 从而正确定位数据位置.早期硬盘一个磁道上分63个扇区, 物理磁头最多16个(8个盘片, 盘片多了硬盘那就真要加厚了). 采用8位寻址方式, 8位二进制位的最大值是256(0-255), 可以表示磁头数, 而扇区只有63个(1-63), 只需要其中6个二进制位即可表示, 剩下2位拿去表示柱面, 柱面数用10(8+2)位来表达, 达到1024个柱面(0-1023), 因此总扇区数(1024×16×63). 前面说一个扇区大小为512byte, 这也就是说, 如果以C/H/S寻址模式寻址, 则IDE硬盘的最大容量只能为1024×16×63×512B= 500MB左右.可以思考下, 在8位寻址模式下, 其实可以寻址的硬盘最大容量为1024×256×63×512B =8G,那为啥CHS模式硬盘只支持到500MB呢?原因很简单, 我们的硬盘盘片不可能让128片盘片重叠起来吧, 那会是多厚??如果采用28位寻址方式, 那么可以寻址137G, 盘片也不可能一直堆叠下去.LBA(Logical Block Addressing)经常去买硬盘的人都知道, 目前硬盘经常都说单碟、双碟, 其实意思就是说硬盘盘片只有1个或者2个, 而且都只是用一面, 单碟一个磁头而已, 但是硬盘容量确是几百G, 而且硬盘柱面往往都大于1024个柱面, CHS是无法寻址利用完这些硬盘容量的.另外由于老硬盘的扇区划分方式对硬盘利用率不高, 因此出现了现在的等密度盘, 外圈的扇区数要比内圈多, 原来的3D寻址方式也就不能适应这种方式, 因此也就出现了新的寻址方式LBA, 这是以扇区为单位进行的线性寻址方式, 即从最外圈柱面0开始, 依次将扇区号编为0、1….等等, 举个例子, 假设硬盘有1024个柱面, 由于是等密度硬盘, 柱面0(最外圈)假设有128个扇区, 依次编号为0-127, 柱面1有120个扇区, 则依次编号为127-246, …..依次最内圈柱面127只有扇区64个, 则编号到最后.因此要定位到硬盘某个位置, 只需要给出LBA 数即可, 这个就是逻辑数.在LBA 模式下, 为了保留原来CHS时的概念, 也可以设置柱面、磁头、扇区等参数, 但是他们并不是实际硬盘的物理参数, 只是为了计算方便而出的一个概念, 1023之前的柱面号都一一物理对应, 而1023以后的所有柱面号都记录成1023磁头最大数可以设置为255, 而扇区数一般是每磁道63个, 硬盘控制器会把由柱面、磁头、扇区等参数确定的地址转换为LBA 数. 这里我们再此明确两个概念:物理扇区号:一般我们称CHS模式下的扇区号为物理扇区号, 扇区编号开始位置是1逻辑扇区号:LBA下的编号, 扇区编号是从0开始.CHS模式转换到逻辑扇区号LBA计算公式LBA(逻辑扇区号)=磁头数×每磁道扇区数×当前所在柱面号+ 每磁道扇区数×当前所在磁头号+ 当前所在扇区号–1例如: CHS=0/0/1, 则根据公式LBA=255 ×63 ×0 + 63 ×0 + 1 –1= 0也就是说物理0柱面0磁头1扇区, 是逻辑0扇区.硬盘分区我们知道, 一般使用硬盘, 我们首先会对硬盘进行分区, 然后对分区使用某个文件系统格式(NTFS、FAT、ext2/ext3)进行分区格式化, 然后才能正常使用. 那么分区是怎么回事呢?我们常见的windows中说到的c、d、e盘是怎么划分出来的呢?其实, 在装windows系统过程中, 一般我们只需要填写每个分区的大小, 看不出来分区过程的实际工作情况, 我们可以从linux系统分区过程反而能反应底层实际分区情况.柱面是分区的最小单位, 即分区是以某个某个柱面号开始到某个柱面号结束的.如图, 柱面1~200我们可以分为一个区, 柱面201~500再划分为一个区, 501~1000再划分为一个区, 以此类推. 大家可以看到, 柱面0没有在任何分区里面, 为何?这里说说, 前面说到硬盘从外圈(柱面0)到内圈扇区是依次编号, 看似各个扇区没有什么区别, 但是这里硬盘的柱面0的第一个扇区(逻辑扇区0, CHS表示应该是0/0/1)却是最重要的, 因为硬盘的第一个扇区记录了整个硬盘的重要信息, 第一个扇区(512个字节)主要记录了两部分:①MBR(Master Boot Record): 主引导程序就放在这里, 主引导程序是引导操作系统的一个程序, 但是这部分只占446字节.②DPT(Disk Partition table): 硬盘分区表也在这里, 分区表就是用来记录硬盘的分区情况的, 例如c盘是1~200柱面, d盘是201~500柱面, 分区表总共只占64字节, 可以看出, 分区其实很简单, 就是在这个表里面修改一下记录就重新分区了, 但是由于只有64字节, 而一条记录就要占用16字节, 这个分区表最多只能记录4个分区信息, 为了继续分出更多分区来, 引入了扩展分区的概念, 也就是说, 在这4个分区中, 可以使用其中一条记录来记录扩展分区的信息, 然后在扩展分区中再继续划分逻辑分区, 而逻辑分区的分区记录则记录在扩展分区的第一个扇区中, 如此则可以像链表一样划分出很多分区来. 但是请注意, 一个分区表中可以有1~4条主分区, 但是最多只能有1个扩展分区.举例, 主分区可以是P1:1~200, 扩展分区P2: 2~1400, 扩展分区开始的第一个扇区可以用来记录扩展分区中划分出来的逻辑分区.分区表链分区表之间是如何关联的, 详细讲一下, 分区表是一个单向链表, 第一个分区表, 也就是位于硬盘第一个扇区中的DPT, 可以有一项记录扩展分区的起始位置柱面, 类似于指针的概念, 指向扩展分区(图3), 根据这项记录我们可以找到扩展分区的某柱面0磁头1扇区(CHS), 而这个扇区中又存放了第二个分区表, 第二个分区表第一项记录一般表述了当前所在的逻辑分区的起始/终止柱面, 第二项记录表述了下一个逻辑分区所在的0磁头1扇区(CHS),第三、第四项记录不存任何信息(图4).请看下图, 主引导记录/分区表所在的是硬盘第一个分区, 基本分区1、基本分2、基本分区3都是主分区、扩展分区内有2个逻辑分区, 每个逻辑分区的第一个扇区都是分区表, 至于引导扇区(DBR), 在系统启动一节中会提及.系统启动:之前提到MBR中安装的引导加载程序, 他的作用是什么?①提供开机菜单选项: 可以供用户选择启动哪个操作系统, 这是多重引导功能.②加载操作系统内核: 每个操作系统都有自己的内核, 需要引导程序来加载③转交给其他引导程序: 可以将工作移交给其他引导程序来进行上述操作.其实引导加载程序除了可以安装在MBR中, 还可以直接安装在每个分区的引导扇区(DBR)中, 注意下, 每个分区(主分区、逻辑分区)都有一个自己的启动扇区, 专门用来安装引导加载程序, 如上图标3结构图.系统启动过程:①首先,BIOS启动后, 读取硬盘第一个扇区MBR中的引导加载程序(可能是windows或者linux 的grub)②MBR中的引导程序提供开机菜单, 你可以选择1)直接加载windows 内核2)将工作转交给windows 分区内的引导扇区中的加载程序, 让他自己去加载内核3)转交给linux分区内引导扇区, 让他去加载linux.③根据用户选择的选项和引导加载程序中记录的分区, 到分区表找对应的分区柱面号等分区信息, 启动内核或者分区加载程序.Window安装时默认会自动将MBR和windows所在分区的引导扇区都装上引导程序, 而不会提供任何选项给用户选择, 因此如果之前装过其他操作系统, 然后再另外装一个windows时, 会把公用的MBR覆盖掉, 如此, 原来的操作系统就无法启动了. 如果先装windows, 然后装linux, linux会覆盖MBR, 然后让用户选择是否将windows等其他操作系统的启动项添加进来, 如果你选择了添加进来, 那么你在开机时就会有两个选项让用户进行选择了.后记l 这里讨论的全部是硬盘相关的东西, 光盘不在此列, 而且光盘的磁道并不是从外圈到内圈编号, 而是从内圈开始编号, 这点注意.l 硬盘第一个扇区是由MBR和分区表占据, 因此0柱面0磁头上剩下的62个扇区一般会空出来保留(这部分保留称为隐藏扇区, 因为操作系统读取不到这部分扇区, 这部分扇区是提供给BIOS读取的), 而系统分区则从0柱面1磁头1扇区开始, 折算成LBA=255 ×63 ×0 + 63 ×1 + 1 –1= 63, 即从LBA 63号扇区开始分区. 不过查阅有的资料提及到另外一种说法, 那就是有的硬盘可能0柱面全部空下来, 如果真是这样, 那浪费可就真的大了.l 对于扩展分区的分区表我们知道也是由扩展分区的第一个扇区开始写, 而且是写到每个逻辑驱动器的第一个扇区, 同样, 扩展分区内的第一个扇区所在的磁道剩余的扇区也会全部空余出来, 这些保留的扇区操作系统也是无法读取的, 注意在扩展分区的第一个扇区里面是没有引导加载记录的. 引导加载记录都是放在隐藏扇区后面的. 可以看图3, 图4。

西数、希捷、DIY移动硬盘详细拆解,暴力解析

西数、希捷、DIY移动硬盘详细拆解,暴力解析

西数、希捷、DIY移动硬盘详细拆解,暴力解析★原厂移动硬盘拆解之西数篇西数320GB原厂移动硬盘首先登场的是西数320GB原厂移动硬盘,型号为WD3200ME,外观圆润小巧,便于携带。

它使用ABS工程塑料外壳,外观圆润小巧,全免螺丝缝合设计,采用为USB2.0 Mini接口。

西数320GB原厂移动硬盘的主要构造成分西数320GB原厂移动硬盘的拆解非常简单,只需要用“一字口”起子沿边框缝合纹路内切即可。

当笔者完全打开该款产品,不得不为它担心,因为它的内部构造非常精简,内部防震设计不到位。

西数320GB原厂移动硬盘的主体架构(点击图片放大)西数320GB原厂移动硬盘的主体架构只有两个部分,一个是外壳,另一个是边框,两者靠卡扣紧合。

西数为了美观,边框采用圆弧设计,内部架构偏软,框架受外力容易变形。

西数320GB原厂移动硬盘的最主要部分西数320GB原厂移动硬盘采用2.5吋WD3200BMVU 5400转/320GB笔记本硬盘,为了压缩成本,西数将SATA接口去掉,直接将转接IC芯片焊接在硬盘的PCB板上,将Mini USB接口直接与硬盘接驳。

西数320GB原厂移动硬盘的盘托带有防震缓冲垫西数320GB原厂移动硬盘的边款也带有2个防震缓冲垫西数为了提高这款产品的防震抗摔性能,设计了四个防震缓冲垫。

由于硬盘和盘托是通过四个螺丝上紧,实际成为一体。

笔者观察盘托的整体和防震缓冲垫的贴合有缝隙,并不能完全起作用,如果不是用手捏紧,边框和盘托部分轻易解体。

★原厂移动硬盘拆解之希捷篇本次拆解的希捷500GB原厂移动硬盘,属于希捷FreeAgent系列硬盘的第三代产品。

它使用Momentus 5400.6 500GB笔记本硬盘。

该产品采用黑色ABS工程塑料材质,流线形设计,表面经过钢琴烤漆处理,外观典雅大方。

希捷500GB原厂移动硬盘的内部构造本次拆解的希捷500GB原厂移动硬盘,由于卡扣咬力较强,需要使用巧劲和力气才可将外壳打开。

硬盘电路板结构

硬盘电路板结构
磁头组件 磁头组件包括读写磁头、传动手臂、传动轴三部分组成。磁头组件中最主要的部分是磁头,另
外的两个部分可以看作是磁头的辅助装置。传动轴带动传动臂,使磁头到达指定的位置。 磁头是硬盘中对盘片进行读写工作的工具,是硬盘中最精密的部位之一。
硬盘的内部结构 7
磁头驱动组件
磁头的移动是靠磁头驱动组件实现的,硬盘的寻道时间的长短与磁头驱动组件关系非常密切。 磁头的驱动机构由电磁线圈电机、磁头驱动小车、防震动装置构成,高精度的轻型磁头驱动机 构能够对磁头进行正确的驱动和定位,并能在很短的时间内精确定位系统指令指定的磁道,保 证数据读写的可靠性。
电磁线圈电机包含着一块永磁铁,该磁铁的磁力很强,对于传动手臂的运动起着关键性的作用。 防震装置是为了避免磁头将盘片刮伤等情况的发生而设计的。
电磁线圈
永磁铁
硬盘的内部结构 8
盘片与主轴组件 盘片是硬盘存储数据的载体,盘片是在铝合金或玻璃基底上涂敷很薄的磁性材料、保护材料和
润滑材料等多种不同作用的材料层加工而成,其中磁性材料的物理性能和磁层结构直接影响着 数据的存储密度和所存储数据的稳定性。金属盘片具有很高的存储密度、高剩磁及高矫顽力 主轴组件包括主轴部件轴瓦和驱动电机等。
金属固定板
硬盘的外部结构 4
控制电路板
在硬盘的金属盖板上会固定有一个电路板,这个电路板就是硬盘的控制电路板,如图所示。为 了节省空间,该电路板上的电子元器件大多采用贴片式元件焊接,这些电子元器件组成了功能 不同的电子电路,这些电路包括主轴调速电路、磁头驱动与伺服定位电路、读写电路、控制与 接口电路等。在电路板上有几个主要的芯片:主控芯片、BIOS芯片、缓存芯片、电机驱动芯片。 对于不同的硬盘,其电路板上的主要芯片种类也是不同的。
数据备份与恢复技术

硬盘拆解图解

硬盘拆解图解

硬盘拆解图解1TB Seagate ST31000333AS这块绿色电路版,由SATA接头、电源接头组成的板子称为印刷回路板,简称PCB。

PCB内含电路零组件。

而黑色铝质外壳内部组件称为磁头和硬盘组件,通称为HDA。

而铝质外壳则称为硬盘基底。

现在拆卸PCB电路板并翻到反面,检视反面的电子零组件。

MCU控制器硬盘PCB上最大控制器为MCU (Micro Controller Unit),MCU主要功能:1、计算读写通道A/D,D/A2、掌控全盘硬盘运作状况。

3、MCU 另担当的Protocol 与控制器间的转换。

DDR DRAMDDR DRAM 32MB ,实际上32MB Cache 部份会被硬盘挪用放入硬盘运作程序。

前言已叙述,硬盘如同一个embedded system 。

需要加载OS运作。

VCM控制器下一个芯片是V oice Coil Motor controller,通称VCM控制器。

这是PCB板上最耗电的芯片,VCM控制器控制电机马达的转动及磁头移动及定位,VCM控制器可在高达工作温度Flash芯片Flash芯片储存部分的硬盘韧体与模块在盘片上位置DATA ,当你通电启动硬盘时,MCU芯片会读取Flash芯片内的数据到内存内并且开始编码。

如果缺少了这样的步骤,硬盘无法运转。

有时候,某些厂牌的硬盘PCB板上并没有Flash芯片,这表示原本Flash 芯片内的数据已存在MCU芯片内了。

震动传感器震动传感器可以感应硬盘多余的震动并且传送讯号给VCM控制器,VCM控制器接受讯号以后马上停止并复位磁头,在某些情况下,甚至会停止盘片转动,这个理论上会保护硬盘免于受损,但是实际上并无法达成保护的目的,所以请好好保护硬盘,别摔落、碰撞!在某些硬盘中,震动传感器可以感测轻微振动,而VCM控制器可以藉由震动传感器传送的讯号调整磁头的运动,这样的硬盘通常都会配有两组以上的震动传感器。

二级体另外一个保护的零组件是瞬态电压抑制二极管(Transient Voltage Suppression diode)或简称为TVS二极管。

硬盘内部硬件结构和工作原理详解概论

硬盘内部硬件结构和工作原理详解概论

图1-1 硬盘的外观图1-2 控制电路板图1-3 硬盘接口电源插座连接电源,为硬盘工作提供电力保证。

数据接口是硬盘与主板、内存之间进行数据交换的通道,使用一根40针40线(早期)或40针80线(当前)的IDE 接口电缆进行连接。

新增加的40线是信号屏蔽线,用于屏蔽高速高频数据传输过程中的串扰。

中间的主、从盘跳线插座,用以设置主、从硬盘,即设置硬盘驱动器的访问顺序。

其设置方法一般标注在盘体外的标签上,也有一些标注在接口处,早期的硬盘还可能印在电路板上。

此外,在硬盘表面有一个透气孔(见图1-1),它的作用是使硬盘内部气压与外部大气压保持一致。

由于盘体是密封的,所以,这个透气孔不直接和内部相通,而是经由一个高效过滤器和盘体相通,用以保证盘体内部的洁净无尘,使用中注意不要将它盖住。

1.2 硬盘的内部结构硬盘的内部结构通常专指盘体的内部结构。

盘体是一个密封的腔体,里面密封着磁头、盘片(磁片、碟片)等部件,如图1-4所示。

图1-4 硬盘内部结构硬盘的盘片是硬质磁性合金盘片,片厚一般在0.5mm左右,直径主要有1.8in(1in=25.4mm)、2.5in、3.5in和5.25in 4种,其中2.5in和3.5in盘片应用最广。

盘片的转速与盘片大小有关,考虑到惯性及盘片的稳定性,盘片越大转速越低。

一般来讲,2.5in硬盘的转速在5 400 r/min~7 200 r/ min之间;3.5in硬盘的转速在4 500 r/min~5 400 r/min之间;而5.25in硬盘转速则在3 600 r/min~4 500 r/min之间。

随着技术的进步,现在2.5in硬盘的转速最高已达15 000 r/min,3.5in硬盘的转速最高已达12 000 r/min。

有的硬盘只装一张盘片,有的硬盘则有多张盘片。

这些盘片安装在主轴电机的转轴上,在主轴电机的带动下高速旋转。

每张盘片的容量称为单碟容量,而硬盘的容量就是所有盘片容量的总和。

普通硬盘结构图

普通硬盘结构图

普通硬盘结构图主要性能参数∙硬盘容量:硬盘内部往往有多个叠起来的磁盘片,所以说硬盘容量=单碟容量×碟片数,单位为GB,硬盘容量当然是越大越好了,可以装下更多的数据。

要特别说明的是,单碟容量对硬盘的性能也有一定的影响:单碟容量越大,硬盘的密度越高,磁头在相同时间内可以读取到更多的信息,这就意味着读取速度得以提高。

目前市场上主流硬盘的容量为80GB—120GB。

∙转速:硬盘转速(Rotation speed)对硬盘的数据传输率有直接的影响,从理论上说,转速越快越好,因为较高的转速可缩短硬盘的平均寻道时间和实际读写时间,从而提高在硬盘上的读写速度;可任何事物都有两面性,在转速提高的同时,硬盘的发热量也会增加,它的稳定性就会有一定程度的降低。

所以说我们应该在技术成熟的情况下,尽量选用高转速的硬盘。

∙缓存:一般硬盘的平均访问时间为十几毫秒,但RAM(内存)的速度要比硬盘快几百倍。

所以RAM通常会花大量的时间去等待硬盘读出数据,从而也使CPU效率下降。

于是,人们采用了高速缓冲存储器(又叫高速缓存)技术来解决这个矛盾。

简单地说,硬盘上的缓存容量是越大越好,大容量的缓存对提高硬盘速度很有好处,不过提高缓存容量就意味着成本上升。

目前市面上的硬盘缓存容量通常为2MB—16MB。

∙平均寻道时间(average seek time):意思是硬盘磁头移动到数据所在磁道时所用的时间,单位为毫秒(ms)。

平均访问时间越短硬盘速度越快。

∙硬盘的数据传输率(Data transfer rate):也称吞吐率,它表示在磁头定位后,硬盘读或写数据的速度。

硬盘的数据传输率有两个指标:突发数据传输率(burst data transfer rate):也称为外部传输率(external transfer rate)或接口传输率,即微机系统总线与硬盘缓冲区之间的数据传输率。

突发数据传输率与硬盘接口类型和硬盘缓冲区容量大小有关。

目前的支持ATA/100的硬盘最快的传输速率能达到100MB/s。

ide硬盘构造图文详解

ide硬盘构造图文详解

ide硬盘构造图文详解总的来说,硬盘主要包括:盘片、磁头、盘片主轴、控制电机、磁头控制器、数据转换器、接口、缓存等几个部份。

所有的盘片都固定在一个旋转轴上,这个轴即盘片主轴。

而所有盘片之间是绝对平行的,在每个盘片的存储面上都有一个磁头,磁头与盘片之间的距离比头发丝的直径还小。

所有的磁头连在一个磁头控制器上,由磁头控制器负责各个磁头的运动。

磁头可沿盘片的半径方向动作,而盘片以每分钟数千转到上万转的速度在高速旋转,这样磁头就能对盘片上的指定位置进行数据的读写操作。

由于硬盘是精密设备,尘埃是其大敌,所以必须完全密封。

现在先贴上今日的主角西数WD200BB硬盘的它是容量为20G的7200转的普通3.5寸IDE硬盘,属于比较常见的产品,也是用户最经常接触的。

除此之外,硬盘还有许多种类,例如老式的普通IDE硬盘是5.25英寸,高度有半高型和全高型,还有体积小巧玲珑的笔记本电脑,块头巨大的高端SCSI硬盘及非常特殊的微型硬盘。

在硬盘的正面都贴有硬盘的标签,标签上一般都标注着与硬盘相关的信息,例如产品型号、产地、出厂日期、产品序列号等,上图所示的就是WD200BB的产品标签。

在硬盘的一端有电源接口插座、主从设置跳线器和数据线接口插座,而硬盘的背面则是控制电路板。

从下图中可以清楚地看出各部件的位置。

总得来说,硬盘外部结构可以分成如下几个部份:一、硬盘接口、控制电路板及固定面板:(1)、接口。

接口包括电源接口插座和数据接口插座两部份,其中电源插座就是与主机电源相连接,为硬盘正常工作提供电力保证。

数据接口插座则是硬盘数据与主板控制芯片之间进行数据传输交换的通道,使用时是用一根数据电缆将其与主板IDE接口或与其它控制适配器的接口相连接,经常听说的40针、80芯的接口电缆也就是指数据电缆,数据接口主要分成IDE接口、SATA接口和SCSI接口三大派系。

(2)、控制电路板。

大多数的控制电路板都采用贴片式焊接,它包括主轴调速电路、磁头驱动与伺服定位电路、读写电路、控制与接口电路等。

《硬盘基本结构》课件

《硬盘基本结构》课件

05
常见问题与维护
常见故障及排除方法
故障1
硬盘无法启动
排除方法
检查电源线是否连接正常,确保硬 盘电源正常;检查硬盘接口是否松 动或损坏。
故障2
硬盘读写速度变慢
排除方法
检查硬盘是否有坏道或文件系统错误 ,进行修复;清理磁盘碎片,优化硬 盘性能。
故障3
硬盘发出异常声音
排除方法
检查硬盘内部是否有损坏的机械部 件,如有需要更换;运行硬盘检测 工具,检查硬盘健康状态。
1956年,IBM开发了世界上第一 台硬盘存储器,容量仅为5MB, 使用50个24英寸的碟片。
现代硬盘的发展
随着技术的不断进步,硬盘的容 量和性能得到了显著提升。如今 ,常见的硬盘容量已经达到数TB ,且读写速度越来越快。
硬盘的分类与特点
01
02
03
按接口分类
主要有SATA、SAS、SCSI 等接口类型,每种接口有 其特点和适用场景。
REPORT
《硬盘基本结构》 ppt课件
CATALOG
DATE
ANALYSIS
SUMMARY
目录
CONTENTS
• 硬盘简介 • 硬盘基本结构 • 硬盘工作原理 • 硬盘性能指标 • 常见问题与维护
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
01
硬盘简介
硬盘的发展历程
最早的硬盘
扇区与簇
硬盘中数据存储的基本单位,扇区通常包含一定数量的二进制位,簇则是一组连 续的扇区,用于文件存储和管理。
接口类型与传输速率
接口类型
硬盘与计算机之间的连接方式,常见的有SATA、IDE和SCSI 等接口类型,每种接口都有不同的传输速率和数据格式。

全面认识硬盘

全面认识硬盘

全面认识硬盘硬盘(英文名:Hard Disc Drive,简称HDD,全名温彻斯特式硬盘)是电脑中必不可少的存储媒介之一。

硬盘的组成是由一个或者多个铝制或者玻璃制的碟片组成。

这些碟片外覆盖有铁磁性材料。

绝大多数硬盘都是固定硬盘,被永久性地密封固定在硬盘驱动器中。

●硬盘基本参数详解:硬盘内部结构详解转速:硬盘通常是按每分钟转速(RPM,Revolutions Per Minute)计算:该指标代表了硬盘主轴马达(带动磁盘)的转速,比如5400 RPM 就代表该硬盘中主轴转速为每分钟5400转。

目前主流笔记本硬盘转速为5400RPM;台式机硬盘则为7200RPM。

但随着技术的不断进步,笔记本和台式机均有万转产品问世,但多用用于企业用户。

单碟容量:单碟容量是硬盘相当重要的参数之一。

硬盘是由多个存储碟片组合而成,而单碟容量就是指一个存储碟所能存储的最大数据量。

目前在垂直记录技术的帮助下,单碟容量从之前80GB升级到500GB或者640GB,发展速度相当快。

硬盘单碟容量提高不仅仅可以带来总容量提升,有利于降低生产成,提高工作稳定性;而且单碟容量越大其内部数据传输速率就越快。

硬盘结构示意图平均寻道时间:平均寻道时间指硬盘在盘面上移动读写磁头到指定磁道寻找相应目标数据所用的时间,单位为毫秒。

当单碟容量增大时,磁头的寻道动作和移动距离减少,从而使平均寻道时间减少,加快硬盘访问速度。

硬盘背面PCB详解缓存:缓存是硬盘与外部交换数据的临时场所。

硬盘读/写数据时,通过缓存一次次地填充与清空,再填充,再清空,就像一个中转仓库一样。

目前大多数硬盘缓存已经达到32MB,而对于大容量产品则均为64MB容量。

内部数据传输率:内部传输率是指硬盘磁头与缓存之间的数据传输率,简单说就是硬盘将数据从盘片上读取出来,然后存储在缓存上的速度。

内部传输率可以明确表现出硬盘的读写速度,它的高低才是评价一个硬盘整体性能的决定性因素。

目前大多数桌面级硬盘基本都在70-90MB/S之间,笔记本硬盘则在55MB/S左右。

深入了解硬盘内部结构

深入了解硬盘内部结构

深入了解硬盘内部结构追溯历史从1956年9月,IBM的一个工程小组向世界展示了第一台磁盘存储系统IBM 350 RAMAC(Random Access Method of Accounting and Control)至今,磁盘存储系统已经历了近半个世纪的发展。

经历了这45年,磁盘的变化可以说是非常巨大得,最早的那台RAMAC容量只有5MB,然而却需要使用50个直径为24英寸的磁盘。

但现在一块容量高达100GB的硬盘只需要3张磁盘片即可。

当然,IBM 350 RAMAC与现在的硬盘有很大的差距,它只能算是硬盘的开山鼻祖。

现代硬盘的真正原形,可以追溯到1973年,那时IBM公司推出的Winchester(温氏)硬盘,它的特点是:“工作时,磁头悬浮在高速转动的盘片上方,而不与盘片直接接触。

使用时,磁头沿高速旋转的盘片上做径向移动”,这便是现在所有硬盘的雏形。

今天高端硬盘容量虽然高达上百GB,但它却仍然没有脱离“温彻斯特”的动作模式。

下面是两张IBM公司于1980年在IBM-XT上的一块10M的硬盘图,可以看出,除了外型略大,无论外观还是内部结构和现在最先进的硬盘并无大的差别。

图1:IBM 10MB硬盘的内部结构图图2:IBM 10MB硬盘的外观图技术的前进,总是将电脑系统朝人们喜欢的方面发展,而体积更小、速度更快、容量更大、使用更安全就是广大用户对硬盘的最大期望。

出于这样的目的,硬盘工程师们为其做出了许多努力,例如研究读写更灵敏的磁头、更先进的接口类型、存储密度更高的磁盘盘片及更有效的数据保持技术等。

这些技术上的突破使得硬盘不仅越来越先进,而且也更加稳定,这些也就是现在的硬盘与图 1 中所示硬盘的最大区别。

深入了解硬盘之外部结构二、深入了解硬盘平时我们了解硬盘,多是从产品外观、产品特征及磁盘性能等方面去认识,而硬盘的内部到底是什么呢?相信许多用户都不是很清楚,因为了解硬盘内部结构的机会实在太少了。

我们经常听说磁头、盘片、接口等,但它们都长怎么样我们却不是很清楚?还有所谓的玻璃盘片,主轴电机等又是什么呢?带着这些问题,接下来笔者将对硬盘进行一次大解剖,使大家能更深入地了解硬盘。

硬盘基本结构

硬盘基本结构

信息产业部数据恢复技术培训
第3讲 硬盘外部、内部结构
2.1.2 硬盘内部结构
图2-16 卸下磁头架
信息产业部数据恢复技术培训
第3讲 硬盘外部、内部结构
2.1.2 硬盘内部结构
图2-17 取下下边的盘片
信息产业部数据恢复技术培训
第3讲 硬盘外部、内部结构
2.1.2 硬盘内部结构
卸下固定 主电机的三颗 螺丝,电机就 拆下来了。最 后剩下的只是 一个铝合金的 盘 架 , 如 图 218所示。 图2-18 铝合金盘体
信息产业部数据恢复技术培训
第3讲 硬盘外部、内部结构
2.1.2 硬盘内部结构
图2-20 磁头组件
信息产业部数据恢复技术培训
第3讲 硬盘外部、内部结构
2.1.2 硬盘内部结构
② 磁头驱动机构。磁头驱动机构由电磁线圈电机、磁 头驱动小车、防震动装置构成,高精度的轻型磁头驱动机 构能够对磁头进行正确的驱动和定位,并能在很短的时间 内精确定位系统指令指定的磁道。 ③ 磁盘片。盘片是硬盘存储数据的载体,现在硬盘盘 片大多采用金属薄膜材料,这种金属薄膜与软盘的不连续 颗粒载体相比具有更高的存储密度、高剩磁及高矫顽力等 优点。
第3讲 硬盘外部、内部结构
2.1.1 硬盘外部结构
在硬盘的正面贴有产品标签, 主要有厂家的信息和产品信息, 如商标、型号、序列号、生产日 期、容量、参数、主从设置方法 等,这些信息是正确使用硬盘的 基本依据,如图2-2所示。 图2-2所示的是WD200BB的产 品标签。从型号上可以判断,它 是一款容量为 20GB的7200RPM高 速 硬 盘 , 产 品 序 列 号 为 WMA9L1203351,产地为马来西亚, 出厂息产业部数据恢复技术培训

硬盘基本知识(磁头、磁道、扇区、柱面)

硬盘基本知识(磁头、磁道、扇区、柱面)

硬盘基本知识(磁头、磁道、扇区、柱面)硬盘基本知识(磁头、磁道、扇区、柱面)概述1.盘片(platter)2.磁头(head)3.磁道(track)4.扇区(sector)5.柱面(cylinder)盘片片面和磁头硬盘中一般会有多个盘片组成,每个盘片包含两个面,每个盘面都对应地有一个读/写磁头。

受到硬盘整体体积和生产成本的限制,盘片数量都受到限制,一般都在5片以内。

盘片的编号自下向上从0开始,如最下边的盘片有0面和1面,再上一个盘片就编号为2面和3面。

如下图:图1扇区和磁道下图显示的是一个盘面,盘面中一圈圈灰色同心圆为一条条磁道,从圆心向外画直线,可以将磁道划分为若干个弧段,每个磁道上一个弧段被称之为一个扇区(图践绿色部分)。

扇区是磁盘的最小组成单元,通常是512字节。

(由于不断提高磁盘的大小,部分厂商设定每个扇区的大小是4096字节)图2磁头和柱面硬盘通常由重叠的一组盘片构成,每个盘面都被划分为数目相等的磁道,并从外缘的“0”开始编号,具有相同编号的磁道形成一个圆柱,称之为磁盘的柱面。

磁盘的柱面数与一个盘面上的磁道数是相等的。

由于每个盘面都有自己的磁头,因此,盘面数等于总的磁头数。

如下图图3磁盘容量计算存储容量=磁头数× 磁道(柱面)数× 每道扇区数× 每扇区字节数图3中磁盘是一个3个圆盘6个磁头,7个柱面(每个盘片7个磁道)的磁盘,图3中每条磁道有12个扇区,所以此磁盘的容量为:存储容量 6 * 7 * 12 * 512 = 258048每个磁道的扇区数一样是说的老的硬盘,外圈的密度小,内圈的密度大,每圈可存储的数据量是一样的。

新的硬盘数据的密度都一致,这样磁道的周长越长,扇区就越多,存储的数据量就越大。

磁盘读取响应时间1.寻道时间:磁头从开始移动到数据所在磁道所需要的时间,寻道时间越短,I/O操作越快,目前磁盘的平均寻道时间一般在3-15ms,一般都在10ms左右。

磁盘结构简介

磁盘结构简介

磁盘结构简介今天在学习《鸟哥的Linux私房菜》时,鸟哥讲到了磁盘结构,看得我云里雾里的。

索性网上搜索,看到一篇比较好的博文,主要是图例比较精准,结合文字描述很快就搞明白了。

这里讲的主要是网上所谓的老式磁盘,它是由一个个盘片组成的,我们先从个盘片结构讲起。

如图1所示,图中的一圈圈灰色同心圆为一条条磁道,从圆心向外画直线,可以将磁道划分为若干个弧段,每个磁道上一个弧段被称之为一个扇区(图践绿色部分)。

扇区是磁盘的最小组成单元,通常是512字节。

图1 老式磁盘一个盘片的结构图2展示了由一个个盘片组成的磁盘立体结构,一个盘片上下两面都是可读写的,图中蓝色部分叫柱面(cylinder)。

图2 老式磁盘的整体结构简简单介绍了磁盘结构后,下面我们将对磁盘的参数进行讲解。

磁盘的常见参数如下:∙磁头(head)∙磁道(track)∙柱面(cylinder)∙扇区(sector)∙圆盘(platter)图2中磁盘是一个3个圆盘6个磁头,7个柱面(每个盘片7个磁道)的磁盘,图2中每条磁道有12个扇区,所以此磁盘的容量为6*7*12*512字节。

即:存储容量=磁头数×磁道(柱面)数×每道扇区数×每扇区字节数下面讲一下现代磁盘,在老式磁盘中,尽管磁道周长不同,但每个磁道上的扇区数是相等的,越往圆心扇区弧段越短,但其存储密度越高。

不过这种方式显然比较浪费空间,因此现代磁盘则改为等密度结构,这意味着外围磁道上的扇区数量要大于内圈的磁道,寻址方式也改为以扇区为单位的线性寻址。

为了兼容老式的3D寻址方式,现代磁盘控制器中都有一个地址翻译器将3D 寻址参数翻译为线性参数。

图3 一张Linux的分区表如图3所示,在Linux中是以柱面为单位来分区的。

这里分区大小除以Blocks数的值约1024说明,在磁盘上读写时的最小单位是1024字节----这是我猜的。

参考资源:/sky511314520/diary/item/10019498.html/csu_whm/archive/2009/09/14/4550429.aspx/art/201012/238190.htm。

机械硬盘内部硬件结构和工作原理详解

机械硬盘内部硬件结构和工作原理详解

一般硬盘正面贴有产品标签,主要包括厂家信息和产品信息,如商标、型号、序列号、生产日期、容量、参数和主从设置方法等。

这些信息是正确使用硬盘的基本依据,下面将逐步介绍它们的含义。

硬盘主要由盘体、控制电路板和接口部件等组成,如图1-1所示。

盘体是一个密封的腔体。

硬盘的内部结构通常是指盘体的内部结构;控制电路板上主要有硬盘BIOS、硬盘缓存(即CACHE)和主控制芯片等单元,如图1-2所示;硬盘接口包括电源插座、数据接口和主、从跳线,如图1-3所示。

图1-1 硬盘的外观图1-2 控制电路板图1-3 硬盘接口电源插座连接电源,为硬盘工作提供电力保证。

数据接口是硬盘与主板、内存之间进行数据交换的通道,使用一根40针40线(早期)或40针80线(当前)的IDE接口电缆进行连接。

新增加的40线是信号屏蔽线,用于屏蔽高速高频数据传输过程中的串扰。

中间的主、从盘跳线插座,用以设置主、从硬盘,即设置硬盘驱动器的访问顺序。

其设置方法一般标注在盘体外的标签上,也有一些标注在接口处,早期的硬盘还可能印在电路板上。

此外,在硬盘表面有一个透气孔(见图1-1),它的作用是使硬盘内部气压与外部大气压保持一致。

由于盘体是密封的,所以,这个透气孔不直接和内部相通,而是经由一个高效过滤器和盘体相通,用以保证盘体内部的洁净无尘,使用中注意不要将它盖住。

1.2 硬盘的内部结构硬盘的内部结构通常专指盘体的内部结构。

盘体是一个密封的腔体,里面密封着磁头、盘片(磁片、碟片)等部件,如图1-4所示。

图1-4 硬盘内部结构硬盘的盘片是硬质磁性合金盘片,片厚一般在0.5mm左右,直径主要有1.8in(1in=25.4mm)、2.5in、3.5in和5.25in 4种,其中2.5in和3.5in盘片应用最广。

盘片的转速与盘片大小有关,考虑到惯性及盘片的稳定性,盘片越大转速越低。

一般来讲,2.5in硬盘的转速在5 400r/min~7 200 r/ min之间;3.5in硬盘的转速在4 500 r/min~5 400 r/min之间;而5.25in硬盘转速则在3 600 r/min~4 500 r/min之间。

硬盘内部结构(PDF)

硬盘内部结构(PDF)

硬盘内部结构硬盘内部由头盘组件和前置读写控制电路组成,其中头盘组件属于机械装置部分,组件中每一个组成部分都是由高度精密的机械零件组装而成;前置读写控制电路由一组复杂电路组成,负责调制硬盘与中央处理器之间交换的信号类型并将其放大。

下面以实物图与示意图相结合的形式详细介绍这些结构组成。

1. 头盘组件头盘组件是硬盘的核心部分,包括盘体、主轴电机、读写磁头、寻道电机等主要部件,打开密封的外壳即可看到其内部构造,如下图所示。

因为这个体腔是非常干净的,而且里面都属于高度精密机械配件,所以万万不可开启外壳。

生产硬盘的车间对无尘度要求非常严格,平均每平方米不超过十粒尘埃。

虽然有相关文章谈到过开盖除尘,坏盘复用的实例,但这仍然是下下策,除非是一块烂盘或是扔货,否则……了解了硬盘内部头盘组件的总体结构以后,再来看看每个组成部分的详细结构。

z z盘体:硬盘的盘体由单个或多个盘片重叠在一起组成,是数据存储的载体,也就是保存文件的地方。

由多个盘片组成的盘体,可以形象的理解成一个圆柱,每个盘片与其他盘片之间都有垫圈隔开。

这些盘片是一些表面极为平整光滑的金属圆片,并涂有记录数据的磁性物质。

组成盘体的金属盘片多为铝制品,不过早期的盘片也有用陶瓷制成的,而现在则有用玻璃材料来充当盘片基质的,比如IBM的腾龙二代产品玻璃之星Deskstar 75GXP (DTLA-307030,30GB)硬盘。

下面以实物图与示意图相结合的方式来认识盘体的详细内容。

注意提示盘体从物理的角度分为磁面(Side )、磁道(Track )、柱面(Cylinder )与扇区(Sector )等4个结构。

磁面也就是组成盘体各盘片的上下两个盘面,第一个盘片的第一面为0磁面,下一个为1磁面;第二个盘片的第一面为2磁面,以此类推……。

由于每个磁面对应一个读写磁头,因此在对磁面进行读写操作时,也可称为磁头0、1、2……。

磁道也就是在格式化磁盘时盘片上被划分出来的许多同心圆。

硬盘 结构 原理 磁道,扇区和柱面图示

硬盘 结构 原理 磁道,扇区和柱面图示

硬盘结构原理磁道,扇区和柱面图示/pspio/blog/item/313592607bd09b4feaf8f865.html/blog/185252硬盘工作原理(转)硬盘结构原理磁道,扇区和柱面图示我们知道硬盘中是由一片片的磁盘组成的,大家可能没有打开过硬盘,没见过它具体是什么样.不过这不要紧.我们只要理解了什么是磁道,扇区和柱面就够了.在下图中,我们可以看到一圈圈被分成18(假设)等分的同心圆,这些同心圆就是磁道(见图).不过真打开硬盘你可看不到.它实际上是被磁头磁化的同心圆.如图可以说是被放大了的磁盘片.那么扇区就是每一个磁道中被分成若干等分的区域.相邻磁道是有间隔的,这是因为磁化单元太近会产生干扰.一个小软盘有80个磁道,硬盘嘛要远远大于此值,有成千上万的磁道.每个柱面包括512个字节。

那么什么是柱面呢?看下图,我们假设它只有3片.每一片中的磁道数是相等的.从外圈开始,磁道被分成0磁道,1磁道,2磁道......具有相同磁道编号的同心圆组成柱面,那么这柱面就像一个没了底的铁桶.哈哈,这么一说,你也知道了,柱面数就是磁盘上的磁道数.每个磁面都有自己的磁头.也就是说,磁面数等于磁头数.硬盘的容量=柱面数(CYLINDER)*磁头数(HEAD)*扇区数(SECTOR)*512B.这下你也可以计算硬盘的一些参数了.什么是簇?文件系统是操作系统与驱动器之间的接口,当操作系统请求从硬盘里读取一个文件时,会请求相应的文件系统(FAT 16/32/NTFS)打开文件。

扇区是磁盘最小的物理存储单元,但由于操作系统无法对数目众多的扇区进行寻址,所以操作系统就将相邻的扇区组合在一起,形成一个簇,然后再对簇进行管理。

每个簇可以包括2、4、8、16、32或64个扇区。

显然,簇是操作系统所使用的逻辑概念,而非磁盘的物理特性。

为了更好地管理磁盘空间和更高效地从硬盘读取数据,操作系统规定一个簇中只能放置一个文件的内容,因此文件所占用的空间,只能是簇的整数倍;而如果文件实际大小小于一簇,它也要占一簇的空间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

硬盘内部结构图解
平时大家在论坛上对硬盘的认识和选购,大都是通过产品的外型、性能指标特征和网站公布的性能评测报告等方面去了解,但是硬盘的内部结构究竟是怎么样的呢,所谓的磁头、盘片、主轴电机又是长什么样子呢,硬盘的读写原理是什么,估计就不是那么多人清楚了。

所以我就以一块二手西数硬盘WD200BB为例向大家讲解一下硬盘的内部结构,让硬件初学者们能够对硬盘有一个更深的认识。

在动手之前,先了解一些硬盘的结构理论知识。

总得来说,硬盘主要包括:盘片、磁头、盘片主轴、控制电机、磁头控制器、数据转换器、接口、缓存等几个部份。

所有的盘片都固定在一个旋转轴上,这个轴即盘片主轴。

而所有盘片之间是绝对平行的,在每个盘片的存储面上都有一个磁头,磁头与盘片之间的距离比头发丝的直径还小。

所有的磁头连在一个磁头控制器上,由磁头控制器负责各个磁头的运动。

磁头可沿盘片的半径方向动作,而盘片以每分钟数千转到上万转的速度在高速旋转,这样磁头就能对盘片上的指定位置进行数据的读写操作。

由于硬盘是精密设备,尘埃是其大敌,所以必须完全密封。

现在先贴上今日的主角西数WD200BB硬盘的“玉照”,它是容量为20G的7200转的普通3.5寸IDE硬盘,属于比较常见的产品,也是用户最经常接触的。

除此之外,硬盘还有许多种类,例如老式的普通IDE硬盘是5.25英寸,高度有半高型和全高型,还有体积小巧玲珑的笔记本电脑,块头巨大的高端SCSI硬盘及非常特殊的微型硬盘。

在硬盘的正面都贴有硬盘的标签,标签上一般都标注着与硬盘相关的信息,例如产品型号、产地、出厂日期、产品序列号等,上图所示的就是WD200BB的产品标签。

在硬盘的一端有电源接口插座、主从设置跳线器和数据线接口插座,而硬盘的背面则是控制电路板。

从下图中可以清楚地看出各部件的位置。

总得来说,硬盘外部结构可以分成如下几个部份:
一、硬盘接口、控制电路板及固定面板:
(1)、接口。

接口包括电源接口插座和数据接口插座两部份,其中电源插座就是与主机电源相连接,为硬盘正常工作提供电力保证。

数据接口插座则是硬盘数据与主板控制芯片之间进行数据传输交换的通道,使用时是用一根数据电缆将其与主板IDE接口或与其它控制适配器的接口相连接,经常听说的40针、80芯的接口电缆也就是指数据电缆,数据接口主要分成IDE接口、SATA 接口和SCSI接口三大派系。

(2)、控制电路板。

大多数的控制电路板都采用贴片式焊接,它包括主轴调速电路、磁头驱动与伺服定位电路、读写电路、控制与接口电路等。

在电路板上还有一块ROM芯片,里面固化的程序可以进行硬盘的初始化,执行加电和启动主轴电机,加电初始寻道、定位以及故障检测等。

在电路板上还安装有容量不等的高速数据缓存芯片,在此块硬盘内结合有2MB的高速缓存。

(3)、固定面板。

就是硬盘正面的面板,它与底板结合成一个密封的整体,保证了硬盘盘片和机构的稳定运行。

在面板上最显眼的莫过于产品标签,上面印着产品型号、产品序列号、产品、生产日期等信息,这在上面已提到了。

除此,还有一个透气孔,它的作用就是使硬盘内部气压与大气气压保持一致。

硬盘内部结构由固定面板、控制电路板、磁头、盘片、主轴、电机、接口及其它附件组成,其中磁头盘片组件是构成硬盘的核心,它封装在硬盘的净化腔体内,包括有浮动磁头组件、磁头驱动机构、盘片、主轴驱动装置及前置读写控制电路这几个部份。

将硬盘面板揭开后,内部结构即可一目了然,如图所示。

二、磁头组件及磁头驱动机构:
(1)、磁头组件。

这个组件是硬盘中最精密的部位之一,它由读写磁头、传动手臂、传动轴三部份组成。

磁头是硬盘技术中最重要和关键的一环,实际上是集成工艺制成的多个磁头的组合,它采用了非接触式头、盘结构,加后电在高速旋转的磁盘表面移动,与盘片之间的间隙只有0.1~0.3um,这样可以获得很好的数据传输率。

现在转速为7200RPM的硬盘飞高一般都低于0.3um,以利于读取较大的高信噪比信号,提供数据传输率的可靠性。

至于硬盘的工作原理\0。

相关文档
最新文档