湘教版八年级数学上册期中测试题

合集下载

湘教版八年级数学上册期中测试卷及答案【完美版】

湘教版八年级数学上册期中测试卷及答案【完美版】

湘教版八年级数学上册期中测试卷及答案【完美版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若m >n ,则下列不等式正确的是( )A .m ﹣2<n ﹣2B .44m n >C .6m <6nD .﹣8m >﹣8n2.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( )A .2a +2b -2cB .2a +2bC .2cD .03.已知点()()121,,2,A y B y 在抛物线2(1)2y x =-++上,则下列结论正确的是( )A .122y y >>B .212y y >>C .122y y >>D .212y y >>4.化简 )A B C D5.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)6.已知a=2012x+2011,b=2012x+2012,c=2012x+2013,那么a 2+b 2+c 2—ab -bc -ca 的值等于( )A .0B .1C .2D .37.已知正多边形的一个外角为36°,则该正多边形的边数为( ).A .12B .10C .8D .68.如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,过点D 作DE ∥BC 交AC 于点E,若∠A=54°,∠B=48°,则∠CDE 的大小为( )A .44°B .40°C .39°D .38°9.如图在正方形网格中,若A (1,1),B (2,0),则C 点的坐标为( )A .(-3,-2)B .(3,-2)C .(-2,-3)D .(2,-3)10.下列选项中,不能判定四边形ABCD 是平行四边形的是( )A .AD//BC ,AB//CDB .AB//CD ,AB CD =C .AD//BC ,AB DC =D .AB DC =,AD BC =二、填空题(本大题共6小题,每小题3分,共18分)1.81的平方根是________.2.已知222246140x y z x y z ++-+-+=, 则()2002x y z --=_______.3.如果实数a ,b 满足a+b =6,ab =8,那么a 2+b 2=________.4.如图,已知∠1=75°,将直线m 平行移动到直线n 的位置,则∠2﹣∠3=________°.5.如图,直线y =x +2与直线y =ax +c 相交于点P (m ,3),则关于x 的不等式x +2≤ax +c 的解为__________.6.如图,四边形ABCD 中,∠A=90°,AB=33,AD=3,点M ,N 分别为线段BC ,AB 上的动点(含端点,但点M 不与点B 重合),点E ,F 分别为DM ,MN 的中点,则EF 长度的最大值为 . 三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--.2.先化简再求值:(a ﹣22ab b a -)÷22a b a -,其中2,b=12.3.已知方程组713x y m x y m+=--⎧⎨-=+⎩的解满足x 为非正数, y 为负数. (1)求m 的取值范围;(2)化简:||32m m --+;(3)在m 的取值范围内,当m 为何整数时,不等式221mx x m +<+的解为1x >.4.已知:如图所示△ACB 和△DCE 都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD.求证:AE=BD.5.如图,▱ABCD的对角线AC,BD相交于点O,点E、F在AC上,且AF=CE.求证:BE=DF.6.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、A4、C5、C6、D7、B8、C9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±32、03、204、1055、x ≤1.6、3三、解答题(本大题共6小题,共72分)1、2x =2、原式=a b a b -=+3、(1)23m -<≤;(2)12m -;(3)1m =-4、略.5、略.6、(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到510元,且更有利于减少库存,则商品应降价2.5元.。

湘教版八年级数学上册期中考试卷(及参考答案)

湘教版八年级数学上册期中考试卷(及参考答案)

湘教版八年级数学上册期中考试卷(及参考答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-2的倒数是( )A .-2B .12-C .12D .22.一次函数24y x =+的图像与y 轴交点的坐标是( )A .(0,-4)B .(0,4)C .(2,0)D .(-2,0)3.如果线段AB =3cm ,BC =1cm ,那么A 、C 两点的距离d 的长度为( )A .4cmB .2cmC .4cm 或2cmD .小于或等于4cm ,且大于或等于2cm4.已知a b 3132==,,则a b 3+的值为( ) A .1 B .2 C .3 D .275.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .6.如图,菱形ABCD 的对角线AC 、BD 的长分别为6和8,则这个菱形的周长是( )A .20B .24C .40D .487.如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,且∠ADC=110°,则∠MAB=()A.30°B.35°C.45°D.60°8.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.8.如图,在矩形AOBC中,A(–2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为()A.–12B.12C.–2 D.210.若关于x的一元二次方程2210x x kb-++=有两个不相等的实数根,则一次函数y kx b=+的图象可能是:()A. B.B.C. D.二、填空题(本大题共6小题,每小题3分,共18分)1.三角形三边长分别为3,2a 1-,4.则a 的取值范围是________.2.分解因式:22a 4a 2-+=__________.3.计算22111m m m---的结果是________. 4.含45°角的直角三角板如图放置在平面直角坐标系中,其中A(-2,0),B(0,1),则直线BC 的解析式为________.5.如图,O 为数轴原点,A ,B 两点分别对应-3,3,作腰长为4的等腰△ABC ,连接OC ,以O 为圆心,CO 长为半径画弧交数轴于点M ,则点M 对应的实数为__________ .6.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .三、解答题(本大题共6小题,共72分)1.解下列分式方程:(1)32111x x =+-- (2)2531242x x x-=---2.先化简,再从﹣1、2、3、4中选一个合适的数作为x 的值代入求值.2222444424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭.3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.已知:在ABC ∆中,AB AC = ,D 为AC 的中点,DE AB ⊥ ,DF BC ⊥ ,垂足分别为点,E F ,且DE DF =.求证:ABC ∆是等边三角形.5.已知平行四边形ABCD ,对角线AC 、BD 交于点O ,线段EF 过点O 交AD 于点E ,交BC 于点F .求证:OE=OF .6.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、B5、B6、A7、B8、D9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、1a4<<2、()2 2a1-3、11 m-4、113y x=-+56、42.三、解答题(本大题共6小题,共72分)1、(1)x=2;(2)32 x=-2、x+2;当1x=-时,原式=1.3、(1)12b-≤≤;(2)24、略.5、略.6、(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.。

湘教版八年级数学上册期中试卷及答案【完整】

湘教版八年级数学上册期中试卷及答案【完整】

湘教版八年级数学上册期中试卷及答案【完整】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若2n +2n +2n +2n =2,则n=( ) A .﹣1B .﹣2C .0D .142.将抛物线23y x =-平移,得到抛物线23(1)2y x =---,下列平移方式中,正确的是( )A .先向左平移1个单位,再向上平移2个单位B .先向左平移1个单位,再向下平移2个单位C .先向右平移1个单位,再向上平移2个单位D .先向右平移1个单位,再向下平移2个单位3n ( ) A .2B .3C .4D .54.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3B .m ≤3且m ≠2C .m <3D .m <3且m ≠25.已知4821-可以被在0~10之间的两个整数整除,则这两个数是( ) A .1、3B .3、5C .6、8D .7、96.某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为( ) A .2%B .4.4%C .20%D .44%7.如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为()A.3x2>B.x3>C.3x2<D.x3<8.已知直线a∥b,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为()A.80°B.70°C.85°D.75°9.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.1410.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A.150°B.180°C.210°D.225°二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b--的值为____________.2.如果关于x的不等式组232x ax a>+⎧⎨<-⎩无解,则a的取值范围是__________.3.分解因式6xy2-9x2y-y3 = _____________.4.如图,AB ∥CD ,则∠1+∠3—∠2的度数等于 _________.5.如图,E 、F 分别是平行四边形ABCD 的边AB 、CD 上的点,AF 与DE 相交于点P,BF 与CE 相交于点Q,若215APD S cm ∆=,225BQC S cm ∆=,则阴影部分的面积为__________2cm .6.如图,∠AOB=60°,OC 平分∠AOB ,如果射线OA 上的点E 满足△OCE 是等腰三角形,那么∠OEC 的度数为________。

湘教版八年级上册数学期中考试试卷附答案

湘教版八年级上册数学期中考试试卷附答案

湘教版八年级上册数学期中考试试题一、单选题1.下列分式是最简分式的是()A .331x x +B .22x y x y --C .222x y x xy y --+D .64x y2.有下列命题:①两点之间,线段最短;②相等的角是对顶角;③当a≥0时,|a|=a ;④内错角互补,两直线平行.其中是真命题的有()A .1个B .2个C .3个D .4个3.若分式211x x -+的值为0,则x 的值为()A .1B .-1C .±1D .24.要使分式1+1x 有意义,则x 应满足的条件是()A .1x ≠B .1x ≠-C .0x ≠D .1x >5.下列运算正确的是()A .()235x x =B .()55x x -=-C .326x x x ⋅=D .235325x x x +=6.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()A .带①去B .带②去C .带③去D .①②③都带7.如图,△ABC ≌△BAD ,点A 和点B ,点C 和点D 是对应点.如果∠D =70°,∠CAB =50°,那么∠DAB =()A .20°B .50°C .70°D .60°8.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.253520x x=-B.253520x x=-C.253520x x=+D.253520x x=+9.如图,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=158°,则∠EDF等于()A.58°B.68°C.78°D.32°10.若分式方程1322a xx x-+=--有增根,则a的值是()A.1B.0C.—1D.3二、填空题11.计算:()32a-=__________.12.计算:1133x x+--=________________.13.如图,在△ABC中,∠A=80°,点D是BC延长线上一点,∠ACD=150°,则∠B=_____.14.已知关于x的方程244x kx x=--会产生增根,则k的值为________.15.将0.0000105用科学记数法可表示为_______________.16.等腰三角形的两边的长分别为5cm和7cm,则此三角形的周长是_____.17.在△ABC中,∠A=70°,∠A比∠B大10°,则∠C=_______°.18.如图,∠1=∠2,要使△ABE≌△ACE,需添加一个条件是__________.(填上一个条件即可)三、解答题19.计算:101(2( 3.14)2π---+-20.解分式方程:33122x x x-+=--21.先化简,再求值:22453262a a a a a --÷-+++选择一个你喜欢的数.22.观察下面的变形规律:112⨯=1-12;123⨯=12-13;134⨯=13-14;……解答下面的问题:(1)若n 为正整数,请你猜想1n(n 1)+=.(2)若n 为正整数,请你用所学的知识证明1111(1)n n n n -=++;(3)求和:112⨯+123⨯+134⨯+…+120112012⨯ .23.如图,在△ABC 中,BC=8cm ,AB 的垂直平分线交AB 于点D,交边AC 于点E ,△BCE 的周长等于18cm ,求AC 的长.24.如图,D 、E 在BC 上,且BD =CE ,AD =AE ,∠ADE =∠AED .求证:AB =AC .25.为提高学生的阅读兴趣,某学校建立了共享书架,并购买了一批书籍.其中购买A 种图书花费了3000元,购买B 种图书花费了1600元,A 种图书的单价是B 种图书的1.5倍,购买A 种图书的数量比B 种图书多20本.(1)求A 和B 两种图书的单价;(2)书店在“世界读书日”进行打折促销活动,所有图书都按8折销售学校当天购买了A 种图书20本和B 种图书25本,共花费多少元?26.在ABC 中,90ACB ∠=︒,AC BC =,直线MN 经过点C 且AD MN ⊥于D ,BE MN ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证:①ADC ≌CEB △;②DE AD BE =+;(2)当直线MN 烧点C 旋转到图2的位置时,求证:DE AD BE =-;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.参考答案1.A2.B3.A4.B5.B6.C7.D8.C9.B10.Da-11.612.0.13.70°14.815.1.05×10-516.17cm或19cm.17.50°18.∠B=∠C(或BE=CE或∠BAE=∠CAE)19.-3【详解】--+解;原式=221=-3.20.x=1【详解】解:x-3+(x-2)=-3x+x=-3+3+22x=2x=1检验:当x=1时,左边=3=右边∴x=1是原方程的解21.32a -+,-1【详解】解:224522(3)525.32623(2)(32)2222a a a a a a a a a a a a a a ---+÷-=-=-=-+++++-++++∵a+2≠0,a+3≠0,∴a≠-2且a≠-3,∴取a=1,∴原式=-122.(1)111n n -+;(2)见详解;(3)20112012.【详解】(1)∵112⨯=1-12;123⨯=12-13;134⨯=13-14,∴1n(n 1)+=111n n -+.(2)∵1111(1)(1)n nn n n n n n +-=-+++=11111(1)(1)n n n n n n n n +--==+++,∴1111(1)n n n n -=++;(3)∵()11111n n n n =-++,∴112⨯+123⨯+134⨯+…+120112012⨯=1-12+12-13+13-14+…+1120112012-=1-12012=20112012.23.10cm 【详解】解:∵BCE 的周长为18cm ,∴18BC CE BE cm++= 8BC cm=∴10BE CE cm+=∵DE 垂直平分AB ∴AE BE=∴10BE CE AE CE AC cm +=+==24.证明见解析【分析】先求出BE=CD ,再利用“边角边”证明△ABE 和△ACD 全等,根据全等三角形对应边相等证明即可.【详解】证明:∵BD=CE ,∴BD+DE=CE+DE ,即BE=CD ,在△ABE 和△ACD 中,AD AE ADE AED BE CD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (SAS ),∴AB=AC .【点睛】本题考查了全等三角形的判定与性质,熟练掌握三角形全等的判断方法是解题的关键,难点在于求出BE=CD .25.(1)A 种图书的单价为30元,B 种图书的单价为20元;(2)共花费880元.【解析】(1)设B 种图书的单价为x 元,则A 种图书的单价为1.5x 元,根据数量=总价÷单价结合花3000元购买的A 种图书比花1600元购买的B 种图书多20本,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)根据总价=单价×数量,即可求出结论.【详解】(1)设B 种图书的单价为x 元,则A 种图书的单价为1.5x 元,依题意,得:30001600201.5x x-=,解得:20x =,经检验,20x =是所列分式方程的解,且符合题意,∴1.530x =.答:A 种图书的单价为30元,B 种图书的单价为20元.(2)300.820200.825880⨯⨯+⨯⨯=(元).答:共花费880元.26.(1)①证明见解析;②证明见解析(2)证明见解析(3)DE BE AD =-(或者对其恒等变形得到AD BE DE =-,BE AD DE =+),证明见解析【解析】(1)①根据AD MN ⊥,BE MN ⊥,90ACB ∠=︒,得出CAD BCE ∠=∠,再根据AAS 即可判定ADC CEB ∆≅∆;②根据全等三角形的对应边相等,即可得出CE AD =,CD BE =,进而得到DE CE CD AD BE =+=+;(2)先根据AD MN ⊥,BE MN ⊥,得到90ADC CEB ACB ∠=∠=∠=︒,进而得出CAD BCE ∠=∠,再根据AAS 即可判定ADC CEB ∆≅∆,进而得到CE AD =,CD BE =,最后得出DE CE CD AD BE =-=-;(3)运用(2)中的方法即可得出DE ,AD ,BE 之间的等量关系是:DE BE AD =-或恒等变形的其他形式.(1)解:①AD MN ⊥ ,BE MN ⊥,90ADC ACB CEB ∴∠=∠=︒=∠,90CAD ACD ∴∠+∠=︒,90BCE ACD ∠+∠=︒,CAD BCE ∴∠=∠,在ADC ∆和CEB ∆中,CAD BCEADC CEB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()ADC CEB AAS ∴∆≅∆;②ADC CEB ∆≅∆ ,CE AD ∴=,CD BE =,DE CE CD AD BE ∴=+=+;(2)证明:AD MN ⊥ ,BE MN ⊥,90ADC CEB ACB ∴∠=∠=∠=︒,CAD BCE ∴∠=∠,在ADC ∆和CEB ∆中,CAD BCE ADC CEB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()ADC CEB AAS ∴∆≅∆;CE AD ∴=,CD BE =,DE CE CD AD BE ∴=-=-;(3)证明:当MN 旋转到题图(3)的位置时,AD ,DE ,BE 所满足的等量关系是:DE BE AD =-或AD BE DE =+或BE AD DE =+.理由如下:AD MN ⊥ ,BE MN ⊥,90ADC CEB ACB ∴∠=∠=∠=︒,CAD BCE ∴∠=∠,在ADC ∆和CEB ∆中,CAD BCE ADC CEB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()ADC CEB AAS ∴∆≅∆,CE AD ∴=,CD BE =,DE CD CE BE AD ∴=-=-(或者对其恒等变形得到AD BE DE =+或BE AD DE =+).。

湘教版八年级上册数学期中考试试卷含答案

湘教版八年级上册数学期中考试试卷含答案

湘教版八年级上册数学期中考试试题一、单选题1.下列各式:2a b -,3x x -,5y π+,a b a b+-,1m (x -y)中,是分式的共()A .1个B .2个C .3个D .4个2.若分式293x x -+的值为0,则x 的值为()A .0B .3C .3-D .3或3-3.如果把分式2xx y-中的x 和y 都扩大5倍,那么分式的值是()A .扩大5倍B .扩大10倍C .不变D .缩小5倍4.分式﹣11x-可变形为()A .﹣11x -B .﹣11x+C .11x+D .11x -5.A ,B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程()A .4848944x x +=+-B .4848944+=+-x x C .48x+4=9D .9696944+=+-x x 6.已知ABC ∆中,6AB =,4BC =,那么边AC 的长可能是下列哪个值()A .2B .5C .10D .117.如图,将三角形纸板的直角顶点放在直尺的一边上,∠1=20°,∠2=40°,则∠3等于()A .50°B .30°C .20°D .15°8.如图,在△ABC 中,AB=AD=DC ,∠B=70°,则∠C 的度数为()A .35°B .40°C .45°D .50°9.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC =5,DE =2,则△BCE 的面积等于()A .10B .7C .5D .410.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于O 点,已知AB=AC ,现添加以下的哪个条件仍不能判定△ABE ≌△ACD()A .∠B=∠CB .AD=AEC .BD=CED .BE=CD二、填空题11.用科学记数法表示:0.00002015=_________.12.计算:211x xx x ---=_____.13.若分式方程144-=--x mx x 无解,则m =__________.14.有下面四根长度为3厘米,4厘米,5厘米,7厘米的木棒,选取其中3根组成三角形,则可以组成三角形共有___________个.15.已知x y xy +=,则代数式()()1111x y x y+---的值为___________.16.如图,点D 在△ABC 边BC 的延长线上,CE 平分∠ACD ,∠A =80°,∠B =40°,则∠ACE 的大小是_________度.17.如图,在ABC ∆中,D 、E 分别是AB ,AC 上面的点,若已知12∠=∠,BE CD =,9AB =,2AE =,则CE =_________.18.如图,△ABC 中,AB=AC ,AB 的垂直平分线交边AB 于D 点,交边AC 于E 点,若△ABC 与△EBC 的周长分别是40cm ,24cm ,则AB=_______cm .三、解答题19.计算:230120.1252004|1|2-⎛⎫--⨯++- ⎪⎝⎭20.先化简,再求值:222111a a a a -+⎛⎫÷- ⎪⎝⎭,其中,2a =.21.解方程:(1)143x x =+;(2)2311x x x+=--.22.如图,点E ,F 在BC 上,BE =CF ,∠A =∠D ,∠B =∠C ,AF 与DE 交于点O .(1)求证:AB =DC ;(2)试判断△OEF 的形状,并说明理由.23.如图,点B 、C 、E 、F 在同一直线上,BC=EF ,AC ⊥BC 于点C ,DF ⊥EF 于点F ,AC=DF .求证:(1)ABC DEF △≌△;(2)AB DE ∥.24.如图,在等边三角形ABC 中,点D ,E 分别在边BC ,AC 上,且DE ∥AB ,过点E 作EF ⊥DE ,交BC 的延长线于点F .(1)求∠F 的度数;(2)若CD=2,求DF 的长.25.某火车站北广场将于2018年底投入使用,计划在广场内种植A 、B 两种花木共6600棵,若A 花木数量是B 花木数量的2倍少600棵.(1)A 、B 两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A 花木60棵或B 花木40棵,应分别安排多少人种植A 花木和B 花木,才能确保同时完成各自的任务?26.如图,已知90ABC ∠=︒,D 是直线AB 上的点,AD BC =.(1)如图1,过点A 作AF AB ⊥,并截取AF BD =,连接DC ,DF ,CF ,判断CDF ∆的形状并证明;(2)如图2,若E 是直线BC 上一点,且CE BD =,直线AE ,CD 相交于点P ,APD ∠的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.[提示:联想第(1)问的证明过程]参考答案1.C 2.B 3.C 4.D 5.A 6.B 7.C 8.A 9.C 10.D11.2.015×10﹣512.x 13.314.315.016.6017.718.1619.5.【分析】由乘方、零指数幂、绝对值、以及有理数乘法的运算法则进行计算,即可得到答案.【详解】解:230120.1252004|1|2-⎛⎫--⨯++- ⎪⎝⎭=480.12511-⨯++=4111-++=5.【点睛】本题考查了乘方、零指数幂、绝对值、以及有理数乘法的运算法则,解题的关键是熟练掌握运算法则进行解题.20.化简结果为1a a --,值为12-【解析】【分析】先算减法,再计算除法,然后把a 的值代入化简后的式子计算即可.【详解】解:222111a a a a -+⎛⎫÷- ⎪⎝⎭=22211a a a a a-+-÷=22(1)111a a a a a a a a--⋅==---当2a =时,原式=112a a --=-【点睛】本题考查了分式的化简求值是基本题型,熟练掌握分式的混合运算法则是解题的关键.21.(1)1x =;(2)12x =.【解析】【分析】(1)先去分母,然后移项合并,再进行检验,即可得到答案;(2)先把分式方程进行整理,然后去分母,移项合并,再进行检验,即可得到答案.【详解】解:(1)143x x =+,∴34x x +=,∴1x =;检验:当1x =时,30x +≠;∴1x =是原分式方程的解;(2)2311x x x+=--,∴2311x x x -=--,∴231x x -=-,∴233x x -=-,∴12x =;检验:当12x =时,10x -≠,∴12x =是原分式方程的解;【点睛】本题考查了解分式方程,解题的关键是熟练掌握解分式方程的步骤,注意需要检验.22.(1)证明见解析(2)等腰三角形,理由见解析【解析】【详解】证明:(1)∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE .又∵∠A =∠D ,∠B =∠C ,∴△ABF ≌△DCE (AAS ),∴AB =DC .(2)△OEF 为等腰三角形理由如下:∵△ABF ≌△DCE ,∴∠AFB=∠DEC .∴OE=OF .∴△OEF 为等腰三角形.23.(1)见解析;(2)见解析【解析】【分析】(1)根据垂直得出90ACB DFE ∠=∠=︒,结合BC EF =,AC DF =得出三角形全等;(2)根据三角形全等得出B DEF ∠=∠,根据同位角相等,两直线平行得到答案.【详解】解:(1)∵AC BC DF EF ⊥⊥,,90ACB DFE ∴∠=∠=︒,又∵BC EF =,AC DF =,∴ABC DEF △≌△(2)∵ABC DEF △≌△,∴B DEF ∠=∠,∴AB DE ∥(同位角相等,两直线平行)【点睛】本题考查三角形全等的性质与应用,平行线的判定,熟练掌握以上定理是解答本题的关键.24.(1)30°;(2)4.【解析】【分析】(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;(2)易证△EDC 是等边三角形,再根据直角三角形的性质即可求解.【详解】(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.【点睛】本题主要考查了运用三角形的内角和算出角度,并能判定等边三角形,会运用含30°角的直角三角形的性质.25.(1)A4200棵,B2400棵;(2)A14人,B12人.【解析】【分析】(1)首先设B花木数量为x棵,则A花木数量是(2x-600)棵,由题意得等量关系:种植A,B两种花木共6600棵,根据等量关系列出方程,再解即可;(2)首先设安排a人种植A花木,由题意得等量关系:a人种植A花木所用时间=(26-a)人种植B花木所用时间,根据等量关系列出方程,再解即可.【详解】(1)设B花木数量为x棵,则A花木数量是(2x-600)棵,由题意得:x+2x-600=6600,解得:x=2400,2x-600=4200,答:B花木数量为2400棵,则A花木数量是4200棵;(2)设安排a人种植A花木,由题意得:420024006040(26)a a =-,解得:a=14,经检验:a=14是原分式方程的解,26-a=26-14=12,答:安排14人种植A 花木,12人种植B 花木.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.注意不要忘记检验.26.(1)△CDF 是等腰直角三角形,见解析;(2)是,45°【解析】【分析】(1)利用SAS 证明△AFD 和△BDC 全等,再利用全等三角形的性质得出FD=DC ,即可判断三角形的形状;(2)作AF ⊥AB 于A ,使AF=BD ,连结DF ,CF ,利用SAS 证明△AFD 和△BDC 全等,再利用全等三角形的性质得出FD=DC ,∠FDC=90°,即可得出∠FCD=∠APD=45°.【详解】解:(1)△CDF 是等腰直角三角形∵AF ⊥AD ,∠ABC=90°,∴∠FAD=∠DBC ,在△FAD 与△DBC 中,AD BC FAD DBC AF BD =⎧⎪∠=∠⎨⎪=⎩,∴△FAD ≌△DBC (SAS ),∴FD=DC ,∴△CDF 是等腰三角形,∵△FAD ≌△DBC ,∴∠FDA=∠DCB ,∵∠BDC+∠DCB=90°,11∴∠BDC+∠FDA=90°,∴△CDF 是等腰直角三角形;(2)∠APD 的度数是一个固定值,等于45°作AF ⊥AB 于A ,使AF=BD ,连结DF ,CF,如图,∵AF ⊥AD ,∠ABC=90°,∴∠FAD=∠DBC ,在△FAD 与△DBC 中,AD BCFAD DBC AF BD=⎧⎪∠=∠⎨⎪=⎩,∴△FAD ≌△DBC (SAS ),∴FD=DC ,∴△CDF 是等腰三角形,∵△FAD ≌△DBC ,∴∠FDA=∠DCB ,∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°,∴△CDF 是等腰直角三角形,∴∠FCD=45°,∵AF ∥CE ,且AF=CE ,∴四边形AFCE 是平行四边形,∴AE ∥CF ,∴∠APD=∠FCD=45°.。

湘教版八年级上册数学期中考试试卷及答案

湘教版八年级上册数学期中考试试卷及答案

湘教版八年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.若分式23x-有意义,则x的取值范围是()A.x≠3B.x≠﹣3 C.x>3 D.x>﹣32.在式子1a ,2334a b,112nna++,78x y+中,分式的个数是()A.1 B.2 C.3 D.4 3.下列属于命题的是()A.期中测试卷难吗?B.请你把书递过来C.今天下雨了D.连接A、B两点4.下列运算正确的是()A.x4•x3=x12B.(x3)4=x81C.x4÷x3=x(x≠0)D.x4+x3=x75.若分式||11xx-+的值为0,则x的值为()A.1 B.﹣1 C.±1 D.无解6.已知等腰三角形的其中两边长分别为4,9,则这个等腰三角形的周长是()A.13 B.17 C.22 D.17或227.如图,已知∠1=∠2,若用“SAS”证明△ACB≌△BDA,还需加上条件()A.AD =BC B.BD=AC C.∠D=∠C D.OA=OB8.以下列各组线段为边,能组成三角形的是()A.1cm,2cm,4cm B.2cm,3cm,5cmC.5cm,6cm,12cm D.4cm,6cm,8cm9.一艘船顺流航行90千米与逆流航行60千米所用的时间相等,若水流的速度是2千米/时,求船在静水中的速度.设船在静水中的速度为x千米/时,则可列出的方程为()A.906022=+-x xB.906022=-+x xC.90602x x+=D.60902x x+=二、填空题10.计算:(﹣1)0+(13)﹣1=_____.11.分式:211a -,21+a a ,21a 的最简公分母是 12.把命题“全等三角形的对应边相等”改写成“如果……,那么……”的形式 13.用三根木条钉成一个三角形框架,这个三角形框架的形状和大小就不变了,这是因为三角形具有14.某种原子直径为1.2×10﹣2纳米,把这个数化为小数是__纳米.15.如图,若△OAD ≌△OBC ,且∠O=65°,∠C=20°,则∠OAD=__度.16.如图,等腰三角形ABC 中,AB =AC ,∠A =40°,CD ⊥AB 于D ,则∠DCB 等于_____.三、解答题17.化简:()x y x y x y x y +÷-+-22211 (2)先化简,再求值:22453262a a a a a --÷-+++,并选一个你喜欢的数代入求值. 18.解方程:(1)1233x x x=+-- (2)2316111x x x +=+--. 19.如图,△ABC 与△DCB 中,AC 与BD 交于点E ,且∠A=∠D ,AB=DC(1)求证:△ABE ≌DCE ;(2)当∠AEB=50°,求∠EBC 的度数.20.如图,在方格纸中,△PQR 的三个顶点及A,B,C,D,E 五个点都在小方格的顶点上,现以A,B,C,D,E 中的三个顶点为顶点画三角形,(1)在图甲中画出一个三角形与△PQR 全等;(2)在图乙中画出一个三角形与△PQR 面积相等 但不全等.21.为了帮助四川雅安芦山县遭到地震的灾区重建家园,某公司号召员工自愿捐款,请你根据下面两位经理的对话,求出第一次捐款的人数.经理甲:第二次捐款人数是第一次的2倍,而且人均捐款额比第一次多20元; 经理乙:第一次捐款总额为20000元,第二次捐款总额为56000元.22.如图,P 、Q 是△ABC 边上的两点,且BP=PQ=QC=AP=AQ ,求∠BAC 的度数.23.如图,△ABC 中,AB =AC ,∠A =36°,AC 的垂直平分线交AB 于E ,D 为垂足,连接EC .(1)求∠ECD 的度数;(2)若CE =5,求BC 长.24.在△ABC 中,AB=AC ,点D 是直线BC 上一点(不与B 、C 重合),以AD 为一边在AD 的右侧..作△ADE ,使AD=AE ,∠DAE =∠BAC ,连接CE . (1)如图1,当点D 在线段BC 上,如果∠BAC=90°,则∠BCE=________度; (2)设BAC α∠=,BCE β∠=.①如图2,当点在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;②当点在直线BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论参考答案1.A【分析】分式有意义时,分母不等于零.【详解】当分母x﹣3≠0,即x≠3时,分式23x-有意义.故选A.2.B 【解析】试题解析:在式子1a,2334a b,109xy+,78x y+中,分式为1a,109xy+.共2个.故选B.3.C【解析】试题解析:A、期中测试卷难吗?是疑问句,不是命题;B、是祈使句,不是命题;C、今天下雨了,对某件事情做出了判断,是命题;D、是祈使句,不是命题,故选C.4.C【详解】试题解析:A、x4•x3=x7,故本选项错误;B、(x3)4=x12,故本选项错误;C、x4÷x3=x(x≠0),故本选项正确;D、x4+x3≠x7,故本选项错误;故选C.5.A【详解】试题解析:∵分式||11xx-+的值为0,∴|x|﹣1=0,且x+1≠0,解得:x=1.故选A.6.C【分析】由于等腰三角形的底和腰长不能确定,故应分两种情况进行讨论.【详解】分为两种情况:①当三角形的三边是4,4,9时,∵4+4<9,∴此时不符合三角形的三边关系定理,此时不存在三角形;②当三角形的三边是4,9,9时,此时符合三角形的三边关系定理,此时三角形的周长是4+9+9=22. 故选C.7.B【分析】根据SAS是指两边及夹角相等进行解答即可.【详解】解:已知∠1=∠2,AB=AB ,根据SAS 判定定理可知需添加BD =AC ,故选B【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.D【分析】根据三角形任意两边之和大于第三边进行分析即可.【详解】解:A 、1+2<4,不能组成三角形;B 、2+3=5,不能组成三角形;C 、5+6<12,不能组成三角形;D 、4+6>8,能组成三角形.故选:D .【点睛】本题考查了能够组成三角形三边的条件.用两条较短的线段相加,如果大于最长那条就能够组成三角形.9.A【分析】根据等量关系:顺流航行90千米时间=逆流航行60千米所用的时间,列出方程即可.【详解】解:设船在静水中的速度为x 千米/时,由题意得:906022=+-x x , 故选A .【点睛】此题主要考查了由实际问题抽象出分式方程,找到等量关系是解决问题的关键.本题需注意顺流速度与逆流速度的求法.10.4 【解析】试题解析:(﹣1)0+(13)﹣1=1+3=4.11.a2(a+1)(a﹣1)【解析】试题解析:先把分母因式分解,再找出最简公分母a2(a+1)(a﹣1).12.如果两个三角形全等,那么这两个三角形的对应边相等【解析】∵原命题的条件是:两个三角形是全等三角形,结论是:对应角相等,∴命题“全等三角形的对应角相等”改写成“如果…,那么…”的形式是如果两个三角形是全等三角形,那么它们的对应角相等.13.稳定性【解析】试题解析:根据三角形的稳定性可知,三根木条钉成一个三角形框架的形状和大小就不变了,故答案为:稳定性.14.0.012【解析】将1.2中的小数点向左移动两位即可得出结论.15.95【详解】试题分析:根据三角形内角和定理可得:∠OBC=180°-20°-65°=95°,根据三角形全等的性质可得:∠OAD=∠OBC=95°.考点:三角形全等的性质.16.20°.【详解】试题分析:先根据等腰三角形的性质求得∠B的度数,再根据三角形的内角和定理即可求得结果.∵AB=AC,∠A=40°,∴∠B=(180°-∠A)÷2=70°∵CD⊥AB∴∠DCB=20°.考点:本题考查的是等腰三角形的性质,三角形的内角和点评:解答本题的关键是熟练掌握等腰三角形的两个底角相等,三角形的内角和为180°. 17.(1)2xy;(2)当a=1时,原式=-1. 【解析】试题分析:(1)先对括号内的式子通分,然后去括号后,将除法转化为乘法即可解答本题;(2)根据分式的除法和减法即可化简本题,然后选取合适的a 的值代入即可化简本题,注意a 不能取2,﹣2,﹣3.试题解析:(1)()x y x y x y x y +÷-+-22211 =2()()()()x y x y x y x y x y x y x y ++--+⨯-+ =22x x y =2xy; (2)22453262a a a a a --÷-+++ =22(3)53(2)(2)2a a a a a a -+⨯-+-++ =2522a a -++ =32a -+, 当a=1时,原式=312-+=﹣1. 18.(1)x=7;(2)x=2.【解析】试题分析:两分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.试题解析:(1)去分母得:1=2x ﹣6﹣x ,解得:x=7,经检验x=7是分式方程的解;(2)去分母得:3x ﹣3+x+1=6,解得:x=2,经检验x=2是分式方程的解.19.见解析(2)∠EBC=25°【分析】(1)根据AAS 即可推出△ABE 和△DCE 全等.(2)根据三角形全等得出EB=EC ,推出∠EBC=∠ECB ,根据三角形的外角性质得出∠AEB=2∠EBC ,代入求出即可【详解】解(1)证明:∵在△ABE 和△DCE 中,A D{AEB DEC AB DC∠=∠∠=∠=,∴△ABE ≌△DCE (AAS )(2)∵△ABE ≌△DCE ,∴BE=EC ,∴∠EBC=∠ECB ,∵∠EBC+∠ECB=∠AEB=50°,∴∠EBC=25°20.解:(1)如图所示:(2)如图所示:【详解】(1)过A 作AE ∥PQ ,过E 作EB ∥PR ,再顺次连接A 、E 、B .(答案不唯一)(2)∵△PQR 面积是:12×QR×PQ=6,∴连接BA ,BA 长为3,再连接AD 、BD ,三角形的面积也是6,但是两个三角形不全等.(答案不唯一)21.400人.【解析】试题分析:设第一次捐款的人数为x,那么二次捐款人数是2x,根据人均捐款额比第一次多20元,列出方程求解即可.试题解析:设第一次捐款的人数为x人,根据题意列方程得:560002000020-=,2x x解得x=400,经检验x=400是原方程的根,且符合题意;答:第一次捐款400人.22.∠BAC=105°.【分析】由BP=PQ=QC=AP=AQ,可得∠PAQ=∠APQ=∠AQP=60°,∠B=∠BQP,∠C=∠CAQ,继而根据三角形外角的性质可得∠BQP=30°,继而可得∠AQB=90°,从而求得∠CAQ=45°,再由∠BAC=∠BAQ+∠CAQ即可求得答案.【详解】∵BP=PQ=QC=AP=AQ,∴∠PAQ=∠APQ=∠AQP=60°,∠B=∠BQP,∠C=∠CAQ,又∵∠BQP+∠ABQ=∠APQ,∠C+∠CAQ=∠AQB,∴∠BQP=30°,∴∠AQB=∠BQP+∠AQP=90°,∴∠CAQ=45°,∴∠BAC=∠BAQ+∠CAQ=105°.【点睛】本题考查了等边三角形的判定与性质,等腰三角形的性质,三角形外角的性质等,正确求出∠BAQ与∠CAQ的度数是解本题的关键.23.(1)∠ECD=36°;(2)BC长是5.【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AE=CE,然后根据等边对等角可得∠ECD=∠A;(2)根据等腰三角形性质和三角形内角和定理求出∠B=∠ACB=72°,由外角和定理求出∠BEC=∠A+∠ECD=72°,继而得∠BEC=∠B,推出BC=CE即可.【详解】解:(1)∵DE 垂直平分AC ,∴CE =AE ,∴∠ECD =∠A =36°;(2)∵AB =AC ,∠A =36°,∴∠B =∠ACB =72°,∴∠BEC =∠A+∠ECD =72°,∴∠BEC =∠B ,∴BC =EC =5.【点睛】本题考查了线段垂直平分线定理,等腰三角形的性质,三角形的内角和定理的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.24.(1)90;(2)①180αβ+=︒,理由见解析;②当点D 在射线BC.上时,a+β=180°,当点D 在射线BC 的反向延长线上时,a=β.【分析】(1)可以证明△BAD ≌△CAE ,得到∠B =∠ACE ,证明∠ACB =45°,即可解决问题; (2)①证明△BAD ≌△CAE ,得到∠B =∠ACE ,β=∠B +∠ACB ,即可解决问题; ②证明△BAD ≌△CAE ,得到∠ABD =∠ACE ,借助三角形外角性质即可解决问题.【详解】(1)90︒;(2)①αβ180+=︒.理由:∵BAC DAE ∠∠=,∴BAC DAC DAE DAC ∠∠∠∠-=-.即BAD CAE ∠∠=.又AB AC AD AE ==,,∴ABD ACE ≌.∴B ACE ∠∠=.∴B ACB ACE ACB ∠∠∠∠+=+.∴B ACB β∠∠+=.∵αB ACB 180∠∠++=︒,∴αβ180+=︒.②当点D 在射线BC 上时,αβ180+=︒.当点D 在射线BC 的反向延长线上时,αβ=.【点睛】该题主要考查了等腰直角三角形的性质、全等三角形的判定及其性质等几何知识点及其应用问题;应牢固掌握等腰直角三角形的性质、全等三角形的判定及其性质等几何知识点.。

湘教版八年级上册数学期中考试试卷带答案

湘教版八年级上册数学期中考试试卷带答案

湘教版八年级上册数学期中考试试题一、单选题1.代数式213x -,21a a +-,35,2x π-,32x y ,2xx 中,是分式有()A .1个B .2个C .3个D .4个2.下列长度的三条线段不能组成三角形的是()A .5,5,10B .4,5,6C .4,4,4D .3,4,53.下列分式是最简分式的为()A .223aa b B .23a a a-C .22a b a b ++D .222a ab a b --4.若分式211x x --的值为0,则()A .x=1B .x =﹣1C .x=±1D .x ≠15.下列计算正确的是()A .1b a a b ÷=B .212x x⋅=C .11111x xx x +-⋅=-+D .()32163a b a b ----=-6.如果分式2+a a b中的a ,b 都同时扩大2倍,那么该分式的值()A .不变B .缩小2倍C .扩大2倍D .扩大4倍7.如图,已知D 、E 分别是△ABC 的边AB 、AC 上的一点,若△ADE ≌△CFE ,则下列结论中不正确的是()A .AD=CFB .AB//CFC .E 是AC 的中点D .AC ⊥DF8.如图,DE 是AC 的垂直平分线,AB=12厘米,BC=10厘米,则△BCD 的周长为()A.22厘米B.16厘米C.26厘米D.25厘米9.已知等腰三角形的一个外角等于100°,则它的顶角是()A.80°B.20°C.80°或20°D.不能确定10.如图,把长方形纸片ABCD沿对角线折叠,设重叠部分为△EBD,那么,有下列说法:①△EBD是等腰三角形,EB=ED;②折叠后∠ABE和∠CBD一定相等;③折叠后得到的图形是轴对称图形;④△EBA和△EDC一定是全等三角形.其中正确的有()A.1个B.2个C.3个D.4个二、填空题11.如图,两个三角形全等,则∠α的度数是____12.如图,点D、E分别在线段AB,AC上,AE=AD,不添加新的线段和字母,要使△ABE≌△ACD,需添加的一个条件是_____(只写一个条件即可).13.数据0.00000000835用科学记数法表示为____________14.把“对顶角相等”改写成“如果…那么…”的形式________________________15.已知6mx =,3n x =,则2m n x -的值为________.16.如图,AD 、BE 是△ABC 的两条中线,则S △EDC :S △ABD=______.17.如图,已知点D 、点E 分别是等边三角形ABC 中BC 、AB 边的中点,6AD =,点F 是线段AD 上的动点,则BF EF +的最小值为______.18.如图,在△ABC 中,∠ACB=90º,∠BAC=30º,在直线BC 或AC 上取一点P ,使得△PAB 为等腰三角形,则符合条件的点P 共有____个.三、解答题19.计算:(1)()()()22021211 3.1423π-⎛⎫-+-⨯-+- ⎪⎝⎭;(2)解方程:221111x x x x --=--.20.先化简,再求值:22211121x x x x x x ⎛⎫--+÷ ⎪+++⎝⎭,选择一个你喜欢的x 的值代入其中并求值.21.如图,四边形ABCD 中,AB ∥CD ,∠A =60°,(1)作∠ADC 的角平分线DE ,交AB 于点E ;(要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)判断△ADE 是什么三角形,并说明理由;22.如图所示,ADF 和BCE 中,A B ∠=∠,点D ,E ,F ,C 在同一条直线上,有如下三个关系式:①AD BC =;②DE CF =;③//BE AF .(1)请你用其中两个关系式作为条件,另一个作为结论,写出一个你认为正确的命题;(用序号写出命题的书写形式,如:如果⊗⊗,那么⊗)(2)说明你写的一个命题的正确性.23.某县为落实“精准扶贫惠民政策",计划将某村的居民自来水管道进行改造该工程若由甲队单独施工,则恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定时间的1.5倍;若由甲、乙两队先合作施工15天,则余下的工程由甲队单独完成还需5天这项工程的规定时间是多少天?24.当a 为何值时,关于x 的方程223224ax x x x +=-+-无解.25.已知:如图,在梯形ABCD 中,AD ∥BC ,BC=DC ,CF 平分∠BCD ,DF ∥AB ,BF 的延长线交DC 于点E .求证:(1)△BFC ≌△DFC ;(2)AD=DE .26.如图,在长方形ABCD 中,AB =CD =6cm ,BC =10cm ,点P 从点B 出发,以2cm/秒的速度沿BC 向点C 运动,设点P 的运动时间为t 秒:(1)PC =cm .(用t 的代数式表示)(2)当t 为何值时,△ABP ≌△DCP ?(3)当点P 从点B 开始运动,同时,点Q 从点C 出发,以vcm/秒的速度沿CD 向点D 运动,是否存在这样v 的值,使得△ABP 与△PQC 全等?若存在,请求出v 的值;若不存在,请说明理由.参考答案1.C 【解析】【分析】根据分式的定义:形如AB(A 、B 为整式)这种形式,B 中含有字母,且B 不等于0的式子叫做分式,进行逐一判断即可.【详解】解:213x -不是分式;21a a +-是分式;35不是分式;2x π-不是分式;32x y 是分式;2xx 是分式;∴分式一共有3个,故选C .【点睛】本题主要考查了分式的定义,解题的关键在于熟知定义.2.A 【解析】【详解】解:A .5+5=10,不能组成三角形,故此选项正确;B .4+5=9>6,能组成三角形,故此选项错误;C .4+4=8>4,能组成三角形,故此选项错误;D .4+3=7>5,能组成三角形,故此选项错误.故选A .3.C 【解析】【分析】根据最简分式的概念可直接进行排除选项.【详解】解:A .22233a a b ab=,故不符合题意;B .2133a a a a =--,故不符合题意;C .22a ba b ++,分子和分母不能约分,故符合题意;D .()()()222a a b a ab a a b a b a b a b--==-+-+,故不符合题意.故选C .【点睛】本题主要考查最简分式的概念,熟练掌握最简分式的概念是解题的关键.4.B 【解析】【分析】根据分式值为零的条件是分子等于零且分母不等于零解答即可.【详解】根据题意得,x 2-1=0且x -1≠0,解得x=±1且x≠1,所以x=-1.故选B .【点睛】若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.5.D 【解析】【分析】根据分式的乘除以及负整数指数幂的计算法则进行求解即可.【详解】解:A 、22b a b b a b a b a a÷=⋅=,计算错误,不符合题意;B 、21x x x⋅=,计算错误,不符合题意;C 、11111x xx x +-⋅=--+,计算错误,不符合题意;D 、()32163a b a b ----=-,计算正确,符合题意;故选D .【点睛】本题主要考查了分式的乘除计算,负整数指数幂,解题的关键在于能够熟练掌握相关计算法则.6.C 【解析】【分析】依题意分别用2a 和2b 去代换原分式中的a 和b ,利用分式的基本性质化简即可.【详解】分式2a a b ⎛⎫ ⎪+⎝⎭中的a 、b 都同时扩大2倍,∴()222222a a a b a b=++,∴该分式的值扩大2倍.故选:C .【点睛】本题考查了分式的基本性质,解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.7.D【解析】【分析】根据全等三角形的性质进行判断,全等三角形的对应边相等,全等三角形的对应角相等.【详解】解:∵△ADE≌△CFE,∴AD=CF,∠A=∠ECF,AE=CE,∴AB∥CF,点E是AC的中点∴(A)、(B)、(C)正确;∵∠AED不一定为直角∴AC⊥DF不一定成立∴(D)不正确.故选:D.【点睛】本题考查了全等三角形的性质,解题时注意:全等三角形的性质是证明线段和角相等的理论依据,应用时要会找对应角和对应边.8.A【解析】【分析】要求△BCD的周长,现有CB的长度,只要求出BD+CD即可,根据线段垂直平分线的性质得CD=AD,于是答案可得.【详解】解:∵DE垂直平分AC,∴CD=AD,又AB=12厘米,BC=10厘米,∴△BCD的周长为BD+DC+BC=AD+DB+BC=AB+BC=12+10=22(厘米).故选:A.【点睛】本题考查了线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等.对相等的线段进行等效转移是正确解题的关键.9.C【解析】【分析】已知条件中的外角可能是顶角的外角,也可能是底角的外角,需要分情况进行讨论,再结合三角形的内角和为180︒,即可求出顶角的度数.【详解】︒-︒=︒;解:∵①当顶角的外角等于100︒时,则该顶角为:18010080︒-︒=︒,又由于是等腰三角形,故此时②当底角的外角等于100︒时,则该底角为18010080︒-︒-︒=︒.顶角为:180808020∴综上所述,等腰三角形的顶角为80︒或20︒.故选:C【点睛】此题考查了等腰三角形的性质以及邻补角的性质.此题难度不大,解题的关键是注意分类讨论思想的应用,小心别漏解.10.C【解析】【分析】根据矩形的性质和AAS可证△AEB≌△CED,进而可得BE=DE,然后根据等腰三角形的定义以及轴对称图形的定义即可判断①③④;但无法判断∠ABE和∠CBD是否相等,于是可得答案.【详解】解:∵四边形ABCD为矩形,∴∠BAE=∠DCE,AB=CD,在△AEB和△CED中,∵∠BAE=∠DCE,∠AEB=∠CED,AB=CD,∴△AEB≌△CED(AAS),∴BE=DE,∴△EBD为等腰三角形,∴折叠后得到的图形是轴对称图形,故说法①③④是正确的;但无法判断∠ABE和∠CBD是否相等,所以说法②不正确.故结论正确的有3个.故选:C.【点睛】本题考查了折叠的性质、矩形的性质、全等三角形的判定、等腰三角形的定义以及轴对称图形的定义等知识,属于常见题型,熟练掌握上述知识是解题的关键.11.50°【解析】【分析】根据全等三角形的对应角相等解答.【详解】解:∵两个三角形全等,∴∠α=50°,故答案为:50°.【点睛】本题考查的是全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.12.∠B=∠C(答案不唯一)【解析】【详解】由题意得,AE=AD,∠A=∠A(公共角),可选择利用AAS、SAS、ASA进行全等的判定,答案不唯一:添加∠B=∠C,可由AAS判定△ABE≌△ACD;添加AB=AC或DB=EC可由SAS判定△ABE≌△ACD;添加∠ADC=∠AEB或∠BDC=∠CEB,可由ASA判定△ABE≌△ACD.故答案为:∠B=∠C13.98.3510-⨯【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000000835=8.35×10−9.故答案为:8.35×10−9.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.14.如果两个角是对顶角,那么它们相等【解析】【分析】先找到命题的题设和结论,再写成“如果…那么…”的形式.【详解】解:∵原命题的条件是:“两个角是对顶角”,结论是:“它们相等”,∴命题“对顶角相等”写成“如果…那么…”的形式为:“如果两个角是对顶角,那么它们相等”.故答案为:如果两个角是对顶角,那么它们相等.【点睛】本题考查了命题的条件和结论的叙述,注意确定一个命题的条件与结论的方法是首先把这个命题写成:“如果…,那么…”的形式.15.12【解析】【分析】逆运用同底数幂的乘法公式和幂的乘方公式对原式适当变形,再将值代入计算即可.【详解】解:2222()6312m n m n n m x x x x x -=÷=÷=÷=.故答案为:12.【点睛】本题考查幂的乘方公式的逆运用,同底数幂的乘法逆运用.熟练掌握相关公式是解题关键.【解析】【分析】根据三角形中位线定理得到DE ∥AB ,DE 12=AB ,根据相似三角形的性质得到EDC ABCS S = (DE AB )214=,根据三角形的面积公式计算,得到答案.【详解】∵AD 、BE 是△ABC 的两条中线,∴DE ∥AB ,DE 12=AB ,∴△EDC ∽△ABC ,∴EDC ABCS S = (DE AB )214=,∵AD 是△ABC 的中线,∴12ABD ABC S S = ,∴S △EDC :S △ABD=1:2.故答案为:1:2.【点睛】本题考查的是三角形中位线定理、相似三角形的判定和性质、三角形的面积计算,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.17.6【解析】【分析】过C 作CE ⊥AB 于E ,交AD 于F ,连接BF ,则BF+EF 最小,证△ADB ≌△CEB 得CE=AD=6,即BF+EF=6.【详解】解:过C 作CE ⊥AB 于E ,交AD 于F ,连接BF ,则BF+EF 最小(根据两点之间线段最短;点到直线垂直距离最短),由于C 和B 关于AD 对称,则BF+EF=CF ,∵等边△ABC 中,BD=CD ,∴AD 是BC 的垂直平分线(三线合一),∴C 和B 关于直线AD 对称,∴CF=BF ,即BF+EF=CF+EF=CE ,∵AD ⊥BC ,CE ⊥AB ,∴∠ADB=∠CEB=90°,在△ADB 和△CEB 中,ADB CEB ABD CBE AB CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADB ≌△CEB (AAS ),∴CE=AD=6,即BF+EF=6.故答案为:6.【点睛】本题考查了轴对称-最短路线问题,涉及到等边三角形的性质,轴对称的性质,等腰三角形的性质、全等三角形的判定和性质等知识点的综合运用.18.6【解析】【分析】根据等腰三角形的判定,“在同一三角形中,有两条边相等的三角形是等腰三角形(简称:在同一三角形中,等边对等角)”分三种情况解答即可.【详解】如图,①AB 的垂直平分线交AC 一点P 1(PA=PB ),交直线BC 于点P 2;②以A 为圆心,AB 为半径画圆,交AC 有二点P 3,P 4,交BC 有一点P 2,(此时AB=AP );③以B 为圆心,BA 为半径画圆,交BC 有二点P 5,P 2,交AC 有一点P 6(此时BP=BA ).故符合条件的点有6个.故答案为:6.【点睛】本题考查了等腰三角形的判定;构造等腰三角形时本着截取相同的线段就能作出等腰三角形来,思考要全面,做到不重不漏.19.(1)12;(2)2x =.【解析】【分析】(1)原式利用乘方的意义,负整数指数幂、零指数幂法则计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:(1)()()()220210211 3.1423π-⎛⎫-+-⨯-+- ⎪⎝⎭1149=-+⨯+149=-++12=(2)221111x x x x --=--方程的两边同时乘以最简公分母()()11x x +-得:()()()()12111x x x x x +--=+-即:22211x x x x +-+=-解得:2x =.检验:把2x =代入()()11x x +-得()()21210+⨯-≠:∴2x =为原方程的解.【点睛】此题考查了解分式方程,以及实数的运算,解分式方程利用了转化的思想,注意要检验.20.11x -;2x =时,原式=1.【解析】【分析】先计算括号内的分式,然后根据计算分式的除法,最后根据分式有意义的条件,代值计算即可.【详解】解:22211121x x x x x x ⎛⎫--+÷ ⎪+++⎝⎭()22211121x x x x x x ⎡⎤-=--÷⎢⎥+++⎣⎦()()()()()221111111x x x x x x x x -++⎡⎤=-⋅⎢⎥+++-⎣⎦()()()()2211(1)111x x x x x x x --++=⋅++-()()()211111x x x x +=⋅++-11x =-.由题知,10x +≠且2210x x ++≠,且210x -≠∴1x ≠-或1x ≠,可取2x =.当2x =时,原式111121x ===--.【点睛】本题主要考查了分式的化简求值,分式有意义的条件,解题的关键在于能够熟练掌握相关计算法则.21.(1)作图见解析;(2)△ADE 是等边三角形;理由见解析.【解析】【分析】(1)根据角平分线的作法作出图形即可;(2)由角平分线定义,平行线的性质,得到∠ADE=∠AED ,则AD=AE ,结合∠A =60°,即可得到答案.【详解】解:(1)如图所示,(2)△ADE 是等边三角形;理由如下:∵DE 平分∠ADC ,∴∠ADE=∠CDE ,∵AB//CD ,∴∠CDE=∠AED ,∴∠ADE=∠AED ,∴AD=AE ,∵∠A =60°,∴△ADE 是等边三角形;【点睛】本题考查了角平分线的作法,等边三角形的判定,平行线的性质,解题的关键是熟练掌握所学的知识,正确的作出图形进行分析.22.(1)如果①,③,那么②;如果②,③,那么①;(2)见解析(答案不唯一)【解析】【分析】(1)本题主要考查全等三角形的判定,能不能成立,就看作为条件的关系式能不能证明△ADF ≌△BCE ,从而得到结论;(2)对于“如果①,③,那么②”进行证明,根据平行线的性质得到∠AFD =∠BEC ,因为AD =BC ,∠A =∠B ,利用AAS 判定△ADF ≌△BCE ,得到DF =CE ,即得到DE =CF .【详解】(1)如果①,③,那么②;如果②,③,那么①;(2)对于命题“如果①,③,那么②”证明如下:∵//BE AF ,∴AFD BEC ∠=∠.∵AD BC =,A B ∠=∠,∴ADF BCE ≅ ,∴DF CE =.∴DF EF CE EF -=-,即DE CF =;对于命题“如果②,③,那么①”证明如下:∵//BE AF ,∴AFD BEC ∠=∠.∵DE CF =,∴DE EF CF EF +=+,即DF CE =.∵A B ∠=∠,∴ADF BCE ≅ ,∴AD BC =.【点睛】此题主要考查学生对全等三角形的判定方法的理解及运用,常用的判定方法有SSS ,SAS ,ASA ,AAS 、HL 等.编题然后选择,最后进行证明是现在比较多的一种考题,要注意掌握.23.30天【分析】设这项工程的规定时间是x天,则甲队单独施工需要x天完工,乙队单独施工需要1.5x天完工,根据甲队完成的工作量+乙队完成的工作量=总工作量(单位1),即可得出关于x的分式方程,解之经检验后即可得出结论.【详解】解:设这项工程的规定时间是x天,则甲队单独施工需要x天完工,乙队单独施工需要1.5x 天完工,依题意,得:1551511.5x x++=,解得:x=30,经检验,x=30是原方程的解,且符合题意.答:这项工程的规定时间是30天.【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.24.a=1,-4或6时原方程无解.【解析】【分析】分式方程去分母转化为整式方程,由分式方程无解确定出a的值即可.【详解】由原方程得:2(x+2)+ax=3(x-2),整理得:(a-1)x=-10,(i)当a-1=0,即a=1时,原方程无解;(ii)当a-1≠0,原方程有增根x=±2,当x=2时,2(a-1)=-10,即a=-4;当x=-2时,-2(a-1)=-10,即a=6,即当a=1,-4或6时原方程无解.【点睛】此题考查分式方程的解,熟练掌握分式方程无解的条件是解题的关键.25.(1)证明见解析;(2)证明见解析.【分析】(1)由CF 平分∠BCD 可知∠BCF=∠DCF ,然后通过SAS 就能证出△BFC ≌△DFC .(2)要证明AD=DE ,连接BD ,证明△BAD ≌△BED 则可.AB ∥DF ⇒∠ABD=∠BDF ,又BF=DF ⇒∠DBF=∠BDF ,∴∠ABD=∠EBD ,BD=BD ,再证明∠BDA=∠BDC 则可,容易推理∠BDA=∠DBC=∠BDC .【详解】解:(1)∵CF 平分∠BCD ,∴∠BCF=∠DCF .在△BFC 和△DFC 中,{BC DCBCF DCFFC FC=∠=∠=∴△BFC ≌△DFC (SAS ).(2)连接BD .∵△BFC ≌△DFC ,∴BF=DF ,∴∠FBD=∠FDB .∵DF ∥AB ,∴∠ABD=∠FDB .∴∠ABD=∠FBD .∵AD ∥BC ,∴∠BDA=∠DBC .∵BC=DC ,∴∠DBC=∠BDC .∴∠BDA=∠BDC .又∵BD 是公共边,∴△BAD ≌△BED (ASA ).∴AD=DE .【点睛】本题考查全等三角形的判定与性质;梯形.26.(1)(10﹣2t);(2)t =2.5;(3)存在;v 的值为2.4或2【解析】【分析】(1)根据题意求出BP ,计算即可;(2)根据全等三角形的判定定理解答;(3)分△ABP ≌△QCP 和△ABP ≌△PCQ 两种情况,根据全等三角形的性质解答.【详解】解:(1)∵点P 的速度是2cm/s ,∴ts 后BP=2tcm ,∴PC=BC−BP=(10−2t)cm ,故答案为:(10﹣2t)(2)当t=2.5时,△ABP ≌△DCP ,∵当t=2.5时,BP=CP=5,在△ABP 和△DCP 中,AB DCB C BP CP=⎧⎪∠=∠⎨⎪=⎩∴△ABP ≌△DCP ;(3)∵∠B=∠C=90°,∴当AB=PC,BP=CQ 时,△ABP ≌△PCQ ,∴10−2t=6,2t=vt ,解得,t=2,v=2,当AB=QC,BP=CP 时,△ABP ≌△QCP ,此时,点P为BC的中点,点Q与点D重合,∴2t=5,vt=6,解得,t=2.5,v=2.4,综上所述,当v=1或v=2.4时,△ABP≌△PCQ全等.21。

湘教版八年级数学上册期中测试卷及完整答案

湘教版八年级数学上册期中测试卷及完整答案

湘教版八年级数学上册期中测试卷及完整答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =-2.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A .(3,2)-B .(2,3)-C .(2,3)-D .(3,2)-3.关于x 的方程32211x m x x -=+++无解,则m 的值为( ) A .﹣5 B .﹣8 C .﹣2 D .54.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是( )A .1B .2C .8D .115.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .6.某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为( )A .2%B .4.4%C .20%D .44%7.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB∥CD的条件为()A.①②③④B.①②④C.①③④D.①②③8.如图,△ABC中,AD为△ABC的角平分线,BE为△ABC的高,∠C=70°,∠ABC=48°,那么∠3是()A.59°B.60°C.56°D.22°9.如图,∠B的同位角可以是()A.∠1 B.∠2 C.∠3 D.∠410.若b>0,则一次函数y=﹣x+b的图象大致是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)1.若2x=5,2y=3,则22x+y=________.2x有意义,则x的取值范围为__________.3.若m+1m=3,则m2+21m=________.4.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC ,则∠ABC =________度.5.在平面直角坐标系内,一次函数y =k 1x +b 1与y =k 2x +b 2的图象如图所示,则关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是________.6.如图一个圆柱,底圆周长10cm ,高4cm ,一只蚂蚁沿外壁爬行,要从A 点爬到B 点,则最少要爬行_______cm .三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x --= (2)1421x x =-+2.先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中21x =.3.已知关于x 的方程220x ax a ++-=.(1)当该方程的一个根为1时,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.4.如图,直线y=kx+6分别与x 轴、y 轴交于点E ,F ,已知点E 的坐标为(﹣8,0),点A的坐标为(﹣6,0).(1)求k的值;(2)若点P(x,y)是该直线上的一个动点,且在第二象限内运动,试写出△OPA的面积S关于x的函数解析式,并写出自变量x的取值范围.(3)探究:当点P运动到什么位置时,△OPA的面积为,并说明理由.5.如图,在等边△ABC中,AB=AC=BC=10厘米,DC=4厘米.如果点M以3厘米/秒的速度运动.(1)如果点M在线段CB上由点C向点B运动,点N在线段BA上由B点向A点运动.它们同时出发,若点N的运动速度与点M的运动速度相等.①经过2秒后,△BMN和△CDM是否全等?请说明理由.②当两点的运动时间为多少时,△BMN是一个直角三角形?(2)若点N的运动速度与点M的运动速度不相等,点N从点B出发,点M以原来的运动速度从点C同时出发,都顺时针沿△ABC三边运动,经过25秒点M与点N第一次相遇,则点N的运动速度是厘米/秒.(直接写出答案)6.某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的35,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、A4、C5、B6、C7、C8、A9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、752、0x ≥且1x ≠. 3、74、455、21x y =⎧⎨=⎩.6、41 三、解答题(本大题共6小题,共72分)1、(1)1216,16x x =+=-;(2)3x =是方程的解.2、2.3、(1)12,32-;(2)略.4、(1)k=;(2)△OPA 的面积S=x+18 (﹣8<x <0);(3)点P 坐标为(,)或(,)时,三角形OPA 的面积为.5、(1)①△BMN ≌△CDM .理由略;②当t=209秒或t=109秒时,△BMN 是直角三角形;(2)3.8或2.6.6、(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①进货方案有3种,具体见解析;②当m=78时,所获利润最大,最大利润为1390元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湘教版八年级数学上册期中测试题一、选择题:(每题3分,共30分)1.(3分)下列语句是命题的是()A.三角形的内角和等于180°B.不许大声讲话C.一个锐角与一个钝角互补吗?D.今天真热啊!2.(3分)下列式子中是分式的是()A.﹣3x B.﹣C.D.x2y3.(3分)若分式的值是0,则y的值是()A.﹣3 B.0 C.1 D.1或﹣34.(3分)若某三角形的两边长分别为3和4,则下列长度的线段能作为其第三边的是()A.1 B.5 C.7 D.95.(3分)下列分子中,是最简分式的是()A.B.C.D.6.(3分)一个等腰三角形的两个内角和为100°,则它的顶角度数为()A.50° B.80° C.50°或80°D.20°或80°7.(3分)已知△ABC的六个元素,下面甲、乙、丙三个三角形中标出了某些元素,则与△ABC全等的三角形是()A.只有乙B.只有丙C.甲和乙D.乙和丙8.(3分)下列运算正确的是()A.2﹣3=﹣6 B.(﹣2)3=﹣6 C.()﹣2=D.2﹣3=9.(3分)已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为()A.0.21×10﹣4B.2.1×10﹣4C.2.1×10﹣5D.21×10﹣610.(3分)若3x=4,9y=7,则3x﹣2y=()A.B.C.D.二、填空题:(每题3分,共24分)11.(3分)当x= 时,分式无意义.12.(3分)计算:2x2y3÷xy2= .13.(3分)如图,△ABC≌△BAD,A与B,C与D是对应点,若AB=4cm,BD=4.5cm,AD=1.5cm,则BC= cm.14.(3分)如图,在△ABC中,AB=AD=DC,∠BAD=20°,则∠C= .15.(3分)把命题“三边对应相等的两个三角形全等”写成“如果…,那么…”的形式是.16.(3分)如图,已知OC平分∠AOB,CD∥OB,若OD=3cm,则CD= cm.17.(3分)化简:= .18.(3分)若,则x= .三、耐心算一算(共计36分)19.(12分)计算:(1)(x﹣2y)﹣3(2).20.(14分)解方程:(1)(2).21.(10分)先化简,再求值:(﹣)÷,其中x满足x=﹣3.四、用心做一做(共计30分)22.(10分)如图,已知点E,C在线段BF上,BE=CF,AB∥DE,∠ACB=∠F.求证:△ABC ≌△DEF.23.(10分)已知,如图,∠B=∠C,AB∥DE,EC=ED,求证:△DEC为等边三角形.24.(10分)一艘轮船在两个码头之间航行,顺水航行60km所需时间与逆水航行48km所需时间相同,已知水流速度是2km/h,求轮船在静水中的航行速度?参考答案:一、选择题:(每题3分,共30分)1.(3分)下列语句是命题的是()A.三角形的内角和等于180°B.不许大声讲话C.一个锐角与一个钝角互补吗?D.今天真热啊!【分析】判断一件事情的语句叫命题,命题都由题设和结论两部分组成,依此对四个选项进行逐一分析即可.【解答】解:A、是命题;B、祈使句,不是命题;C、疑问句,不是命题;D、感叹句,不是命题;故选A.【点评】本题考查了命题的概念:一般的,在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.注意命题是一个能够判断真假的陈述句.2.(3分)下列式子中是分式的是()A.﹣3x B.﹣C.D.x2y【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:A、﹣3x的分母中均不含有字母,因此它们是整式,而不是分式,故本选项错误;B、﹣的分母中均不含有字母,因此它们是整式,而不是分式,故本选项错误;C、分母中含有字母,因此是分式,故本选项正确;D、x2y的分母中均不含有字母,因此它们是整式,而不是分式,故本选项错误;故选:C.【点评】本题主要考查分式的定义,注意π不是字母,是常数,所以﹣不是分式,是整式.3.(3分)若分式的值是0,则y的值是()A.﹣3 B.0 C.1 D.1或﹣3【分析】分式的值为零时,分子等于零,即y﹣1=0.【解答】解:依题意得:y﹣1=0.解得y=1.y+3=1+3=4≠0,所以y=1符合题意.故选:C.【点评】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.(3分)若某三角形的两边长分别为3和4,则下列长度的线段能作为其第三边的是()A.1 B.5 C.7 D.9【分析】此题首先根据三角形的三边关系,求得第三边的取值范围,再进一步找到符合条件的数值.【解答】解:根据三角形的三边关系,得:第三边>两边之差,即4﹣3=1,而<两边之和,即4+3=7,即1<第三边<7,∴只有5符合条件,故选:B.【点评】本题主要考查了构成三角形的条件:两边之和>第三边,两边之差<第三边,比较简单.5.(3分)下列分子中,是最简分式的是()A.B.C.D.【分析】最简分式的标准是分子、分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【解答】解:A、该分式的分子、分母中含有公因式(x+y),不是最简分式,故本选项错误;B、该分式的分子、分母不含有公因式,不能再约分,是最简分式,故本选项正确;C、该分式中含有公因式(a+3),不是最简分式,故本选项错误;D、该分式的分母=(x﹣2)(x+1),分式的分子、分母中含有公因式(x+1),不是最简分式,故本选项错误;故选:B.【点评】本题考查了最简分式.分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题.在解题中一定要引起注意.6.(3分)一个等腰三角形的两个内角和为100°,则它的顶角度数为()A.50° B.80° C.50°或80°D.20°或80°【分析】题中没有指明这两个角是都是底角还是一个底角一个顶角,故应该分两种情况进行分析,从而求解.【解答】解:①当100°角是顶角和一底角的和,则另一个底角=180°﹣100°=80°,所以顶角=100°﹣80°=20°;②当100°角是两底角的和,则顶角=180°﹣100°=80°;故选D.【点评】此题主要考查等腰三角形的性质及三角形内角和定理的综合运用,注意分类讨论思想的运用.7.(3分)已知△ABC的六个元素,下面甲、乙、丙三个三角形中标出了某些元素,则与△ABC全等的三角形是()A.只有乙B.只有丙C.甲和乙D.乙和丙【分析】根据全等三角形的判定ASA,SAS,AAS,SSS,看图形中含有的条件是否与定理相符合即可.【解答】解:甲、边a、c夹角不是50°,∴甲错误;乙、两角为58°、50°,夹边是a,符合ASA,∴乙正确;丙、两角是50°、72°,72°角对的边是a,符合AAS,∴丙正确.故选D.【点评】本题主要考查对全等三角形的判定的理解和掌握,能熟练地根据全等三角形的判定定理进行判断是解此题的关键.8.(3分)下列运算正确的是()A.2﹣3=﹣6 B.(﹣2)3=﹣6 C.()﹣2=D.2﹣3=【分析】根据乘方的定义以及负整数指数次幂的意义:a﹣n=(a≠0),即可求解判断.【解答】解:A、2﹣3==,选项错误;B、(﹣2)3=﹣8,选项错误;C、()﹣2=()2=,选项错误;D、2﹣3==,选项正确.故选D.【点评】本题主要考查了零指数幂,负整数指数幂的运算.负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.9.(3分)已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为()A.0.21×10﹣4B.2.1×10﹣4C.2.1×10﹣5D.21×10﹣6【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:0.000 021=2.1×10﹣5.故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.(3分)若3x=4,9y=7,则3x﹣2y=()A.B.C.D.【分析】9y=7即32y=7,然后根据同底数的幂的除法法则,把所求的式子转化为幂的除法,代入求解即可.【解答】解:9y=7即32y=7,则3x﹣2y=3x÷32y=.故选B.【点评】本题考查同底数幂的除法,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.二、填空题:(每题3分,共24分)11.(3分)当x= ﹣3 时,分式无意义.【分析】根据分母为零,分式无意义列出不等式,解不等式即可.【解答】解:由题意得,2x+6=0,解得,x=﹣3,故答案为:﹣3.【点评】本题考查的是分式有意义的条件,掌握分母为零,分式无意义是解题的关键.12.(3分)计算:2x2y3÷xy2= 2xy .【分析】单项式除以单项式,把系数,同底数幂分别相除后,作为商的因式,据此求出算式2x2y3÷xy2的值是多少即可.【解答】解:2x2y3÷xy2=2xy.故答案为:2xy.【点评】此题主要考查了整式的除法,要熟练掌握,解答此类问题的关键是要明确单项式除以单项式、多项式除以单项式的方法.13.(3分)如图,△ABC≌△BAD,A与B,C与D是对应点,若AB=4cm,BD=4.5cm,AD=1.5cm,则BC= 1.5 cm.【分析】根据全等三角形的对应边相等的性质,找出对应边即可得出答案.【解答】解:∵△ABC≌△BAD,∴BC=AD,∵AD=1.5cm,∴BC=1.5cm;故答案为:1.5.【点评】此题考查了全等三角形的性质,用到的知识点是全等三角形的对应边相等,比较简单,注意找出对应边.14.(3分)如图,在△ABC中,AB=AD=DC,∠BAD=20°,则∠C= 40° .【分析】先根据等腰三角形的性质及三角形内角和定理可求出∠B的度数,再根据三角形外角的性质可求出∠ADC的度数,再由三角形内角和定理解答即可.【解答】解:∵AB=AD,∠BAD=20°,∴∠B===80°,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD=80°+20°=100°,∵AD=DC,∴∠C===40°.【点评】本题涉及到三角形的内角和定理、三角形外角的性质及等腰三角形的性质,属较简单题目.15.(3分)把命题“三边对应相等的两个三角形全等”写成“如果…,那么…”的形式是如果两个三角形的三边对应相等,那么这两个三角形全等.【分析】“如果”后面是题设,“那么”后面是结论.【解答】解:如果两个三角形的三边对应相等,那么这两个三角形全等.【点评】命题是有题设和结论构成.命题都能写成“如果…,那么…”的形式,“如果”后面是题设,“那么”后面是结论.16.(3分)如图,已知OC平分∠AOB,CD∥OB,若OD=3cm,则CD= 3 cm.【分析】根据角平分线的定义可得∠AOC=∠BOC,再根据两直线平行,内错角相等可得∠BOC=∠DCO,然后求出∠AOC=∠DCO,再根据等角对等边的性质可得CD=OD.【解答】解:∵OC平分∠AOB,∴∠AOC=∠BOC,∵CD∥OB,∴∠BOC=∠DCO,∴∠AOC=∠DCO,∴CD=OD=3cm.故答案为:3.【点评】本题考查了等腰三角形的判定与性质,角平分线的定义,平行线的性质,熟记各性质并准确识图是解题的关键.17.(3分)化简:= .【分析】原式通分并利用同分母分式的加法法则计算,即可得到结果.【解答】解:原式==,故答案为:【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.18.(3分)若,则x= ﹣1 .【分析】根据零指数幂的性质即可得出答案.【解答】解:∵,∴x2﹣1=0,解得x=±1,∵x﹣1≠0,∴x=﹣1,故答案为﹣1.【点评】本题主要考查了零指数幂的性质,比较简单.三、耐心算一算(共计36分)19.(12分)计算:(1)(x﹣2y)﹣3(2).【分析】(1)首先转化为正整数指数次幂,然后利用乘方的性质求解;(2)首先通分,然后进行减法运算即可.【解答】解:(1)原式=()﹣3=()3=;(2)原式===.【点评】本题主要考查了零指数幂,负整数指数幂的运算.负整数指数为正整数指数的倒数.20.(14分)解方程:(1)(2).【分析】(1)分式方程两边乘以最简公分母2x(x﹣3)转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程两边乘以最简公分母(x+2)(x﹣2)转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】(1)解:两边乘以最简公分母2x(x﹣3),得5(x﹣3)﹣2x=0,即5x﹣15﹣2x=0,解得:x=5,检验:把x=5代入原方程,左边==右边,则x=5是原方程的解;(2)解:方程两边同乘最简公分母(x+2)(x﹣2)得x+2=4,解得:x=2,检验:把x=2代入最简公分母中,(x+2)(x﹣2)=(2+2)(2﹣2)=0,则x=2是原方程的增根,原方程且无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21.(10分)先化简,再求值:(﹣)÷,其中x满足x=﹣3.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将x的值代入计算即可求出值.【解答】解:原式=•=•=,当x=﹣3时,原式==﹣.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.四、用心做一做(共计30分)22.(10分)如图,已知点E,C在线段BF上,BE=CF,AB∥DE,∠ACB=∠F.求证:△ABC ≌△DEF.【分析】根据平行线的性质可知由∠B=∠DEF.BE=CF,∠ACB=∠F,根据ASA定理可知△ABC ≌△DEF.【解答】证明:∵AB∥DE,∴∠B=∠DEF.∵BE=CF,∴BC=EF.∵∠ACB=∠F,∴,∴△ABC≌△DEF(ASA).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、ASA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.23.(10分)已知,如图,∠B=∠C,AB∥DE,EC=ED,求证:△DEC为等边三角形.【分析】利用平行线的性质以及等边对等角得出∠DEC=∠C=∠EDC=60°,进而得出答案.【解答】证明:∵∠B=∠C,AB∥DE,∴∠DEC=∠C,∵EC=ED,∴∠C=∠EDC,∴∠DEC=∠C=∠EDC=60°,∴△DEC为等边三角形.【点评】此题主要考查了平行线的性质以及等边三角形的判定,根据题意得出∠DEC=∠C=∠EDC是解题关键.24.(10分)一艘轮船在两个码头之间航行,顺水航行60km所需时间与逆水航行48km所需时间相同,已知水流速度是2km/h,求轮船在静水中的航行速度?【分析】顺水速度=水流速度+静水速度,逆水速度=静水速度﹣水流速度.根据“顺水航行60km所需时间与逆水航行48km所需时间相同”可列出方程.【解答】解:设轮船在静水中的航行速度为x km/h,根据题意得:,解得:x=18.经检验:x=18是原方程的解.答:船在静水中的航行速度为18km/h.【点评】此题考查了分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.本题需注意顺流速度与逆流速度的求法.。

相关文档
最新文档