【整理】数学物理方程谷超豪版第二章课后答案
数学物理方程第三版(谷超豪)答案
2u
t 2 u
xa
t0
a2 2u x 2
(x)
u xat0 (x).
(0) (0)
数学物理方程答案
解:u(x,t)=F(x-at)+G(x+at)
令 x-at=0 得 (x) =F(0)+G(2x)
令 x+at=0 得 (x) =F(2x)+G(0)
所以 且
F(x)= ( x ) -G(0). 2
于是得 所以
CLa2 1 0
2CLt CR LGt 0 CLt CR LGt GRt 0
1 CL
a2
u t ut
a2 2
CR
LG
a2 CRLG t
u t c0e 2
数学物理方程答案
代入以上方程组中最后一个方程,得
CL a4 CR LG2 a2 CR LG2 GR 0
的通解可以写成
u Fx at Gx at
hx
其中 F,G 为任意的单变量可微函数,并由此求解它的初值问题:
t 0 : u x, u x.
t
解:令 h xu v 则
h x u u v ,h x2 u h xu v
x
x
x
x
[(h x)2 u (u v) (h x) u (h x)2 u (h x)(u 2v )
G(x)= ( x ) -F(0). 2
F(0)+G(0)=(0) (0).
所以
u(x,t)= ( x at ) + ( x at ) -(0).
2
2
即为古尔沙问题的解。
4.对非齐次波动方程的初值问题
证明:
2u
t
数学物理方程(谷超豪)课后答案
第一章.波动方程§1方程的导出。
定解条件1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明满足方程),(t x u ()⎟⎠⎞⎜⎝⎛∂∂∂∂=⎟⎠⎞⎜⎝⎛∂∂∂∂x u E x t u x t ρ其中为杆的密度,为杨氏模量。
ρE 证:在杆上任取一段,其中两端于静止时的坐标分别为与。
现在计算这段杆在时x +x x ∆刻的相对伸长。
在时刻这段杆两端的坐标分别为:t t ),();,(t x x u x x t x u x ∆++∆++其相对伸长等于),()],([)],([t x x u xxt x u x t x x u x x x ∆+=∆∆−+−∆++∆+θ令,取极限得在点的相对伸长为。
由虎克定律,张力等于0→∆x x x u ),(t x ),(t x T ),()(),(t x u x E t x T x =其中是在点的杨氏模量。
)(x E x 设杆的横截面面积为则作用在杆段两端的力分别为),(x S ),(x x x ∆+x u x S x E )()(x u x x S x x E t x )()();,(∆+∆+).,(t x x ∆+于是得运动方程tt u x x s x ⋅∆⋅)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(−∆+∆+利用微分中值定理,消去,再令得x ∆0→∆x tt u x s x )()(ρx∂∂=x ESu ()若常量,则得=)(x s =22)(tu x ∂∂ρ)((x u x E x ∂∂∂∂即得所证。
2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。
解:(1)杆的两端被固定在两点则相应的边界条件为l x x ==,0.0),(,0),0(==t l u t u (2)若为自由端,则杆在的张力|等于零,因此相应的边l x =l x =xux E t l T ∂∂=)(),(l x =界条件为|=0xu∂∂l x =同理,若为自由端,则相应的边界条件为∣0=x xu∂∂00==x (3)若端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的偏移l x =由函数给出,则在端支承的伸长为。
数学物理方程 谷超豪 课后答案
第一章.波动方程§1方程的导出。
定解条件1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明满足方程),(t x u ()⎟⎠⎞⎜⎝⎛∂∂∂∂=⎟⎠⎞⎜⎝⎛∂∂∂∂x u E x t u x t ρ其中为杆的密度,为杨氏模量。
ρE 证:在杆上任取一段,其中两端于静止时的坐标分别为与。
现在计算这段杆在时x +x x ∆刻的相对伸长。
在时刻这段杆两端的坐标分别为:t t ),();,(t x x u x x t x u x ∆++∆++其相对伸长等于),()],([)],([t x x u xxt x u x t x x u x x x ∆+=∆∆−+−∆++∆+θ令,取极限得在点的相对伸长为。
由虎克定律,张力等于0→∆x x x u ),(t x ),(t x T ),()(),(t x u x E t x T x =其中是在点的杨氏模量。
)(x E x 设杆的横截面面积为则作用在杆段两端的力分别为),(x S ),(x x x ∆+x u x S x E )()(x u x x S x x E t x )()();,(∆+∆+).,(t x x ∆+于是得运动方程tt u x x s x ⋅∆⋅)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(−∆+∆+利用微分中值定理,消去,再令得x ∆0→∆x tt u x s x )()(ρx∂∂=x ESu ()若常量,则得=)(x s =22)(tu x ∂∂ρ)((x u x E x ∂∂∂∂即得所证。
2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。
解:(1)杆的两端被固定在两点则相应的边界条件为l x x ==,0.0),(,0),0(==t l u t u (2)若为自由端,则杆在的张力|等于零,因此相应的边l x =l x =xux E t l T ∂∂=)(),(l x =界条件为|=0xu∂∂l x =同理,若为自由端,则相应的边界条件为∣0=x xu∂∂00==x (3)若端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的偏移l x =由函数给出,则在端支承的伸长为。
数学物理方程_答案_谷超豪
(3)若 x = l 端固定在弹性支承上, 而弹性支承固定于某点, 且该点离开原来位置的 偏移由函数 v(t ) 给出,则在 x = l 端支承的伸长为 u (l , t ) − v(t ) 。由虎克定律有
E
∂u ∣ x =l = − k[u (l , t ) − v(t )] ∂x ∂u + σu ) ∣ x =l = f (t ) ∂x
=
1 ∂ 2v ( ) h − x a2 ∂t 2
∂ 2v 1 ∂ 2v = ∂x 2 a 2 ∂t 2
由波动方程通解表达式得
v( x, t ) = F ( x − at ) + G ( x + at )
所以 为原方程的通解。 由初始条件得
u=
F (x − at ) + G (x + at ) (h − x )
其中 ρ 为杆的密度, E 为杨氏模量。 证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与 x + ∆x 。现在计算这段杆 在时刻 t 的相对伸长。在时刻 t 这段杆两端的坐标分别为:
x + u ( x, t ); x + ∆x + u ( x + ∆x, t )
其相对伸长等于 令
[ x + ∆x + u ( x + ∆x, t )] − [ x + u ( x, t )] − ∆x = u x ( x + θ∆x, t ) ∆x
第一章.
波动方程
§1 方程的导出。定解条件 1.细杆(或弹簧)受某种外界原因而产生纵向振动,以 u(x,t)表示静止时在 x 点处的点 在时刻 t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明 u ( x, t ) 满足 方程
数学物理方程答案谷超豪
数学物理方程答案谷超豪【篇一:数学物理方程第二版答案(平时课后习题作业)】>第一章.波动方程1 方程的导出。
定解条件4. 绝对柔软逐条而均匀的弦线有一端固定,在它本身重力作用下,此线处于铅垂平衡位置,试导出此线的微小横振动方程。
解:如图2,设弦长为l,弦的线密度为?,则x点处的张力t(x)为t(x)??g(l?x)且t(x)的方向总是沿着弦在x点处的切线方向。
仍以u(x,t)表示弦上各点在时刻t沿垂直于x轴方向的位移,取弦段(x,x??x),则弦段两端张力在u轴方向的投影分别为?g(l?x)sin?(x);?g(l?(x??x))sin?(x??x)其中?(x)表示t(x)方向与x轴的夹角又sin??tg??于是得运动方程?u ?x.?u?2u?u??x2?[l?(x??x)]∣x??x?g?[l?x]∣?g?xx?x?t利用微分中值定理,消去?x,再令?x?0得?2u??u?g[(l?x)]。
?x?x?t25. 验证u(x,y,t)?1t2?x2?y2在锥t?x?y0中都满足波动方程222?2u?2u?2u1222证:函数在锥0内对变量t?x?y??u(x,y,t)?222222?t?x?y?x?yx,y,t有二阶连续偏导数。
且232?u??(t2?x2?y2)?t??t35??u(t2?x2?y2)2?3(t2?x2?y2)2?t22?t?(t2?x2?y2)?32?(2t2?x2?y2)?u?(t2?x2?y2)?x?32?x?2u?x2?t?x?22352?2222?22?y?3t?x?yx??????52??u同理 ??t2?x2?y2?2?t2?x2?2y2?2?y所以即得所证。
2 达朗贝尔公式、波的传抪3.利用传播波法,求解波动方程的特征问题(又称古尔沙问题) 2??2u2?u?2?a2t?x??ux?at?0??(x) ??(0)??(0)? ?u??(x).?x?at?0?5??t2?x2?y22t2?2x2?y2??2u?x2?2u?y2?t?x??225?y22??2t2?x?y22???t2.?2u解:u(x,t)=f(x-at)+g(x+at) 令 x-at=0 得 ?(x)=f(0)+g(2x)令x+at=0 得 ?(x)=f(2x)+g(0) 所以 f(x)=?()-g(0). g(x)=?()-f(0). 且 f(0)+g(0)=?(0)??(0). 所以 u(x,t)=?(x2x2x?atx?at)+?()-?(0). 22即为古尔沙问题的解。
数学物理方程(谷超豪)课后答案
第一章.波动方程§1方程的导出。
定解条件1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明满足方程),(t x u ()⎟⎠⎞⎜⎝⎛∂∂∂∂=⎟⎠⎞⎜⎝⎛∂∂∂∂x u E x t u x t ρ其中为杆的密度,为杨氏模量。
ρE 证:在杆上任取一段,其中两端于静止时的坐标分别为与。
现在计算这段杆在时x +x x ∆刻的相对伸长。
在时刻这段杆两端的坐标分别为:t t ),();,(t x x u x x t x u x ∆++∆++其相对伸长等于),()],([)],([t x x u xxt x u x t x x u x x x ∆+=∆∆−+−∆++∆+θ令,取极限得在点的相对伸长为。
由虎克定律,张力等于0→∆x x x u ),(t x ),(t x T ),()(),(t x u x E t x T x =其中是在点的杨氏模量。
)(x E x 设杆的横截面面积为则作用在杆段两端的力分别为),(x S ),(x x x ∆+x u x S x E )()(x u x x S x x E t x )()();,(∆+∆+).,(t x x ∆+于是得运动方程tt u x x s x ⋅∆⋅)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(−∆+∆+利用微分中值定理,消去,再令得x ∆0→∆x tt u x s x )()(ρx∂∂=x ESu ()若常量,则得=)(x s =22)(tu x ∂∂ρ)((x u x E x ∂∂∂∂即得所证。
2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。
解:(1)杆的两端被固定在两点则相应的边界条件为l x x ==,0.0),(,0),0(==t l u t u (2)若为自由端,则杆在的张力|等于零,因此相应的边l x =l x =xux E t l T ∂∂=)(),(l x =界条件为|=0xu∂∂l x =同理,若为自由端,则相应的边界条件为∣0=x xu∂∂00==x (3)若端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的偏移l x =由函数给出,则在端支承的伸长为。
数学物理方程-谷超豪
其中σ = k /ES . 类似的,对x = l 端,有
− ∂u + σu ∂x
2
= 0.
x= l
3. 试证:圆锥形枢轴的纵振动方程为 ∂ x E 1− ∂x h
∂u ∂x
=ρ 1−
x h
2
∂2u , ∂t2
其中h 为圆锥的高. 证明: 此时S (x) = S0 1 −
x h
2
,其中S0 为圆锥枢轴的底面积.根据第1题的推导,即得所证.
第三章 调和方程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
第四章 二阶线性偏微分方程的分类与总结 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5. 一柔软均匀的细弦,一端固定,另一端是弹性支承.设该弦在阻力与速度成正比的介质中作微小 的横振动,试写出弦的位移所满足的定解问题.
解: 此时所受外力为阻力F (x) = k
∂u ,因而有 ∂t ∂2u ∂2u ∂u T 2 − ρ 2 = −k ∂t ∂x ∂t
假设固定端为x = 0,有u(0, t) = 0; ∂u = 0. 对于弹性支承端x = l,有 + σu ∂x x= l 6. 若F (ξ ),G(ξ )均为其变元的二次连续可导函数,验证F (x−at),G(x+at)均满足弦振动方程(1.11). 解: 参见第二节.
3. 利用传播波法,求解波动方程的古沙(Goursat)问题 2 2 ∂ u 2∂ u = a , ∂t2 ∂x2 u|x−at=0 = ϕ (x) , u|x+at=0 = ψ (x) , (ϕ (0) = ψ (0)) .
数学物理方程_答案_谷超豪
第一章.波动方程§1 方程的导出。
定解条件1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明),(t x u 满足方程()⎪⎭⎫⎝⎛∂∂∂∂=⎪⎭⎫ ⎝⎛∂∂∂∂x u E x t u x t ρ 其中ρ为杆的密度,E 为杨氏模量。
证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与+x x ∆。
现在计算这段杆在时刻t 的相对伸长。
在时刻t 这段杆两端的坐标分别为:),();,(t x x u x x t x u x ∆++∆++其相对伸长等于 ),()],([)],([t x x u xxt x u x t x x u x x x ∆+=∆∆-+-∆++∆+θ令→∆x ,取极限得在点x 的相对伸长为x u ),(t x 。
由虎克定律,张力),(t x T 等于),()(),(t x u x E t x T x =其中)(x E 是在点x 的杨氏模量。
设杆的横截面面积为),(x S 则作用在杆段),(x x x ∆+两端的力分别为x u x S x E )()(x u x x S x x E t x )()();,(∆+∆+).,(t x x ∆+于是得运动方程 tt u x x s x ⋅∆⋅)()(ρxESu t x =),(x x x x x ESu x x |)(|)(-∆+∆+利用微分中值定理,消去x ∆,再令0→∆x 得u x s x )()(ρx ∂∂=x ESu ()若=)(x s 常量,则得22)(tu x ∂∂ρ=))((xu x E x∂∂∂∂即得所证。
2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。
解:(1)杆的两端被固定在l x x ==,0两点则相应的边界条件为.0),(,0),0(==t l u t u(2)若l x =为自由端,则杆在l x =的张力xu x E t l T ∂∂=)(),(|l x =等于零,因此相应的边界条件为xu ∂∂|l x ==0同理,若0=x 为自由端,则相应的边界条件为xu∂∂∣00==x(3)若l x =端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的偏移由函数)(t v 给出,则在l x =端支承的伸长为)(),(t v t l u -。
【整理】数学物理方程谷超豪版第二章课后答案
t2
u
t2
u
M1
C u x, y, z, t2 u x, y, z, t1 dxdydz
C dtdv
C dvdt
t1
t
t1
t
§ 1 热传导方程及其定解问题的提
两者应该相等,由奥、高公式得:
1. 一均匀细杆直径为 l ,假设它在同一截面上的温度是相同的,杆的表面和周围介质发生热
交换,服从于规律
又假设杆的密度为
l
0nΒιβλιοθήκη 1l 0ll当 f (x) u0 const时,
l
l
1
2
n
C0
l 0 u0 dx u0 , C n
l
u0 cos
0
l
xdx
0
n 1,2,
所以
u(u,t) u0
4.在 t 0, 0 x l 区域中求解如下的定解问题
u t
2 2u 2 x2
(u u0 )
u(0, t) u(l ,t) u0
u( x,0) f ( x)
a
Hash b l ) a
b u0 ch a x
u
0
(bsh
b a
l
Hach b l ) sh b x (bch b l
aa
a
Hash b l ) a
b
b
b
b
u0 [bch a (l
x)
Hash (l a
x)] (bch l a
Hash l ) a
29
w a2 2w b2w
t
x2
w
wx 0
dQ u 4 dsdt
今假设物体和周围介质之间只有辐射而没有热传导,又假设物体周围介质的绝对温度为已
数学物理方程谷超豪版第二章课后规范标准答案
,.第 二 章 热 传 导 方 程§1 热传导方程及其定解问题的提1. 一均匀细杆直径为l ,假设它在同一截面上的温度是相同的,杆的表面和周围介质发生热交换,服从于规律dsdt u u k dQ )(11-=又假设杆的密度为ρ,比热为c ,热传导系数为k ,试导出此时温度u 满足的方程。
解:引坐标系:以杆的对称轴为x 轴,此时杆为温度),(t x u u =。
记杆的截面面积42l π为S 。
由假设,在任意时刻t 到t t ∆+内流入截面坐标为x 到x x ∆+一小段细杆的热量为t x s xu kts xu k t s xukdQ xx xx ∆∆∂∂=∆∂∂-∆∂∂=∆+221 杆表面和周围介质发生热交换,可看作一个“被动”的热源。
由假设,在时刻t 到t t ∆+在截面为x 到x x ∆+一小段中产生的热量为()()t x s u u lkt x l u u k dQ ∆∆--=∆∆--=111124π又在时刻t 到t t ∆+在截面为x 到x x ∆+这一小段内由于温度变化所需的热量为()()[]t x s tuc x s t x u t t x u c dQ t ∆∆∂∂=∆-∆+=ρρ,,3由热量守恒原理得:()t x s u u lk t x s x uk t x s t u c x t ∆∆--∆∆∂∂=∆∆∂∂11224ρ消去t x s ∆∆,再令0→∆x ,0→∆t 得精确的关系:()11224u u l k xu k t u c --∂∂=∂∂ρ 或 ()()11222112244u u l c k xu a u u l c k x u c k t u --∂∂=--∂∂=∂∂ρρρ 其中 ρc k a =22. 试直接推导扩散过程所满足的微分方程。
解:在扩散介质中任取一闭曲面s ,其包围的区域 为Ω,则从时刻1t 到2t 流入此闭曲面的溶质,由dsdt nuDdM ∂∂-=,其中D 为扩散系数,得 ⎰⎰⎰∂∂=21t t sdsdt nuDM 浓度由u 变到2u 所需之溶质为()()[]⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ∂∂=∂∂=-=2121121,,,,,,t t tt dvdt t uC dtdv t u C dxdydz t z y x u t z y x u C M两者应该相等,由奥、高公式得:⎰⎰⎰⎰⎰⎰⎰⎰ΩΩ∂∂==⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂=21211t t t t dvdt t uC M dvdt z uD z y u D y x u D x M 其中C 叫做孔积系数=孔隙体积。
数学物理方程(谷超豪)课后答案
第一章.波动方程§1方程的导出。
定解条件1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明满足方程),(t x u ()⎟⎠⎞⎜⎝⎛∂∂∂∂=⎟⎠⎞⎜⎝⎛∂∂∂∂x u E x t u x t ρ其中为杆的密度,为杨氏模量。
ρE 证:在杆上任取一段,其中两端于静止时的坐标分别为与。
现在计算这段杆在时x +x x ∆刻的相对伸长。
在时刻这段杆两端的坐标分别为:t t ),();,(t x x u x x t x u x ∆++∆++其相对伸长等于),()],([)],([t x x u xxt x u x t x x u x x x ∆+=∆∆−+−∆++∆+θ令,取极限得在点的相对伸长为。
由虎克定律,张力等于0→∆x x x u ),(t x ),(t x T ),()(),(t x u x E t x T x =其中是在点的杨氏模量。
)(x E x 设杆的横截面面积为则作用在杆段两端的力分别为),(x S ),(x x x ∆+x u x S x E )()(x u x x S x x E t x )()();,(∆+∆+).,(t x x ∆+于是得运动方程tt u x x s x ⋅∆⋅)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(−∆+∆+利用微分中值定理,消去,再令得x ∆0→∆x tt u x s x )()(ρx∂∂=x ESu ()若常量,则得=)(x s =22)(tu x ∂∂ρ)((x u x E x ∂∂∂∂即得所证。
2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。
解:(1)杆的两端被固定在两点则相应的边界条件为l x x ==,0.0),(,0),0(==t l u t u (2)若为自由端,则杆在的张力|等于零,因此相应的边l x =l x =xux E t l T ∂∂=)(),(l x =界条件为|=0xu∂∂l x =同理,若为自由端,则相应的边界条件为∣0=x xu∂∂00==x (3)若端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的偏移l x =由函数给出,则在端支承的伸长为。
数学物理方程第三版 谷超豪 答案
2(h x)
1
+
xat
(h ) ( )d.
2a(h x) xat
即为初值问题的解散。
2.问初始条件(x) 与 (x) 满足怎样的条件时,齐次波动方程初值问题的解仅由右传
播波组成? 解:波动方程的通解为 u=F(x-at)+G(x+at)
其中 F,G 由初始条件(x) 与 (x) 决定。初值问题的解仅由右传播组成,必须且只须对
于任何 x, t 有 G(x+at) 常数.
即对任何 x, G(x) C 0
又
G(x)= 1 (x) 1
x
()d
C
2
2a x0
2a
所以(x), (x) 应满足
(x)
1 a
x
()d
x0
C1
(常数)
或
' (x)+ 1 (x) =0
a
3.利用传播波法,求解波动方程的特征问题(又称古尔沙问题)
hx
其中 F,G 为任意的单变量可微函数,并由此求解它的初值问题:
t 0 : u x, u x.
t
解:令 h xu v 则
h x u u v ,h x2 u h xu v
x
x
x
x
[(h x)2 u (u v) (h x) u (h x)2 u (h x)(u 2v )
2u b u a 2 2u .
t 2 t
x 2
§2 达朗贝尔公式、 波的传抪 1. 证明方程
数学物理方程答案
x
1
x 2 h
数学物理方程谷超豪版第二章课后答案.doc
第二章热传导方程§ 1热传导方程及其定解问题的提1. 一均匀细杆直径为 l ,假设它在同一截面上的温度是相同的,杆的表面和周围介质发生热交换,服从于规律dQ k 1(u u 1 )dsdt又假设杆的密度为,比热为 c ,热传导系数为 k ,试导出此时温度 u 满足的方程。
解:引坐标系:以杆的对称轴为x 轴,此时杆为温度u u( x,t) 。
记杆的截面面积 l 2为 S 。
t 到 tt 内流入截面坐标为 x 到 xx 一小段细杆的热量为 4由假设,在任意时刻dQu s t k u2u s x tkxs t k1x x x xx 2 xt 到 tt 在截面为杆表面和周围介质发生热交换,可看作一个“被动”的热源。
由假设,在时刻x 到 xx 一小段中产生的热量为4k 1dQ2k 1 u u l x tu u s x t1l1又在时刻 t 到 tt 在截面为 x 到 xx 这一小段内由于温度变化所需的热量为dQc u x,tt u x,t s x c u s x t由热量守恒原理得:3t tcu s x t k2us x t4k 1u u s x tt tx2 xl1消去 sx t ,再令x 0 , t 2 u 0 得精确的关系:cuk 4k 1 u ut x 2 l1u k 2u 4ka 22 u4k或t cx2c 1u u 1x2c 1u u 1ll其中a2kc2. 试直接推导扩散过程所满足的微分方程。
解:在扩散介质中任取一闭曲面s ,其包围的区域 为 ,则从时刻 t 1 到 t 2 流入此闭曲面的溶 质,由 dMDudsdt ,其中 D 为扩散系数,得nt 2D udsdtMt 1 snt 2t 2C udvdtM 1C u x, y, z, t 2 u x, y, z, t 1 dxdydzCudtdvt 1tt 1t两者应该相等,由奥、高公式得:t 2uuut 2C udvdtMD D D dvdt M 1t 1xx y y z zt 1t其中 C 叫做孔积系数 =孔隙体积。
数学物理方程_答案_谷超豪
x, y , t 有
二阶连续偏导数。且
− ∂u = −(t 2 − x 2 − y 2 ) 2 ⋅ t ∂t 2 2 2 − 3 2 3
∂ 2u ∂t
2
= −(t − x − y )
3 2Leabharlann + 3(t − x − y )
2
2
2
−
5 2
⋅t2
= (t − x − y )
2
2
2
−
⋅ (2t 2 + x 2 + y 2 )
若
ρ (x ) = ρ是常量, E (x ) = E也是常量.令a 2 =
2 ∂ 2u ∂u 2 ∂ u +b =a . ∂t ∂t 2 ∂x 2
E , 则得方程 ρ
1.
§2 达朗贝尔公式、 波的传抪 证明方程
2 2 ∂ ⎡⎛ x ⎞ ∂u ⎤ 1 ⎛ x ⎞ ∂ 2 u (h ≻ 0常数) ⎢⎜1 − ⎟ ⎥ = 2 ⎜1 − ⎟ 2 ∂x ⎢ h ∂ x h a ∂ t ⎝ ⎠ ⎝ ⎠ ⎥ ⎣ ⎦
∂ ∂v ∂u ∂ 2v 2 ∂u 2 ∂u [(h − x) = −(u + ) + (h − x) + (h − x) = (h − x)(u + 2 ) ∂x ∂x ∂x ∂x ∂x ∂ x
又 代入原方程,得
(h − x ) ∂
2
u
∂t 2
=
∂ 2v ∂t 2
(h − x ) ∂
即
2
v
∂x 2
+
x + at 1 (h − α )ψ ( α )dα . 2a(h − x) ∫x − at
即为初值问题的解散。 2. 问初始条件 ϕ ( x) 与ψ ( x) 满足怎样的条件时, 齐次波动方程初值问题的解仅由右传 播波组成? 解:波动方程的通解为 u=F(x-at)+G(x+at) 其中 F,G 由初始条件 ϕ ( x) 与ψ ( x) 决定。初值问题的解仅由右传播组成,必须且只须对 于任何 x,
数学物理方程_答案_谷超豪
第一章. 波动方程§1 方程的导出。
定解条件1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明),(t x u 满足方程()⎪⎭⎫⎝⎛∂∂∂∂=⎪⎭⎫ ⎝⎛∂∂∂∂x u E x t u x t ρ 其中ρ为杆的密度,E 为杨氏模量。
证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与+x x ∆。
现在计算这段杆在时刻t 的相对伸长。
在时刻t 这段杆两端的坐标分别为:),();,(t x x u x x t x u x ∆++∆++其相对伸长等于 ),()],([)],([t x x u xxt x u x t x x u x x x ∆+=∆∆-+-∆++∆+θ令0→∆x ,取极限得在点x 的相对伸长为x u ),(t x 。
由虎克定律,张力),(t x T 等于),()(),(t x u x E t x T x =其中)(x E 是在点x 的杨氏模量。
设杆的横截面面积为),(x S 则作用在杆段),(x x x ∆+两端的力分别为x u x S x E )()(x u x x S x x E t x )()();,(∆+∆+).,(t x x ∆+于是得运动方程 tt u x x s x ⋅∆⋅)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(-∆+∆+ 利用微分中值定理,消去x ∆,再令0→∆x 得tt u x s x )()(ρx∂∂=x ESu () 若=)(x s 常量,则得22)(tu x ∂∂ρ=))((x u x E x ∂∂∂∂即得所证。
2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。
解:(1)杆的两端被固定在l x x ==,0两点则相应的边界条件为.0),(,0),0(==t l u t u(2)若l x =为自由端,则杆在l x =的张力xux E t l T ∂∂=)(),(|l x =等于零,因此相应的边界条件为xu∂∂|l x ==0 同理,若0=x 为自由端,则相应的边界条件为xu∂∂∣00==x (3)若l x =端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的偏移由函数)(t v 给出,则在l x =端支承的伸长为)(),(t v t l u -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
dQ3 c u x, t
由热量守恒原理得:
u t u x,t s x c t t s x t
c
u t ts x t
2u k x2 x s x t
4k1 u l
u1 s x t
消去 s x t ,再令 x 0 , t 0 得精确的关系:
c
u t
k 2u x2
4k1 u l
u1
或
u t
k c
2u x2
4k1 u cl
知函数 f (x, y, z, t) ,问此 时该物体热传 §导问题的边界条件应如何叙述?
解: 由假设, 边界只有辐射的热量交换, 辐射出去的热量为 dQ1 u 4 |s dsdt, 辐射进来的
热量为 dQ2 f 4 |s dsdt, 因此由热量的传导定律得边界条件为:
u k n |s
[ u 4 |s f 4 |s]
t
x2
)
u
u(0, t )
( ,t) 0 (t 0)
x
u( x,0) f ( x) (0 x )
X " X 0 X ( 0) X (1) 0
T' T 0
求非零解 X (x) 得 n n2 2 , X n sin n x
对应T为 因此得 由初始值得
Tn (t )
a2 ( 2n 1)2
t
Cne
4
u( x, t)
n
Cne
0
a2 (2n 4
1)2 t
2n
sin
2
1x
2n 1
f (x)
Cn sin
n0
2
x
2
2n 1
因此
Cn
f ( x) sin
xdx
0
2
故解为
2
2n 1
u( x,t )
f ( )si n
d
n0 0
2
2.用分离变量法求解热传导方程的混合问题
质,由 dM
D u dsdt ,其中 D 为扩散系数,得 n
t2
u
M
D dsdt
t1 s
n
解:问题可视为有热源的杆的热传导问题。因此由原
71 页 (1.7) 及(1.8) 式知方程取形式为
u a 2 2 u f x,t
t
x2
其中 a 2 k , f x, t c
F x, t / c , F x, t 为单位体积单位时间所产生的热量。
dQ1 k x x x s t k x x s t k x 2 x s x t
杆表面和周围介质发生热交换,可看作一个“被动”的热源。由假设,在时刻
t到t
l2 为S。 4
t 在截面为
x 到 x x 一小段中产生的热量为
又在时刻 t 到 t
dQ2 k1 u t 在截面为 x 到 x
u1 l x t
4k1 u l
又假设杆的密度为
dQ k1(u u1 )dsdt ,比热为 c ,热传导系数为 k ,试导出此时温度 u 满足的方程。
解:引坐标系:以杆的对称轴为 x 轴,此时杆为温度 u u( x,t) 。记杆的截面面积
由假设,在任意时刻 t 到 t t 内流入截面坐标为 x 到 x x 一小段细杆的热量为
u
u
2u
由常电流 i 所产生的 F1 x, t 为 0.24i 2 r / 2 。因为单位长度的电阻为 r ,因此电流 i 作功为
i2 r
浓度由 u 变到 u2 所需之溶质为
乘上功热当量得单位长度产生的热量为 0.24i 2r / 其中 0.24 为功热当量。
26
因此单位体积时间所产生的热量为 0.24i 2 r / 2
a 2 ( 2n 1)2
e
4
t 2n 1 si n x
2
u 2u t x2
(t 0,0 x 1)
u( x,0)
1 x 0x
2
1
1x
x1
2
u( 0,t ) u(1,t ) 0
(t 0)
解:设 u X (x)T (t) 代入方程及边值得
§2 混合问题的分离变量法
1. 用分离变量法求下列定解问题的解:
u a2 2u (t 0,0 x
u1 s x t
x 这一小段内由于温度变化所需的热量为
t2
M
t1
u D xx
u D yy
其中 C 叫做孔积系数 =孔隙体积。一般情形
u
t2
D
dvdt M 1
zz
t1
u C dvdt
t
C 1。由于 , t1, t 2 的任意性即得方程:
Cu
Du
tx x
Du yy
Du zz
3. 砼 (混凝土 )内部储藏着热量,称为水化热,在它浇筑后逐渐放出,放热速度和它所储藏的
第二章 热传导方程
t2
u
t2
u
M1
C u x, y, z, t2 u x, y, z, t1 dxdydz
C dtdv
C dvdt
t1
t
t1
t
§ 1 热传导方程及其定解问题的提
两者应该相等,由奥、高公式得:
1. 一均匀细杆直径为 l ,假设它在同一截面上的温度是相同的,杆的表面和周围介质发生热
交换,服从于规律
由常温度的热交换所产生的 (视为“被动”的热源 ),从本节第一题看出为
其中 l 为细杆直径,故有
4k1 u l
u0
p
l2
l/
4
4 ,代入得 l
F2 x,t
k1 p u u0
因热源可迭加,故有 F x,t
F1 x, t
F2 x,t 。将所得代入
u t
a2
2u x2
f x, t 即得所求:
u t
k c
2u x2
u1
a2 2u x2
4k1 u cl
u1
Q0 e t
它就是单位时间所产生的热量,因此,由原书
u t
a2
2u x2
71 页, (1.7) 式得
2u
2u
y2
z2
Q0 e t c
a2
k
c
4. 设一均匀的导线处在周围为常数温度 u0 的介质中,试证 :在常电流作用下导线的温度满
足微分方程
u t
k c
2u x
k1P u c
u0
0.24i 2 r c2
5*. 设 物 体 表 面 的 绝 对 温 度 为 u , 此 时 它 向 外 界辐 射 出 去 的 热 量 依 斯 忒 --- 波 耳 兹 曼 (Stefan-Boltzman) 定律正比于 u 4 ,即
dQ u 4 dsdt
今假设物体和周围介质之间只有辐射而没有热传导,又假设物体周围介质的绝对温度为已
k1 P u c
u0
0.24i 2 r c2
其中 i 及 r 分别表示导体的电流强度及电阻系数, 表示横截面的周长, 表示横截面面积, 而 k 表
示导线对于介质的热交换系数。
其中
a2 k
c
2. 试直接推导扩散过程所满足的微分方程。
解: 在扩散介质中任取一闭曲面 s,其包围的区域 为 ,则从时刻 t1到 t 2 流入此闭曲面的溶
水化热成正比。以 Q t 表示它在单位体积中所储的热量,
Q0 为初始时刻所储的热量,则
dQ
Q ,其中
dt
度 u 满足的方程。
为常数。又假设砼的比热为
c ,密度为
,热传导系数为 k ,求它在浇后温
解: 可将水化热视为一热源。由 dQ d t Q0e t 。由假设,放