2020中考数学第1-18题训练(9)
2024北京中考数学专题训练01根的判别式 - 副本
2024北京中考数学专题训练01:根的判别式一.选择题(共11小题)1.(2023•北京)若关于x的一元二次方程x2﹣3x+m=0有两个相等的实数根,则实数m的值为()A.﹣9B.C.D.9 2.(2022•北京)若关于x的一元二次方程x2+x+m=0有两个相等的实数根,则实数m的值为()A.﹣4B.C.D.4 3.(2023秋•丰台区期末)若一元二次方程x2+mx+1=0有两个相等的实数根,则m的值是()A.2B.±2C.±8D.4.(2023秋•大兴区期末)关于一元二次方程x2﹣3x﹣1=0的根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断5.(2023•大兴区一模)若关于x的一元二次方程x2+2x+m=0有实数根,则实数m的取值范围为()A.m<1B.m≤1C.m>1D.m≥1 6.(2023•平谷区一模)若一元二次方程x2﹣2x+m=0有两个不相同的实数根,则实数m的取值范围是()A.m≥1B.m≤1C.m>1D.m<1 7.(2023•西城区一模)若关于x的方程mx2+3x﹣1=0有两个不相等的实数根,则实数m 的取值范围是()A.m>﹣B.m≥﹣C.m>﹣且m≠0D.m≥﹣且m≠0的值是()A.﹣1B.0C.1D.2 9.(2023•丰台区一模)若关于x的方程x2﹣x+a=0有两个相等的实数根,则实数a的值是()A.B.C.4D.﹣4 10.(2023•顺义区一模)若关于x的一元二次方程x2﹣4x﹣m=0有两个不相等的实数根,则m的取值范围是()A.m<4B.m<﹣4C.m>4D.m>﹣4 11.(2023•北京一模)若关于x的一元二次方程x2+2x+m=0有实数根,则m的值不可能是()A.2B.1C.﹣1D.﹣2二.填空题(共9小题)12.(2020•北京)关于x的方程x2+2x+k=0有两个相等的实数根,则k的值为.13.(2015•北京)关于x的一元二次方程ax2+bx+=0有两个相等的实数根,写出一组满足条件的实数a,b的值:a=,b=.14.(2023•西城区)若关于x的一元二次方程x2﹣6x+c=0有两个相等的实数根,则c的值为.15.(2023•石景山区一模)若关于x的一元二次方程x2+4x+m=0有两个不相等的实数根,则实数m的取值范围是.16.(2023•门头沟区一模)如果关于x的方程x2+4x+2m=0有两个不相等的实数根,那么m 的取值范围是.17.(2023•房山区一模)关于x的一元二次方程ax2+4x+c=0有两个相等的实数根,写出一组满足条件的实数a,c的值:a=,c=.18.(2023•朝阳区一模)关于x的一元二次方程x2+6x+m=0有两个相等的实数根,则m的值为.19.(2023•朝阳区二模)若关于x的一元二次方程x2﹣2x﹣k=0没有实数根,则k的取值范围是.取值范围是.三.解答题(共21小题)21.(2021•北京)已知关于x的一元二次方程x2﹣4mx+3m2=0.(1)求证:该方程总有两个实数根;(2)若m>0,且该方程的两个实数根的差为2,求m的值.22.(2019•北京)关于x的方程x2﹣2x+2m﹣1=0有实数根,且m为正整数,求m的值及此时方程的根.23.(2018•北京)关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.24.(2017•北京)关于x的一元二次方程x2﹣(k+3)x+2k+2=0.(1)求证:方程总有两个实数根;(2)若方程有一个根小于1,求k的取值范围.25.(2016•北京)关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.26.(2014•北京)已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值.27.(2023秋•东城区期末)已知关于x的一元二次方程x2﹣(2m+1)x+m2﹣2=0.(1)当该方程有两个不相等的实数根时,求m的取值范围;(2)当该方程的两个实数根互为相反数时,求m的值.28.(2024•海淀区)已知关于x的方程x2﹣2mx+m2﹣n=0有两个不相等的实数根.(1)求n的取值范围;(2)若n为符合条件的最小整数,且该方程的较大根是较小根的2倍,求m的值.29.(2023秋•朝阳区期末)关于x的一元二次方程x2﹣(m+4)x+3(m+1)=0.(1)求证:该方程总有两个实数根;(2)若该方程有一根小于0,求m的取值范围.30.(2023秋•大兴区期末)已知关于x的一元二次方程x2﹣x+2m﹣2=0有两个实数根.(1)求m的取值范围;(2)当m取最大整数值时,求方程的根.31.(2023•西城区)已知关于x的一元二次方程x2﹣(m+2)x+m+1=0,(1)求证:此方程总有两个实数根;(2)若此方程的一根是另一根的2倍,求m的值.32.(2023•延庆区一模)已知关于x的一元二次方程x2+mx+m﹣1=0.(1)求证:方程总有两个实数根;(2)如果方程有一个根为正数,求m的取值范围.33.(2023•北京二模)已知关于x的一元二次方程x2﹣4x+m+2=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为正整数,求此时方程的根.34.(2023•大兴区二模)已知关于x的方程x2﹣(m+4)x+4m=0.(1)求证:该方程总有两个实数根;(2)若该方程有一个根小于1,求m的取值范围.35.(2023•顺义区二模)已知关于x的方程x2﹣bx+2b﹣4=0.(1)求证:方程总有两个实数根;(2)若b为正整数,且方程有一个根为负数,求b的值.36.(2023•丰台区二模)已知关于x的一元二次方程x2﹣2mx+m2﹣4=0.(1)求证:该方程总有两个不相等的实数根;(2)选择一个m的值,使得方程至少有一个正整数根,并求出此时方程的根.37.(2023•石景山区二模)已知关于x的一元二次方程x2﹣2mx+m2﹣1=0(1)求证:该方程总有两个不相等的实数根;(2)若m>1,且该方程的一个根是另一个根的2倍,求m的值.38.(2023•昌平区二模)关于x的一元二次方程x2﹣kx+k﹣1=0.(1)求证:方程总有两个实数根;(2)若方程有一个根小于0,求k的取值范围.39.(2023•西城区二模)关于x的方程x2﹣3x+m+1=0有实数根,且m为正整数,求m的值及此时方程的根.40.(2023•门头沟区二模)已知关于x的一元二次方程x2﹣2kx+k2﹣1=0.(1)求证:方程有两个不相等的实数根;(2)如果此方程的一个根为1,求k的值.41.(2023•海淀区二模)已知关于x的一元二次方程x2﹣2x+m=0(m<0).(1)判断方程根的情况,并说明理由;(2)若方程的一个根为﹣1,求m的值和方程的另一个根.。
2020年九年级中考数学复习专题训练:《相似综合 》(含答案)
2020年九年级中考数学复习专题训练:《相似综合》1.如图1,点P从菱形ABCD的顶点B出发,沿B→D→A匀速运动到点A,BD的长是;图2是点P运动时,△PBC的面积y(cm2)随时间x(s)变化的函数图象.(1)点P的运动速度是cm/s;(2)求a的值;(3)如图3,在矩形EFGH中,EF=2a,FG﹣EF=1,若点P、M、N分别从点E、F、G三点同时出发,沿矩形的边按逆时针方向匀速运动,当点M到达点G(即点M与点G重合)时,三个点随之停止运动;若点P不改变运动速度,且点P、M、N的运动速度的比为2:6:3,在运动过程中,△PFM关于直线PM的对称图形是△PF'M,设点P、M、N的运动时间为t(单位:s).①当t=s时,四边形PFMF'为正方形;②是否存在t,使△PFM与△MGN相似,若存在,求t的值;若不存在,请说明理由.2.如图1,四边形ABCD中,AD∥BC,∠A=90°,AD=3,AB=4,BC=6,动点P从点A出发以1个单位/秒的速度沿AB运动,动点Q同时从点C出发以2个单位/秒的速度沿CB 运动,过点P作EP⊥AB,交BD于E,连接EQ.当点Q与点B重合时,两动点均停止运动,设运动的时间为t秒.(1)当t=1时,求线段EP的长;(2)运动过程中是否存在某一时刻,使△BEQ与△ABD相似?若存在,请求出所有满足要求的t的值;若不存在,请说明理由;(3)如图2,连接CE,求运动过程中△CEQ的面积S的最大值.3.如图1,在△ABC中,AB=AC=10,,点D为BC边上的动点(点D不与点B,C 重合).以D为顶点作∠ADE=∠B,射线DE交AC边于点E,过点A作AF⊥AD交射线DE于点F,连接CF.(1)求证:△ABD∽△DCE;(2)当DE∥AB时(如图2),求AE的长;(3)点D在BC边上运动的过程中,是否存在某个位置,使得DF=CF?若存在,求出此时BD的长;若不存在,请说明理由.4.如图(1),在矩形ABCD中,AD=nAB,点M,P分别在边AB,AD上(均不与端点重合),且AP=nAM,以AP和AM为邻边作矩形AMNP,连接AN,CN.【问题发现】(1)如图(2),当n=1时,BM与PD的数量关系为,CN与PD的数量关系为.【类比探究】(2)如图(3),当n=2时,矩形AMNP绕点A顺时针旋转,连接PD,则CN与PD之间的数量关系是否发生变化?若不变,请就图(3)给出证明;若变化,请写出数量关系,并就图(3)说明理由.【拓展延伸】(3)在(2)的条件下,已知AD=4,AP=2,当矩形AMNP旋转至C,N,M三点共线时,请直接写出线段CN的长.5.如图,在△ABC中,∠C=90°,AB=10,AC=8,D、E分别是AB、BC的中点.连接DE.动点P从点A出发,以每秒5个单位长度的速度沿AB向终点B运动.同时,动点Q从点C 出发,沿折线CE﹣ED向终点D运动,在CE、ED上的速度分别是每秒3个单位长度和4个单位长度,连接PQ,以PQ、PD为边作▱DPQM.设▱DPQM与四边形ACED重叠部分图形的面积是S(平方单位),点P的运动时间为t(s).(1)当点P在AD上运动时,PQ的长为(用含t的代数式表示);(2)当▱DPQM是菱形时,求t的值;(3)当0<t<2时,求S与t之间的函数关系式;(4)当△DPQ与△BDE相似时,直接写出t的值.6.如图,在平行四边形ABCD中,AC为对角线,过点D作DE⊥DC交直线AB于点E,过点E 作EH⊥AD于点H,过点B作BF⊥AD于点F.(1)如图1,若∠BAD=60°,AF=3,AH=2,求AC的长;(2)如图2,若BF=DH,在AC上取一点G,连接DG、GE,若∠DGE=75°,∠CDG=45°﹣∠CAB,求证:DG=CG.7.(1)问题引入:如图1所示,正方形ABCD和正方形AEFG,则BE与DG的数量关系是,=;(2)类比探究:如图2所示,O为AD、HG的中点,正方形EFGH和正方形ABCD中,判断BE和CF的数量关系,并求出的值;(3)解决问题:①若把(1)中的正方形都改成矩形,且==,则(1)中的结论还成立吗?若不能成立,请写出BE与GD的关系,并求出值;②若把(2)中的正方形也都改成矩形,且==2n,请直接写出BE和CF的关系以及的8.在正方形ABCD中,点E是直线AB上动点,以DE为边作正方形DEFG,DF所在直线与BC 所在直线交于点H,连接EH.(1)如图1,当点E在AB边上时,延长EH交GF于点M,EF与CB交于点N,连接CG,①求证:CD⊥CG;②若tan∠HEN=,求的值;(2)当正方形ABCD的边长为4,AE=1时,请直接写出EH的长.9.如图a,在正方形ABCD中,E、F分别为边AB、BC的中点,连接AF、DE交于点G.(1)求证:AF⊥DE;(2)如图b,连接BG,BD,BD交AF于点H.①求证:GB2=GA•GD;②若AB=10,求三角形GBH的面积.10.如图1,在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.将△ADP沿AP 翻折得到△AD′P,PD′的延长线交边AB于点M,过点B作BN∥MP交DC于点N.(1)求证:AD2=DP•PC;(2)请判断四边形PMBN的形状,并说明理由;(3)如图2,连接AC分别交PM、PB于点E、F.若AD=3DP,探究EF与AE之间的的数量关系.11.△ABC中,∠C=90°,∠A=60°,AC=2cm.长为1cm的线段MN在△ABC的边AB上沿AB方向以1cm/s的速度向点B运动(运动前点M与点A重合).过M,N分别作AB的垂线交直角边于P,Q两点,线段MN运动的时间为ts.(1)当0≤t≤1时,PM=,QN=(用t的代数式表示);(2)线段MN运动过程中,四边形MNQP有可能成为矩形吗?若有可能,求出此时t的值;若不可能,说明理由;(3)t为何值时,以C,P,Q为顶点的三角形与△ABC相似?12.如图,四边形ABCD是矩形,AB=6,BC=4,点E在边AB上(不与点A、B重合),过点D作DF⊥DE,交边BC的延长线于点F.(1)求证:△DAE∽△DCF.(2)设线段AE的长为x,线段BF的长为y,求y与x之间的函数关系式.(3)当四边形EBFD为轴对称图形时,则cos∠AED的值为.13.如图,矩形ABCD中,AB=3,BC=2,点M在BC上,连接AM,作∠AMN=∠AMB,点N 在直线AD上,MN交CD于点E.(1)求证:△AMN是等腰三角形;(2)求证:AM2=2BM•AN;(3)当M为BC中点时,求ME的长.14.如图,在平面直角坐标系中,过原点O及A(8,0)、C(0,6)作矩形OABC,连接AC,一块直角三角形PDE的直角顶点P始终在对角线AC上运动(不与A、C重合),且保持一边PD始终经过矩形点B,PE交x轴于点Q(1)=;(2)在点P从点C运动到点A的过程中,的值是否发生变化?如果变化,请求出其变化范围,如果不变,请说明理由,并求出其值;(3)若将△QAB沿直线BQ折叠后,点A与点P重合,则PC的长为.15.如图,在矩形OABC中,点A,B的坐标分别为A(4,0),B(4,3),动点N,P分别从点B,A同时出发,点N以1单位/秒的速度向终点C运动,点P以5/4单位/秒的速度向终点C运动,连结NP,设运动时间为t秒(0<t<4)(1)直接写出OA,AB,AC的长度;(2)求证:△CPN∽△CAB;(3)在两点的运动过程中,若点M同时以1单位/秒的速度从点O向终点A运动,求△MPN的面积S与运动的时间t的函数关系式(三角形的面积不能为0),并直接写出当S =时,运动时间t的值.16.如图,在正方形ABCD中,点E在边CD上(不与点C,D重合),连结AE,BD交于点F.(1)若点E为CD中点,AB=2,求AF的长.(2)若tan∠AFB=2,求的值.,(3)若点G在线段BF上,且GF=2BG,连结AG,CG,=x,四边形AGCE的面积为S1,求的最大值.△ABG的面积为S217.如图1,在△ABC中,AB=AC,点D,E分别是边BC,AC上的点,且∠ADE=∠B.(1)求证:AB•CE=BD•CD;(2)若AB=5,BC=6,求AE的最小值;(3)如图2,若△ABC为等边三角形,AD⊥DE,BE⊥DE,点C在线段DE上,AD=3,BE =4,求DE的长.18.如图,△ABC中,AB=AC,点P为BC边上一动点(不与B,C重合),以AP为边作∠APD=∠ABC,与BC的平行线AD交于点D,与AC交于点E,连结CD.(1)求证:△ABP∽△DAE.(2)已知AB=AC=5,BC=6.设BP=x,CE=y.①求y关于x的函数表达式及自变量x的取值范围;=时,求CE的值.②当S△ACD19.如图,在矩形ABCD的边AB上取一点E,连接CE并延长和DA的延长线交于点G,过点E作CG的垂线与CD的延长线交于点H,与DG交于点F,连接GH.(1)当tan∠BEC=2且BC=4时,求CH的长;(2)求证:DF•FG=HF•EF;(3)连接DE,求证:∠CDE=∠CGH.20.定义:若一个四边形能被其中一条对角线分割成两个相似三角形,则称这个四边形为“友好四边形”.(1)如图1,在4×4的正方形网格中,有一个网格Rt△ABC和两个网格四边形ABCD与ABCE,其中是被AC分割成的“友好四边形”的是;(2)如图2,将△ABC绕点C逆时针旋转得到△A'B'C,点B'落在边AC,过点A作AD∥A'B'交CA'的延长线于点D,求证:四边形ABCD是“友好四边形”;(3)如图3,在△ABC中,AB≠BC,∠ABC=60°,△ABC的面积为6,点D是∠ABC 的平分线上一点,连接AD,CD.若四边形ABCD是被BD分割成的“友好四边形”,求BD 的长.参考答案1.解:(1)由图2可知,s点P从点B运动到点D,∵BD=,∴点P的运动速度=÷=1(cm/s),故答案为:1;(2)如图1,作DQ⊥BC于点Q,当点P在BD上时,a=×BC×DP,∵四边形ABCD为菱形,点P的运动速度为1,∴AD=BC=1×a=a,∴a=×a×DP,解得,DQ=2,在Rt△BDQ中,BQ==1,∴CQ=a﹣1,在Rt△CDQ中,CD2=CQ2+DQ2,即a2=(a﹣1)2+22,解得,a=;(3)①∵点P的运动速度1cm/s,点P、M的运动速度的比为2:6 ∴点M的运动速度3cm/s,由题意得,EF=2a=5,∵FG﹣EF=1,∴FG=6,∴PF=5﹣t,FM=3t,由翻转变换的性质可知,PF=PF′,FM=FM′,当PF=FM时,PF=PF′=FM=FM′,∴四边形PFMF'为菱形,又∠F=90°,∴四边形PFMF'为正方形,∴5﹣t=3t,即t=1.25时,四边形PFMF'为正方形,故答案为:1.25;②存在,∵点P的运动速度1cm/s,点P、M、N的运动速度的比为2:6:3,∴点M的运动速度3cm/s,点N的运动速度1.5cm/s,∴PF=5﹣t,FM=3t,GN=1.5t,∵点M的运动速度3cm/s,FG=6,∴0≤t≤2,当△PFM∽△MGN时,=,即=,解得,t=,当△PFM∽△NGM时,=,即=,解得,t1=﹣7﹣(舍去),t2=﹣7+,综上所述,当t=或﹣7+时,△PFM与△MGN相似.2.解:(1)当t=1时,则AP=1,∴BP=AB﹣AP=3,∵EP⊥AB,∴∠EPB=∠A=90°,∴EP∥AD,∴△BPE∽△BAD,∴,∴,∴EP=;(2)∵∠A=90°,AD=3,AB=4,∴BD===5,∵EP⊥AB,∴∠EPB=∠A=90°,∴EP∥AD,∴△BPE∽△BAD,∴,∴,∴BE=5﹣t,∵AD∥BC,∴∠ADB=∠EBQ,若∠BEQ=∠A=90°,∴△BAD∽△QEB,∴,∴=,∴t=28(不合题意舍去),若∠BQE=∠A=90°,∴△BAD∽△EQB,∴,∴t=,(3)∵S=×CQ×PB=×2t×(4﹣t)=﹣(t﹣2)2+4,∴当t=2时,S最大值为4,∴△CEQ的面积S的最大值为4.3.证明:(1)∵AB=AC,∴∠B=∠ACB,∵∠ADE+∠CDE=∠B+∠BAD,∠ADE=∠B,∴∠BAD=∠CDE,∴△BAD∽△DCE;(2)如图2中,作AM⊥BC于M.在Rt△ABM中,设BM=4k,∵=,∴,由勾股定理,得到AB2=AM2+BM2,∴102=(3k)2+(4k)2,∴k=2或﹣2(舍弃),∴AM=6,BM=8,∵AB=AC,AM⊥BC,∴BC=2BM=2×2k=16,∵DE∥AB,∴∠BAD=∠ADE,∵∠ADE=∠B,∠B=∠ACB,∴∠BAD=∠ACB,∵∠ABD=∠CBA,∴△ABD∽△CBA,∴,∴=,∵DE∥AB,∴,∴=.(3)点D在BC边上运动的过程中,存在某个位置,使得DF=CF.理由:作FH⊥BC于H,AM⊥BC于M,AN⊥FH于N.则∠NHM=∠AMH=∠ANH=90°,∴四边形AMHN为矩形,∴∠MAN=90°,MH=AN,∵AB=AC,AM⊥BC,∵AB=10,∴BM=CM=8,∴BC=16,在Rt△ABM中,由勾股定理,得AM=6,∵AN⊥FH,AM⊥BC,∴∠ANF=90°=∠AMD,∵∠DAF=90°=∠MAN,∴∠NAF=∠MAD,∴△AFN∽△ADM,∴,∴,∴CH=CM﹣MH=CM﹣AN=8﹣=,当DF=CF时,由点D不与点C重合,可知△DFC为等腰三角形,∵FH⊥DC,∴CD=2CH=7,∴BD=BC﹣CD=16﹣7=9,∴点D在BC边上运动的过程中,存在某个位置,使得DF=CF,此时BD=9.4.解:(1)BM=PD,,理由如下:当n=1,则AD=AB,AP=AM,∴AD﹣AP=AB﹣AM,∴DP=BM,∵四边形ABCD是矩形,四边形AMNP是矩形,∴AD=CD=AB,AP=AM=NP,∠ADC=∠APN=90°,∴AC=AD,AN=AP,∴AC﹣AN=(AD﹣AP),∴CN=PD,故答案为:BM=PD,;(2)CN与PD之间的数量关系发生变化,,理由如下:如图(1)在矩形ABCD和矩形AMNP中,∵当n=2.AD=2AB,AP=2AM,∴,,∴.,如图(3)连接AC,∵矩形AMNP绕点A顺时针旋转,∴∠NAC=∠PAD,∴△ANC∽△APD,∴,∴;(3)如图,当点N在线段CM上时,∵AD=4,AD=2AB,∴AB=CD=2,∴AC===,∵AP=2,AP=2AM,∴AM=1,∴CM===,∴CN=CM﹣MN=﹣2;如图,当点M在线段CN上时,同理可求CM=,∴CN=CM+MN=+2;综上所述:线段CN的长为或.5.解:(1)∵∠C=90°,AB=10,AC=8,∴BC===6,∵D、E分别是AB、BC的中点.∴DE∥AC,DE=AC=4,BD=AD=5,BE=CE=3,∵动点P从点A出发,以每秒5个单位长度的速度沿AB向终点B运动,∴AP=5t,∴BP=10﹣5t,∵DE∥AC,∴△BPQ∽△BAC,∴,∴∴PQ=8﹣4t,故答案为:8﹣4t;(2)当点P在AD上运动时,∵四边形DPQM是菱形,∴PD=PQ,∴5﹣5t=8﹣4t,∴t=﹣3(不合题意舍去),当点P在BD上运动时,过点P作PH⊥DQ于H,∵四边形DPQM是菱形,∴PD=PQ,且PH⊥DQ,∴DH=HQ=DQ=[4﹣4(t﹣1)]=4﹣2t,∵DE∥AC,∴∠DEB=∠ACB=90°=∠PHD,∴PH∥BE,∴△PDH∽△BDE,∴,∴,∴t=,PH=3t﹣3,综上所述:当t=时,▱DPQM是菱形;(3)当0<t<1时,S=×(8﹣4t+4)×(3﹣3t)=6t2﹣24t+18,当t=1时,不能作出▱DPQM,当1<t<2时,S=×(8﹣4t)×(3t﹣3)=﹣6t2+18t﹣12;(4)当点P在AD上时,不存在△DPQ与△BDE相似,当点P在BD上时,则∠PDQ=∠BDE,若∠PQD=∠DEB=90°时,∴△PDQ∽△BDE,∴,∴∴t=,若∠DPQ=∠DEB=90°时,∴△QPD∽△BED,∴,∴∴t=综上所述:当t=或时,△DPQ与△BDE相似.6.解:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,CD=AB,CD∥AB,∵BF⊥AD于F,∴∠AFB=90°,∵∠BAD=60°,∴AB=2AF=6,BF=AF=3,∵EH⊥AD于H,∴AE=2AH=4,EH=AH=2,∵DE⊥DC交AB于E,∴∠DEA=90°,∴AD=2AE=8,∴CB=AD=8,如图1,作AM⊥CB于M,则∠ABM=∠BAD=60°,∴BM=(1/2)AB=3,AM=BM=3,∴CM=CB+BM=11,在Rt△ACM中:AC===2.(2)如图2,作EN⊥AC于N,连接DN、CE,则∠CNE=90°.∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,CD=AB,CD∥AB,∵DE⊥DC交AB于E,∴∠CDE=∠DEA=90°,∵EH⊥AD于H,∴∠DHD=∠EHA=90°,∵BF⊥AD于F,∴∠DFB=∠AFB=90°,∴∠DHE=∠BFA,∵∠DEH+∠HEA=∠HEA+∠BAF=90°,∴∠DEH=∠BAF,∵DH=BF,∴△DEH≌△BAF(AAS),∴DE=BA=CD,∴△CDE是等腰直角三角形,∠DCE=∠DEC=45°,∵∠CDE=∠CNE=90°,∴C、D、N、E四点共圆,∴∠DNC=∠DEC=45°,∵∠CDG=45°﹣∠CAB,∴∠CDG+∠CAB=45°,∵CD∥AB,∴∠CAB=∠DCG,∴∠DGN=∠DCG+∠CDG=45°=∠DNC,∴△DGN是等腰直角三角形,∠GDN=90°,DG=DN,∵∠CDG+∠GDE=∠GDE+∠EDN=90°,∴∠CDG=∠EDN,∴△CDG≌△EDN(SAS),∴EN=CG,∵∠CGD=75°,∴∠CGN=∠CGD﹣∠DGN=30°,∴GN=EN=CG,∴DG=GN=CG7.解:(1)如图1中,连接AC,AF.∵四边形ABCD,四边形AEFG都是正方形,∴AB=AD,AE=AG,∠BAD=∠EAG=90°,AC=AB,AF=AE,∠BAC=45°,∠EAF=45°,∴∠BAE=∠DAG,∴△BAE≌△DAG(SAS),∴BE=DG,∵AC=AB,AF=AE,∴=,∵∠BAC=∠EAF=45°,∴∠BAE=∠CAF,∴△BAE∽△CAF,∴==,∵DG=BE,∴=.故答案为:BE=DG,.(2)如图2中,连接OB,OE,OF,OC.∵四边形ABCD是正方形,OA=OD,∴∠A=∠CDO=90°,AB=CD,∴△AOB≌△DOC(SAS),∴OB=OC,同法可证OE=OF,∴∠OBC=∠OCB,∠OEF=∠OFE,∵BC∥AD,∴∠CBO=∠AOB,∴tan∠CBO=tan∠AOB=2,同法可证:tan∠FEO=2,∴tan∠CBO=tan∠FEO,∴∠CBO=∠FEO,∴∠OBC=∠OCB=∠OEF=∠OFE,∴∠BOC=∠EOF,∴∠EOB=∠FOC,∵OE=OF,OB=OC,∴△OEB≌△OFC(SAS),∴BE=FC,∵tan∠COD=tan∠COD=2,∴∠FOG=∠COD,∴∠FOC=∠GOD,∵==,∴△FOG∽△GOD,∴==.(3)①如图3中,结论不成立,BE=3DG.连接BE,AC,AF,CF.∵四边形ABCD,四边形AEFG都是矩形,∴∠BAD=∠EAG=90°,∴∠BAE=∠DAG,∵AB=3AD,AE=3AG,∴△BAE∽△DAG,∴==3,∴BE=3DG,由题意:=,=,∴=,∴=,∵tan∠BAC=tan∠EAF=,∴∠BAC=∠EAF,∴∠BAE=∠CAF,∴△BAE∽△CAF,∴==,∴=.②如图4中,连接OE,OB,OF,OC.由(2)可知,∠BOC=∠EOF,OE=OF,OB=OC,∴∠EOB=∠FOC,∴△EOB≌△FOC(SAS),∴BE=CF.同法可证△FOC∽△GOD,∴=,设EH=k,则GH=2nk,∴OG=nk,∴OF==•k,∵BE=CF,∴==.8.证明:(1)①∵四边形ABCD和四边形DEFG是正方形,∴∠A=∠ADC=∠EDG=90°,AD=CD,DE=DG,∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴∠A=∠DCG=90°,∴CD⊥CG;②如图1,过点N作NP∥DE,∵四边形DEFG是正方形,∴EF=GF,∠EFH=∠GFH=45°,且HF=HF,∴△EFH≌△GFH(SAS),∴EH=GH,∠HEF=∠HGF,∵∠HEF=∠HGF,EF=GF,∠EFM=∠GFN,∴△EFM≌△GFN(ASA),∴FM=NF,EM=GN,∵tan∠HEN==,∴EF=4MF=4NF=GF,∴GM=3MF=EN=3NF,∴NP∥DE,∴△PNE∽△MFE,∴,∴PN=MF,∵NP∥DE,∴=,∴;(2)如图1,∵AD=4,AE=1,∴DE===,∴EF=GF=,∴NF=EF=,∵GN2=GF2+NF2,∴GN=,∵∴GH=GN=,∴EH=GH=若点E在点A左侧,如图2,设AB与DH于点O,过点F作FN⊥AB,∵∠DEA+∠FEB=90°,∠DEA+∠ADE=90°,∴∠ADE=∠FEB,且∠DAE=∠FNE=90°,DE=EF,∴△ADE≌△NEF(AAS)∴AE=NF=1,DA=EN=4,∴AN=3,BN=1,∵DA∥NF,∴,∴ON=,∴BO=,∴AO=∵DA∥BH,∴,∴BH=,∴EH===9.证明:(1)∵正方形ABCD,E、F分别为边AB、BC的中点,∴AD=BC=DC=AB,AE=BE=AB,BF=CF=BC,∴AE=BF,∵在△ADE和△BAF中,∴△ADE≌△BAF(SAS)∴∠BAF=∠ADE,∵∠BAF+∠DAF=90°∴∠ADE+∠DAF=90°=∠AGD,∴AF⊥DE;(2)①如图b,过点B作BN⊥AF于N,∵∠BAF=∠ADE,∠AGD=∠ANB=90°,AB=AD,∴△ABN≌△ADG(AAS)∴AG=BN,DG=GN,∵∠AGE=∠ANB=90°,∴EG∥BN,∴,且AE=BE,∴AG=GN,∴AN=2AG=DG,∵BG2=BN2+GN2=AG2+AG2,∴BG2=2AG2=2AG•AG=GA•DG;②∵AB=10,∴AE=BF=5,∴DE===5,∵×AD×AE=×DE×AG,∴AG=2,∴GN=BN=2,∴AN=DG=4,∴△DGH∽△BNH,∴==2,∴GH=2HN,且GH+HN=GN=2,∴GH=,=×GH×BN=××2=.∴S△GHB10.(1)证明:过点P作PG⊥AB于点G,如图1所示:则四边形DPGA和四边形PCBG是矩形,∴AD=PG,DP=AG,BG=PC,∵∠APB=90°,∴∠APG+∠GPB=∠GPB+∠PBG=90°,∴∠APG=∠PBG,∴△APG∽△PBG,∴=,∴PG2=AG•BG,即AD2=DP•PC;(2)解:四边形PMBN是菱形;理由如下:∵四边形ABCD是矩形,∴AB∥CD,∵BM∥PN,BN∥MP,∴四边形PMBN是平行四边形,∵DP∥AB,∴∠DPA=∠PAM,由题意可知:∠DPA=∠APM,∴∠PAM=∠APM,∵∠APB﹣∠PAM=∠APB﹣∠APM,即∠ABP=∠MPB∴AM=PM,PM=MB,∴四边形PMBN是菱形;(3)解:∵AD=3DP,∴设DP=1,则AD=3,由(1)可知:AG=DP=1,PG=AD=3,∵PG2=AG•BG,∴32=1•BG,∴BG=PC=9,AB=AG+BG=10,∵CP∥AB,∴△PCF∽△BAF,∴==,∴=,∵PM=MB,∴∠MPB=∠MBP,∵∠APB=90°,∴∠MPB+∠APM=∠MBP+∠MAP=90°,∴∠APM=∠MAP,∴PM=MA=MB,∴AM=AB=5,∵AB∥CD,∴△PCE∽△MAE,∴==,∴=,∴EF=AF﹣AE=AC﹣AC=AC,∴==.11.解:(1)由题意得:AM=t,∵PM⊥AB,∴∠PMA=90°,∵∠A=60°,∴∠APM=30°,∴PM=AM=t.∵∠C=90°,∴∠B=90°﹣∠A=30°,∴AB=2AC=4,BC=AC=2,∵MN=1,∴BN=AM﹣AM﹣1=3﹣t,∵QN⊥AB,∴QN=BN=(3﹣t);故答案为:tcm,(3﹣t)cm.(2)四边形MNQP有可能成为矩形,理由如下:由(1)得:QN=(3﹣t).由条件知,若四边形MNQP为矩形,则需PM=QN,即t=(3﹣t),∴t=.∴当t=s时,四边形MNQP为矩形;(3)由(2)知,当t=s时,四边形MNQP为矩形,此时PQ∥AB,∴△PQC∽△ABC.除此之外,当∠CPQ=∠B=30°时,△QPC∽△ABC,此时=tan30°=.∵=cos60°=,∴AP=2AM=2t.∴CP=2﹣2t.∵=cos30°=,∴BQ=(3﹣t).又∵BC=2,∴CQ=2 .∴.综上所述,当s或s时,以C,P,Q为顶点的三角形与△ABC相似.12.证明:(1)∵四边形ABCD是矩形,∴AD∥BC,∠A=∠BCD=∠ADC=90°,AD=BC=4,AB=CD=6,∴∠ADE+∠EDC=90°,∵DF⊥DE,∴∠EDC+∠CDF=90°,∴∠ADE=∠CDF,且∠A=∠DCF=90°,∴△DAE∽△DCF;(2)∵△DAE∽△DCF,∴,∴∴y=x+4;(3)∵四边形EBFD为轴对称图形,∴DE=BE,∵AD2+AE2=DE2,∴16+AE2=(6﹣AE)2,∴AE=,∴DE=BE=,∴cos∠AED==,故答案为:.13.(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠NAM=∠BMA,∵∠AMN=∠AMB,∴∠AMN=∠NAM,∴AN=MN,即△AMN是等腰三角形;(2)证明:∵四边形ABCD是矩形,∴AD∥BC,AD=BC=2,AB=CD=3,∴∠NAM=∠BMA,作NH⊥AM于H,如图所示:∵AN=MN,NH⊥AM,∴AH=AM,∵∠NHA=∠ABM=90°,∠NAM=∠BMA,∴△NAH∽△AMB,∴=,∴AN•BM=AH•AM=AM2,∴AM2=2BM•AN;(3)解:∵M为BC中点,∴BM=CM=BC=×2=1,由(2)得:AM2=2BM•AN,即:AM2=2AN,∵AM2=AB2+BM2=32+12=10,∴10=2AN,∴AN=5,∴DN=AN﹣AD=5﹣2=3,设DE=x,则CE=3﹣x,∵AN∥BC,∴△DNE∽△CME∴=,即=,解得:x=,即DE=,∴CE=DC﹣DE=3﹣=,∴ME===.14.解:(1)∵A(8,0)、C(0,6),∴OA=8,OC=6,∵四边形OABC是矩形,∴∠ABC=∠OAB=90°,BC=OA=8,AB=OC=6,∴==,故答案为:;(2)的值不发生变化,=,理由如下:∵∠OAB=∠BPQ=90°,∴∠AOB+∠BPQ=180°,∴A、B、P、Q四点共圆,∴∠PQB=∠PAB,∵∠ABC=∠BPQ=90°,∴△PBQ∽△BCA,∴==;(3)设BQ交AP于M,如图所示:在Rt△ABC中,由勾股定理得:AC===10,由折叠的性质得:BQ⊥AP,PM=AM,∴∠AMB=90°=∠ABC,∵∠BAM=∠CAB,∴△ABM∽△ACB,∴=,即=,解得:AM=3.6,∴PA=2AM=7.2,∴PC=AC﹣PA=10﹣7.2=2.8;故答案为:2.8.15.(1)证明:∵四边形OABC是矩形,A(4,0),B(4,3),∴OA=BC=4,AB=OC=3,∠AOC=90°,∴AC===5;(2)解:由题意得:BN=t,AP=t,∵=,==,∴=,∴PN∥AB,∴△CPN∽△CAB;(3)解:分两种情况:①当0<t<2时,延长NP交OA于D,如图1所示:由(2)得:PD∥AB,∴△APD∽△ACO,∴==,即==,解得:PD=t,AD=t,∴PN=3﹣t,DM=4﹣t﹣t=4﹣2t,∴△MPN的面积S=PN×DM=×(3﹣t)×(4﹣2t)=t2﹣t+6,即S=t2﹣t+6(0<t<2);②当2<t<4时,延长NP交OA于D,如图2所示:由(2)得:PD∥AB,∴△APD∽△ACO,∴==,即==,解得:PD=t,AD=t,∴PN=3﹣t,DM=t+﹣4t=2t﹣4,∴△MPN的面积S=PN×DM=×(3﹣t)×(2t﹣4)=﹣t2+t﹣6,即S=﹣t2+t﹣6(2<t<4);当S=,0<t<2时,则t2﹣t+6=,整理得:t2﹣6t+6=0,解得:t=3﹣,或t=3+(不合题意舍去),∴t=3﹣;当S=,2<t<4时,则﹣t2+t﹣6=,整理得:t2﹣6t+10=0,∵△=36﹣40<0,∴此方程无解;综上所述,当S=时,运动时间t的值为(3﹣)秒.16.解:(1)∵点E为CD中点,AB=AD=CD=2,∴DE=,∴AE===5,∵AB∥CD,∴△ABF∽△EDF,∴,∴AF=2EF,且AF+EF=5,∴AF=;(2)如图1,连接AC,∵四边形ABCD是正方形,∴AB=BC=CD=AD,BD=AB,AO⊥BD,AO=BO=CO=DO,∴AO=DO=BO=AB,∵tan∠AFB==2,∴OF=AO=AB,∴DF=OD﹣OF=AB,BF=OB+OF=AB,∴;(3)如图2,设AB=CD=AD=a,则BD=a,∵=x,∴DE=xa,∴S△ADE=×AD×DE=xa2,∵△ABF∽△EDF,∴=x,∴DF=x•BF,∴S△ABF=a2,∵GF=2BG,∴S2=S△ABG=S△ABF=,∵AB=CB,∠ABG=∠CBG,BG=BG,∴△ABG≌△CBG(SAS)∴S△ABG =S△CBG,∴S1=四边形AGCE的面积=a2﹣xa2﹣2×∴=﹣3x2+3x+4=﹣3(x﹣)2+∴当x=时,的最大值为.17.(1)证明:∵AB=AC,∴∠B=∠C,∵∠ADC为△ABD的外角,∴∠ADE+∠EDC=∠B+∠DAB,∵∠ADE=∠B,∴∠BAD=∠CDE,又∠B=∠C,∴△ABD∽△DCE,∴=,∴AB•CE=BD•CD;(2)解:设BD=x,AE=y,由(1)得,5×(5﹣y)=x×(6﹣x),整理得,y=x2﹣x+5=(x﹣3)2+,∴AE的最小值为;(3)解:作AF⊥BE于F,则四边形ADEF为矩形,∴EF=AD=3,AF=DE,∴BF=BE﹣EF=1,设CD=x,CE=y,则AF=DE=x+y,由勾股定理得,AD2+CD2=AC2,CE2+BE2=BC2,AF2+BF2=AB2,∵△ABC为等边三角形,∴AB=AC=BC,∴32+x2=AC2,y2+42=BC2,(x+y)2+12=AC2,∴x2﹣y2=7,y2+2xy=8,解得,x=,y=,∴DE=x+y=.18.(1)证明:∵AB=AC,∴∠ABC=∠ACB,∵∠APC=∠ABC+∠BAP,∠APC=∠APD+∠EPC,∠APD=∠ABC,∴∠BAP=∠EPC,∴△ABP∽△PCE,∵BC∥AD,∴△PCE∽△DAE,∴△ABP∽△DAE;(2)解:①∵△ABP∽△PCE,∴=,即=,∴y=﹣x2+x(0<x<6);②∵△ABP∽△DAE,∴=,即=,∴AD=,∵AD∥BC,∴,∵,∴,∴,即13x2+24x﹣100=0,∴x=2,(舍去)1∴.19.(1)解:在Rt△BCE中,当tan∠BEC=2,∴=2,即=2,解得,BE=2,由勾股定理得,CE===2,∵四边形ABCD为矩形,∴AB∥CD,∴∠ECH=∠BEC,∴tan∠ECH==2,即=2,∴EH=4,∴CH==10;(2)证明:∵∠FEG=∠FDH=90°,∠EFG=∠DFH,∴△EFG∽△DFH,∴=,∴DF•FG=HF•EF;(3)证明:∵△EFG∽△DFH,∴∠CGD=∠CHE,又∠GCD=∠HCE,∴△GCD∽△HCE,∴=,又∠GCD=∠HCE,∴△CDE∽△CGH,∴∠CDE=∠CGH.20.解:(1)AB=2,BC=1,AD=4,由勾股定理得,AC==,CD==,AE==2,CE==5,===,∴△ABC∽△EAC,∴四边形ABCE是“友好四边形”,≠,∴△ABC与△ACD不相似,∴四边形ABCD不是“友好四边形”,故答案为:四边形ABCE;(2)证明:根据旋转的性质得,∠A'CB'=∠ACB,∠CA'B'=∠CAB,∵AD∥A'B',∴∠CA'B'=∠D,∴∠CAB=∠D,又∠A'CB'=∠ACB,∴△ABC∽△DAC,∴四边形ABCD是“友好四边形”;(3)如图3,过点A作AM⊥BC于M,在Rt△ABM中,AM=AB•sin∠ABC=AB,∵△ABC的面积为6,∴BC×AB=6,∴BC×AB=24,∵四边形ABCD是被BD分割成的“友好四边形”,且AB≠BC,∴△ABD∽△DBC∴,∴BD2=AB×BC=24,∴BD==2.。
湖北省黄冈市2020年中考数学试题(解析版)
【答案】见解析
【解析】
【分析】
通过证明 即可得证.
【详解】证明:∵点 是 的中点,
.
在 中, ,
.
在 和 中,
,
.
【点睛】本题考查平行四边形的性质,全等三角形的判定与性质等内容,熟练运用平行四边形的性质及全等三角形的判定是解题的关键.
3.如果一个多边形的每一个外角都是36°,那么这个多边形的边数是( )
A.7B.8C.9D.10
【答案】D
【解析】
【分析】
根据多边形的外角的性质,边数等于360°除以每一个外角的度数.
【详解】∵一个多边形的每个外角都是36°,∴n=360°÷36°=10.
故选D.
【点睛】本题考查了多边形外角与边数的关系,利用外角求正多边形的边数的方法,熟练掌握多边形外角和公式是解决问题的关键.
7.若菱形的周长为16,高为2,则菱形两邻角的度数之比为()
A. B. C. D.
【答案】B
【解析】【ຫໍສະໝຸດ 析】如图,AH为菱形ABCD的高,AH=2,利用菱形的性质得到AB=4,利用正弦的定义得到∠B=30°,则∠C=150°,从而得到∠C:∠B的比值.
【详解】解:如图,AH为菱形ABCD的高,AH=2,
【解析】
【分析】
正确理解函数图象与实际问题的关系,题目中的脱销时库存量为0.
【详解】根据题意:一开始销售量与生产量持平,此时图象为平行于x轴的线段,
当下列猛增是库存随着时间的增加而减小,
时间t与库存量y之间函数关系的图象为先平,再逐渐减小,最后为0.
故选:D.
【点睛】本题要求能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.
中考数学第1-18题训练7
一、选择题: 1.计算3-1的结果是( ).A .31B .—31C .3D .—32.下列计算错误的是( ).A .(一2x)3=一2x 3B .一a 2·a =一a 3C .(一x)9÷(一x)3=x 6 D .(-2a 3)2=4a 6 3.下列二次根式中与2是同类二次根式的是( ). A .12 B .23 C .32 D .18 4、下列图形中,不是三棱柱的表面展开图的是( ).A v =2m 一2 D . v =m 2一1 C . v =3m 一3 D v =m 十1 6.一元二次方程x 2+x +2=0的根的情况是A .有两个不相等的正根B .有两个不相等的负根C .没有实数根D .有两个相等的实数根 A .160万人,33.5万人 B.144万人,33.5万人 C .144万人,34万人 D .144万人,33万人 8.下列命题中的假命题是( ).A .一组邻边相等的平行四边形是菱形B .一组邻边相等的矩形是正方形c 一组对边平行且相等的四边形是平行四边形 D .一组对边相等且有一个角是直角的四边形是矩形 9.某种长途电话的收费方式如下:接通电话的第一分钟收费a 元,之后的每一分钟收费b 元.如果某人打该长途电话被收费8元钱,则此人打长途电话的时间是( ).A .b a -8分钟B .b a +8分钟C .b b a +-8分钟D .bb a --8分钟10.如图,ΔACD 和ΔAEB 都是等腰直角三角形,∠CAD =∠EAB =900.四边形ABCD 是平行四边形,下列结论中错误的是( ).A .ΔACE 以点A 为旋转中心,逆时针方向旋转900后与ΔADB 重合 B .ΔACB 以点A 为旋转中心,顺时针方向旋转2700后与ΔDAC 重合 C .沿AE 所在直线折叠后,ΔACE 与ΔADE 量重合D .沿AD 所在直线折叠后,ΔADB 与ΔADE 重台11.如图,A 、B 是反比例函数y =x2的图象上的两点.AC 、BD 都垂直于x 轴,垂足分别为C 、D .AB 的延长线交x 轴于点E .若C 、D 的坐标分别为(1,0)、(4,0),则ΔBDE 的面积与ΔACE 的面积的比值是( ).A .21B .41 C.81 D .16112.为确保信息安全,信息需加密传翰,发送方将明文加密为密文传输给接收方,接收方收到密文后解密还原为明文.己知某种加密规则为:明文a 、b 对应的密文为2a -b 、2a +b.例如,明文1、2对应的密文是-3、4.当接收方收到密文是1、7时,解密得到的明文是( ).A .-1,1B .1,3C . 3,ID .1,l二、填空题: 13.某校九年级一班体育兴趣小组四位同学的身高(单位:cm)分别为:170、170、t66、174,则这四位同学的平均身高为________cm .14.在同一圆中,一条弧所对的圆心角和圆周角分别为(2x +70)0和900,则x =_______.15.关于x 的一元二次方程x 2+bx +c =0的两个实数根分别为1和2,则b =______;c =______.16.圆锥的体积公式是:圆锥的体积=31×底面积×高,则高为7.6cm ,底面半径为2.7cm 的圆锥的体积等于________cm .(结果保留2个有效数字,π取3.14) 17.在Rt ΔABC 中,∠C =900,BC :AC =3:4.则cosA =_______. 18.如图,已知等腰直角ΔABC 的直角边长与正方形MNPQ 的边长均为20厘米,AC 与MN 在同一直线上,开始时点A 与点N 重合.让ΔABC 以每秒2厘米的速度向左运动,最终点A 与点M 重合,则重叠部分面积y(厘米2)与时间t(秒)之间的函数关系式为____________. 三、本大题共2个小题.每小题5分,共10分. 19.计算: 2sin450+cos300·tan600—2)3(- (应有必要的运算步骤)20.计算:b a b -2十a 十b。
中考数学第1-18题训练(8)
1.下列各式计算正确的是( )A.224a a a += B.22(3)6x x = C.236()x x = D.222()x y x y +=+2.2007年我市初中毕业生约为3.94万人,把3.94万用科学记数表示且保留两个有效数字为( ) A.44.010⨯B.43.910⨯C.43910⨯D.4.0万3.李明为好友制作一个(图1)正方体礼品盒,六面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是( )4.下列说法正确的是( )A.要想了解NBA 各球队在2007赛季的比赛结果,应采用民意调查法 B.某工厂质检人员检测灯泡的使用寿命采用普查法C.要了解某小组各学生某次数学测试成绩采用抽样调查法D.了解我市中学生的身体素质状况采用抽样调查法5.如图2,O 是ABC △的外接圆,已知50ABO ∠=,则ACB ∠的大小为( ) A.40B.30C.45D.506.下列说法错误..的是( ) A.同时抛两枚普通正方体骰子,点数都是4的概率为13B.不可能事件发生机会为0C.买一张彩票会中奖是可能事件 D.一件事发生机会为0.1%,这件事就有可能发生 7.一元二次方程2210x x --=的根的情况为( ) A.有两个相等的实数根B.有两个不相等的实数根 C.只有一个实数根D.没有实数根8.函数(0)y kx k k =+≠在直角坐标系中的图象可能是( )9.巴人广场中心标志性建筑处有高低不同的各种喷泉,其中一支高度为1米的喷水管最大高度为3米,此时喷水水平距离为12米,在如图4所示的坐标系中,这支喷泉的函数关系式是( )A.32y x ⎛⎫=--+ ⎪⎝⎭ B.312y x ⎛⎫=-+ ⎪⎝⎭ C.832y x ⎛⎫=--+ ⎪⎝⎭ D.832y x ⎛⎫=-++ ⎪⎝⎭10.“五一”黄金周,巴中人民商场“女装部”推出“全部服装八折”,男装部推出“全装八五折”的优惠活动,某顾客在女装部购买了原价x 元,男装部购买了原价为y 元服装各一套,优惠前需付700元,而他实际付款580元,则可列方程组为( )A.5800.80.85700x y x y +=⎧⎨+=⎩ B.7000.850.8580x y x y +=⎧⎨+=⎩ C.7000.80.85700580x y x y +=⎧⎨+=-⎩D.7000.80.85580x y x y +=⎧⎨+=⎩二、填空题 11.函数y =的自变量x 的取值范围为 .12.如图5,点P 在双曲线(0)ky k x =≠上,点(12)P ',与点P 关于y 轴对称,则此双曲线的解析式为. 13.分解因式:3a a -=.14.三角形一边长为10,另两边长是方程214480x x -+=的两实根,则这是一个三角形.15.某射击运动员五次射击成绩分别为9环,6环,7环,8环,10环,则他这五次成绩的平均数为 ,方差为 .三、解答题(每小题6分,共18分)16.计算:3012007)6tan30)3-⎛⎫+- ⎪⎝⎭17.计算:22111211x x x x ⎛⎫-+÷ ⎪-+-⎝⎭18.解不等式组12(1)01132x x x --<⎧⎪⎨-+<⎪⎩ ① ②祝 成预 图1A. B. C. D. 图2图3 A. B. C. D. yx O 图42),图5。
2020年江西省中考数学试卷(解析版)
(3)若 PC 交圆 O 于点 D ,求第(2)问中对应的阴影部分的周长(用含 r 的式子表示).
22. 已知抛物线 y ax2 bx c( a ,b ,c 是常数,a 0 )的自变量 x 与函数值 y 的部分对应值如下表:
x
…
-2
-1
0
1
2
…
y
…
m
0
-3
n
-3
…
(1)根据以上信息,可知抛物线开口向
;
(2)请在图 2 中作出两次测试的数学成绩折线图,并对两次成绩作出对比分析(用一句话概述);
(3)某同学第二次测试数学成绩为 78 分,这次测试中,分数高于 78 分的至少有
人,至多有
人;
(4)请估计复学一个月后该校 800 名八年级学生数学成绩优秀(80 分及以上)的人数.
20. 如图 1 是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图 2 是其侧面结构示意
江西省 2020 年中等学校招生考试
数学试题卷
一、选择题:本大题共 6 个小题,每小题 3 分,共 18 分.在每小题给出的四个选项中,只有一项
是符合题目要求的.
1.-3 的倒数是( )
A.3
B.-3
C. 1 3
1
D.
3
2.下列计算正确的是( )
A. a3 a2 a5
B. a3 a2 a
C. a3 a2 a6
,对称轴为
;
6
(2)求抛物线的表达式及 m, n 的值;
(3)请在图 1 中画出所求的抛物线,设点 P 为抛物线上的动点, OP 的中点为 P ' ,描出相应的点 P ' ,再
(完整版)重庆中考数学第18题专题训练(含答案),推荐文档
重庆中考18题专题训练1.含有同种果蔬但浓度不同的A 、B 两种饮料,A 种饮料重40千克,B 种饮料重60千克现从这两种饮料中各倒出一部分,且倒出部分的重量相同,再将每种饮料所倒出的部分与另一种饮料余下的部分混合.如果混合后的两种饮料所含的果蔬浓度相同,那么从每种饮料中倒出的相同的重量是_____________千克【分析】典型的浓度配比问题:溶液的浓度=溶质的质量/全部溶液质量.在本题中两种果蔬的浓度不知道,但是因为倒出的和倒入果蔬质量相同,所以原A 种饮料混合的总质量仍然是后40千克,原B 种饮料混合的总质量仍然是后60千克.可设A 种饮料的浓度为a ,B 种饮料的浓度为b ,各自倒出和倒入的果蔬质量相同可设为x 千克,由于混合后的浓度相同,由题意可得:()()40604060x a xb x b xa-+-+=去分母,()()604060406040x a xb x b xa -+=-+去括号得:2400606024004040a xa xb b bx xa-+=-+移项得:6060404024002400xa xb bx xa b a-++-=-合并得:()()1002400b a x b a -=-所以:24x =2. 从两块分别重10千克和15千克且含铜的百分比不同的合金上各切下重量相等的一块,再把切下的每一块与另一块切后剩余的部分合在一起,熔炼后两者含铜的百分比恰好相等,则切下的一块重量是 。
解:设切下的一块重量是x 千克,设10千克和15千克的合金的含铜的百分比为a ,b ,= ,整理得(b-a )x=6(b-a ),x=63.设有含铜百分率不同的两块合金,甲重40公斤,乙重60公斤.从这两块合金上切下重量相等的一块,并把所切下的每块与另一种剩余的合金加在一起,熔炼后两者的含铜百分率相等,则切下的合金重( )A .12公斤B .15公斤C .18公斤D .24公斤考点:一元一次方程的应用.分析:设含铜量甲为a 乙为b ,切下重量为x .根据设有含铜百分率不同的两块合金,甲重40公斤,乙重60公斤,熔炼后两者的含铜百分率相等,列方程求解.解:设含铜量甲为a ,乙为b ,切下重量为x .由题意,有=,解得x=24.切下的合金重24公斤.故选D .4. 一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用,已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车每次运货物的吨数之比为1:3;若甲、丙两车合运相同次数运完这批货物时,甲车共运了120吨,若乙、丙两车合运相同次数运完这批货物时,乙车共运了180吨.则这批货物共 吨.解:设货物总吨数为x 吨.甲每次运a 吨,乙每次运3a 吨,丙每次运b 吨., =, 解得x=240.故答案为:240.,由①得,则有:,两式相除得:,商品的销售利润率变成了 .(2)某商品现在的进价便宜20% ,而售价未变,则其利润比原来增加了30个百分点,那么原来的利润率为 。
上海中考数学第18题专项训练
上海中考数学第18题专项训练(含答案)1.在Rt ABC △中,903BAC AB M ∠==°,,为边BC 上的点,联结AM (如图3所示).如果将ABM △沿直线AM 翻折后,点B 恰好落在边AC 的中点处,那么点M 到AC 的距离是 2 .2.已知正方形ABCD 中,点E 在边DC 上,DE = 2,EC = 1(如图所示)把线段AE 绕点A 旋转,使点E 落在直线BC 上的点F 处,则F 、C 两 点的距离为_ __1,5_____.△ABC 中,已知∠C =90°,∠B =50°,点D 在边BC 上,BD =2CD .把△ABC 绕着点D 逆时针旋转m (0<m <180)度后,如果点B 恰好落在初始Rt △ABC 的边上,那么m =___80,120______.4.如图所示,Rt ABC V 中,90C ∠=︒,1BC =,30A ∠=︒, 点D 为边AC 上的一动点,将ABD V 沿直线BD 翻折,点A 落 在点E 处,如果DE AD ⊥时,那么DE图C B D5.如图4,⊙A 、⊙B 的圆心A 、B 都在直线L 上,⊙A 的半径为1cm ,⊙B 的半径为2cm ,圆心距AB=6cm. 现⊙A 沿直线L 以每秒1cm 的速度 向右移动,设运动时间为t秒,写出两圆相交时,t 的取值范围: 3<t<5或7<t<9 .6.在Rt △ABC 中,∠C=90º ,BC =4 ,AC=3,将△ABC 绕着点B 旋转后点A 落在直线BC 上的点A ',点C 落在点C '处,那么A A '7. 已知平行四边形ABCD 中,点E 是BC 的中点,在直线BA 上截取2BF AF =,EF 交BD 于点G ,则GBGD= 2/5或2、3 .8.如图,在ABC ∆中,∠ACB=︒90,AC=4,BC=3,将ABC ∆绕点C 顺时针旋转至C B A 11∆的位置,其中B 1C ⊥AB,B 1C 、A 1B 1交AB 于M 、N 两点,则线段MN 的长为 4、5 .B9.如图2,在△ABC 中,AD 是BC 上的中线,BC=4,∠ADC=30°,把△ADC 沿AD 所在直线翻折后点C 落在点C ′ 的位置,那么点D 到直线BC ′ 的距离是 1 .10.如图,半径为1且相外切的两个等圆都内切于半径为3的圆,那么图中阴影部分的周长为 7π/3 .11.如图,在△ABC 中,AB = AC ,BD 、CE 分别是边AC 、AB 上的中线,且BD ⊥CE ,那么tan ∠ABC =_____3______.12.已知在△AOB 中,∠B =90°,AB=OB ,点O 的坐标为(0,0),点A 的坐标为(0,4),点B 在第一象限内,将这个三角形绕原点O 逆时针旋转75°后,那么旋转后点B 的坐标为 ()6,2- .13.在△ABC 中,AB=AC ,∠A=80°,将△ABC 绕着点B 旋转,使点A 落在直线BC 上,点C 落在点'C ,则∠'BCC = 65,25 .C /BDCA图2ABCDEABC14.如图,已知在直角三角形ABC中,∠C=90°,AB=5,BC=3,将ABC∆绕着点B顺时针旋转,使点C落在边AB上的点C′处,点A落在点A′处,则AA′的长为15.如图,将矩形纸片ABCD折叠,B、C两点恰好重合落在AD边上点P处,已知︒MPN,PM=3,PN=4,,那么矩形纸片ABCD的面积为 144/5 .∠90=16.在Rt△ABC中,∠C=90°,AB=2,将这个三角形绕点C旋转60°后,AB的中点D落在点D′处,那么DD′的长为 1 .17.在△ABC中,AB=AC=5,若将△ABC沿直线BD翻折,使点C落在直线AC上的点C′处,AC′=3,则BC18. 在Rt △ABC 中,∠A<∠B,CM 是斜边AB 上的中线,将△ACM 沿直线CM 翻折,点A 落在D 处,若CD 恰好与AB 垂直,则∠A = 30 度。
上海中考数学18题训练 图形的平移、翻折、旋转及点的运动(原卷版)
上海中考数学18题训练图形的平移、翻折、旋转及点的运动图形的平移、翻折、旋转及点的运动是初中数学图形的几种基本运动形式,是初中数学的重要内容之一.这类问题常常要运用“动”的思路去观察、分析、推理、猜想、探究相关图形的位置变化情况或图形的有关性质,对提高数学思维能力与发展空间观念有重要作用,也是近年的中考试题的一个热点.图形的平移、翻折、旋转有一个重要性质:任何图形经过平移、翻折、旋转后,除图形的位置发生变化外,图形的形状、大小保持不变.这个性质在解决图形运动的有关问题中常用.【例1】(2019•上海)如图,在正方形ABCD中,E是边AD的中点.将△ABE沿直线BE翻折,点A落在【例2】(2020•静安区一模)如图,有一菱形纸片ABCD,∠A=60°,将该菱形纸片折叠,使点A恰好与【例3】(2020•闵行区一模)如图,在等腰△ABC中,AB=AC=4,BC=6,点D在底边BC上,且∠DAC1.(2020•青浦区一模)已知,在矩形纸片ABCD中,AB=5cm,点E、F分别是边AB、CD的中点,折叠矩形纸片ABCD,折痕BM交AD边于点M,在折叠的过程中,如果点A恰好落在线段EF上,那么边2.(2020•杨浦区一模)在Rt△ABC中,∠A=90°,AC=4,AB=a,将△ABC沿着斜边BC翻折,点A 落在点A1处,点D、E分别为边AC、BC的中点,联结DE并延长交A1B所在直线于点F,联结A1E,3.(2020•崇明区一模)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8,D是AC的中点,点E在边4.(2020•闵行区一模)已知正方形ABCD的边长为2,如果将线段BD绕着点B旋转后,点D落在BC的5.(2020•徐汇区一模)如图,在矩形ABCD中,AB=3,AD=4,将矩形ABCD绕着点B顺时针旋转后得到矩形A'BC'D',点A的对应点A'在对角线AC上,点C、D分别与点C'、D'对应,A′D'与边BC交于点6.(2020•普陀区一模)如图,在Rt△ABC中,∠C=90°,AC=5,sin B=513,点P为边BC上一点,PC=3,将△ABC绕点P旋转得到△A'B'C'(点A、B、C分别与点A'、B'、C'对应),使B'C'∥AB,边A'C'7.(2020•奉贤区一模)如图,已知矩形ABCD(AB>BC),将矩形ABCD绕点B顺时针旋转90°,点A、8.(2020•嘉定区一模)在△ABC中,∠ACB=90°,AB=10,cos A=35(如图),把△ABC绕着点C按照顺时针的方向旋转,将A、B的对应点分别记为点A'、B'.如果A'B'恰好经过点A,那么点A与点A'的距9.(2020•金山区一模)如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=4,点P在边BC上,联结AP,将△ABP绕着点A旋转,使得点P与边AC的中点M重合,点B的对应点是点B′,则BB′的长等10.(2020•松江区一模)如图,矩形ABCD中,AD=1,AB=k,将矩形ABCD绕着点B顺时针旋转90°得到矩形A′BC′D′,联结AD′,分别交边CD,A′B于E、F,如果AE=√2D′F,那么k=.11.(2019•浦东新区二模)如图,已知在△ABC中,AB=3,AC=2,∠A=45o,将这个三角形绕点B旋转,12.(2019•松江区二模)如图,已知Rt△ABC中,∠ACB=90°,AC=8,BC=6.将△ABC绕点B旋转13.(2019•长宁区二模)如图,在△ABC中,AB=AC=5,BC=8,将△ABC绕着点C旋转,点A、B的14.(2019•奉贤区二模)如图,矩形ABCD,AD=a,将矩形ABCD绕着顶点B顺时针旋转,得到矩形EBGF,顶点A、D、C分别与点E、F、G对应(点D与点F不重合).如果点D、E、F在同一条直线上,那么15.(2019•青浦区二模)如图,在矩形ABCD中,AB=3,E为AD的中点,F为CD上一点,且DF=2CF,16.(2019•虹口区二模)如图,在矩形ABCD中,AB=6,点E在边AD上且AE=4,点F是边BC上的一个动点,将四边形ABFE沿EF翻折,A、B的对应点A1、B1与点C在同一直线上,A1B1与边AD交于17.(2019•杨浦区二模)如图,点M、N分别在∠AOB的边OA、OB上,将∠AOB沿直线MN翻折,设点。
重庆中考数学18题专题训练
题型一 方程问题1、某步行街摆放有若干盆甲、乙、丙三种造型的盆景。
甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花和12朵黄花搭配而成,丙咱盆景由10朵红花、18朵黄花和25朵紫花搭配而成。
这些盆景一共用了2900朵红花,3750朵紫花,由黄花一共用了 朵。
2、已知AB 是一段只有3米宽的窄道路,由于一辆小汽车与一辆大卡车在AB 段相遇,必须倒车才能继续通行。
如果小汽车在AB 段正常行驶需10分钟,大卡车在AB 段正常行驶需20分钟,小汽车在AB 段倒车的速度是它正常行驶速度的51,大卡车在AB 段倒车的速度是它正常行驶速度的81,小汽车需倒车的路程是大卡车需倒车的路程的4倍。
问两车都通过AB 这段狭窄路面的最短时间是 分钟。
3、甲、乙、丙三人拿出同样多的钱,合伙订购同种规格的若干件商品,商品买来后,甲、乙分别比丙多拿了11件商品,最后结算时,甲付给丙14元,那么,乙应付给丙 元。
4、山脚下有一个池塘,山泉以固定的流量向池塘里流淌,现在池塘中有一定的水,若一台A 型抽水机1小时刚好抽完,若两台A 型抽水机20分钟刚好抽完,若三台A 型抽水机同时抽 分钟可以抽完。
5、甲、乙两厂生产同一种产品,都计划把全年的产品销往重庆,这样两厂的产品就能占有重庆市场同类产品的43。
然而实际情况并不理想,甲厂仅有21的产品、乙厂仅有31的产品销到了重庆,两厂的产品仅占了重庆市场同类产品的31。
则甲厂该产品的年产量与乙厂该产品的年产量的比为 。
5、我市某县城为鼓励居民节约用水,对自来水用户按分段计费方式收取水费:若每月用水不超过7立方米,则按每立方米1元收费;若每月用水超过7立方米,则超过部分按每立方米2元收费,如果某居民户今年5月缴纳了17元水费,那么这户居民今年5月的用水量为____________立方米。
6、采石场工人爆破时,为了确保安全,点燃炸药导火线后要在炸药爆破前转移到400米以外的安全区域,导火索燃烧速度是1cm/秒,人离开的速度是5米/秒,至少要导火索的长度是_____________cm 。
2020年江西省中考数学试卷(附答案解析)
2020年江西省中考数学试卷一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.(3分)-3的倒数是()A.3B.-3C.-D.2.(3分)下列计算正确的是()A.a3+a2=a5B.a3-a2=a C.a3•a2=a6D.a3÷a2=a3.(3分)教育部近日发布了2019年全国教育经费执行情况统计快报.经初步统计,2019年全国教育经费总投入为50175亿元,比上年增长8.74%.将50175亿用科学记数法表示为()A.5.0175×1011B.5.0175×1012C.0.50175×1013D.0.50175×10144.(3分)如图,∠1=∠2=65°,∠3=35°,则下列结论错误的是()A.AB∥CD B.∠B=30°C.∠C+∠2=∠EFC D.CG>FG5.(3分)如图所示,正方体的展开图为()A.B.C.D.6.(3分)在平面直角坐标系中,点O为坐标原点,抛物线y=x2-2x-3与y轴交于点A,与x轴正半轴交于点B,连接AB,将Rt△OAB向右上方平移,得到Rt△O'A'B',且点O',A'落在抛物线的对称轴上,点B'落在抛物线上,则直线A'B'的表达式为()A.y=x B.y=x+1C.y=x+D.y=x+2二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)计算:(a-1)2=.8.(3分)若关于x的一元二次方程x2-kx-2=0的一个根为x=1,则这个一元二次方程的另一个根为.9.(3分)公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10.在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位.根据符号记数的方法,如图符号表示一个两位数,则这个两位数是.10.(3分)祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献.胡老师对圆周率的小数点后100位数字进行了如下统计:数字0123456789频数881211108981214那么,圆周率的小数点后100位数字的众数为.11.(3分)如图,AC平分∠DCB,CB=CD,DA的延长线交BC于点E,若∠EAC=49°,则∠BAE的度数为.12.(3分)矩形纸片ABCD,长AD=8cm,宽AB=4cm,折叠纸片,使折痕经过点B,交AD边于点E,点A落在点A'处,展平后得到折痕BE,同时得到线段BA',EA',不再添加其它线段.当图中存在30°角时,AE的长为厘米.三、(本大题共5小题,每小题6分,共30分)13.(6分)(1)计算:(1-)0-|-2|+()-2;(2)解不等式组:14.(6分)先化简,再求值:(-)÷,其中x=.15.(6分)某校合唱团为了开展线上“百人合唱一首歌”的“云演出”活动,需招收新成员.小贤、小晴、小艺、小志四名同学报名参加了应聘活动,其中小贤、小艺来自七年级,小志、小晴来自八年级.现对这四名同学采取随机抽取的方式进行线上面试.(1)若随机抽取一名同学,恰好抽到小艺同学的概率为;(2)若随机抽取两名同学,请用列表法或树状图法求两名同学均来自八年级的概率.16.(6分)如图,在正方形网格中,△ABC的顶点在格点上.请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图1中,作△ABC关于点O对称的△A'B'C';(2)在图2中,作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB'C'.17.(6分)放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.四、(本大题共3小题,每小题8分,共24分)18.(8分)如图,Rt△ABC中,∠ACB=90°,顶点A,B都在反比例函数y=(x >0)的图象上,直线AC⊥x轴,垂足为D,连结OA,OC,并延长OC交AB于点E,当AB=2OA时,点E恰为AB的中点,若∠AOD=45°,OA=2.(1)求反比例函数的解析式;(2)求∠EOD的度数.19.(8分)为积极响应教育部“停课不停学”的号召,某中学组织本校优秀教师开展线上教学,经过近三个月的线上授课后,在五月初复学.该校为了解学生不同阶段学习效果,决定随机抽取八年级部分学生进行两次跟踪测评,第一次是复学初对线上教学质量测评,第二次是复学一个月后教学质量测评.根据第一次测试的数学成绩制成频数分布直方图(图1).复学一个月后,根据第二次测试的数学成绩得到如下统计表:成绩30≤x<4040≤x<5050≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100人数133815m6(1)m=;(2)请在图2中作出两次测试的数学成绩折线图,并对两次成绩作出对比分析(用一句话概述);(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有人,至多有人;(4)请估计复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数.20.(8分)如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图.量得托板长AB=120mm,支撑板长CD=80mm,底座长DE=90mm.托板AB固定在支撑板顶端点C处,且CB=40mm,托板AB可绕点C转动,支撑板CD可绕点D转动.(结果保留小数点后一位)(1)若∠DCB=80°,∠CDE=60°,求点A到直线DE的距离;(2)为了观看舒适,在(1)的情况下,把AB绕点C逆时针旋转10°后,再将CD绕点D顺时针旋转,使点B落在直线DE上即可,求CD旋转的角度.(参考数据:sin40°≈0.643,cos40°≈0.766,tan40°≈0.839,sin26.6°≈0.448,cos26.6°≈0.894,tan26.6°≈0.500,≈1.732)五、(本大题共2小题,每小题9分,共18分)21.(9分)已知∠MPN的两边分别与⊙O相切于点A,B,⊙O的半径为r.(1)如图1,点C在点A,B之间的优弧上,∠MPN=80°,求∠ACB的度数;(2)如图2,点C在圆上运动,当PC最大时,要使四边形APBC为菱形,∠APB的度数应为多少?请说明理由;(3)若PC交⊙O于点D,求第(2)问中对应的阴影部分的周长(用含r的式子表示).22.(9分)已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y 的部分对应值如下表:x…-2-1012…y…m0-3n-3…)根据以上信息,可知抛物线开口向,对称轴为;(2)求抛物线的表达式及m,n的值;(3)请在图1中画出所求的抛物线.设点P为抛物线上的动点,OP的中点为P',描出相应的点P',再把相应的点P'用平滑的曲线连接起来,猜想该曲线是哪种曲线?(4)设直线y=m(m>-2)与抛物线及(3)中的点P'所在曲线都有两个交点,交点从左到右依次为A1,A2,A3,A4,请根据图象直接写出线段A1A2,A3A4之间的数量关系.六、(本大题共12分)23.(12分)某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积S1,S2,S3之间的关系问题”进行了以下探究:类比探究(1)如图2,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为斜边向外侧作Rt△ABD,Rt△ACE,Rt△BCF,若∠1=∠2=∠3,则面积S1,S2,S3之间的关系式为;推广验证(2)如图3,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为边向外侧作任意△ABD,△ACE,△BCF,满足∠1=∠2=∠3,∠D=∠E=∠F,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;拓展应用(3)如图4,在五边形ABCDE中,∠A=∠E=∠C=105°,∠ABC=90°,AB=2,DE=2,点P在AE上,∠ABP=30°,PE=,求五边形ABCDE的面积.【试题答案】一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.C【解答】解:-3的倒数是-.2.D【解答】解:A、a2与a3不是同类项,不能合并,故本选项错误;B、a3与a2不是同类项,不能合并,故本选项错误;C、应为a3•a2=a5,故本选项错误;D、a3÷a2=a,正确.3.B【解答】解:50175亿=5017500000000=5.0175×1012.4.C【解答】解:∵∠1=∠2=65°,∴AB∥CD,故A选项正确,又∵∠3=35°,∴∠C=65°-35°=30°,∴∠B=∠C=30°,故B选项正确,∵∠EFC是△CGF的外角,∴∠EFC=∠C+∠3,故C选项错误,∵∠3>∠C,∴CG>FG,故D选项正确.5.A【解答】解:根据“相间、Z端是对面”可得选项B不符合题意;再根据“上面∧”符号开口,可以判断选项A符合题意;选项C、D不符合题意.6.B【解答】解:如图,∵抛物线y=x2-2x-3与y轴交于点A,与x轴正半轴交于点B,令y=0,解得x=-1或3,令x=0,求得y=-3,∴B(3,0),A(0,-3),∵抛物线y=x2-2x-3的对称轴为直线x=-=1,∴A′的横坐标为1,设A′(1,n),则B′(4,n+3),∵点B'落在抛物线上,∴n+3=16-8-3,解得n=2,∴A′(1,2),B′(4,5),设直线A'B'的表达式为y=kx+b,∴,解得∴直线A'B'的表达式为y=x+1.二、填空题(本大题共6小题,每小题3分,共18分)7.a2-2a+1【解答】解:(a-1)2=a2-2a+1.8.-2【解答】解:∵a=1,b=-k,c=-2,∴x1•x2==-2.∵关于x的一元二次方程x2-kx-2=0的一个根为x=1,∴另一个根为-2÷1=-2.9.25【解答】解:由题意可得,表示25.10.9【解答】解:圆周率的小数点后100位数字的众数为9。
重庆中考数学第18题专题训练(含答案)
重庆中考18题专题训练 1.含有同种果蔬但浓度不同的A 、B 两种饮料,A 种饮料重40千克,B 种饮料重60千克现从这两种饮料中各倒出一部分,且倒出部分的重量相同,再将每种饮料所倒出的部分与另一种饮料余下的部分混合.如果混合后的两种饮料所含的果蔬浓度相同,那么从每种饮料中倒出的相同的重量是_____________千克【分析】典型的浓度配比问题:溶液的浓度=溶质的质量/全部溶液质量.在本题中两种果蔬的浓度不知道,但是因为倒出的和倒入果蔬质量相同,所以原A 种饮料混合的总质量仍然是后40千克,原B 种饮料混合的总质量仍然是后60千克.可设A 种饮料的浓度为a ,B 种饮料的浓度为b ,各自倒出和倒入的果蔬质量相同可设为x 千克,由于混合后的浓度相同,由题意可得:()()40604060x a xb x b xa -+-+= 去分母()()604060406040x a xb x b xa -+=-+,去括号得:2400606024004040a xa xb b bx xa -+=-+移项得:6060404024002400xa xb bx xa b a -++-=-合并得:()()1002400b a x b a -=-所以:24x =2. 从两块分别重10千克和15千克且含铜的百分比不同的合金上各切下重量相等的一块,再把切下的每一块与另一块切后剩余的部分合在一起,熔炼后两者含铜的百分比恰好相等,则切下的一块重量是 。
解:设切下的一块重量是x 千克,设10千克和15千克的合金的含铜的百分比为a ,b ,= ,整理得(b-a )x=6(b-a ),x=63.设有含铜百分率不同的两块合金,甲重40公斤,乙重60公斤.从这两块合金上切下重量相等的一块,并把所切下的每块与另一种剩余的合金加在一起,熔炼后两者的含铜百分率相等,则切下的合金重( )A .12公斤B .15公斤C .18公斤D .24公斤考点:一元一次方程的应用.分析:设含铜量甲为a 乙为b ,切下重量为x .根据设有含铜百分率不同的两块合金,甲重40公斤,乙重60公斤,熔炼后两者的含铜百分率相等,列方程求解.解:设含铜量甲为a ,乙为b ,切下重量为x .由题意,有=,解得x=24.切下的合金重24公斤.故选D .4. 一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用,已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车每次运货物的吨数之比为1:3;若甲、丙两车合运相同次数运完这批货物时,甲车共运了120吨,若乙、丙两车合运相同次数运完这批货物时,乙车共运了180吨.则这批货物共 吨.解:设货物总吨数为x 吨.甲每次运a 吨,乙每次运3a 吨,丙每次运b 吨. , =, 解得x=240.故答案为:240.5.某步行街摆放有若干盆甲、乙、丙三种造型的盆景.甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花和12朵黄花搭配而成,丙种盆景由10朵红花、18朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫花,则黄花一共用了朵.解:设步行街摆放有甲、乙、丙三种造型的盆景分别有x盆、y盆、z盆.由题意,有,由①得,3x+2y+2z=580③,由②得,x+z=150④,把④代入③,得x+2y=280,∴2y=280-x⑤,由④得z=150-x⑥.∴4x+2y+3z=4x+(280-x)+3(150-x)=730,∴黄花一共用了:24x+12y+18z=6(4x+2y+3z)=6×730=4380.故黄花一共用了4380朵.5.一个水池装一个进水管和三个同样的出水管,先打开进水管,等水池存一些水后再打开出水管(进水管不关闭).若同时打开2个出水管,那么8分钟后水池空;如果同时打开3个出水管,则5分钟后水池空.那么出水管比进水管晚开分钟.考点:三元一次方程组的应用.解:设出水管比进水管晚开x分钟,进水管的速度为y,出水管的速度为z,则有:,两式相除得:,解得:x=40,即出水管比进水管晚开40分钟.故答案为:40.6.(1)一种商品原来的销售利润率是47%.现在由于进价提高了5%,而售价没变,所以该商品的销售利润率变成了.(2)某商品现在的进价便宜20%,而售价未变,则其利润比原来增加了30个百分点,那么原来的利润率为。
中考数学填空题18题不定方程应用
第三部分 不定方程(组)的应用1.中秋节来临,为促进销售,某面包店将、、三种月饼以甲、乙两种方式进行搭 配销售,两种方式均配成本价为元的包装箱.甲方式每箱含月饼千克,月饼千克, 月饼千克,乙方式每箱含月饼千克,月饼千克,月饼千克.已知每千克月 饼比每千克月饼成本价高元,甲种方式(含包装箱)每箱成本为元,现甲、乙两 种方式分别在成本价(含包装箱)基础上提价%和%进行销售,两种方式销售完毕后 利润率达到%,则甲、乙两种方式的销量之比为 .2.某服装店老板经营销售A 、B 两种款式的服装,其中每件A 种款式的利润率为50%,每件B 种款式的利润率为20%.当售出的A 种款式的件数比B 种款式的件数少70%时,这个老板得到的总利润率为25%;当售出的A 种款式的件数比B 种款式的件数多50%时,这个老板得到的总利润率为 .(利润率=利润÷成本)3. 小明暑假外出旅行时,准备给朋友们带些土特产作为礼物.预先了解到当地最富盛名的A 、B 两种特产的价格之和为140元,小明计划购买B 特产的数量比A 特产的数量多5盒,但一共不超过60盒.小明在土特产商店发现A 正打九折销售,而B 的价格提高了10%,小明决定将A 、B 特产的购买数量对调,这样,实际花费只比原计划多20元.已知价格和购买数量均为整数,则小明购买土特产实际花费为 元.4.新学年开学之前,我校某校区购进一批新的课桌,有若干个工人组装这批课桌,每个工人的组装速度相同. 若这些工人同时工作,则需要8小时组装完成. 现改变组装方式,开始一个人干,以后每隔(整数)小时增加一个人干,每个参加组装的工人都一直干到任务结束,且最后增加的一个人组装的时间是第一个人组装时间的,按改变后的组装方式,整个组装过程需要___________小时.5.小明家阳台的地面是一个矩形,工人师傅要给地面铺上地砖,已知阳台的长和宽都大于60cm ,且长是宽的2倍.小明要求工人师傅只能使用完整的60×60的方砖(即边长为60cm 的正方形),但无论怎么铺设,被覆盖的面积都不超过阳台总面积的40%,则小明家阳台的地面至少为 .平方米.6.某公司有A ,B ,C 三种货车若干辆,A ,B ,C 每辆货车的日运货量之比为1:2:3,为应对双11物流高峰,该公司重新调配了这三种货车的数量.调配后,B 货车数量增加一倍, A ,C 货车数量各减少50%,三种货车日运货总量增加25%.按调配后的运力,三种货车在本地运完一堆货物需要t 天,但A ,C 两种货车运了若干天后全部被派往外地执行其它任务,剩下的货物由B 货车运完,运输总时间比原计划多了4天,且B 货车运输时间刚好为A ,C 两种货车在本地运输时间的6倍,则B 货车共运了 天.A B C 5A 1B 1C 3A 3B 1C 1C A 5.255203530t 317.某工厂排出的污水全部注入存储量之比为8:7的A ,B 两个污水存储池内(每天排出的污水刚好注满A ,B 两个污水存储池).同时有两个污水净化速度之比为5:3的甲、乙两个污水处理池,两个污水处理池均有连接A ,B 两个污水存储池的管道.在污水处理过程中,当甲处理池净化A 污水池中的污水时,则乙处理池只能净化B 污水池中的污水;当甲处理池净化B 污水池中的污水时,乙处理池只能净化A 污水池中的污水,中途可交换(交换的时间忽略不计).为使两个污水处理池同时开工、同时结束,净化完A ,B 两个存储池的污水,那么甲污水处理池净化A ,B 两个污水存储池的污水的时间之比是 .8.初三所有班级中人数最少的有55人,最多的有63人,在最近一次体育测试中,某班男生的平均分比女生多了0.25分,小楠抱怨到:“我们女生就是15分的小倩拖了后腿,要是没有她,我们女生的平均分会比男生还多1分.”小西反驳说:“我们男生要是不算得了9分的小强,平均分也会再多1分.”班长小北听到他们的对话后说:“让我们一起帮助他们,如果小倩和小强的体育成绩都能提高到m 分,那么男生和女生的平均分就一样了.”请问:整数m = .9.一间手工作坊,分成了两块区域,第一块区域里摆了一张四方桌(四条腿)和若干圆凳 (三脚凳),第二块区域里摆了一张圆形桌(六条腿)和若干方凳(四脚凳).现有若干学生 来到作坊进行手工创作比赛,每人分别落座后,将多余的凳子撤出手工作坊,他们分别围坐 在方桌和圆桌旁开始今天的创作.此时,一位在场的学生发现整个手工作坊里人脚加桌脚加 凳脚共有38条(包括观察者本身).最后统计发现第一块区域的参赛学生平均每人完成了10 件作品,第二块区域的参赛学生平均每人完成了5件作品,那么所有参加本次比赛的学生平 均每人完成 件作品.10.由菜鸟网络打造的一个仓库有相同数量的工人和机器人,均为名(其中),平时 每天都只工作小时,每名机器人每小时加工包裹(分、拣、包装一体化)的数量是每名工 人每小时加工包裹数量的倍.随着“春节”临近,人工短缺,寄年货的包裹增多,公司决定 再增加名机器人,且将机器人每天工作时间延长至小时,并对每名机器人进行升级改 造,让现在每名机器人每小时加工包裹的数量在原有基础上增加个,结果现在所有机器人 每天加工包裹的数量是所有工人平时每天加工包裹数量的倍,则该仓库平时一天加工 个包裹.11.冬至节快到了,李老师和杨老师都准备给班级同学买饺子吃.到了超市两人均买了两款 饺子,A 款单价为35元/袋,B 款41元/袋.其中李老师购买A 款数量少于B 款数量,合计 花了700多元.杨老师购买的A ,B 两款的数量刚好与李老师互换,也花了700多元,巧合 的是所花费用的十位数字与个位数字刚好也和李老师所花费用的十位数字与个位数字互 换.则李老师购买A ,B 两款饺子共计 袋.12. 贴春联是我国过春节时的重要传统习俗,春联有长有短,有五字联,七字联,十二字联等.一副完整的春联由上下两联配一个四字横批组成,如一副五字联“人开致富路,猪拱发财门”,横批“恭喜发财”,共由14个字组成.寒假期间,学校书法社开展现场书写并赠送春联的公益活动,按计划,社员甲需书写五字春联,社员乙需书写七字春联,社员丙需书写十二字春联各若干副,且他们分别书写一副完整的五字,七字和十二字春联所需时间分别是10分钟,15分钟和20分钟,若按计划完成任务,甲与丙的时间之和不超过10小时,且是乙的两倍.实际开展活动时,甲帮丙写了1副横批,乙帮丙写了n 副横批,活动结束后,书法社统计员惊讶地发现,三人书写的字数一样多.则原计划甲书写春联的字数是 字. x 5x 82212x 613.初三某班共有60名同学,学号依次为1号,2号,,60号,现分成A,B,C三个小组,每组人数若干.若将B组的小俊(27号)调整到A组,将C组的小芸(43号)调整到B组,此时A,C两组同学学号的平均数都将比调整前增加0.5,B组同学学号的平均数将比调整前增加0.8;同时B组中的小蕾(37号)计算发现,她的学号数高于调整前B组同学学号的平均数,却低于调整后的平均数.请问调整前A组共有名同学.14.“众人拾柴火焰高,众人植树树成林”,为发扬中华民族爱树植树的好传统,我校21班50名同学与28名社区志愿者共同组织了义务植树活动.50名同学分成了甲,乙两组,28名社区志愿者分成了丙,丁两个组,甲,丙两组到A植树点植树,乙,丁两组到B植树点植树.植树结束后统计得知:甲组人均植树量比乙组多2棵;丙,丁两组人均植树量相同,且是乙组人均植树量的2.5倍;A,B两个植树点的人均植树量相同,且比甲组人均植树量高25%.已知人均植树量均为整数,则21班同学共植树棵.15.16.17.19.20.21.22.23.甲,乙,丙三人做一个抽牌游戏,三张纸牌上分别写有一个数字0,x,y(x,y均为正整数,且x<y).每人抽一张纸牌,纸牌上的数字就是这一轮的得分.经过若干轮后(至少四轮),甲的总得分为20,乙的总得分为10,丙的总得分为9.则甲抽到x的次数最多为____________.24.。
2020年中考备考数学专题复习--第1部分 第2章 第9节 一次不等式(组)及其应用
A
B
C
D
3.[2019 包头,14]已知不等式组2x-x+k9>>1-6x+1, 的解 集为 x>-1,则 k 的取值范围是_k_≤_-__2___.
2x+a>0, 4.[2018 呼和浩特,15]若不等式组21x>-a4+1 的解集 中的任意 x,都能使不等式 x-5>0 成立,则 a 的取值范围 是_a_≤_-__6___.
2 结合题意填空,完成本题的解答.
【自主解答】 (1)解不等式①,得________________; (2)解不等式②,得________________; (3)把不等式①和不等式②的解集在数轴上表示出来:
例 1 题图 (4)原不等式组的解集为________________; (5)原不等式组的整数解的个数为____________.
2 x+1 >x①,
解:
1-2x≥x+7②, 2
解①得 x>-2,解②得 x≤-1,
在数轴上表示出不等式组的解集如答图.
. 例 1 题答图 故不等式组的解集为-2<x≤-1, 不等式组的整数解为-1,∴整数解的个数为 1 个.
【巩固训练】 1.[2019 呼和浩特一模]已知实数 m 是一个不等于 2 的常
性质2
以)同一个正数,不等号 的方向不变
②__>_bc或ac③ >
b c
不等式两边都乘(或除
若a>b,c<0,则
性质3 以)同一个负数,不等号 ac④__<____ bc
的方向改变
或ac⑤
<
b c
一元一次不等式的解法及其解集表示 (2017.21)
1.解一元一次不等式的一般步骤:去分母、去括号、移 项、合并同类项、系数化为 1(注意不等号的方向是否改变).
最新重庆市中考数学18题专题训练
18.如图,正方形ABCD中,E为BC上一点,BE=2CE,连接DE,F为DE中点,以DF为直角边作等腰Rt△DFG,连接BG,将△DFG绕点D顺时针旋转得△DF′G′,点G′恰好落在BG的
2,则S△GF′G′= . 延长线上,连接F′G,若BG=5
18、如图,在正方形ABCD中,E为AB的中点,连接CE,过点D作DF^CE于点F,连接AF,过点E作EH^AF于点H交CD的延长线于点M,EM交AD于点G,连接FG并延长交AM于点N,已知HF=12,则D GMN的面积等于▲.
18.正方形ABCD中,AB=4,点E为AD边上一点,点F为AB边上一点且∠DEC=∠AEF=60°,将顶点为D点的∠NDM绕着D点进行旋转,∠NDM=60°,若射线DM交线段EF于点H,若射线DN交线段EC于K点,交线段CB于G点,当HG平分∠DHF时,四边形EHGK的面积是。
18、如图,正方形ABCD 中,AD=4,点E 是对角线AC 上一点,连接DE ,过点E 作EF ⊥ED ,交AB 于点F ,连接DF ,交AC 于点G ,将EFG ∆沿EF 翻折,得到EFM ∆,连接DM ,交EF 于点N ,若点F 是AB 的中点,则EMN ∆的周长是 。
中考数学第1-18题训练
一、选择题 (本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的)。
1、-3的绝对值等于 ( )A 、-3B 、3C 、31-D 、31 2、如图1所示,圆柱的俯视图是 ( )图1 A B C D3、今年1—5月份,深圳市累计完成地方一般预算收入216.58亿元,数据216.58亿精确到 ( )A 、百亿位B 、亿位C 、百万位D 、百分位 4、下列图形中,是轴对称图形的为 ( )5、下列不等式组的解集,在数轴上表示为如图所示的是 ( )A 、⎩⎨⎧≤+>-02x 01xB 、⎩⎨⎧<+≤-02x 01xC 、⎩⎨⎧<-≥+02x 01xD 、⎩⎨⎧≤->+02x 01x6、班主任为了解学生星期六、日在家的学习情况,家访了班内的六位学生,了解到他们在家的学习时间如下表所示。
那么这六位学生学习时间的众数与中位数分别是 ( )A 、4小时和4.5小时B 、4.5小时和4小时C 、4小时和3.5小时D 、3.5小时和4小时 7、函数)0k (ky ≠=的图象如图2所示,那么函数k kx y -=的图象大致是 ( )图2 A B C D 8、初三的几位同学拍了一张合影作留念,已知冲一张底片需要0.80元,洗一张相片需要0.35元。
在每位同学得到一张相片、共用一张底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的同学人数 ( )A 、至多6人B 、至少6人C 、至多5人D 、至少5人 9、如图,王华晚上由路灯A 下的B 处走到A 处时,测得影子CD 的长为1米,继续往前走3米到达E 处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A 的高度AB 等于 ( )A 、4.5米B 、6米C 、7.2米D 、8米 第1-18题训练(1) DABC(第5题图)要规范化10、如图,在□ABCD 中,AB :AD = 3:2,∠ADB=60°,那么cosA 的值等于 ( )A 、6325-B 、6325+ C 、635± D 、6323±二、填空题 (本小题共5小题,每小题3分,共15分)11、某商场在“五一”期间推出购物摸奖活动,摸奖箱内有除颜色以外完全相同的红色、白色乒乓球各两个。
河北省2020年中考数学试题(解析版)
【详解】在同一平面内,画已知直线的垂线,可以画无数条;
故选:D.
【点睛】此题主要考查在同一平面内,垂直于平行的特征,解题的关键是熟知垂直的定义.
2.墨迹覆盖了等式“ ( )”中的运算符号,则覆盖的是()
C. ①是因式分解,②是乘法运算D. ①是乘法运算,②是因式分解
【答案】C
【解析】
【分析】
根据因式分解的定义进行判断即可;
【详解】①左边多项式,右边整式乘积形式,属于因式分解;
②左边整式乘积,右边多项式,属于整式乘法;
故答案选C.
【点睛】本题主要考查了因式分解的定义理解,准确理解因式分解的定义是解题的关键.
A.+B.-C. ×D. ÷
【答案】D
【解析】
【分析】
直接利用同底数幂的除法运算法则计算得出答案.
【详解】∵ ( ),
,
∴覆盖的是:÷.
故选:D.
【点睛】本题主要考查了同底数幂的除法运算,正确掌握相关运算法则是解题关键.
3.对于① ,② ,从左到右的变形,表述正确的是()
A.都是因式分解B.都是乘法运算
A.1,4,5B.2,3,5C.3,4,5D.2,2,4
【答案】B
【解析】
【分析】
根据勾股定理, ,则小的两个正方形的面积等于大三角形的面积,再分别进行判断,即可得到面积最大的三角形.
【详解】解:根据题意,设三个正方形的边长分别为a、b、c,
由勾股定理,得 ,
A、∵1+4=5,则两直角边分别为:1和2,则面积为: ;
故选:C.
【点睛】本题考查二次函数与一元二次方程,解题的关键是将二次函数与直线交点个数,转化成一元二次方程根的判别式.
2020中考数学计算题专题训练(内部材料)
2020中考数学计算题专题训练(内部材料) 2020年中考数学计算题专项训练亲爱的同学们,没有一个冬天不会过去,没有一个春天不会来临。
如果这试卷是蔚蓝的天空,你就是那展翅翱翔的雄鹰;如果这试卷是碧绿的草原,你就是那驰骋万里的骏马。
只要你自信、沉着、放松、细心,相信你一定比雄鹰飞得更高,比骏马跑得更快!一、集训一(代数计算)1.计算:1)$\sin45^\circ-\frac{1}{2}+38$2)$2\times(-5)+23-3\div\frac{1}{2}$3)$22+(-1)^4+(5-2)-|{-3}|$4)$\frac{1}{3}-\frac{2}{1}-\tan45^\circ$5)$\frac{1}{2}-\frac{2}{1}+\tan45^\circ$2.计算:frac{-1}{2}+\frac{1}{3}\times\frac{2}{3}-\tan45^\circ-\frac{3}{-2}$3.计算:frac{1}{3}+\frac{2010-2012}{1}+(-1)^{1001}+\frac{12-33}{\tan30^\circ}$4.计算:18-\frac{\cos60^\circ}{2}-1-4\sin30^\circ+\frac{2-2}{3}$5.计算:32^{\frac{3}{2}}-8-(2\sin45^\circ-2005)+(\tan60^\circ-2)$6.计算:frac{1}{\cos60^\circ}-1\div(-1)^{2010}+|2-8|-2\sqrt{2}-\frac{\tan30^\circ-1}{2}$二、集训二(分式化简)1.$\frac{2x+1}{x^2-4}-\frac{1}{x-2}$2.$\frac{1-a^2}{a(a+1)}$3.$\frac{3-a}{2a-4}\div\frac{a+2-5}{a-2}$4.$\frac{a-1}{a}\div\frac{2a-1}{a}$,其中$a=-1$5.$\frac{x-1}{x+1}+\frac{1}{x^2-1}$,然后选取一个使原式有意义的$x$的值代入6.求$\frac{x^2-2x+11}{x^2-1}-\frac{x-1}{x-1}$的值,其中$x=\tan60^\circ-\tan45^\circ$7.化简:$\frac{x+2x-(x^2-2x)}{x^2-16}\div\frac{1}{x^2-4x+4}$,然后选取一个使原式有意义的$x$的值代入1.解方程$x^2-4x+1=0$,可以使用配方法或者求根公式。
2020重庆中考复习数学第18题专题训练二(含答案解析)
2020重庆中考复习数学第18题专题训练二(含答案解析)例1、如图,菱形纸片ABCD中,∠A=60°,将纸片折叠,点A、D分别落在A′、D′处,且A′D′经过B,EF为折痕,当D′F⊥CD时,的值为 .练习:如图,边长为2的菱形纸片ABCD中,∠A=60°,将纸片折叠,点A、D分别落在A'、D'处,且A'D'经过点B,EF为折痕,当D'F⊥CD时,CF的值为例2、如图,正方形ABCD的边长为2,点M、P、N分别在CD为直径的半圆上、边BC、边AB上运动,并且保持PM⊥PN,PM:PN=2:3则线段PM长的最小值为练习:如图,正方形ABCD的边长为4,点M、P、N分别在CD为直径的半圆上、边BC、边AB上运动,并且保持PM⊥PN,PM:PN=2:3则线段PM长的最小值为例3、(2018•杭州)折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD= .练习:1、(2019•济南)如图,在矩形纸片ABCD中,将AB沿BM翻折,使点A落在BC上的点N处,BM为折痕,连接MN;再将CD沿CE翻折,使点D恰好落在MN上的点F处,CE为折痕,连接EF并延长交BM于点P,若AD=8,AB=5,则线段PE的长等于 .2、(2016•新县校级模拟)如图,将矩形纸片ABCD沿直线AE折叠,点B恰好落在线段CD的中点F上,点G是线段AF上一动点(不与A,F重合),点G过GH⊥AB,垂足为H,将矩形沿直线GH翻折,点A恰好落在线段BH上点A′处.若AB长为8,则当△A′GE为直角三角形时,AH的长.为例4、(2014•锦江区校级自主招生)如图,在△ABC中,∠ABC=45°,∠ACB=60°,BC=2+2,D 是BC边上异于B、C的一动点,将三角形ABD沿AB翻折得到△ABD1,将△ACD沿AC翻折得到△ACD2,连接D1D2,则四边形D1BCD2的面积的最大值是 .练习:(2018秋•锦江区校级期末)如图,在△ABC,∠ABC=45°,∠ACB=60°,BC=4+4,D是BC边上异于点B,C的一动点,将三角形ABD沿AB翻折得到△ABD1,将△ACD沿AC翻折得到△ACD2,连接D1D2,则四边形D1BCD2的面积的最大值是 .例5、(2019秋•宿迁期末)如图,在矩形ABCD中,AD=3AB=6.点P是AD的中点,点E在BC 上,CE=2BE,点M、N在线段BD上,若△PMN是等腰三角形且底角与∠DEC相等,则MN= .练习:1、(2019•常州)如图,在矩形ABCD中,AD=3AB=3,点P是AD的中点,点E在BC上,CE=2BE,点M、N在线段BD上.若△PMN是等腰三角形且底角与∠DEC相等,则MN= .2、在矩形ABCD中,AD=3CD=6,点P是AD的中点,点E在BC上,CE=2BE,点M、N在线段BD上.若△PMN是等腰三角形且底角与∠DEC相等,则PN= .例6、如图,在矩形ABCD中,AB=9,AD=3,E为对角线BD上一点,且DE=2BE,过E作FG⊥BD,分别交AB、CD于F、G.将四边形BCGF绕点B旋转180°,在此过程中,设直线GF分别与直线CD、BD交于点M、N,当△DMN是以∠MDN为底角的等腰三角形时,则DN的长是 .练习:如图,在矩形ABCD中,AB=4,BC=3,点E为对角线AC上一动点(不与点A、C重合),过点E作直线MN∥BC,分别交AB、CD于点M、N,将矩形ADNM沿MN折叠,使得点A、D的对应点P、Q分别落在AB、CD所在的直线上,若△ACP为等腰三角形,则BM的长为 .2020重庆中考复习数学第18题专题训练二(含答案解析)例1、如图,菱形纸片ABCD中,∠A=60°,将纸片折叠,点A、D分别落在A′、D′处,且A′D′经过B,EF为折痕,当D′F⊥CD时,的值为 .解:延长DC与A′D′,交于点M,∵在菱形纸片ABCD中,∠A=60°,∴∠DCB=∠A=60°,AB∥CD,∴∠D=180°﹣∠A=120°,根据折叠的性质,可得∠A′D′F=∠D=120°,∴∠FD′M=180°﹣∠A′D′F=60°,∵D′F⊥CD,∴∠D′FM=90°,∠M=90°﹣∠FD′M=30°,∵∠BCM=180°﹣∠BCD=120°,∴∠CBM=180°﹣∠BCM﹣∠M=30°,∴∠CBM=∠M,∴BC=CM,设CF=x,D′F=DF=y,则BC=CM=CD=CF+DF=x+y,∴FM=CM+CF=2x+y,在Rt△D′FM中,tan∠M=tan30°===,∴x=y,∴==.故答案为:.练习:如图,边长为2的菱形纸片ABCD中,∠A=60°,将纸片折叠,点A、D分别落在A'、D'处,且A'D'经过点B,EF为折痕,当D'F⊥CD时,CF的值为( )A.4﹣2 B.2﹣2 C.﹣1 D.解:延长FC 、A ′D ′交于M ,设CF =x ,FD =2﹣x ,∵四边形ABCD 为菱形,∠A =60°,∴AB ∥CD ,∠DCB =∠A =60°,∴∠A +∠D =180°, ∴∠D =120°,由折叠得:∠BD ′F =∠D =120°,∴∠FD ′M =180°﹣120°=60°, ∵D ′F ⊥CD ,∴∠D ′FC =90°,∴∠M =90°﹣60°=30°,在Rt △FOC 中,∠DCB =60°,∵∠DCB =∠CBM +∠M ,∴∠CBM =60°﹣30°=30°, ∵∠BCD =∠CBM +∠M =60°,∴∠CBM =∠M =30°,∴CB =CM =2,由折叠得:D ′F =DF =2﹣x ,tan M =tan30°===,∴x =4﹣2,∴CF =4﹣2,故选:A .例2、如图,正方形ABCD 的边长为2,点M 、P 、N 分别在CD 为直径的半圆上、边BC 、边AB 上运动,并且保持PM ⊥PN ,PM :PN=2:3则线段PM 长的最小值为K解:取CD 中点O ,NP 中点K ,连接BK 、BO 、MO 、KM 。
中考数学专卷2020届中考数学总复习(18)图形的认识初步-精练精析(1)及答案解析
图形的性质——图形认识初步1一.选择题(共9小题)1.下面四个图形每个都是由六个相同的正方形组成,将其折叠后能围成正方体的是()A.B.C.D.2.如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是()A.五棱柱B.六棱柱C.七棱柱D.八棱柱3.过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为()A.B.C.D.4.如图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中小正方形顶点A,B围成的正方体上的距离是()A.0 B.1 C.D.5.如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是()A.我B.中C.国D.梦6.一个正方体的表面展开图如图所示,六个面上各有一字,连起来的意思是“预祝中考成功”,把它折成正方体后,与“成”相对的字是()A.中B.功C.考D.祝7.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直8.点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC等于()A.3 B.2 C.3或5 D.2或69.把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理正确的是()A.两点确定一条直线 B.垂线段最短C.两点之间线段最短 D.三角形两边之和大于第三边二.填空题(共7小题)10.一个圆柱的底面直径为6cm,高为10cm,则这个圆柱的侧面积是_________ cm2(结果保留π).11.有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2014次后,骰子朝下一面的点数是_________ .12.如图,将矩形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,则∠EBF= _________ °.13.计算:50°﹣15°30′=_________ .14.将矩形ABCD沿AE折叠,得到如图的图形.已知∠CEB′=50°,则∠AEB′=_________ °.15.如图,将一幅三角尺叠放在一起,使直角顶点重合于点O,绕点O任意转动其中一个三角尺,则与∠AOD始终相等的角是_________ .16.已知∠A=43°,则∠A的补角等于_________ 度.三.解答题(共8小题)17.一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积和体积.18.如图,已知M是线段AB的中点,P是线段MB的中点,如果MP=3cm,求AP的长.19.如图是一个正方体的展开图,标注了字母“a”的面是正方体的正面,如果正方体相对两个面上的代数式的值相等,求x、y的值.20.已知:点A、B、C在同一直线上,BC=AB,D为AC的中点,DC=14cm,求线段AB的长.21.如图,延长线段AB到C,使BC=2AB,若AC=6cm,且AD=DB,BE:EF:FC=1:1:3,求DE、DF的长.22.已知,如图,∠AOB+∠BOC=180°,OE平分∠AOB,OF平分∠BOC.求证:OE⊥OF.23.如图所示,OE是∠AOB的平分线,OD是∠BOC的平分线,∠AOB=100°,∠EOD=80°,求∠BOC的度数.24.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)当∠AOB=80°时,∠MON=_________ ;(2)猜想∠MON与∠AOB有怎样的数量关系,写出结论并说明理由.图形的性质——图形认识初步1参考答案与试题解析一.选择题(共9小题)1.下面四个图形每个都是由六个相同的正方形组成,将其折叠后能围成正方体的是()A.B.C.D.考点:展开图折叠成几何体.分析:由平面图形的折叠及立体图形的表面展开图的特点解题.解答:解:选项A,B,D折叠后都有一行两个面无法折起来,而且缺少一个面,所以不能折成正方体.故选:C.点评:只要有“田”和“凹”字格的展开图都不是正方体的表面展开图.2.如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是()A.五棱柱B.六棱柱C.七棱柱D.八棱柱考点:认识立体图形.专题:几何图形问题.分析:根据棱锥的特点可得九棱锥侧面有9条棱,底面是九边形,也有9条棱,共9+9=18条棱,然后分析四个选项中的棱柱棱的条数可得答案.解答:解:九棱锥侧面有9条棱,底面是九边形,也有9条棱,共9+9=18条棱,A、五棱柱共15条棱,故A误;B、六棱柱共18条棱,故B正确;C、七棱柱共21条棱,故C错误;D、八棱柱共24条棱,故D错误;故选:B.点评:此题主要考查了认识立体图形,关键是掌握棱柱和棱锥的形状.3.过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为()A.B.C.D.考点:几何体的展开图;截一个几何体.分析:由平面图形的折叠及立体图形的表面展开图的特点解题.解答:解:选项A、C、D折叠后都不符合题意,只有选项B折叠后两个剪去三角形与另一个剪去的三角形交于一个顶点,•与正方体三个剪去三角形交于一个顶点符合.故选:B.点评:考查了截一个几何体和几何体的展开图.解决此类问题,要充分考虑带有各种符号的面的特点及位置.4.如图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中小正方形顶点A,B围成的正方体上的距离是()A.0 B.1 C.D.考点:展开图折叠成几何体.分析:根据展开图折叠成几何体,可得正方体,A,B是同一棱的两个顶点,可得答案.解答:解;AB是正方体的边长,AB=1,故选:B.点评:本题考查了展开图折叠成几何体,正确将展开图折叠成几何体是解题关键,难度不大.5.如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是()A.我B.中C.国D.梦考点:专题:正方体相对两个面上的文字.分析:利用正方体及其表面展开图的特点解题.解答:解:这是一个正方体的平面展开图,共有六个面,其中面“我”与面“中”相对,面“的”与面“国”相对,“你”与面“梦”相对.故选:D.点评:本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.6.一个正方体的表面展开图如图所示,六个面上各有一字,连起来的意思是“预祝中考成功”,把它折成正方体后,与“成”相对的字是()A.中B.功 C 考D.祝考点:专题:正方体相对两个面上的文字.分析:利用正方体及其表面展开图的特点解题.解答:解:这是一个正方体的平面展开图,共有六个面,其中面“成”与面“功”相对,面“预”与面“祝”相对,“中”与面“考”相对.故选:B.点评:本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.7.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直考点:直线的性质:两点确定一条直线.专题:应用题.分析:根据公理“两点确定一条直线”来解答即可.解答:解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选:A.点评:此题考查的是直线的性质在实际生活中的运用,此类题目有利于培养学生生活联系实际的能力.8.点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC等于()A. 3 B.2 C.3或5 D.2或6考点:两点间的距离;数轴.专题:压轴题.分析:要求学生分情况讨论A,B,C三点的位置关系,即点C在线段AB内,点C 在线段AB外.解答:解:此题画图时会出现两种情况,即点C在线段AB内,点C在线段AB外,所以要分两种情况计算.点A、B表示的数分别为﹣3、1,AB=4.第一种情况:在AB外,AC=4+2=6;第二种情况:在AB内,AC=4﹣2=2.故选:D.点评:在未画图类问题中,正确画图很重要.本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.9.把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理正确的是()A.两点确定一条直线 B.垂线段最短C.两点之间线段最短 D.三角形两边之和大于第三边考点:线段的性质:两点之间线段最短.专题:应用题.分析:此题为数学知识的应用,由题意把一条弯曲的公路改成直道,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理.解答:解:要想缩短两地之间的里程,就尽量是两地在一条直线上,因为两点间线段最短.故选:C.点评:本题考查了线段的性质,牢记线段的性质是解题关键.二.填空题(共7小题)10.一个圆柱的底面直径为6cm,高为10cm,则这个圆柱的侧面积是60πcm2(结果保留π).考点:几何体的表面积.分析:直接利用圆柱体侧面积公式求出即可.解答:解:∵一个圆柱的底面直径为6cm,高为10cm,∴这个圆柱的侧面积是:πd×10=60π(cm2).故答案为:60π.点评:此题主要考查了圆柱体侧面积求法,正确根据圆柱体侧面积公式是解题关键.11.有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2014次后,骰子朝下一面的点数是 3 .考点:专题:正方体相对两个面上的文字;规律型:图形的变化类.专题:规律型.分析:观察图象知道点数三和点数四相对,点数二和点数五相对且四次一循环,从而确定答案.解答:解:观察图象知道点数三和点数四相对,点数二和点数五相对且四次一循环,∵2014÷4=503…2,∴滚动第2014次后与第二次相同,∴朝下的点数为3,故答案为:3.点评:本题考查了正方体相对两个面上的文字及图形的变化类问题,解题的关键是发现规律.12.如图,将矩形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,则∠EBF= 45 °.考点:角的计算;翻折变换(折叠问题).分析:根据四边形ABCD是矩形,得出∠ABE=∠EBD=∠ABD,∠DBF=∠FBC=∠DBC,再根据∠ABE+∠EBD+∠DBF+∠FBC=∠ABC=90°,得出∠EBD+∠DBF=45°,从而求出答案.解答:解:∵四边形ABCD是矩形,根据折叠可得∠ABE=∠EBD=∠ABD,∠DBF=∠FBC=∠DBC,∵∠ABE+∠EBD+∠DBF+∠FBC=∠ABC=90°,∴∠EBD+∠DBF=45°,即∠EBF=45°,故答案为:45°.点评:此题考查了角的计算和翻折变换,解题的关键是找准图形翻折后,哪些角是相等的,再进行计算,是一道基础题.13.计算:50°﹣15°30′=34°30′.考点:度分秒的换算.专题:计算题.分析:根据度化成分乘以60,可得度分的表示方法,根据同单位的相减,可得答案.解答:解:原式=49°60′﹣15°30′=34°30′.故答案为:34°30′.点评:此类题是进行度、分、秒的加法计算,相对比较简单,注意以60为进制即可.14.将矩形ABCD沿AE折叠,得到如图的图形.已知∠CEB′=50°,则∠AEB′=65 °.考点:角的计算;翻折变换(折叠问题).分析:根据折叠前后对应部分相等得∠AEB′=∠AEB,再由已知求解.解答:解:∵∠AEB′是△AEB沿AE折叠而得,∴∠AEB′=∠AEB.又∵∠BEC=180°,即∠AEB′+∠AEB+∠CEB′=180°,又∵∠CEB′=50°,∴∠AEB′==65°,故答案为:65.点评:本题考查了角的计算以及折叠问题.图形的折叠实际上相当于把折叠部分沿着折痕所在直线作轴对称,所以折叠前后的两个图形是全等三角形,重合的部分就是对应量.15.如图,将一幅三角尺叠放在一起,使直角顶点重合于点O,绕点O任意转动其中一个三角尺,则与∠AOD始终相等的角是∠BOC.考点:余角和补角.分析:因为是一幅三角尺,所以∠AOB=∠COD=90°,再利用∠AOD=∠AOB﹣∠BOD=90°﹣∠BOD,∠BOC=∠COD﹣∠BOD=90°﹣∠BOD,同角的余角相等,可知与∠AOD 始终相等的角是∠BOC.解答:解:∵∠AOB=∠COD=90°,∴∠AOD=∠AOB﹣∠BOD=90°﹣∠BOD,∠BOC=∠COD﹣∠BOD=90°﹣∠BOD,∴∠AOD=∠BOC.故答案为:∠BOC.点评:本题主要考查了余角和补角.用到同角的余角相等.16.已知∠A=43°,则∠A的补角等于137 度.考点:余角和补角.分析:根据补角的和等于180°计算即可.解答:解:∵∠A=43°,∴它的补角=180°﹣43°=137°.故答案为:137.点评:本题考查了补角的知识,熟记互为补角的两个角的和等于180°是解题的关键.三.解答题(共8小题)17.一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积和体积.考点:几何体的表面积;由三视图判断几何体.专题:几何综合题.分析:由已知三视图可以确定为四棱柱,首先得到棱柱底面菱形的对角线长,则求出菱形的边长,从而求出它的侧面积和体积.解答:解:该几何体的形状是直四棱柱,由三视图知,棱柱底面菱形的对角线长分别为4cm,3cm.∴菱形的边长为cm,棱柱的侧面积=×4×8=80(cm2).棱柱的体积=×3×4×8=48(cm3).点评:此题考查的是几何体的表面积及由三视图判断几何体,关键是先判断几何体的形状,然后求其侧面积和体积.18.如图,已知M是线段AB的中点,P是线段MB的中点,如果MP=3cm,求AP的长.考点:比较线段的长短.分析:点M的线段AB中点,AM=MB,点P是线段MB的中点,所以MP=PB,由此可得:AM=2MP,所以AP=3MP.解答:解:∵P是MB中点∴MB=2MP=6cm又AM=MB=6cm∴AP=AM+MP=6+3=9cm.点评:本题考点:线段中点的性质,线段的中点将线段分成两个相等的线段,根据题意和图形得出各线段之间的关系,AP=AM+MP得出,然后结合已知条件求出AM和MP的长度,从而求出线段AP的长度.19如图是一个正方体的展开图,标注了字母“a”的面是正方体的正面,如果正方体相对两个面上的代数式的值相等,求x、y的值.考点:专题:正方体相对两个面上的文字;二元一次方程的解.分析:由平面图形的折叠及立体图形的表面展开图的特点解题.3与a是相对,5﹣x与y+1相对,y与2x﹣5相对.解答:解:根据题意,得(4分)解方程组,得x=3,y=1.(6分)点评:注意运用空间想象能力,找出正方体的每个面相对的面20.已知:点A、B、C在同一直线上,BC=AB,D为AC的中点,DC=14cm,求线段AB的长.考点:两点间的距离.分析:先根据D为AC的中点,DC=14cm求出AC的长,再根据BC=AB得出AB=AC,由此可得出结论.解答:解:∵D为AC的中点,DC=14cm,∴AC=2CD=28cm.∵BC=AB,∴AB=AC=×28=cm.点评:本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.21.如图,延长线段AB到C,使BC=2AB,若AC=6cm,且AD=DB,BE:EF:FC=1:1:3,求DE、DF的长.考点:两点间的距离.分析:根据BC=2AB,AC=6cm,得出AB,BC的长,再由AD=DB,BE:EF:FC=1:1:3,得出BD,DE,EF的长,即可得出答案.解答:解:∵BC=2AB,AC=6cm,∴AB=2cm,BC=4cm,∵AD=DB,∴AD=BD=1cm,∵BE:EF:FC=1:1:3,∴BE=EF=BC=×4=cm,∴DE=BD+BE=1+=cm,DF=BD+BE+EF=1++=cm.点评:本题考查了两点之间的距离,注意各线段之间的联系是解题的关键.22.已知,如图,∠AOB+∠BOC=180°,OE平分∠AOB,OF平分∠BOC.求证:OE⊥OF.考点:角平分线的定义.专题:证明题.分析:利用∠AOB+∠BOC=180°,由OE、OF分别是∠AOB和∠BOC的平分线,求出∠EOB+∠BOF=90°,即可得出结论.解答:解:∵∠AOB+∠BOC=180°,∵OE、OF分别是∠AOB和∠BOC的平分线,∴∠AOE=∠EOB,∠BOF=∠FOC,∵∠AOE+∠EOB+∠BOF+∠FOC=180°,∴∠EOB+∠BOF=90°,∴OE⊥OE.点评:本题主要考查了角平分线及垂线,解题的关键是利用角平分线求解.23.如图所示,OE是∠AOB的平分线,OD是∠BOC的平分线,∠AOB=100°,∠EOD=80°,求∠BOC的度数.考点:角平分线的定义.分析:根据角平分线的性质,可得∠BOE的大小,根据角的和差,可得∠BOD的大小,根据角平分线的性质,可得答案.解答:解:∵OE是∠AOB的平分线,∠AOB=100°,∴∠BOE=∠AOB=50°.∵∠BOE+∠BOD=∠EOD=80°,∴∠BOD=∠EOD﹣∠BOE=80°﹣50°=30°.∵OD是∠BOC的平分线,∴∠BOC=2∠BOD=60°.点评:本题考查了角平分线的定义,利用了角平分线的性质,角的和差.24.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)当∠AOB=80°时,∠MON=40°;(2)猜想∠MON与∠AOB有怎样的数量关系,写出结论并说明理由.考点:角平分线的定义.分析:(1)设∠CON=∠BON=x°,∠MOC=y°,则∠MOC=∠MOB+∠BOC=2x°+y°,由∴∠AOB=∠AOM+∠MOB=2x°+y°+y=2(x+y)°=80,可得∠MON=∠MOB+∠NOB,即可求解.(2)由∠AOB=∠AOM+∠MOB=∠MOC+∠MOB=∠MOB+2∠BON+∠MOB=2(∠BON+∠MOB)=2∠MON 可得结论.解答:解:(1)∵ON平分∠BOC,∴∠CON=∠BON,设∠CON=∠BON=x°,∠MOB=y°,则∠MOC=∠MOB+∠BOC=2x°+y°,又∵OM平分∠AOC∴∠AOM=∠COM=2x°+y°,∴∠AOB=∠AOM+∠MOB=2x°+y°+y=2(x+y)°∵∠AOB=80°∴2(x+y)°=80°,∴x°+y°=40°∴∠MON=∠MOB+∠NOB=x°+y°=40°故答案为:40°.(2)2∠MON=∠AOB.理由如下:∠AOB=∠AOM+∠MOB=∠MOC+∠MOB=∠MOB+2∠BON+∠MOB=2(∠BON+∠MOB)=2∠MON.点评:本题主要考查了角平分线的定义,解题的关键是利用了角平分线的定义和图中各角之间的和差关系,难度中等.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆
柱
体
A C(第2题图)
一、选择题 (本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的)。
1、若2与a互为倒数,则下列结论正确的是()。
A、
2
1
a= B、2
a-
= C、21
a-
=
D、2
a=
2、如图,圆柱体的表面展开后得到的平面图形是()。
3、某电视台举行歌手大奖赛,每场比赛都有编号为1~10号共10道综合素质测试题共选手随机抽取作答。
在某场比赛中,前两
位选手分别抽走了2号,7号题,第3位选手抽中8号题的概率是()。
A、
10
1 B、
9
1 C、8
1 D、
7
1
4、下列运算正确的是()。
A、a2·a3=a6
B、a8÷a4=a2
C、a3+a3=2a6
D、(a3)2=a6
中考数学第1-18题训练(9)
姓名解题格式
要规范化
C (第5题图)
A
B C
O
(第9题图)
5、如图,小明站在C E。
C,E,A E,
A的正下方且D,B,C C
相距20米,D,C相距40米,乙楼高BE为15米,甲楼
高AD为()米(小明身高忽略不计)。
A、40
B、20
C、15
D、30
6、据统计,宜昌市2005年财政总收入达到105.5亿元,用科学记数法(保留三个有效数字)表示105.5亿元约为()元。
A、1.055×1010
B、1.06×1010
C、
1.06×1011 D、1.05×1011
7、下列四边形①等腰梯形,②正方形,③矩形,④菱形的对角线一定相等的是()。
A、①②③
B、①②③④
C、
①② D、②③
8、国家统计局发布的统计公报显示:2001到2005年,我国GDP增长率分别为8.3%,9.1%,10.0%,10.1%,9.9%。
经济学家评论说:这五年的年度GDP增长率之间相当平稳。
从统计学的角度看,“增长率之间相当平稳”说明这组数据的()较小。
A、中位数
B、标准差
C、平均数
D、众数
9、如图,点O是△ABC的内切圆的圆心,若∠BAC=80°,则∠BOC=()。
A、130°
B、100°
C、
A B
C
D E
F
(第14题图)
A O
C
D
B
(第12题图)
50° D 、65°
10、函数x m y =与)0m (m mx y ≠-=在同一平面直角坐标系中的图像可能是( )。
二、填空题 (本小题共5小题,每小题3分,共15分)
11、从汽车的后视镜中看见某车车牌的后5位号码是 ,该车的后5位号码实际是 。
12、如图,AB=CD ,AD ,BC 相交于点O ,要使
△ABO ≌△DCO ,应添加的条件为___________。
13、某校抽查了50名九年级学生对艾滋病三种主要
传播途径的知晓情况,结果如下表:
估计该校九年级550名学生中,三种传播途径都知道的有 人。
14、如图,以正六边形的顶点为圆心,4cm 为半径的六个圆中,相邻两圆外切,则该正六边形边长是 cm 。
15、数字解密:第一个数是3=2+1,第二个数是5=3+2,第三个数是9=5+4,第四个数是17=9+8,……观察并猜想第六个数
传播途径(种) 0 1 2 3
知晓人数(人)
3 7 15 25
A C (第10题图)
y
y
x
y
y
x
是。
三、解答题 (解答需写出必要的文字说明、演算步骤或证明过程。
)
16、(6分) 计算:0)1
-
|-
-︒。
|3
+
cos
3
(
45
2
17、(6分) 解方程:2
+。
x
x2=
2
18、(8分) 已知:如图, AB∥CD,直线EF分别交AB、CD于点E、F,∠BEF的平分线与∠DEF的平分线相交于点P。
求证∠P= 900。
A B
E
P
C D
F
(第18题图)。