【奥赛】小学数学竞赛:完全平方数及应用(一).学生版解题技巧 培优 易错 难
【奥赛】小学数学竞赛:不规则图形的面积.学生版解题技巧 培优 易错 难
本讲主要通过求一些不规则图形的面积,体会一种转化思想,重点在于把不规则图形转化为规则图形的方法,包括平移、旋转、割补、差不变原理,通过这些方法的学习,让学生体会求面积的技巧,提高学生的观察能力、动手操作能力、综合运用能力.【例 1】 你有什么好的方法计算所给图形的面积呢?(单位:厘米)3994399439943994图1 图2 图3【巩固】如图是学校操场一角,请计算它的面积(单位:米)30203040【巩固】如右图所示,图中的ABEFGD 是由一个长方形ABCD 及一个正方形CEFG 拼成的,线段的长度如图所示(单位:厘米),求ABEFGD 的周长和面积.10104GF ED CB AGH F ED CB A41010【巩固】求图中五边形的面积.例题精讲4-2-6.不规则图形的面积6453【例 2】这是一个楼梯的截面图,高280厘米,每级台阶的宽和高都是20 厘米.问,此楼梯截面的面积是多少?【巩固】如图是一个楼梯的截面图,每级台阶的宽和高都是20厘米.这楼梯的截面积是多少平方厘米?【例 3】有一块菜地长16米,宽8米,菜地中间留了宽2米的路,把菜地平均分成四块,每一块地的面积是多少?【例 4】有10张长3厘米,宽2厘米的纸片,将它们按照下图的样子摆放在桌面上,那么这10张纸片所盖住的桌面的面积是多少平方厘米?【例 5】 下图(单位:厘米)是两个相同的直角梯形重叠在一起,求阴影部分的面积.【巩固】两个相同的直角三角形如下图所示(单位:厘米)重叠在一起,求阴影部分的面积.FBA【例 6】 如图,李大伯给一块长方形田地喷药,喷药器所能喷洒的范围是以李大伯的落脚点为中心,边长2米的正方形区域,他从图中的A 点出发,沿最短路线(图中虚线)走,走过88米到达B 点,恰好把这块田地全部喷完,这块田地的面积是多少平方米?BA 1米1米【例 7】 右图中甲的面积比乙的面积大__________平方厘米.6厘米8厘米4厘米【例 8】 右图中,矩形ABCD 的边AB 为4厘米,BC 为6厘米,三角形ABF 比三角形EDF 的面积大9平方厘米,求ED 的长.AB CDE F【巩固】如图所示,4CA AB ==厘米,ABE △比CDE △的面积小2平方厘米,求CD 的长为多少厘米?ABE C D【巩固】如图,平行四边形ABCD 种,10BC cm =,直角三角形ECB 的边8EC cm =,已知阴影部分的总面积比三角形EFG 的面积大210cm ,求平行四边形ABCD 的面积.G FEDCBA【例 9】 如图,ABCD 是74⨯的长方形,DEFG 是102⨯的长方形,求BCO 与EFO 的面积差.O B C D GFE A【例 10】 有一个长方形菜园,如果把宽改成50米,长不变,那么它的面积减少680平方米,如果使宽为60米,长不变,那么它的面积比原来增加2720平方米,原来的长和宽各是多少米?680平方米2720平方米60【巩固】有一个长方形,如果宽减少2米,或长减少3米,则面积均减少24平方米,求这个长方形的面积?2【例 11】 一块长方形铁板,长15分米,宽12分米,如果长和宽各减少2分米,面积比原来减少多少平方分米?【例 12】 一个长方形,如果长减少5厘米,宽减少2厘米,那么面积就减少66平方厘米,这时剩下的部分恰好成为一个正方形,求原来长方形的面积?【巩固】一块长方形纸片,在长边剪去5cm,宽边剪去2cm后(如图),得到的正方形面积比原长方形面积少231cm.求原长方形纸片的面积.52【巩固】一个正方形,如果把它的相邻两边都增加6厘米,就可以得到一个新正方形,新正方形的面积比原正方形大120平方厘米.求原正方形的面积?66【例 13】一块正方形的钢板,先截去一个宽5分米的长方形,又截去一个宽8分米的长方形(如图),面积就比原来正方形减少181平方分米.原正方形的边长是多少分米?85【巩固】一张长方形纸片,先把长剪去8厘米,这时面积减少了72平方厘米,又把宽剪去5厘米,这时面积又减少了60平方厘米,原来这张长方形纸片的面积是多少平方厘米?5【巩固】如右图所示,在一个正方形上先截去宽11分米的长方形,再截去宽7分米的长方形,所得图形的面积比原正方形减少301平方分米.原正方形的边长是______分米.11【例 14】如图长方形被分成两部分,已知阴影面积比空白部分面积大34平方厘米,求阴影部分的面积.10cm【例 15】一张长方形纸片,把它的右上角往下折叠(如图甲),阴影部分面积占原纸片面积的27;再把左下角往上折叠(如图乙),乙图中阴影部分面积占原纸片面积的________(答案用分数表示).甲乙【巩固】折叠后,原平行四边形面积是折叠后图形面积的1.5倍.已知阴影部分面积之和为1,则重叠部分(即空白部分)的面积是多少?【巩固】如图,一张长方形纸片,长7厘米,宽5厘米.把它的右上角往下折叠,再把左下角往上折叠,未盖住的阴影部分的面积是多少平方厘米?5【例 16】如图,大正方形的边长为10厘米.连接大正方形的各边中点得小正方形,将小正方形每边三等分,再将三等分点与大正方形的中心和一个顶点相连,那么图中阴影部分的面积总和等于多少平方厘米?【例 17】如图所示,直角三角形中有一个长方形,求长方形的面积?44 4【例 18】一个边长为20厘米的正方形,依次连接四边中点得到第二个正方形,这样继续下去可得到第三个、第四个、第五个正方形.求第五个正方形的面积?【巩固】如图是由5个大小不同的正方形叠放而成的,如果最小的正方形(阴影部分)的周长是8,那么最大的正方形的边长是.第6题【巩固】图中有6个正方形,较小的正方形都由较大的正方形的4边中点连接而成.已知最大的正方形的边长为16厘米,那么最小的正方形的面积等于多少平方厘米?【例 19】已知图中大正方形的面积是22平方厘米,小正方形面积是多少平方厘米?【巩固】如图所示,外侧大正方形的边长是10cm,在里面画两条对角线、一个圆、两个正方形,阴影的总面26cm,最小的正方形的边长为多少厘米?积为2【例 20】有一个边长为16厘米的正方形,连接每边的中点构成第二个正方形,再连接每边的中点构成第三个正方形,第四个正方形.求图中阴影部分的面积?【例 21】如图,边长为10的正方形中有一等宽的十字,其面积(阴影部分)为36,则十字中央的小正方形面积为.第2题【例 22】下图大小两个正方形有一部分重合,两块没有重合的阴影部分面积相差是多少?(单位:厘米)6【巩固】如图所示,四个相叠的正方形,边长分别是5、7、9、11.问灰色区与黑色区的面积的差是多少?【例 23】甲、乙、丙三个正方形,它们的边长分别是6、8、10厘米,乙的一个顶点在甲的中心上,丙的一个顶点在乙的中心上.这三个正方形的覆盖面积是多少平方厘米?108 6丙乙甲【巩固】将20张边长为10厘米的正方形纸片,按顺序一张一张地摆放在地板上,摆的时候,要求后摆的纸片必须有一个顶点与前一张的中心重合,且每一张只与其前一张和后一张有重合部分(右图表示已经摆好的5张).地板被这20张纸片所覆盖部分的面积是多少?【例 24】有2个大小不同的正方形A和B.如下左图所示的那样,在将B正方形的对角线的交点与A正方形的一个顶点相重叠时,相重叠部分的面积为A正方形面积的19.求A与B的边长之比.如果当按下右图那样,将A和B反向重叠的话,所重叠部分的面积是B的几分之几?左图右图【例 25】有一个正方形水池(图中阴影部分),在它的周围修一个宽是8米的草地,草地的面积为480平方米,求水池的边长?【巩固】一块长方形草坪(图中阴影部分)长是宽的2倍,它的四周围的总面积是34平方米的1米宽的小路.求草坪的面积是多少平方米?【例 26】如图所示,一个长方形广场的正中央有一个长方形的水池.水池长8米、宽3米.水池周围用边长为1米的方砖一圈一圈地向外铺.恰好铺了若干圈,共用了152块方砖,那么共铺了圈.水池【例 27】用四个相同的长方形拼成一个面积为2100cm的大正方形,每个长方形的周长是多少平方厘米?【巩固】如图所示,4个相同的长方形和一个小正方形拼成一个大的正方形,大正方形的面积是100平方分米,小正方形的面积是36平方分米,求一个小长方形的面积及周长.【例 28】四个完全相同的长方形拼成右图,大正方形的面积是l00平方分米,小正方形的面积是l6平方分米,求每个长方形的面积是多少?长方形的短边是多少分米?16【巩固】如图,4个相同的长方形和1个小正方形拼成一个大正方形,已知其中小正方形的面积为4平方厘米,大正方形的面积为400平方厘米,则其中长方形的长为厘米,宽厘米.第19题【例 29】街心花园里有一个正方形花坛,四周有一条宽1米的甬道(如图),如果甬道的面积是12平方米,那么中间花坛的面积是多少平方米?1米【巩固】在一个正方形的小花园周围,环绕着宽5米的水池,水池面积为300平方米,那么正方形花园的面积是多少平方米?5【巩固】有大、小两个长方形(如图),对应边的距离均为1cm,已知两个长方形之间部分的面积是216cm,且小长方形的长是宽的2倍,求大长方形的面积.BA【例 30】已知大正方形比小正方形边长多4厘米,大正方形面积比小正方形面积大96平方厘米.问大、小正方形面积各是多少?【巩固】两个正方形的面积相差29cm,边长相差1cm.求两个正方形的面积和.C BA【巩固】有一大一小两个正方形,它们的周长相差20厘米,面积相差55平方厘米.小正方形的面积是多少平方厘米?【例 31】在一个正方形中放入一个四个顶点与大正方形相接的一个小正方形(如图),如果两个正方形的周长相差16厘米,面积相差96平方厘米,求小正方形的面积是多少平方厘米?(1)(2)【例 32】用两块长方形纸片和一块正方形纸片拼成一个大正方形,长方形纸片面积分别为44平方厘米与28平方厘米,原正方形纸片面积是多少平方厘米?【例 33】 计划修建一个正方形的花坛,并在花坛周围种上3米宽的草坪,草坪的面积为300平方米,那么修建这个花坛需要占地多少平方米?(2)(1)【巩固】有大、小两个长方形(右图),对应边的距离均为1厘米,已知两个长方形之间部分的面积是16平方厘米,且小长方形的长是宽的2倍,求大长方形的面积.【巩固】一块长方形的草坪(见图中阴影部分),长是宽的2倍,它的四周围的总面积是34平方米的1米宽的小路,求草坪的总面积是多少平方米?AAB C C A BA【例 34】 一块正方形的苗圃(如右图实线所示),若将它的边长各增加30米(如图虚线所示),则面积增加9900平方米,问原来这块正方形苗圃的面积是多少平方米?3030【例 35】从一块正方形的玻璃板上锯下宽为0.5米的一个长方形玻璃条后,剩下的长方形的面积为5平方米,请问锯下的长方形玻璃条的面积等于多少?50.5【巩固】从一个正方形的木板上锯下宽1m的一个长方形木条后,剩下的长方形面积为26m,问锯下的长方形木条面积是多少?【巩固】从一块正方形木板锯下宽为12米的一个木条以后,剩下的面积是6518平方米.问锯下的木条面积是多少平方米?【例 36】图中,甲、乙两个正方形的边长的和是20厘米,甲正方形比乙正方形的面积大40平方厘米.求乙正方形的面积.【例 37】 有一大一小两块正方形试验田,他们的周长相差40米,面积相差220平方米,那么小正方形试验田的面积是多少平方米?图a图b【例 38】 如图,边长是整数的四边形AFED 的面积是48平方厘米,FB 为8厘米.那么,正方形ABCD 的面积是 平方厘米.A BCDEF 488【例 39】 如图,一个正方形被分成4个小长方形,它们的面积分别是110平方米、15平方米、310平方米和25平方米.已知图中的阴影部分是正方形,那么它的面积是多少平方米?【例 40】 长方形ABCD 的周长是30厘米,以这个长方形的每一条边为边长向外画正方形.已知这四个正方形的面积之和为290平方厘米,那么长方形ABCD 的面积是多少平方厘米?C 1D 1E 1A 1EBC DA【巩固】如图,长方形ABCD 的周长是16厘米,在它的每一条边上各画一个以该边为边长的正方形,已知这四个正方形的面积和是68平方厘米,求长方形ABCD 的面积?A B C D IH G FEAB C D【例 41】 一条白色的正方形手帕,它的边长是18厘米,手帕上横竖各有二道黑条,黑条宽都是2厘米,这条手帕白色部分的面积是多少?【例 42】 用同样大小的瓷砖铺一个正方形地面,两条对角线上铺黑色的,其它地方铺白色的,如图所示.如果铺满这块地面共用101块黑色瓷砖,那么白色瓷砖用了多少块?图1 图2【例 43】 7个完全相同的长方形拼成了图中阴影部分,图中空白部分的面积是多少平方厘米?24【巩固】如图所示,7个完全相同的长方形拼成了图中的阴影部分,图中空白部分的面积是多少平方厘米?【例 44】 如右图所示,在长方形ABCD 中,放入六个形状大小相同的长方形(尺寸如图),图中阴影部分的面积是__________.A614DCB【例 45】 若干同样大小的长方形小纸片摆成了如图所示的图形.已知小纸片的宽是12厘米,问阴影部分的总面积是多少平方厘米?【例 46】 一个大长方形若能分割成若干个大小不同的小正方形,则称为完美长方形.下面一个长方形是由9个小正方形组成的完美长方形.图中正方形A 和B 的边长分别是7厘米和4厘米,那么这个完美长方形的面积分别是多少平方厘米?ABA BCDE FGH【巩固】如图:有一个矩形可以被分割为11个正方形,其中最小的正方形(阴影部分)面积为281cm ,请问这个矩形之面积为多少平方厘米?第2题【巩固】图中的长方形被分割成6个正方形,已知中央小正方形的面积是1平方厘米,求原来长方形的面积.【巩固】9个边长分别为1、4、7、8、9、10、14、15、18的正方形拼成一个长方形,问这个长方形的长和宽是多少?并请画出这个长方形的拼接图.1518141094781【例 47】 图中数字分别表示两个长方形和一个直角三角形的面积,另一个三角形的面积是 .51215A 51215【例 48】 如图,一个矩形被分成八个小矩形,其中有五个矩形的面积如图中所示(单位:平方厘米),问大矩形的面积是多少平方厘米?1230201636G FEDC B AS 3S 2S 11230201636G FEDC B A【巩固】阳阳用四块小长方形恰好拼成了一个大的长方形,如图所示.现在知道其中三块长方形的面积分别为48平方厘米、24平方厘米、30平方厘米,那么,阴影部分的面积是多少?302448【巩固】如图,矩形ABCD 被分割成9个小矩形.其中有5个小矩形的面积如图所示.矩形ABCD 的面积为 .164221CB DA【例 49】 有红、黄、绿三块大小一样的正方形纸片,放在一个底面为正方形的盒内,它们之间相互叠合(见下图).已知露在外面的部分中,红色面积是20,黄色面积是14,绿色面积是10.求正方形盒底的面积.绿黄红绿黄红【例 50】 如图所示,在正方形ABCD 内,红色、绿色正方形的面积分别是48和12,且红、绿两个正方形有一个顶点重合.黄色正方形的一个顶点位于红色正方形两条对角线的交点,另一个顶点位于绿色正方形两条对角线的交点.那么黄色正方形的面积是 .DCBA绿黄红 312【巩固】如图所示,在正方形ABCD 中,红色,绿色正方形的面积分别是52和13,且红、绿两个正方形有一个顶点重合.黄色正方形的一个顶点位于红色正方形两条对角线的交点,另一个顶点位于绿色正方形两条对角线的交点,求黄色正方形面积.绿黄红D C BA【例 51】 如图,三个一样大小的正方形放在一个长方形的盒内,A 和B 是两个正方形的重叠部分,C 、D 、E是空出的部分,每一部分都是矩形,它们的面积比是A :B :C :D :E =1:2:3:4:5,那么这个长方形的长与宽之比是________.【例 52】 如图如果长方形的面积为56平方厘米,且2MD =厘米、3QC =厘米、5CP =厘米、6BN =厘米,那么请你求出四边形MNPQ 的面积是多少厘米?33C P D M2356532MD BPC N【巩固】长方形的广告牌长为10米,宽为8米,A ,B ,C ,D 分别在四条边上,并且C 比A 低5米,D 在B 的左边2米,四边形ABCD 的面积是 平方米.DCBADCBA【例 53】 直角三角形PQR 的直角边为5厘米,9厘米,问:图中三个正方形的面积之和比4个三角形的面积之和大多少?95QED P R FCBAN MH G A B CFR P DEQ 59【例 54】 如图所示,甲、乙、丙、丁四个长方形拼成一个正方形EFGH ,中间阴影为正方形.已知甲、乙、丙、丁四个长方形面积的和是232cm ,四边形ABCD 的面积是220cm .⑴求正方形EFGH 的边长?⑵求甲、乙、丙、丁四个长方形周长的总和?F E HGDCB A 丙乙丁甲ABC DG H E F hgfe d cba图1 图2 图3【例 55】 如图,平面上CDEF 是正方形,ABCD 是等腰梯形,它的上底23AD =厘米,下底35BC =厘米.求三角形ADE 的面积.FECB DAH 2H 1HADBCEF【例 56】 右图是由9个等边三角形拼成的六边形,已知中间最小的等边三角形的边长是1,问:这个六边形的周长是多少?【例 57】 把正三角形的每条边三等分,以各边的中间一段为边向外作小正三角形,得到一个六角形.再将这个六角形的六个”角”(即小正三角形)的两边三等分,又以它的中间段为边向外作更小的小正三角形,这样就得到如右图所示的图形.如果所作的最小的小正三角形的面积为1平方厘米,求如图中整个图形的面积.图a中中中大图b【例 58】 如图,长方形的面积是小于100的数.它的内部有三个边长是整数的正方形.正方形②的边长是长方形长的512,正方形①的边长是长方形宽的18.那么,图中阴影部分的面积是。
小学奥数知识点梳理-神奇的完全平方数!
小学奥数知识点梳理-神奇的完全平方数!完全平方数:指两个相同数相乘所得的数,例如:9=3×3,9就是一个完全平方数(或称平方数),还可以理解为一个数如果是另一个整数的平方,那么这个数就是完全平方数。
表达式为:完全平方数A=a 的平方=a×a。
在前面文章里面我们研究了求某些特殊数平方的一些巧算方法,同学们可以回顾下:巧求平方数。
它经常会出现在什么地方呢?首先想到的就是正方形面积等于它的边长的平方;还有方阵问题也会碰到。
作为一类常见的特殊自然数,完全平方数有哪些神奇的特殊性质呢?观察下图1000以内的所有完全平方数。
性质1:完全平方数的个位数字只能是0,1,4,5,6,9;不可能出现 2,3,7,8在整数的各种问题中,确定个位数十分重要。
知道完全平方数个位数字范围,就可以快速判断是否为完全平方数了。
证明:整数的个位数只有0~9十种情况,我们只需要分析0×0,1×1,2×2,…9×9得数的个位数就可以了。
性质2:完全平方数因数个数为奇数,因数个数为奇数的是完全平方数证明:请看视频→ 因数个数与完全平方数也可以表述为:完全平方数所有质因数的指数都是偶数例题1:在1~100的自然数中,因数个数是奇数的有多少个?实际上我们可以把问题转化为→ 1~100中有多少完全平方数。
例题2:一个数与270的积是完全平方数,那么这个数最小是多少?把270分解质因数,因为完全平方数所有质因数的指数都是偶数,补齐选最小就可以得到答案。
性质3:完全平方数与余数1,完全平方数除以5的余数只可能为 0,1,4证明:5的整除特性是判断个位数是否为0,5。
分析完全平方数可能出现的个位数,可以推断出结论。
个位是0,除以5余0;个位是1,则余1;个位是4,则余4;个位是5,则余0;个位是6,则余1;个位是9,则余4。
2,完全平方数除以3或4的余数都只可能为 0,1证明:完全平方数除以3的余数只能是0,1(同理可证明4)。
奥数数论:完全平方数要点及解题技巧
奥数数论:完全平方数要点及解题技巧一、完全平方数的定义:一个数如果是另一个整数的完全平方,那么我们就称这个数为完全平方数,也叫做平方数。
二、完全平方数特征:1.末位数字只能是:0、1、4、5、6、9;反之不成立。
2.除以3余0或余1;反之不成立。
3.除以4余0或余1;反之不成立。
4.约数个数为奇数;反之成立。
5.奇数的平方的十位数字为偶数;反之不成立。
6.奇数平方个位数字是奇数;偶数平方个位数字是偶数。
7.两个相临整数的平方之间不可能再有平方数。
平方差公式:X2-Y2=(X-Y)(X+Y)完全平方和公式:(X+Y)2=X2+2XY+Y2完全平方差公式:(X-Y)2=X2-2XY+Y2三、完全平方数的性质:性质1:完全平方数的末位数只能是0,1,4,5,6,9。
性质2:奇数的平方的个位数字为奇数,十位数字为偶数。
性质3:如果完全平方数的十位数字是奇数,则它的个位数字一定是6;反之,如果完全平方数的个位数字是6,则它的十位数字一定是奇数。
性质4:偶数的平方是4的倍数;奇数的平方是4的倍数加1。
性质5:奇数的平方是8n+1型;偶数的平方为8n或8n+4型。
性质6:平方数的形式必为下列两种之一:3k,3k+1。
性质7:不能被5整除的数的平方为5k±1型,能被5整除的数的平方为5k型。
性质8:平方数的形式具有下列形式之一:16m,16m+1,16m+4,16m+9。
性质9:完全平方数的数字之和只能是0,1,4,7,9。
性质10:为完全平方数的充要条件是b为完全平方数。
性质11:如果质数p能整除a,但p的平方不能整除a,则a不是完全平方数。
性质12:在两个相邻的整数的平方数之间的所有整数都不是完全平方数,即若n^2<k^2<(n+1)^2,则k一定不是整数。
性质13:一个正整数n是完全平方数的充分必要条件是n有奇数个因数(包括1和n本身)。
【奥赛】小学数学竞赛:图形找规律.学生版解题技巧 培优 易错 难
⑴图形数量的变化;
⑵图形形状的变化;
⑶图形大小的变化;
⑷图形颜色的变化;
⑸图形位置的变化;
⑹图形繁简的变化.
对于较复杂的图形,也可分为几部分来分别考虑,总而言之,只要全面观察,勤于思考就一定能抓住规律,解决问题.
模块一、图形规律——数量规律
【例 1】观察这几个图形的变化规律,在横线上画出适当的图形.
【例 2】请找出下面哪个图形与其他图形不一样.
【例 3】观察图形变化规律,在右边补上一幅,使它成为一个完整系列。
【例 4】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?
【巩固】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?
(3)前10个点群中,所有点的总数是。
【例 8】观察下面由点组成的图形(点群),请回答:
(1)方框内的点群包含个点;
(2)第(10)个点群中包含个点;
(3)前十个点群中,所有点的总数是。
【例 9】下图表示“宝塔”,它们的层数不同,但都是由一样大的小三角形摆成的.仔细观察后,请回答:
(1)五层的“宝塔”的最下层包含多少个小三角形?
【例 36】观察下图,看看右图中哪一个图形可以代替“?”
【例 37】仔细观察下图中图形的变化规律,并在“?”处填入合适的图形.
【巩固】根是由9个小人排列的方阵,但有一个小人没有到位,请你从下面图10—2中的6个小人中,选一位小人放到问号的位置,你认为最合适的人选是几号?
【例 18】观察图中所给出图形的变化规律,然后在空白处填画上所缺的图形.
小学奥数之完全平方数及应用(一)(含详细解析)
1. 学习完全平方数的性质;2. 整理完全平方数的一些推论及推论过程3. 掌握完全平方数的综合运用。
一、完全平方数常用性质 1.主要性质1.完全平方数的尾数只能是0,1,4,5,6,9。
不可能是2,3,7,8。
2.在两个连续正整数的平方数之间不存在完全平方数。
3.完全平方数的约数个数是奇数,约数的个数为奇数的自然数是完全平方数。
4.若质数p 整除完全平方数2a ,则p 能被a 整除。
2.性质性质1:完全平方数的末位数字只可能是0,1,4,5,6,9. 性质2:完全平方数被3,4,5,8,16除的余数一定是完全平方数.性质3:自然数N 为完全平方数⇔自然数N 约数的个数为奇数.因为完全平方数的质因数分解中每个质因数出现的次数都是偶数次,所以,如果p 是质数,n 是自然数,N 是完全平方数,且21|n p N -,则2|n p N .性质4:完全平方数的个位是6⇔它的十位是奇数.性质5:如果一个完全平方数的个位是0,则它后面连续的0的个数一定是偶数.如果一个完全平方数的个位是5,则其十位一定是2,且其百位一定是0,2,6中的一个.性质6:如果一个自然数介于两个连续的完全平方数之间,则它不是完全平方数.3.一些重要的推论1.任何偶数的平方一定能被4整除;任何奇数的平方被4(或8)除余1.即被4除余2或3的数一定不是完全平方数。
2.一个完全平方数被3除的余数是0或1.即被3除余2的数一定不是完全平方数。
3.自然数的平方末两位只有:00,01,21,41,61,81,04,24,44,64,84,25,09,29,49,69,89,16,36,56,76,96。
4.完全平方数个位数字是奇数(1,5,9)时,其十位上的数字必为偶数。
5.完全平方数个位数字是偶数(0,4)时,其十位上的数字必为偶数。
6.完全平方数的个位数字为6时,其十位数字必为奇数。
7.凡个位数字是5但末两位数字不是25的自然数不是完全平方数;末尾只有奇数个“0”的自然数不是完全平方数;个位数字为1,4,9而十位数字为奇数的自然数不是完全平方数。
完全平方数的解题技巧
1.1 完全平方数的解题技巧完全平方数是一类常见的特殊自然数, 本节介绍涉及完全平方数问题的常用 解题方法与技巧。
1.利用完全平方数的因数特征 完全平方数的因数具有如下特征:(1) 2n 的标准分解式中,每个质因数的指数都是偶数;(2)若 22 n a b = (a 、b 是整数)为完全平方数,则b 是完全平方数; (3)若 2 n ab = (a 、b 是整数且(,)1 a b = )为完全平方数,则a 、b 都是完 全平方数. 例1.计算 { 1 2 444111666 n n n+ +-= L L L 123 123个个个 (2009年湖南省竞赛)例2.设 2392 N x y =+ 为完全平方数,且N 不超过2392.则满足上述条件的一切正 整数对(,) x y 共有对.例3.设a 为质数,b 为正整数,且 2 9(2)509(4511). a b a b +=+ 求a 、b 的值.2.利用完全平方数的数字特征在完全平方数 2n 的十进制表达式中,其数字具有以下特征: (1) 2 n 的个位数字为0、1、4、5、6、9;(1) (2) 2 n 的十位数字为奇数,当且仅当 2 n 的个数字是6; (2) 2 n 的个位数字为5则 2 n 的十位数字为2.上述特征可概括为:完全平方数的未两个数只能是 0 偶 、 1 偶 、 4 偶 、 9 偶 、 25、 6 奇之一. 例4.如果一个完全平方数最后3位数字相同且不为0,求该数的最小值. 例5.有一个四位数 (1)(2)(3) N a a a a =+++ 它是一个完全平方数,求a 的值. 3.利用完全平方数在特定模下的余数特征在完全平方数 2 n 的十进制表达式中,其有关模的余数具有如下一些特征: (1) 2 0,1(mod 3,4) n º ;(2) 2 0,1,4(mod 5,8) n º ;(3) 20,1,4,7(mod9) n º ;2 0,1,4,5,6,9(mod10).n º 例 6 证明:对任何正整数n ,代数式 6542 398123 n n n n n +-+++ 的值都不是 完全平方数.例7.求证:30000不能表示成两个正整数的平方的和.例8.求方程 22 38742109 x xy y x y -+-+= 的正整数解. 4.利用完全平方数的间距特征完全平方数的间距具有如下特征: (1) 22 3(0,,) m n n m m n N -³<<Î ;(2) 2 m 与 2 (1) m + 之间不存在完全平方数,即若 22(1) m p m <<+ ,则 p 不是完全平方数.例9.求最大的正整数n ,使得 27500 444 n ++ 是完全平方数.例10.证明:任意连续的5个正整数的积不是完全平方数. 5.利用完全平方数的表达式特征例11.求证12345678987654321是完全平方数.例 12.(1)证明:存在非零整数对(,) x y ,使得代数式 22 11537 x xy y ++ 的值 是完全平方数;(2)证明:存在6个非零整数 1 a 、 1 b 、 1 c 、 2 a 、 2 b 、 2c ,其中 11 22a b a b ¹ ,便 使得对任意的正整数 n ,当 2 111 x a n b n c =++ , 2 222 y a n b n c =++ 时,代数式 22 11537 x xy y ++ 的值是完全平方数.例 13.如果一个完全平方数可以写成一个质数与另一个完全平方数的和,则称其为“好平方数” 。
小学奥数 完全平方数 知识点+例题+练习 (分类全面)
二、完全平方数的等价条件:奇数个因数
注:计算一个数的因数先把这个数分解质因数,然后把不同质因数的个数加1以后再相乘所得的乘积就是因数的个数
例如:12=2×2×3
12的质因数2有2个,质因数3有1个因数个数:(2+1)×(1+1)=6个
180=2×2×3×3×5
2.完全平方数的约数一定有奇数个;有奇数个约数的数一定是完全平方数。
3. 奇数的平方是奇数,偶数的平方是偶数
完全平方数除以3的余数只可能为为0或1;
完全平方数除以4的余数只可能为为0或1;
偶数的平方是4的倍数,奇数的平方除以4余1。
(二)一些推论
1.任何偶数的平方一定能被4整除;任何奇数的平方被4(或8)除余1.即被4除余2或3的数一定不是完全平方数。
巩固、已知m,n都是自然数,且n2 126m,则n的最小值为。
四、“平方族”成员典型特征二:除以3或4只能余0或1
注:奇数的平方是奇数,偶数的平方为偶数,而奇数的平方除以4余1,偶数的平方能被4整除
例1、形如11,111,1111,11111,…的数中有没有完全平方数?
巩固、A是由2018个“4”组成的多位数,即444444……(2018个4),A是不是某个自然数B的平方?如果是,写出B;如果不是,请说明理由.
961、 3364、1111111、1521、 1234321、 1849、 89234
2.一个完全平方数被3除的余数是0或1.即被3除余2的数一定不是完全平方数。
3.自然数的平方末两位只有:00,01,21,41,61,81,04,24,44,64,84,25,09,29,49,69,89,16,36,56,76,96。
【奥赛】小学数学竞赛:几何计数(三).学生版解题技巧 培优 易错 难
【巩固】将正方形纸片由下往上对折,再由左向右对折,称为完成一次操作.按上述规则完成五次操作后,剪去所得的小正方形的左下角.问:当展开这张正方形纸后,一共有多少个小洞孔?
【例 5】如图所示,在边长为1的小正方形组成的4×4方格图中,共有25个格点。在以格点为顶点的直角三角形中,两条直角边长分别是1和3的直角三角形共有个。
【例 6】用9个钉子钉成相互间隔为1厘米的正方阵(如右图).如果用一根皮筋将适当的三个钉子连结起来就得到一个三角形,这样得到的三角形中,面积等于1平方厘米的三角形的个数有多少?面积等于2平方厘米的三角形有多少个?
【例 7】下图中的正方形被分成9个相同的小正方形,它们一共有16个顶点(共同的顶点算一个),以其中不在一条直线上的3个点为顶点,可以构成三角形.在这些三角形中,与阴影三角形有同样大小面积的有多少个?
【巩固】图中每个小正方形的边长都是l厘米,则在图中最多可以画出面积是3平方厘米的格点三角形(顶点在图中交叉点上的三角形)____个。
【例 11】九个大小相等的小正方形拼成了右图.现从点A走到点B,每次只能沿着小正方形的对角线从一个顶点到另一个顶点,不允许走重复路线(如图的虚线就是一种走法).那么从点A走到点B共有________种不同的走法.
【例 12】国际象棋中“马”的走法如图所示,位于○位置的“马”只能走到标有×的格中.在5×5个方格的国际象棋棋盘上(如右图)放入四枚白马(用○表示)和四枚黑马(用●表示).要求将四枚白马移至四枚黑马的位置,将四枚黑马移至四枚白马的位置,而且必须按照国际象棋的规则,棋子只能移动到空格中,每个格最多放一枚棋子.那么最少需要__________步.
【奥赛】小学数学竞赛:平均数问题.学生版解题技巧 培优 易错 难
【例 33】小龙5次测验每次都得84分,小海前4次测验分别比小龙多出1分、2分、3分、4分,那么小海第五次测验至少应得_____分,才能确保5次测验平均成绩高于小龙至少3分。
【例 36】将和为45的9个数分成 、 两组,如果将 组中的数4移到 组中,则 、 两组数的平均数都比原来大 .求 组中原来有多少个数?
【例 7】有五个数,平均数是9,如果把其中的一个数改为1,那么这五个数的平均数是8,这个改动的数原来是多少?
【例 8】果品店把3千克水果糖,9千克奶糖混合成什锦糖,已知水果糖每千克7元,奶糖每千克11元,那么什锦糖每千克多少元?
【巩固】果品店把2千克酥糖,3千克水果糖,5千克奶糖混合成什锦糖.已知酥糖每千克4.40元,水果糖每千克4.20元,奶糖每千克7.20元.问:什锦糖每千克多少元?
【巩固】在一次数学竞赛中,甲队的平均分为75分,乙队的平均分为73分,两队全体同学的平均分为73.5分,又知乙队比v甲队多6人,那么乙队有多少人?
【巩固】甲班51人,乙班49人,某次考试两个班全体同学的平均成绩是81分,乙班的平均成绩要比甲班平均成绩高7分,那么乙班的平均成绩是多少分?
【例 18】小永的三门功课的成绩,如果不算语文,平均分是98分;如果不算数学,平均分是93;如果不算英语,平均分是91。小永三门功课的平均成绩是分。
【例 19】已知八个连续奇数的和是144,求这八个连续奇数。
【例 20】六年级某班学生中有 的学生年龄为13岁,有 的学生年龄为12岁,其余学生年龄为11岁,这个班学生的平均年龄是________岁.
完全平方数奥数题目
完全平方数奥数题目摘要:一、完全平方数的定义和性质1.完全平方数的定义2.完全平方数的性质二、完全平方数的应用1.求解完全平方数2.完全平方数与勾股定理3.完全平方数与概率论三、完全平方数的奥数题目1.判断一个数是否为完全平方数2.求一个数的平方根3.求两个完全平方数的和正文:完全平方数是一个数学概念,它指的是一个数可以表示为某个整数的平方。
例如,4、9、16 等都是完全平方数,因为它们可以表示为2^2、3^2、4^2 的形式。
完全平方数具有一些有趣的性质,例如,如果一个数是完全平方数,那么它的因数一定是成对出现的。
在数学中,完全平方数有着广泛的应用。
例如,在求解完全平方数时,我们可以使用公式:如果一个数的平方根是整数,那么这个数就是完全平方数。
此外,完全平方数还与勾股定理有着密切的关系。
勾股定理指出,在一个直角三角形中,斜边的平方等于两直角边的平方和。
因此,如果一个数是完全平方数,那么它一定可以表示为两个整数的平方和。
在概率论中,完全平方数也有着重要的应用。
例如,假设有一个袋子,里面有若干个红球和白球,我们想要取出一个红球。
如果我们随机地从袋子中取出一个球,那么取出红球的概率就等于红球的个数除以球的总数。
如果我们想要计算这个概率的平方,那么我们就需要计算所有可能的取球方式的概率,这些概率可以表示为完全平方数。
在奥数比赛中,完全平方数也是一个常见的考点。
例如,可能会给出一个数,要求我们判断它是否为完全平方数。
或者,可能会给出两个数,要求我们求它们的平方和。
对于这类题目,我们需要熟悉完全平方数的性质,并且能够灵活运用它们来解决问题。
总的来说,完全平方数是一个有趣的数学概念,它在数学和概率论中都有着广泛的应用。
小学奥数25完全平方数
2、7完全平方数2、7、1相关概念完全平方即用一个整数乘以自己例如1*1,2*2,3*3等等,依此类推。
若一个数能表示成某个整数得平方得形式,则称这个数为完全平方数。
完全平方数就是非负数。
2、7、2性质推论例如:0,1,4,9,16,25,36,49,64,81,100,121,144,169,196,225,256,289,324,361,400,441,484,529…观察这些完全平方数,可以获得对它们得个位数、十位数、数字与等得规律性得认识。
下面我们来研究完全平方数得一些常用性质:性质1:末位数只能就是0,1,4,5,6,9。
此为完全平方数得必要不充分条件,且定义为“一个数如果就是另一个整数得完全平方,那么我们就称这个数为完全平方数”,0为整数,故0就是完全平方数性质2:奇数得平方得个位数字一定就是奇数,十位数字为偶数;偶数得平方得个位数字一定就是偶数。
证明奇数必为下列五种形式之一:10a+1,10a+3,10a+5,10a+7,10a+9分别平方后,得)10a+3)2=100a2+60a+9=20a(5a+3)(10a+1)2=100a2+20a+1=20a(5a+1)+1ﻫ+9ﻫ(10a+5)2=100a2+100a+25=20(5a+5a+1)+5(10a+7)2=100a2+140a+49=20 (5a+7a+2)+9(10a+9)2=100a2+180a+81=20(5a+9a+4)+1综上各种情形可知:奇数得平方,个位数字为奇数1,5,9;十位数字为偶数。
性质3:如果完全平方数得十位数字就是奇数,则它得个位数字一定就是6;反之,如果完全平方数得个位数字就是6,则它得十位数字一定就是奇数。
证明已知m2=10k+6,证明k为奇数。
因为k得个位数为6,所以m得个位数为4或6,于就是可设m=10n+4或10n+6。
则10k+6=(10n+4)2=100+(8n+1)x10+6或10k+6=(10n+6)2=100+(12n+3)x10+6即 k=10+8n+1=2(5+4n)+1或 k=10+12n+3=2(5+6n)+3∴k为奇数。
完全平方数奥数题目
完全平方数奥数题目在学习数学的过程中,我们经常会遇到各种有趣的数学题目。
今天,我们将介绍一类常见的数学题目——完全平方数奥数题目。
完全平方数是指一个数的平方根是一个整数。
比如,1、4、9、16等都是完全平方数。
而2、3、5、6等则不是完全平方数。
下面,我们来看一些关于完全平方数的奥数题目示例。
题目一:从1到20中,有几个数是完全平方数?解析:根据完全平方数的定义,我们可以计算得出1、4、9、16是完全平方数,所以从1到20中,共有4个数是完全平方数。
题目二:请问100到200中有几个完全平方数?解析:我们可以将100到200逐个检查是否是完全平方数。
首先计算100的平方根,得到10,符合完全平方数的定义。
接着计算101,发现平方根是10.1,不是整数,不符合完全平方数的定义。
继续检查102,平方根为10.2,同样不符合定义。
以此类推,一直检查到200,得知200的平方根为14.14,也不是整数。
综上所述,从100到200中,共有1个完全平方数,即100。
题目三:请问25到125中的完全平方数有哪些?解析:与题目二类似,我们逐个检查25到125中的数是否是完全平方数。
首先计算25的平方根,得到5,符合完全平方数的定义。
接着计算26,平方根为5.1,不符合定义。
继续检查27,平方根为5.196,也不是整数。
一直检查到125,得知125的平方根为11.18,同样不是整数。
因此,从25到125中,共有2个完全平方数,分别是25和36。
通过以上题目的解析,我们对完全平方数的概念和计算方法有了一定的了解。
希望通过这些练习,我们能够更好地掌握和运用数学知识,提高自己的解题能力。
总结:完全平方数奥数题目涉及到对数学概念的理解和计算能力的运用。
通过熟练掌握完全平方数的性质以及计算方法,我们能够更加灵活地解决相关的奥数题目。
在学习数学的过程中,我们要善于总结和归纳,逐步提高自己的思维能力和解题技巧。
希望本文对你理解和解答完全平方数奥数题目有所帮助。
【奥赛】小学数学竞赛:鸡兔同笼问题(三).学生版解题技巧 培优 易错 难
1. 熟悉鸡兔同笼的“砍足法”和“假设法”.2. 利用鸡兔同笼的方法解决一些实际问题,需要把多个对象进行恰当组合以转化成两个对象.一、鸡兔同笼这个问题,是我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗? 二、解鸡兔同笼的基本步骤解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”.这样,鸡和兔的脚的总数就由94只变成了47只;如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总只数47与总头数35的差,就是兔子的只数,即473512-=(只).显然,鸡的只数就是351223-=(只)了。
这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.除此之外,“鸡兔同笼”问题的经典思路“假设法”.假设法顺口溜:鸡兔同笼很奥妙,用假设法能做到,假设里面全是鸡,算出共有几只脚,和脚总数做比较,做差除二兔找到.解鸡兔同笼问题的基本关系式是:如果假设全是兔,那么则有:鸡数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数) 兔数=鸡兔总数-鸡数如果假设全是鸡,那么就有:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数) 鸡数=鸡兔总数-兔数 当头数一样时,脚的关系:兔子是鸡的2倍 当脚数一样时,头的关系:鸡是兔子的2倍在学习的过程中,注重假设法的运用,渗透假设法的重要性,在以后的专题中,如工程,行程,方程等专题中也都会接触到假设法模块一、多个量的“鸡兔同笼”——鸡兔同笼问题【例 1】 有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿;蜻蜓6条腿,两对翅膀;蝉6条腿,一对翅膀),求蜻蜓有多少只?【巩固】 希望小学的生物标本室里有蜻蜓,蝉,蜘蛛共11只,它们共有74条腿,10对翅膀,由图7知该标本室里有 只蜘蛛。
【奥赛】小学数学竞赛:统筹规划.学生版解题技巧 培优 易错 难
【例 6】右图是一张道路示意图,每段路上的数字表示小明走这段路所需要的时间(单位:分).小明从A到B最快要几分钟?
1.掌握合理安排时间、地点问题.
2.掌握合理布线和调运问题.
知识点说明:
统筹学是一门数学学科,但它在许多的领域都在使用,在生活中有很多事情要去做时,科学的安排好先后顺序,能够提高我们的工作效率.我国著名数学家华罗庚教授生前十分重视数学的应用,并亲自带领小分队推广优选法、统筹法,使数学直接为国民经济发展服务,他在中学语文课本中,曾有一篇名为《统筹原理》的文章详,细介绍了统筹方法和指导意义.运筹学是利用数学来研究人力、物力的运用和筹划,使它们能发挥最大效率的科学。它包含的内容非常广泛,例如物资调运、场地设置、工作分配、排队、对策、实验最优等等,每类问题都有特定的解法。运筹学作为一门科学,要运用各种初等的和高等的数学知识及方法,但是其中分析问题的某些朴素的思想方法,如高效率优先的原则、调整比较的思想、尝试探索的方法等,都是我们小学生能够掌握的。这些来源于生活实际的问题,正是启发同学们学数学、用数学最好的思维锻炼题目。
【例 10】某个班的 个学生的家庭住址在城市中的分布如图(圆点是各个学生的家庭住址,线段是街道),如果这个班的学生举行一个聚会,为了尽量减少每个学生行走路程总和,那么他们应该选择十字路口附近的地点。(横线上填十字路口的坐标,如 所在的十字路口的坐标为 )。
【例 11】右图是A,B,C,D,E五个村之间的道路示意图,○中数字是各村要上学的学生人数,道路上的数表示两村之间的距离(单位:千米).现在要在五村之中选一个村建立一所小学.为使所有学生到学校的总距离最短,试确定最合理的方案.
【奥赛】小学数学竞赛:算式谜(二).学生版解题技巧 培优 易错 难
偶数-偶数=偶数.
④整数的乘法有以下性质:
奇数×奇数=奇数;
奇数×偶数=偶数;
偶数×偶数=偶数.
模块一、填横式数字谜
【例 1】将数字1~9填入下面方框,每个数字恰用一次,使得下列等式成立; 现在“2”、“4”已经填入,当把其它数字都填入后,算式中唯一的减数(★处)是.
【例 2】将1~9这九个数字分别填入下面算式的空格内,其中有一个数字已经知道,每个空格内只许填一个数字,使算式成立:
【例 3】1~9这九个数字分别填入下面算式的空格中,每个空格只许填一个数字,使算式成立:
模块二、填横式数字谜综合
【例 4】将1~9分别填入下面算式的中 ,使每个算式都成立,其中1,2,5已填出.
【例 5】下题是由1~9这九个数字组成的算式,其中有一个数字已经知道,请将其余的数字填入空格,使算式成立:
算符:指+、-、×、÷、()、[]、{}。
二、解决巧填算符的基本方法
(1)凑数法:根据所给的数,凑出一个与结果比较接近的数,再对算式中剩下的数字作适当的增加或减少,从而使等式成立。
(2)逆推法:常是从算式的最后一个数字开始,逐步向前推想,从而得到等式。
三、奇数和偶数的简单性质
(一)定义:整数可以分为奇数和偶数两类
【例 26】将1、2、3、……、15、16填入右图的16个方格中,并满足下列条件.(1) ;(2) ;(3) ;(4) ;(5) ;(7) ;(7) :(8) ;(9) .那么L=__________.
【例 27】如图,A,B,C,D,E,F,G,H,I,J表示10个各不相同的数字。表中的数为所在行与列的对应字母的和,例如“G+C=14”。请将表中其它的数全部填好。
【奥赛】小学数学竞赛:多次相遇和追及问题.学生版解题技巧 培优 易错 难
1. 学会画图解行程题2. 能够利用柳卡图解决多次相遇和追及问题3. 能够利用比例解多人相遇和追及问题板块一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.【例 1】 甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【巩固】 甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【巩固】 甲、乙两人从400米的环形跑道上一点A 背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走0.1米,那么两人第五次相遇的地点与点A 沿跑道上的最短路程是多少米?【例 2】 甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。
如果二人的速度各增加1千米/时,那么相遇地点距前一次相遇地点1千米。
问:甲、乙二人的速度各是多少?板块二、运用倍比关系解多次相遇问题知识精讲教学目标3-1-4多次相遇和追及问题地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?【例 4】甲、乙两车同时从A地出发,不停的往返行驶于A,B两地之间。
已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C地。
问:甲车的速度是乙车的多少倍?【例 5】如图,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.【巩固】A、B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D点第二次相遇.已知C离A有75米,D离B有55米,求这个圆的周长是多少米?【巩固】如右图,A,B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D点第二次相遇。
【奥赛】小学数学竞赛:行程综合问题.学生版解题技巧 培优 易错 难
行程综合问题教学目标1.运用各种方法解决行程内综合问题。
2.发现一些综合问题中,行程与其它模块的联系,并解决奥数综合问题。
知识精讲行程问题是奥数中的一个难点,内容多而杂。
而在行程问题中,还有一些尤其复杂的综合问题。
它们大致可以分为两类:一、行程内综合,把行程问题中的一些零散的知识点综合在一道题目中,这就是一道行程内综合题目。
例如把环形跑道和猎狗追兔结合在一起,把流水行船和发车间隔结合起来等等。
二、学科内综合,这种问题就不只是行程问题了,把行程问题和其它知识模块里的思想方法结合在一起,这种综合性题目的难度也很大,比如行程与策略综合等等。
本讲内容主要就是针对这种综合性题目。
虽然题目难度偏大,但是这种题目在杯赛和小升初试题中是很受“偏爱”的。
所以很重要。
模块一、行程内综合【例 1】邮递员早晨7时出发送一份邮件到对面山里,从邮局开始要走12千米上坡路,8千米下坡路。
他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地停留1小时以后,又从原路返回,邮递员什么时候可以回到邮局?【例 2】小红上山时每走30分钟休息10分钟,下山时每走30分钟休息5分钟.已知小红下山的速度是上山速度的1.5倍,如果上山用了3小时50分,那么下山用了多少时间?【例 3】已知猫跑5步的路程与狗跑3步的路程相同;猫跑7步的路程与兔跑5步的路程相同.而猫跑3步的时间与狗跑5步的时间相同;猫跑5步的时间与兔跑7步的时间相同,猫、狗、兔沿着周长为300米的圆形跑道,同时同向同地出发.问当它们出发后第一次相遇时各跑了多少路程?【例 4】甲、乙两人沿400 米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。
相遇后甲比原来速度增加 2 米/秒,乙比原来速度减少 2 米/秒,结果都用24 秒同时回到原地。
求甲原来的速度。
【例 5】环形跑道周长是500米,甲、乙两人从起点按顺时针方向同时出发。
甲每分跑120米,乙每分跑100米,两人都是每跑200米停下休息1分。
小学奥数全能解法及训练课件完全平方数
252 = 625
完全平方数
精讲2 尾数特征1
完全平方数的 个位只可能是 0,1,4,5,6,9
常用完全平方数表
尾数特征2
奇数平方 个位数字是奇数 十位数字为偶数
精讲3 尾数特征3
偶数平方 个位数字 是偶数
常用完全平方数表
尾数特征4
两个相临平方数 之间不可能再有 平方数
精讲4 余数特征1
完全平方数除 以 3 的余数只 能是 0或1。
常用完全平方数表
余数特征2
完全平方数除 以 4 的余数只 能是 0或1。
精讲5
完全平方 数的因数有
奇数个
常用完全平方数表 每个质因
数的次数都是 偶数次。
因数特征
精讲6
常用完全平方数表
102- 92 =100-81=19
102- 92 = (10+9)×(10-9)=19
平方差公式: X2-Y2=(X-Y)(X+Y)
末两位除以4的余数相同
例2 A、B是两个自然数,完全平方数的差为 51,且两个完 全平方数之间没有其他的完全平方数,求这两个数?
A、B 之差为1
A2-B2= (A-B)(A+B)
例2 A、B是两个完全平方数,平方数的差为 51,且这两个 完全平方数之间没有其他的完全平方数,求这两个数?
A2-B2=51
1008÷4=502
判断1和0的个数。
1008除以4的余数为0
规
律
总
结
练习2 100以内有且仅有 3 个因数的自然数有哪些?
参考 答案
102=100
自然数是10内的质数的平方。 自然数是2、3、5、7。
100 以内有且仅有 3 个 因 数的自然数应该是 10 以内的质数的平方。
【奥赛】小学数学竞赛:巧求周长.学生版解题技巧 培优 易错 难
一、基本概念①周长:封闭图形一周的长度就是这个图形的周长.②面积:物体的表面或封闭图形的大小,叫做它们的面积.二、基本公式:①长方形的周长2=⨯(长+宽),面积=长⨯宽.②正方形的周长4=⨯边长,正方形的面积=边长⨯边长.三、常用方法:(1)对于基本的长方形和正方形图形,可以直接用公式求出它们的周长和面积,对于一些不规则的比较复杂的几何图形,我们可以采用转化的数学思想方法割补成基本图形,利用长方形、正方形周长及面积计算的公式求解.(2)转化是一种重要的数学思想方法,在转化过程中要抓住“变”与“不变”两个部分.转化后的图形虽然形状变了,但其周长和面积不应该改变,所以在求解过程中不能遗漏掉某些线段的长度或某部分图形的面积.转化的目标是将复杂的图形转化为周长或面积可求的图形.(3)寻求正确有效的解题思路,意味着寻找一条摆脱困境、绕过障碍的途径.因此,我们在解决数学问题时,思考的着重点就是要把所需解决的问题转化为已经能够解决的问题.也就是说,在直接求解不容易或很难找到解题途径的问题时,我们往往转化问题的形式,从侧面或反面寻找突破口,知道最终把它转化成一个或若干个能解决的问题.这种解决问题的思想在数学中叫“化归”,它是数学思维中重要的思想和方法.(4)在几何中,有许多图形是由一些基本图形组合、拼凑而成的.这样的图形我们称为不规则图形.不规则图形的面积往往无法直接应用公式计算.那么,不规则图形的面积怎样去计算呢?对称、旋转、平移这几种几何变换就是解决这类面积问题的手段.四、几个重要的解题思想 (1)平移在平面图形的计算中,常常要将一个平面图形移动到平面上的另一个位置进行计算.其中,将图形沿一个固定方向的移动叫做平移,一个图形经过平行移动不改变其形状与大小,所以图形面积是保持不变的.利用图形的平移,可以使面积计算问题的解法简捷明快,颇有新意.(2)割补割补法在我国古代叫“出入相补原理”,我国古代魏晋时期著名的数学家刘徽在《九章算术注》中就明确地提出“出入相补,各从其类”的出入相补原理.这个原理的内容是几何图形经过分、合、移、补所拼凑成的新图形,它的面积不变.知识点拨4-2-2.巧求周长(3)旋转在平面图形的割补中,有时要将一个图形绕定点旋转到一个新的位置,产生一种新的图形结构,图形在转动过程中形状大小不发生改变.利用这种新的图形结构可以帮我们解决面积的计算问题.(4)对称平面图形中有许多简单漂亮的图形都是轴对称图形.轴对称图形沿对称轴折叠,轴两侧可以完全重合.也就是说,如果一个图形是轴对称图形,那么对称轴平分这个图形的面积.熟悉轴对称图形这个性质,对面积计算会有很大帮助.(5)代换在几何计算中,对有关数量进行适当的等量代换也是解决问题的已知技巧.小结:本讲主要通过求一些不规则图形的周长,体会一种转化思想,重点在于把不规则图形转化为规则图形的方法,包括平移、旋转、割补、差不变原理,通过这些方法的学习,让学生体会求周长的技巧,提高学生的观察能力、动手操作能力、综合运用能力.例题精讲模块一、图形的周长和面积——割补法【例 1】求图中所有线段的总长(单位:厘米)【例 2】如图所示,点B是线段AD的中点,由A、B、C、D四个点所构成的所有线段的长度均为整数,若这些线段的长度之积为10500,则线段AB的长度是。
【奥赛】小学数学竞赛:排列的综合应用.学生版解题技巧 培优 易错 难
⑵能组成多少个正整数?
⑶能组成多少个六位奇数?
⑷能组成我少个能被 整除的四位数?
⑸能组成多少个比 大的数?
⑹求三位数的和.
【例 14】由0,2,5,6,7,8组成无重复数字的数.
⑴四位数有多少个?
⑵四位数奇数有多少个?
⑶四位数偶数有多少个?
⑷整数有多少个?
⑸是5的倍数的三位数有多少个?
【例 8】书架上有 本故事书, 本作文选和 本漫画书,全部竖起来排成一排.⑴如果同类的书不分开,一共有多少种排法?⑵如果同类的书可以分开,一共有多种排法?
【例 9】一共有赤、橙、黄、绿、青、蓝、紫七种颜色的灯各一盏,按照下列条件把灯串成一串,有多少种不同的串法?
⑴把 盏灯都串起来,其中紫灯不排在第一位,也不排在第七位.
【例 1】甲、乙、丙、丁、戊、己六个人站队,要求:甲乙两人之间必须有两个人,问一共有多少种站法?
【巩固】甲、乙、丙、丁、戊、己六个人站队,要求:甲乙两人之间最多有两个人,问一共有多少种站法?
【例 2】甲、乙、丙、丁、戊、己六个人站队,要求:甲不能站在队伍左半边,乙不能站在队伍右半边,丙不能站在队伍两端,问一共有多少种站法?
⑹是25的倍数的四位数有多少个?
⑺大于5860的四位数有多少个?
⑻小于5860的四位数有多少个?
⑼由小到大排列的四位数中,5607是第几个数?
⑽由小到大排列的四位数中,第128个数是多少?
【例 15】⑴从1,2,…,8中任取3个数组成无重复数字的三位数,共有多少个?(只要求列式)
⑵从8位候选人中任选三位分别任团支书,组织委员,宣传委员,共有多少种不同的选法?
⑵串起其中 盏灯,紫灯不排在第一位,也不排在第四位.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 学习完全平方数的性质;
2. 整理完全平方数的一些推论及推论过程
3. 掌握完全平方数的综合运用。
一、完全平方数常用性质 1.主要性质
1.完全平方数的尾数只能是0,1,4,5,6,9。
不可能是2,3,7,8。
2.在两个连续正整数的平方数之间不存在完全平方数。
3.完全平方数的约数个数是奇数,约数的个数为奇数的自然数是完全平方数。
4.若质数p 整除完全平方数2a ,则p 能被a 整除。
2.性质
性质1:完全平方数的末位数字只可能是0,1,4,5,6,9.
性质2:完全平方数被3,4,5,8,16除的余数一定是完全平方数.
性质3:自然数N 为完全平方数⇔自然数N 约数的个数为奇数.因为完全平方数的质因数分解中每个质因
数出现的次数都是偶数次,所以,如果p 是质数,n 是自然数,N 是完全平方数,且21|n p N -,则
2|n p N .
性质4:完全平方数的个位是6⇔它的十位是奇数.
性质5:如果一个完全平方数的个位是0,则它后面连续的0的个数一定是偶数.如果一个完全平方数的个
位是5,则其十位一定是2,且其百位一定是0,2,6中的一个.
性质6:如果一个自然数介于两个连续的完全平方数之间,则它不是完全平方数.
3.一些重要的推论
1.任何偶数的平方一定能被4整除;任何奇数的平方被4(或8)除余1.即被4除余2或3的数一定不是完全平方数。
2.一个完全平方数被3除的余数是0或1.即被3除余2的数一定不是完全平方数。
3.自然数的平方末两位只有:00,01,21,41,61,81,04,24,44,64,84,25,09,29,49,69,89,16,36,56,76,96。
4.完全平方数个位数字是奇数(1,5,9)时,其十位上的数字必为偶数。
5.完全平方数个位数字是偶数(0,4)时,其十位上的数字必为偶数。
6.完全平方数的个位数字为6时,其十位数字必为奇数。
7.凡个位数字是5但末两位数字不是25的自然数不是完全平方数;末尾只有奇数个“0”的自然数不是完全平方数;个位数字为1,4,9而十位数字为奇数的自然数不是完全平方数。
3.重点公式回顾:平方差公式:22()()a b a b a b -=+-
模块一、完全平方数计算及判断
例题精讲
知识点拨
教学目标
5-4-4.完全平方数及应用(一)
【例 1】 已知:1234567654321×49是一个完全平方数,求它是谁的平方?
【例 2】 1234567654321(1234567654321)⨯++++++++++++是 的平方.
【例 3】 已知自然数n 满足:12!除以n 得到一个完全平方数,则n 的最小值是 。
【例 4】 有一个正整数的平方,它的最后三位数字相同但不为0,试求满足上述条件的最小的正整数.
【例 5】 A 是由2002个“4”组成的多位数,即20024
4444L 14243个,A 是不是某个自然数B 的平方?如果是,写出B ;
如果不是,请说明理由.
【巩固】 A 是由2008个“4”组成的多位数,即444L 12
32008个4
,A 是不是某个自然数B 的平方?如果是,写出B ;如果不是,请说明理由.
【例 6】 计算1111L 1232004个1
-2222L 142431002个2
=A ×
A ,求A .
【例 7】 ①2
20044
20038
444488889A =L L 1424314243个个,求A 为多少?
②求是否存在一个完全平方数,它的数字和为2005?
模块二、平方数特征 (1) 平方数的尾数特征
【例 8】 下面是一个算式:112123123412345123456+⨯+⨯⨯+⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯⨯⨯,这个算式的得数
能否是某个数的平方?
【例 9】 一个数与它自身的乘积称为这个数的平方.各位数字互不相同且各位数字的平方和等于49的四位
数共有________个.
【例 10】 用1~9这9个数字各一次,组成一个两位完全平方数,一个三位完全平方数,一个四位完全平方
数.那么,其中的四位完全平方数最小是 .
【例 11】 称能表示成1+2+3+…+K 的形式的自然数为三角数,有一个四位数N ,它既是三角数,又是完全
平方数,N= 。
(2) 奇数个约数——指数是偶数
【例 12】 在224⨯=,339⨯=,4416⨯=,5525⨯=,6636⨯=,……等这些算是中,4,9,16,25,36,……
叫做完全平方数。
那么,不超过2007的最大的完全平方数是_________。
【例 13】 写出从360到630的自然数中有奇数个约数的数.
【例 14】 1016与正整数a 的乘积是一个完全平方数,则a 的最小值是________.
【巩固】 已知3528a 恰是自然数b 的平方数,a 的最小值是 。
【例 15】 从1到2008的所有自然数中,乘以72后是完全平方数的数共有多少个?
【例 16】 已知自然数n 满足:12!除以n 得到一个完全平方数,则n 的最小值是 。
【例 17】 有5个连续自然数,它们的和为一个平方数,中间三数的和为立方数,则这五个数中最小数的最
小值为 .
【例 18】求一个最小的自然数,它乘以2后是完全平方数,乘以3后是完全立方数,乘以5后是5次方数.
【例 19】三个连续正整数,中间一个是完全平方数,将这样的三个连续正整数的积称为“美妙数”.问:所有小于2008的美妙数的最大公约数是多少?
【例 20】考虑下列32个数:1!,2!,3!,……,32!,请你去掉其中的一个数,使得其余各数的乘积为一个完全平方数,划去的那个数是.
【例 21】一个数的完全平方有39个约数,求该数的约数个数是多少?
【例 22】有一个不等于0的自然数,它的1
2
是一个立方数,它的
1
3
是一个平方数,则这个数最小
是.
(3)平方数的整除特性
【例 23】三个连续正整数,中间一个是完全平方数,将这样的三个连续正整数的积称为“美妙数”。
问所有的小于2008的“美妙数”的最大公约数是多少?
【例 24】证明:形如11,111,1111,11111,…的数中没有完全平方数。
【例 25】记(123)(43)
L,这里3
S n k
=⨯⨯⨯⨯++
n≥.当k在1至100之间取正整数值时,有个不同的k,使得S是一个正整数的平方.
【例 26】能够找到这样的四个正整数,使得它们中任意两个数的积与2002的和都是完全平方数吗?若能够,请举出一例;若不能够,请说明理由.
【例 27】1351991
L的末三位数是多少?
⨯⨯⨯⨯
【例 28】求所有的质数P,使得2
61
p+也是质数.
41
p+与2
【例 29】古时候有两位贩卖家畜的商人把他们共有一群牛卖掉,每头牛买得的钱数正好等于牛的头数。
他们把所得的钱买回了一群羊,每只羊10文钱,钱的零头又买了一只小羊。
他们平分了这些羊,结
果第一个人多得了一只大羊,第二人得到了那只小羊。
为了公平,第一个人应补给第二个人____
文钱。
【例 30】。