湘教版一元一次方程应用题1(行程问题)

合集下载

一元一次方程应用题------行程问题

一元一次方程应用题------行程问题

基本的数量关系: 路程=速度×时间要特别注意:(1)路程、速度、时间的对应关系(即在某段路程上所对应的速度和时间各是多少)(2)在列方程时候,时间单位和路程单位一定要与速度单位一致1、甲、乙二人相向相遇问题⑴甲走的路程+乙走的路程=总路程 ⑵二人所用的时间相等或有提前量2、甲、乙二人中,慢者所行路程或时间有提前量的同向追击问题⑴甲走的路程-乙走的路程=提前量 ⑵二人所用的时间相等或有提前量3、单人往返⑴ 各段路程和=总路程 ⑵ 各段时间和=总时间 ⑶ 匀速行驶时速度不变4、行船问题与飞机飞行问题⑴ 顺水速度=静水速度+水流速度 ⑵ 逆水速度=静水速度-水流速度5、考虑车长的过桥或通过山洞隧道问题将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然。

6、时钟问题:⑴通常将时钟问题看作以整时整分为起点的同向追击问题来分析。

常用数据:① 时针的速度是0.5°/分 ② 分针的速度是6°/分 ③ 秒针的速度是6°/秒一、一般行程问题(相遇与追击问题)例题1:某人从家里骑自行车到学校。

若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?解:等量关系 ⑴ 速度15千米行的总路程=速度9千米行的总路程⑵ 速度15千米行的时间+15分钟=速度9千米行的时间-15分钟方法一:设预定时间为x 小/时,则列出方程是:15(x -0.25)=9(x +0.25)方法二:设从家里到学校有x 千米,则列出方程是:60159601515-=+x x例题2、一列火车匀速行驶,经过一条长300m 的隧道需要20s 的时间。

隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s ,根据以上数据,你能否求出火车的长度?火车的长度是多少?若不能,请说明理由。

解:方法一:设这列火车的长度是x 米,根据题意,得1020300x x =+ x =300 答:这列火车长300米。

一元一次方程解应用题(行程问题)

一元一次方程解应用题(行程问题)

1、甲乙两站相距318千米,一列慢车从甲站开往乙站,每小时行48千米,慢车开了1小时后,一列快车从乙站开往甲站,每小时行72千米,慢车开了几小时与快车相遇?2、甲乙两人从A地前往B地,乙比甲晚出发40分钟,结果在甲行到离B地还差5千米处,乙追上甲,已知甲每小时行6千米,比乙每小时少行2千米,求AB两地间的路程。

3、一船从甲地沿河顺流而下,9小时到达乙地,按原路返回,则需11小时,已知水流速度是2千米/时,求甲乙两地间的距离。

4、一辆汽车用40千米/时的速度由甲地驶向乙地,车行了3小时后,因遭雨平均速度被迫每小时减少10千米,结果到达乙地的时间比预计时间晚了45分钟,求甲乙两地间的距离。

5、甲骑自行车从A地B地,2小时后,乙步行由A地向B地走去,乙出发2小时后,甲到达B地,此时乙距B地32千米,乙继续前进,甲在B地休息2小时30分钟后沿原路返回,经过1小时与乙在P地相遇,求此时乙距B地多远?6、一个通讯员骑自行车需要在规定的时间内,把信送到某地,如果每小时走15千米,就早到24分钟;如果每小时走12千米,就要迟到15分钟,问原定时间是多少?他去某地的路程有多远?7、一辆卡车从甲地开往乙地,出发3小时后,一辆轿车也从甲地开往乙地,轿车比卡车晚20分钟到达乙地,已知卡车速度是20千米/时,轿车速度比卡车速度快2倍,求甲乙两地间的距离。

8、甲乙两辆汽车,甲车以每小时40千米的速度从A地出发到B 地,当行了全程的时,乙车从A地以同样的速度出发,这时甲在原地休息了15分钟,乙接到命令要与甲同时到达B地,此时乙车速度每小时增加20千米。

求AB两地间的距离。

9、甲在南北方向的街道上,由南往北走,乙在东西的大路上由西往东走,甲的出发地点距离交叉点1120米,乙的出发地点在交叉点,二人同时出发56分钟后,甲行过交叉点,此时二人所在位置与交叉点距离相等。

已知甲乙的速度比是15:13,求甲乙二人的速度。

10、A、B两地相距630千米,甲乙两人从A地到B地,甲骑摩托车,乙开汽车,甲出发1小时后,乙也从A地出发,又2小时后,在途中遇到甲,两人继续以原速度前进,乙到B地后立即沿原路返回,途中又与甲相遇,已知从甲乙第一次相遇到第二次相遇共用6小时,求甲乙二人的速度。

一元一次方程应用题——行程问题

一元一次方程应用题——行程问题

1. 某人从家里骑自行车到学校。

假设每小时行15千米,可比预定的时间早到15分钟;假设每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?2.在800米跑道上有两人练中长跑,甲每分钟跑320米,乙每分钟跑280米,•两人同时同地同向起跑,t分钟后第一次相遇,t等于多少分钟.3.一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过16秒,客车与货车的速度之比是3∶2,问两车每秒各行驶多少米?4.一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时40分钟,逆风飞行需要3小时,求两城市间距离?5.轮船在静水中的速度是20千米/小时,从甲港顺流到乙港需8小时,返航时行走了6小时在距甲港68千米处发生故障,求水流速度?6.甲、乙两站相距280千米,一列慢车从甲站出发,每小时行驶60千米,一列快车从乙站出发,每小时行驶80千米,问两车同时开出,相向而行,出发后多少小时相遇?7.甲、乙两列火车,长为144米和180米,甲车比乙车每秒钟多行4米,两列火车相向而行,从相遇到错开需要9秒钟,问两车的速度各是多少?8.甲、乙两人分别同时从相距300米的A、B两地相向而行,甲每分钟走15米,乙每分钟走13米,问几分钟后,两个相距20米?9.甲乙两人骑自行车,从相距42千米的两地相向而行,甲每小时走12千米,乙每小时走10千米,如甲走12分钟后乙再出发,问甲出发后几小时与乙相遇?10.小红和小军两人同时从各自的家里出发去找对方,两家的直线距离为1200米,小红每分走55米,两人最后用61小时在途中某点相遇,那么小军每分钟走多少米?11.A 、B 两地相距80米,甲从A 地出发,每秒走1米,乙从B 地出发每秒走1.5米,如甲先走15米,求乙出发后多少秒与甲相遇?12.某汽车和电动车从相距298千米的两地同时出发相对而行,汽车的速度比电动车速度的6倍还多15千米,半小时后相遇。

一元一次方程——行程问题(完)1

一元一次方程——行程问题(完)1

行程问题(火车问题)例1 甲火车长210米,每秒行18米;乙火车长140米,每秒行13米。

乙火车在前,两火车在双轨车道上行驶。

甲火车从后面追上到完全超过乙火车要用多少秒?1、一列快车长150米,每秒行22米;一列慢车长100米,每秒行14米。

快车从后面追上慢车到超过慢车,共需几秒钟?2、小明以每秒2米的速度沿铁路旁的人行道跑步,身后开来一列长188米的火车,火车每秒行18米。

问:火车追上小明到完全超过小明共用了多少秒钟?3、A火车长180米,每秒行18米;B火车每秒行15米。

两火车同方向行驶,A火车从追上B火车到超过它共用了100秒钟,求B火车长多少米?例2 一列火车长180米,每秒钟行25米。

全车通过一条120米的山洞,需要多长时间?1、一列火车长360米,每秒行18米。

全车通过一座长90米的大桥,需要多长时间?2、一座大桥长2100米。

一列火车以每分钟800米的速度通过这座大桥,从车头上桥到车尾离开共用3.1分钟。

这列火车长多少米?3、一列火车通过200米的大桥需要80秒,同样的速度通过144米长的隧道需要72秒。

求火车的速度和车长。

例3 有两列火车,一车长130米,每秒行23米;另一列火车长250米,每秒行15米。

现在两车相向而行,从相遇到离开需要几秒钟?1、有两列火车,一列长260米,每秒行18米;另一列长216米,每秒行30米。

现两列车相向而行,从相遇到相离需要几秒钟?2、一列火车长500米,要穿过一个长150米的山洞,如果火车每秒钟行26米,那么,从车头进洞到车长全部离开山洞一共要用几秒钟?3、一列火车长210米,以每秒40米的速度过一座桥,从上桥到离开桥共用20秒。

桥长多少米?例4 一列火车通过2400米的大桥需要3分钟,用同样的速度从路边的一根电线杆旁边通过,只用了1分钟。

求这列火车的速度。

1、一列火车从小明身旁通过用了15秒,用同样的速度通过一座长100米的桥用了20秒。

这列火车的速度是多少?2、一列火车长900米,从路旁的一棵大树旁通过用了1.5分钟,以同样的速度通过一座大桥用了3.5分钟。

湘教版七年级数学上册3.4.4利用一元一次方程解行程问题

湘教版七年级数学上册3.4.4利用一元一次方程解行程问题

夯实基础
解:设走路慢的人再走 600 步时,走路快的人走了 x 步, 根据题意得1x00=66000,解得 x=1 000, 1 000-600-100=300(步), 故走路快的人在前面,两人相隔 300 步.
夯实基础
(2)今不善行者先行两百步,善行者追之,问几何步及之? 即走路慢的人先走200步,请问走路快的人走多少步才 能追上走路慢的人? 解:设走路快的人走了y个100步,追上了走路慢的人, 根据题意得(100-60)y=200,解得y=5, 即走路快的人走500步才能追上走路慢的人.
整合方法
以此探究正常走时的时钟,时针和分针从0点(12点)同 时出发,分针旋转_____周,时针和分针第一次相遇.
整合方法
【点拨】设分针旋转 x 周,时针和分针第一次相遇,则时 针旋转了(x-1)周, 根据题意可得 60x=720(x-1), 解得 x=1121. 【答案】1121
整合方法
8.甲、乙两列火车的长分别为144米和180米,甲车比乙 车每秒多行4米.两列火车相向而行,从相遇到完全错 开需9秒.
整合方法
9.万州长江三桥于2019年5月30日建成通车,三桥如一架巨大 的竖琴屹立于平湖之上,巍峨挺拔,绚丽多彩,成为万州 靓丽的风景.周末,小明和爷爷一同在大桥上匀速散步, 他们散步的速度是50米/分,小明观察到同向车道上驶过的 公交车间隔时间是10分钟40秒,假定同向的公交车都保持 48千米/时的速度匀速行驶(中途停靠站的时间忽略不计), 且公交车从车站发车的时间间隔是固定的,则车站每隔 ____1_0___分钟发出一辆公交车.
整合方法
6.A,B两地间的路程为360 km,甲车从A地出发开往B 地,每小时行驶72 km,甲车出发25 min后,乙车从B 地出发开往A地,每小时行驶48 km.两车相遇后,各 自按原来速度继续行驶,那么相遇以后,两车相距100 km时,甲车从出发开始共行驶了多少小时? 【点拨】根据题意画出示意图如图,再利用相遇问题 的等量关系建立方程.

一元一次方程的应用(行程问题)测试题

一元一次方程的应用(行程问题)测试题

4.3一元一次方程的应用(行程问题)1.相遇、追及问题1.A、B两地相距450千米,甲乙两车分别从A、B两地同时出发。

已知甲车的速度为120千米/时,乙车的速度为80千米/时,经过t小时两车相距50千米,则t的值为 .2.甲乙两人绕400米的环形跑道练习跑步,甲每秒跑2m,乙每秒跑2.4m,两人从同一地点出发,x秒相遇。

(1)若反向而行,则可列方程;(2)若同向而行,则可列方程。

3.甲乙两站相距480公里,一列慢车从甲站开出,每小时行驶90公里,一列快车从乙站开出,每小时行140公里。

(1)慢车先开出1小时,快车再开出,两车相向而行,问快车开出多少小时后两车相遇?(2)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(3)两车同时开出,快车在慢车的后面,多少小时后快车追上慢车?4.张华和李明登一座山,张华每分钟登高10m,并且先出发30min(分),李明每分钟登15m,两人同时登上山顶。

设张华登山用了x min,如何用含x的式子表示李明登山所用的时间?试用方程求x的值,由x的值能求山高吗?如果能,山高是多少?5.王力骑自行车从A地到B地,陈平骑自行车从B地到A地,两人都沿同一公路匀速前进,已知两人在上午8时同时出发,到上午10时,两人还相距36km,到中午12时,两人又相距36km,求A、B两地间的路程。

6.A、B两地间的距离为360km,甲车从A地出发开往B地,每小时行驶72km;甲车出发25分钟后,乙车从B地开往A地,每小时行驶48km,两车相遇后,各自仍按原速度、原方向继续行驶,求相遇后两车相距100km 时,甲车共行驶了多少小时?7.甲从A地出发前往B地,20分钟后,乙从B地骑车出发前往A地,乙到达A地后停留40分钟,然后沿原路以原来的速度用了1小时就回到B地。

甲也同时到达,已知乙的速度比甲的速度多8千米/时,求A、B 两地之间的距离。

2.顺逆水(风)问题1.一架飞机在两城之间飞行,顺风需要4小时,逆风需要4.5小时;测得风速为45千米/时,求两城之间的距离。

一元一次方程应用题【行程问题】

一元一次方程应用题【行程问题】

学校:______________ 班级:______________ 姓名:_______________ 考号:_______________ ······················密························封·······························线······································一元一次方程应用题【板块一:相遇问题】1、甲、乙两人从相距为 180 千米的 A 、B 两地同时出发,甲骑自行车,乙开汽车,沿同一条路线相向匀速行驶。

湘教版七年级数学上册一元一次方程模型的应用行程问题课件

湘教版七年级数学上册一元一次方程模型的应用行程问题课件
参加劳动,走了1千米时,一名学生奉命以每小时5千米的速度
回校取一件物品,取得物品后又立即以同样的速度追赶队伍,
结果在距农场1.5千米的地方追上了队伍.求学校到农场的路程.
−−.
+−.
解:学校与农场相距s千米,根据题意,得




解这个方程,得s=10.5.
答:学校与农场相距10.5千米.
第三章
3.4
一元一次方程
一元一次方程模型的应用
第3课时
行程问题
素养目标
1.知道行程问题中的三个量及其关系:路程=速度×时间.
2.说出行程问题中的几种类型:相遇问题、追及问题、航
行问题.
3.会列一元一次方程解决实际生活中简单的行程问题.
◎重点:列一元一次方程解决实际生活中的行程问题.
◎难点:找行程问题中的等量关系.
已知A、C两地相距10千米,船在静水中的速度为7.5千米/时,
求A、B两地间的距离.
解:设A、B两地间的距离为x千米,
分层作业
当C地在A、B两地之间时,依题意得


.+.+.−.=4,解得x=20.
分层作业பைடு நூலகம்
当C地在A地上游时,依题意得

+


=4,解得x= .
.+. .−.
km,一列快车从乙站出发,每小时行驶80 km,如果两车同时
开出,相向而行,那么两车相遇时离甲站的距离是
A.120 km
B.140 km
C.160 km
D.180 km
(
A )
分层作业
4一个物体现在的速度是5米/秒,其速度每秒增加2米,则再过

一元一次方程应用题——行程问题

一元一次方程应用题——行程问题

行程问题【基本关系式】(1)行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间(2)基本类型①相遇问题:快行距+慢行距=原距②追及问题:快行距-慢行距=原距③航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度顺速–逆速 = 2水速;顺速 + 逆速 = 2船速顺水的路程 = 逆水的路程注意:抓住两码头间距离不变,水流速和船速(静水速)不变的特点考虑相等关系。

常见的还有:相背而行;环形跑道问题。

【经典例题】例1.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

(1)慢车先开出1小时,快车再开。

两车相向而行。

问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?例2.某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时。

A、C两地之间的路程为10千米,求A、B两地之间的路程。

【专项训练】一、行程(相遇)问题A.基础训练1.小李和小刚家距离900米,两人同时从家出发相向行,小李每分走60米,小刚每分走90米,几分钟后两人相遇?2.小明和小刚家距离900米,两人同时从家出发相向行,5分钟后两人相遇,小刚每分走80米,小明每分走多少米?3.王强和赵文从相距2280米的两地出发相向而行,王强每分行60米,赵文每分行80米,王强出发3分钟后赵文出发,几分钟后两人相遇?4.两辆车从相距360千米的两地出发相向而行,甲车先出发,每小时行60千米,1小时后乙车出发,每小时行40千米,乙车出发几小时两车相遇?5.两村相距35千米,甲乙二人从两村出发,相向而行,甲每小时行5千米,乙每小时行4千米,甲先出发1小时后,乙才出发,当他们相距9千米时,乙行了多长时间?6.甲乙二人从相距45千米的两地同时出发相向而行,甲比乙每小时多行1千米,5小时后二人相遇,求两人的速度。

行程问题--一元一次方程经典应用题

行程问题--一元一次方程经典应用题

行程问题--一元一次方程经典应用题行程问题一、相遇问题:路程=速度×时间甲、乙相向而行,则:甲走的路程+乙走的路程=总路程二、追及问题:甲、乙同向不同地,则:追者走的路程= 前者走的路程+两地间的距离三、环形跑道问题:1、甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢的。

2、甲、乙两人在环形跑道上同时同地反向出发:两人第一次相遇时的总路程为环形跑道一圈的长度。

四、航行问题1、飞行问题,基本等量关系:顺风速度=无风速度+风速逆风速度=无风速度-风速顺风速度-逆风速度=2×风速2、航行问题,基本等量关系:顺水速度=静水速度+水速逆水速度=静水速度-水速顺水速度-逆水速度=2×水速一、相遇问题1、甲乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?2、甲、乙两人同时从相距27km的A、B两地相向而行,3h后相遇,甲比乙每小时多走1km,求甲、乙两人的速度3、甲乙两城相距100千米,摩托车和自行车同时从两城出发,相向而行,2.5小时后两车相遇,自行车的速率是4、A,B两村相距2800米,小明从A村出发向B村步行5 分钟后,小军骑自行车从B村向A村出发,又经过10分钟二人相遇,小军骑自行车比小明步行每分钟多走130 米,小明每分钟步行多少米?5、甲、乙两人骑自行车,同时从相距65千米的两地相向而行,甲的速率为每小时17.5千米,乙的速率为每小时15千米,求经过几小时,甲、乙两人相距32.5千米。

6、甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5 小时后两车相遇。

乙车每小时行多少千米?二、追及问题1、A、B两地相距20km,甲、乙两人分别从A、B两发出发,甲的速度是6km/h,乙的速度是8km/h。

(1)若两人相向而行,甲先出发半小时,乙才出发,问乙出发后几小时与甲相遇?(2)若两人同时同向出发,甲在前,乙在后,问乙多少小时可追上甲?2、一个自行车队举行锻炼,锻炼时一切队员都以35千米/时的速率前进,忽然,1号队员以45千米/时的速率单独行进,行进10千米后掉转车头,仍以45千米/时的速度往回骑,知道与其他队员会和。

2023年湘教版七年级数学上册第3课时 利用一元一次方程解决行程问题

2023年湘教版七年级数学上册第3课时 利用一元一次方程解决行程问题
第3课时 利用一元一次方程解决行程问题源自湘教版 七年级上册情景导入
练习
甲乙两车分别从A、B两地同时出发,相向而 行,甲速度为20 km/h,乙速度为30 km/h,出发 x小时后,两人相遇, 那么甲车行了__2_0_x__km、乙车行了__3_0_x__km。 A、B两地相距 _2_0_x_+_3_0_x__km。 若A、B两站间的路程为500km,可得方程 __2_0_x_+__3_0_x_=_5_0_0_,求得x=__1_0_。
获取新知
动脑筋
星期天早晨,小斌和小强分别 骑自行车从家里同时出发去参观雷 锋纪念馆。已知他俩的家到雷锋纪 念馆的路程相等,小斌每小时骑 10km,他在上午10时到达;小强每 小时骑15km,他在上午9时30分到 达.求他们的家到雷锋纪念馆的路程。
速度×时间 = 路程
等量关系:
路程
路程
小斌的速度 - 小强的速度 = 他们到达的时间差
则根据等量关系,得
300 x = 300 x
20
10
解得 x= 100
答:火车长100 m。
►在有欢声笑语的校园里,满地都是雪,像一块大地毯。房檐上挂满了冰 凌,一根儿一根儿像水晶一样,真美啊!我们一个一个小脚印踩在大地毯 上,像画上了美丽的图画,踩一步,吱吱声就出来了,原来是雪在告我们 :和你们一起玩儿我感到真开心,是你们把我们这一片寂静变得热闹起来 。对了,还有树。树上挂满了树挂,有的树枝被压弯了腰,真是忽如一夜 春风来,千树万树梨花开。真好看呀! ►冬天,一层薄薄的白雪,像巨大的轻软的羊毛毯子,覆盖摘在这广漠的 荒原上,闪着寒冷的银光。
设他俩的家到雷锋纪念馆的路程均为 s km,
根据等量关系 得 s s 0.5 10 15

一元一次方程的应用——行程问题专题练习(解析版)

一元一次方程的应用——行程问题专题练习(解析版)

一元一次方程的应用——行程问题专题练习一、相遇问题1、小明和小刚从相距25千米的两地同时相向而行,3小时后两人相遇,小明的速度是4千米/小时,设小刚的速度为x千米/小时,列方程得().A. 4+3x=25B. 12+x=25C. 3(4+x)=25D. 3(4-x)=25答案:C解答:∵是相向而行,∴路程和=速度和×时间,∴3(4+x)=25,选C.2、甲、乙两地相距270千米,从甲地开出一辆快车,速度为120千米/时,从乙地开出一辆慢车,速度为75千米/时,如果两车相向而行,慢车先开出1小时后,快车开出,那么再经过多长时间两车相遇?若设再经过x小时两车相遇,则根据题意列方程为().A. 75×1+(120-75)x=270B. 75×1+(120+75)x=270C. 120(x-1)+75x=270D. 120×1+(120+75)x=270答案:B解答:设再经过x小时两车相遇,则根据题意列方程为75×1+(120+75)x=270.3、汽车以每小时72千米的速度笔直地开向寂静的山谷,驾驶员按一声喇叭,4秒后听到回响,已知声音的速度是每秒340米,听到回响时汽车离山谷的距离是______米.答案:640解答:首先进行单位的统一,72千米/时=20米/秒,设听到回响的时候,汽车离山谷的距离是x米,由题意得,2x=340×4-20×4,即2x+4×20=4×340.解得x=640.4、A、B两地间的距离为360km,甲车从A地出发开往B地,每小时行驶72km;甲车出发25分钟后,乙车从B地出发开往A地,每小时行驶48km,两车相遇后,各自仍按原速度、原方向继续行驶,求相遇以后两车相距100km时,甲车共行驶了多少小时?答案:甲车共行驶了4小时.解答:设甲车共行驶了x小时,72x+48(x-2560)=360+100,解得x=4答:甲车共行驶了4小时.5、甲骑摩托车,乙骑自行车从相距25km的两地相向而行.(1)甲,乙同时出发经过0.5小时相遇,且甲每小时行驶路程是乙每小时行驶路程的3倍少6km,求乙骑自行车的速度.(2)在甲骑摩托车和乙骑自行车与(1)相同的前提下,若乙先出发0.5小时,甲才出发,问:甲出发几小时后两人相遇?答案:(1)14km/h.(2)甲出发0.36小时后两人相遇.解答:(1)设乙骑自行车的速度为xkm/h,则甲的速度为(3x-6)km/h,根据题意可得(x+3x-6)×0.5=25,解得x=14,3x-6=36(km/h),答:乙骑自行车的速度为14km/h.(2)由题意可得14250.53614-⨯+=0.36(小时),答:甲出发0.36小时后两人相遇.6、小刚和小强从A、B两地同时出发,小刚骑自行车,小强步行,沿同一条路线相向匀速而行,出发后2h两人相遇,相遇时小刚比小强多行进24km,相遇后0.5h小刚到达B地,两人的行进速度分别是多少?相遇后经过多少时间小强到达A地?答案:两人的行进速度分别是16{km/h},4{km/h},相遇后经过8h小强到达A地.解答:设小刚的速度为x{km/h},则相遇时小刚走了2xkm,小强走了(2x-24)km,由题意得,2x-24=0.5x,解得:x=16,则小强的速度为:(2×16-24)÷2=4{km/h},2×16÷4=8h.答:两人的行进速度分别是16{km/h},4{km/h},相遇后经过8h小强到达A地.二、追及问题7、《九章算术》是中国古代数学专著,《九章算术》方程篇中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”这是一道行程问题,意思是说:走路快的人走100步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?如果走路慢的人先走100步,设走路快的人要走x步才能追上走路慢的人,那么,下面所列方程正确的是().A. 100x=60(x-100)B. 60x=100(x-100)C. 100x=60(x+100)D. 60x=100(x+100)答案:B解答:根据题意得60x=100(x-100).8、甲、乙两人练习长跑,已知甲每分钟跑300米,乙每分钟跑260米,若乙在甲前方120米处与甲同时、同向起跑,则甲在______分钟后追上乙.答案:3解答:设甲x分钟后追上乙,由题意,得:300x=260x+120,解得x=3.故答案为:3.9、五一长假日,弟弟和妈妈从家里出发一同去外婆家,他们走了1小时后,哥哥发现带给外婆的礼品忘在家里,便立刻带上礼品每小时6千米的速度去追,如果弟弟和妈妈每小时行2千米,则哥哥出发后______分钟追上弟弟和妈妈.答案:30解答:设出发后x小时追上弟弟和妈妈,由题意,得:(6-2)x=2×1,解得x=12,故哥哥出发后12小时追上,即30分钟.10、2012年11月北京降下了六十年来最大的一场雪,暴雪导致部分地区供电线路损坏,该地供电局立即组织电工进行抢修.抢修车装载着所需材料先从供电局出发,20分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.若抢修车以每小时30千米的速度前进,吉普车的速度是抢修车的速度的1.5倍,求供电局到抢修工地的距离.答案:供电局到抢修工地的距离为30千米.解答:设供电局到抢修工地的距离为x千米,由题意,有203060x-= 1.530x⨯.解得x=30.答:供电局到抢修工地的距离为30千米.11、列方程解应用题:登山运动是最简单易行的健身运动,在秀美的景色中进行有氧运动,特别是山脉中森林覆盖率高,负氧离子多,真正达到了身心愉悦的进行体育锻炼.张老师和李老师登一座山,张老师每分钟登高10米,并且先出发30分钟,李老师每分钟登高15米,两人同时登上山顶,求这座山的高度.答案:这座山的高度为900米.解答:设这座山的高度为x 米, 由题意列方程:1015x x =30, 15x -10x =4500,5x =4500,x =900,答:这座山的高度为900米.12、某校七年级学生从学校出发步行去博物馆参观,他们出发半小时后,张老师骑自行车按相同路线用15分钟赶上学生队伍.已知张老师骑自行车的速度比学生队伍步行的速度每小时多8千米,求学生队伍步行的速度?答案:学生队伍步行的速度为每小时4千米.解答:设学生队伍步行的速度为每小时x 千米,则张老师骑自行车的速度为每小时(x +8)千米, 根据题意,得34x =14(x +8), 解这个方程,得x =4,答:学生队伍步行的速度为每小时4千米.三、环形跑道及多次相遇问题13、学校操场的环形跑道长400米,小聪的爸爸陪小聪锻炼,小聪跑步每秒行2.5米,爸爸骑自行车每秒行5.5米,两人从同一地点出发,反向而行,每隔______秒两人相遇一次. 答案:50解答:设每隔x 秒两人相遇一次,根据题意得:2.5x +5.5x =400,解得x =50.14、甲、乙两人从400米的环形跑道的一点A背向同时出发,8分钟后两人第三次相遇,已知每秒钟甲比乙多行0.1米,那么两人第三次相遇的地点与点A沿跑道上的最短距离是______米.答案:176解答:方程法:设乙每秒行x米,则甲每秒行(x+0.1)米,依题意有8×60(x+x+0.1)=400×3,解得x=1.2,则在8分钟内,乙共行1.2×60×8=576(米),去掉乙走过了一整圈400米,还余176米,由于不足200米,故是相遇地点沿跑道距A点的最短距离.算术法:在8分钟内,甲比乙共多行0.1×60×8=48米,这时一共有了三圈,每圈甲比乙多行16米,即相遇地是越过此出发地始终端的400米跑道的中点16÷2=8(米).三圈累计,越过8×3=24(米).∴第三次相遇点距A沿跑道的距离是176米或224米,较小值176米是所求的最短距离.15、学校为提高同学身体素质,开展了冬季体育锻炼活动.班主任老师让甲、乙二人在长为400米的圆形跑道上进行跑步训练,已知甲每秒钟跑5米,乙每秒钟跑3米.请列方程解决下面的问题.(1)两人同时同地同向而跑时,经过几秒钟两人首次相遇?(2)两人同时同地背向而跑时,首次相遇时甲比乙多跑了多少米?答案:(1)200秒.(2)100米.解答:(1)设x秒钟两人首次相遇.由题意得:5x-3x=400,解得:x=200.答:两人同时同地同向而跑时,经过200秒钟两人首次相遇.(2)设y秒钟两人首次相遇.由题意得:5x+3x=400,解得:y=50,5×50-3×50=100(米).答:两人同时同地背向而跑时,首次相遇时甲比乙多跑了100米.16、小智和小康相约在学校的环形跑道上练习长跑.小智以5米/秒、小康以4米/秒的速度从同一地点同时出发,背向而行.途中小智的鞋带掉了,因此花了2秒停在原地系鞋带.当两人第一次相遇时,小康走了全程的511.那么跑道一圈的长度是多少米?答案:440米.解答:设两人第一次相遇时,小康跑了x秒,小智跑了x-2秒.5(x-2):4x=6:5整理得:24x=25x-50,解得:x=5050×4÷5×11=440(米)答:跑道一圈的长度是440米.17、已知甲乙两人在一个400米的环形跑道上练习跑步,现在把跑道分成相等的4段,即两条直道和两条弯道的长度相同.甲平均每秒跑4米,乙平均每秒跑6米,若甲乙两人分别从A、C两处同时相向出发(如图),则:(1)几秒后两人首次相遇?请说出此时他们在跑道上的具体位置.(2)首次相遇后,又经过多少时间他们再次相遇?(3)他们第100次相遇时,在哪一条段跑道上?答案:(1)20秒后两人首次相遇,此时他们在直道AB上,且离B点20米的位置.(2)40秒后两人再次相遇.(3)他们第100次相遇时,在跑道AD上.解答:(1)设x秒后两人首次相遇,依题意得到方程4x+6x=200.解得x=20.甲跑的路程=4×20=80米,答:20秒后两人首次相遇,此时他们在直道AB上,且离B点20米的位置.(2)设y秒后两人再次相遇,依题意得到方程:4y+6y=400.解得y=40.答:40秒后两人再次相遇.(3)第1次相遇,总用时20秒,第2次相遇,总用时20+40×1,即60秒,第3次相遇,总用时20+40×2,即100秒,第100次相遇,总用时20+40×99,即3980秒,则此时甲跑的圈数为:3980×4÷400=39.8,400×0.8=320,此时甲在AD弯道上.即他们第100次相遇时,在跑道AD上.四、顺逆流问题18、一轮船往返于A、B两港之间,逆水航行需3小时,顺水航行需2小时,水流速度为3千米/时,则轮船在静水中的速度是().A. 18千米/时B. 15千米/时C. 12千米/时D. 20千米/时答案:B解答:设轮船在静水中的速度为x千米/小时.根据顺水路程=逆水路程,顺水速度=静水速度+水流速度,逆水速度=静水速度-水流速度.得:2(3+x)=3(x-3),解得:x=15.选B.19、甲乙两地相距180千米,已知轮船在静水中的航速是a千米/时,水流速度是10千米/时,若轮船从甲地顺流航行3小时到达乙地后立刻逆流返航,则逆流行驶1小时后离乙地的距离是().A. 40千米B. 50千米C. 60千米D. 140千米答案:A解答:∵轮船在静水中的航速是a千米/时,水流速度是10千米/时,∴轮船顺流航行的速度为(a+10)千米/时.由题意,得:3(a+10)=180,解得a=50.∴轮船逆流航行的速度为:a-10=50-10=40(千米/时),∴轮船逆流行驶1小时后离乙地的距离是:1×40=40(千米).选A.20、轮船在静水中速度为每小时20km ,水流速度为每小时4km ,从甲码头顺流行驶到乙码头,再返回甲码头,共用5小时(不计停留时间),求甲、乙两码头的距离.设两码头间的距离为xkm ,则列出方程正确的是( ).A. (20+4)x +(20-4)x =5B. 20x +4x =5C.20x +4x =5 D. 204x + +204x -=5 答案:D解答:设两码头间的距离为xkm ,则船在顺流航行时的速度是:24km /时,逆水航行的速度是16km /时. 根据等量关系列方程得:204x + +204x -=5. 选D.21、船在江面上航行,测得水的平均流速为5千米/小时,若船逆水航行3小时,再顺水航行2小时,共航行120千米,设船在静水中的速度为x 千米/小时,则列方程为______. 答案:3(x -5)+2(x +5)=120解答:船在顺水中的速度=船在静水中的速度+水流的速度,船在逆水中的速度=船在静水中的速度-水流的速度,路程=速度×时间,船的逆水路程+船的顺水路程=共航行的路程,故答案为3(x -5)+2(x +5)=120.22、甲、乙两港相距360千米,一轮船往返两港需35小时,逆流航行比顺流航行多花了5小时,现有一机帆船,静水中速度是每小时12千米,问这机帆船往返两港要多少小时? 答案:机帆船往返两港要64小时.解答:解答本题需要两大步骤:首先求出水流的速度,其次,利用已求的水流速度求出帆船往返所需要的时间.设轮船顺流航行需要x 小时,依题意可列:x +x +5=35,解得:x =15.可求得水速为:136036021520-()=3(千米/时)则帆船往返两港所需要的时间为:360123+ +360123-=64(小时).23、某学生乘船由甲地顺流而下到乙地,然后又逆流而上到丙地,共用3小时,若水流速度为2千米/小时,船在静水中的速度为8千米/小时.已知甲、丙两地间的距离为2千米,求甲、乙两地间的距离是多少千米.(注:甲、乙、丙三地在同一条直线上)答案:甲乙两地间的距离为12.5km 或10km .解答:(1)丙在甲地和乙地之间,设甲乙两地距离为x , 则28x ++282x --=3, 解得:x =12.5.(2)丙不在甲地和乙地之间,设甲乙两地距离为x , 则28x ++282x +-=3, 解得:x =10.答:甲乙两地间的距离为12.5km 或10km .五、变速问题24、某人开车从甲地到乙地办事,原计划2小时到达,但因路上堵车,平均每小时比原计划少走了25千米,结果比原计划晚1小时到达,问原计划的速度是多少.答案:原计划每小时行驶75千米.解答:设原计划每小时行驶x 千米,根据题意,得:2x =3(x -25),解得:x =75,答:原计划每小时行驶75千米.25、一个邮递员骑自行车要在规定时间内把特快专递送到某单位.他如果每小时行15千米,可以早到10分钟,如果每小时行12千米,就要迟到10分钟,问规定的时间是多少小时?他去的单位有多远?答案:规定的时间是1.5小时,他去的单位有20千米远.解答:设规定的时间为x 小时.由题意,得15(x -1060)=12(x +1060), 解这个方程,得x =1.5, 则路程为12×(1.5+1060)=20(千米). 答:规定的时间是1.5小时,他去的单位有20千米远.26、某人因有急事,预定搭乘一辆小货车从A 地赶往B 地.实际上,他乘小货车行了三分之一路程后改乘一辆小轿车,车速提高了一倍,结果提前一个半小时到达.已知小货车的车速是每小时36千米,求两地间路程.答案:两地间的路程是162千米.解答:设两地间路程为x 千米. 由题意得:36x -(1336x +23236x )=32, 解得:x =162,答:两地间的路程是162千米.27、列方程解决实际问题:京张高铁是2022年北京冬奥会的重要交通基础设施,最高运营时速为350公里.但考虑到不同路段的特殊情况,将根据不同的运行区间设置不同的时速.其中,北京北站到清河段分为地下清华园隧道和地上区间两部分,运行速度分别设置为120公里/小时和200公里/小时.日前,清华园隧道正式开机掘进,这标志着京张高铁建设全面进入攻坚阶段.已知此路段的地下清华园隧道比地上区间多1公里,运行时间比地上多1.5分钟.求清华园隧道全长是多少公里.答案:11km .解答:设清华园隧道地上运行时间为xh ,地下运行时间为(x +1.560)h . 1.560h =140h , 120(140+x )=200x +1, x =140. 清华园隧道地上部分是:200×140=5km . 清华园隧道地下部分是:5+1=6km .5+6=11km .答:隧道总长为11km .28、老师带着两名学生到离学校33千米远的博物馆参观.老师乘一辆摩托车,速度25千米/小时.这辆摩托车后座可带多余一名学生,带人后速度为20千米/小时.学生步行的速度为5千米/小时.请你设计一种方案,使师生三人同时出发后都到达博物馆的时间不超过3小时.答案:先由学生A 步行,老师乘摩托车带学生B 行驶24千米,然后学生B 下车继续步行至博物馆,老师立即返回接学生A ,乘摩托车带学生A 至博物馆.解答:先由学生A 步行,老师乘摩托车带另一名学生B ,一段时间后,学生B 下车步行至博物馆,老师单独返回接学生A ,乘摩托车带学生A 至博物馆,并使得3人刚好同时到达博物馆.由方案可知,两学生步行的路程相同,设两学生步行的路程为x 千米,则乘摩托车的距离为(33-x )千米,老师返回时所经过的路程为(33-2x )千米. 依题意得:5x =3320x -+33225x -,解得x =9. ∴所用时间为5x +3320x -=95+33920-=3小时,满足题目要求. 答:先由学生A 步行,老师乘摩托车带学生B 行驶24千米,然后学生B 下车继续步行至博物馆,老师立即返回接学生A ,乘摩托车带学生A 至博物馆.29、列方程解应用题:由甲地到乙地前三分之二的路是高速公路,后三分之一的路是普通公路,高速公路和普通公路交界处是丙地.A 车在高速公路和普通公路的行驶速度都是80千米/时;B 车在高速公路上的行驶速度是100千米/时,在普通公路上的行驶速度是70千米/时,A 、B 两车分别从甲、乙两地同时出发相向行驶,在高速公路上距离丙地40千米处相遇,求甲、乙两地之间的距离是多少?答案:甲、乙两地之间的距离是252千米.解答:设甲、乙两地之间的距离是x 千米, 根据题意得:240380x - =1370x +40100, 解得x =252.答:甲、乙两地之间的距离是252千米.六、过桥和过隧道问题30、博文中学学生郊游,学生沿着与笔直的铁路线并列的公路匀速前进,每小时走4500米,一列火车以每小时120千米的速度迎面开来,测得从车头与队首学生相遇,到车尾与队末学生相遇,共经过60秒,如果队伍长500米,那么火车长为( )米.A. 2075B. 1575C. 2000D. 1500答案:B解答:设火车的长为x 米,∵学生沿着与笔直的铁路线并列的公路匀速前进,每小时走4500米,一列火车以每小时120千米的速度迎面开来∴火车相对于学生一分钟能跑多少米:120000450060+ =2075米, 一分钟火车能跑2075米而火车头与队伍头相遇到火车尾与队伍尾离开共60s ,也就是一分钟,∴500+x =120000450060+, 解得x =1575,∴火车的长度应该是2075m -500m =1575m .选B.31、一列火车匀速行驶,经过一条长600米的隧道需要45秒的时间,隧道的顶部一盏固定灯,在火车上垂直照射的时间为15秒,则火车的长为______.答案:300米解答:设火车的长度为x 米,则火车的速度为15x , 依题意得:45×15x =600+x , 解得:x =300.故答案是:300米.32、一列火车长150m ,每秒钟行驶19m ,全车通过长800m 的大桥,需要多长时间? 答案:50秒解答:设需要x 秒19x =150+800x =50,答:需要50秒.故答案为50秒.33、已知某一铁路桥长1000m ,现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整个火车完全在桥上的时间为40S .求火车的速度.答案:20千米/小时解答:设火车的长度为x 米,则100060x +=100040x - x =200速度为(1000-200)÷40=20千米/小时34、一列火车匀速行驶,经过一条长720米的隧道需要30秒的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是6秒,求这列火车的速度和火车的长度.答案:火车的长度是180米,火车的速度为108千米/时.解答:设火车的长度是x 米,根据题意得出:72030x +=6x , 解得:x =180,1806=30m /s , 故火车速度为:30×3600÷1000=108(千米/时).答:火车的长度是180米,火车的速度为108千米/时.35、一列火车匀速行驶,经过一条长300m 的隧道需要12s 的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是7s .(1)设火车的长度为xm ,用含x 的式子表示,从火车头进入隧道到车尾离开隧道这段时间内火车的平均速度(2)求这列火车的长度(3)若这列火车从甲地到乙地,速度提高10%,则可以提前503分钟到达,求甲乙两地的距离(火车的长度忽略不计)答案:(1)30012x + (2)420(3)660km 解答:(1)30012x + (2)300127x x +=,420x = (3)设距离为Skm .火车的平均速度为30042012+=60m /s =3.6km /min . 1.13.6 3.6S S -⨯=503S =660km .36、一辆车长为4米的小轿车和一辆车长为20米的大货车,在长为1200米隧道的两个入口同时开始相向而行,小轿车的速度是大货车速度的3倍,大货车速度为10m /s .(1)求两车相遇的时间.(2)求两车从相遇到完全离开所需的时间.(3)当小轿车车头和大货车车头相遇后,求小轿车车头与大货车车头的距离是小轿车车尾与大货车车尾的距离的4倍时所需的时间.答案:(1)30s.(2)所需的时间为0.6s.(3)时间为0.48s或0.8s.解答:(1)设两车相遇的时间ts,(30+10)t=1200,t=30.两车相遇的时间为30s.(2)设两车完全离开的时间的时间t’s,依题意得,(30+10)t’=1200+4+20,t’=30.6,t’-t=30.6-30=0.6两车从相遇到完全离开所需的时间为0.6s.(3)设小轿车车头与大货车车头之间的距离为xm,①两车相遇期间:x=4[(20-x)+4],解得x=19.2,t=19.21030+=0.48;②两车分离后:x=4(x-20-4),解得:x=32,t=323010+=0.8.小轿车车头与大货车车头的距离是小轿车车尾与大货车车尾的距离的4倍时所需的时间为0.48s或0.8s.。

一元一次方程应用题-行程问题

一元一次方程应用题-行程问题

03 相遇与追及问题
相遇问题建模与求解
• 相遇问题的基本等量关系:甲走的路程+乙走的路程=甲 乙相距的总路程。
相遇问题建模与求解
相遇问题的建模步骤
根据题意,列出一元 一次方程。
设未知数,一般为时 间或速度。
相遇问题建模与求解
解方程,求出未知数。 检验解的合理性,并作答。
相遇问题的常见类型
相遇问题建模与求解
实例分析
01
例1
02
运动员在400米的环形跑道上练 习跑步,他每分钟跑160米,问 他5分钟后跑了多少圈?

设运动员5分钟后跑了$x$圈,则 他跑的总路程为$400x$米。根 据速度和时间的关系,他5分钟 跑的路程是$160 times 5 = 800$米。因此,可以建立方程 $400x = 800$,解得$x = 2$。 所以,运动员5分钟后跑了2圈。
追及问题的建模步骤 设未知数,一般为时间或速度。
根据题意,列出一元一次方程。
追及问题建模与求解
解方程,求出未知数。 检验解的合理性,并作答。 追及问题的常见类型
追及问题建模与求解
同时同地出发的追及问题
两人或两车同时同地出发,一人或一车速度快,经过一段时间追上另一人或车。
同时异地出发的追及问题
两人或两车同时从两地出发,一人或一车速度快,经过一段时间在途中追上另 一人或车。
相遇与追及综合应用
• 相遇与追及的综合应用问题通常涉及到多个对象、多个时间段 和多种运动方式。解决这类问题的关键在于正确识别各个对象 之间的相对运动关系,并根据这些关系建立数学模型。
相遇与追及综合应用
建模步骤
1
2
分析题意,确定各个对象的初始状态和运动方式。

湘教版七年级上册数学第3章 一元一次方程 用一元一次方程解行程问题

湘教版七年级上册数学第3章 一元一次方程 用一元一次方程解行程问题

感悟新知
知识点 3 上坡、下坡问题
知3-讲
例3 小明从家去外婆家,去时是上坡,每小时行12千米, 回来时是下坡,每小时行18千米,来回共用了5小时,
求小明家到外婆家的距离.
感悟新知
解:设小明家到外婆家的距离是x千米,
由题意得:x 解得:x=3162
x 18
5
答:小明家到外婆家的距离是36千米.
知3-讲
即上山的速度是2千米/时,下山的速度是3千米/时.
故上山用的时间为2+1÷2=2.5(时).
所以共用时间为2.5+1+1=4.5(时),
所以出发时间为12:00-4时30分=7:30.
故孔明同学应该在7:30从家出发.
课堂小结
用一元一次方程解行程问题
行程问题有相遇问题,追及问题,顺流、逆流问题,上 坡、下坡问题等.在运动形式上分直线运动及曲线运动(如 环形跑道).相遇问题是相向而行,相遇时的总路程为两运 动物体的路程和.追及问题是同向而行,分慢的在快的前 面或慢的先行若干时间,快的再追.顺流、逆流、顺风、 逆风、上下坡等问题应注意运动方向.
知2-讲
设飞机在无风时的6 平均速度为xkm/h,则顺风速度
为(x+24)km/h,逆风速度为(x-24)km/h,根据题意,
得 (x+24)=3(x-24).解得x=840.
3(x-241)7=2448. 答:飞机6 在无凤时的平均速度为840km/h,两城市
之间的距离是2448km.
感悟新知
3
课后作业
作业1 必做:请完成教材课后习题 补充:
作业2
总结
知1-讲
列表:

路程(km) 速度(km/h) 时间(h)

(完整版)一元一次方程应用行程问题

(完整版)一元一次方程应用行程问题

:一元一次方程应用之--------------行程问题专题一、【根本概念】行程类应用题根本关系:路程=速度×时间速度=路程÷时间时间=路程÷速度相遇问题:甲、乙相向而行,那么:甲走地路程+乙走地路程=总路程.追及问题:①甲、乙同向不同地,那么:追者走地路程=前者走地路程+两地间地距离.②甲、乙同向同地不同时,那么:追者走地路程=前者走地路程环形跑道问题:①甲、乙两人在环形跑道上同时同地同向出发:快地必须多跑一圈才能追上慢地.②甲、乙两人在环形跑道上同时同地反向出发:两人相遇时地总路程为环形跑道一圈地长度.飞行〔航行〕问题、根本等量关系:①顺风〔顺水〕速度=无风〔静水〕速度+风速〔水速〕②逆风〔逆水〕速度=无风〔静水〕速度-风速〔水速〕顺风〔水〕速度-逆风〔水〕速度=2×风〔水〕速车辆〔车身长度不可忽略〕过桥问题:车辆通过桥梁〔或隧道等〕,那么:车辆行驶地路程=桥梁〔隧道〕长度+车身长度超车〔会车〕问题:超车过程中,车辆行驶路程等于车身长度和,相对速度为两车速度差.会车过程中,车辆行驶路程等于车身长度和,相对速度为两车速度和.在行程问题中,按照题意画出行程图,可以使问题地分析过程更直观,更容易理解.特别是问题中运动状态复杂,涉及地量较多地时候,画行程图就成了理解题意地关键.所以画行程图是我们必须学会地一种分析手段.另外,由于行程问题中地根本量只有“路程〞、“速度〞和“时间〞三项,所以,列表分析也是解决行程问题地一种重要方法.二、【典型例题】〔一〕相遇问题相遇问题:甲、乙相向而行,那么:甲走地路程+乙走地路程=总路程.例1、甲、乙两站相距 600km,慢车每小时行40km,快车每小时行60km.⑴经过xh后,慢车行了km,快车行了 km,两车共行了km;⑵慢车从甲站开出,快车从乙站开出,相向而行,两车相遇共行了km, 如果两车同时开出,xh相遇,那么可得方程:;⑶如果两车相向而行,快车先行50km,在慢车开出yh后两车相遇,那么可得方程:;⑷如果两车相向而行,慢车先开50min,在快车开出th后两车相遇,那么可得方程:.例2、甲、乙两站地路程为450千米,一列慢车从甲站开出,每小时行驶65千米,一列快车从乙站开出,每小时行驶85千米.两车同时开出,相向而行,多少小时相遇?分析:1/3慢车的路程快车的路程甲站乙站两站相距450km例3、甲、乙两地相距376km,A车从甲地开往乙地,半小时后B车从乙地开往甲地,A车开出5h后与B车相遇,又知B车地时速是A车时速地倍,求B车地时速?例4、甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都匀速前进.两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米.求A、B两地间地路程.课堂练习1:电气机车和磁悬浮列车从相距298千米地两地同时出发相对而行,磁悬浮列车地速度比电气机车速度地5倍还快20千米/时,半小时后两车相遇.两车地速度各是多少?2、甲、乙两人从相距35km地两地同时出发,相向而行,甲步行每小时走4km,乙骑车小时后相遇,求乙地速度.3、甲步行,乙骑自行车,同时从相距 27km地两地相向而行,2h 相遇,乙比甲每小时多走5.5km,求甲、乙两人地速度.4、A、B两地相距153km,汽车从A地开往B地,时速为38km;摩托车从B地开往A地,时速为24km.摩托车开出小时后,汽车再出发.问汽车开出几小时后遇到摩托车?5、甲骑自行车从A地出发,以12km/h地速度驶向B地,同时,乙也骑自行车从B地出发,以14km/h 地速度驶向A地.两人相遇时,乙已超过A、B两地中点1.5km,求A、B两地地距离.〔二〕追及问题例1、甲、乙两地相距10km,A、B两人分别从甲、乙两地同时、同向出发,A在前,B在后,A地速度是每小时4km,B地速度是每小时5km,xh后A走了km,B走了km.如果这时刚好B追上A,那么可列方程:.例2、甲、乙两人都从A地出发到B地,甲先走5km后乙再出发,甲速度是4km/h,乙速度是5km/h.如果A、B两地相距xkm,那么甲先走地时间是h,乙走地时间是h, 假设两人同时到达B地,那么可列方程:.例3、甲、乙两人同时以4km/h地速度从A地前往B地,走了后,甲要回去取一份文件.他以6km/h 地速度往回走,在办公室耽误了15min后,仍以6km/h地速度追赶乙,结果两人同时到达B地.求A、B两地间地距离.分析:你能求出第二段甲乙所用时间为h吗?假设设A、B两地间地距离为xkm,可以用表示第四段甲乙所用时间.课堂练习1:跑得快地马每天走240里,跑得慢地马每天走150里.慢马先走12天,快马几天可以追上慢马?课堂练习2:一辆每小时行30km地卡车由甲地驶往乙地,1h后,一辆每小时行40km地摩托车也由甲地驶往乙地,问卡车开出几h后摩托车可追上卡车?家庭练习:1、甲、乙两人相距18km,乙出发后甲再出发,甲在后,乙在前同向而行,甲骑车每小时行8km,乙步行每小时行5km,问甲出发几h后追上乙?2、甲每小时走5km,出发2h后乙骑车追甲.⑴如乙地速度为每小时20km,问乙多少分钟追上甲?⑵如果要求乙出发14km时追上甲,问乙地速度是多少?3、从甲地到乙地走水路比走公路近20km,上午10时,一条轮船甲地从驶往乙地,下午1时一2/3辆汽车也从甲地驶向乙地,结果汽车与轮船同时到达乙地.轮船时速20km,汽车时速60km,求甲地到乙地地水路和公路地长.4、同村地甲、乙两人都去县城,甲比乙早走1h,却迟到半小时,甲每小时走4km,乙每小时走5km.问村庄到县城地距离是多少?〔三〕环形跑道问题例1、某城举行环城自行车赛,骑得最快地人在出发后 35min就遇到骑得最慢地人,骑得最慢地人地车速是骑得最快地人地车速地5,环城一周是6km,求骑得最快地人地车速.7例2、一环形公路周长是24千米,甲乙两人从公路上地同一地点同一时间出发,背向而行,3小时后他们相遇.甲每小时比乙慢千米,求甲、乙两人速度各是多少?家庭练习:1、甲、乙两人在400m环形跑道上练竞走,乙每分钟走80m,甲地速度是乙地速度地11倍,现4甲在乙前面100m,问多少分钟后两人可首次相遇?2、运动场地跑道一圈长 400m.甲练习骑自行车,平均每分骑350m;乙练习跑步,平均每分钟跑250m.两人从同一处同时反向出发 ,经过多少时间首次相遇?又经过多少时间再次相遇?〔四〕航行〔飞行〕问题例1、一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了小时.水流速度是3千米/时,求船在静水中地平均速度.例2、一架飞机在两城之间飞行,风速为24千米/时.顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时飞机地航速和两城之间地航程.课堂练习1:一艘船从A港到B港顺流行驶,用了5小时;从B港返回A港逆流而行,用了小时,水流速度是3千米/小时,求船在静水中地速度.课堂练习2:有A、B、C三个码头,BC相距24km,某船从B顺水而下到达A后,立即逆水而上到达C.共用8h,水流速度为5km/h,船在静水中地速度为20km/h,求A、B之间地距离.1、客机和战斗机从相距600km地两个机场起飞,30min相遇,客机顺风飞行,战斗机逆风飞行,如果在静风中战斗机地速度是客机地3倍,风速是每小时24km,问两机地速度各是多少?2、船在静水中地速度是14km/h,水流速度是2km/h,船先顺流由一码头开出,再逆流返回,假设要船在3h30min内返回,那么船最远能开出多远?3、甲船从A地顺流下行,乙船同时从B地逆水上行,12h后相遇,此时甲船已走了全程地一半多9km,甲船在静水中地速度是每小时4km,乙船在静水地速度是每小时5km,求水流地速度.〔五〕错车问题例1.甲乙两人辞别后,沿着铁轨反向而行.此时,一列火车匀速地向甲迎面驶来,列车从甲身旁开过,用了15s;然后从乙身旁开过用了17s.两人地速度都是3.6km/h,这列火车有多长?随堂练习:1.某部队执行任务,以6km/h地速度前进,通信员在队尾接到命令后把命令传给了排头,然后立即返回队尾,通讯员来回地速度是10km/h,共用7.5min,求队伍地长度.2.在高速公路上,一辆长4米,速度为110千米/时地轿车准备超越一辆长12米,速度为100千米/时地卡车,那么轿车从开始超越到超越卡车需要花费地时间约是多少?3.某隧道长500m,现有一列火车从隧道内通过,测得火车通过隧道〔即从车头进入入口到车尾地离开出口〕共用30s,而整列火车完全在隧道内地时间为10s,求火车地速度和火车地长.4.一列火车用26s地时间通过一个长256m地隧道〔即从车头进入隧道到车尾离开隧道〕,这列火车又以同样地速度用16s地时间通过了另一个长96m地隧道,求这列火车地长度3/3。

一元一次方程的应用3--湘教版

一元一次方程的应用3--湘教版

作业:
P129 A组 6、7
结束 谢谢
; 迪威国际();
成为中医学的主要奠基人 在这个田庄中 建武二年(26年) 叙述西汉时代各地方言 在南越地区 不逢太师 今属湖北)转战到宜秋(今河南唐河东南) 公元220年 首 漕渠在渭河南岸 王莽死于义军之手 屡下诏招抚流民 从而使专制统治进一步巩固 外交编辑 内朝作为一项制度其自身的就不是
城垣每面有三个城门 天下复有承袭西汉末年一百零六郡国之局面 更始政权对其势力范围的控制并不像真正一统王朝那样行之有效 原因在刺史权轻 匈奴冒顿单于乘楚汉相争之机 董卓之乱结束 为大 并将“匈奴单于”称号改为“恭奴善于” 正是从西汉开始 [62-63] 击败据城举兵响应赤眉军
的索卢恢部万余人 [13] 设尚书六人分掌国家大事 外交 因明帝刘庄夜梦金人向西而去 为最大 会亭 金城郡 苍州 秩二千石 宫内省外的禁卫工作由九卿中的光禄勋与卫尉负责 [46] 展示了一幅纺织汉服生产的生动情景 而此时的牛耕和铁器普遍流行 多的万余骑 随着六队、六尉等的建立 恢复
帝 耿弇闻讯大喜 汉初 博聚 扬雄 被关西人号为铜马帝 后被西汉所杀 自称“假皇帝”;灭瓯骆国 渔阳郡 大获全胜 [79] [38] [149] 齐城 刘盆子与其兄练习投降的词说 王莽大军东进 事先设伏于张步的退路 西汉美术的题材是广泛地来自社会现实生活的各个方面的 但禁止他们干预政
事 依照五行相生之理 文景时期的“与民休息”政策 主政务;东汉五诛钱 历史编辑 塞泉 字形总体为方扁形 [243] “选举乖实”的状况 交结名士与公卿甚众 手工业也获得了巨大的发展 在今河北一带则有大小数十支起义队伍 河水泛滥成灾 刘秀建立东汉政权后 于是发明了“井渠法”
解:设限定时间是x小时,根据题意,列方程得:

一元一次方程的应用--行程问题(1)含答案

一元一次方程的应用--行程问题(1)含答案

一元一次方程的应用—行程问题知识点梳理:1.行程问题中的常见类型:(1) 相遇问题:主要指两车(或人)从两地同时相向而行。

(2) 追及问题:如甲、乙同向而行,甲追乙称之为追及问题(3) 航行问题:顺水(风)速度=静水(风)速度+水(风)速,逆水(风)速度=静水(风)速度-水(风)速2.行程问题的基本关系式:路程=速度*时间 时间=路程/速度 速度=路程/时间3.行程问题的等量关系(1)相遇问题中的等量关系:①甲的行程+乙的行程=甲、乙出发点间的距离②若甲、乙同时出发,相遇时甲行的时间=乙行的时间(2)追及问题中的等量关系:①快者行走的路程-慢者行走的路程=追及路程①同时出发,追及时快者用的时间=慢者用的时间典型例题:例题1:甲、乙两人从相距为180千米的A、B两地同时出发,甲骑自行车,乙骑摩托车,沿同一条路线相向匀速行驶.已知甲的速度为每小时15千米,乙的速度为每小时45千米,问他们出发后多少时间相遇?如果甲先行1时后乙才出发,问甲再行多少时间相遇?例题2:甲、乙两人分别从A、B两地同时出发,甲骑自行车,乙骑摩托车,沿同一条路线相向匀速行驶.出发后经 3时两人相遇.已知在相遇时乙比甲多行了90千米,相遇后经1时乙到达A地.问甲、乙行驶的速度分别是多少?例题3:已知A,B,C三地在同一直线上,B地在A地与C地之间,且A,B两地相距60㎞,B,C 两地相距300㎞,甲.乙两人分别从A.B两地骑摩托车同时出发去C地,甲的速度为80㎞/h,乙的速度为40㎞/h,问经过多长时间,甲可以追上乙?例题4:如图小张与小亮站在全长为400m的环形跑道上两人之间的距离是50m,现在两人同时起跑,已知小张的速度为6m/s,小亮的速度是5m/s,若两人均沿逆时针方向跑,经过多少时间小张第一次追上小亮?例题5:一艘轮船从甲地顺流而下8h到达乙地,原路返回需12h才能到达甲地,已知水流的速度是3㎞/h,求该船在静水中的平均速度?例题6:姐妹俩同时从家里到少年宫,路程全长770米.妹妹步行每分钟行60米,姐姐骑自行车以每分钟160米的速度到达少年宫后立即返回,途中与妹妹相遇.这时妹妹走了几分钟?姐姐何时与妹妹相距100米?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
静水(无风)速—水(风)速 逆水(风)速度=_________________
一、相遇问题的基本题型
1、同时出发(两段) 2、不同时出发 (三段 ) 二、相遇问题的等量关系
s先 s甲 s乙 s总
s甲 s乙 s总
二、基础题
1、甲的速度是每小时行4千米,则他x小时行 ( 4X )千米. 2、乙3小时走了x千米,则他的速度(
行程问题
一、本课重点 路程=速度X时间 1.基本关系式:_________________ 2.基本类型: 相遇问题; 相距问题 3.基本分析方法:画示意图分析题意,分清速度及 时间,找等量关系(路程分成几部分). 4.航行问题的数量关系: (1)顺流(风)航行的路程=逆流(风)航行的路程 静水(无风)速+水(风)速 (2)顺水(风)速度=_________________
X/3 ).
3、甲每小时行4千米,乙每小时行5千米,则甲、 9 乙 一小时共行( )千米,y小时共行( ) 9y 千米. 4、某一段路程 x 千米,如果火车以49千米/时 的速度行驶,那么火车行完全程需要( 学,哥 哥半小时后发现明明忘了作业,,就骑车 以每小时8千米追赶,问哥哥需要多长时间 才可以送到作业?
1. 已知矩形的周长为20厘米,设长为x厘米,则 宽为( B ). A. 20-x B. 10-x C. 10-2x D. 20-2x 2.学生a人,以每10人为一组,其中有两组各少 1人,则学生共有( D )组. A.10a-2 C. 10-(2-a) B. 10-2a D.(a +2)/10
3、三个连续的奇数的和为57,求这三个数。若设中间一 个奇数为X,则另外两个为_______、_______,并可得方 X-2 X+2 程为______________ (X-2)+X+(X+2)=57 4、在某个月的日历表中任意圈出一个横列上相邻的三个 数,和为57,若设中间一个数为X,则另外两个为 X-1 _______、_______,并可得方程为______________ X+1 (X-1)+X+(X+1)=57 5 在某个月的日历表中任意圈出一个竖列上相邻的三个 数,和为57,若设中间一个数为X,则另外两个为 X-7 _______、_______,并可得方程为______________ X+7 (X-7)+X+(X+7)=57
解:设哥哥要X小时才可以送到作业
8X = 4X + 4×0.5 解得 X = 0.5
答:哥哥要0.5小时才可以把作业送到

4×0.5
4X
学校 追 及 地
8X
敌军在早晨5时从距离我军7 千米的驻地开始逃跑,我军发现 后立即追击,速度是敌军的1.5倍, 结果在7时30分追上,我军追击速 度是多少?
2.5X
一元一次方程的应用
鹤壁四中七年级数学组
列方程是解决实际问题的有效途径之一
1、审题:分析题意,找出图中的数量及其关系 2、设元:选择一个适当的未知数用字母表示(如X) 3、列方程:根据找出的相等关系列出方程 4、解方程:求出未知数的值 5、检验:检查求得的值是否正确和符合实际情形 6、答:写出答案
基础题
7千米
2.5(1.5X)
三、综合题
1.甲、乙两地路程为180千米,一人骑自行车从甲地出发每 时走15千米,另一人骑摩托车从乙地出发,已知摩托车速 度是自行车速度的3倍,若两人同时出发,相向而行,问经 过多少时间两人相遇?
• 2. 甲、乙两地路程为180千米,一人骑自行 车从甲地出发每时走15千米,另一人骑摩 托车从乙地出发,已知摩托车速度是自行 车速度的3倍,若两人同向而行,骑自行车 在先且先出发2小时, 问摩托车经过多少时 间追上自行车?
• 3.一架直升机在A,B两个城市之间飞行, 顺风飞行需要4小时,逆风飞行需要5小时 . 如果已知风速为30km/h,求A,B两个城市 之间的距离.
• 4.甲、乙两人都以不变速度在400米的环形 跑道上跑步,两人在同一地方同时出发同 向而行,甲的速度为100米/分乙的速度是 甲速度的3/2倍,问(1)经过多少时间后 两人首次遇(2)第二次相遇呢?
相关文档
最新文档