2015高考真题数学考点48 矩阵与变换
高考数学试题分类汇编坐标系与参数方程矩阵与变换
专题二十一矩阵与变换1.(15年福建理科)已知矩阵2111,.4301A B 骣骣琪琪==琪琪-桫桫(Ⅰ)求A 的逆矩阵1A -;(Ⅱ)求矩阵C ,使得AC=B.【答案】(Ⅰ)312221; (Ⅱ)32223.【解析】试题分析:因为2143A 骣琪=琪桫,得伴随矩阵3142A ,且2A ,由11AA A可求得1A -;(Ⅱ)因为AC B ,故1CA B ,进而利用矩阵乘法求解.试题解析:(1)因为|A|=23-14=2创所以131312222422122A(2)由AC=B 得11()C A A A B --=,故1313112C==222012123A B 考点:矩阵和逆矩阵.2.(15年江苏)已知R y x,,向量11是矩阵1y x A的属性特征值2的一个特征向量,矩阵A 以及它的另一个特征值.【答案】112,另一个特征值为1.【解析】试题分析:由矩阵特征值与特征向量可列出关于x,y 的方程组,再根据特征多项式求出矩阵另一个特征值试题解析:由已知,得2,即1112012x x yy,则122x y,即12x y,所以矩阵1120.从而矩阵的特征多项式21f,所以矩阵的另一个特征值为1.考点:矩阵运算,特征值与特征向量专题二十二坐标系与参数方程1.(15北京理科)在极坐标系中,点π23?到直线cos 3sin 6的距离为.【答案】1 【解析】试题分析:先把点(2,)3极坐标化为直角坐标(1,3),再把直线的极坐标方程cos 3sin 6化为直角坐标方程360x y ,利用点到直线距离公式136113d.考点:1.极坐标与直角坐标的互化; 2.点到直线距离.2.(15年广东理科)已知直线l 的极坐标方程为24sin(2)π,点A 的极坐标为722,4A ,则点A 到直线l 的距离为【答案】522.【解析】依题已知直线l :2sin24和点722,4A 可化为l :10x y 和2,2A ,所以。
【全程复习方略】2015届高考数学第一轮总复习 考点53 矩阵与变换提能训练(含2013年高考真题)
考点53 矩阵与变换一、选择题1.(2013·某某高考理科·T17)在数列{}n a 中,21n n a =-,若一个7行12列的矩阵的第i 行第j 列的元素,i j i j i j a a a a a =⋅++,(1,2,,7;1,2,,12i j ==)则该矩阵元素能取到的不同数值的个数为( ) A.18 B.28 C.48D.63 【解析】选A.,21i j i j i j i j a a a a a +=⋅++=-,而2,3,,19i j +=,故不同数值个数为18个,选A . 二、填空题2.(2013·某某高考理科·T3)若2211x x x y y y =--,则______x y += 【解析】2220x y xy x y +=-⇒+=.【答案】0.3.(2013·某某高考文科·T4)已知1x 12=0,1x 1y =1,则y= . 【解析】111 2021 12 =-==⇒=-=y x y x x x x ,又已知 ,1,2==y x 联立上式,解得【答案】 1.三、解答题4.(2013·某某高考数学科·T21)已知矩阵A =1002-⎡⎤⎢⎥⎣⎦,B =1206⎡⎤⎢⎥⎣⎦,求矩阵1-A B . 【解题指南】先求出矩陈A 的逆矩陈再运算1A B -,主要考查逆矩阵、矩阵的乘法, 考查运算求解能力. 【解析】设矩阵A 的逆矩阵为a b c d ⎡⎤⎢⎥⎣⎦则1002-⎡⎤⎢⎥⎣⎦a b c d ⎡⎤⎢⎥⎣⎦=1001⎡⎤⎢⎥⎣⎦即22a b c d --⎡⎤⎢⎥⎣⎦=1001⎡⎤⎢⎥⎣⎦故a=-1, b=0, c=0, d=12,从而 A 的逆矩阵为1A -=10102-⎡⎤⎢⎥⎢⎥⎣⎦所以1A B -=10102-⎡⎤⎢⎥⎢⎥⎣⎦1206⎡⎤⎢⎥⎣⎦=1203--⎡⎤⎢⎥⎣⎦ 5.(2013·某某高考理科·T21)已知直线1:=+y ax l 在矩阵1201A ⎛⎫=⎪⎝⎭对应的变换作用下变为直线1:'=+by x l(I )某某数b a ,的值(II )若点),(00y x P 在直线l 上,且⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛0000y x y x A ,求点P 的坐标 【解析】(Ⅰ)设直线:1l ax y +=上任意一点(,)M x y 在矩阵A 对应的变换作用下的像是(,)M x y ''' 由12201x x x y y y y '+⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪⎪ ⎪'⎝⎭⎝⎭⎝⎭⎝⎭,得2x x y y y '=+⎧⎨'=⎩ 又点(,)M x y '''在l '上,所以1x by ''+=,即(2)1x b y ++=依题意121a b =⎧⎨+=⎩,解得11a b =⎧⎨=-⎩(Ⅱ)由0000x x A y y ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,得000002x x y y y =+⎧⎨=⎩解得00y = 又点00(,)P x y 在直线l 上,所以01x =故点P 的坐标为(1,0).。
高中数学选修4-2:矩阵与变换
高中数学选修4-2:矩阵与变换矩阵是研究图形(向量)变换的基本工具,有着广泛的应用,许多数学模型都可以用矩阵来表示。
本专题将通过平面图形的变换讨论二阶方阵的乘法及性质、逆矩阵和矩阵的特征向量等概念,并以变换和映射的观点理解解线性方程组的意义,初步展示矩阵应用的广泛性。
一、内容与要求1.引入二阶矩阵2.二阶矩阵与平面向量(列向量)的乘法、平面图形的变换(1)以映射和变换的观点认识矩阵与向量乘法的意义。
(2)证明矩阵变换把平面上的直线变成直线,即证明A(λ1α+λ2β)=λ1Aα+λ2Aβ。
(3)通过大量具体的矩阵对平面上给定图形(如正方形)的变换,认识到矩阵可表示如下的线性变换:恒等、反射、伸压、旋转、切变、投影。
3.变换的复合--二阶方阵的乘法(1)通过变换的实例,了解矩阵与矩阵的乘法的意义。
(2)通过具体的几何图形变换,说明矩阵乘法不满足交换律。
(3)验证二阶方阵乘法满足结合律。
(4)通过具体的几何图形变换,说明乘法不满足消去律。
4.逆矩阵与二阶行列式(1)通过具体图形变换,理解逆矩阵的意义;通过具体的投影变换,说明逆矩阵可能不存在。
(2)会证明逆矩阵的唯一性和(AB)-1=B-1A-1 等简单性质,并了解其在变换中的意义。
(3)了解二阶行列式的定义,会用二阶行列式求逆矩阵。
5.二阶矩阵与二元一次方程组(1)能用变换与映射的观点认识解线性方程组的意义。
(2)会用系数矩阵的逆矩阵解方程组。
(3)会通过具体的系数矩阵,从几何上说明线性方程组解的存在性,唯一性。
6.变换的不变量(1)掌握矩阵特征值与特征向量的定义,能从几何变换的角度说明特征向量的意义。
(2)会求二阶方阵的特征值与特征向量(只要求特征值是两个不同实数的情形)。
7.矩阵的应用(1)利用矩阵A的特征值、特征向量给出Anα简单的表示,并能用它来解决问题。
(2)初步了解三阶或高阶矩阵。
(3)了解矩阵的应用。
8.完成一个学习总结报告。
报告应包括三方面的内容:(1)知识的总结。
高三数学矩阵行列式试题
高三数学矩阵行列式试题1.矩阵与变换:已知a,b∈R,若所对应的变换把直线变换为自身,求实数,并求的逆矩阵.【答案】【解析】根据矩阵乘法求变换:设为直线上任意一点其在M的作用下变为则代入得:其与完全一样得则矩阵则解:设为直线上任意一点其在M的作用下变为则代入得: 3分其与完全一样得则矩阵 6分则 10分【考点】矩阵变换,逆矩阵2.已知矩阵,点,.求线段在矩阵对应的变换作用下得到线段的长度.【答案】【解析】先根据逆矩阵公式求逆矩阵:,即,再根据矩阵运算求出对应点的坐标,由,,知点,最后根据两点间距离公式求长度,.设,则,所以,解得,即.由,,知点,所以.【考点】逆矩阵,矩阵运算3.关于方程的解为.【答案】2【解析】原方程为,即,,所以,.【考点】行列式,指数方程.4.已知矩阵M=,N=.(1)求矩阵MN;(2)若点P在矩阵MN对应的变换作用下得到Q(0,1),求点P的坐标.【答案】(1)MN==;(2)P(, 1).【解析】(1)利用矩阵乘法公式计算即可;(2)两种方法:法一,利用=,转化为关于的二元一次方程,解出,即点P的坐标;法二,求出MN的逆矩阵,直接计算. 试题解析:(1)MN==; 5分(2)设P(x,y),则解法一:=,即解得即P(, 1). 10分解法二:因为=.所以==.即P(, 1). 10分【考点】矩阵与变换、逆矩阵的求法、矩阵的计算.5.已知,,则y=.【答案】1【解析】由已知,,所以x﹣2=0,x﹣y=1所以x=2,y=1.【考点】二阶行列式的定义点评:本题考查了二阶行列式的展开式,考查了方程思想,是基础题6.对于任意一个非零实数,它的倒数的倒数是它的本身.也就是说,连续施行两次倒数变换后又回到施行变换前的对象,我们把这样的变换称为回归变换.在中学数学范围内写出这样的变换(写对一个变换给2分,最多得4分).【答案】相反数的相反数是它本身,集合A的补集的补集是它本身,一个复数的共轭的共轭是它本身,等等.【解析】一个非零向量的反向量的反向量是它本身;一个命题的否命题的否命题是它本身;一个函数的反函数的反函数是它本身。
【创新方案】(人教通用版)2015高考数学 五年高考真题分类汇编 第十三章 矩阵与变换 理
五年高考真题分类汇编:矩阵与变换1.(2013•江苏高考)已知矩阵A =⎣⎢⎡⎦⎥⎤-1 00 2,B =⎣⎢⎡⎦⎥⎤1 206,求矩阵A -1B . 解:设矩阵A 的逆矩阵为⎣⎢⎡⎦⎥⎤a b c d , 则⎣⎢⎡⎦⎥⎤-1 00 2⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1 00 1, 即⎣⎢⎡⎦⎥⎤-a -b 2c 2d =⎣⎢⎡⎦⎥⎤1 00 1,故a =-1,b =0,c =0,d =12, 从而A 的逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 12, 所以A -1B =⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 12⎣⎢⎡⎦⎥⎤1 20 6=⎣⎢⎡⎦⎥⎤-1 -20 3. 2.(2013•福建高考理)已知直线l :ax +y =1在矩阵A =⎝ ⎛⎭⎪⎫1 201对应的变换作用下变为直线l ′:x +by =1.①求实数a ,b 的值; ②若点P (x 0,y 0)在直线l 上,且A ⎝ ⎛⎭⎪⎫x 0y 0=⎝ ⎛⎭⎪⎫x 0y 0,求点P 的坐标. 解:(1)本小题主要考查矩阵、矩阵与变换等基础知识,考查运算求解能力,考查化归与转化思想.①设直线l :ax +y =1上任意点M (x ,y )在矩A 对应的变换作用下的像是M ′(x ′,y ′).由⎝ ⎛⎭⎪⎫x 'y ′=⎝ ⎛⎭⎪⎫1 20 1⎝ ⎛⎭⎪⎫x y =⎝ ⎛⎭⎪⎫x +2y y ,得⎩⎪⎨⎪⎧x ′=x +2y ,y ′=y . 又点M ′(x ′,y ′)在l ′上,所以x ′+by ′=1,即x +(b +2)y =1, 依题意得⎩⎪⎨⎪⎧ a =1,b +2=1,解得⎩⎪⎨⎪⎧ a =1,b =-1. ②由A ⎝ ⎛⎭⎪⎫x 0y 0=⎝ ⎛⎭⎪⎫x 0y 0,得⎩⎪⎨⎪⎧x 0=x 0+2y 0,y 0=y 0,解得y 0=0. 又点P (x 0,y 0)在直线l 上,所以x 0=1. 故点P 的坐标为(1,0). 3.(2012•江苏高考) 已知矩阵A 的逆矩阵A -1=⎣⎢⎢⎡⎦⎥⎥⎤-14 3412 -12,求矩阵A 的特征值. 解:因为A -1A =E ,所以A =(A -1)-1.因为A -1=⎣⎢⎢⎡⎦⎥⎥⎤-14 3412 -12,所以A =(A -1)-1=⎣⎢⎡⎦⎥⎤2 32 1,于是矩阵A 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪λ-2 -3-2 λ-1=λ2-3λ-4. 令f (λ)=0,解得A 的特征值λ1=-1,λ2=4.4.(2012•福建高考理)设曲线2x 2+2xy +y 2=1在矩阵A =⎝ ⎛⎭⎪⎫a 0b 1(a >0)对应的变换作用下得到的曲线为x 2+y 2=1. (1)求实数a ,b 的值;(2)求A 2的逆矩阵.解:(1)设曲线2x 2+2xy +y 2=1上任意点P (x ,y )在矩阵A 对应的变换作用下的象是P ′(x ′,y ′).由⎝⎛⎭⎫x ′y ′=⎝⎛⎭⎫a 0b 1⎝⎛⎭⎫x y =⎝⎛⎭⎫ax bx +y ,得⎩⎪⎨⎪⎧ x ′=ax ,y ′=bx +y . 又点P ′(x ′,y ′)在曲线x 2+y 2=1上,所以x ′2+y ′2=1,即a 2x 2+(bx +y )2=1,整理得(a 2+b 2)x 2+2bxy +y 2=1.依题意得⎩⎪⎨⎪⎧ a 2+b 2=2,2b =2,解得⎩⎪⎨⎪⎧ a =1,b =1,或⎩⎪⎨⎪⎧ a =-1,b =1. 因为a >0,所以⎩⎪⎨⎪⎧ a =1,b =1.(2)由(1)知,A =⎝⎛⎭⎫1 01 1, A 2=⎝⎛⎭⎫1 01 1⎝⎛⎭⎫1 01 1=⎝⎛⎭⎫1 02 1,所以|A 2|=1,(A 2)-1=⎝⎛⎭⎫1 0-2 1.5.(2011•福建高考理)设矩阵M =⎝ ⎛⎭⎪⎫a 00 b (其中a >0,b >0). (Ⅰ)若a =2,b =3,求矩阵M 的逆矩阵M -1;(Ⅱ)若曲线C :x 2+y 2=1在矩阵M 所对应的线性变换作用下得到曲线C ′:x 24+y 2=1,求a ,b 的值.解:(Ⅰ)设矩阵M 的逆矩阵M -1=⎝ ⎛⎭⎪⎫x 1 y 1x 2 y 2, 则MM -1=⎝ ⎛⎭⎪⎫1 00 1. 又M ⎝ ⎛⎭⎪⎫2 00 3,所以⎝ ⎛⎭⎪⎫2 00 3⎝ ⎛⎭⎪⎫x 1 y 1x 2 y 2=⎝ ⎛⎭⎪⎫1 00 1, 所以2x 1=1,2y 1=0,3x 2=0,3y 2=1,即x 1=12,y 1=0,x 2=0,y 2=13,故所求的逆矩阵M -1=⎝ ⎛⎭⎪⎪⎫12 00 13. (Ⅱ)设曲线C 上任意一点P (x ,y ),它在矩阵M 所对应的线性变换作用下得到点P ′(x ′,y ′),则⎝ ⎛⎭⎪⎫a 00 b ⎝ ⎛⎭⎪⎫x y =⎝ ⎛⎭⎪⎫x ′y ′,即⎩⎪⎨⎪⎧ ax =x ′,by =y ′,又点P ′(x ′,y ′)在曲线C ′上,所以x ′24+y ′2=1,则a 2x 24+b 2y 2=1为曲线C 的方程.又已知曲线C 的方程为x 2+y 2=1,故⎩⎪⎨⎪⎧ a 2=4,b 2=1.又a >0,b >0,所以⎩⎪⎨⎪⎧ a =2,b =1.6.(2011•江苏高考)已知矩阵A =⎣⎢⎡⎦⎥⎤1 12 1,向量β=⎣⎢⎡⎦⎥⎤12.求向量α,使得A 2α=β.解:A 2=⎣⎢⎡⎦⎥⎤1 12 1⎣⎢⎡⎦⎥⎤1 12 1=⎣⎢⎡⎦⎥⎤3 24 3.设α=⎣⎢⎡⎦⎥⎤x y .由A 2α=β,得⎣⎢⎡⎦⎥⎤3 24 3⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤12,从而⎩⎪⎨⎪⎧3x +2y =1,4x +3y =2. 解得x =-1,y =2,所以α=⎣⎢⎡⎦⎥⎤-1 2.。
2015年全国各地高考数学分类汇编-18 几何证明选讲、坐标系与参数方程、不等式选讲、矩阵与变换
2015年全国各地高考数学试题及解答分类汇编大全(18选修4:几何证明选讲、坐标系与参数方程、不等式选讲、矩阵与变换)一、几何证明选讲:选修4—1;几何证明选讲1.(2015广东理)如图1,已知AB是圆O的直径,4AB=,EC是圆O的切线,切点为C,1BC=,过圆心O做BC的平行线,分别交EC和AC于点D和点P,则OD=图1P OECDAB【答案】8.【考点定位】本题考查直线与圆、直角三角形的射影定理,属于中档题.2.(2015广东文)如图1,AB为圆O的直径,E为AB的延长线上一点,过E作圆O的切线,切点为C,过A作直线CE的垂线,垂足为D.若4AB=,C23E=,则DA=.【答案】3考点:1、切线的性质;2、平行线分线段成比例定理;3、切割线定理.3.(2015湖北理)如图,PA 是圆的切线,A 为切点,PBC 是圆的割线,且3BC PB =,则ABAC=.【答案】21考点:1.圆的切线、割线,2.切割线定理,3.三角形相似.4. (2015湖南理)(Ⅰ)如图,在圆O 中,相交于点E 的两弦AB ,CD 的中点分别是M ,N ,直线MO 与直线CD 相交于点F ,证明: (1)180MEN NOM ∠+∠=; (2)FE FN FM FO ⋅=⋅【答案】(1)详见解析;(2)详见解析.【考点定位】1.垂径定理;2.四点共圆;3.割线定理.【名师点睛】本题主要考查了圆的基本性质等知识点,属于容易题,平面几何中圆的有关问题是高考考查的热点,解题时要充分利用圆的性质和切割线定理,相似三角形,勾股定理等其他平面几何知识点的交汇.5. (2015江苏) 如图,在ABC ∆中,AC AB =,ABC ∆的外接圆圆O 的弦AE 交BC 于点D求证:ABD ∆∽AEB ∆【答案】详见解析考点:三角形相似6.(2015全国新课标Ⅰ卷文、理)如图AB 是O 直径,AC 是O 切线,BC 交O 与点E .(I )若D 为AC 中点,求证:DE 是O 切线; (II )若3OA CE =,求ACB ∠的大小.ABCE DO(第21——A 题)【答案】(Ⅰ)见解析(Ⅱ)60° 【解析】 试题分析:(Ⅰ)由圆的切线性质及圆周角定理知,AE ⊥BC ,AC ⊥AB ,由直角三角形中线性质知DE =DC ,OE =OB ,利用等量代换可证∠DEC +∠OEB =90°,即∠OED =90°,所以DE 是圆O 的切线;(Ⅱ)设CE =1,由OA =得,AB=AE =x,由勾股定理得BE =,由直角三角形射影定理可得2AE CE BE =,列出关于x 的方程,解出x ,即可求出∠ACB 的大小.【考点定位】圆的切线判定与性质;圆周角定理;直角三角形射影定理【名师点睛】在解有关切线的问题时,要从以下几个方面进行思考:①见到切线,切点与圆心的连线垂直于切线;②过切点有弦,应想到弦切角定理;③若切线与一条割线相交,应想到切割线定理;④若要证明某条直线是圆的切线,则证明直线与圆的交点与圆心的连线与该直线垂直.7. (2015全国新课标Ⅱ卷文、理)如图,O 为等腰三角形ABC 内一点,圆O 与ABC ∆的底边BC 交于M 、N 两点与底边上的高AD 交于点G ,与AB 、AC 分别相切于E 、F 两点.GAEFONDB CM(Ⅰ)证明://EF BC ;(Ⅱ) 若AG 等于O 的半径,且AE MN ==求四边形EBCF 的面积.【答案】(Ⅰ)详见解析;. 【解析】 试题分析:(Ⅰ)由已知得AD BC ⊥,欲证明//EF BC ,只需证明AD EF ⊥,由切线长定理可得AE AF =,故只需证明AD 是角平分线即可;(Ⅱ)连接OE ,OM ,在Rt AEO ∆中,易求得030OAE ∠=,故AEF ∆和AEF ∆都是等边三角形,求得其边长,进而可求其面积.四边形EBCF 的面积为两个等边三角形面积之差. 试题解析:(Ⅰ)由于ABC ∆是等腰三角形,AD BC ⊥,所以AD 是CAB ∠的平分线.又因为O 分别与AB 、AC 相切于E 、F 两点,所以AE AF =,故AD EF ⊥.从而//EF BC .(Ⅱ)由(Ⅰ)知,AE AF =,AD EF ⊥,故AD 是EF 的垂直平分线,又EF 是O 的弦,所以O 在AD 上.连接OE ,OM ,则OE AE ⊥.由AG 等于O 的半径得2AO OE =,所以030OAE ∠=.所以ABC ∆和AEF ∆都是等边三角形.因为AE =,所以4AO =,2OE =.因为2OM OE ==,12DM MN ==,所以1OD =.于是5AD =,AB =.所以四边形EBCF 的面积221122⨯⨯=考点:1.等腰三角形的性质;2、圆的切线长定理;3、圆的切线的性质. 8. (2015陕西文、理)如图,AB 切O 于点B ,直线AO 交O 于,D E 两点,,BC DE ⊥垂足为C .(I)证明:CBD DBA ∠=∠(II)若3,AD DC BC ==O 的直径.【答案】(I)证明略,详见解析; (II)3. 【解析】 试题分析::(I)因为DE 是O 的直径,则90BED EDB ∠+∠=︒,又BC DE ⊥,所以90CBD EDB ∠+∠=︒,又AB 切O 于点B ,得DBA BED ∠=∠,所以CBD DBA ∠=∠;(II)由(I)知BD 平分CBA ∠,则3BA ADBC CD==,又BC =,从而AB =222AB BC AC =+,解得4AC =,所以3AD =,由切割线定理得2AB AD AE =⋅,解得6AE =,故3DE AE AD =-=,即O 的直径为3.试题解析:(I)因为DE 是O 的直径, 则90BED EDB ∠+∠=︒又BC DE ⊥,所以90CBD EDB ∠+∠=︒ 又AB 切O 于点B , 得DBA BED ∠=∠ 所以CBD DBA ∠=∠(II)由(I)知BD 平分CBA ∠,则3BA ADBC==,又BC =,从而AB =,所以4AC == 所以3AD =,由切割线定理得2AB AD AE =⋅即26AB AE AD==, 故3DE AE AD =-=, 即O 的直径为3.考点:1.几何证明;2.切割线定理.9.(2015天津文、理)如图,在圆O 中,,M N 是弦AB 的三等分点,弦,CD CE 分别经过点,M N .若2,4,3CM MD CN === ,则线段NE 的长为( )(A )83 (B )3 (C )103 (D )52E【答案】A【解析】 试题分析:由相交弦定理可知,,AM MB CM MD CN NE AN NB ⋅=⋅⋅=⋅,又因为,M N 是弦AB 的三等分点,所以AM MB AN NB CN NE CM MD ⋅=⋅∴⋅=⋅,所以24833CM MD NE CN ⋅⨯===,故选A.考点:相交弦定理.10.(2015重庆理)如图,圆O 的弦AB ,C D 相交于点E ,过点A 作圆O 的切线与DC 的延长线交于点P ,若PA =6,AE =9,PC =3,CE :ED =2:1,则BE =_______.【答案】2【考点定位】相交弦定理,切割线定理.二、坐标系与参数方程:选修4-4:坐标系与参数方程1.(2015安徽理)在极坐标中,圆8sin ρθ=上的点到直线()3R πθρ=∈距离的最大值是 .【答案】6【解析】由题意2sin ρρθ=,转化为普通方程为228x y y +=,即22(4)16x y +-=;直线()3R πθρ=∈2. (2015北京理)在极坐标系中,点π23⎛⎫ ⎪⎝⎭‚到直线()cos 6ρθθ+=的距离为.【答案】1 【解析】试题分析:先把点(2,)3π极坐标化为直角坐标,再把直线的极坐标方程()cos 6ρθθ=化为直角坐标方程60x +-=,利用点到直线距离公式1d ==.考点:1.极坐标与直角坐标的互化;2.点到直线距离.3.(2015福建理)在平面直角坐标系xoy 中,圆C 的参数方程为13cos (t )23sin x ty tì=+ïí=-+ïî为参数.在极坐标系(与平面直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴非负半轴为极轴)中,直线l 的方程为sin()m,(m R).4pq -=? (Ⅰ)求圆C 的普通方程及直线l 的直角坐标方程; (Ⅱ)设圆心C 到直线l 的距离等于2,求m 的值. 【答案】(Ⅰ) ()()22129x y -++=,0x y m --=;(Ⅱ) m=-3±【解析】试题分析:(Ⅰ)将圆的参数方程通过移项平方消去参数得()()22129x y -++= ,利用cos x ρθ=,sin y ρθ=将直线的极坐标方程化为直角坐标方程;(Ⅱ)利用点到直线距离公式求解. 试题解析:(Ⅰ)消去参数t ,得到圆的普通方程为()()22129x y -++=,sin()m 4pq -=,得sin cos m 0r q r q --=, 所以直线l 的直角坐标方程为0x y m --=.(Ⅱ)依题意,圆心C 到直线l 的距离等于2|12m |2,--+=解得m=-3±考点:1、参数方程和普通方程的互化;2、极坐标方程和直角坐标方程的互化;3、点到直线距离公式.4.(2015广东理) 已知直线l 的极坐标方程为24sin(2=-)πθρ,点A 的极坐标为74A π⎛⎫ ⎪⎝⎭,则点A 到直线l 的距离为 【答案】2.【解析】依题已知直线l :2sin 4πρθ⎛⎫-=⎪⎝⎭74A π⎛⎫ ⎪⎝⎭可化为l :10x y -+=和()2,2A -,所以点A 与直线l 的距离为2d ==,故应填入. 【考点定位】本题考查极坐标与平面直角坐标的互化、点与直线的距离,属于容易题.5. (2015广东文) 在平面直角坐标系x y O 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线1C 的极坐标方程为()cos sin 2ρθθ+=-,曲线2C的参数方程为2x ty ⎧=⎪⎨=⎪⎩t 为参数),则1C 与2C 交点的直角坐标为 .【答案】()2,4- 【解析】试题分析:曲线1C 的直角坐标方程为2x y +=-,曲线2C 的普通方程为28y x =,由228x y y x+=-⎧⎨=⎩得:24x y =⎧⎨=-⎩,所以1C 与2C 交点的直角坐标为()2,4-,所以答案应填:()2,4-. 考点:1、极坐标方程化为直角坐标方程;2、参数方程化为普通方程;3、两曲线的交点. 16.(2015湖北理)在直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系. 已知直线l 的极坐标方程为(sin 3cos )0ρθθ-=,曲线C 的参数方程为1,1x t t y t t ⎧=-⎪⎪⎨⎪=+⎪⎩( t 为参数) ,l 与C 相交于A ,B 两点,则||AB =. 【答案】52考点:1.极坐标方程、参数方程与普通方程的转化,2.两点间的距离.7.(2015湖南理)(Ⅱ)已知直线5:12x l y t⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2cos ρθ=.(1) 将曲线C 的极坐标方程化为直角坐标方程;(2) 设点M的直角坐标为,直线l 与曲线C 的交点为A ,B ,求||||MA MB ⋅的值. 【答案】(1)0222=-+x y x ;(2)18.的两个实数根分别为1t ,2t ,则由参数t 的几何意义即知,1821==⋅|t |t |MB||MA|. 【考点定位】1.极坐标方程与直角坐标方程的互相转化;2.直线与圆的位置关系.【名师点睛】本题主要考查了极坐标方程与直角坐标方程的互相转化以及直线与圆的位置关系,属于容易题,在方程的转化时,只要利用θρcos =x ,θρsin =y 进行等价变形即可,考查极坐标方程与参数方程,实为考查直线与圆的相交问题,实际上为解析几何问题,解析几何中常用的思想,如联立方程组等,在极坐标与参数方程中同样适用.8、(2015湖南文)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.若曲线C 的极坐标方程为2sin ρθ=,则曲线C 的直角坐标方程为_____.【答案】2211x y +-=() 【解析】试题分析:将极坐标化为直角坐标,求解即可.曲线C 的极坐标方程为222sn sn ρθρρθ=∴=,,它的直角坐标方程为222x y y += , 2211x y ∴+-=(). 故答案为:2211x y +-=(). 考点:圆的极坐标方程9.(2015江苏)已知圆C 的极坐标方程为2sin()404πρθ+--=,求圆C 的半径.考点:圆的极坐标方程,极坐标与之间坐标互化10.(2015全国新课标Ⅰ卷文)在直角坐标系xOy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(I )求12,C C 的极坐标方程.(II )若直线3C 的极坐标方程为()πR 4θρ=∈,设23,C C 的交点为,M N ,求2C MN ∆ 的面积. 【答案】(Ⅰ)cos 2ρθ=-,22cos 4sin 40ρρθρθ--+=(Ⅱ)12【解析】试题分析:(Ⅰ)用直角坐标方程与极坐标互化公式即可求得1C ,2C 的极坐标方程;(Ⅱ)将将=4πθ代入22cos 4sin 40ρρθρθ--+=即可求出|MN|,利用三角形面积公式即可求出2C MN 的面积.试题解析:(Ⅰ)因为cos ,sin x y ρθρθ==,∴1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=.……5分(Ⅱ)将=4πθ代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=,解得1ρ=2ρ,|MN|=1ρ-2ρ,因为2C 的半径为1,则2C MN 的面积o 11sin 452⨯=12. 【考点定位】直角坐标方程与极坐标互化;直线与圆的位置关系【名师点睛】对直角坐标方程与极坐标方程的互化问题,要熟记互化公式,另外要注意互化时要将极坐标方程作适当转化,若是和角,常用两角和与差的三角公式展开,化为可以公式形式,有时为了出现公式形式,两边可以同乘以ρ,对直线与圆或圆与圆的位置关系,常化为直角坐标方程,再解决.11. (2015全国新课标Ⅰ卷理)在直角坐标系xOy 中,直线1C :x =-2,圆2C :()()22121x y -+-=,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系。
高考数学真题考点50 矩阵与变换
第 1 页 共 1 页
免费共享开发高考数学资源QQ 群1095023263 温馨提示:
此题库为Word 版, 请按住Ctrl, 滑动鼠标滚轴, 调节合适的观看比例, 关闭Word 文档返回原板块。
考点50 矩阵与变换
一、解答题
1.(2019·江苏高考·T21·A )A.[选修4-2:矩阵与变换]
已知矩阵A =[3 1
2 2].
(1)求A 2.
(2)求矩阵A 的特征值.
【命题意图】本题主要考查矩阵的运算、特征值等基础知识,考查运算求解能力.
【解题指南】(1)利用矩阵的乘法运算法则计算A 2的值即可.
(2)首先求得矩阵的特征多项式,然后利用特征多项式求解特征值即可.
【解析】(1)因为A =[3 1
2 2],所以A 2=[
3 12 2][3 12 2
] =[3×3+1×2 3×1+1×2 2×3+2×2 2×1+2×2]=[11 510 6
]. (2)矩阵A 的特征多项式为
f (λ)=|λ-3 -1
-2 λ-2|=λ2-5λ+4.
令f (λ)=0,解得A 的特征值λ1=1,λ2=4.。
高三数学必做题--矩阵与变换
专题一 矩阵与变换二.主要内容解读 1.矩阵变换注意:矩阵AB 与矩阵BA 意义不同AB 是先施加矩阵B 对应的变换,再施加矩阵A 对应的变换; BA 是先施加矩阵A 对应的变换,再施加矩阵B 对应的变换. 2.矩阵的运算、逆矩阵逆矩阵的求法:(1)定义法;(2)公式法1-=A d b ad bc ad bc c a ad bcad bc -⎡⎤⎢⎥--⎢⎥-⎢⎥⎢⎥--⎣⎦. 3.特征值和特征向量设A 是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使得A λ=αα,那么称λ为α的一个特征值,而α称为A 的属于特征值λ的一个特征向量.特征值和特征向量的求法:(1)写出A 的特征多项式()f λ,(2)求出()0f λ=的根,(3)将λ代入λ=A αα的二元一次方程组,(4)写出满足条件的一组非零解. 三.高考试题展示1.(08年江苏)在平面直角坐标系xOy 中,设椭圆2241x y +=在矩阵2001⎡⎤⎢⎥⎣⎦对应的变换作用下得到曲线F ,求F 的方程.[解析]本题主要考察曲线在矩阵变换下的变化特点,考察运算求解能力.满分10分. 解:设00(,)P x y 是椭圆上任意一点,点00(,)P x y 在矩阵2001⎡⎤⎢⎥⎣⎦对应的变换下变为点 00(,)P x y ''',则有00002001x x y y ⎡⎤'⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦,即00002x x y y ⎧'=⎪⎨'=⎪⎩,所以00002x x y y ⎧'=⎪⎨⎪'=⎩又因为点P 在椭圆上,故220041x y +=,从而2200()()1x y ''+=,所以,曲线F 的方程是:221x y +=.2.(09年江苏)求矩阵3221⎡⎤=⎢⎥⎣⎦A 的逆矩阵.[解析] 本题主要考查逆矩阵的求法,考查运算求解能力.满分10分. 解:设矩阵A 的逆矩阵为,x y z w ⎡⎤⎢⎥⎣⎦则3210,2101x y z w ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即323210,2201x z y w x z y w ++⎡⎤⎡⎤=⎢⎥⎢⎥++⎣⎦⎣⎦故321,320,20,21,x z y w x z y w +=+=⎧⎧⎨⎨+=+=⎩⎩解得:1,2,2,3x z y w =-===-, 从而A 的逆矩阵为11223--⎡⎤=⎢⎥-⎣⎦A . 3.(10年江苏)在平面直角坐标系xOy 中,A (0,0),B (-3,0),C (-2,1),设k ≠0,k ∈R ,M =⎥⎦⎤⎢⎣⎡100k ,N =⎥⎦⎤⎢⎣⎡0110,点A 、B 、C 在矩阵MN 对应的变换下得到点A 1,B 1,C 1,△A 1B 1C 1的面积是△ABC 面积的2倍,求实数k 的值.[解析] 本题主要考查矩阵的乘法运算及变换.满分10分.解:0010011010k k ⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦MN , 由00320010001032k k --⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,知A 1(0,0),B 1(0,-3),C 1(k ,-2). ∵1322ABC C S AB y ∆=⋅=,∴111111132322A B C C ABC S A B x k S ∆∆=⋅===,∴2k =±.4.(11年江苏)已知矩阵1121⎡⎤=⎢⎥⎣⎦A ,向量12⎡⎤=⎢⎥⎣⎦β.求向量α,使得2=A αβ. [解析] 本题主要考查矩阵的乘法运算.满分10分.解:设x y α⎡⎤=⎢⎥⎣⎦,由2A =αβ得:321432x y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,321432x y x y +=⎧∴⎨+=⎩,12x y =-⎧∴⎨=⎩,12-⎡⎤∴=⎢⎥⎣⎦α.四.试题分类汇总 1.矩阵变换 题1:(2010南京一模)在直角坐标系中,已知△ABC 的顶点坐标为A (0,0),B (2,0),C (2,1),求△ABC 在矩阵MN 作用下变换所得到的图形的面积,这里矩阵:2002⎡⎤=⎢⎥⎣⎦M ,0110-⎡⎤=⎢⎥⎣⎦N .题2:(2009年南京一模)已知矩阵0110⎡⎤=⎢⎥⎣⎦M ,0110-⎡⎤=⎢⎥⎣⎦N .在平面直角坐标系中,设直线012=+-y x 在矩阵M N 对应的变换作用下得到曲线F ,求曲线F 的方程.题3:(2011年苏、锡、常、镇二模)求圆22:4C x y +=在矩阵2001⎡⎤=⎢⎥⎣⎦A 对应变换作用下的曲线方程.题4:(2011年南京二模)求曲线C 1xy =:在矩阵1111⎡⎤=⎢⎥-⎣⎦M 对应的变换作用下得到的曲线1C 的方程.题5:(2011年南通二模)已知圆C :221x y +=在矩阵0=(0,0)0a a b b ⎡⎤>>⎢⎥⎣⎦A 对应的变换作用下变为椭圆22194x y +=,求a ,b 的值.题6:(2010年南京二模)如果曲线2243x xy y ++在矩阵11a b ⎛⎫⎪⎝⎭的作用下变换得到曲线221x y -=,求a b +的值.题7:(2011年苏、锡、常、镇一模)已知直角坐标平面xOy 上的一个变换是先绕原点逆时针旋转45,再作关于x 轴反射变换,求这个变换的逆变换的矩阵.2.矩阵的运算、逆矩阵题8:(2009南通二模)已知1 0 4 31 2 4 1-⎡⎤⎡⎤=⎢⎥⎢⎥-⎣⎦⎣⎦B , 求矩阵B .题9:(2010盐城二模)求使等式 2 4 2 0 1 03 50 10 -1⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦M 成立的矩阵M .题10:(2009南京二模)已知二阶矩阵M 满足1112,0012⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦M M ,求211⎡⎤⎢⎥-⎣⎦M .题11:(2010南通一模)若点A (2,2)在矩阵cos sin sin cos αααα-⎡⎤=⎢⎥⎣⎦M 对应变换的作用下得到的点为B (-2,2),求矩阵M 的逆矩阵.题12:(2010年盐城一模)已知二阶矩阵A 有特征值31=λ及其对应的一个特征向量111⎡⎤=⎢⎥⎣⎦α,特征值12-=λ及其对应的一个特征向量211⎡⎤=⎢⎥-⎣⎦α,求矩阵A 的逆矩阵1-A .3.特征值和特征向量题13:(2010年南通二模)求矩阵2112⎡⎤⎢⎥⎣⎦的特征值及对应的特征向量.题14:(2009年苏、锡、常、镇二模)已知矩阵M 221a ⎡⎤=⎢⎥⎣⎦,其中a ∈R ,若点(1,2)P - 在矩阵M 的变换下得到点(4,0)P '-,(1)求实数a 的值; (2)求矩阵M 的特征值及其对应的特征向量.题15:(2011年盐城一模)已知矩阵M =⎥⎦⎤⎢⎣⎡x 221的一个特征值为3,求其另一个特征值.题16:(2011年南京一模)已知21⎡⎤=⎢⎥⎣⎦α为矩阵114a ⎡⎤=⎢⎥-⎣⎦A 属于λ的一个特征向量,求实数a ,λ的值及2A .题17:(2010年苏、锡、常、镇二模)一个22⨯的矩阵M 有两个特征值:128,2λλ==,其中1λ对应的一个特征向量111⎡⎤=⎢⎥⎣⎦e ,2λ对应的一个特征向量212⎡⎤=⎢⎥-⎣⎦e ,求M .参考答案: 题1:解:200102021020MN --⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,由0203200220001064----⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,知1(0,0)A ,1(0,6)B -,1(2,4)C --,11111162A B C C S A B x ∆∴=⋅=.题2:解:由题设得⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-⋅⎥⎦⎤⎢⎣⎡=100101100110MN ,设),(y x 是直线012=+-y x 上任意一点,点),(y x 在矩阵MN 对应的变换作用下变为),(y x '',则有⎥⎦⎤⎢⎣⎡''=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-y x y x 1001, 即⎥⎦⎤⎢⎣⎡''=⎥⎦⎤⎢⎣⎡-y x y x ,所以⎩⎨⎧'-='=y y x x .因为点),(y x 在直线012=+-y x 上,从而01)(2=+'--'y x ,即:012=+'+'y x ,所以曲线F 的方程为 012=++y x .题3:解:设(,)P x y 是圆22:4C x y +=上的任意一点,设(,)P x y '''是(,)P x y 在矩阵2001⎡⎤=⎢⎥⎣⎦A 对应变换作用下的新曲线上的对应点, 则20201x x x y y y '⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦⎣⎦, …………………………………3分 则2x x y y '=⎧⎨'=⎩,所以2x x y y '⎧=⎪⎨⎪'=⎩, …………………………………6分将2x x y y '⎧=⎪⎨⎪'=⎩代入224x y +=,得22()()44x y ''+=. …………………………………8分 所以所求曲线方程为221164x y +=. …………………………………10分 题4:解:设00(,)P x y 为曲线C 1xy =:上任意一点,它在矩阵⎥⎦⎤⎢⎣⎡-=1111M 对应的变换作用下得到点(,)Q x y ,由001111x x y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,得0000x y x x y y +=⎧⎨-+=⎩,解得0022x y x x yy -⎧=⎪⎪⎨+⎪=⎪⎩, ………………………5分 因为00(,)P x y 在曲线C 1xy =:上,所以001x y =,所以122x y x y -+⨯=,即224x y -=. 所以所求曲线1C 的方程为:224x y -=. …………………………………10分题5:解:设(,)P x y 为圆C 上的任意一点,在矩阵A 对应的变换下变为另一个点(,)P x y ''',则 00x a x y b y '⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦,即,.x a x y b y '=⎧⎨'=⎩ …………………………………4分 又因为点(,)P x y '''在椭圆22194x y +=上,所以 2222194a xb y +=.由已知条件可知,221x y += ,所以 a 2=9,b 2=4.因为 a >0 ,b >0,所以 a =3,b =2. ………………………………10分题6:解:设00(,)P x y 是曲线22431x xy y ++=上的任意一点,点00(,)P x y 在矩阵11a b ⎡⎤⎢⎥⎣⎦对应的变换作用下,得到的点(,)Q x y 都在曲线221x y -=上. 由0011x a x b y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,得0000x ay x bx y y +=⎧⎨+=⎩, 代入221x y -=,得:22220000(1)(22)(1)1b x a b x y a y -+-+-=, 又因为00(,)P x y 在22431x xy y ++=上,所以220000431x x y y ++=,所以221122413b a b a ⎧-=⎪-=⎨⎪-=⎩,解得20a b =⎧⎨=⎩,所以2a b +=.题7:解:这个变换的逆变换是先作关于x 轴反射变换,再作绕原点顺时针45旋转变换,…2分其矩阵是10cos(45)sin(45)01sin(45)cos(45)⎡⎤---⎡⎤⋅⎢⎥⎢⎥---⎣⎦⎣⎦ …………………………………6分22⎡-⎢⎢=⎢⎢⎣ 。
2015年高考理科数学福建卷(含答案解析)
绝密★启用前 2015年普通高等学校招生全国统一考试(福建卷)数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题 共50分)一、选择题:本题共10小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若集合234{i,i ,i ,i }A =(i 是虚数单位),{1,1}B =-,则A B I 等于( )A. {1}-B. {1}C. {1,1}-D. ∅ 2. 下列函数为奇函数的是( )A. y =B. |sin |y x =C. cos y x =D. e e x x y -=-3. 若双曲线22:1916x y E -=的左、右焦点分别为1F ,2F ,点P 在双曲线E 上,且1||3PF =,则2||PF 等于( )A. 11B. 9C. 5D. 34. 为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到根据上表可得回归本线方程ˆˆybx a =+,其中0.76b =,ˆˆa y bx =-,据此估计,该社区一户年收入为15万元家庭年支出为( )A. 11.4万元B. 11.8万元C. 12.0万元D. 12.2万元5. 若变量x ,y 满足约束条件20,0,220,x y x y x y +⎧⎪-⎨⎪-+⎩≥≤≥则2z x y =-的最小值等于( )A. 52-B. 2-C. 32-D. 26. 阅读如图所示的程序框图,运行相应的程序,则输出的结果为 ( )A. 2B. 1C. 0D. 1-7. 若l ,m 是两条不同的直线,m 垂直于平面α,则“l m ⊥”是“l α∥”的 ( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件D. 既不充分也不必要条件8. 若a ,b 是函数2()(0,0)f x x px q p q =-+>>的两个不同的零点,且a ,b ,2-这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于( )A. 6B. 7C. 8D. 99. 已知AB AC ⊥u u u r u u u r ,1||AB t =u u u r ,||AC t =u u u r ,若P 点是ABC △所在平面内一点,且4||||AB ACAP AB AC =+u u u r u u u ru u u r u u u r u u u r ,则 PB PC u u u r u u u r g 的最大值等于 ( )A. 13B. 15C. 19D. 2110. 若定义在R 上的函数()f x 满足(0)1f =-,其导函数'()f x 满足()1f x k '>>,则下列结论中一定错误的是( )A. 11()f k k<B. 11()1f k k >- C. 11()11f k k <-- D. 1()11k f k k >-- 第II 卷(非选择题 共100分)二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡的相应位置. 11. 5(2)x +的展开式中,2x 的系数等于________.(用数字作答)12. 若锐角ABC △的面积为,且5AB =,8AC =,则BC 等于________.13. 如图,点A 的坐标为(1,0),点C 的坐标为(2,4),函数2()f x x =.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于________.14. 若函数6,2,()3log ,2,a x x f x x x -+⎧=⎨+⎩≤>(0a >且1a ≠)的值域是[4,)+∞,则实数a 的取值范围是________.15. 一个二元码是由0和1组成的数字串*12()n x x x n ∈N L ,其中()1,2,,k x k n =L 称为第k 位码元.二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为).已知某种二元码127x x x L 的码元满足如下校验方程组:4567236713570,0,0,x x x x x x x x x x x x ⊕⊕⊕=⎧⎪⊕⊕⊕=⎨⎪⊕⊕⊕=⎩ 其中运算⊕定义为:000⊕=,011⊕=,101⊕=,110⊕=.现已知一个这种二元码在通信过程中仅在第k 位发生码元错误后变成了1101101,那姓名________________ 准考证号_____________---------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------么利用上述校验方程组可判定k等于________.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.16.(本小题满分13分)某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定.小王到该银行取钱时,发现自己忘记了银行卡的密码,但可以确认该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(Ⅰ)求当天小王的该银行卡被锁定的概率;(Ⅱ)设当天小王用该银行卡尝试密码次数为X,求X的分布列和数学期望.17.(本小题满分13分)如图,在几何体ABCDE中,四边形ABCD是矩形,AB⊥平面BEC,BE EC⊥,2AB BE EC===,G,F分别是线段BE,DC的中点.(Ⅰ)求证:GF∥平面ADE;(Ⅱ)求平面AEF与平面BEC所成锐二面角的余弦值.18.(本小题满分13分)已知椭圆22221(a0)x yE ba b+=>>:过点,且离心率为e=.(Ⅰ)求椭圆E的方程;(Ⅱ)设直线:1,()l x my m=-∈R交椭圆E于A,B两点,判断点9(,0)4G-与以线段AB为直径的圆的位置关系,并说明理由.19.(本小题满分13分)已知函数()f x的图象是由函数()cosg x x=的图象经如下变换得到:先将()g x图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),再将所得到的图象向右平移π2个单位长度.(Ⅰ)求函数()f x的解析式,并求其图象的对称轴方程;(Ⅱ)已知关于x的方程()()f xg x m+=在[0,2π)内有两个不同的解α,β.(ⅰ)求实数m的取值范围;(ⅱ)证明:22cos)15mαβ-=-(.20.(本小题满分14分)已知函数()ln(1)f x x=+,()g x kx=()k∈R.(Ⅰ)证明:当0x>时,()f x x<;(Ⅱ)证明:当1k<时,存在x>,使得对任意的(0)x x∈,,恒有()()f xg x>;(Ⅲ)确定k的所以可能取值,使得存在0t>,对任意的(0,)x t∈恒有2|()()|f xg x x-<.21. 本题设有(1),(2),(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分.(1)(本小题满分7分)选修4—2:矩阵与变换已知矩阵2143⎛⎫= ⎪⎝⎭A,1101⎛⎫= ⎪-⎝⎭B.(Ⅰ)求A的逆矩阵1-A;(Ⅱ)求矩阵C,使得=AC B.(2)(本小题满分7分)选修4—4:坐标系与参数方程在平面直角坐标系xOy中,圆C的参数方程为13cos,23sin,x ty t=+⎧⎨=-+⎩(t为参数).在极坐标系(与平面直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴非负半轴为极轴)中,直线lπsin(),()4m mθ-=∈R.(Ⅰ)求圆C的普通方程及直线l的直角坐标方程;(Ⅱ)设圆心C到直线l的距离等于2,求m的值.(3)(本小题满分7分)选修4—5:不等式选讲已知0a>,0b>,0c>,函数()||||f x x a x b c=++-+的最小值为4.(Ⅰ)求a b c++的值;(Ⅱ)求2221149a b c++的最小值.2015年普通高等学校招生全国统一考试(福建卷)数学(理科)答案解析第Ⅰ卷一、选择题 1.【答案】C【解析】∵234{i }{i ,i ,i ,i ,1,}i,1A ==--,}1{1,B =-, ∴{i }{}{}1i 11111A B =---=-I I ,,,,,.【提示】利用虚数单位i 的运算性质化简A ,然后利用交集运算得答案. 【考点】虚数单位i 及其性质,交集及其运算. 2.【答案】D【解析】A .函数的定义域为[0,)+∞,定义域关于原点不对称,故A 为非奇非偶函数. B .()|()|||()f x sin x sinx f x -=-==,则()f x 为偶函数. C .cos y x =为偶函数.D .()e e (e e ())x x x x f x f x ---=-=--=-,则()f x 为奇函数 【提示】根据函数奇偶性的定义进行判断即可. 【考点】函数奇偶性的判断,余弦函数的奇偶性. 3.【答案】B【解析】由题意,双曲线22:1916x y E -=中3a =∵3a =,∴P 在双曲线的左支上,∴由双曲线的定义可得21|||6|PF PF -=,∴2||9PF =【提示】确定P 在双曲线的左支上,由双曲线的定义可得结论. 【考点】双曲线的简单性质 4.【答案】B 【解析】由题意可得(8.28.610.011.311.9)1501x ++++==,(6.27.58.08.5915.8)8y ++++==,代入回归方程可得80.76100.4a =-⨯=$, ∴回归方程为0.760.4y x =+$, 把15x =代入方程可得0.76150.411.8y =⨯+=【提示】由题意可得x 和y ,可得回归方程,把15x =代入方程求得y 值即可. 【考点】线性回归方程5.【答案】D【解析】由约束条件200220x y x y x y +≥⎧⎪-≤⎨⎪-+≥⎩作出可行域如图,由图可知,最优解为A ,联立20220x y x y +=⎧⎨-+=⎩,解得11,2A ⎛⎫- ⎪⎝⎭.∴2z x y =-的最小值为152(1)22⨯--=-.【提示】由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案. 【考点】简单线性规划 6.【答案】C【解析】模拟执行程序框图,可得AGB ∠,0S =πcos 2S =,i 2=不满足条件i 5>,πcoscos π2S =+,i 3= 不满足条件i 5>,π3πcos cos πcos 22S =++,i 4=不满足条件i 5>,π3πcos cos πcos cos2π22S =+++,i 5=不满足条件i 5>,π3π5πcoscos πcos cos2πcos 010100222S =++++=-+++=+,i 6= 满足条件i 5>,退出循环,输出S 的值为0【提示】模拟执行程序框图,依次写出每次循环得到的i ,S 的值,当i=6时满足条件i>5,退出循环,输出S 的值为0 【考点】循环结构 7.【答案】B【解析】l m ,是两条不同的直线,m 垂直于平面α,则“l m ⊥”可能“l α∥”也可能l α⊂,反之,“l α∥”一定有“l m ⊥”所以l m ,是两条不同的直线,m 垂直于平面α,则“l m ⊥”是“l α∥”的必要而不充分条件.【提示】利用直线与平面平行与垂直关系,判断两个命题的充要条件关系即可. 【考点】必要条件、充分条件与充要条件的判断 8.【答案】D【解析】由题意可得:a b p ab q +==,, ∵00p q >>,, 可得00a b >>,,又2a b -,,这三个数可适当排序后成等差数列,也可适当排序后成等比数列,可得224b a ab =-⎧⎨=⎩①或224a b ab =-⎧⎨=⎩②.解①得:41a b =⎧⎨=⎩;解②得:14a b =⎧⎨=⎩.∴5144p a b q =+==⨯=,,则9p q += 【考点】等比数列的性质,等差数列的性质.【提示】由一元二次方程根与系数的关系得到a b p ab q +==,,再由2a b -,,这三个数可适当排序后成等差数列,也可适当排序后成等比数列列关于a b ,的方程组,求得a b ,后得答案. 9.【答案】A【考点】平面向量数量积的运算【提示】建系,由向量式的几何意义易得P 的坐标,可化1144(1)4PB PC t t t t ⎛⎫⎛⎫=----=+ ⎪ ⎪⎝⎭⎝⎭uu r uu u r g g ,由基本不等式可得.【解析】由题意建立如图所示的坐标系, 可得1(0,0),0(0,)t A B C t ⎛⎫⎪⎝⎭,,,∵4||||AB AC AP AB AC =+uu u r uuu ruu u r uu u r uuu r ,∴(1,4)P ,∴11,4PB t ⎛⎫=-- ⎪⎝⎭uu r ,(1,4)C t P -=-uu ur ,∴114(1)1744t t t PB t PC ⎛⎫⎛⎫---=-+ ⎪ ⎪⎝⎭⎝=⎭-uu r uu u r g ,由基本不等式可得144t t +≥=,∴117417413t t ⎛⎫-+≤-= ⎪⎝⎭当且仅当14t t =即12t =时取等号,∴PB PC uu r uu u rg 的最大值为13,10.【答案】C【解析】解;∵lim()(0)(0)0x f x f f x →-'=-()1f x k '>>, ∴()(0)1f x f k x ->>,即()11f x k x+>>,当11x k =-时,1111111f k k k k ⎛⎫+>⨯= ⎪---⎝⎭,即1111111f k k k ⎛⎫>-= ⎪---⎝⎭ 故1111f k k ⎛⎫> ⎪--⎝⎭,所以1111f k k ⎛⎫< ⎪--⎝⎭,一定出错, 另解:设()()1g x f x kx =-+,0(0)g =,且()()0g x f x k ''=->,()g x 在R 上递增,1k >,对选项一一判断,可得C 错.【提示】根据导数的概念得出()(0)1f x f k x ->>,用11x k =-代入可判断出1111f k k ⎛⎫>⎪--⎝⎭,即可判断答案. 【考点】函数的单调性与导数的关系第Ⅱ卷二、填空题 11.【答案】80【解析】5(2)x +的展开式的通项公式为5152r r r r T C x -+=g g ,令52r -=,求得3r =,可得展开式中2x 项的系数为335280C =g ,【提示】先求出二项式展开式的通项公式,再令x 的幂指数等于2,求得r 的值,即可求得展开式中的2x 项的系数. 【考点】二项式定理 12.【答案】7【解析】因为锐角ABC △的面积为,且5AB =,8AC =,所以158sin 2A ⨯⨯⨯=,所以sin A =所以60A =︒,所以1cosA =, 所以7BC ==【提示】利用三角形的面积公式求出A ,再利用余弦定理求出BC . 【考点】余弦定理的应用 13.【答案】512【解析】由已知,矩形的面积为4(21)4⨯-=,阴影部分的面积为22321115(4)433x dx x x ⎛⎫⎰-=-= ⎪⎝⎭由几何概型公式可得此点取自阴影部分的概率等于512; 【提示】分别求出矩形和阴影部分的面积,利用几何概型公式解答. 【考点】定积分的简单应用,几何概型 14.【答案】(1,2]【解析】由于函数6,2()(01)3log ,2a x c f x a a x x -+≤⎧=>≠⎨+>⎩且的值域是[4,)+∞, 故当2x ≤时,满足()64f x x =-≥当2x >时,由()3log 4a f x x =+≥,∴log 1a x ≥,∴log 21a ≥,∴12a <≤ 综上可得,12a <≤,【提示】当2x ≤时,满足()4f x ≥.当2x >时,由()3log 4a f x x =+≥,即log 1a x ≥,故有log 21a ≥,由此求得a 的范围,综合可得结论. 【考点】对数函数的单调性与特殊点 15.【答案】5【解析】依题意,二元码在通信过程中仅在第k 位发生码元错误后变成了1101101, ①若1k =,则12345670101101x x x x x x x =======,,,,,,, 从而由校验方程组,得45671x x x x ⊕⊕⊕=,故1k ≠;②若2k =,则12345671001101x x x x x x x =======,,,,,,, 从而由校验方程组,得23671x x x x ⊕⊕⊕=,故2k ≠;③若3k =,则12345671111101x x x x x x x =======,,,,,,, 从而由校验方程组,得23671x x x x ⊕⊕⊕=,故3k ≠;④若4k =,则12345671100101x x x x x x x =======,,,,,,, 从而由校验方程组,得13571x x x x ⊕⊕⊕=,故4k ≠;⑤若5k =,则12345671101001x x x x x x x =======,,,,,,, 从而由校验方程组,得4567236713570,0,0x x x x x x x x x x x x ⊕⊕⊕=⊕⊕⊕=⊕⊕⊕=, 故5k =符合题意;⑥若6k =,则12345671101111x x x x x x x =======,,,,,,, 从而由校验方程组,得23671x x x x ⊕⊕⊕=,故6k ≠;⑦若7k =,则123456110110x x x x x x ======,,,,,,70x =, 从而由校验方程组,得23671x x x x ⊕⊕⊕=,故7k ≠; 综上,k 等于5【提示】根据二元码127x x x L 的码元满足的方程组,及“⊕”的运算规则, 将k 的值从1至7逐个验证即可. 【考点】通讯安全中的基本问题 三、解答题16.【答案】52【考点】离散型随机变量的期望与方差,相互独立事件的概率乘法公式. 【提示】(1)根据概率的公式即可求当天小王的该银行卡被锁定的概率;(2)随机变量X 的取值为:1,2,3,分别求出对应的概率,即可求出分布列和期望. 【解析】(1)设“当天小王的该银行卡被锁定”的事件为A ,则5431()=6542P A =⨯⨯.(2)有可能的取值是1,2,3 又则1(1)6P X ==, 511(2)656P X ==⨯=,542(3)653P X ==⨯=1236632EX =⨯+⨯+⨯=17.【答案】(1)见解析(2)23【解析】解法一:(1)如图,取AE 的中点H ,连接HG ,HD , ∵G 是BE 的中点,∴GH AB ∥,且12GH AB =, 又∵F 是CD 中点,四边形ABCD 是矩形, ∴DF AB ∥,且12DF AB =,即GH DF ∥,且GH DF =, ∴四边形HGFD 是平行四边形,∴GF DH ∥,又∵DH ADE ⊂平面,GF ADE ⊄平面,∴GF ADE ∥平面. (2)如图,在平面BEG 内,过点B 作BQ CE ∥, ∵BE EC ⊥,∴BQ BE ⊥,又∵AB BEC ⊥平面,∴AB BE ⊥,AB BQ ⊥,以B 为原点,分别以BE uur ,BQ uu u r ,BA uu r的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,则(0,0,2)(0,0,0)2,0,0)(2,2,1)(A B E F ,,, ∵AB BEC ⊥平面,∴(0,0,2)BA =uu r为平面BEC 的法向量,设(,,)n x y z =r为平面AEF 的法向量.又(2,0,2)BE =-uur ,(2,2,1)AF =-uuu r由垂直关系可得220220n AE x z n AF x y z ⎧==-=⎪⎨==+-=⎪⎩r uu u r r uuu r,取2z =可得(2,1,2)n =-r . ∴2cos ,3||||n BA n BA n BA 〈〉>=r uu rr uu r g r uu r∴平面AEF 与平面BEC 所成锐二面角的余弦值为23. 解法二:(1)如图,取AB 中点M ,连接MG ,MF , 又G 是BE 的中点,可知GM AE ∥,且12GM AE =又AE ⊂平面ADE ,GM ⊄平面ADE , ∴GM ∥平面ADE .在矩形ABCD 中,由M ,F 分别是AB ,CD 的中点可得MF AD ∥. 又AD ⊂平面ADE ,MF ⊄平面ADE ,∴MF ADE ∥平面. 又∵GM MF M =I ,GM ⊂平面GMF ,MF GMF ⊂平面∴平面GMF ADE ∥平面,∵GF GMF ⊂平面,∴GF ADE ∥平面 (2)同解法一.【提示】解法一:(1)取AE 的中点H ,连接HG ,HD ,通过证明四边形HGFD 是平行四边形来证明GF DH ∥,由线面平行的判定定理可得;(2)以B 为原点,分别以BE uur ,BQ uu u r,BA uu r 的方向为x 轴,y 轴,z轴的正方向建立空间直角坐标系,可得平面BEC 和平面AEF 的法向量,由向量夹角的余弦值可得.解法二:(1)如图,取AB 中点M ,连接MG ,MF ,通过证明平面GMF ∥平面ADE 来证明GF ∥平面ADE ; (2)同解法一.【考点】用空间向量求平面间的夹角,直线与平面平行的判定.18.【答案】(1)22142x y +=(2)见解析【解析】解法一:(1)由已知得222b c a a b c ⎧=⎪⎪=⎨⎪⎪=+⎩,解得2a b c =⎧⎪⎨==⎪⎩,∴椭圆E 的方程为22142x y +=. (2)设点11)(A x y ,22)(,B x y ,AB 中点为00)(,H x y .由221142x my x y =-⎧⎪⎨+=⎪⎩,化为22(2)230m y my +--=,∴12222m y y m +=+,12232y y m -=+,∴022m y m =+. 9,04G ⎛⎫- ⎪⎝⎭, ∴222222200000095525||(1)44216GH x y my y m y my ⎛⎫⎛⎫=++=++=+++ ⎪ ⎪⎝⎭⎝⎭.222222212121212012()()(1)[()4]||(1)()444x x y y m y y y y AB m y y y -+-++-===+-, 故222222012222||52553(1)25172||(1)042162(2)21616(2)AB m m m GH my m y y m m m ++-=+++=-+=>+++. ∴2||||2AB GH >,故G 在以AB 为直径的圆外. 解法二:(1)同解法一.(2)设点11)(A x y ,22)(,B x y ,则119,4GA x y ⎛⎫=+ ⎪⎝⎭uu r ,229,4GB x y ⎛⎫=+ ⎪⎝⎭uu u r .由221142x my x y =-⎧⎪⎨+=⎪⎩,化为222)230(m y my +--=,∴12222m y y m +=+,12232y y m -=+,从而12129944GA GB x x y y ⎛⎫⎛⎫=+++ ⎪⎪⎝⎭⎝⎭uu r uu u r g12125544my my y y ⎛⎫⎛⎫=+++ ⎪⎪⎝⎭⎝⎭21212525(1)()416m y y m y y =++++22222253(1)2517202(2)21616(2)m m m m m m ++=-+=>+++ ∴0GA GB >uu r uu u r g 又GA uu r ,GB uu u r不共线,∴AGB ∠为锐角.故点9,04G ⎛⎫- ⎪⎝⎭在以AB 为直径的圆外.【提示】解法一:(1)由已知得2222b ca abc ⎧=⎪⎪=⎨⎪⎪=+⎩,解得即可得出椭圆E 的方程.(2)设点11)(,A x y ,22)(,B x y ,AB 中点为00(),H x y .直线方程与椭圆方程联立化为22(2)230m y my +--=,利用根与系数的关系中点坐标公式可得:022m y m =+.222009||4GH x y ⎛⎫=++ ⎪⎝⎭.2221212(1)[()4]||44m y y y y AB ++-=,作差22|||4|AB GH -即可判断出. 解法二:(1)同解法一.(2)设点1122(,(,))A x y B x y ,,则119=,4GA x y ⎛⎫+ ⎪⎝⎭uu r ,229=,4GB x y ⎛⎫+ ⎪⎝⎭uu u r .直线方程与椭圆方程联立化为22(2)230m y my +--=,计算12129944GA GB x x y y ⎛⎫⎛⎫=+++ ⎪⎪⎝⎭⎝⎭uu r uu u r g即可得出AGB ∠,进而判断出位置关系. 【考点】直线与圆锥曲线的综合问题 19.【答案】(1)()2sin f x x =ππ()2x k k =+∈Z(2)(i)( (ii )见解析【解析】(1)将c (s )o x g x =的图象上所有点的纵坐标伸长到原来的2倍(横坐标不变)得到2cos y x =的图象,再将2cos y x =的图象向右平移π2个单位长度后得到π2cos 2y x ⎛⎫=- ⎪⎝⎭的图象,故()2sin f x x =,从而函数()2sin f x x =图象的对称轴方程为ππ()2x k k =+∈Z .(2)(i)()()2sin cos )f x g x x x x x x ϕ⎫+=++=+⎪⎭(其中sin ϕ=cos ϕ=依题意,in )(s x ϕ+在区间[0,2π)内有两个不同的解αβ,,1<,故m的取值范围是(. (ii )因为αβ,)x m ϕ+=在区间[0,2π)内的两个不同的解,所以sin()αϕ+=,sin()βϕ+=.当1m ≤<时,π22αβϕ⎛⎫+=- ⎪⎝⎭,即π2()αββϕ-=-+;当1m <时,23π2αβϕ+=-⎛⎫⎪⎝⎭,即3π2()αββϕ-=-+;所以2222cos()cos2()2sin ()12115m αββϕβϕ-=-+=+-=-=-.【提示】(1)由函数sin()y A x ωϕ=+的图象变换规律可得:()2sin f x x =,从而可求对称轴方程.(2)(i )由三角函数中的恒等变换应用化简解析式可得:()())f x g x x ϕ+=+(其中sin ϕ=,cos ϕ=,1<,即可得解.(ii)由题意可得sin()αϕ+=,sin()βϕ+=当1m ≤π2()αββϕ-=-+,当0m <时,可求3π2()αββϕ-=-+,由2cos()2sin ()1αββϕ-=+-,从而得证. 【考点】三角函数中的恒等变换应用,函数sin()y A x ωϕ=+的图象变换. 20.【答案】(1)证明见解析 (2)证明见解析 (3)见解析【解析】(1)证明:令()()ln(1)f x f x x x x =-=+-,0x ≥ 则有1()111xf x x x '=-=-++, ∵0x ≥,∴()0f x '≤,∴()f x 在[0,)+∞上单调递减, ∴当,()0x ∈+∞时,有()(0)0f x f =<, ∴0x >时,()f x x <;(2)证明:令()()ln(1())g x f x g x x kx =-=+-,,()0x ∈+∞,则有1(1)()11kx k g x k x x -+-'=-=++,当0k ≤时,()0g x '>, ∴()g x 在(0,)+∞上单调递增, ∴()(0)0g x g >=,故对任意正实数0x 均满足题意.当01k <<时,令()0g x '=,得1110k x k k-==->.取011x k =-,对任意0)(0,x x ∈,恒有()0g x '>,∴()g x 在0(0,)x 上单调递增,()(0)0g x g >=,即()()f x g x >.综上,当1k <时,总存在00x >,使得对任意的0)(0,x x ∈,恒有()()f x g x >; (3)解:当1k >时,由(1)知,对于任意,()0x ∈+∞,()()x g x f x >>, 故()()g x f x >,()()()()ln(1)f x g x g x f x kx x -=-=-+, 令2ln(1)()M x kx x x =-+-,,()0x ∈+∞,则有212(2)1()211x k x k M x k x x x -+-+-'=--=++,故当x ⎛ ∈ ⎝⎭时,()0M x '>,()M x在0⎡⎢⎣⎢⎭上单调递增,故()(0)0M x M >=,即2()()||f x x g x ->,∴满足题意的t 不存在. 当1k <时,由(2)知存在00x >,使得对任意的0(0,)()()f x x x g x ∈>,. 此时|()()|()()ln(1)f x g x f x g x x kx -=-=+- 令2ln(1)0(),)[N x kx x x x =+--∈+∞,,则有212(2)121(1)x x k x k N k x x x--+-+'=--=++, 故当x ⎛ ∈ ⎝⎭时,0()N x '>,()N x在⎡⎢⎢⎭⎣上单调递增,故()(0)0N x N >=, 即2()()x f x g x ->,记0x1x ,则当1)(0,x x ∈时,恒有2()()||f x x g x ->,故满足题意的t 不存在.当1k =,由(1)知,当,()0x ∈+∞时,()()|()|()ln(1)f x g x g x f x x x =-=-+-, 令2ln(1)([0),)H x x x x x =-+-∈+∞,,则有2121)121(x xH x x xx --'=--=++, 当0x >,()0H x '<,∴()H x 在[0,)+∞上单调递减,故()(0)0H x H <=, 故当0x >时,恒有2()()||f x x g x -<,满足0t >的实数t 存在. 综上,1k =【提示】(1)令()()ln(1)f x f x x x x =-=+-,0x ≥,求导得到()0f x '≤, 说明()f x 在[0,)+∞上单调递减,则0x >时,()f x x <;(2)令(()ln (1))()f x g x g x x kx =-=+-,,()0x ∈+∞,可得0k ≤时,()0g x '>, 说明()g x 在(0,)+∞上单调递增,存在00x >,使得对任意0)(0,x x ∈,恒有()()f x g x >; 当01k <<时,由()0G x '=求得1110k x k k-==->. 取011x k=-,对任意0)(0,x x ∈,恒有()0g x '>,()g x 在上单调递增, ()0)0(g x g >=,即()()f x g x >;(3)分1k >、1k <和1k =把不等式2|()()|f x g x x -<的左边去绝对值, 当1k >时,利用导数求得2|()()|f x g x x ->,满足题意的t 不存在.当1k <时,由(2)知存在00x >,使得对任意的任意0()0,x x ∈,()()f x g x >. 令2()(ln 1)N x x x x k =+--,,[)0x ∈+∞,求导数分析满足题意的t 不存在. 当1k =,由(1)知,当,[)0x ∈+∞时,()|()()()n |l (1)g x f x x f x x x g -=-=-+, 令2()ln(1)H x x x x =-+-,,[)0x ∈+∞,则有0x >,()0H x '<,()H x 在[0,)+∞上单调递减,故()(0)0H x H =<,说明当0x >时,恒有2|()()|f x g x x -<,此时,满足0t >的实数t 存在.【考点】导数在最大值、最小值问题中的应用21.【答案】(1)312221⎛⎫-⎪ ⎪ ⎪-⎝⎭(2)32223⎛⎫⎪ ⎪ ⎪--⎝⎭【解析】(1)因为||23142A =⨯-⨯=,所以131312222422122A --⎛⎫⎛⎫ ⎪-⎪==⎪ ⎪- ⎪ ⎪- ⎪⎝⎭⎝⎭; (2)由AC B =得11()A A C A B --=,故1313112222012123C B A -⎛⎫⎛⎫-⎛⎫ ⎪ ⎪=== ⎪ ⎪ ⎪- ⎪ ⎪⎝⎭---⎝⎭⎝⎭. 【提示】(1)求出矩阵的行列式,即可求A 的逆矩阵1A -; (2)由AC B =得11()A A C A B --=,即可求矩阵C ,使得AC B =. 【考点】逆变换与逆矩阵22.【答案】(1)22(1)(2)9x y -++=0x y m -+=(2)3-±【解析】(1)消去参数t ,得到圆的普通方程为22(1)(2)9x y -++=,πsin 4m θ⎛⎫-= ⎪⎝⎭,得sin cos 0m ρθρθ--=,所以直线l 的直角坐标方程为:0x y m -+=.(2)依题意,圆心(1,2)C -到直线0l x y m -+=:的距离等于22=,解得3m =-±.【提示】(1)直接利用极坐标与直角坐标的互化以及参数方程与普通方程的互化求解即可. (2)直接利用点到直线的距离个数求解即可. 【考点】圆的参数方程,简单曲线的极坐标方程. 23.【答案】(1)4 (2)87【解析】(1)因为|()|||||()()||f x x a x b c x a x b c a b c =++-+≥+--+=++, 当且仅当a x b -≤≤时,等号成立,又00a b >>,,所以||a b a b +=+, 所以()f x 的最小值为a b c ++,所以4a b c ++=;(2)由(1)知4a b c ++=,由柯西不等式得,2222211(491)231()164923a b a b c c a b c ⎛⎫⎛⎫++++≥++=++= ⎪ ⎪⎝⎭⎝⎭g g g, 即222118497a b c ++≥ 当且仅当1132231b a c ==,即87a =,187b =,27c =时,等号成立.所以2221149a b c ++的最小值为87.【提示】(1)运用绝对值不等式的性质,注意等号成立的条件,即可求得最小值; (2)运用柯西不等式,注意等号成立的条件,即可得到最小值. 【考点】一般形式的柯西不等式。
矩阵与变换二阶矩阵平面逆变换等章节综合考点检测练习(二)附答案人教版高中数学高考真题汇编家教辅导
高中数学专题复习
《矩阵与变换二阶矩阵平面逆变换等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
评卷人得分
一、填空题
1.已知矩阵
2
7
b
A
a
-
⎡⎤
=⎢⎥
-⎣⎦
的逆矩阵是
2
73
a
B
⎡⎤
=⎢⎥
⎣⎦
,则=
+b
a.
2.已知以,x y为变量的二元一次方程组的增广矩阵为
211
120
-
⎛⎫
⎪
-
⎝⎭
,则这个二元一次方程组
的解为____________.
评卷人得分
二、解答题
3.二阶矩阵M对应的变换将点(1,1)
-与(2,1)
-分别变换成点(1,1)
--与(0,2)
-.
(1)求矩阵M的逆矩阵1-
M;
(2)设直线l在变换M作用下得到了直线:24
m x y
-=,求l的方程.
4.求矩阵
14
26
M
-⎡⎤
=⎢⎥
⎣⎦
的特征值和特征向量.。
高考数学复习专题矩阵与变换考点剖析
矩阵与变换主标题:矩阵与变换副标题:为学生详细的分析矩阵与变换的高考考点、命题方向以及规律总结。
关键词:矩阵,二阶矩阵,变换,特征值,特征向量 难度:3 重要程度:5考点剖析:1.了解二阶矩阵的概念,了解线性变换与二阶矩阵之间的关系.2.了解旋转变换、反射变换、伸缩变换、投影变换、切变变换这五种变换的概念与矩阵表示.3.理解变换的复合与矩阵的乘法;理解二阶矩阵的乘法和简单性质. 4.理解逆矩阵的意义,会求出简单二阶逆矩阵.5.理解矩阵的特征值与特征向量,会求二阶矩阵的特征值与特征向量.命题方向:主要考查矩阵与变换,二阶逆矩阵与二元一次方程组及求矩阵的特征值与特征向量。
规律总结:1.矩阵相等实质上是矩阵对应元素相等,体现了方程思想,要注意矩阵对应元素相等.2.矩阵的乘法只满足结合律,不满足交换律和消去律. 3.对于平面图形的变换要分清是伸缩、反射、还是切变变换.4.伸缩、反射、切变变换这三种几何变换称为初等变换,对应的变换矩阵为初等变换矩阵,由矩阵的乘法可以看出,矩阵的乘法对应于变换的复合,一一对应的平面变换都可以看作这三种初等变换的一次或多次的复合.5.逆矩阵的求法常用待定系数法.6.若A ,B 两个矩阵均存在可逆矩阵,则有(AB )-1=B -1A -1,若A ,B ,C 为二阶矩阵且A 可逆,则当AB =AC 时,有B =C ,即此时矩阵乘法的消去律成立. 7.关于特征值问题的一般解法如下:给定矩阵A =⎣⎢⎡⎦⎥⎤ab cd ,向量α=⎣⎢⎡⎦⎥⎤x y ,若有特征值λ,则⎣⎢⎡⎦⎥⎤ab cd ⎣⎢⎡⎦⎥⎤x y =λ⎣⎢⎡⎦⎥⎤x y ,即⎣⎢⎡⎦⎥⎤λ-a -b -cλ-d ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤00,所以⎪⎪⎪⎪⎪⎪λ-a -b -cλ-d =0,即λ2-(a +d )λ+(ad -bc )=0.8.求M nα,一般都是先求出矩阵M 的特征值与特征向量,将α写成t 1α1+t 2α2.利用性质M nα=t 1λn1α1+t 2λn2α2求解.知 识 梳 理1.矩阵的乘法规则(1)行矩阵[a 11a 12]与列矩阵⎣⎢⎢⎡⎦⎥⎥⎤b 11b 21的乘法规则:[a 11a 12]⎣⎢⎢⎡⎦⎥⎥⎤b 11b 21=[a 11×b 11+a 12×b 21].(2)二阶矩阵⎣⎢⎢⎡⎦⎥⎥⎤a 11a 21a 12a 22与列向量⎣⎢⎢⎡⎦⎥⎥⎤x 0y 0的乘法规则: ⎣⎢⎢⎡⎦⎥⎥⎤a 11a 21 a 12a 22⎣⎢⎢⎡⎦⎥⎥⎤x 0y 0=⎣⎢⎢⎡⎦⎥⎥⎤a 11×x 0+a 12×y 0a 21×x 0+a 22×y 0. 设A 是一个二阶矩阵,α、β是平面上的任意两个向量,λ、λ1、λ2是任意三个实数,则①A (λα)=λAα;②A (α+β)=Aα+Aβ; ③A (λ1α+λ2β)=λ1Aα+λ2Aβ.(3)两个二阶矩阵相乘的结果仍然是一个矩阵,其乘法法则如下:⎣⎢⎢⎡⎦⎥⎥⎤a 11a 21 a 12a 22⎣⎢⎢⎡⎦⎥⎥⎤b 11b 21 b 12b 22= ⎣⎢⎢⎡⎦⎥⎥⎤a 11×b 11+a 12×b 21a 21×b 11+a 22×b 21 a 11×b 12+a 12×b 22a 21×b 12+a 22×b 22 性质:①一般情况下,AB ≠BA ,即矩阵的乘法不满足交换律;②矩阵的乘法满足结合律,即(AB )C =A (BC );③矩阵的乘法不满足消去律. 2.矩阵的逆矩阵(1)逆矩阵的有关概念:对于二阶矩阵A ,B ,若有AB =BA =E ,则称A 是可逆的,B 称为A 的逆矩阵.若二阶矩阵A 存在逆矩阵B ,则逆矩阵是唯一的,通常记A 的逆矩阵为A -1,A -1=B .(2)逆矩阵的求法:一般地,对于二阶可逆矩阵A =⎣⎢⎡⎦⎥⎤ab cd (det A =ad -bc ≠0),它的逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤d ad -bc -bad -bc -c ad -bc a ad -bc .(3)逆矩阵与二元一次方程组:如果关于变量x ,y 的二元一次方程组⎩⎪⎨⎪⎧ax +by =m ,cx +dy =n的系数矩阵A =⎣⎢⎡⎦⎥⎤ab cd 可逆,那么该方程组有唯一解⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤ab cd -1⎣⎢⎡⎦⎥⎤m n ,其中A-1=⎣⎢⎢⎡⎦⎥⎥⎤d ad -bc -bad -bc -c ad -bc a ad -bc .3.二阶矩阵的特征值和特征向量 (1)特征值与特征向量的概念设A 是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使得Aα=λα,那么λ称为A 的一个特征值,而α称为A 的一个属于特征值λ的一个特征向量. (2)特征多项式与特征方程设λ是二阶矩阵A =⎣⎢⎡⎦⎥⎤ab cd 的一个特征值,它的一个特征向量为ξ=⎣⎢⎡⎦⎥⎤x y ,则A ⎣⎢⎡⎦⎥⎤x y =λ⎣⎢⎡⎦⎥⎤x y ,即⎣⎢⎡⎦⎥⎤x y 满足二元一次方程组⎩⎪⎨⎪⎧ax +by =λx ,cx +dy =λy ,故⎩⎪⎨⎪⎧λ-a x -by =0-cx +λ-d y =0⇔⎣⎢⎡⎦⎥⎤λ-a -b -cλ-d ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤00(*)则(*)式有非零解的充要条件是它的系数矩阵的行列式⎪⎪⎪⎪⎪⎪λ-a -b -cλ-d =0.记f (λ)=⎪⎪⎪⎪⎪⎪λ-a -b -cλ-d 为矩阵A =⎣⎢⎡⎦⎥⎤ab cd 的特征多项式;方程⎪⎪⎪⎪⎪⎪λ-a -b -cλ-d =0,即f (λ)=0称为矩阵A =⎣⎢⎡⎦⎥⎤ab cd 的特征方程. (3)特征值与特征向量的计算如果λ是二阶矩阵A 的特征值,则λ是特征方程f (λ)=⎪⎪⎪⎪⎪⎪λ-a -b -cλ-d =λ2-(a +d )λ+ad -bc =0的一个根.解这个关于λ的二元一次方程,得λ=λ1、λ2,将λ=λ1、λ2分别代入方程组(*),分别求出它们的一个非零解⎩⎪⎨⎪⎧x =x 1,y =y 1,⎩⎪⎨⎪⎧x =x 2,y =y 2,记ξ1=⎣⎢⎡⎦⎥⎤x 1y 1,ξ2=⎣⎢⎡⎦⎥⎤x 2y 2.则Aξ1=λ1ξ1、Aξ2=λ2ξ2,因此λ1、λ2是矩阵A =⎣⎢⎡⎦⎥⎤ab cd 的特征值,ξ1=⎣⎢⎡⎦⎥⎤x 1y 1,ξ2=⎣⎢⎡⎦⎥⎤x 2y 2为矩阵A 的分别属于特征值λ1、λ2的一个特征向量.。
高考数学压轴专题(易错题)备战高考《矩阵与变换》知识点总复习含答案解析
新数学高考《矩阵与变换》专题解析一、151.用行列式解关于x 、y 的方程组3(31)484mx y m x my m -=⎧⎨+-=+⎩,并讨论说明解的情况.【答案】当1m =时,无穷解;当14m =-时,无解;当1m ≠且14m ≠-时,有唯一解,441x m =+,8341m y m +=-+. 【解析】 【分析】 先求出系数行列式D ,x D ,y D ,然后讨论m ,从而确定二元一次方程解的情况. 【详解】 解:3(31)484mx y m x my m -=⎧⎨+-=+⎩Q 21431(41)(1)431mm D m m m m m -∴+-==-+=+-++,4443148x D m mm -==--+,()()23853*******y m D m m m m m m ==--+++=-,①当1m ≠且14m ≠-时,0D ≠,原方程组有唯一解,即144(41)4(14)x D m x m D m m -===+++-,()()()()8318341141y D m m m y D m m m +-+===-+-++, ②当1m =时,0D =,0x D =,0y D =,原方程组有无穷解. ③当14m =-时,0D =,0x D ≠,原方程无解. 【点睛】本题主要考查了行列式,以及二元一次方程的解法,属于基础题.2.a ,b 满足什么条件时,关于x ,y ,z 的方程组4424ax y z x by z x by z ++=⎧⎪++=⎨⎪++=⎩有唯一解.【答案】当0b ≠且1a ≠时 【解析】 【分析】计算对应行列式为()111110121aD bb a b ==-≠,计算得到答案.【详解】4424ax y z x by z x by z ++=⎧⎪++=⎨⎪++=⎩有唯一解,则()1111212110121a D b ab b b ab b a b ==++---=-≠ 所以当0b ≠且1a ≠时有唯一解 【点睛】本题考查了方程组的唯一解问题,意在考查学生的计算能力.3.解关于x ,y 的方程组93x ay aax y +=⎧⎨+=⎩.【答案】分类讨论,详见解析 【解析】 【分析】分别计算得到29D a =-,6x D a =,23y D a =-,讨论得到答案.【详解】2199a D a a ==-,639x a a D a ==,2133y a D a a ==-.当3a ≠±时,0D ≠,此时方程有唯一解:2226939a x a a y a ⎧=⎪⎪-⎨-⎪=⎪-⎩; 当3a =±时,0D =,0x D ≠,方程无解. 综上所述:3a ≠±,有唯一解;3a =±,无解. 【点睛】本题考查了通过行列式讨论方程组的解的情况,分类讨论是一个常用的方法,需要同学熟练掌握.4.解方程组()32021mx y x m y m+-=⎧⎨+-=⎩,并求使得x y >的实数m 的取值范围.【答案】()1,3 【解析】 【分析】计算出行列式D 、x D 、y D ,对D 分0D ≠和0D =两种情况分类讨论,求出方程组的解,再由x y >列出关于m 的不等式,解出即可. 【详解】 由题意可得()()2362321m D m m m m m ==--=+--,2321x D m m m ==---,()()224222y m D m m m m==-=-+.①当0D ≠时,即当260m m --≠时,即当2m ≠-且3m ≠时,1323x y D x D m D m y D m ⎧==⎪⎪-⎨-⎪==⎪-⎩.x y >Q ,则()()()2222133m m m ->--,即()22130m m ⎧-<⎪⎨-≠⎪⎩,解得13m <<; ②当2m =-时,方程组为2320232x y x y -+-=⎧⎨-=-⎩,则有232x y -=,该方程组有无穷多解,x y >不能总成立;③当3m =时,方程组为33202230x y x y +-=⎧⎨+-=⎩,即203302x y x y ⎧+-=⎪⎪⎨⎪+-=⎪⎩,该方程组无解.综上所述,实数m 的取值范围是()1,3. 【点睛】本题考查二元一次方程组的求解,同时也考查了分式不等式的求解,在解题时要注意对系数行列式是否为零进行分类讨论,考查运算求解能力,属于中等题.5.用行列式解方程组252,23,24 1.x y z y z x y z ++=-⎧⎪--=⎨⎪++=-⎩【答案】1337313x y z ⎧=⎪⎪⎪=-⎨⎪⎪=-⎪⎩【解析】 【分析】先根据方程组中x ,y ,z 的系数及常数项求得D ,x D ,y D ,z D ,再对a 的值进行分类讨论,并求出相应的解. 【详解】方程组可转化为:125202324111x y z ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦-⎦--⎣,1912502241D =-=-, 13922532141x D --=-=-,12503221121y D --==--,1312203241z D ---==-,所以13,37,31.3x y z D x D D y D D z D ⎧==⎪⎪⎪==-⎨⎪⎪==-⎪⎩【点睛】本题考查三元一次方程组的矩阵形式、线性方程组的行列式求解,考查运算求解能力.6.求证:sin cos 1sin 2cos 21sin 22sin sin 3cos31xx xx x x xx =-. 【答案】证明见解析【解析】 【分析】先利用三阶矩阵的计算方法,化简等式的左边,再结合两角差的正弦公式化简即可证明. 【详解】sin cos 1sin 2cos 2sin cos sin cos sin 2cos 21sin 3cos3sin 3cos3sin 2cos 2sin 3cos31x x x x x x x x x x x x x x x xx x =-+=sin (-x )-sin(-2x )+sin (-x )=sin 2x -sin 2x . 【点睛】本题考查行列式的运算法则及性质的应用,变换的能力及数学分析能力,涉及两角和差的正弦公式,属于中档题.7.利用行列式解关于x 、y 的二元一次方程组42mx y m x my m +=+⎧⎨+=⎩.【答案】见解析 【解析】 【分析】计算出系数行列式D ,以及x D 、y D ,然后分0D ≠和0D =两种情况讨论,在0D ≠时,直接利用行列式求出方程组的解,在0D =时,得出2m =±,结合行列式讨论原方程组解的情况. 【详解】 系数行列式为2441m D m m==-,()242x m D m m mm+==-,()()222211y m m D m m m m m+==--=-+.①当240D m =-≠时,即当2m ≠±时,原方程组有唯一解()()()2224221142x y m m D m x D m m D m m m y D m m ⎧-===⎪⎪-+⎨-++⎪===⎪-+⎩;②当240D m =-=时,2m =±.(i )当2m =-时,0D =,8x D =,4y D =,原方程组无解;(ii )当2m =时,0x yD D D ===,原方程为24422x y x y +=⎧⎨+=⎩,可化为22x y +=, 该方程组有无数组解,即12x R x y ∈⎧⎪⎨=-⎪⎩.【点睛】本题考查利用行列式求二元一次方程组的解,解题时要对系数行列式是否为零进行分类讨论,考查运算求解能力与分类讨论思想的应用,属于中等题.8.(1)用行列式判断关于x y 、的二元一次方程组2373411x y x y -=⎧⎨-=⎩解的情况;(2)用行列试解关于x y 、的二元一次方程组12mx y m x my m+=+⎧⎨+=⎩,并对解的情况进行讨论.【答案】(1)51x y =⎧⎨=⎩;(2)当1m ≠-,1m ≠时,0D ≠,方程组解为1211m x m m y m ⎧=⎪⎪+⎨+⎪=⎪+⎩, 当1m =-时,0D =,0x D ≠,方程组无解,当1m =时,0x y D D D ===,方程组有无穷多组解,22x y x y +=⎧⎨+=⎩ ,令()x t t R =∈ ,原方程组的解为()2x tt R y t=⎧∈⎨=-⎩ .【解析】 【分析】(1) 先根据方程组中x ,y 的系数及常数项计算出D ,x D ,y D ,即可求解方程组的解. (2) 先根据方程组中x ,y 的系数及常数项计算出D ,x D ,y D 下面对m 的值进行分类讨论:①当1m ≠-,1m ≠时,②当1m =-时,③当1m =时,分别求解方程组的解即可. 【详解】(1)列出行列式系数 112a =,123a =-,17b =,213a =,224a =,211b =,23D =34--891=-+=,711x D = 34--=28335-+=,23y D =711=22211-= ,5xD x D ∴== ,1y D y D== , 所以二元一次方程组2373411x y x y -=⎧⎨-=⎩的解为51x y =⎧⎨=⎩ . (2)1m D =1m=21m - =()()11m m +- , 12x m D m+=1m=2m m - =()1m m - ,1y m D =12m m+ =()()221211m m m m --=+- ,当1m ≠-,1m ≠时,0D ≠,方程组有唯一解,解为1211m x m m y m ⎧=⎪⎪+⎨+⎪=⎪+⎩, 当1m =-时,0D =,0x D ≠,方程组无解,当1m =时,0x y D D D ===,方程组有无穷多组解,22x y x y +=⎧⎨+=⎩ ,令()x t t R =∈ ,原方程组的解为()2x tt R y t=⎧∈⎨=-⎩ .【点睛】本题主要考查二元一次方程组的矩阵形式、线性方程组解的存在性,唯一性、二元方程的解法等基础知识,考查运算求解能力与转化思想,属于中档题.9.已知1m >,1n >,且1000mn <,求证:lg 901lg 4m n <. 【答案】证明见解析 【解析】 【分析】由题意,求得11000mn <<,利用基本不等式,得到2lg lg 90lg lg 24m n m n +⎛⎫<<=⎪⎝⎭,再结合行列式的运算,即可求解. 【详解】由题意,实数1m >,1n >,且1000mn <,可得11000mn <<,则2lg lg 90lg lg 24m n m n +⎛⎫<<=⎪⎝⎭,又由lg 919lg ln 9lg ln 144lg 4m m n m n n=-⨯=-,所以lg 901lg 4m n <. 【点睛】本题主要考查了行列式的运算性质,以及对数的运算性质和基本不等式的应用,其中解答中熟记行列式的运算法则,以及合理应用对数的运算和基本不等式求解是解答的关键,着重考查了推理与运算能力,属于中档试题.10.解关于x 、y 、z 的三元一次方程组231231x y z x y az ay z +-=-⎧⎪-+=-⎨⎪-=⎩,并对解的情况进行讨论.【答案】答案不唯一,见解析 【解析】 【分析】根据题意,分别求出D 、x D 、y D 、z D 关于a 的表达式,再由三元一次方程组解的公式对a 的取值进行讨论,即可得到原方程组解的各种情况. 【详解】(1)(25)D a a =--+,(11)(1)x D a a =+-,22y D a =-,55z D a =-;① 当1a =,0x y z D D D D ====,方程组有无穷多解; ② 当52a =-,0D =,且x D 、y D 、z D 不为零,方程组无解; ③ 当1a ≠且52a ≠-时,方程组的解为1125a x a +=-+,225y a =+,525z a =-+. 【点睛】本题考查三元一次方程组的行列式解法,解题关键是要分类讨论,属于常考题.11.在平面直角坐标系xOy 中,直线20x y +-=在矩阵12a A b ⎡⎤=⎢⎥⎣⎦对应的变换作用下得到的直线仍为20x y +-=,求矩阵A .【答案】1102-⎡⎤⎢⎥⎣⎦【解析】 【分析】设(,)P x y 是直线20x y +-=上任意一点,根据题意变换得到直线220x ay bx y +++-=,对比得到答案.【详解】设(,)P x y 是直线20x y +-=上任意一点,其在矩阵2a a A b ⎡⎤=⎢⎥⎣⎦对应的变换下得到122a x x ay b y bx y +⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦仍在直线上,所以得220x ay bx y +++-=,与20x y +-=比较得1121b a +=⎧⎨+=⎩,解得01b a =⎧⎨=-⎩,故1102A -⎡⎤=⎢⎥⎣⎦.【点睛】本题考查了矩阵变换,意在考查学生的计算能力和应用能力.12.设,,a b c 分别是ABC ∆的三边,行列式b a cc b a a c b .(1)求字母b 的代数余子式的展开式;(2)若(1)的值为0,判断直线sin 0B x ay b ⋅+-=与sin 0C x by c ⋅+-=的位置关系. 【答案】(1)233b ac -;(2)重合. 【解析】 【分析】(1)根据字母b 的代数余子式的展开式()()()246111b a b c b a c ba bc b-+-+-即可求解;(2)根据(1)的值为0,得出边长的关系,即可判断直线位置关系. 【详解】(1),,a b c 分别是ABC ∆的三边,行列式b a cc b a a c b ,所以字母b 的代数余子式的展开式为:()()()246111b a b c b a c ba bc b-+-+-222b ac b ac b ac =-+-+- 233b ac =-(2)若(1)的值为0,即2330b ac -=,2b ac =,b c a b=, 由正弦定理:sin sin c Cb B=所以sin sin c C b c b B a b-===- 所以直线sin 0B x ay b ⋅+-=与sin 0C x by c ⋅+-=的位置关系是重合. 【点睛】此题考查求代数余子式的展开式,得出三角形边长关系,结合正弦定理判断两直线的位置关系,跨章节综合性比较强.13.设()3322k kx k x f x k x-=+⋅(x ∈R ,k 为正整数)(1)分别求出当1k =,2k =时方程()0f x =的解.(2)设()0f x ≤的解集为[]212,k k a a -,求1234a a a a +++的值及数列{}n a 的前2n 项和.【答案】(1)1k =时,方程()0f x =的解为2x =,3x =;2k =时, ()0f x =的解为6x =,4x =(2)123415a a a a +++=;前2n 项和为21332222n n n ++-+【解析】 【分析】(1)根据定义化简函数()f x 的解析式,然后根据一元二次方程求出当1k =,2k =时方程()0f x =的解即可;(2)由()0f x ≤即()()320kx k x --≤的解集为[]212,k k aa -建立关系式,然后取1k =,2k =可求出1234a a a a +++的值,最后根据()()()212342121234212n n n n n S a a a a a a a a a a a a --=++++++=++++++L L 进行求解即可; 【详解】解:(1)()()()()2323232kkkf x x k x k x k x =-++⋅=--,当1k =时()()()32f x x x =--,所以方程()0f x =的解为2x =,3x =; 当2k =时()()()64f x x x =--,所以方程()0f x =的解为6x =,4x =; (2)由()0f x ≤即()()320kx k x --≤的解集为[]212,k k aa -.∴2122123232k k k kk ka a k a a k --⎧+=+⎨⋅=⋅⎩, ∴1k =时,1123125a a +=⋅+=,2k =时,23432210a a +=⋅+=. ∴123451015a a a a +++=+=()()()212342121234212n n n n n S a a a a a a a a a a a a --=++++++=++++++L L()()()()()12231232232312222n n n n =⋅++⋅+++⋅+=+++++++L L L()()2121213332221222nn n n n n +-+=⋅+=+-+-.【点睛】 本题主要考查了二阶行列式的定义,以及数列的求和,同时考查了计算能力,属于中档题.14.用行列式解关于x 、y 的方程组:1()2ax y a a R x ay a+=+⎧∈⎨+=⎩,并对解的情况进行讨论. 【答案】见解析 【解析】 【分析】先求出相关的行列式,,x y D D D 的值,再讨论分式的分母是否为0,用公式法写出方程组的解,即可得到结论.【详解】由题意,关于x 、y 的方程组:1()2ax y a a R x ay a +=+⎧∈⎨+=⎩, 所以221111,(1),12x a a D a D a a a a aa a +==-==-=- 2121(21)(1)12y a a D a a a a a +==--=+-,(1)当1a ≠±时,0D ≠,方程组有唯一解,1211a x a a y a ⎧=⎪⎪+⎨+⎪=⎪+⎩; (2)当1a =-时,0,0x D D =≠,方程组无解;(3)当1a =时,0x y D D D ===,方程组有无穷多解,,()2x t t R y t=⎧∈⎨=-⎩. 【点睛】本题主要考查了用行列式法求方程组的解,难度不大,属于基础题.15.已知矩阵111A a -⎡⎤=⎢⎥⎣⎦,其中a R ∈,若点(1,1)P 在矩阵A 的变换下得到点(0,3)P '-,求矩阵A 的两个特征值.【答案】矩阵A 的特征值为1-或3.【解析】【分析】根据点(1,1)P 在矩阵A 的变换下得到点(0,3)P '-,列出方程求出a ,从而可确定矩阵A ,再求出矩阵A 的特征多项式,令其等于0,即可求出矩阵A 的特征值.【详解】由1110113a -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,得13a +=-,所以4a =-, 故1141A -⎡⎤=⎢⎥-⎣⎦, 则矩阵A 的特征多项式为2211()(1)42341f x -==--=---λλλλλ,令()0f λ=,解得1λ=-或3λ=,所以矩阵A 的特征值为1-或3.【点睛】本题主要考查矩阵的特征多项式及特征值的求法,属于中档题.16.设矩阵12M x y ⎡⎤=⎢⎥⎣⎦,2411N ⎡⎤=⎢⎥--⎣⎦,若02513MN ⎡⎤=⎢⎥⎣⎦,求矩阵M 的逆矩阵1M -. 【答案】132554155M -⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦【解析】【分析】 根据矩阵的乘法运算求出MN ,然后由02513MN ⎡⎤=⎢⎥⎣⎦列出方程组,即可求出4,3x y ==,从而确定矩阵M ,再利用求逆矩阵的公式,即可求出矩阵M 的逆矩阵1M -.【详解】解:因为02513MN ⎡⎤=⎢⎥⎣⎦ ,所以25,413.x y x y -=⎧⎨-=⎩所以4,3x y ==; 矩阵1243M ⎡⎤=⎢⎥⎣⎦的逆矩阵132554155M -⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦. 【点睛】 本题主要考查矩阵的乘法运算及逆矩阵的求解.17.已知矩阵1001A ⎡⎤=⎢⎥-⎣⎦,4123B ⎡⎤=⎢⎥⎣⎦,若矩阵M BA =,求矩阵M 的逆矩阵1M -. 【答案】13110101255M -⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦. 【解析】 试题分析:411041230123M BA -⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,所以13110101255M -⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦. 试题解析:B .因为411041230123M BA -⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦, 所以13110101255M -⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦.18.已知矩阵120A x -⎡⎤=⎢⎥⎣⎦,5723B ⎡⎤=⎢⎥⎣⎦,B 的逆矩阵1B -满足17177AB y --⎡⎤=⎢⎥-⎣⎦. (1)求实数x ,y 的值;(2)求矩阵A 的特征值和特征向量.【答案】(1)1,3x y ==;(2)特征值为2-和1,分别对应一个特征向量为21-⎡⎤⎢⎥⎣⎦,11⎡⎤⎢⎥⎣⎦. 【解析】【分析】(1)计算()1AB B -,可得12514721y y -⎡⎤⎢⎥--⎣⎦,根据()1A AB B -=,可得结果. (2)计算矩阵A 的特征多项式()121f λλλ+-=-,可得2λ=-或1λ=,然后根据Ax x λ=r r ,可得结果.【详解】 (1)因为17177AB y --⎡⎤=⎢⎥-⎣⎦,5723B ⎡⎤=⎢⎥⎣⎦ 所以()17175712723514721AB B y y y ---⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦ 由()1A AB B -=,所以12120514721x y y --⎡⎤⎡⎤=⎢⎥⎢⎥--⎣⎦⎣⎦ 所以514172103y x x y y -==⎧⎧⇒⎨⎨-==⎩⎩(2)矩阵A 的特征多项式为:()()()()1212211f λλλλλλλ+-==+-=+-- 令()0f λ=,解得2λ=-或1λ=所以矩阵A 的特征值为2-和1.①当2λ=-时,12222102x x x y x y y x y --+=-⎡⎤⎡⎤⎡⎤⎧=-⇒⎨⎢⎥⎢⎥⎢⎥=-⎣⎦⎣⎦⎣⎦⎩令1y =,则2x =-,所以矩阵M 的一个特征向量为21-⎡⎤⎢⎥⎣⎦. ②当1λ=时, 12210x x x y x y y x y --+=⎡⎤⎡⎤⎡⎤⎧=⇒⎨⎢⎥⎢⎥⎢⎥=⎣⎦⎣⎦⎣⎦⎩令1y =,则1x =所以矩阵M 的一个特征向量为11⎡⎤⎢⎥⎣⎦. 因此,矩阵A 的特征值为2-和1,分别对应一个特征向量为21-⎡⎤⎢⎥⎣⎦,11⎡⎤⎢⎥⎣⎦. 【点睛】本题考查矩阵的应用,第(1)问中,关键在于()1A AB B -=,第(2)问中,关键在于()1201f λλλ+-==-,考验分析能力以及计算能力,属中档题.19.己知矩阵1221M ⎡⎤=⎢⎥⎣⎦. (1)求1M -;(2)若曲线221:1C x y -=在矩阵M 对应的变换作用下得到另一曲线2C ,求2C 的方程.【答案】(1)112332133M -⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦;(2)223y x -= 【解析】【分析】(1)根据逆矩阵的求法,求得M 的逆矩阵1M -.(2)设出1C 上任意一点的坐标,设出其在矩阵M 对应的变换作用下得到点的坐标,根据坐标变换列方程,解方程求得两者坐标对应关系式,再代入1C 方程,化简后可求得2C 的方程.【详解】解(1)设所求逆矩阵为a b c d ⎡⎤⎢⎥⎣⎦,则122210212201a b a c b d c d a c b d ++⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥++⎣⎦⎣⎦⎣⎦⎣⎦,即21202021a c b d a c b d +=⎧⎪+=⎪⎨+=⎪⎪+=⎩,解得13232313a b c d ⎧=-⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=-⎩,所以112332133M -⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦. (2)设曲线1C 上任一点坐标为()00,x y ,在矩阵M 对应的变换作用下得到点(),x y , 则001221x x y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即000022x y x x y y+=⎧⎨+=⎩, 解得002323y x x x yy -⎧=⎪⎪⎨-⎪=⎪⎩. 因为22001x y -=,所以2222133y x x y --⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,整理得223y x -=, 所以2C 的方程为223y x -=.【点睛】本小题主要考查逆矩阵的求法,考查利用矩阵变换求曲线方程,考查运算求解能力,属于中档题.20.[选修4-2:矩阵与变换]已知矩阵11a A b ⎡⎤=⎢⎥-⎣⎦的一个特征值为2,其对应的一个特征向量为21α⎡⎤=⎢⎥⎣⎦. 若x a A y b ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,求x ,y 的值.【答案】x ,y 的值分别为0,1.【解析】试题分析:利用矩阵的乘法法则列出方程,解方程可得x ,y 的值分别为0,1. 试题解析: 由条件知,2A αα=,即][1222111a b ⎡⎤⎡⎤=⎢⎥⎢⎥-⎣⎦⎣⎦,即][2422a b +⎡⎤=⎢⎥-+⎣⎦, 所以24,{22,a b +=-+= 解得2,{ 4.a b == 所以1214A ⎡⎤=⎢⎥-⎣⎦.则][][][12221444x x x y A y y x y +⎡⎤⎡⎤===⎢⎥⎢⎥--+⎣⎦⎣⎦,所以22,{44,x y x y +=-+= 解得0,{ 1.x y == 所以x ,y 的值分别为0,1.。
高中数学 考点48 矩阵与变换(含2015高考试题)
考点48 矩阵与变换
一、选择题
1。
(2015·福建高考理科·T21)(1)(本小题满分7分)选修4—2;矩阵与变换
已知矩阵A=(2 1 4 3),B=(1 1
0 −1
)。
①求A 的逆矩阵A -1
.
②求矩阵C ,使得AC=B 。
【解题指南】利用矩阵与逆矩阵的关系直接求解.
【解析】①因为|A |=2×3-1×4=2, 所以13131222242212
2A --⎛⎫⎛⎫ ⎪- ⎪== ⎪ ⎪- ⎪- ⎪⎝⎭⎝⎭ ②由AC=B 得(A -1A )C=A -1B, 故1313112C ==222012123A B -⎛⎫⎛⎫-⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪-⎝⎭---⎝⎭⎝⎭
二、解答题
2.(2015·江苏高考·T21已知x,y ∈R,向量α=11⎡⎤⎢⎥-⎣⎦是矩阵A=10x y ⎡⎤⎢⎥⎣⎦
的属性特征值-2的一个特征向量,求矩阵A 以及它的另一个特征值。
【解题指南】由矩阵特征值与特征向量可列出关于x,y 的方程组,再根据特征多项式求出矩阵另一个特征值.
【解析】由已知,得Αα=-2α,即1112012x x y y --⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦
则12,2,
x y -=-⎧⎨=⎩ 即1,2,x y =-⎧⎨=⎩
所以矩阵Α=1120-⎡⎤⎢⎥⎣⎦。
从而矩阵Α的特征多项式f(λ)=(λ+2)(λ-1),所以矩阵Α的另一个特征值为1.
攀上山峰,见识险峰,你的人生中,也许你就会有苍松不惧风吹和不惧雨打的大无畏精神,也许就会有腊梅的凌寒独自开的气魄,也许就会有春天的百花争艳的画卷,也许就会有钢铁般的意志。
高考数学压轴专题新备战高考《矩阵与变换》难题汇编附答案
新数学《矩阵与变换》试卷含答案一、151.用行列式解关于x 、y 的方程组:1()2ax y a a R x ay a+=+⎧∈⎨+=⎩,并对解的情况进行讨论.【答案】见解析 【解析】 【分析】先求出相关的行列式,,x y D D D 的值,再讨论分式的分母是否为0,用公式法写出方程组的解,即可得到结论. 【详解】由题意,关于x 、y 的方程组:1()2ax y a a R x ay a +=+⎧∈⎨+=⎩,所以221111,(1),12x a a D a D a a a a a aa+==-==-=-2121(21)(1)12y a a D a a a a a+==--=+-,(1)当1a ≠±时,0D ≠,方程组有唯一解,1211a x a a y a ⎧=⎪⎪+⎨+⎪=⎪+⎩;(2)当1a =-时,0,0x D D =≠,方程组无解;(3)当1a =时,0x yD D D ===,方程组有无穷多解,,()2x tt R y t =⎧∈⎨=-⎩. 【点睛】本题主要考查了用行列式法求方程组的解,难度不大,属于基础题.2.计算:12131201221122120-⎛⎫⎛⎫⎛⎫⎛⎫- ⎪⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎝⎭【答案】91559124-⎛⎫⎪--⎝⎭【解析】 【分析】直接利用矩阵计算法则得到答案. 【详解】121312011213140222112212021122240-⎛⎫-⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭123319155213629124----⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪----⎝⎭⎝⎭⎝⎭【点睛】本题考查了矩阵的计算,意在考查学生的计算能力.3.利用行列式讨论关于,x y 的方程组1323ax y ax ay a +=-⎧⎨-=+⎩解的情况.【答案】①当03a a ≠≠-且时,方程组有唯一解12x a y ⎧=⎪⎨⎪=-⎩;②当0a =时,方程组无解;③当3a =-时,方程组有无穷多解,可表示为()31x tt R y t =⎧∈⎨=-⎩.【解析】 【分析】由题,可得()()()3,3,23x y D a a D a D a a =-+=-+=+,分别讨论方程组有唯一解,无解,无穷多解的情况即可 【详解】()21333a D a a a a a a==--=-+-, ()()11233323x D a a a a a a-==-+=--=-++-, ()()212332623323y aD a a a a a a a a a -==++=+=++,①当03a a ≠≠-且时,方程有唯一解,()()()()3132323x y a D x D a a a D a a y D a a ⎧-+===⎪-+⎪⎨+⎪===-⎪-+⎩,即12x a y ⎧=⎪⎨⎪=-⎩;②当0a =时,0D =,30x D =-≠,方程组无解;③当3a =-时,0x y D D D ===,方程组有无穷多解,设()x t t R =∈,则原方程组的解 可表示为()31x tt R y t =⎧∈⎨=-⎩.【点睛】本题考查利用行列式解方程组,考查运算能力,考查分类讨论思想4.(1)用行列式判断关于x y 、的二元一次方程组2373411x y x y -=⎧⎨-=⎩解的情况;(2)用行列试解关于x y 、的二元一次方程组12mx y m x my m +=+⎧⎨+=⎩,并对解的情况进行讨论.【答案】(1)51x y =⎧⎨=⎩;(2)当1m ≠-,1m ≠时,0D ≠,方程组解为1211m x m m y m ⎧=⎪⎪+⎨+⎪=⎪+⎩, 当1m =-时,0D =,0x D ≠,方程组无解,当1m =时,0x y D D D ===,方程组有无穷多组解,22x y x y +=⎧⎨+=⎩ ,令()x t t R =∈ ,原方程组的解为()2x tt R y t=⎧∈⎨=-⎩ .【解析】 【分析】(1) 先根据方程组中x ,y 的系数及常数项计算出D ,x D ,y D ,即可求解方程组的解. (2) 先根据方程组中x ,y 的系数及常数项计算出D ,x D ,y D 下面对m 的值进行分类讨论:①当1m ≠-,1m ≠时,②当1m =-时,③当1m =时,分别求解方程组的解即可. 【详解】(1)列出行列式系数 112a =,123a =-,17b =,213a =,224a =,211b =,23D =34--891=-+=,711x D = 34--=28335-+=,23y D =711=22211-= ,5xD x D ∴== ,1y D y D== , 所以二元一次方程组2373411x y x y -=⎧⎨-=⎩的解为51x y =⎧⎨=⎩ . (2)1m D =1m=21m - =()()11m m +- , 12x m D m+=1m=2m m - =()1m m - ,1y m D =12m m+ =()()221211m m m m --=+- ,当1m ≠-,1m ≠时,0D ≠,方程组有唯一解,解为1211m x m m y m ⎧=⎪⎪+⎨+⎪=⎪+⎩, 当1m =-时,0D =,0x D ≠,方程组无解,当1m =时,0x y D D D ===,方程组有无穷多组解,22x y x y +=⎧⎨+=⎩ ,令()x t t R =∈ ,原方程组的解为()2x tt R y t=⎧∈⎨=-⎩ .【点睛】本题主要考查二元一次方程组的矩阵形式、线性方程组解的存在性,唯一性、二元方程的解法等基础知识,考查运算求解能力与转化思想,属于中档题.5.用行列式解关于的二元一次方程组:12(1)x y x k y k+=⎧⎨++=⎩.【答案】1k =时,方程组无解; 1k ≠时,12,11k x y k k -==-- 【解析】 【分析】由题方程组中x ,y 的系数及常数项求出D,D ,D X y ,然后再讨论k 的值进行求解方程组的解. 【详解】由题意可得:11D 21k =+= 1k -,11D 11X kk ==+,11 D 22y k k==-,∴当D ?10k =-≠即1k ≠时,方程组有唯一解即D 1D 1X x k ==-,D 2 D 1y k y k -==-; 当D ?10k =-=即1k =时,方程组无解.综上所述: 1k ≠时,方程组有唯一解1121x k k y k ⎧=⎪⎪-⎨-⎪=⎪-⎩; 1k =时,方程组无解. 【点睛】本题考查了二元一次方程组的矩阵形式、线性方程组解得存在性、唯一性以及二元方程解法等基础知识,考查了学生的运算能力,属于中档题.6.设函数()()271f x x ax a R =-++∈.(1)若1a =-,解不等式()0f x ≥; (2)若当01xx>-时,关于x 的不等式()1f x ≥恒成立,求a 的取值范围; (3)设()121x g ax x +-=-,若存在x 使不等式()()f x g x ≤成立,求a 的取值范围. 【答案】(1)[)8,6,3⎛⎤-∞+∞ ⎥⎝⎦U ;(2)5a ≥-;(3)4a ≥-.【解析】 【分析】(1)利用零点分段讨论可求不等式的解.(2)01xx>-的解为()0,1,在该条件下()1f x ≥恒成立即为()720a x +->恒成立,参变分离后可求实数a 的取值范围.(3)()()f x g x ≤有解即为12722a x x -≥---有解,利用绝对值不等式可求()2722h x x x =---的最小值,从而可得a 的取值范围.【详解】(1)当1a =-时,()0f x ≥即为2710x x --+≥.当72x ≥时,不等式可化为722710x x x ⎧≥⎪⎨⎪--+≥⎩,故6x ≥; 当72x <时,不等式可化为727210x x x ⎧<⎪⎨⎪--+≥⎩,故83x ≤. 综上,()0f x ≥的解为[)8,6,3⎛⎤-∞+∞ ⎥⎝⎦U .(2)01xx>-的解为()0,1, 当()0,1x ∈时,有()()72182f x x ax a x =-++=+-,因为不等式()1f x ≥恒成立,故()821a x +->即()27a x ->-在()0,1上恒成立, 所以72a x ->-在()0,1上恒成立,而77x-<-在()0,1上总成立, 所以27a -≥-即5a ≥-. 故实数a 的取值范围为5a ≥-.(3)()12112x g x x ax a x a +==-++--,()()f x g x ≤等价于27121x ax x ax a -++≤-++,即27211x x a ---≤-在R 上有解. 令()27212722h x x x x x =---=---,由绝对值不等式有272227225x x x x ---≤--+=, 所以527225x x -≤---≤,当且仅当72x ≥时,27225x x ---=-成立, 所以()min 5h x =-,故15a -≥-即4a ≥-. 故实数a 的取值范围为4a ≥-. 【点睛】解绝对值不等式的基本方法有零点分段讨论法、图象法、平方法等,利用零点分段讨论法时注意分类点的合理选择.绝对值不等式指:a b a b a b -≤+≤+及a b a b a b -≤-≤+,我们常利用它们求含绝对值符号的函数的最值.7.解关于x 、y 、z 的三元一次方程组231231x y z x y az ay z +-=-⎧⎪-+=-⎨⎪-=⎩,并对解的情况进行讨论.【答案】答案不唯一,见解析 【解析】 【分析】根据题意,分别求出D 、x D 、y D 、z D 关于a 的表达式,再由三元一次方程组解的公式对a 的取值进行讨论,即可得到原方程组解的各种情况. 【详解】(1)(25)D a a =--+,(11)(1)x D a a =+-,22y D a =-,55z D a =-;① 当1a =,0x y z D D D D ====,方程组有无穷多解; ② 当52a =-,0D =,且x D 、y D 、z D 不为零,方程组无解; ③ 当1a ≠且52a ≠-时,方程组的解为1125a x a +=-+,225y a =+,525z a =-+. 【点睛】本题考查三元一次方程组的行列式解法,解题关键是要分类讨论,属于常考题.8.已知ABC ∆的顶点坐标分别为(5,0)A -、(3,3)B -、(0,2)C ,请分别运用行列式、向量、平面解析几何知识,用其中两种不同方法求ABC ∆的面积. 【答案】312【解析】 【分析】解法一:用行列式求解,面积公式为112233111ABC x y S x y x y ∆=,代入点的坐标求解即可;解法二:平面解析几何知识求解,先求出直线BC 的方程、点A 到直线BC 的距离d 及BC ,利用12ABC S BC d ∆=⋅⋅计算即可. 【详解】解法一:行列式求解,11223315013113312121ABC x y S x y x y ∆-==-=; 解法二:平面解析几何知识求解, 直线BC 的方程为:3353y x +-=-,即:5360x y +-=, 点A 到直线BC的距离34d ===,BC ==所以1131222ABC S BC d ∆=⋅⋅==. 【点睛】本题考查利用三阶行列式计算三角形面积、利用平面向量知识计算三角形面积、利用平面解析几何知识求解三角形面积,属于基础题.9.解方程:23649x xx=.【答案】1x = 【解析】 【分析】根据行列式的运算性质,求得29346xx x ⨯-⨯=,转化为322()3()123xx⨯-⨯=,令3()2x t =,得到方程1231t t ⨯-⨯=,进而即可求解【详解】根据行列式的运算性质,可得23293449xx xx=⨯-⨯,即29346x x x ⨯-⨯=,方程两边同除6x,可得322()3()123xx ⨯-⨯=,令3()2xt =,且0t >,则21()3xt =,可得1231t t⨯-⨯=,解32t =或1t =-(舍去), 即33()22x=,解得1x =. 故答案为:1x =. 【点睛】本题主要考查了行列式的运算性质,以及指数幂的运算和一元二次方程的应用,其中解答中熟记行列式的运算性质,结合指数幂的运算和一元二次方程的运算是解答的关键,着重考查了推理与运算能,属于基础题.10.设,,a b c 分别是ABC ∆的三边,行列式b a cc b a a c b .(1)求字母b 的代数余子式的展开式;(2)若(1)的值为0,判断直线sin 0B x ay b ⋅+-=与sin 0C x by c ⋅+-=的位置关系. 【答案】(1)233b ac -;(2)重合. 【解析】 【分析】(1)根据字母b 的代数余子式的展开式()()()246111b a b c b a c ba bc b-+-+-即可求解;(2)根据(1)的值为0,得出边长的关系,即可判断直线位置关系. 【详解】(1),,a b c 分别是ABC ∆的三边,行列式b a cc b a a c b ,所以字母b 的代数余子式的展开式为:()()()246111b a b c b a c ba bc b-+-+-222b ac b ac b ac =-+-+-233b ac =-(2)若(1)的值为0,即2330b ac -=,2b ac =,b c a b=, 由正弦定理:sin sin c C b B=所以sin sin c C b c b B a b-===- 所以直线sin 0B x ay b ⋅+-=与sin 0C x by c ⋅+-=的位置关系是重合. 【点睛】此题考查求代数余子式的展开式,得出三角形边长关系,结合正弦定理判断两直线的位置关系,跨章节综合性比较强.11.已知直线l :ax +y =1在矩阵A =1201⎡⎤⎢⎥⎣⎦对应的变换作用下变为直线l′:x +by =1. (1)求实数a 、b 的值;(2)若点P(x 0,y 0)在直线l 上,且A 00x y ⎡⎤⎢⎥⎣⎦=00x y ⎡⎤⎢⎥⎣⎦,求点P 的坐标. 【答案】(1) 1.{1a b =-=(2)(1,0) 【解析】(1)设直线l :ax +y =1上任意点M (x ,y )在矩阵A 对应的变换作用下像是M ′(x ′,y ′).由''x y ⎡⎤⎢⎥⎣⎦=1201⎡⎤⎢⎥⎣⎦x y ⎡⎤⎢⎥⎣⎦=2x y y+⎡⎤⎢⎥⎣⎦,得2{x x y y y ''=+,=. 又点M ′(x ′,y ′)在l ′上,所以x ′+by ′=1即x +(b +2)y =1.依题意,得1{21a b =+=解得1{1a b ==- (2)由A 00x y ⎡⎤⎢⎥⎣⎦=00x y ⎡⎤⎢⎥⎣⎦,得00000 2{x x y y y =+,=解得y 0=0.,又点P (x 0,y 0)在直线l 上,所以x 0=1. 故点P 的坐标为(1,0).12.已知矩阵111A a -⎡⎤=⎢⎥⎣⎦,其中a R ∈,若点(1,1)P 在矩阵A 的变换下得到点(0,3)P '-,求矩阵A 的两个特征值.【答案】矩阵A 的特征值为1-或3. 【解析】 【分析】根据点(1,1)P 在矩阵A 的变换下得到点(0,3)P '-,列出方程求出a ,从而可确定矩阵A ,再求出矩阵A 的特征多项式,令其等于0,即可求出矩阵A 的特征值. 【详解】由1110113a -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,得13a +=-,所以4a =-,故1141A -⎡⎤=⎢⎥-⎣⎦,则矩阵A 的特征多项式为2211()(1)42341f x -==--=---λλλλλ,令()0f λ=,解得1λ=-或3λ=, 所以矩阵A 的特征值为1-或3. 【点睛】本题主要考查矩阵的特征多项式及特征值的求法,属于中档题.13.设矩阵12M x y ⎡⎤=⎢⎥⎣⎦,2411N ⎡⎤=⎢⎥--⎣⎦,若02513MN ⎡⎤=⎢⎥⎣⎦,求矩阵M 的逆矩阵1M -.【答案】132554155M -⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦【解析】 【分析】根据矩阵的乘法运算求出MN ,然后由02513MN ⎡⎤=⎢⎥⎣⎦列出方程组,即可求出4,3x y ==,从而确定矩阵M ,再利用求逆矩阵的公式,即可求出矩阵M 的逆矩阵1M -.【详解】解:因为02513MN ⎡⎤=⎢⎥⎣⎦ ,所以25,413.x y x y -=⎧⎨-=⎩所以4,3x y ==;矩阵1243M ⎡⎤=⎢⎥⎣⎦的逆矩阵132554155M -⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦. 【点睛】本题主要考查矩阵的乘法运算及逆矩阵的求解.14.已知向量11α-⎡⎤=⎢⎥⎣⎦v 是矩阵103a A ⎡⎤=⎢⎥⎣⎦的属于特征值λ的一个特征向量. (1)求实数a ,λ的值;(2)求2A .【答案】(1)4,3.a λ=⎧⎨=⎩(2)216709A ⎡⎤=⎢⎥⎣⎦ 【解析】 【分析】(1)根据特征值的定义可知A αλα=u r u r,利用待定系数法求得实数a ,λ的值。
2015届高考苏教版数学大一轮复习配套课件:第14章 第1节 矩阵及其变换
故将曲线xy=1绕坐标原点按逆时针方向旋转45°,所得曲线的方程 为y22-x22=1.
数学
首页
上一页
下一页
末页
第二十六页,编辑于星期五:十点 三十三分。
第一节 矩阵及其变换 结束
2.已知a,b为实数,如果A=
a
0
1
b
所对应的变换T把直线x-y=
1变换为自身,试求a,b的值. 解:设点(x,y)是直线x-y=1上任意一点.在变换T作用下的 对应点为(x′,y′),
2.(2014·福建龙岩模拟)已知点A在变换T:xy →xy′′=x+y 2y 作用后,再绕原点逆时针旋转90°,得到点B,若点B的坐
标为(-3,4),求点A的坐标.
解:10
-11 0 0
12=01
-21.
设A(a,b),则由10 -21ab=- 4 3,得-a+b=2b-=34,.
所以ab= =- 3 2 ,即A(-2,3).
地,矩阵s0 01可以用来表示 水平 伸缩变换. (4)旋转变换:把点A(x,y)绕着坐标原点逆时针旋转α角的
变换,对应的矩阵是csions
α α
-sin cos α
α.
数学
首页
上一页
下一页
末页
第四页,编辑于星期五:十点 三十三分。
第一节 矩阵及其变换 结束
(5)切变变换:
1 0
s 1
x y
=
数学
首页
上一页
下一页
末页
第八页,编辑于星期五:十点 三十三分。
第一节 矩阵及其变换 结束
待定系数法在平面变换中的应用 通过二阶矩阵与平面向量的乘法求出变换前与变换后坐 标之间的变换公式,进而得到所求曲线(或点),求解时应注 意待定系数法的应用.
高考数学压轴专题(易错题)备战高考《矩阵与变换》技巧及练习题附答案
【最新】数学复习题《矩阵与变换》专题解析一、151.变换T 1是逆时针旋转2π角的旋转变换,对应的变换矩阵是M 1;变换T 2对应的变换矩阵是M 2=1101⎡⎤⎢⎥⎣⎦. (1)点P(2,1)经过变换T 1得到点P',求P'的坐标;(2)求曲线y =x 2先经过变换T 1,再经过变换T 2所得曲线的方程. 【答案】(1)P'(-1,2).(2)y -x =y 2. 【解析】试题分析:(1)先写出旋转矩阵M 1=0110-⎡⎤⎢⎥⎣⎦,再利用矩阵运算得到点P'的坐标是P'(-1,2).(2)先按序确定矩阵变换M =M 2⋅M 1=1110-⎡⎤⎢⎥⎣⎦,再根据相关点法求曲线方程:即先求出对应点之间关系,再代入已知曲线方程,化简得y -x =y 2.试题解析:解:(1)M 1=0110-⎡⎤⎢⎥⎣⎦, M 121⎡⎤⎢⎥⎣⎦=12-⎡⎤⎢⎥⎣⎦.所以点P(2,1)在T 1作用下的点P'的坐标是P'(-1,2). (2)M =M 2⋅M 1=1110-⎡⎤⎢⎥⎣⎦, 设x y ⎡⎤⎢⎥⎣⎦是变换后图象上任一点,与之对应的变换前的点是00x y ⎡⎤⎢⎥⎣⎦, 则M 00x y ⎡⎤⎢⎥⎣⎦=x y ⎡⎤⎢⎥⎣⎦,也就是000{x y x x y -==即00{y y x x y =-= 所以,所求曲线的方程是y -x =y 2. 考点:旋转矩阵,矩阵变换2.用行列式解方程组231231x y z x y az ay z +-=-⎧⎪-+=-⎨⎪-=⎩,并加以讨论.【答案】当1a ≠且52a ≠-时,原方程有唯一解1125225525a x a y a z a +⎧=-⎪+⎪⎪=⎨+⎪⎪=⎪+⎩;当52a =-时,方程组无解; 当1a =时,方程组有无穷多解,解为()11,x t y t t R z t =-⎧⎪=+∈⎨⎪=⎩【解析】 【分析】分别得到D ,x D ,y D ,z D ,然后分别得到它们等于0,得到相应的a 的值,然后进行讨论. 【详解】()()2131225101D a a a a-=-=-+--,()()1133211111x D a a a a--=--=-+-,()2131321011y D a a --=-=---,()2111235101z D a a-=--=-当1a ≠且52a ≠-时,原方程有唯一解1125225525a x a y a z a +⎧=-⎪+⎪⎪=⎨+⎪⎪=⎪+⎩;当52a =-时,原方程等价于2315232512x y z x y z y z ⎧⎪+-=-⎪⎪--=-⎨⎪⎪---=⎪⎩,方程组无解;当1a =时,原方程组等价于231231x y z x y z y z +-=-⎧⎪-+=-⎨⎪-=⎩,方程组有无穷多解,解为()11,x t y t t R z t =-⎧⎪=+∈⎨⎪=⎩【点睛】本题考查通过行列式对方程组的解进行讨论,属于中档题.3.求证:sin cos 1sin 2cos 21sin 22sin sin 3cos31xx xx x x xx =-. 【答案】证明见解析【解析】 【分析】先利用三阶矩阵的计算方法,化简等式的左边,再结合两角差的正弦公式化简即可证明. 【详解】sin cos 1sin 2cos 2sin cos sin cos sin 2cos 21sin 3cos3sin 3cos3sin 2cos 2sin 3cos31x x x x x x x xx x x x x x x xx x =-+=sin (-x )-sin(-2x )+sin (-x )=sin 2x -sin 2x . 【点睛】本题考查行列式的运算法则及性质的应用,变换的能力及数学分析能力,涉及两角和差的正弦公式,属于中档题.4.利用行列式讨论关于,x y 的方程组1323ax y ax ay a +=-⎧⎨-=+⎩解的情况.【答案】①当03a a ≠≠-且时,方程组有唯一解12x a y ⎧=⎪⎨⎪=-⎩;②当0a =时,方程组无解;③当3a =-时,方程组有无穷多解,可表示为()31x tt R y t =⎧∈⎨=-⎩.【解析】 【分析】由题,可得()()()3,3,23x y D a a D a D a a =-+=-+=+,分别讨论方程组有唯一解,无解,无穷多解的情况即可 【详解】()21333a D a a a a a a==--=-+-,()()11233323x D a a a a a a -==-+=--=-++-, ()()212332623323y aD a a a a a a a a a -==++=+=++,①当03a a ≠≠-且时,方程有唯一解,()()()()3132323x y a D x D a a a D a a y D a a ⎧-+===⎪-+⎪⎨+⎪===-⎪-+⎩,即12x a y ⎧=⎪⎨⎪=-⎩;②当0a =时,0D =,30x D =-≠,方程组无解;③当3a =-时,0x y D D D ===,方程组有无穷多解,设()x t t R =∈,则原方程组的解可表示为()31x tt R y t =⎧∈⎨=-⎩.【点睛】本题考查利用行列式解方程组,考查运算能力,考查分类讨论思想5.利用行列式解关于x 、y 的二元一次方程组42mx y m x my m +=+⎧⎨+=⎩.【答案】见解析 【解析】【分析】计算出系数行列式D ,以及x D 、y D ,然后分0D ≠和0D =两种情况讨论,在0D ≠时,直接利用行列式求出方程组的解,在0D =时,得出2m =±,结合行列式讨论原方程组解的情况. 【详解】 系数行列式为2441m D m m==-,()242x m D m m mm+==-,()()222211y m m D m m m m m+==--=-+.①当240D m =-≠时,即当2m ≠±时,原方程组有唯一解()()()2224221142x y m m D m x D m m D m m m y D m m ⎧-===⎪⎪-+⎨-++⎪===⎪-+⎩;②当240D m =-=时,2m =±.(i )当2m =-时,0D =,8x D =,4y D =,原方程组无解;(ii )当2m =时,0x yD D D ===,原方程为24422x y x y +=⎧⎨+=⎩,可化为22x y +=, 该方程组有无数组解,即12x R x y ∈⎧⎪⎨=-⎪⎩.【点睛】本题考查利用行列式求二元一次方程组的解,解题时要对系数行列式是否为零进行分类讨论,考查运算求解能力与分类讨论思想的应用,属于中等题.6.已知线性方程组5210258x y x y +=⎧⎨+=⎩.()1写出方程组的系数矩阵和增广矩阵; ()2运用矩阵变换求解方程组.【答案】(1)矩阵为5225⎛⎫ ⎪⎝⎭,增广矩阵为5210.258⎛⎫ ⎪⎝⎭ (2)34212021x y ⎧=⎪⎪⎨⎪=⎪⎩【解析】 【分析】()1由线性方程组5210258x y x y +=⎧⎨+=⎩,能写出方程组的系数矩阵和增广矩阵.()2由170345010521052102121258102540202001012121⎛⎫⎛⎫⎪ ⎪⎛⎫⎛⎫→→→⎪ ⎪ ⎪ ⎪--- ⎪ ⎪⎝⎭⎝⎭ ⎪⎪⎝⎭⎝⎭,能求出方程组的解. 【详解】(1)Q 线性方程组5210258x y x y +=⎧⎨+=⎩.∴方程组的系数矩阵为5225⎛⎫⎪⎝⎭, 增广矩阵为5210.258⎛⎫⎪⎝⎭(2)因为5210258x y x y +=⎧⎨+=⎩,1703452105010521052105210212120258102540021202020010101212121⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎛⎫⎛⎫⎛⎫ ⎪∴→→→→→ ⎪ ⎪ ⎪ ⎪ ⎪⎪-----⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ⎪ ⎪⎝⎭⎝⎭⎝⎭,34212021x y ⎧=⎪⎪∴⎨⎪=⎪⎩.【点睛】本题考查方程组的系数矩阵和增广矩阵的求法,考查运用矩阵变换求解方程组,考查矩阵的初等变换等基础知识,考查运算求解能力,是基础题.7.已知点()3,1A ,()1,3B -,i v,j v分别是基本单位向量.(1)若点P 是直线2y x =的动点,且0AP i AP j BP jBP i⋅⋅=-⋅⋅u u u v u u u v vv u u u v u u u v v v ,求点P 的坐标 (2)若点(),P x y 满足124126101x y -=且OP OA OB λμ=-u u u v u u u v u u u v,λ,μ是否存在自然数解,若存在,求出所有的自然数的解,若不存在,说明理由.【答案】(1)()0,0,()2,4(2)存在,0λ=,2μ=或2λ=,1μ=或4λ=,0μ=【解析】 【分析】(1)设P 的坐标为(),2x x ,再根据行列式的运算求解即可.(2)利用124126101xy -=求出(),P x y 满足的关系式,再根据OP OA OB λμ=-u u u r u u u r u u u r求出关于(),P x y 满足的关系式,再求自然数解即可.【详解】(1)由题,设P 的坐标为(),2x x ,因为0AP i AP jBP j BP i⋅⋅=-⋅⋅u u u r r u u u r r u u u r r u u u r r ,故()()()()0AP i BP i BP j AP j ⋅⨯⋅--⋅⨯⋅=u u u r r u u u r r u u u r r u u u r r ,化简得0AP BP ⋅=u u u r u u u r,即()()3,211,230x x x x --⋅+-=,即2222348305100x x x x x x --+-+=⇒-=. 解得0x =或2x =.代入可得()0,0或()2,4(2)由124126101xy -=得12(6)4(2)(26)0y x y x ----++=.化简得8y x =-.又OP OA OB λμ=-u u u ru u u ru u u r,故()()()3,11,3,x y λμ=--,即33x y λμλμ=+⎧⎨=-⎩.故33824λμλμλμ-=+-⇒+=,又,λμ为自然数.故0λ=,2μ=或2λ=,1μ=或4λ=,0μ= 【点睛】本题主要考查了向量与行列式的基本运算等,需要根据题意求得关于(),P x y 的关系式,属于中等题型.8.已知等比数列{}n a 的首项11a =,公比为()0q q ≠.(1)求二价行列式1324a a a a 的值; (2)试就q 的不同取值情况,求解二元一次方程组132432a x a y a x a y +=⎧⎨+=⎩.【答案】(1)0;(2)当23q =时,方程组无数解,且439x ty t ⎧=-⎪⎨⎪=⎩,t R ∈;当23q ≠且0q ≠时,方程组无解.【解析】 【分析】(1)由行列式定义计算,再根据等比数列的性质得结论; (2)由二元一次方程组解的情况分析求解. 【详解】(1)∵{}n a 是等比数列,∴1423a a a a =, ∴1324a a a a 14230a a a a =-=. (2)由(1)知方程组无解或有无数解.当241323a a q a a ===时,方程组有无数解,此时方程组中两个方程均为439x y +=, 解为439x t y t⎧=-⎪⎨⎪=⎩,当23q ≠且0q ≠时,方程组无解. 【点睛】本题考查行列式的概念,考查等比数列的性质,考查二元一次方程组的解的情况.掌握二元一次方程组的解的情况的判断是解题基础.9.解方程组()sin cos 2cos 0cos cos 2sin x y x y ααααπααα-=⎧≤≤⎨+=⎩.【答案】见解析. 【解析】 【分析】求出行列式D 、x D 、y D ,对D 分0D ≠和0D =两种情况分类讨论,利用方程组的解与行列式之间的关系求出方程组的解,或者将参数的值代入方程组进行求解,由此得出方程组的解. 【详解】由题意得()sin cos2cos cos2sin cos cos2D ααααααα=+=+,()cos cos2sin cos2sin cos cos2x D ααααααα=+=+, 22sin cos cos2y D ααα=-=-. 0απ≤≤Q ,022απ∴≤≤.①当0D ≠时,即当cos20α≠时,即当22πα≠且322πα≠时,即当4πα≠且34πα≠时,11sin cos x y D x DD y D αα⎧==⎪⎪⎨⎪==-⎪+⎩; ②当4πα=时,方程组为2222x x =⎪⎪⎪=⎪⎩,则该方程组的解为1x y R =⎧⎨∈⎩;③当34πα=时,方程组为22x x =⎨⎪-=⎪⎩,该方程组的解为1x y R =-⎧⎨∈⎩. 【点睛】本题考查二元一次方程组的求解,解题时要对系数行列式是否为零进行分类讨论,考查运算求解能力,属于中等题.10.用行列式解关于x 、y 的方程组:1()2ax y a a R x ay a+=+⎧∈⎨+=⎩,并对解的情况进行讨论.【答案】见解析 【解析】 【分析】先求出相关的行列式,,x y D D D 的值,再讨论分式的分母是否为0,用公式法写出方程组的解,即可得到结论. 【详解】由题意,关于x 、y 的方程组:1()2ax y a a R x ay a +=+⎧∈⎨+=⎩,所以221111,(1),12x a a D a D a a a a a aa+==-==-=-2121(21)(1)12y a a D a a a a a+==--=+-,(1)当1a ≠±时,0D ≠,方程组有唯一解,1211a x a a y a ⎧=⎪⎪+⎨+⎪=⎪+⎩;(2)当1a =-时,0,0x D D =≠,方程组无解;(3)当1a =时,0x yD D D ===,方程组有无穷多解,,()2x tt R y t =⎧∈⎨=-⎩. 【点睛】本题主要考查了用行列式法求方程组的解,难度不大,属于基础题.11.已知a ,b R ∈,点()1,1P -在矩阵13a A b ⎡⎤=⎢⎥⎣⎦对应的变换下得到点()1,3Q . (1)求a ,b 的值;(2)求矩阵A 的特征值和特征向量;(3)若向量59β⎡⎤=⎢⎥⎣⎦u r ,求4A βu r.【答案】(1)2a b =⎧⎨=⎩;(2)矩阵A 的特征值为1-,3,分别对应的一个特征值为13⎡⎤⎢⎥-⎣⎦,11⎡⎤⎢⎥⎣⎦;(3)485489⎡⎤⎢⎥⎣⎦【解析】【分析】(1)直接利用矩阵的乘法运算即可; (2)利用特征多项式计算即可;(3)先计算出126βαα=-+u r u u ru u r ,再利用()4444121266A A A A βαααα=-+=-+u r u u r u u r u u r u u r 计算即可得到答案. 【详解】 (1)由题意知,11113133a a b b -⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦, 则1133a b -=⎧⎨-=⎩,解得2a b =⎧⎨=⎩. (2)由(1)知2130A ⎡⎤=⎢⎥⎣⎦,矩阵A 的特征多项式()()21233f λλλλλ--==---, 令()0f λ=,得到A 的特征值为11λ=-,13λ=. 将11λ=-代入方程组()2030x y x y λλ⎧--=⎨-+=⎩,解得3y x =-,所以矩阵A 的属于特征值1-的一个特征向量为113α⎡⎤=⎢⎥-⎣⎦u u r.再将13λ=代入方程组()2030x y x y λλ⎧--=⎨-+=⎩,解得y x =,所以矩阵A 的属于特征值3的一个特征向量为211α⎡⎤=⎢⎥⎣⎦u u r.综上,矩阵A 的特征值为1-,3,分别对应的一个特征值为13⎡⎤⎢⎥-⎣⎦,11⎡⎤⎢⎥⎣⎦.(3)设12m n βαα=+u ru u r u u r ,即5119313m n m n m n +⎡⎤⎡⎤⎡⎤⎡⎤=+=⎢⎥⎢⎥⎢⎥⎢⎥--+⎣⎦⎣⎦⎣⎦⎣⎦, 所以539m n m n +=⎧⎨-+=⎩,解得16m n =-⎧⎨=⎩,所以126βαα=-+u r u u r u u r ,所以()4444121266A A A A βαααα=-+=-+u r u u r u u r u u r u u r()441148516331489⎡⎤⎡⎤⎡⎤=--+⨯=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦. 【点睛】本题考查矩阵的乘法、特征值、特征向量,考查学生的基本计算能力,是一道中档题.12.[选修4-2:矩阵与变换]已知矩阵A=0110⎡⎤⎢⎥⎣⎦ ,B=1002⎡⎤⎢⎥⎣⎦. 求AB;若曲线C 1;22y =182x + 在矩阵AB 对应的变换作用下得到另一曲线C 2 ,求C 2的方程.【答案】(1)0210⎡⎤⎢⎥⎣⎦(2)228x y += 【解析】试题分析:(1)直接由矩阵乘法可得;(2)先根据矩阵乘法可得坐标之间关系,代入原曲线方程可得曲线2C 的方程.试题解析:解:(1)因为A =0110⎡⎤⎢⎥⎣⎦, B =1002⎡⎤⎢⎥⎣⎦, 所以AB =01101002⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦ 0110⎡⎤⎢⎥⎣⎦ 1002⎡⎤⎢⎥⎣⎦=0210⎡⎤⎢⎥⎣⎦ 0210⎡⎤⎢⎥⎣⎦. (2)设()00,Q x y 为曲线1C 上的任意一点, 它在矩阵AB 对应的变换作用下变为(),P x y ,则000210x x y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即002y x x y =⎧⎨=⎩,所以002x yx y =⎧⎪⎨=⎪⎩. 因为()00,Q x y 在曲线1C 上,所以2200188x y +=,从而22188x y +=,即228x y +=.因此曲线1C 在矩阵AB 对应的变换作用下得到曲线2C : 228x y +=. 点睛:(1)矩阵乘法注意对应相乘:a b m p am bn ap bq c d n q cm dn cp dq ++⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥++⎣⎦⎣⎦⎣⎦; (2)矩阵变换:a b x x c d y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎣'⎦⎦'表示点(,)x y 在矩阵a b c d ⎡⎤⎢⎥⎣⎦变换下变成点(,)x y ''.13.已知矩阵111A a -⎡⎤=⎢⎥⎣⎦,其中a R ∈,若点(1,1)P 在矩阵A 的变换下得到点(0,3)P '-,求矩阵A 的两个特征值.【答案】矩阵A 的特征值为1-或3. 【解析】 【分析】根据点(1,1)P 在矩阵A 的变换下得到点(0,3)P '-,列出方程求出a ,从而可确定矩阵A ,再求出矩阵A 的特征多项式,令其等于0,即可求出矩阵A 的特征值. 【详解】 由1110113a -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,得13a +=-,所以4a =-, 故1141A -⎡⎤=⎢⎥-⎣⎦, 则矩阵A 的特征多项式为2211()(1)42341f x -==--=---λλλλλ,令()0f λ=,解得1λ=-或3λ=, 所以矩阵A 的特征值为1-或3. 【点睛】本题主要考查矩阵的特征多项式及特征值的求法,属于中档题.14.已知向量11α-⎡⎤=⎢⎥⎣⎦v 是矩阵103a A ⎡⎤=⎢⎥⎣⎦的属于特征值λ的一个特征向量. (1)求实数a ,λ的值;(2)求2A .【答案】(1)4,3.a λ=⎧⎨=⎩(2)216709A ⎡⎤=⎢⎥⎣⎦ 【解析】 【分析】(1)根据特征值的定义可知A αλα=u r u r,利用待定系数法求得实数a ,λ的值。
高考数学压轴专题专题备战高考《矩阵与变换》全集汇编附答案
《矩阵与变换》考试知识点一、151.用矩阵变换的方法,解二元一次方程组2342x y x y =⎧⎨-=⎩-【答案】17107x y ⎧=⎪⎪⎨⎪=-⎪⎩【解析】 【分析】先将方程组化为矩阵,再根据矩阵运算求结果. 【详解】2312342412x y x x y y =-⎧⎡⎤⎡⎤⎡⎤⇒=⎨⎢⎥⎢⎥⎢⎥-=-⎩⎣⎦⎣⎦⎣⎦- 所以1121123377741241210777x y -⎡⎤⎡⎤-⎢⎥⎢⎥-⎡⎤⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥--⎢⎥⎢⎥⎣⎦⎣⎦因此17107x y ⎧=⎪⎪⎨⎪=-⎪⎩【点睛】本题考查利用矩阵解方程组,考查基本分析求解能力,属基础题.2.用行列式解方程组252,23,24 1.x y z y z x y z ++=-⎧⎪--=⎨⎪++=-⎩【答案】1337313x y z ⎧=⎪⎪⎪=-⎨⎪⎪=-⎪⎩【解析】 【分析】先根据方程组中x ,y ,z 的系数及常数项求得D ,x D ,y D ,z D ,再对a 的值进行分类讨论,并求出相应的解.【详解】方程组可转化为:125202324111x y z ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦-⎦--⎣,1912502241D =-=-, 13922532141x D --=-=-,12503221121y D --==--,1312203241z D ---==-,所以13,37,31.3x y z D x D D y D D z D ⎧==⎪⎪⎪==-⎨⎪⎪==-⎪⎩【点睛】本题考查三元一次方程组的矩阵形式、线性方程组的行列式求解,考查运算求解能力.3.不等式21101x xba xa->-的解是12x <<,试求a ,b 的值.【答案】12a =-,1b =-或1a =-,2b =- . 【解析】 【分析】将行列式展开,由行列式大于0,即ax 2+(1+ab )x +b >0,由1和2是方程ax 2+(1+ab )x +b =0的两个根,由韦达定理可知,列方程组即可求得a 和b 的值. 【详解】2111x x b a xa-=-x 2×(﹣a )×(﹣1)+x +abx ﹣x 2×(﹣a )﹣ax 2﹣(﹣1)×b =ax 2+(1+ab )x +b >0,∵不等式的解为1<x <2,∴a <0,且1,2为一元二次方程:ax 2+(1+ab )x +b =0的两个根,由韦达定理可知:11212ab ab a +⎧+=-⎪⎪⎨⎪⨯=⎪⎩,整理得:2a 2+3a +1=0,解得:12a b =-⎧⎨=-⎩或121a b ⎧=-⎪⎨⎪=-⎩,故a =﹣1,b =﹣2或a 12=-,b =﹣1. 【点睛】本题考查行列式的展开,考查一元二次不等式与一元二次方程的关系及韦达定理,考查计算能力,属于中档题.4.求证:sin cos 1sin 2cos 21sin 22sin sin 3cos31xx xx x x xx =-. 【答案】证明见解析【解析】 【分析】先利用三阶矩阵的计算方法,化简等式的左边,再结合两角差的正弦公式化简即可证明. 【详解】sin cos 1sin 2cos 2sin cos sin cos sin 2cos 21sin 3cos3sin 3cos3sin 2cos 2sin 3cos31x x x x x x x xx x x x x x x xxx =-+=sin (-x )-sin(-2x )+sin (-x )=sin 2x -sin 2x . 【点睛】本题考查行列式的运算法则及性质的应用,变换的能力及数学分析能力,涉及两角和差的正弦公式,属于中档题.5.利用行列式解关于x 、y 的二元一次方程组42mx y m x my m +=+⎧⎨+=⎩.【答案】见解析 【解析】 【分析】计算出系数行列式D ,以及x D 、y D ,然后分0D ≠和0D =两种情况讨论,在0D ≠时,直接利用行列式求出方程组的解,在0D =时,得出2m =±,结合行列式讨论原方程组解的情况. 【详解】系数行列式为2441m D m m==-,()242x m D m m mm+==-,()()222211y m m D m m m m m+==--=-+.①当240D m =-≠时,即当2m ≠±时,原方程组有唯一解()()()2224221142x y m m D m x D m m D m m m y D m m ⎧-===⎪⎪-+⎨-++⎪===⎪-+⎩;②当240D m =-=时,2m =±.(i )当2m =-时,0D =,8x D =,4y D =,原方程组无解;(ii )当2m =时,0x yD D D ===,原方程为24422x y x y +=⎧⎨+=⎩,可化为22x y +=, 该方程组有无数组解,即12x Rx y ∈⎧⎪⎨=-⎪⎩.【点睛】本题考查利用行列式求二元一次方程组的解,解题时要对系数行列式是否为零进行分类讨论,考查运算求解能力与分类讨论思想的应用,属于中等题.6.已知直线1l :420mx y m +--=,2l :0x my m +-=,分别求实数m 满足什么条件时,直线1l 与2l 相交?平行?重合?【答案】当2m ≠且2m ≠-时,相交;当2m =-时,平行;当2m =时,重合 【解析】 【分析】计算出(2)(2)D m m =+-,(2)x D m m =-(1)(2)y D m m =+-,讨论是否为0得到答案. 【详解】42mx y m x my m +=+⎧⎨+=⎩244(2)(2)1m D m m m m==-=+-,24(2)4(2)x m D m m m m m mm+==+-=-22(2)(1)(2)1y m m D m m m m m+==-+=+-(1)当2m ≠且2m ≠-时,0D ≠,方程组有唯一解,1l 与2l 相交(2)当2m =-时,0,80x D D ==≠,1l 与2l 平行 (3)当2m =时,0x y D D D ===,1l 与2l 重合 【点睛】本题考查了直线的位置关系,意在考查学生的计算能力.7.已知P :矩阵图5110x x ⎛⎫+⎪+ ⎪ ⎝的某个列向量的模不小于2;Q :行列式114203121mx ----中元素1-的代数余子式的值不大于2,若P 是Q 成立的充分条件,求实数m 的取值范围.【答案】[2,)+∞ 【解析】 【分析】先根据行列式中元素1-的代数余子式的值求出P ,再根据矩阵图某个列向量的模不小于2求出Q ,结合P 是Q 成立的充分条件可得实数m 的取值范围. 【详解】因为矩阵图5110x x ⎛⎫+⎪+ ⎪ ⎝的某个列向量的模不小于2,所以521x x +≥+,解得 13x -≤≤;因为行列式114203121mx ----中元素1-的代数余子式的值不大于2,所以2323211mm x x --=-+≤,即21m x ≤-; 因为P 是Q 成立的充分条件,所以213m -≥,解得2m ≥;故实数m 的取值范围是[2,)+∞.【点睛】本题主要考查矩阵和行列式的运算及充分条件,明确矩阵和行列式的运算规则是求解的关键,充分条件转化为集合的包含关系,侧重考查数学运算的核心素养.8.已知(2,1)OA =u u u v ,(1,7)OB =u u u v ,(5,1)OC =u u u v,若OD xOA =u u u v u u u v,()f x DB DC =⋅u u u v u u u v(,x y ∈R ).(1)求函数()y f x =的解析式;(2)求函数()4()15f xg x x-=在12x ≤≤条件下的最小值;(3)把()y f x =的图像按向量(2,8)a =-v平移得到曲线C ,过坐标原点O 作OM 、ON分别交曲线C 于点M 、N ,直线MN 交y 轴于点0(0,)Q y ,当MON ∠为锐角时,求0y 的取值范围.【答案】(1)2()52012f x x x =-+;(2)3)1(,0)(,)5-∞+∞U . 【解析】 【分析】(1)根据向量数量积的坐标公式即可求()y f x =的解析式;(2)通过矩阵的计算公式,求出()g x 的表达式,然后利用基本不等式求最值即可; (3)根据向量平移关系即可求出曲线C 的解析式,设()()22,5,,5M m mN n n ,根据MON ∠为锐角时,建立不等式关系进行求解即可. 【详解】解:(1)(2,),(2,)OD x OA x x D x x =⋅=∴u u u r u u u rQ , (1,7),(5,1)OB OC ==u u u r u u u rQ ,(1,7),(5,1)B C ∴=, (12,7),(52,1)DB x x DC x x ∴=--=--u u u r u u u r,则2(12,7)(52,1)52012y DB DC x x x x x x =⋅=--⋅--=-+u u u r u u u r,即2()52012f x x x =-+; (2)由已知得:()4()1212()2052020515f x f xg x x x x x x x-==+=-++=+≥= 当且仅当125x x =,即[]1,25x =时取到最小值, 函数()4()15f xg x x-=在12x ≤≤条件下的最小值为;(3)22()520125(2)8y f x x x x ==-+=--Q ,()y f x ∴=的图象按向量(2,8)a =-r平移后得到曲线C 为25y x =;设()()22,5,,5M m mN n n ,则直线MN的方程为2225 55y n x nm n m n--=--,令0x=,则y5mn=-,若MON∠为锐角,因为,,M O N不可能共线,则22250OM ON mn m n⋅=+>u u u u r u u u r,125mn∴<-或0mn>,1525y∴-<-或005y->,即0y0<或15y>,故0y的取值范围是1(,0),5⎛⎫-∞⋃+∞⎪⎝⎭.【点睛】本题主要考查向量的数量积公式的应用,以及向量平移的关系,考查学生的运算能力.9.已知a,b,c,d四个城市,它们之间的道路联结网如图所示,试用矩阵表示这四个城市组成的道路网络.【答案】0210203013020022abcda b c d⎛⎫⎪⎪⎪⎪⎝⎭【解析】【分析】根据图像计算每两个城市之间的道路数,得到答案.【详解】根据图像计算每两个城市之间的道路数,如:,a b之间有2条路;,b c之间有3条路;同理得到矩阵: 0210203013020022a b c da b c d⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭ 【点睛】本题考查了矩阵表示道路网络,意在考查学生的应用能力.10.设函数()()271f x x ax a R =-++∈. (1)若1a =-,解不等式()0f x ≥; (2)若当01xx>-时,关于x 的不等式()1f x ≥恒成立,求a 的取值范围; (3)设()121x g ax x +-=-,若存在x 使不等式()()f x g x ≤成立,求a 的取值范围. 【答案】(1)[)8,6,3⎛⎤-∞+∞ ⎥⎝⎦U ;(2)5a ≥-;(3)4a ≥-.【解析】 【分析】(1)利用零点分段讨论可求不等式的解.(2)01xx>-的解为()0,1,在该条件下()1f x ≥恒成立即为()720a x +->恒成立,参变分离后可求实数a 的取值范围.(3)()()f x g x ≤有解即为12722a x x -≥---有解,利用绝对值不等式可求()2722h x x x =---的最小值,从而可得a 的取值范围.【详解】(1)当1a =-时,()0f x ≥即为2710x x --+≥.当72x ≥时,不等式可化为722710x x x ⎧≥⎪⎨⎪--+≥⎩,故6x ≥; 当72x <时,不等式可化为727210x x x ⎧<⎪⎨⎪--+≥⎩,故83x ≤. 综上,()0f x ≥的解为[)8,6,3⎛⎤-∞+∞ ⎥⎝⎦U .(2)01xx>-的解为()0,1,当()0,1x ∈时,有()()72182f x x ax a x =-++=+-,因为不等式()1f x ≥恒成立,故()821a x +->即()27a x ->-在()0,1上恒成立, 所以72a x ->-在()0,1上恒成立,而77x-<-在()0,1上总成立, 所以27a -≥-即5a ≥-. 故实数a 的取值范围为5a ≥-.(3)()12112x g x x ax a x a +==-++--, ()()f x g x ≤等价于27121x ax x ax a -++≤-++,即27211x x a ---≤-在R 上有解. 令()27212722h x x x x x =---=---,由绝对值不等式有272227225x x x x ---≤--+=, 所以527225x x -≤---≤,当且仅当72x ≥时,27225x x ---=-成立, 所以()min 5h x =-,故15a -≥-即4a ≥-. 故实数a 的取值范围为4a ≥-. 【点睛】解绝对值不等式的基本方法有零点分段讨论法、图象法、平方法等,利用零点分段讨论法时注意分类点的合理选择.绝对值不等式指:a b a b a b -≤+≤+及a b a b a b -≤-≤+,我们常利用它们求含绝对值符号的函数的最值.11.已知矩阵12A c d ⎡⎤=⎢⎥⎣⎦(c ,d 为实数).若矩阵A 属于特征值2,3的一个特征向量分别为21⎡⎤⎢⎥⎣⎦,11⎡⎤⎢⎥⎣⎦,求矩阵A 的逆矩阵1A -.【答案】121331166A -⎡⎤-⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦【解析】 【分析】根据特征值的定义可知A αλα=,利用待定系数法建立等式关系,求出矩阵A ,即可求出逆矩阵1A -. 【详解】解:由题意知,122422121c d c d ⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦⎣⎦,12131311c d c d ⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦⎣⎦, 所以223c d c d +=⎧⎨+=⎩,解得14c d =-⎧⎨=⎩. 所以1214A ⎡⎤=⎢⎥-⎣⎦,所以121331166A -⎡⎤-⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦. 【点睛】本题主要考查了二阶矩阵,以及特征值与特征向量的计算,属于基础题.12.定义()111111n n n n x x n N y y +*+-⎛⎫⎛⎫⎛⎫=∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭为向量()111,n n n OP x y +++=u u u u u v 的一个矩阵变换, (1)若()12,3P ,求2OP u u u v ,3OP u u u v; (2)设向量()11,0OP =u u u v ,O 为坐标原点,请计算9OP u u u v 并探究2017OP u u u u u u v的坐标. 【答案】(1)()21,5OP =-u u u v ,()36,4OP =-u u u v ;(2)()25216,0. 【解析】 【分析】(1)根据递推关系可直接计算2OP uuu r ,3OP u u ur .(2)根据向量的递推关系可得816n nOP OP +=u u u u u ru u u r 对任意的*n N ∈恒成立,据此可求9OP u u u r、2017OP u u u u u u r的坐标.【详解】(1)因为()12,3P ,故123OP⎛⎫= ⎪⎝⎭u u u r ,设2x OP y ⎛⎫= ⎪⎝⎭u u u r , 则11211135x y --⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以215OP -⎛⎫= ⎪⎝⎭u u u r 即()21,5OP =-u u u r ,同理()36,4OP =-u u u r . (2)因为111111n n n n x x y y ++-⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以11n n n n nn x x y y x y ++-⎛⎫⎛⎫= ⎪ ⎪+⎝⎭⎝⎭, 故21121122n n n n n n n n x x y y y x y x ++++++--⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭,3223222222n n n n n n n n n n x x y y x y x y y x ++++++---⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪+-+⎝⎭⎝⎭⎝⎭,43343344n n n n n n n n x x y x y x y y ++++++--⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪+-⎝⎭⎝⎭⎝⎭,所以44n n OP OP +=-u u u u u r u u u r ,故816n n OP OP +=u u u u u r u u u r . 又9811=⨯+,20174504182521=⨯+=⨯+,()911616,0OP OP ==u u u r u u u r所以()252252201711616,0OP OP ==u u u u u u r u u u r . 【点睛】本题考查向量的坐标计算及向量的递推关系,解题过程中注意根据已知的递推关系构建新的递推关系,此问题为中档题.13.已知函数2sin ()1x xf x x -=.(1)当0,2x π⎡⎤∈⎢⎥⎣⎦时,求()f x 的值域;(2)已知ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,若2A f ⎛⎫=⎪⎝⎭4a =,5b c +=,求ABC V 的面积.【答案】(1)0,12⎡⎤+⎢⎥⎣⎦;(2 【解析】 【分析】(1)由题意利用三角恒等变换化简函数的解析式,再利用正弦函数的定义域和值域求得当0,2x π⎡⎤∈⎢⎥⎣⎦时,求函数()f x 的值域. (2)由条件求得A ,利用余弦定理求得bc 的值,可得△ABC 的面积. 【详解】 解:(1)21()sin cos cos 2)sin 2sin 223f x x x x x x x π⎛⎫=+=++=+ ⎪⎝⎭Q , 又02x π≤≤,得42333x πππ≤+≤,所以sin 21,0sin 2133x x ππ⎛⎫⎛⎫≤+≤≤+≤ ⎪ ⎪⎝⎭⎝⎭,即函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上的值域为1⎡⎤+⎢⎥⎣⎦;(2)∵2A f ⎛⎫=⎪⎝⎭,sin 32A π⎛⎫∴+=⎪⎝⎭, 由(0,)A π∈,知4333A πππ<+<,解得:233A ππ+=,所以3A π=. 由余弦定理知:2222cos a b c bc A =+-,即2216b c bc =+-,216( c)3b bc ∴=+-.因为5b c +=,所以3bc =,1sin 2ABC S bc A ∆∴==【点睛】本题主要考查三角恒等变换,正弦函数的周期性、正弦函数的定义域和值域,余弦定理的应用,属于中档题.14.用行列式解关于x 、y 的方程组:1()2ax y a a R x ay a +=+⎧∈⎨+=⎩,并对解的情况进行讨论.【答案】见解析 【解析】 【分析】先求出相关的行列式,,x y D D D 的值,再讨论分式的分母是否为0,用公式法写出方程组的解,即可得到结论. 【详解】由题意,关于x 、y 的方程组:1()2ax y a a R x ay a +=+⎧∈⎨+=⎩, 所以221111,(1),12x a a D a D a a a a a aa+==-==-=-2121(21)(1)12y a a D a a a a a+==--=+-,(1)当1a ≠±时,0D ≠,方程组有唯一解,1211a x a a y a ⎧=⎪⎪+⎨+⎪=⎪+⎩;(2)当1a =-时,0,0x D D =≠,方程组无解; (3)当1a =时,0x y D D D ===,方程组有无穷多解,,()2x tt R y t=⎧∈⎨=-⎩.【点睛】本题主要考查了用行列式法求方程组的解,难度不大,属于基础题.15.设函数()271f x x ax =-++(a 为实数).(1)若1a =-,解不等式()0f x ≥; (2)若当01xx>-时,关于x 的不等式()1f x ≥成立,求a 的取值范围; (3)设21()1x g x ax +=--,若存在x 使不等式()()f x g x ≤成立,求a 的取值范围. 【答案】(1)8{|3x x ≤或6}x ≥;(2)[5,)-+∞;(3)[4,)-+∞ 【解析】 【分析】(1)代入1a =-直接解不等式即可; (2)由01xx>-解得01x <<,故可将()1f x ≥化为(2)70a x -+≥,从而求出a 的范围; (3)化简()g x ,故可将题设条件变为:存在x 使1|27||22|a x x -≥---成立,因此求出2722x x ---的最小值即可得出结论.【详解】(1)若1a =-,则()271f x x x =-+- 由()0f x ≥得|27|1x x -≥-, 即270271x x x ->⎧⎨-≥-⎩或270721x x x -≤⎧⎨-≥-⎩, 解得6x ≥或83x ≤, 故不等式的解集为8{|3x x ≤或6}x ≥; (2)由01xx>-解得01x <<, 由()1f x ≥得|27|0x ax -+≥,当01x <<时,该不等式即为(2)70a x -+≥,设()(2)7F x a x =-+,则有(0)70(1)50F F a =>⎧⎨=+≥⎩解得5a ≥-,因此实数a 的取值范围为[5,)-+∞; (3)21()1x g x ax +=--2|1|(1)x a x =-++, 若存在x 使不等式()()f x g x ≤成立,即存在x 使271x ax -++2|1|(1)x a x ≤-++成立, 即存在x 使1|27||22|a x x -≥---成立,又272227(22)5x x x x ---≤---=, 所以527225x x -≤---≤, 所以15a -≥-,即4a ≥-, 所以a 的取值范围为:[4,)-+∞ 【点睛】本题主要考查了绝对值不等式,结合了恒成立,能成立等问题,属于综合应用题.解决恒成立,能成立问题时,常将其转化为最值问题求解.16.将一枚六个面的编号为1,2,3,4,5,6的质地均匀的正方体骰子先后掷两次,记第一次出的点数为a ,第二次出的点数为b ,且已知关于x 、y 的方程组322ax by x y +=⎧⎨+=⎩.(1)求此方程组有解的概率; (2)若记此方程组的解为00x x y y =⎧⎨=⎩,求00x >且00y >的概率. 【答案】(1)1112;(2)1336. 【解析】 【分析】(1)先根据方程组有解得a b ,关系,再确定,a b 取法种数,最后根据古典概型概率公式求结果;(2)先求方程组解,再根据解的情况得a b ,关系,进而确定,a b 取法种数,最后根据古典概型概率公式求结果. 【详解】(1)因为方程组322ax by x y +=⎧⎨+=⎩有解,所以0212a b a b ≠∴≠ 而2b a =有123,,,246a a a b b b ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩这三种情况,所以所求概率为31116612-=⨯; (2)006232,2022232b x ax by a ba b x y a y a b -⎧=⎪+=⎧⎪-∴-≠⎨⎨+=-⎩⎪=⎪-⎩Q 因为00x >且00y >,所以6223200,022b a a b a b a b---≠>>--, 因此12,,33a ab b =≥⎧⎧⎨⎨><⎩⎩即有35213+⨯=种情况,所以所求概率为13136636=⨯;【点睛】本题考查古典概型概率以及二元一次方程组的解,考查综合分析求解能力,属中档题.17.已知矩阵111A a -⎡⎤=⎢⎥⎣⎦,其中a R ∈,若点(1,1)P 在矩阵A 的变换下得到点(0,3)P '-,求矩阵A 的两个特征值.【答案】矩阵A 的特征值为1-或3. 【解析】 【分析】根据点(1,1)P 在矩阵A 的变换下得到点(0,3)P '-,列出方程求出a ,从而可确定矩阵A ,再求出矩阵A 的特征多项式,令其等于0,即可求出矩阵A 的特征值. 【详解】由1110113a -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,得13a +=-,所以4a =-, 故1141A -⎡⎤=⎢⎥-⎣⎦, 则矩阵A 的特征多项式为2211()(1)42341f x -==--=---λλλλλ,令()0f λ=,解得1λ=-或3λ=, 所以矩阵A 的特征值为1-或3. 【点睛】本题主要考查矩阵的特征多项式及特征值的求法,属于中档题.18.已知二阶矩阵13a M b ⎡⎤=⎢⎥⎣⎦的特征值1λ=-所对应的一个特征向量为13-⎡⎤⎢⎥⎣⎦. (1)求矩阵M ;(2)设曲线C 在变换矩阵M 作用下得到的曲线C '的方程为2y x =,求曲线C 的方程.【答案】(1)2130M ⎡⎤=⎢⎥⎣⎦(2)292y x x =- 【解析】 【分析】(1)根据特征值和特征向量的定义式写出相应的矩阵等式,转化成线性方程组可得,a b 的值,即可得到矩阵M ;(2)根据矩阵对应的变换写出对应的矩阵恒等式,通过坐标转化计算可得出曲线C 的方程. 【详解】解:(1)依题意得111333a b -⎡⎤⎡⎤⎡⎤⋅=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,即31333a b -+=⎧⎨-+=-⎩,解得20a b =⎧⎨=⎩,所以2130M ⎡⎤=⎢⎥⎣⎦; (2)设曲线C 上一点(,)P x y 在矩阵M 的作用下得到曲线2y x =上一点(),P x y ''',则2130x x y y ''⎡⎤⎡⎤⎡⎤=⋅⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即23x x y y x ''=+⎧⎨=⎩, 因为2y x ''=,所以292x x y =+, 所以曲线C 的方程为292y x x =-. 【点睛】本题主要考查特征值和特征向量的定义计算的能力,以及矩阵对应的变换得出变换前的曲线方程,本题属中档题.19.已知矩阵14a b A ⎡⎤=⎢⎥⎣⎦若矩阵A 属于特征值1的一个特征向量为131a ⎡⎤=⎢⎥-⎣⎦u u r ,属于特征值5的一个特征向量为211a ⎡⎤=⎢⎥⎣⎦u u r 求矩阵A .【答案】2314⎡⎤⎢⎥⎣⎦ 【解析】 【分析】根据矩阵A 属于特征值1的一个特征向量为131a ⎡⎤=⎢⎥-⎣⎦u u r 得到33-=a b ,属于特征值5的一个特征向量为211a ⎡⎤=⎢⎥⎣⎦u u r ,故5a b +=,解得答案.【详解】矩阵A 属于特征值1的一个特征向量为131a ⎡⎤=⎢⎥-⎣⎦u u r ,1114a b a a ⎡⎤=⎢⎥⎣⎦u r u r,故33-=a b ; 属于特征值5的一个特征向量为211a ⎡⎤=⎢⎥⎣⎦u u r ,21514a b a a ⎡⎤=⎢⎥⎣⎦u u r u r,故5a b +=, 解得23a b =⎧⎨=⎩,故2314A ⎡⎤=⎢⎥⎣⎦. 【点睛】本题考查了矩阵的特征向量,意在考查学生的计算能力和对于特征向量的理解.20.已知线性方程组5210258x y x y +=⎧⎨+=⎩.()1写出方程组的系数矩阵和增广矩阵;()2运用矩阵变换求解方程组.【答案】(1)矩阵为5225⎛⎫ ⎪⎝⎭,增广矩阵为5210.258⎛⎫ ⎪⎝⎭ (2)34212021x y ⎧=⎪⎪⎨⎪=⎪⎩【解析】 【分析】()1由线性方程组5210258x y x y +=⎧⎨+=⎩,能写出方程组的系数矩阵和增广矩阵. ()2由170345010521052102121258102540202001012121⎛⎫⎛⎫⎪ ⎪⎛⎫⎛⎫→→→⎪ ⎪ ⎪ ⎪--- ⎪ ⎪⎝⎭⎝⎭ ⎪⎪⎝⎭⎝⎭,能求出方程组的解. 【详解】(1)Q 线性方程组5210258x y x y +=⎧⎨+=⎩.∴方程组的系数矩阵为5225⎛⎫⎪⎝⎭, 增广矩阵为5210.258⎛⎫ ⎪⎝⎭(2)因为5210258x y x y +=⎧⎨+=⎩,1703452105010521052105210212120258102540021202020010101212121⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎛⎫⎛⎫⎛⎫ ⎪∴→→→→→ ⎪ ⎪ ⎪ ⎪ ⎪⎪----- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ⎪ ⎪⎝⎭⎝⎭⎝⎭,34212021x y ⎧=⎪⎪∴⎨⎪=⎪⎩.【点睛】本题考查方程组的系数矩阵和增广矩阵的求法,考查运用矩阵变换求解方程组,考查矩阵的初等变换等基础知识,考查运算求解能力,是基础题.。
江苏省2015届高考数学模拟试题分类汇编:第15章-矩阵与变换
目录(基础复习部分) 第十五章 矩阵与变换 (1)第01课 几种常见的变换 ........................................................................................................................ 1 第02课 矩阵的复合、乘法与逆矩阵、矩阵的特征值与特征向量 . (6)第十五章 矩阵与变换 第01课 几种常见的变换已知矩阵A =⎣⎡⎦⎤2b 13属于特征值λ的一个特征向量为α=⎣⎡⎦⎤ 1-1 .(1)求实数b ,λ的值;(2)若曲线C 在矩阵A 对应的变换作用下,得到的曲线为C ':x 2+2y 2=2,求曲线C 的方程.解:(1)因为矩阵A =⎣⎡⎦⎤2b 13属于特征值λ的一个特征向量为α=⎣⎡⎦⎤ 1-1,所以⎣⎡⎦⎤2b 13⎣⎡⎦⎤ 1-1=λ⎣⎡⎦⎤ 1-1,即⎣⎢⎡⎦⎥⎤2-b -2=⎣⎢⎡⎦⎥⎤λ-λ. ……………………… 3分 从而⎩⎨⎧2-b =λ,-2=-λ.解得b =0,λ=2. ………………………… 5分(2)由(1)知,A =⎣⎡⎦⎤2013.设曲线C 上任一点M (x ,y )在矩阵A 对应的变换作用后变为曲线C '上一点P (x 0,y 0), 则⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎡⎦⎤2013⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤2x x +3y , 从而⎩⎨⎧x 0=2x ,y 0=x +3y .…………………………… 7分因为点P 在曲线C '上,所以x 02+2y 02=2,即(2x )2+2(x +3y )2=2, 从而3x 2+6xy +9y 2=1.所以曲线C 的方程为3x 2+6xy +9y 2=1. ……………………………… 10分已知曲线2:2C y x = ,在矩阵M 1002⎡⎤=⎢⎥⎣⎦对应的变换作用下得到曲线1C ,1C 在矩阵N 0110-⎡⎤=⎢⎥⎣⎦对应的变换作用下得到曲线2C ,求曲线2C 的方程. 解:设A NM =则A 011002100210--⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, ………………………………………………………3分 设()','P x y 是曲线C 上任一点,在两次变换下,在曲线2C 上的对应的点为(),P x y , 则 02'2'10''x x y y y x --⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦, 即2',',x y y x =-⎧⎨=⎩∴',1'.2x y y x =⎧⎪⎨=-⎪⎩ ……………………………7分 又点()','P x y 在曲线2:2C y x = 上,∴ 21()22x y -=,即218y x =.………………………………10分已知矩阵1002A ⎡⎤=⎢⎥⎣⎦,1201B ⎡⎤=⎢⎥⎣⎦,若矩阵1AB -对应的变换把直线l 变为直线':20l x y +-=,求直线l 的方程.21.B .解:∵1201B ⎡⎤=⎢⎥⎣⎦,∴11201B --⎡⎤=⎢⎥⎣⎦, ∴1101212020102AB ---⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦. ………………5分 设直线l 上任意一点(,)x y 在矩阵1AB -对应的变换下为点(,)x y ''.1202x x y y '-⎤⎤⎡⎤⎡⎡=⎥⎥⎢⎥⎢⎢'⎣⎦⎣⎣⎦⎦,∴2,2,x x y y y '=-⎧⎨'=⎩ 代入:(2)(2)20l x y y '-+-=,化简后得:2l x =. ………………10分 求曲线1x y +=在矩阵M 10103⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦对应的变换作用下得到的曲线所围成图形的面积.解:设点00(,)x y 为曲线1x y +=上的任一点,在矩阵10103M ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦对应的变换作用下得到的点为(,)x y '',则由0010103x x y y ⎡⎤'⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎢⎥⎣⎦,………………………………………………………………3分得:00,1,3x x y y '=⎧⎪⎨'=⎪⎩ 即00,3,x x y y '=⎧⎨'=⎩ ………………………………………………………5分 所以曲线1x y +=在矩阵10103M ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦对应的变换作用下得到的曲线为31x y +=, ………………………………………………………………………………8分所围成的图形为菱形,其面积为1222233⨯⨯=. …………………………………10分(南京盐城模拟一)求直线10x y --=在矩阵2222M -⎥=⎥⎥⎣⎦的变换下所得曲线的方程.解:设(,)P x y 是所求曲线上的任一点,它在已知直线上的对应点为(,)Q x y '',则,,x y x x y y ''=''+=解得),),x x y y y x ⎧'=+⎪⎪⎨⎪'=-⎪⎩ (5)分代入10x y ''--=))10x y y x +--=,化简可得所求曲线方程为x =. (10)分(扬州期末)A .(本小题满分10分,矩阵与变换)在平面直角坐标系xOy 中,设曲线C 1在矩阵A=10102⎡⎤⎢⎥⎢⎥⎣⎦ 对应的变换作用下得到曲线C 2:2214x y +=,求曲线C 1的方程. 设(,)P x y 是曲线1C 上任意一点,点(,)P x y 在矩阵A 对应的变换下变为点(,)P x y ''',则有10102x x y y ⎡⎤'⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥' ⎣⎦⎣⎦⎣⎦,即,1.2x x y y '=⎧⎪⎨'=⎪⎩ ……5分又因为点(,)P x y '''曲线222:14x C y +=上, 故22()()14x y ''+=,从而22()()142x y +=, 所以曲线1C 的方程是224x y +=.(镇江期末)已知矩阵1002M ⎡⎤=⎢⎥⎣⎦,10201N ⎡⎤⎢⎥=⎢⎥⎣⎦,试求曲线x y sin =在矩阵MN 变换下的函数解析式. 解:MN =1002⎡⎤⎢⎥⎣⎦1021⎡⎤⎢⎥⎢⎥⎣⎦=10202⎡⎤⎢⎥⎢⎥⎣⎦, ……4分 即在矩阵MN 变换下11022022x x x x y y y y ⎡⎡⎤⎤'⎡⎡⎡⎤⎤⎤⎢⎢⎥⎥→==⎢⎢⎢⎥⎥⎥⎢⎢⎥⎥'⎦⎦⎦⎣⎣⎣⎢⎣⎦⎦⎣, ……6分 12x x '=,2y y '=, ……8分 代入得:1sin 22y x ''=, 即曲线sin y x =在矩阵MN 变换下的函数解析式为2sin 2y x =. ……10分(苏北四市期末) 已知,a b R ∈,矩阵 1 3a A b -⎡⎤=⎢⎥⎣⎦所对应的变换A T 将直线10x y --=变换为自身,求a ,b 的值。
高考数学复习 专题11 矩阵与变换考点剖析-人教版高三全册数学试题
矩阵与变换主标题:矩阵与变换副标题:为学生详细的分析矩阵与变换的高考考点、命题方向以及规律总结。
关键词:矩阵,二阶矩阵,变换,特征值,特征向量难度:3重要程度:5考点剖析:1.了解二阶矩阵的概念,了解线性变换与二阶矩阵之间的关系.2.了解旋转变换、反射变换、伸缩变换、投影变换、切变变换这五种变换的概念与矩阵表示.3.理解变换的复合与矩阵的乘法;理解二阶矩阵的乘法和简单性质.4.理解逆矩阵的意义,会求出简单二阶逆矩阵.5.理解矩阵的特征值与特征向量,会求二阶矩阵的特征值与特征向量.命题方向:主要考查矩阵与变换,二阶逆矩阵与二元一次方程组及求矩阵的特征值与特征向量。
规律总结:1.矩阵相等实质上是矩阵对应元素相等,体现了方程思想,要注意矩阵对应元素相等.2.矩阵的乘法只满足结合律,不满足交换律和消去律.3.对于平面图形的变换要分清是伸缩、反射、还是切变变换.4.伸缩、反射、切变变换这三种几何变换称为初等变换,对应的变换矩阵为初等变换矩阵,由矩阵的乘法可以看出,矩阵的乘法对应于变换的复合,一一对应的平面变换都可以看作这三种初等变换的一次或多次的复合.5.逆矩阵的求法常用待定系数法.6.若A,B两个矩阵均存在可逆矩阵,则有(AB)-1=B-1A-1,若A,B,C为二阶矩阵且A可逆,则当AB=AC时,有B=C,即此时矩阵乘法的消去律成立.7.关于特征值问题的一般解法如下:给定矩阵A =⎣⎢⎡⎦⎥⎤ab cd ,向量α=⎣⎢⎡⎦⎥⎤x y ,若有特征值λ,则⎣⎢⎡⎦⎥⎤ab cd ⎣⎢⎡⎦⎥⎤x y =λ⎣⎢⎡⎦⎥⎤x y ,即⎣⎢⎡⎦⎥⎤λ-a -b -cλ-d ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤00, 所以⎪⎪⎪⎪⎪⎪λ-a -b -cλ-d =0,即λ2-(a +d )λ+(ad -bc )=0.8.求M nα,一般都是先求出矩阵M 的特征值与特征向量,将α写成t 1α1+t 2α2.利用性质M nα=t 1λn1α1+t 2λn2α2求解.知 识 梳 理1.矩阵的乘法规则(1)行矩阵[a 11a 12]与列矩阵⎣⎢⎢⎡⎦⎥⎥⎤b 11b 21的乘法规则:[a 11a 12]⎣⎢⎢⎡⎦⎥⎥⎤b 11b 21=[a 11×b 11+a 12×b 21].(2)二阶矩阵⎣⎢⎢⎡⎦⎥⎥⎤a 11a 21a 12a 22与列向量⎣⎢⎢⎡⎦⎥⎥⎤x 0y 0的乘法规则: ⎣⎢⎢⎡⎦⎥⎥⎤a 11a 21 a 12a 22⎣⎢⎢⎡⎦⎥⎥⎤x 0y 0=⎣⎢⎢⎡⎦⎥⎥⎤a 11×x 0+a 12×y 0a 21×x 0+a 22×y 0. 设A 是一个二阶矩阵,α、β是平面上的任意两个向量,λ、λ1、λ2是任意三个实数,则 ①A (λα)=λAα;②A (α+β)=Aα+Aβ; ③A (λ1α+λ2β)=λ1Aα+λ2Aβ.(3)两个二阶矩阵相乘的结果仍然是一个矩阵,其乘法法则如下:⎣⎢⎢⎡⎦⎥⎥⎤a 11a 21 a 12a 22⎣⎢⎢⎡⎦⎥⎥⎤b 11b 21 b 12b 22= ⎣⎢⎢⎡⎦⎥⎥⎤a 11×b 11+a 12×b 21a 21×b 11+a 22×b 21 a 11×b 12+a 12×b 22a 21×b 12+a 22×b 22 性质:①一般情况下,AB ≠BA ,即矩阵的乘法不满足交换律;②矩阵的乘法满足结合律,即(AB )C =A (BC );③矩阵的乘法不满足消去律.2.矩阵的逆矩阵(1)逆矩阵的有关概念:对于二阶矩阵A ,B ,若有AB =BA =E ,则称A 是可逆的,B 称为A 的逆矩阵.若二阶矩阵A 存在逆矩阵B ,则逆矩阵是唯一的,通常记A 的逆矩阵为A -1,A -1=B .(2)逆矩阵的求法:一般地,对于二阶可逆矩阵A =⎣⎢⎡⎦⎥⎤ab cd (det A =ad -bc ≠0),它的逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤d ad -bc -bad -bc -c ad -bc a ad -bc .(3)逆矩阵与二元一次方程组:如果关于变量x ,y 的二元一次方程组⎩⎪⎨⎪⎧ax +by =m ,cx +dy =n的系数矩阵A =⎣⎢⎡⎦⎥⎤ab cd 可逆,那么该方程组有唯一解⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤ab cd -1⎣⎢⎡⎦⎥⎤m n ,其中A-1=⎣⎢⎢⎡⎦⎥⎥⎤d ad -bc -bad -bc -c ad -bc a ad -bc .3.二阶矩阵的特征值和特征向量 (1)特征值与特征向量的概念设A 是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使得Aα=λα,那么λ称为A 的一个特征值,而α称为A 的一个属于特征值λ的一个特征向量. (2)特征多项式与特征方程设λ是二阶矩阵A =⎣⎢⎡⎦⎥⎤ab cd 的一个特征值,它的一个特征向量为ξ=⎣⎢⎡⎦⎥⎤x y ,则A ⎣⎢⎡⎦⎥⎤x y =λ⎣⎢⎡⎦⎥⎤x y ,即⎣⎢⎡⎦⎥⎤x y 满足二元一次方程组⎩⎪⎨⎪⎧ax +by =λx ,cx +dy =λy ,故⎩⎪⎨⎪⎧λ-ax -by =0-cx +λ-d y =0⇔⎣⎢⎡⎦⎥⎤λ-a -b -cλ-d ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤00(*)则(*)式有非零解的充要条件是它的系数矩阵的行列式⎪⎪⎪⎪⎪⎪λ-a -b -cλ-d =0.记f (λ)=⎪⎪⎪⎪⎪⎪λ-a -b -cλ-d 为矩阵A =⎣⎢⎡⎦⎥⎤ab cd 的特征多项式;方程⎪⎪⎪⎪⎪⎪λ-a -b -cλ-d =0,即f (λ)=0称为矩阵A =⎣⎢⎡⎦⎥⎤ab cd 的特征方程. (3)特征值与特征向量的计算如果λ是二阶矩阵A 的特征值,则λ是特征方程f (λ)=⎪⎪⎪⎪⎪⎪λ-a -b -cλ-d =λ2-(a +d )λ+ad -bc =0的一个根.解这个关于λ的二元一次方程,得λ=λ1、λ2,将λ=λ1、λ2分别代入方程组(*),分别求出它们的一个非零解⎩⎪⎨⎪⎧x =x 1,y =y 1,⎩⎪⎨⎪⎧x =x 2,y =y 2,记ξ1=⎣⎢⎡⎦⎥⎤x 1y 1,ξ2=⎣⎢⎡⎦⎥⎤x 2y 2.则Aξ1=λ1ξ1、Aξ2=λ2ξ2,因此λ1、λ2是矩阵A =⎣⎢⎡⎦⎥⎤ab cd 的特征值,ξ1=⎣⎢⎡⎦⎥⎤x 1y 1,ξ2=⎣⎢⎡⎦⎥⎤x 2y 2为矩阵A 的分别属于特征值λ1、λ2的一个特征向量.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点48 矩阵与变换
一、选择题
1.(2015·福建高考理科·T21)(1)(本小题满分7分)选修4-2;矩阵与变换
已知矩阵A=错误!未找到引用源。
,B=错误!未找到引用源。
.
①求A 的逆矩阵A -1
.
②求矩阵C,使得AC=B.
【解题指南】利用矩阵与逆矩阵的关系直接求解.
【解析】①因为错误!未找到引用源。
=2×3-1×4=2, 所以13131222242212
2A --⎛⎫⎛⎫ ⎪- ⎪== ⎪ ⎪- ⎪- ⎪⎝⎭⎝⎭ ②由AC=B 得(A -1A)C=A -1B, 故1313112C ==222012123A B -⎛⎫⎛⎫-⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪-⎝⎭---⎝⎭⎝⎭
二、解答题
2.(2015·江苏高考·T21已知x,y ∈R,向量α=11⎡⎤⎢⎥-⎣⎦是矩阵A=10x y ⎡⎤⎢⎥⎣⎦
的属性特征值-2的一个特征向量,求矩阵A 以及它的另一个特征值.
【解题指南】由矩阵特征值与特征向量可列出关于x,y 的方程组,再根据特征多项式求出矩阵另一个特征值.
【解析】由已知,得Αα=-2α,即1112012x x y y --⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦
则12,2,x y -=-⎧⎨=⎩
即1,2,
x y =-⎧⎨=⎩ 所以矩阵Α=1120-⎡⎤⎢⎥⎣⎦
. 从而矩阵Α的特征多项式f(λ)=(λ+2)(λ-1),所以矩阵Α的另一个特征值为1.。