配套K12三年高考2015_2017高考数学试题分项版解析专题16抛物线文

合集下载

三年高考2015_2017高考数学试题分项版解析专题01集合理20171102354

三年高考2015_2017高考数学试题分项版解析专题01集合理20171102354

专题01 集合1.【2017课标1,理1】已知集合A={x|x<1},B={x|3x 1},则()A.A B {x|x 0}B.A B RC.A B {x|x 1}D.A B【答案】A【解析】由3x 1可得3x 30,则x 0,即B {x|x 0},所以A B {x|x 1}{x|x 0}{x|x 0},A B {x|x 1}{x|x 0}{x|x 1},故选A.【考点】集合的运算,指数运算性质.【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.2.【2017课标II,理】设集合A1,2,4,.若A1,则x x24x m0()A.1,3B.1,0 C.1,3 D.1,5【答案】C【解析】由A 1得1B,即x 1是方程x24x m 0的根,所以14m 0,m 3,B1,3,故选C.【考点】交集运算,元素与集合的关系3.【2017课标3,理1】已知集合A =(x,y│)x y 1,B =(x,y│)y x,则A B中22元素的个数为()A.3 B.2 C.1 D.0【答案】B【解析】集合中的元素为点集,由题意,结合A 表示以0,0为圆心,为半径的单位圆上所有点组成的集合,集合B表示直线y x上所有的点组成的集合,圆x2y21与直线y x11,1,1,1,则A B中有两个元素.故选B.相交于两点【考点】交集运算;集合中的表示方法.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.4.【2017北京,理1】若集合A={x|–2<x<1},B={x|x<–1或x>3},则A B=()(A){x|–2<x<–1} (B){x|–2<x<3}(C){x|–1<x<1} (D){x|1<x<3}【答案】A【解析】利用数轴可知A B x2x1,故选A.【考点】集合的运算5.【2017浙江,1】已知P{x|1x1},Q{0x2},则P Q()A.(1,2)B.(0,1)C.(1,0)D.(1,2)【答案】A【解析】利用数轴,取P,Q所有元素,得P Q(1,2).【考点】集合运算【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.6.【2017天津,理1】设集合A{1,2,6},B{2,4},C{x R|1x5},则(A B)C()(A){2}(B){1,2,4}(C){1,2,4,6}(D){x R|1x5}【答案】B【解析】(A B)C{1,2,4,6}[1,5]{1,2,4},选B.【考点】集合的运算2【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进 行处理.7.【 2016课 标 1,理 1】 设 集 合 Ax xx,x 2x 30,则 AB24 3 0( )3(A )3,2 3(B ) 3, 23(C ) 1,23 (D ),3 2【答案】D 【解析】因为{ | 2 -4 3 0}={ |1 3}, ={ | 3}, A x x xx xB x x所以23 3A B ={x |1 x 3}{x |x }={x | x 3}, 故选 D.2 2考点:集合的交集运算【名师点睛】集合是每年中的必考题,一般以基础题形式出现,属得分题.解决此类问题一般要 把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集 之间的运算,常借助数轴进行运算. 8.【2016新课标 3理数】设集合 Sx | (x 2)(x 3)0,Tx | x,则 S T( )(A) 2,3] (B)(-,2]U 3,+ ) (C) 3,+) (D)(0,2]U 3,+ )【答案】D 【解析】由 (x 2)(x 3)0解得 x 3或 x 2 ,所以 S {x | x 2│ x 3},所以 ST {x | 0 x 2│ x 3},故选 D .考点:1、不等式的解法;2、集合的交集运算.9.【2016新课标 2理数】已知集合 A {1,2, 3}, B{x | (x 1)(x 2) 0, xZ },则A B ( )(A ){1}(B ){1,2}(C ){0,1,2,3}(D ){1,0,1,2,3}【答案】C【解析】3试题分析:集合B{x|1x2,x Z}{0,1},而A{1,2,3},所以A B{0,1,2,3},故选C.考点:集合的运算.【名师点睛】集合的交、并、补运算问题,应先把集合化简在计算,常常借助数轴或韦恩图处理.10. 【2016山东理数】设集合A{y|y2x,x R},B{x|x210},则A B=()(A)(1,1)(B)(0,1)(C)(1,)(D)(0,)【答案】C【解析】试题分析:A{y|y0},B{x|1x1},则A B(-1,+),选C.考点:1.指数函数的性质;2.解不等式;3.及集合的运算.【名师点睛】本题主要考查集合的并集、补集,是一道基础题目.从历年题目看,集合的基本运算,是必考考点,也是考生必定得分的题目之一.本题与求函数值域、解不等式等相结合,增大了考查的覆盖面.11.【2016浙江理数】已知集合P x R x Q x R x2则P(Q)13,4,ðR()A.2,3] B.( -2,3 ] C.1,2) D.(,2][1,)【答案】B【解析】试题分析:根据补集的运算得ðR Q x x24(2,2),P(ðR Q)(2,2)1,32,3.故选B.考点:1、一元二次不等式;2、集合的并集、补集.【易错点睛】解一元二次不等式时,x2的系数一定要保证为正数,若x2的系数是负数,一定要化为正数,否则很容易出错.12.【2016年北京理数】已知集合A{x||x|2},B{1,0,1,2,3},则A B4()A.{0,1}B.{0,1,2}C.{1,0,1}D.{1,0,1,2}【答案】C【解析】试题分析:由A{x|2x2},得A B{1,0,1},故选C.考点:集合交集.13.【2016年四川理数】设集合A{x|2x2},Z为整数集,则A Z中元素的个数是()(A)3 (B)4 (C)5 (D)6【答案】C【解析】由题意,A Z{2,1,0,1,2},故其中的元素个数为5,选C.考点:集合中交集的运算.【名师点睛】集合的概念及运算一直是的热点,几乎是每年必考内容,属于容易题.一般是结合不等式,函数的定义域值域考查,解题的关键是结合韦恩图或数轴解答.14.【2015重庆,理1】已知集合A=1,2,3,B=2,3,则()A、A=BB、A B=C、AØBD、BØA 【答案】D【解析】由于2A,2B,3A,3B,1A,1B,故A、B、C均错,D是正确的,选D.【考点定位】本题考查子集的概念,考查学生对基础知识的掌握程度.【名师点晴】考查集合的关系,涉及集合的相等.集合的交集运算,子集等概念,是送分题.515.【2015天津,理1】已知全集U1,2,3,4,5,6,7,8,集合A2,3,5,6,集合B ,则集合1,3,4,6,7AðB ( )U(A )2,5(B )3,6(C )2,5,6(D )2,3,5,6,8【答案】A【解析】ð{2,5,8},所以{2,5}U BAðB,故选A.U【考点定位】集合的运算.【名师点睛】本题主要考查集合的运算,涉及全集、补集、交集相关概念和求补集、交集的运算,是基础题.16.【2015四川,理1】设集合A {x|(x 1)(x 2)0},集合B {x |1x 3},则A B=()(A){x|1x 3}(B){x|1x 1}(C){x |1x 2} (D){x|2x 3}【答案】A【解析】A {x|1x 2},B {x |1x 3},A B {x|1x 3},选A.【考点定位】集合的基本运算.17.【2015广东,理1】若集合M={x|(x+4)(x+1)=0},N={x|(x-4)(x-1)=0},则M N=()A.B .1,4C.0D .1,4【答案】A.【解析】因为Mx|x4x 104,1,Nx|x4x101,4,所以M N,故选A.【考点定位】一元二次方程的解集,集合的基本运算.【名师点睛】本题主要考查一元二次方程的解集,有限集合的交集运算和运算求解能力,属于容易题.618.【2015浙江,理1】已知集合P{x x22x0},Q{x1x2},则(ð)R P Q()A.[0,1)B. (0,2]C. (1,2)D. [1,2]【答案】C.【解析】由题意得,C P(0,2)R,∴(ðR P)Q(1,2),故选C.27. 【2016天津理数】已知集合A{1,2,3,4},B{y|y3x2,x A},则A B=()(A){1}(B){4}(C){1,3}(D){1,4}【答案】D【解析】试题分析:B{1,4,7,10},A B{1,4}.选D.考点:集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,误求并集,属于基本题,难点系数较小.一要注意培养良好的答题习惯,避免出现粗心错误,二是明确集合交集的考查立足于元素互异性,做到不重不漏.28. 【2015陕西,理1】设集合M{x|x2x},N{x|lg x0},则M N()A.[0,1]B.(0,1]C.[0,1)D.(,1]【答案】A【解析】,x lg x0x0x1,所以0,1,x x2x0,1故选A.【考点定位】1、一元二次方程;2、对数不等式;3、集合的并集运算.【名师点晴】本题主要考查的是一元二次方程、对数不等式和集合的并集运算,属于容易题.解题时要看清楚是求“”还是求“”和要注意对数的真数大于,否则很容易出现错误.729.【2015新课标2,理1】已知集合A {2,1,0,1,2},Bx(x 1)(x 20,则A B ()A.A1,0B .0,1C .1,0,1D .0,1,2【答案】A【解析】由已知得Bx 2x 1,故A B1,0,故选A.【考点定位】集合的运算.【名师点睛】本题考查一元二次不等式解法和集合运算,要求运算准确,属于基础题.综上所述,“存在集合C使得A C,B C C是“A B”的充要条件.U30.【2015福建,理1】若集合Ai i2i3i 4(是虚数单位),B1,1,则A B等,,,于( )A .1B .1C .1,1D.【答案】C【解析】由已知得Ai ,1,i,1,故A B1,1,故选C.【考点定位】1、复数的概念;2、集合的运算.【名师点睛】本题考查复数的概念和集合的运算,利用i21和交集的定义求解,属于基础题,要注意运算准确度.31.【2017江苏,1】已知集合A {1,2},B {a,a23},若A B {1}则实数的值为▲.【答案】1【解析】由题意1B,显然a233,所以a 1,此时a234,满足题意,故答案为1.【考点】元素的互异性8满足“互异性”而导致解题错误.(3)防范空集.在解决有关A B,A B等集合问题时,往往忽略空集的情况,一定先考虑是否成立,以防漏解.32.【2016江苏卷】已知集合A{1,2,3,6},B{x|2x3},则A B=________▲________.1,2【答案】【解析】试题分析:A B{1,2,3,6}{x|2x3}{1,2}考点:集合运算33.【2015江苏,1】已知集合A1,2,3,B2,4,5,则集合A B中元素的个数为_______.【答案】5【解析】A B{1,2,3}{2,4,5}{1,2,3,4,5},,,则集合A B中元素的个数为5个.【考点定位】集合运算【名师点晴】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合A或属于集合B的元素的个数. 本题需注意检验集合的元素是否满足互异性,否则容易出错.9。

三年高考2015_2017高考数学试题分项版解析专题22算法文20171101141

三年高考2015_2017高考数学试题分项版解析专题22算法文20171101141

专题22 算法1.【2017山东,文6】执行右侧的程序框图,当输入的x值为4时,输出的y的值为2,则空白判断框中的条件可能为A.x3B.x4C.x4D.x5【答案】B【考点】程序框图【名师点睛】程序框图试题主要有求程序框图执行的结果和完善程序框图两种形式,求程序框图执行的结果,要先找出控制循环的变量的初值(计数变量与累加变量的初始值)、步长、终值(或控制循环的条件),然后看循环体,循环体是反复执行的步骤,循环次数比较少时,可依次列出,循环次数较多时,可先循环几次,找出规律,最后要特别注意循环结束的条件,不要出现多一次或少一次循环的错误;完善程序框图的试题多为判断框内内容的填写,这类问题常涉及到,,,的选择,解答时要根据循环结构的类型,正确地进行选择,注意直到型循环是“先循环,后判断,条件满足时终止循环”;而当型循环则是“先判断,后循环,条件满足时执行循环”;两者的判断框内的条件表述在解决同一问题时是不同的,它们恰好相反.另外还要注意判断框内的条件不是唯一的,如a>b,也可写为a≤b;i5,也可写成i6.2.【2017课标1,文10】如图是为了求出满足3n2n1000的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1000和n=n+1 B.A>1000和n=n+2C.A≤1000和n=n+1 D.A≤1000和n=n+2【答案】D【考点】程序框图,当型循环结构【名师点睛】识别算法框图和完善算法框图是高考的重点和热点.解决这类问题:首先,要明确算法框图中的顺序结构、条件结构和循环结构;第二,要识别运行算法框图,理解框图解决的实际问题;第三,按照题目的要求完成解答.对框图的考查常与函数和数列等相结合,进一步强化框图问题的实际背景.3.【2017课标3,文8】执行下面的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为()A .5B .4C .3D .2【答案】D100100, 1010【解析】若 N 2 ,第一次进入循环,12成立, SM ,i2 2 成立,10S 100 10 90,M1, i 3 2 不成立,所以输出 第二次进入循环,此时10S 90 91成立,所以输入的正整数 N 的最小值是 2,故选 D.【考点】循环结构流程图【名师点睛】算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的 相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终 止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.4. 【2017课标 II ,文 10】执行右面的程序框图,如果输入的 a 1,则输出的 SA.2B.3C.4D.5【答案】B3第三次:S132,a1,k4;第四次:S242,a1,k5;第五次:S253,a1,k6;第六次:S363,a1,k7;结束循环,输出S3.故选B.【考点】循环结构流程图【名师点睛】算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.5.【2017北京,文3】执行如图所示的程序框图,输出的值为3(A)2 (B)258(C)(D)35【答案】C【考点】循环结构【名师点睛】解决此类型时要注意:第一,要明确是当型循环结构,还是直到型循环结构.根据各自的特点执行循环体;第二,要明确图中的累计变量,明确每一次执行循环体前和执行循环体后,变量的值发生的变化;第三,要明确循环体终止的条件是什么,会判断什么时候终止循环体,争取写出每一个循环,这样避免出错.6.【2017天津,文4】阅读右面的程序框图,运行相应的程序,若输入N的值为19,则输出N 的值为(A)0 (B)1(C)2(D)3【答案】CN第二次循环:6N,不满足N3;35N第三次循环:2N,满足 N3;3此时跳出循环体,输出 N 3.本题选择 C 选项.【考点】循环结构程序框图【名师点睛】解决此类型时要注意:第一,要明确是当型循环结构,还是直到型循环结构.根 据各自的特点执行循环体;第二,要明确图中的累计变量,明确每一次执行循环体前和执行循 环体后,变量的值发生的变化;第三,要明确循环体终止的条件是什么,会判断什么时候终止 循环体,争取写出每一个循环,这样避免出错.1 7.【2017江苏,4】右图是一个算法流程图,若输入的值为 16开始,则输出的的值是▲.输入 x Yx ≥1 Ny 2xy2 logx2输出 y 结束 (第 4 题)【答案】2【考点】循环结构流程图【名师点睛】算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的 相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终 止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.【2016,20115,2014高考题】1. 【 2014湖南文 7】执行如图 1所示的程序框图,如果输入的t 2, 2,则输出的S 属于6()A.6,2B.5,1C.4,5D.3,6【答案】D【解析】当t2,0时,运行程序如下,t t S t,当t0, 2时,211,9,32,62St,则S2,63,13,6,故选D.33,1【考点定位】程序框图二次函数【名师点睛】识别运行算法流程图和完善流程图是高考的热点.解答这一类问题,第一,要明确流程图的顺序结构、条件结构和循环结构;第二,要识别运行流程图,理解框图所解决的实际问题;第三,按照题目的要求完成解答.对流程图的考查常与数列和函数等知识相结合,进一步强化框图问题的实际背景.2.【2015高考湖南,文5】执行如图2所示的程序框图,如果输入n=3,中输入的S=( )A、67B、37C、89D、49【答案】B7【考点定位】程序框图【名师点睛】识别运行算法流程图和完善流程图是高考的热点.解答这一类问题,第一,要明确流程图的顺序结构、条件结构和循环结构;第二,要识别运行流程图,理解框图所解决的实际问题;第三,按照题目的要求完成解答.对流程图的考查常与数列和函数等知识相结合,进一步强化框图问题的实际背景.3. 【2016高考新课标2文数】中国古代有计算多项式值得秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的a为2,2,5,则输出的s=()(A)7 (B)12 (C)17 (D)34 【答案】C考点:程序框图,直到型循环结构.【名师点睛】识别算法框图和完善算法框图是高考的重点和热点.解决这类问题:首先,要明确算法框图中的顺序结构、条件结构和循环结构;第二,要识别运行算法框图,理解框图解决的实际问题;第三,按照题目的要求完成解答.对框图的考查常与函数和数列等结合,进一步强化框图问题的实际背景.84. 【2016高考新课标1文数】执行右面的程序框图,如果输入的x0,y1,n=1,则输出x,y 的值满足()(A)y2x(B)y3x(C)y4x(D)y5x入入入入x,y,nn=n+1n-1x=x+入y=ny2x2+y2≥36入入入x,y入入【答案】C考点:程序框图与算法案例【名师点睛】程序框图基本是高考每年必考知识点,一般以客观题形式出现,难度不大,求解此类问题一般是把人看作计算机,按照程序逐步列出运行结果.5. 【2014高考陕西版文第4题】根据右边框图,对大于2的整数N,得出数列的通项公式是()A.a2nB.a2(n1)C.a2nD.a2n1n n n n入入入入NS=1入i=1a i=2*SS=a ii=i+1入i>N入入入a1,a2,...,a N入入【答案】C考点:程序框图的识别.【名师点晴】本题主要考查的是程序框图,属于容易题.解题时一定要注意这是一个循环结构,而且最后输出的是数列的前N项要根据这些项归纳出数列的通项公式.在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.6. 【2015高考陕西,文7】根据右边框图,当输入为6时,输出的y()A.B.C.D.1010【答案】D【解析】该程序框图运行如下:x6330,x330,x0330,y(3)110,故答案选D.2【考点定位】程序框图的识别.【名师点睛】1.本题考查程序框图的识别,解题的关键是判断什么时候退出循环.2.考查逻辑思维能力、计算能力.本题属于基础题,常考题型.7. 【2014全国2,文8】执行右面的程序框图,如果输入的,均为,则输出的S()(A)(B)(C)(D)【答案】D【考点定位】程序框图.【名师点睛】本题主要考查程序框图中的循环结构;本题属于基础题,解决本题的关健在于读懂程序框图,然后一步一步的写出每循环运行一次的结果,直到条件成立时为止,就能正确快速地得到结果,注意循环条件的判断.8. 2016高考新课标Ⅲ文数]执行下图的程序框图,如果输入的a4,b6,那么输出的n()(A)3 (B)4 (C)5 (D)6【答案】B【解析】试题分析:第一次循环,得a2,b4,a6,s6,n1;第二次循环,得a b a s,n2;第三次循环,得a2,b4,a6,s16,n3;第四2,6,4,10次循环,得a2,b6,a4,s2016,n4,退出循环,输出n4,故选B.考点:程序框图.【注意提示】解决此类型时要注意:第一,要明确是当型循环结构,还是直到型循环结构.根据各自的特点执行循环体;第二,要明确图中的累计变量,明确每一次执行循环体前和执行循环体后,变量的值发生的变化;第三,要明确循环体终止的条件是什么,会判断什么时候终止循环体.9. 【2014四川,文6】执行如图1所示的程序框图,如果输入的x,y R,则输出的S的最大值为()A.B.C.D.【答案】Cy21x–112O–1【考点定位】程序框图与线性规划.【名师点睛】在算法的考点上,四川省以程序框图的考查为主,而考查程序框图,必定是以循环结构形式出现,它可以包括程序框图的所有结构类型.本题只需对循环后的k值进行判定,最后输出相应的三角函数值即可,属于简单题.10. 【2015高考四川,文6】执行如图所示的程序框图,输出S的值为( )(A)-32(B)32(C)-12(D)12【答案】D【考点定位】本题考查循环结构形式的程序框图,考查特殊角的三角函数值,考查基本运算能力.【名师点睛】在算法的考点上,四川省以程序框图的考查为主,而考查程序框图,必定是以循环结构形式出现,它可以包括程序框图的所有结构类型.本题只需对循环后的k值进行判定,最后输出相应的三角函数值即可,属于简单题.11. 【2016高考北京文数】执行如图所示的程序框图,输出的s值为()A.8B.9C.27D.36【答案】B 【解析】试题分析:分析程序框图可知,程序的功能等价于输出 s 13 23 9,故选 B.考点: 程序框图【名师点睛】解决循环结构框图问题,要先找出控制循环的变量的初值、步长、终值(或控制 循环的条件),然后看循环体,循环次数比较少时,可依次列出,循环次数较多时,可先循环 几次,找出规律,要特别注意最后输出的是什么,不要出现多一次或少一次循环的错误. 12.【2014全国 1,文 9】执行右面的程序框图,若输入的 a ,b ,k 分别为 1,2,3,则输出的 M( )A.203B.7 2 16 5C.15 8D.【答案】D考点:算法的循环结构【名师点睛】考生在解决程序框图以及循环结构时,首先要明确循环的条件,其次在计算的过 程中要细心,本题还考查了考生的计算能力.13. 【2015高考新课标 1,文 9】执行右面的程序框图,如果输入的t 0.01,则输出的 n( )(A ) (B )(C )10 (D )12【答案】C【 解 析 】 执 行 第 1次 , t =0.01,S=1,n =0,m =t =0.01,是,循环,1 2=0.5,S =S -m =0.5,m m =0.25,n =1,S =0.5>2m 执行第 2次,S =S -m =0.25,m=0.125,n =2,S=0.25>t =0.01,是,循环,2m 执行第 3次,S =S -m =0.125,m=0.0625,n =3,S=0.125>t =0.01,是,循环,2 m 执行第 4次,S=S-m =0.0625,m=0.03125,n =4,S=0.0625>t =0.01,是,循环,2m 执行第 5次,S=S-m =0.03125,m=0.015625,n =5,S=0.03125>t =0.01,是,循环,2 m 执行第 6次,S=S-m =0.015625,m=0.0078125,n =6,S=0.015625>t =0.01,是,循环,2m 执行第 7次,S=S-m =0.0078125,m=0.00390625,n=7,S=0.0078125>t =0.01,否,输出2n =7,故选 C.考点:程序框图到输出时,即可计算出输出结果,是常规题,程序框图还可考查已知输入、输出,不全框图或考查程序框图的意义,处理方法与此题相同.14.【2016高考四川文科】秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示15的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为( )(A)35 (B) 20 (C)18 (D)9【答案】C考点:1.程序与框图;2.秦九韶算法;3.中国古代数学史.【名师点睛】程序框图是高考的热点之一,几乎是每年必考内容,多半是考循环结构,基本方法是将每次循环的结果一一列举出来,与判断条件比较即可.15. 【2014高考重庆文第5题】执行如题(5)图所示的程序框图,则输出的值为()A.10B.17C.19D.3616【答案】C考点:循环结构.【名师点睛】本题主要考查程序框图中的循环结构,属于基础题,常常一步一步的写出运行的 结果,直到符合条件为止.16. 【2015高考重庆,文 8】执行如图(8)所示的程序框图,则输出 s 的值为( ) (A)3 4 (B) 5 6(C)11 12 (D)25 24【答案】D【解析】初始条件: s0,k 0, 1 1第 1次判断 0<8,是,k2,s 0 ; 2 21 1 3第 2次判断 2<8,是,k 4,s ;2 4 43 1 11 第 3次判断 4<8,是,k 6,s; 4 6 1211 125第 4次判断 6<8,是,k 8,s ;12 824 25第 5次判断 8<8,否,输出s;24故选D.【考点定位】程序框图.【名师点睛】本题考查程序框图,这是一个当循环结构,先判断条件是否成立再确17定是否循环,一步一步进行求解.本题属于基础题,注意条件判断的准确性.17. 【2014高考北京文第4题】执行如图所示的程序框图,输出的S值为()A. B. C. D.15开始否是输出结束【答案】C考点:本小题主要考查程序框图的基础知识,难度不大,程序框图是高考新增内容,是高考的重点知识,熟练本部分的基础知识是解答的关键.18.【2015高考北京,文5】执行如图所示的程序框图,输出的的值为()A.B.C.D.【答案】B【解析】初值为a3,k0,进入循环体后,a3,k1;a3,k2;3,3a k;248 3a,k4;161此时a,退出循环,故k4,故选B.4【考点定位】程序框图.1【名师点晴】本题主要考查的是程序框图,属于容易题.解题时一定要抓住重要条件“a”,418否则很容易出现错误.在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.19. 【2014,安徽文4】如图所示,程序框图(算法流程图)的输出结果是()A.34 B.55 C.78 D.89【答案】B.考点:1.程序框图的应用.【名师点睛】解决算法问题的关键是读懂程序框图,明晰顺序结构、条件结构、循环结构的真正含义,本题巧妙而自然地将算法、不等式、函数赋值交汇在一起,用循环结构来进行考查.这类问题可能出现的错误:①读不懂程序框图;②循环出错;③计算出错.20.【2015高考安徽,文7】执行如图所示的程序框图(算法流程图),输出的n为()(A)3 (B)4 (C)5 (D)6【答案】B【考点定位】本题主要考查程序框图以及循环结构的判断.【名师点睛】考生在解决程序框图以及循环结构时,首先要明确循环的条件,其次在计算的过程中要细心,本题还考查了考生的计算能力.21. 【2014福建,文4】阅读右图所示的程序框图,运行相应的程序,输出的n的值为()A.1B.2C.3D.4【答案】B【解析】试题分析:执行程序,n1,满足条件2n n2,n2;不满足条件2n n2,输出n2,选B.考点:算法与程序框图.【名师点睛】程序框图基本是高考每年必考知识点,一般以客观题形式出现,难度不大,其中把程序框图与数列结合在一起考查是高考考查频率最高的一类题型,对于循环结构的程序框图,运算次数的确定是解决这一类问题的关键.22.【2015高考福建,文4】阅读如图所示的程序框图,运行相应的程序.若输入的值为1,则输出y的值为()A.2 B.7 C.8 D.128【答案】C【考点定位】程序框图.【名师点睛】本题考查程序框图,关键在于读懂框图有什么功能,要注意依序进行,认真判断条件来决定程序的执行方向.理解每个变量和框图的关系.运算量不大,重在理解,重在细心,属于基础题.23.【2015高考天津,文3】阅读下边的程序框图,运行相应的程序,则输出i的值为()(A) 2 (B) 3 (C) 4 (D)5【答案】C【考点定位】本题主要考查程序框图及学生分析问题解决问题的能力.【名师点睛】天津卷程序框图常以客观题形式出现,属于基础题,解决此类问题的关键是确定循 环次数,当循环次数不多时,可以逐次列出计算结果,天津卷 2014年第 3题和本题是同一类问题, 希望考生留意这种命题方式.24. (2014课标全国Ⅰ,文 9) 执行下面的程序框图,若输入的 a ,b ,k 分别为 1,2,3,则输出 的 M =( ).A . 20 3B . 7 216 5 C . 15 8D .答案:D解析:第一次执行循环体时,n =1,M1 3 ,a =2, 31 b;2 22第二次执行循环体时,n =2, M, a 3 , 8 2 b; 2 83 3 2 3第三次执行循环体时,n =3,M 3 3 15 , 8a , 15b,2 88 3 815 8 这时 n =4,跳出循环.输出 M 的值.名师点睛:本题考查程序框图,当型循环结构,考查转化能力,识图能力,容易题. 注意循 环类型以及判断框中的条件.25. 【2015新课标 2文 8】下边程序框图的算法思路来源于我国古代数学名著《九章算术》中 的“更相减损术”,执行该程序框图,若输入的 a ,b 分别为 14,18,则输出的为( )【答案】B22【考点定位】本题主要考查程序框图及更相减损术.【名师点睛】程序框图基本是高考每年必考知识点,一般以客观题形式出现,难度不大,更相减损术是人教版课本算法案例中的一个内容,本题以更相减损术为载体命制试题,故本题可看作课本例题的改编,这说明课本是高考试题的“生长点”,故在此提醒考生考试复习时不要忘“本”.二、填空题1. 【2016高考天津文数】阅读右边的程序框图,运行相应的程序,则输出的值为_______.【答案】4【解析】试题分析:第一次循环:S8,n2;第二次循环:S2,n3;第三次循环:S4,n4;结束循环,输出S 4.考点:循环结构流程图【名师点睛】算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.2.【2014山东.文11】执行右面的程序框图,若输入的的值为1,则输出的的值为.【答案】符合条件1x3,x4,n3;不符合条件1x3,输出n3.答案为.考点:算法与程序框图.【名师点睛】本题考查算法与程序框图,在理解条件分支结构及算法功能的基础上,逐次运算,是解答此类问题的常见解法.本题属于基础题,由于给定数据较小,运算次数少,降低了题目的难度.3.【2015高考山东,文11】执行右边的程序框图,若输入的的值为,则输出的y的值是.【答案】13【考点定位】算法与程序框图.【名师点睛】本题考查算法与程序框图,在理解条件分支结构的基础上,准确地加以计算.本题属于基础题,考查算法与程序框图的基本概念和基本结构,本题给定数据较小,循环次数少,大大降低了题目的难度.4. 【2014年.浙江卷.文13】若某程序框图如图所示,当输入50时,则该程序运行后输出的结果是________.【答案】6【解析】试题分析:当S0,i1,则第一次运行S2011,i112;第二次运行S2114,i213;第三次运行S24311,i314;第四次运行S211426,i415;第五次运行S2*******,i516终止循环,故输出i6.考点:程序框图,直到型循环结构,容易题.【名师点睛】本题考查的知识点是程序框图,其中分析出程序的功能是解答的关键.输入语句、输出语句和赋值语句基本对应于算法的顺序结构.在循环语句中也可以嵌套条件语句,甚至是循环语句,此时需要注意嵌套格式,这些语句需要保证算法的完整性,否则就会造成程序无法执行.解决程序框图问题要注意几个常用变量:(1)计数变量:用来记录某个事件发生的次数,如i=i+1;(2)累加变量:用来计算数据之和,如S=S+i.(3)累乘变量:用来计算数据之积,如p=p×i.处理循环结构的框图问题,关键是理解并认清终止循环结构的条件及循环次数.解决算法的交汇性问题的方法:(1)读懂程序框图,明确交汇知识;(2)根据给出问题与程序框图处理问题;(3)注意框图中结构的判断.5.【2014年普通高等学校招生全国统一考试湖北卷14】阅读如图所示的程序框图,运行相应的程序,若输入的值为9,则输出S的值为.【答案】1067考点:新定义题型,程序框图,当型循环结构,容易题.【名师点睛】本题属基础题,主要考查算法与程序框图,充分体现了高考仍是以教材为蓝本,以基础为重点的指导思想,能较好的考查学生基础知识、基本技能和基本操作的能力.其解题的关键是读懂题意所给的程序框图的含义.6. 【2016高考山东文数】执行右边的程序框图,若输入n的值为3,则输出的S的值为_______.【答案】考点:程序框图【名师点睛】自新课标学习算法以来,程序框图成为常见考点,一般说来难度不大,易于得分.题目以程序运行结果为填空内容,考查考生对各种分支及算法语言的理解和掌握,本题能较好的考查考生应用知识分析问题解决问题的能力等.7. 【2014天津,文11】阅读右边的框图,运行相应的程序,输出S的值为________.27开始s=0,n=3s=s+(-2)nn=n-1n1否是输出s结束【答案】 4.考点:循环结构流程图8. 执行右侧的程序框图,若输入n3,则输出T.【答案】20【解析】试题分析:输入n3,在程序执行过程中,i,S,T的值依次为i0,S0,T0;i1,S1,T1;i2,S3,T4;i3,S6,T10;i4,S10,T20,程序结束.输出T20.【考点定位】程序框图.【名师点睛】本题考查算法与程序框图的概念,在理解条件分支结构及算法功能的基础上,逐次运算,是解答此类问题的常见解法.本题属于基础题,由于给定数据较小,运算次数少,降低了题目的难度.9. 【2014天津文11】阅读右边的框图,运行相应的程序,输出S的值为________.开始s=0,n=3s=s+(-2)nn=n-1n1否是输出s结束【答案】 4.考点:循环结构流程图考点定位:本题考点为程序框图,要求会准确运行程序【名师点睛】本题考查程序框图的程序运行,本题为基础题,掌握循环程序的运行方法,框图以赋值框和条件框为主,按照框图箭线方向和每个框的指令要求运行,注意条件框的要求是否满足,运行程序时要准确.三视图问题,是进年高考热点,属于必考题,是高考备考的重点,也是学生必须掌握需要得满分的题目,需要加强训练的题型.。

配套K12三年高考2015_2017高考数学试题分项版解析专题32选修部分理

配套K12三年高考2015_2017高考数学试题分项版解析专题32选修部分理

专题32 选修部分1.【2017天津,理11】在极坐标系中,直线4cos()106ρθπ-+=与圆2sin ρθ=的公共点的个数为___________. 【答案】22.【2017北京,理11】在极坐标系中,点A 在圆22cos 4sin 40ρρθρθ--+=上,点P 的坐标为(1,0), 则|AP |的最小值为___________.【答案】1 【解析】试题分析:将圆的极坐标方程化为普通方程为222440x y x y +--+= ,整理为()()22121x y -+-= ,圆心()1,2C ,点P 是圆外一点,所以AP 的最小值就是211AC r -=-=.【考点】1.极坐标与直角坐标方程的互化;2.点与圆的位置关系.【名师点睛】1.运用互化公式:222,sin ,cos x y y x ρρθρθ=+==将极坐标化为直角坐标;2.直角坐标方程与极坐标方程的互化,关键要掌握好互化公式,研究极坐标系下图形的性质,可转化直角坐标系的情境进行.3.【2015高考安徽,理12】在极坐标中,圆8sin ρθ=上的点到直线()3R πθρ=∈距离的最大值是 . 【答案】【解析】由题意2sin ρρθ=,转化为普通方程为228x y y +=,即22(4)16x y +-=;直线()3R πθρ=∈转化为普通方程为y =,则圆上的点到直线的距离最大值是通过圆心的直线上半径加上圆心到直线的距离,设圆心到直线的距离为d ,圆的半径为,则圆上的点到直线距离的最大值4246D d r =+=+=+=.4. 【2016年高考北京理数】在极坐标系中,直线cos sin 10ρθθ-=与圆2cos ρθ=交于A ,B 两点,则||AB =______. 【答案】2 【解析】试题分析:分别将直线方程和圆方程化为直角坐标方程:直线为10x -=过圆22(1)1x y -+=圆心,因此2AB =,故填:2.考点:极坐标方程与直角方程的互相转化.【名师点睛】将极坐标或极坐标方程转化为直角坐标或直角坐标方程,直接利用公式θρθρsin ,cos ==y x 即可.将直角坐标或直角坐标方程转化为极坐标或极坐标方程,要灵活运用x =θρθρsin ,cos ==y x 以及22y x +=ρ,)0(tan ≠=x xyθ,同时要掌握必要的技巧.5.【2015高考广东,理14】(坐标系与参数方程选做题)已知直线的极坐标方程为24sin(2=-)πθρ,点A 的极坐标为74A π⎛⎫⎪⎝⎭,则点A 到直线的距离为 .【答案】2. 【解析】依题直线:2sin 4πρθ⎛⎫-= ⎪⎝⎭74A π⎛⎫ ⎪⎝⎭可化为:10x y -+=和()2,2A -,所以点A 与直线的距离为2d==,故应填入2.【考点定位】极坐标方程化为普通方程,极坐标化平面直角坐标,点到直线的距离,转化与化归思想.【名师点睛】本题主要考查正弦两角差公式,极坐标方程化为普通方程,极坐标化平面直角坐标,点到直线的距离,转化与化归思想的应用和运算求解能力,属于容易题,解答此题在于准确把极坐标问题转化为平面直角坐标问题,利用平面几何点到直线的公式求解. 6. 【2015高考重庆,理15】已知直线l 的参数方程为11x ty t=-+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立坐标系,曲线C 的极坐标方程为235cos 24(0,)44ππρθρθ=><<,则直线l 与曲线C 的交点的极坐标为_______. 【答案】(2,)π7. 【2015高考重庆,理16】若函数()12f x x x a =++-的最小值为5,则实数a =_______. 【答案】4a =或6a =-【解析】由绝对值的性质知在1x =-或x a =时()f x 可能取得最小值,若(1)215f a -=--=,32a =或72a =-,经检验均不合;若()5f a =,则15x +=,4a =或6a =-,经检验合题意,因此4a =或6a =-. 【考点定位】绝对值的性质,分段函数.【名师点晴】与绝对值有关的问题,我们可以根据绝对值的定义去掉绝对值符号,把问题转化为不含绝对值的式子(函数、不等式等),本题中可利用绝对值定义把函数化为分段函数,再利用函数的单调性求得函数的最小值,令此最小值为5,求得的值.8. 【2015高考北京,理11】在极坐标系中,点π23⎛⎫ ⎪⎝⎭‚到直线()cos 6ρθθ=的距离为.【答案】1【解析】先把点(2,)3π极坐标化为直角坐标,再把直线的极坐标方程()cos 6ρθθ+=化为直角坐标方程60x +-=,利用点到直线距离公式1d ==.9.【2015高考湖北,理16】在直角坐标系xoy 中,以O 为极点,轴的正半轴为极轴建立极坐标系. 已知直线的极坐标方程为(sin 3cos )0ρθθ-=,曲线C 的参数方程为1,1x t t y t t ⎧=-⎪⎪⎨⎪=+⎪⎩(为参数) ,与C 相交于A B 两点,则||AB = . 【答案】52【解析】因为(sin 3cos )0ρθθ-=,所以θρθρcos 3sin -,所以03=-x y ,即x y 3=;由1,1x t t y t t ⎧=-⎪⎪⎨⎪=+⎪⎩消去得422=-x y .联立方程组⎩⎨⎧=-=4322x y x y ,解得⎪⎪⎩⎪⎪⎨⎧==22322y x 或⎪⎪⎩⎪⎪⎨⎧-=-=22322y x , 即)223,22(A ,)223,22(--B , 由两点间的距离公式得52)223223()2222(||22=+++=AB . 【考点定位】极坐标方程、参数方程与普通方程的转化,两点间的距离.【名师点睛】化参数方程为普通方程时,未注意到普通方程与参数方程的等价性而出错. 10.【2017课标1,理22】在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到la.试题解析:(1)曲线C 的普通方程为2219x y +=. 当1a =-时,直线的普通方程为430x y +-=.由2243019x y x y +-=⎧⎪⎨+=⎪⎩解得30x y =⎧⎨=⎩或21252425x y ⎧=-⎪⎪⎨⎪=⎪⎩.从而C 与的交点坐标为(3,0),2124(,)2525-. (2)直线的普通方程为440x y a +--=,故C 上的点(3cos ,sin )θθ到的距离为d =.当4a ≥-时,d=8a =; 当4a <-时,d.=16a =-. 综上,8a =或16a =-.【考点】极坐标与参数方程仍然考查直角坐标方程与极坐标方程的互化,参数方程与普通方程的互化,直线与曲线的位置关系.【名师点睛】化参数方程为普通方程主要是消参,可以利用加减消元、平方消元、代入法等等;在极坐标方程与参数方程的条件下求解直线与圆的位置关系问题,通常将极坐标方程化为直角坐标方程,参数方程化为普通方程来解决.11.【2017课标1,理】已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│. (1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含–1,1],求a 的取值范围.【解析】试题解析:(1)当1a =时,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤.① 当1x <-时,①式化为2340x x --≤,无解;当11x -≤≤时,①式化为220x x --≤,从而11x -≤≤;当1x >时,①式化为240x x +-≤,从而1x <≤所以()()f x g x ≥的解集为1{|1}2x x -+-<≤. (2)当[1,1]x ∈-时,()2g x =.所以()()f x g x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥.又()f x 在[1,1]-的最小值必为(1)f -与(1)f 之一,所以(1)2f -≥且(1)2f ≥,得11a -≤≤. 所以的取值范围为[1,1]-.【考点】绝对值不等式的解法,恒成立问题.【名师点睛】零点分段法是解答绝对值不等式问题常用的方法,也可以将绝对值函数转化为分段函数,借助图像解题.12. 【2017课标II ,理22】在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=。

专题22 算法—三年高考(2015-2017数学(文)真题分项版解析(解析版)(批量下载)

专题22 算法—三年高考(2015-2017数学(文)真题分项版解析(解析版)(批量下载)

精品 "正版〞资料系列 ,由本公司独创 .旨在将 "人教版〞、〞苏教版 "、〞北师 大版 "、〞华师大版 "等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和 检测题分享给需要的朋友 .本资源创作于2021年8月 ,是当前最|新版本的教材资源 .包含本课对应 内容 ,是您备课、上课、课后练习以及寒暑假预习的最|正确选择 .1.【2021山东 ,文6】执行右侧的程序框图,当输入的x 值为4时,输出的y 的值为2,那么空白判断框中的条件可能为A.3x >B.4x >C.4x ≤D.5x ≤ 【答案】B【考点】程序框图【名师点睛】程序框图试题主要有求程序框图执行的结果和完善程序框图两种形式,求程序框图执行的结果,要先找出控制循环的变量的初值 (计数变量与累加变量的初始值 )、步长、终值(或控制循环的条件),然后看循环体,循环体是反复执行的步骤,循环次数比拟少时,可依次列出,循环次数较多时,可先循环几次,找出规律,最|后要特别注意循环结束的条件,不要出现多一次或少一次循环的错误;完善程序框图的试题多为判断框内内容的填写,这类问题常涉及到,,,≥>≤<的选择,解答时要根据循环结构的类型,正确地进行选择,注意直到型循环是 "先循环,后判断,条件满足时终止循环〞;而当型循环那么是 "先判断,后循环,条件满足时执行循环〞;两者的判断框内的条件表述在解决同一问题时是不同的,它们恰好相反.另外还要注意判断框内的条件不是唯一的,如a >b ,也可写为a ≤b ;5i >,也可写成6i ≥. 2.【2021课标1 ,文10】如图是为了求出满足321000n n ->的最|小偶数n ,,可以分别填入A .A >1000和n =n +1B .A >1000和n =n +2C .A ≤1000和n =n +1D .A ≤1000和n =n +2【答案】D【考点】程序框图 ,当型循环结构【名师点睛】识别算法框图和完善算法框图是(高|考)的重点和热点.解决这类问题:首|先 ,要明确算法框图中的顺序结构、条件结构和循环结构;第二 ,要识别运行算法框图 ,理解框图解决的实际问题;第三 ,按照题目的要求完成解答.对框图的考查常与函数和数列等相结合 ,进一步强化框图问题的实际背景.3.【2021课标3 ,文8】执行下面的程序框图 ,为使输出S 的值小于91 ,那么输入的正整数N 的最|小值为 ( )A .5B .4C .3D .2【答案】D【解析】假设2N =,第|一次进入循环 ,12≤成立 ,100100,1010S M ==-=- ,2i =2≤成立 ,第二次进入循环 ,此时101001090,110S M -=-==-= ,3i =2≤不成立 ,所以输出9091S =<成立 ,所以输入的正整数N 的最|小值是2 ,应选D. 【考点】循环结构流程图【名师点睛】算法与流程图的考查 , ,包括选择结构、循环结构、伪代码 ,其次要重视循环起点条件、循环次数、循环终止条件 ,更要通过循环规律 ,明确流程图研究的数学问题 ,是求和还是求项.4. 【2021课标II ,文10】执行右面的程序框图 ,如果输入的1a =- ,那么输出的S =【答案】B第三次:132,1,4S a k =-=-== ; 第四次:242,1,5S a k =-+==-= ; 第五次:253,1,6S a k =-=-== ; 第六次:363,1,7S a k =-+==-= ; 结束循环 ,输出3S = .应选B. 【考点】循环结构流程图【名师点睛】算法与流程图的考查 , ,包括选择结构、循环结构、伪代码 ,其次要重视循环起点条件、循环次数、循环终止条件 ,更要通过循环规律 ,明确流程图研究的数学问题 ,是求和还是求项.5.【2021北京 ,文3】执行如下图的程序框图 ,输出的s 值为(A )2 (B )32(C )53 (D )85【答案】C【考点】循环结构【名师点睛】解决此类型时要注意:第|一 ,要明确是当型循环结构 ,还是直到型循环结构.根据各自的特点执行循环体;第二 ,要明确图中的累计变量 ,明确每一次执行循环体前和执行循环体后 ,变量的值发生的变化;第三 ,要明确循环体终止的条件是什么 ,会判断什么时候终止循环体 ,争取写出每一个循环 ,这样防止出错.6.【2021天津 ,文4】阅读右面的程序框图 ,运行相应的程序 ,假设输入N 的值为19 ,那么输出N 的值为(A )0 (B )1 (C )2 (D )3 【答案】C第二次循环:63NN == ,不满足3N ≤;第三次循环:23NN == ,满足3N ≤; 此时跳出循环体 ,输出3N =. 此题选择C 选项.【考点】循环结构程序框图【名师点睛】解决此类型时要注意:第|一 ,要明确是当型循环结构 ,还是直到型循环结构.根据各自的特点执行循环体;第二 ,要明确图中的累计变量 ,明确每一次执行循环体前和执行循环体后 ,变量的值发生的变化;第三 ,要明确循环体终止的条件是什么 ,会判断什么时候终止循环体 ,争取写出每一个循环 ,这样防止出错. 7.【2021江苏 ,4】右图是一个算法流程图 ,假设输入x 的值为116,那么输出的y 的值是 ▲ .【答案】2-【考点】循环结构流程图【名师点睛】算法与流程图的考查 , ,包括选择结构、循环结构、伪代码 ,其次要重视循环起点条件、循环次数、循环终止条件 ,更要通过循环规律 ,明确流程图研究的数学问题 ,是求和还是求项.结束 (第4题 )开始YN输入输出【2021 ,20215 ,2021(高|考)题】1. 【 2021湖南文7】执行如图1所示的程序框图 ,如果输入的[]2,2t ∈- ,那么输出的S 属于 ( )A.[]6,2--B.[]5,1--C.[]4,5-D.[]3,6-【答案】D【解析】当[)2,0t ∈-时,运行程序如下,(](]2211,9,32,6t t S t =+∈=-∈-,当[]0,2t ∈时,[]33,1S t =-∈--,那么(][][]2,63,13,6S ∈---=-,应选D.【考点定位】程序框图 二次函数【名师点睛】识别运行算法流程图和完善流程图是(高|考)的热点.解答这一类问题 ,第|一 ,要明确流程图的顺序结构、条件结构和循环结构;第二 ,要识别运行流程图 ,理解框图所解决的实际问题;第三 ,按照题目的要求完成解答.对流程图的考查常与数列和函数等知识相结合 ,进一步强化框图问题的实际背景.2.【2021(高|考)湖南 ,文5】执行如图2所示的程序框图 ,如果输入n =3 ,中输入的S =( )A、67B、37C、89D、49【答案】B【考点定位】程序框图【名师点睛】识别运行算法流程图和完善流程图是(高|考)的热点.解答这一类问题 ,第|一 ,要明确流程图的顺序结构、条件结构和循环结构;第二 ,要识别运行流程图 ,理解框图所解决的实际问题;第三 ,按照题目的要求完成解答.对流程图的考查常与数列和函数等知识相结合 ,进一步强化框图问题的实际背景.3. 【2021(高|考)新课标2文数】中国古代有计算多项式值得秦九韶算法 ,右图是实现该算法的程序框图.执行该程序框图 ,假设输入的a为2 ,2 ,5 ,那么输出的s = ( )(A )7 (B )12 (C )17 (D )34 【答案】C考点:程序框图 ,直到型循环结构.【名师点睛】识别算法框图和完善算法框图是(高|考)的重点和热点.解决这类问题:首|先 ,要明确算法框图中的顺序结构、条件结构和循环结构;第二 ,要识别运行算法框图 ,理解框图解决的实际问题;第三 ,按照题目的要求完成解答.对框图的考查常与函数和数列等结合 ,进一步强化框图问题的实际背景.4.【2021(高|考)新课标1文数】执行右面的程序框图,如果输入的n =1,那么输出的值满足 ( )(A )(B )(C )(D )【答案】C考点:程序框图与算法案例【名师点睛】程序框图根本是(高|考)每年必考知识点,一般以客观题形式出现,难度不大,求解此类问题一般是把人看作计算机,按照程序逐步列出运行结果.5. 【2021(高|考)陕西版文第4题】根据右边框图 ,对大于2的整数N ,得出数列的通项公式是 ( ).2n A a n = .2(1)n B a n =- .2n n C a = 1.2n n D a -=【答案】C考点:程序框图的识别.【名师点晴】此题主要考查的是程序框图 ,属于容易题.解题时一定要注意这是一个循环结构 ,而且最|后输出的是数列的前N 项要根据这些项归纳出数列的通项公式.在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算 ,直到到达输出条件即可.6. 【2021(高|考)陕西 ,文7】根据右边框图 ,当输入x 为6时 ,输出的y = ( )A .1B .2C .5D .10【答案】D【解析】该程序框图运行如下:6330x =-=> ,330x =-= ,0330x =-=-< ,2(3)110y =-+= ,故答案选D .【考点定位】程序框图的识别.【名师点睛】1.此题考查程序框图的识别 ,解题的关键是判断什么时候退出循环.2.考查逻辑思维能力、计算能力.此题属于根底题 ,常考题型.7. 【2021全国2 ,文8】执行右面的程序框图 ,如果输入的x ,t 均为2 ,那么输出的S = ( )(A )4 (B )5 (C )6 (D )7【答案】D【考点定位】程序框图.【名师点睛】此题主要考查程序框图中的循环结构;此题属于根底题 ,解决此题的关健在于读懂程序框图,然后一步一步的写出每循环运行一次的结果,直到条件成立时为止,就能正确快速地得到结果 ,注意循环条件的判断.8. [2021(高|考)新课标Ⅲ文数]执行下列图的程序框图 ,如果输入的 ,那么输出的 ( )(A )3 (B )4 (C )5 (D )6【答案】B【解析】试题分析:第|一次循环,得;第二次循环,得,;第三次循环,得;第四次循环 ,得 ,退出循环 ,输出 ,应选B.考点:程序框图.【注意提示】解决此类型时要注意:第|一,要明确是当型循环结构,还是直到型循环结构.根据各自的特点执行循环体;第二 ,要明确图中的累计变量 ,明确每一次执行循环体前和执行循环体后,变量的值发生的变化;第三,要明确循环体终止的条件是什么,会判断什么时候终止循环体.,那么输出的S 9. 【2021四川 ,文6】执行如图1所示的程序框图 ,如果输入的,x y R的最|大值为 ( )A.0 B.1 C.2 D.3【答案】C【考点定位】程序框图与线性规划.【名师点睛】在算法的考点上,四川省以程序框图的考查为主,而考查程序框图,必定是以循环结构形式出现 ,它可以包括程序框图的所有结构类型.此题只需对循环后的k值进行判定 ,最|后输出相应的三角函数值即可 ,属于简单题.10. 【2021(高|考)四川 ,文6】执行如下图的程序框图 ,输出S的值为( )(A) (B(C)-12(D)12【答案】D【考点定位】此题考查循环结构形式的程序框图,考查特殊角的三角函数值,考查根本运算能力.【名师点睛】在算法的考点上,四川省以程序框图的考查为主,而考查程序框图,必定是以循环结构形式出现 ,它可以包括程序框图的所有结构类型.此题只需对循环后的k值进行判定 ,最|后输出相应的三角函数值即可 ,属于简单题.11. 【2021(高|考)北京文数】执行如下图的程序框图 ,输出的s值为 ( )A.8B.9C.27D.36【答案】B【解析】试题分析:分析程序框图可知 ,程序的功能等价于输出 ,应选B.考点:程序框图【名师点睛】解决循环结构框图问题 ,要先找出控制循环的变量的初值、步长、终值(或控制循环的条件) ,然后看循环体 ,循环次数比拟少时 ,可依次列出 ,循环次数较多时 ,可先循环几次 ,找出规律 ,要特别注意最|后输出的是什么 ,不要出现多一次或少一次循环的错误.12.【2021全国1 ,文9】执行右面的程序框图 ,假设输入的,,a b k分别为1,2,3 ,那么输出的M ( )A.203B.72C.165D.158【答案】D考点:算法的循环结构【名师点睛】考生在解决程序框图以及循环结构时 ,首|先要明确循环的条件 ,其次在计算的过程中要细心 ,此题还考查了考生的计算能力.13. 【2021(高|考)新课标1 ,文9】执行右面的程序框图 ,如果输入的0.01t = ,那么输出的n = ( )(A ) 5 (B )6 (C )10 (D )12 【答案】C【解析】执行第1次 ,t =0.01,S =1,n =0,m =12 =0.5,S =S -m =0.5,2mm = =0.25,n =1,S =0.5>t =0.01,是 ,循环 , 执行第2次 ,S =S -m =0.25,2mm ==0.125,n =2,S =0.25>t =0.01,是 ,循环 , 执行第3次 ,S =S -m =0.125,2mm ==0.0625,n =3,S =0.125>t =0.01,是 ,循环 , 执行第4次 ,S =S -m =0.0625,2mm ==0.03125,n =4,S =0.0625>t =0.01,是 ,循环 ,执行第5次 ,S =S -m =0.03125,2mm = =0.015625,n =5,S =0.03125>t =0.01,是 ,循环 ,执行第6次 ,S =S -m =0.015625,2mm = =0.0078125,n =6,S =0.015625>t =0.01,是 ,循环 ,执行第7次 ,S =S -m =0.0078125,2mm = =0.00390625,n =7,S =0.0078125>t =0.01,否 ,输出n =7 ,应选C. 考点:程序框图【名师点睛】此题是程序框图计算输出结果问题 ,对此类问题 ,按程序框图逐次计算 ,直到输出时 ,即可计算出输出结果 ,是常规题 ,程序框图还可考查输入、输出 ,不全框图或考查程序框图的意义 ,处理方法与此题相同.14. 【2021(高|考)四川文科】秦九韶是我国南宋时期的数学家 ,普州(现四川省安岳县)人 ,他在所著的?数书九章?中提出的多项式求值的秦九韶算法 ,至|今仍是比拟先进的算法.如下图的程序框图给出了利用秦九韶算法求多项式值的一个实例 ,假设输入n ,x 的值分别为3 ,2 ,那么输出v 的值为( )(A)35 (B) 20 (C)18 (D)9 【答案】C考点:1.程序与框图;2.秦九韶算法;3.中国古代数学史.【名师点睛】程序框图是(高|考)的热点之一 ,几乎是每年必考内容 ,多半是考循环结构 ,根本方法是将每次循环的结果一一列举出来 ,与判断条件比拟即可.15. 【2021(高|考)重庆文第5题】执行如题 (5 )图所示的程序框图 ,那么输出s的值为( ).10A.17B.19C.36D【答案】C考点:循环结构.【名师点睛】此题主要考查程序框图中的循环结构 ,属于根底题 ,常常一步一步的写出运行的结果 ,直到符合条件为止.16. 【2021(高|考)重庆,文8】执行如图(8 )所示的程序框图,那么输出s的值为( )(A) 34(B)56(C)1112(D)2524【答案】D【解析】初始条件:0,0s k == ,第1次判断0<8 ,是 ,112,0;22k s ==+= 第2次判断2<8 ,是 ,1134,;244k s ==+= 第3次判断4<8 ,是 ,31116,;4612k s ==+= 第4次判断6<8 ,是 ,111258,;12824k s ==+= 第5次判断8<8 ,否 ,输出2524s =; 应选D.【考点定位】程序框图.【名师点睛】此题考查程序框图 ,这是一个当循环结构 ,先判断条件是否成立再确定是否循环 ,一步一步进行求解.此题属于根底题 ,注意条件判断的准确性.17. 【2021(高|考)北京文第4题】执行如下图的程序框图 ,输出的S 值为 ( ) A.1 B.3 C.7 D.15输出【答案】C考点:本小题主要考查程序框图的根底知识 ,难度不大 ,程序框图是(高|考)新增内容 ,是(高|考)的重点知识 ,熟练本局部的根底知识是解答的关键.18.【2021(高|考)北京 ,文5】执行如下图的程序框图 ,输出的k 的值为 ( ) A .3 B .4 C .5 D .6【答案】B【解析】初值为3,0a k == ,进入循环体后 ,3,12a k ==;3,24a k ==;3,38a k ==;3,416a k ==;此时14a <,退出循环 ,故4k = ,应选B. 【考点定位】程序框图.【名师点晴】此题主要考查的是程序框图 ,属于容易题.解题时一定要抓住重要条件 "14a <〞 ,否那么很容易出现错误.在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算 ,直到到达输出条件即可.19. 【2021 ,安徽文4】如下图,程序框图(算法流程图)的输出结果是( )A.34 B.55 C.78 D.89【答案】B.考点:1.程序框图的应用.【名师点睛】解决算法问题的关键是读懂程序框图 ,明晰顺序结构、条件结构、循环结构的真正含义 ,本题巧妙而自然地将算法、不等式、函数赋值交汇在一起 ,用循环结构来进行考查.这类问题可能出现的错误:①读不懂程序框图;②循环出错;③计算出错.20.【2021(高|考)安徽 ,文7】执行如下图的程序框图 (算法流程图 ) ,输出的n为 ( )(A )3 (B )4 (C )5 (D )6【答案】B【考点定位】此题主要考查程序框图以及循环结构的判断.【名师点睛】考生在解决程序框图以及循环结构时 ,首|先要明确循环的条件 ,其次在计算的过程中要细心 ,此题还考查了考生的计算能力.21. 【2021福建,文4】阅读右图所示的程序框图 ,运行相应的程序 ,输出的n 的值为 ( ).1.2.3.4A B C D【答案】B 【解析】试题分析:执行程序 ,1n = ,满足条件22nn > ,2;n = 不满足条件22nn > ,输出2,n =选B . 考点:算法与程序框图.【名师点睛】程序框图根本是(高|考)每年必考知识点,一般以客观题形式出现,难度不大,其中把程序框图与数列结合在一起考查是(高|考)考查频率最|高的一类题型,对于循环结构的程序框图,运算次数确实定是解决这一类问题的关键.22.【2021(高|考)福建 ,文4】阅读如下图的程序框图 ,运行相应的程序.假设输入x 的值为1 ,那么输出y的值为 ( )A.2 B.7 C.8 D.128【答案】C【考点定位】程序框图.【名师点睛】此题考查程序框图,关键在于读懂框图有什么功能,要注意依序进行,认真判断条件来决定程序的执行方向.理解每个变量和框图的关系.运算量不大 ,重在理解 ,重在细心 ,属于根底题.23.【2021(高|考)天津 ,文3】阅读下边的程序框图,运行相应的程序,那么输出i的值为( )(A) 2 (B) 3 (C) 4 (D)5【答案】C【考点定位】此题主要考查程序框图及学生分析问题解决问题的能力.【名师点睛】天津卷程序框图常以客观题形式出现,属于根底题,解决此类问题的关键是确定循环次数,当循环次数不多时,可以逐次列出计算结果,天津卷2021年第3题和此题是同一类问题,希望考生留意这种命题方式.24. (2021课标全国Ⅰ ,文9) 执行下面的程序框图 ,假设输入的a ,b ,k 分别为1,2,3 ,那么输出的M =( ).A .203 B .72 C .165 D .158答案:D解析:第|一次执行循环体时 ,n =1 ,13122M =+= ,a =2 ,32b =;第二次执行循环体时 ,n =2 ,28233M =+= ,32a = ,83b =;第三次执行循环体时 ,n =3 ,3315288M =+= ,83a = ,158b = ,这时n =4 ,跳出循环.输出M 的值158. 名师点睛:此题考查程序框图 ,当型循环结构 ,考查转化能力 ,识图能力 ,容易题. 注意循环类型以及判断框中的条件.25. 【2021新课标2文8】下边程序框图的算法思路来源于我国古代数学名著?九章算术?中的 "更相减损术〞,执行该程序框图,假设输入的,a b 分别为14,18,那么输出的a 为 ( )A.0B.2C.4D.14【答案】B【考点定位】此题主要考查程序框图及更相减损术.【名师点睛】程序框图根本是(高|考)每年必考知识点,一般以客观题形式出现,难度不大,更相减损术是人教版课本算法案例中的一个内容,此题以更相减损术为载体命制试题,故此题可看作课本例题的改编,这说明课本是(高|考)试题的 "生长点〞,故在此提醒考生考试复习时不要忘 "本〞. 二、填空题1. 【2021(高|考)天津文数】阅读右边的程序框图 ,运行相应的程序 ,那么输出S 的值为_______.【答案】4 【解析】试题分析:第|一次循环:8,n 2S ==;第二次循环:2,n 3S ==;第三次循环:4,n 4S ==;结束循环 ,输出 4.S =考点:循环结构流程图【名师点睛】算法与流程图的考查 , ,包括选择结构、循环结构、伪代码 ,其次要重视循环起点条件、循环次数、循环终止条件 ,更要通过循环规律 ,明确流程图研究的数学问题 ,是求和还是求项.2.【2021山东.文11】 执行右面的程序框图 ,假设输入的x 的值为1 ,那么输出的n 的值为 .【答案】3符合条件13x ≤≤ ,4,3x n ==;不符合条件13x ≤≤ ,输出3n =.答案为3. 考点:算法与程序框图.【名师点睛】此题考查算法与程序框图 ,在理解条件分支结构及算法功能的根底上 ,逐次运算 ,是解答此类问题的常见解法.此题属于根底题 ,由于给定数据较小 ,运算次数少 ,降低了题目的难度.3.【2021(高|考)山东 ,文11】执行右边的程序框图 ,假设输入的x 的值为1 ,那么输出的y 的值是 .【答案】13【考点定位】算法与程序框图.【名师点睛】此题考查算法与程序框图 ,在理解条件分支结构的根底上 ,准确地加以计算. 此题属于根底题 ,考查算法与程序框图的根本概念和根本结构 ,此题给定数据较小 ,循环次数少 ,大大降低了题目的难度.4. 【2021年.浙江卷.文13】假设某程序框图如下图 ,当输入50时 ,那么该程序运行后输出的结果是________.【答案】6 【解析】试题分析:当0=S ,1=i ,那么第|一次运行1102=+⨯=S ,211=+=i ; 第二次运行4112=+⨯=S ,312=+=i ; 第三次运行11342=+⨯=S ,413=+=i ; 第四次运行264112=+⨯=S ,514=+=i ;第五次运行50575262>=+⨯=S ,615=+=i 终止循环 , 故输出6=i .考点:程序框图 ,直到型循环结构 ,容易题.【名师点睛】此题考查的知识点是程序框图 ,其中分析出程序的功能是解答的关键.输入语句、输出语句和赋值语句根本对应于算法的顺序结构.在循环语句中也可以嵌套条件语句 ,甚至|是循环语句 ,此时需要注意嵌套格式 ,这些语句需要保证算法的完整性 ,否那么就会造成程序无法执行.解决程序框图问题要注意几个常用变量:(1)计数变量:用来记录某个事件发生的次数 ,如i =i +1;(2)累加变量:用来计算数据之和 ,如S =S +i.(3)累乘变量:用来计算数据之积 , ,关键是理解并认清终止循环结构的条件及循环次数.解决算法的交汇性问题的方法:(1)读懂程序框图 ,明确交汇知识;(2)根据给出问题与程序框图处理问题;(3)注意框图中结构的判断.5.【2021年普通高等学校招生全国统一考试湖北卷14】阅读如下图的程序框图 ,运行相应的程序 ,假设输入n 的值为9 ,那么输出S 的值为 .【答案】1067考点:新定义题型 ,程序框图 ,当型循环结构 ,容易题.【名师点睛】此题属根底题 ,主要考查算法与程序框图 ,充分表达了(高|考)仍是以教材为蓝本 ,以根底为重点的指导思想 ,能较好的考查学生根底知识、根本技能和根本操作的能力.其解题的关键是读懂题意所给的程序框图的含义.6. 【2021(高|考)山东文数】执行右边的程序框图 ,假设输入n的值为3 ,那么输出的S 的值为_______.【答案】考点:程序框图【名师点睛】自新课标学习算法以来,程序框图成为常见考点,一般说来难度不大, ,考查考生对各种分支及算法语言的理解和掌握,此题能较好的考查考生应用知识分析问题解决问题的能力等.7. 【2021天津 ,文11】阅读右边的框图 ,运行相应的程序 ,输出S的值为________.【答案】 4.-考点:循环结构流程图8. 执行右侧的程序框图 ,假设输入3n= ,那么输出T= .【答案】20【解析】试题分析:输入n3= ,在程序执行过程中 ,,,i S T的值依次为0,0,0i S T===;1,1,i S==开始结束s=0,n=3ns=s+(-2)n=n-1≤n1输出s是否1T =;2,3,4i S T ===;3,6,10i S T ===;4,10,20i S T === ,程序结束.输出20T =.【考点定位】程序框图.【名师点睛】此题考查算法与程序框图的概念 ,在理解条件分支结构及算法功能的根底上 ,逐次运算 ,是解答此类问题的常见解法.此题属于根底题 ,由于给定数据较小 ,运算次数少 ,降低了题目的难度.9. 【2021天津文11】阅读右边的框图 ,运行相应的程序 ,输出S 的值为________.【答案】 4.-考点:循环结构流程图考点定位:此题考点为程序框图 ,要求会准确运行程序【名师点睛】此题考查程序框图的程序运行 ,此题为根底题 ,掌握循环程序的运行方法 ,框图以赋值框和条件框为主 ,按照框图箭线方向和每个框的指令要求运行 ,注意条件框的要求是否满足 ,运行程序时要准确.三视图问题 ,是进年(高|考)热点 ,属于必考题 ,是(高|考)备考的重点 ,也是学生必须掌握需要得总分值的题目 ,需要加强训练的题型.公众号:惟微小筑。

2017年高考数学试题分项版—解析几何(解析版)

2017年高考数学试题分项版—解析几何(解析版)

2017年高考数学试题分项版—解析几何(解析版)一、选择题1.(2017·全国Ⅰ文,5)已知F是双曲线C:x2-错误!=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.错误!B.错误!C.错误!D.错误!1.【答案】D【解析】因为F是双曲线C:x2-错误!=1的右焦点,所以F(2,0).因为PF⊥x轴,所以可设P的坐标为(2,y P).因为P是C上一点,所以4-错误!=1,解得y P=±3,所以P(2,±3),|PF|=3。

又因为A(1,3),所以点A到直线PF的距离为1,所以S△APF=错误!×|PF|×1=错误!×3×1=错误!.故选D.2.(2017·全国Ⅰ文,12)设A,B是椭圆C:错误!+错误!=1长轴的两个端点.若C上存在点M满足∠AMB=120°,则m的取值范围是()A.(0,1]∪[9,+∞) B.(0,错误!]∪[9,+∞)C.(0,1]∪[4,+∞) D.(0,错误!]∪[4,+∞)2.【答案】A【解析】方法一设焦点在x轴上,点M(x,y).过点M作x轴的垂线,交x轴于点N,则N(x,0).故tan∠AMB=tan(∠AMN+∠BMN)=错误!=错误!。

又tan∠AMB=tan 120°=-错误!,且由错误!+错误!=1,可得x2=3-错误!,则错误!=错误!=-错误!。

解得|y|=错误!.又0<|y|≤错误!,即0<错误!≤错误!,结合0<m<3解得0<m≤1.对于焦点在y轴上的情况,同理亦可得m≥9.则m的取值范围是(0,1]∪[9,+∞).故选A.方法二当0<m<3时,焦点在x轴上,要使C上存在点M满足∠AMB=120°,则错误!≥tan 60°=错误!,即错误!≥错误!,解得0<m≤1.当m>3时,焦点在y轴上,要使C上存在点M满足∠AMB=120°,则错误!≥tan 60°=错误!,即错误!≥错误!,解得m≥9。

三年高考2015_2017高考数学试题分项版解析专题19抛物线理20171102336

三年高考2015_2017高考数学试题分项版解析专题19抛物线理20171102336

专题19 抛物线1.【2017课标1,理10】已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为A.16 B.14 C.12 D.10【答案】A【解析】试题分析:设A(x,y),B(x,y),D(x,y),E(x,y),直线方程为11223344y k1(x1)y4x22y4x联立方程y k(x1)1得k12x22k12x 4x k120∴2k42x x 1122k12k421k21同理直线与抛物线的交点满足2k42x x 2342k2由抛物线定义可知|AB||DE |x x x x 2p12342k 42k 444162212482816k k k k k k22222 2121212当且仅当k1k21(或1)时,取得等号.【考点】抛物线的简单性质2.【2016年高考四川理数】设O为坐标原点,P是以F为焦点的抛物线y22px(p 0)上任意一点,M是线段PF上的点,且PM=2 MF,则直线OM的斜率的最大值为( )(A)33(B)23(C)22(D)1【答案】C【解析】1p 试题分析:设P 2pt 2 , 2pt , M x , y (不妨设 t 0),则 22, 2 .FP ptptp 试题分析:设2由已1 FM FP知得3p 2p px t22 3 6 ,2pt y , 3 ,,2ppx t23 32pt y , 3,,2t1 12 kOM122 11 2tt 22t22,,故选 C.kOMmax2考点:抛物线的简单的几何性质,基本不等式的应用.3.【2016年高考四川理数】设 O 为坐标原点,P 是以 F 为焦点的抛物线 y 2 2px (p 0) 上任意一点,M 是线段 PF 上的点,且 PM =2 MF ,则直线 OM 的斜率的最大值为( ) (A ) 3 3 (B ) 2 3 (C ) 2 2(D )1【答案】C 【解析】试题分析:设P 2pt , 2pt , M x , y (不妨设 t 0),则 22,2 .由已2FP pt ppt2试题分析:设1FMFP知得3p2p px t2236,2pty,3,,2p px t2332pty,3,,2t112 kOM122112t t22t22,k ,故选C.OMmax2考点:抛物线的简单的几何性质,基本不等式的应用.【名师点睛】本题考查抛物线的性质,结合题意要求,利用抛物线的参数方程表示出抛物线上点P的坐标,利用向量法求出点M的坐标,是我们求点坐标的常用方法,由于要求最大值,因此我们把k斜率用参数表示出后,可根据表达式形式选用函数,或不等式的知识求出最值,2本题采用基本不等式求出最值.4.【2016高考新课标 1卷】以抛物线 C 的顶点为圆心的圆交 C 于 A 、B 两点,交 C 的准线于 D 、E 两点.已知|AB |=4 2 ,|DE|= 2 5 ,则 C 的焦点到准线的距离为(A)2(B)4(C)6(D)8【答案】B 【解析】【名师点睛】本题主要考查抛物线的性质及运算,注意解析几何问题中最容易出现运算错误,所 以解题时一定要注意运算的准确性与技巧性,基础题失分过多是相当一部分学生数学考不好的 主要原因.5.【 2015高 考 四 川 , 理 10】 设 直 线 l 与 抛 物 线 y 24x 相 交 于 A , B 两 点 , 与 圆x5yr r 0 相切于点 M ,且 M 为线段 AB 的中点.若这样的直线 l 恰有 4条,则 r222的取值范围是()(A )1,3(B )1,4(C )2,3(D )2,4【答案】D 【解析】显然当直线的斜率不存在时,必有两条直线满足题设.当直线的斜率存在时,设斜率为.设32y 4xA (x , y ),B (x , y ), xx ,M (x , y ),则11112212y 24x22,相减得(yy )(yy ) 4(xx ) .由于121212y y y yxx ,所以1212122xx122 ky.圆心为2,即y0 C ,由CMAB 得(5, 0)k 1,ky 5 xx 50 0,所以2 5x , x3,即点 M必在直线 x 3上.将 x 3代入 y 2 4x 得 y 2 12,2 3 y2 3 .因为点 M 在圆x5yr r0 上,所以 (x5)2y 2 r 2 ,r 2y 2 4 12 4 16 .又222y 04 4 (由于斜率不存在,故2y,所以不取等号),所以4 y4 16,2 r 4 .选 D.2 0y6 5 4A32 1M FC–1O123456789–1B–2 x–3 –4 –5 –66.【2015高考浙江,理 5】如图,设抛物线 y 2 4x 的焦点为 F ,不经过焦点的直线上有三个不同的点 A , B ,C ,其中点 A , B 在抛物线上,点C 在 y 轴上,则 BCF 与 ACF 的面积之比是( )A. B F AF 11B. B F AF221 1 C. B F AF 11 D. B F AF 221 1【答案】A.4【解析】S BC x BF1BCF,故选A.BS AC x AF1ACF A【考点定位】抛物线的标准方程及其性质【名师点睛】本题主要考查了抛物线的标准方程及其性质,属于中档题,解题时,需结合平面几何中同高的三角形面积比等于底边比这一性质,结合抛物线的性质:抛物线上的点到准线的距离等于其到焦点的距离求解,在平面几何背景下考查圆锥曲线的标准方程及其性质,是高考中小题的热点,在复习时不能遗漏相应平面几何知识的复习.7.【2017课标II,理16】已知F是抛物线C:y28x的焦点,M是C上一点,FM的延长线交y轴于点N。

专题02 函数—三年高考(2015-2017数学(文)真题分项版解析(原卷版)(批量下载)

专题02 函数—三年高考(2015-2017数学(文)真题分项版解析(原卷版)(批量下载)

精品“正版”资料系列,由本公司独创。

旨在将“人教版”、”苏教版“、”北师大版“、”华师大版“等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和检测题分享给需要的朋友。

本资源创作于2020年8月,是当前最新版本的教材资源。

包含本课对应内容,是您备课、上课、课后练习以及寒暑假预习的最佳选择。

第二章 函数【2017年高考试题】1.【2017课标1,文8】函数sin21cos x y x=-的部分图像大致为 A . B .C .D .2.【2017课标3,文7】函数2sin 1x y x x =++的部分图像大致为( )A BD .C D3.【2017浙江,5】若函数f (x )=x 2+ ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M – mA .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关4.【2017北京,文5】已知函数1()3()3x x f x =-,则()f x (A )是偶函数,且在R 上是增函数(B )是奇函数,且在R 上是增函数(C )是偶函数,且在R 上是减函数(D )是奇函数,且在R 上是增函数5.【2017北京,文8】根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与M N最接近的是 (参考数据:lg3≈0.48)(A )1033 (B )1053(C )1073 (D )10936.【2017山东,文9】设()()121,1x f x x x <<=-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫= ⎪⎝⎭ A. 2 B. 4 C. 6 D. 87.【2017天津,文6】已知奇函数()f x 在R 上是增函数.若0.8221(log ),(log 4.1),(2)5a fb fc f =-==,则,,a b c 的大小关系为 (A )a b c <<(B )b a c <<(C )c b a <<(D )c a b <<8.【2017课标II ,文8】函数2()ln(28)f x x x =-- 的单调递增区间是A.(,2)-∞-B. (,1)-∞-C. (1,)+∞D. (4,)+∞9.【2017课标1,文9】已知函数()ln ln(2)f x x x =+-,则A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称 10.【2017山东,文10】若函数()e x f x (e=2.71828,是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是A . ()2x f x -= B. ()2f x x = C. ()3xf x -= D. ()cos f x x = 11.【2017天津,文8】已知函数||2,1,()2, 1.x x f x x x x +<⎧⎪=⎨+≥⎪⎩设a ∈R ,若关于x 的不等式()||2x f x a ≥+在R 上恒成立,则a 的取值范围是 (A )[2,2]-(B)[2]-(C)[2,-(D)[-12.【2017课标II ,文14】已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+,则(2)f = ________.13.【2017北京,文11】已知0x ≥,0y ≥,且x +y =1,则22x y +的取值范围是__________.14.【2017课标3,文16】设函数10()20x x x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是__________.15【2017山东,文14】已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当[3,0]x ∈- 时,()6x f x -=,则f (919)= .16.【2017江苏,11】已知函数31()2e ex x f x x x =-+-, 其中e 是自然对数的底数. 若2(1)(2)0f a f a -+≤,则实数a 的取值范围是 .17.【2017江苏,14】设()f x 是定义在R 且周期为1的函数,在区间[0,1)上,2,,(),,x x D f x x x D ⎧∈⎪=⎨∉⎪⎩其中集合1,*n D x x n n -⎧⎫==∈⎨⎬⎩⎭N ,则方程()lg 0f x x -=的解的个数是 . 【2016,2015,2014高考题】1. 【2016高考新课标1文数】若0a b >>,01c <<,则( )(A )log a c <log b c (B )log c a <log c b (C )a c <b c (D )c a >c b2. 【2014高考北京文第2题】下列函数中,定义域是R 且为增函数的是( )A.x y e -=B.3y x = C.ln y x = D.y x =3. 【2014高考北京文第8题】加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足的函数关系2p at bt c =++(a 、b 、c 是常数),下图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( )A.3.50分钟B.3.75分钟C.4.00分钟D.4.25分钟4. 【2014高考北京文第6题】已知函数()26log f x x x =-,在下列区间中,包含()f x 零点的区间是( )A.()0,1B.()1,2C.()2,4D.()4,+∞5. 【2015高考北京,文3】下列函数中为偶函数的是( )A .2sin y x x =B .2cos y x x =C .ln y x =D .2x y -=6. 【2014高考广东卷.文.5】下列函数为奇函数的是( )A .122x x - B .3sin x x C .2cos 1x + D .22x x +7. 【2016高考新课标1文数】函数22x y x e =-在[]2,2-的图像大致为( ) (A )(B )(C )(D )8. 【2015高考广东,文3】下列函数中,既不是奇函数,也不是偶函数的是( )A .2sin y x x =+B .2cos y x x =-C .122x xy =+D .sin 2y x x =+9. 【 2014湖南文4】下列函数中,既是偶函数又在区间(,0)-∞上单调递增的是( ) 21.()A f x x= 2.()1B f x x =+ 3.()C f x x = .()2x D f x -= 10. 【2016高考新课标2文数】下列函数中,其定义域和值域分别与函数y=10lg x 的定义域和值域相同的是( )(A )y =x (B )y =lg x (C )y =2x (D )y= 11. 【2016高考新课标2文数】已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数y =|x 2-2x -3| 与y =f (x ) 图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则1=mii x =∑( ) (A)0 (B)m (C) 2m (D) 4m12. 【2014山东.文3】 函数1log 1)(2-=x x f 的定义域为( )A. (0,2)B. (0,2]C. ),2(+∞D. [2,)+∞13. 【2014山东.文6】已知函数log ()(,a y x c a c =+为常数,其中0,1)a a >≠的图象如右图,则下列结论成立的是( )A.1,1a c >>B.1,01a c ><<C.01,1a c <<>D.01,01a c <<<<14. [2016高考新课标Ⅲ文数]已知4213332,3,25a b c ===,则( )(A) b a c << (B)a b c << (C) b c a << (D) c a b << 15. 【2016高考浙江文数】函数y =sin x 2的图象是( )16. 【2015高考山东,文2】设0.6 1.50.60.60.6 1.5a b c ===,,,则a b c ,,的大小关系是( )(A )a b c << (B )a cb << (C )b ac << (D )b c a << 17. 【2014山东.文5】 已知实数,x y 满足(01)x y aa a <<<,则下列关系式恒成立的是( )A.33x y >B.sin sin x y >C.22ln(1)ln(1)x y +>+D.221111x y >++ 18. 【2016高考浙江文数】已知a ,b >0,且a ≠1,b ≠1,若log >1a b ,则( )A.(1)(1)0a b --<B. (1)()0a a b -->C. (1)()0b b a --<D. (1)()0b b a -->19. 【2015高考山东,文8】若函数21()2x x f x a+=-是奇函数,则使3f x >()成立的x 的取值范围为( )(A )( ) (B)() (C )0,1() (D )1,+∞()20. 【2015高考山东,文10】设函数3,1()2,1x x b x f x x -<⎧=⎨≥⎩,若5(())46f f =,则b = ( ) (A )1 (B )78 (C )34 (D)1221. 【2016高考浙江文数】已知函数f (x )=x 2+bx ,则“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件22. 【2015高考陕西,文4】设10()2,0x x f x x ⎧≥⎪=⎨<⎪⎩,则((2))f f -=( ) A .1- B .14 C .12 D .3223. 【2016高考浙江文数】已知函数()f x 满足:()f x x ≥且()2,x f x x ≥∈R .( )A.若()f a b ≤,则a b ≤B.若()2bf a ≤,则a b ≤C.若()f a b ≥,则a b ≥D.若()2b f a ≥,则a b ≥24. 【2014高考陕西版文第7题】下了函数中,满足“()()()f x y f x f y +=”的单调递增函数是( ) (A )()3f x x = (B )()3x f x = (C )()23f x x = (D )()12xf x ⎛⎫= ⎪⎝⎭ 25. 【2015高考陕西,文9】 设()sin f x x x =-,则()f x =( )A .既是奇函数又是减函数B .既是奇函数又是增函数C .是有零点的减函数D .是没有零点的奇函数26. 【2015高考陕西,文10】设()ln ,0f x x a b =<<,若p f =,()2a b q f +=,1(()())2r f a f b =+,则下列关系式中正确的是( ) A .q r p =< B .q r p => C .p r q =< D .p r q =>27. 【2016高考北京文数】已知(2,5)A ,(4,1)B ,若点(,)P x y 在线段AB 上,则2x y -的最大值为( )A.−1B.3C.7D.828. 【2016高考北京文数】下列函数中,在区间(1,1)- 上为减函数的是( ) A.11y x=- B.cos y x = C.ln(1)y x =+ D.2x y -= 29. 【2014四川,文7】已知,,,,则下列等式一定成立的是( )A 、B 、C 、D 、 0b >5log b a =lg b c =510d =d ac =a cd =c ad =d a c =+30. 【2015高考四川,文5】下列函数中,最小正周期为π的奇函数是( )(A )y =sin (2x +2π) (B )y =cos (2x +2π) (C )y =sin 2x +cos 2x (D )y =sinx +cosx31.【2016高考上海文科】设()f x 、()g x 、()h x 是定义域为R 的三个函数,对于命题:①若()()f x g x +、()()f x h x +、()()g x h x +均为增函数,则()f x 、()g x 、()h x 中至少有一个增函数;②若()()f x g x +、()()f x h x +、()()g x h x +均是以T 为周期的函数,则()f x 、()g x 、()h x 均是以T 为周期的函数,下列判断正确的是( )A 、①和②均为真命题B 、①和②均为假命题C 、①为真命题,②为假命题D 、①为假命题,②为真命题32. 【2015高考四川,文8】某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系kx b y e +=( 2.718...e =为自然对数的底数,,k b 为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是( )(A )16小时 (B )20小时 (C )24小时 (D )21小时33. 【2014全国1,文5】设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是( )A.)()(x g x f 是偶函数B. )(|)(|x g x f 是奇函数C. |)(|)(x g x f 是奇函数D. |)()(|x g x f 是奇函数34.【2015高考新课标1,文10】已知函数1222,1()log (1),1x x f x x x -⎧-≤=⎨-+>⎩ ,且()3f a =-,则(6)f a -=( )(A )74- (B )54- (C )34- (D )14- 35. 【2016高考山东文数】若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( )(A )sin y x = (B )ln y x = (C )e x y = (D )3y x =36. 【2015高考新课标1,文12】设函数()y f x =的图像与2x a y +=的图像关于直线y x=-对称,且(2)(4)1f f -+-=,则a =( )(A ) 1- (B )1 (C )2 (D )437. 【2014年.浙江卷.文7】已知函数c bx ax x x f +++=23)(,且3)3()2()1(0≤-=-=-<f f f ,则( )A.3≤cB.63≤<cC. 96≤<cD.9>c38. 【2016高考山东文数】已知函数f(x )的定义域为R.当x <0时,f(x )=x 3-1;当-1≤x ≤1时,f(-x )= —f(x );当x >12时,f(x +12)=f(x —12).则f(6)= ( ) (A )-2 (B )-1(C )0 (D )239. 【2015高考浙江,文5】函数()1cos f x x x x ⎛⎫=-⎪⎝⎭(x ππ-≤≤且0x ≠)的图象可能为( )A .B .C .D .40. 【2014年.浙江卷.文8】在同一坐标系中,函数)0()(>=x x x f a ,x x g a log )(=的图象可能是( )41. 【2016高考四川文科】某公司为激励创新,计划逐年加大研发奖金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg1.12=0.05,lg1.3=0.11,lg2=0.30)(A)2018年 (B) 2019年 (C)2020年 (D)2021年42. 【2014高考重庆文第4题】下列函数为偶函数的是( ).()1A f x x =- 2.()B f x x x =+ .()22x x C f x -=-.()22x x D f x -=+43. 【2014高考重庆文第10题】已知函数13,(1,0](),()()1,1]1,(0,1]x f x g x f x mx m x x x ⎧-∈-⎪==---+⎨⎪∈⎩且在(内有且仅有两个不同的零点,则实数m 的取值范围是( ) A.91(,2](0,]42-- B.111(,2](0,]42-- C.92(,2](0,]43-- D.112(,2](0,]43-- 44. 【2015高考重庆,文3】函数22(x)log (x 2x 3)f 的定义域是( )(A) [3,1] (B) (3,1)(C) (,3][1,)-∞-+∞ (D) (,3)(1,)-∞-+∞ 45. 【2014,安徽文5】设 1.1 3.13log 7,2,0.8a b c ===则( )A .c a b <<B .b a c <<C .a bc << D .b c a <<46. 【2015高考安徽,文4】下列函数中,既是偶函数又存在零点的是( ) (A )y =lnx (B )21y x =+ (C )y =sinx (D )y =cosx47. 【2015高考安徽,文10】函数()32f x ax bx cx d =+++的图像如图所示,则下列结论成立的是( )(A )a >0,b <0,c >0,d >0 (B )a >0,b <0,c <0,d >0 (C )a <0,b <0,c <0,d >0 (D )a >0,b >0,c >0,d <048. 【2014,安徽文9】若函数()12f x x x a =+++的最小值3,则实数a 的值为 ( )A .5或8B .1-或5C . 1-或4-D .4-或849.【2014天津,文4】设,,log ,log 2212-===πππc b a 则( )A.c b a >>B.c a b >>C.b c a >>D.a b c >> 50. 【2015高考天津,文8】已知函数22||,2()(2),2x xf x x x ,函数()3(2)g x f x ,则函数y()()f x g x 的零点的个数为( )(A) 2 (B) 3 (C)4 (D)551. 【2015高考天津,文7】 已知定义在R 上的函数||()21()xm f x m 为实数为偶函数,记0.5(log 3),af 2b (log 5),c(2)f f m ,则,,a b c ,的大小关系为( )(A) b c a(B) b c a (C) b a c (D) b c a52.【2014年普通高等学校招生全国统一考试湖北卷9】已知)(x f 是定义在R 上的奇函数,当0≥x 时,x x x f 3)(2-=,则函数3)()(+-=x x f x g 的零点的集合为( )A.{1,3}B.{3,1,1,3}--C.{2D.{2-53. 【2015高考湖北,文6】函数256()lg 3x x f x x -+=-的定义域为( )A .(2,3)B .(2,4]C .(2,3)(3,4]D .(1,3)(3,6]-54. 【2015高考湖北,文7】设x ∈R ,定义符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩则( ) A .|||sgn |x x x = B .||sgn ||x x x = C .||||sgn x x x =D .||sgn x x x =55. 【2014福建,文8】若函数()log 0,1a y x a a =>≠且的图象如右图所示,则下列函数正确的是 (56. 【2014福建,文9】要制作一个容积为34m ,高为1m 的无盖长方体容器,已知该溶器的底面造价是每平方米20元,侧面造价是是每平方米10元,则该容器的最低总造价是 ( ).80.120.160.240A B C D 元元元元57. 【2015高考福建,文3】下列函数为奇函数的是( )A.y = B .x y e = C .cos y x = D .x x y e e -=-58. 【2014辽宁文3】已知132a -=,21211log ,log 33b c ==,则( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >>59. (2014课标全国Ⅰ,文5)设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( ).A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数60. 【2015新课标2文11】如图,长方形的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记BOP x ∠= ,将动点P 到A ,B 两点距离之和表示为x 的函数()f x ,则的图像大致为( )A .B .C .D .61. 【2015新课标2文12】设函数21()ln(1||)1f x x x=+-+,则使得()(21)f x f x >-成立的x 的取值范围是( ) A .1,13⎛⎫ ⎪⎝⎭ B .()1,1,3⎛⎫-∞+∞ ⎪⎝⎭C .11,33⎛⎫-⎪⎝⎭ D .11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭62. 【2014辽宁文10】已知()f x 为偶函数,当0x ≥时,1cos ,[0,]2()121,(,)2x x f x x x π⎧∈⎪⎪=⎨⎪-∈+∞⎪⎩,则不等式1(1)2f x -≤的解集为( ) A .1247[,][,]4334 B .3112[,][,]4343-- C .1347[,][,]3434 D .3113[,][,]4334--63. 【2014辽宁文11】 将函数3sin(2)3y x π=+的图象向右平移2π个单位长度,所得图象对应的函数( ) A .在区间7[,]1212ππ上单调递减B .在区间7[,]1212ππ上单调递增C .在区间[,]63ππ-上单调递减 D .在区间[,]63ππ-上单调递增 二、填空题1. 【2016高考四川文科】已知函数()f x 是定义在R 上的周期为2的奇函数,当0<x <1时,()4xf x =,则5()(1)2f f -+= .2. 【2015高考北京,文10】32-,123,2log 5三个数中最大数的是 . 3. 【2015高考湖南,文14】若函数()|22|xf x b =--有两个零点,则实数b 的取值范围是_____.4. 【 2014湖南文15】若()()ax ex f x++=1ln 3是偶函数,则=a ____________.5. 【2014高考陕西版文第12题】已知42a=,lg x a =,则x =________. 6. 【2014高考陕西版文第14题】已知0,1)(≥+=x xxx f ,若++∈==N n x f f x f x f x f n n )),(()(),()(11,则)(2014x f 的表达式为________.7. 【2014全国2,文15】偶函数)(x f y =的图像关于直线2=x 对称,3)3(=f ,则)1(-f =________.8. 【2016高考上海文科】已知点(3,9)在函数xa x f +=1)(的图像上,则________)()(1=-x f x f 的反函数.9. 【2014四川,文13】设是定义在R 上的周期为2的函数,当时,()f x [1,1)x ∈-,则 . 10. 【2015高考四川,文12】lg 0.01+log 216=_____________.11. 【2015高考四川,文15】已知函数f (x )=2x ,g (x )=x 2+ax (其中a ∈R ).对于不相等的实数x 1,x 2,设m =1212()()f x f x x x --,n =1212()()g x g x x x --,现有如下命题:①对于任意不相等的实数x 1,x 2,都有m >0;②对于任意的a 及任意不相等的实数x 1,x 2,都有n >0; ③对于任意的a ,存在不相等的实数x 1,x 2,使得m =n ; ④对于任意的a ,存在不相等的实数x 1,x 2,使得m =-n . 其中真命题有___________________(写出所有真命题的序号).12. 【2014年.浙江卷.文15】设函数⎪⎩⎪⎨⎧>-≤++=0,0,22)(22x x x x x x f ,若2))((=a f f ,则=a .13. 【2016高考浙江文数】设函数f (x )=x 3+3x 2+1.已知a ≠0,且f (x )–f (a )=(x –b )(x –a )2,x ∈R ,则实数a =_____,b =______.14. 【2015高考浙江,文9】计算:2log 2= ,24log 3log 32+= . 15. 【2015高考浙江,文12】已知函数()2,166,1x x f x x x x ⎧≤⎪=⎨+->⎪⎩,则()2f f -=⎡⎤⎣⎦ ,()f x 的最小值是 .16. 【2014,安徽文11】34331654+log log 8145-⎛⎫+=⎪⎝⎭________. 17. 【2016高考山东文数】已知函数2||,()24,x x m f x x mx m x m ≤⎧=⎨-+>⎩其中0m >,若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________________. 18. 【2014,安徽文14】若函数()()R x x f ∈是周期为4的奇函数,且在[]2,0上的解析式为()⎩⎨⎧≤<≤≤-=21,sin 10),1(x x x x x x f π,则_______641429=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛f f .242,10,(),01,x x f x x x ⎧-+-≤<=⎨≤<⎩3()2f =19. 【2016高考北京文数】函数()(2)1xf x x x =≥-的最大值为_________. 20. 【2015高考安徽,文14】在平面直角坐标系xOy 中,若直线a y 2=与函数1||--=a x y 的图像只有一个交点,则a 的值为 . 21. 【2015高考安徽,文11】=-+-1)21(2lg 225lg. 22. 【2014天津,文12】函数2()lg f x x =的单调递减区间是________.23. 【2014天津,文14】已知函数()⎪⎩⎪⎨⎧>-≤++=0,220,452x x x x x x f 若函数x a x f y -=)(恰有4个零点,则实数a 的取值范围为_______24. 【2014年普通高等学校招生全国统一考试湖北卷15】如图所示,函数)(x f y =的图象由两条射线和三条线段组成.若R ∈∀x ,)1()(->x f x f ,则正实数a 的取值范围是 .25. 【2015高考湖北,文13】函数2π()2sin sin()2f x x x x =+-的零点个数为_________.26. 【2014上海,文3】设常数a R ∈,函数2()1f x x x a =-+-,若(2)1f =,则(1)f = .27. 【2014上海,文9】设,0,()1,0,x a x f x x x x -+≤⎧⎪=⎨+>⎪⎩若(0)f 是()f x 的最小值,则a 的取值范围是 .28. 【2014上海,文11】若2132)(x x x f -=,则满足0)(<x f 的x 取值范围是 .29. 【2016高考天津文数】已知函数2(43)3,0()(01)log (1)1,0a x a x a x f x a a x x ⎧+-+<⎪=>≠⎨++≥⎪⎩且在R上单调递减,且关于x 的方程|()|23xf x =-恰有两个不相等的实数解,则a 的取值范围是_________.30. 【2014福建,文15】(函数()⎩⎨⎧>+-≤-=0,ln 620,22x x x x x x f 的零点个数是__________.31. 【2015高考福建,文15】若函数()2()x af x a R -=∈满足(1)(1)f x f x +=-,且()f x 在[,)m +∞单调递增,则实数m 的最小值等于_______.32. 【2015新课标2文13】已知函数()32f x ax x =-的图像过点(-1,4),则a = .33. (2014课标全国Ⅰ,文15)设函数()113e ,1,,1,x x f x x x -⎧<⎪=⎨⎪≥⎩则使得f (x )≤2成立的x 的取值范围是__________.34. 【2014辽宁文16】对于0c >,当非零实数a ,b 满足22420a ab b c -+-=,且使|2|a b +最大时,124a b c++的最小值为 .三、解答题1.【2015高考湖北,文17】a 为实数,函数2()||f x x ax =-在区间[0,1]上的最大值记为()g a . 当a =_________时,()g a 的值最小.2. 【2014上海,文20】(本题满分14分)本题有2个小题,第一小题满分6分,第二小题满分1分.设常数0≥a ,函数aa x f x x -+=22)((1)若a =4,求函数)(x f y =的反函数)(1x fy -=;(2)根据a 的不同取值,讨论函数)(x f y =的奇偶性,并说明理由.3. 【2016高考上海文科】(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分. 已知a ∈R ,函数()f x =21log ()a x+.(1)当 1a =时,解不等式()f x >1;(2)若关于x 的方程()f x +22log ()x =0的解集中恰有一个元素,求a 的值;(3)设a >0,若对任意t ∈1[,1]2,函数()f x 在区间[,1]t t +上的最大值与最小值的差不超过1,求a 的取值范围.专题3 导数的几何意义与运算1.【2015高考北京,文8】某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.注:“累计里程“指汽车从出厂开始累计行驶的路程在这段时间内,该车每100千米平均耗油量为( )A .6升B .8升C .10升D .12升 2.【2014高考陕西版文第10题】如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连续(相切),已知环湖弯曲路段为某三次函数图像的一部分,则该函数的解析式为( )(A )321122y x x x =-- (B )3211322y x x x =+- (C )314y x x =- (D )3211242y x x x =+-3.【2016高考四川文科】设直线l 1,l 2分别是函数f (x )= ln ,01,ln ,1,x x x x -<<⎧⎨>⎩图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△P AB 的面积的取值范围是( )(A)(0,1) (B) (0,2) (C) (0,+∞) (D) (1,+ ∞)4.【2017课标1,文14】曲线21y x x=+在点(1,2)处的切线方程为______________. 5.【2017天津,文10】已知a ∈R ,设函数()ln f x ax x =-的图象在点(1,(1)f )处的切线为l ,则l 在y 轴上的截距为 .6.【2014高考广东卷.文.11】曲线53xy e =-+在点()0,2-处的切线方程为________.7. [2016高考新课标Ⅲ文数]已知()f x 为偶函数,当0x ≤ 时,1()x f x ex --=-,则曲线()y f x =在(1,2)处的切线方程式_____________________________.9.【2015高考新课标1,文14】已知函数()31f x ax x =++的图像在点()()1,1f 的处的切线过点()2,7,则 a = .10. 【2014,安徽文15】若直线l 与曲线C 满足下列两个条件:)(i 直线l 在点()00,y x P 处与曲线C 相切;)(ii 曲线C 在P 附近位于直线l 的两侧,则称直线l 在点P 处“切过”曲线C ,下列命题正确的是_________(写出所有正确命题的编号) ①直线0:=y l 在点()0,0P 处“切过”曲线C :3yx =②直线1:-=x l 在点()0,1-P 处“切过”曲线C :2)1(+=x y ③直线x y l =:在点()0,0P 处“切过”曲线C :x y sin = ④直线x y l =:在点()0,0P 处“切过”曲线C :x y tan = ⑤直线1:-=x y l 在点()0,1P 处“切过”曲线C :x y ln =11. 【2015高考天津,文11】已知函数()()ln ,0,f x ax x x =∈+∞ ,其中a 为实数,()f x '为()f x 的导函数,若()13f '= ,则a 的值为 .12. 【2015新课标2文16】已知曲线ln y x x =+在点()1,1 处的切线与曲线()221y ax a x =+++ 相切,则a = .13.【2017山东,文20】(本小题满分13分)已知函数()3211,32f x x ax a =-∈R ., (I)当a =2时,求曲线()y f x =在点()()3,3f 处的切线方程;(II)设函数()()()cos sin g x f x x a x x =+--,讨论()g x 的单调性并判断有无极值,有极值时求出极值.14.【2017北京,文20】已知函数()e cos xf x x x =-. (Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)求函数()f x 在区间π[0,]2上的最大值和最小值.15.【2016高考新课标2文数】已知函数()(1)ln (1)f x x x a x =+--.(I )当4a =时,求曲线()y f x =在()1,(1)f 处的切线方程; (Ⅱ)若当()1,x ∈+∞时,()0f x >,求a 的取值范围.16.【2015高考山东,文20】设函数. 已知曲线 在点(1,(1))f 处的切线与直线平行.(Ⅰ)求a 的值;(Ⅱ)是否存在自然数k ,使得方程()()f x g x =在(,1)k k +内存在唯一的根?如果存在,求出k ;如果不存在,请说明理由;(Ⅲ)设函数()min{(),()}m x f x g x =({},min p q 表示,,p q 中的较小值),求()m x 的最大值.17.【2014全国2,文21】(本小题满分12分) 已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-. (Ⅰ)求a ; (Ⅱ)证明:当1k<时,曲线()y f x =与直线2y kx =-只有一个交点.18.【2016高考北京文数】(本小题13分) 设函数()32.f x x ax bx c =+++(I )求曲线().y f x =在点()()0,0f 处的切线方程;(II )设4a b ==,若函数()f x 有三个不同零点,求c 的取值范围; (III )求证:230a b ->是().f x 有三个不同零点的必要而不充分条件.19.【2014高考重庆文第19题】(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分) 已知函数23ln 4)(--+=x x a x x f ,其中R a ∈,且曲线)(x f y =在点))1(,1(f 处的切线垂直于x y 21=. (Ⅰ)求a 的值;(Ⅱ)求函数)(x f 的单调区间与极值.20.【2015高考天津,文20】(本小题满分14分)已知函数4()4,,f x x x x R (I )求()f x 的单调区间;(II )设曲线()y f x 与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为()yg x ,求证:对于任意的正实数x ,都有()()f x g x ; (III )若方程()=()f x a a 为实数有两个正实数根12x x ,,且12x x ,求证:1321-43a x x。

【配套K12]三年高考(2015-2017)高考数学试题分项版解析 专题25 选修部分 文

【配套K12]三年高考(2015-2017)高考数学试题分项版解析 专题25 选修部分 文

专题25 选修部分1.【2017课标1,文22】在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若1-=a ,求C 与l 的交点坐标;(2)若C 上的点到l【答案】(1)(3,0),2124(,)2525-;(2)8a =或16a =-.试题解析:(1)曲线C 的普通方程为2219x y +=. 当1a =-时,直线的普通方程为430x y +-=.由2243019x y x y +-=⎧⎪⎨+=⎪⎩解得30x y =⎧⎨=⎩或21252425x y ⎧=-⎪⎪⎨⎪=⎪⎩.从而C 与的交点坐标为(3,0),2124(,)2525-. (2)直线的普通方程为440x y a +--=,故C 上的点(3cos ,sin )θθ到的距离为d =.当4a ≥-时,d=8a =; 当4a <-时,d=16a =-. 综上,8a =或16a =-. 【考点】参数方程【名师点睛】本题为选修内容,先把直线与椭圆的参数方程化为直角坐标方程,联立方程,可得交点坐标,利用椭圆的参数方程,求椭圆上一点到一条直线的距离的最大值,直接利用点到直线的距离公式,表达椭圆上的点到直线的距离,利用三角有界性确认最值,进而求得参数的值.2【2017课标1,文23】已知函数4)(2++-=ax x x f ,|1||1|)(-++=x x x g . (1)当1=a 时,求不等式)()(x g x f ≥的解集;(2)若不等式)()(x g x f ≥的解集包含–1,1],求的取值范围.【答案】(1)1{|1}2x x -+-<≤;(2)[1,1]-.试题解析:(1)当1a =时,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤.① 当1x <-时,①式化为2340x x --≤,无解;当11x -≤≤时,①式化为220x x --≤,从而11x -≤≤;当1x >时,①式化为240x x +-≤,从而1x <≤所以()()f x g x ≥的解集为{|1x x -<≤. (2)当[1,1]x ∈-时,()2g x =.所以()()f x g x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥.又()f x 在[1,1]-的最小值必为(1)f -与(1)f 之一,所以(1)2f -≥且(1)2f ≥,得11a -≤≤. 所以的取值范围为[1,1]-. 【考点】不等式选讲【名师点睛】形如||||x a x b c -+-≥(或c ≤)型的不等式主要有两种解法:(1)分段讨论法:利用绝对值号内式子对应方程的根,将数轴分为(,]a -∞,(,]a b ,(,)b +∞ (此处设a b <)三个部分,在每部分去掉绝对值号并分别列出对应的不等式求解,然后取各个不等式解集的并集.(2)图像法:作出函数1||||y x a x b =-+-和2y c =的图像,结合图像求解.@3.【2017课标II ,文22】 在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=。

专题16 抛物线—三年高考(2015-2017)数学(文)真题分项版解析(原卷版)(打包下载)

专题16 抛物线—三年高考(2015-2017)数学(文)真题分项版解析(原卷版)(打包下载)

专题16 抛物线1.2017课标II ,文12】过抛物线2:4C y x =的焦点F ,C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且MN l ⊥,则M 到直线NF 的距离为B. C. D. 2.【2014,安徽文3】抛物线241x y =的准线方程是( )A . 1-=yB . 2-=yC . 1-=xD . 2-=x3. 【2014全国1,文10】已知抛物线C : x y =2的焦点为F ,()00,A x y 是C 上一点,x F A 045=,则0x =( ) A. 1 B. 2 C. 4 D. 84. 【2014辽宁文8】已知点(2,3)A -在抛物线C :22y px =的准线上,记C 的焦点为F ,则直线AF 的斜率为( )A .43-B .1-C .34-D .12- 5.【2014四川,文10】已知F 是抛物线2y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧, 2OA OB ⋅=(其中O 为坐标原点),则ABO ∆与AFO ∆面积之和的最小值是( )A .2B .3CD 6.【2015高考陕西,文3】已知抛物线22(0)y px p =>的准线经过点(1,1)-,则抛物线焦点坐标为( )A .(1,0)-B .(1,0)C .(0,1)-D .(0,1)7. 【2016高考四川文科】抛物线24y x =的焦点坐标是( ) (A)(0,2) (B) (0,1) (C) (2,0) (D) (1,0)8.【2014全国2,文10】设F 为抛物线2:=3C y x 的焦点,过F 且倾斜角为30︒的直线交C 于A ,B 两点,则 AB =( )(A (B )6 (C )12 (D )9.【2016高考新课标2文数】设F 为抛物线C :y 2=4x 的焦点,曲线y =kx(k >0)与C 交于点P ,PF ⊥x 轴,则k =( )(A )12 (B )1 (C )32(D )210.【2017天津,文12】设抛物线24y x =的焦点为F ,准线为l .已知点C 在l 上,以C 为圆心的圆与y 轴的正半轴相切于点A.若120FAC ∠=︒,则圆的方程为 .11.【2014上海,文4】若抛物线y 2=2px 的焦点与椭圆15922=+y x 的右焦点重合,则该抛物线的准线方程为___________.12.【2014高考陕西版文第11题】抛物线24y x =的准线方程为________.13.【2017课标1,文20】设A ,B 为曲线C :y =24x 上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.14.【2017浙江,21】(本题满分15分)如图,已知抛物线2x y =,点A11()24-,,39()24B ,,抛物线上的点)2321)(,(<<-x y x P .过点B 作直线AP 的垂线,垂足为Q .(Ⅰ)求直线AP 斜率的取值范围;(Ⅱ)求||||PQ PA ⋅的最大值.15.【2016高考新课标1文数】(本小题满分12分)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :22(0)y px p =>于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H . (I )求OHON; (II )除H 以外,直线MH 与C 是否有其它公共点?说明理由.16.[2016高考新课标Ⅲ文数]已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于,A B 两点,交C 的准线于P Q ,两点.(I )若F 在线段AB 上,R 是PQ 的中点,证明ARFQ ;(II )若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程.17. 【2015高考湖南,文20】(本小题满分13分)已知抛物线21:4C x y =的焦点F 也是椭圆22222:1y x C a b+=(0)a b >>的一个焦点,1C 与2C 的公共弦长为,过点F 的直线l 与1C 相交于,A B 两点,与2C 相交于,C D 两点,且AC 与BD 同向. (I )求2C 的方程;(II )若AC BD =,求直线l 的斜率.18.【2016高考浙江文数】(本题满分15分)如图,设抛物线22(0)y px p =>的焦点为F ,抛物线上的点A 到y 轴的距离等于|AF |-1. (I )求p 的值;(II )若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N ,AN 与x轴交于点M .求M 的横坐标的取值范围.19.【2015高考浙江,文19】(本题满分15分)如图,已知抛物线211C 4y x =:,圆222C (1)1x y +-=:,过点P(t,0)(t>0)作不过原点O 的直线PA ,PB 分别与抛物线1C 和圆2C 相切,A ,B 为切点. (1)求点A ,B 的坐标; (2)求PAB ∆的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则该直线与抛物线相切,称该公 共点为切点.20.【2014福建,文21】((本小题满分12分) 已知曲线Γ上的点到点(0,1)F 的距离比它到直线3y =-的距离小2.(1)求曲线Γ的方程;(2)曲线Γ在点P 处的切线l 与x 轴交于点A .直线3y =分别与直线l 及y 轴交于点,M N ,以MN 为直径作圆C ,过点A 作圆C 的切线,切点为B ,试探究:当点P 在曲线Γ上运动(点P 与原点不重合)时,线段AB 的长度是否发生变化?证明你的结论. 21.【2015高考福建,文19】已知点F 为抛物线2:2(0)E y px p =>的焦点,点(2,)A m 在抛物线E 上,且3AF =. (Ⅰ)求抛物线E 的方程;(Ⅱ)已知点(1,0)G -,延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.专题17 立体几何中线面位置关系1.【2017课标1,文6】如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是A .B .C .D .2.【2017课标3,文10】在正方体1111ABCD A B C D 中,E 为棱CD 的中点,则( )A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥3.【2014高考广东卷.文.9】若空间中四条直线两两不同的直线..,满足,,,则下列结论一定正确的是( ) A . B .C ..既不平行也不垂直D ..的位置关系不确定4.【2016高考山东文数】已知直线a ,b 分别在两个不同的平面α,b 内,则“直线a 和直线b 相交”是“平面α和平面b 相交”的( )(A )充分不必要条件(B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件5.【2015高考广东,文6】若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )A .l 至少与1l ,2l 中的一条相交B .l 与1l ,2l 都相交C .l 至多与1l ,2l 中的一条相交D .l 与1l ,2l 都不相交 6. 【2016高考上海文科】如图,在正方体ABCD −A 1B 1C 1D 1中,E 、F 分别为BC 、BB 1的中点,则下列直线中与直线EF 相交的是( )(A)直线AA 1(B)直线A 1B 1(C)直线A 1D 1 (D)直线B 1C 17.【2014辽宁文4】已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( ) A .若//,//,m n αα则//m n B .若m α⊥,n α⊂,则m n ⊥ C .若m α⊥,m n ⊥,则//n α D .若//m α,m n ⊥,则n α⊥8.【2015高考湖北,文5】12,l l 表示空间中的两条直线,若p :12,l l 是异面直线;q :12,l l 不相交,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件9.【2015高考浙江,文4】设α,β是两个不同的平面,l ,m 是两条不同的直线,且l α⊂,m β⊂( )A .若l β⊥,则αβ⊥B .若αβ⊥,则l m ⊥C .若//l β,则//αβD .若//αβ,则//l m10.【2014年.浙江卷.文6】设m 、n 是两条不同的直线,α、β是两个不同的平面,则( )A.若n m ⊥,α//n ,则α⊥mB.若β//m ,αβ⊥,则α⊥mC.若β⊥m ,β⊥n ,α⊥n ,则α⊥mD.若n m ⊥,β⊥n ,αβ⊥,则α⊥m 11.【2017课标1,文18】如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=.(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=,且四棱锥P-ABCD 的体积为83,求该四棱锥的侧面积.12.【2017山东,文18】(本小题满分12分)由四棱柱ABCD -A 1B 1C 1D 1截去三棱锥C 1- B 1CD 1后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E⊥平面ABCD ,(Ⅰ)证明:1AO ∥平面B 1CD 1;(Ⅱ)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1.13.【2017江苏,15】 如图,在三棱锥A-BCD 中,AB ⊥AD , BC ⊥BD , 平面ABD ⊥平面BCD , 点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD . 求证:(1)EF ∥平面ABC ; (2)AD ⊥AC .14.【2016高考北京文数】(本小题14分)如图,在四棱锥ABCD P -中,⊥PC 平面ABCD ,,AB DC DC AC ⊥∥ (I )求证:DC PAC ⊥平面; (II )求证:PAB PAC ⊥平面平面;(III )设点E 为AB 的中点,在棱PB 上是否存在点F ,使得//PA 平面C F E ?说明理由.15.【2014四川,文18】(本小题满分12分)(第15题)ADBC EF在如图所示的多面体中,四边形和都为矩形。

专题22 算法—三年高考(2015-2017数学(文)真题分项版解析(原卷版)(批量下载)

专题22 算法—三年高考(2015-2017数学(文)真题分项版解析(原卷版)(批量下载)

精品“正版”资料系列,由本公司独创。

旨在将“人教版”、”苏教版“、”北师大版“、”华师大版“等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和检测题分享给需要的朋友。

本资源创作于2020年8月,是当前最新版本的教材资源。

包含本课对应内容,是您备课、上课、课后练习以及寒暑假预习的最佳选择。

专题22 算法1.【2017山东,文6】执行右侧的程序框图,当输入的x 值为4时,输出的y 的值为2,则空白判断框中的条件可能为A.3x >B.4x >C.4x ≤D.5x ≤2.【2017课标1,文10】如图是为了求出满足321000n n ->的最小偶数nA.A>1000和n=n+1 B.A>1000和n=n+2C.A≤1000和n=n+1 D.A≤1000和n=n+23.【2017课标3,文8】执行下面的程序框图,为使输出S的值小于91,则输入的正整数N 的最小值为()A.5 B.4 C.3 D.2a=-,则输出的S=4. 【2017课标II,文10】执行右面的程序框图,如果输入的1A.2B.3C.4D.55.【2017北京,文3】执行如图所示的程序框图,输出的s值为(A)2 (B)3 2(C)53(D)856.【2017天津,文4】阅读右面的程序框图,运行相应的程序,若输入N的值为19,则输出N的值为(A)0 (B)1(C)2(D)37.【2017江苏,4】右图是一个算法流程图,若输入x的值为116,则输出的y的值是▲ .【2016,20115,2014高考题】一、选择题1. 【 2014湖南文7】执行如图1所示的程序框图,如果输入的[]2,2t ∈-,则输出的S 属于( )A.[]6,2--B.[]5,1--C.[]4,5-D.[]3,6-2.【2015高考湖南,文5】执行如图2所示的程序框图,如果输入n=3,中输入的S=( ) 结束(第4题)开始YN 输入输出A、67B、37C、89D、493. 【2016高考新课标2文数】中国古代有计算多项式值得秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的a为2,2,5,则输出的s=()(A)7 (B)12 (C)17 (D)34 4. 【2016高考新课标1文数】执行右面的程序框图,如果输入的n=1,则输出的值满足()(A)(B)(C )(D )5. 【2014高考陕西版文第4题】根据右边框图,对大于2的整数N ,得出数列的通项公式是( ).2n A a n = .2(1)n B a n =- .2n n C a = 1.2n n D a -=6. 【2015高考陕西,文7】根据右边框图,当输入x为6时,输出的y ()A.1B.2C.5D.107. 【2014全国2,文8】执行右面的程序框图,如果输入的x,t均为2,则输出的S ()(A)4(B)5(C)6(D)78. [2016高考新课标Ⅲ文数]执行下图的程序框图,如果输入的,那么输出的()(A)3 (B)4 (C)5 (D)69. 【2014四川,文6】执行如图1所示的程序框图,如果输入的,x y R,则输出的S的最大值为()A.0 B.1 C.2 D.310. 【2015高考四川,文6】执行如图所示的程序框图,输出S的值为( )(A) (B(C)-12(D)1211. 【2016高考北京文数】执行如图所示的程序框图,输出的s值为()A.8B.9C.27D.3612.【2014全国1,文9】执行右面的程序框图,若输入的,,a b k分别为1,2,3,则输出的M= ( )A.203B.72C.165D.15813. 【2015高考新课标1,文9】执行右面的程序框图,如果输入的0.01t=,则输出的n=()(A)5(B)6(C)10(D)1214. 【2016高考四川文科】秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为( )(A)35 (B) 20 (C)18 (D)915. 【2014高考重庆文第5题】执行如题(5)图所示的程序框图,则输出s的值为()C.36B.19A.17.10D16. 【2015高考重庆,文8】执行如图(8)所示的程序框图,则输出s的值为()(A) 34(B)56(C)1112(D)252417. 【2014高考北京文第4题】执行如图所示的程序框图,输出的S 值为( ) A.1 B.3 C.7 D.15输出18.【2015高考北京,文5】执行如图所示的程序框图,输出的k 的值为( )A .3B .4C .5D .619. 【2014,安徽文4】如图所示,程序框图(算法流程图)的输出结果是 ( )A .34B .55C .78D .8920.【2015高考安徽,文7】执行如图所示的程序框图(算法流程图),输出的n为()(A)3 (B)4 (C)5 (D)621. 【2014福建,文4】阅读右图所示的程序框图,运行相应的程序,输出的n的值为()A B C D.1.2.3.422.【2015高考福建,文4】阅读如图所示的程序框图,运行相应的程序.若输入x的值为1,则输出y的值为()A.2 B.7 C.8 D.12823. 【2015高考天津,文3】阅读下边的程序框图,运行相应的程序,则输出i的值为()(A) 2 (B) 3 (C) 4 (D)5开始输入是输出结束否24. (2014课标全国Ⅰ,文9) 执行下面的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=( ).A.203B.72C.165D.15825. 【2015新课标2文8】下边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的,a b分别为14,18,则输出的a为()A.0 B.2 C.4 D.14二、填空题1. 【2016高考天津文数】阅读右边的程序框图,运行相应的程序,则输出S的值为_______.2.【2014山东.文11】执行右面的程序框图,若输入的x的值为1,则输出的n的值为 .3.【2015高考山东,文11】执行右边的程序框图,若输入的x的值为1,则输出的y的值是 .4. 【2014年.浙江卷.文13】若某程序框图如图所示,当输入50时,则该程序运行后输出的结果是________.5. 【2014年普通高等学校招生全国统一考试湖北卷14】阅读如图所示的程序框图,运行相应的程序,若输入n的值为9,则输出S的值为 .6. 【2016高考山东文数】执行右边的程序框图,若输入n的值为3,则输出的S的值为_______.7. 【2014天津,文11】阅读右边的框图,运行相应的程序,输出S的值为________.n=,则输出T= .8. 执行右侧的程序框图,若输入39. 【2014天津文11】阅读右边的框图,运行相应的程序,输出S 的值为________.专题23 复数1.【2017课标1,文3】下列各式的运算结果为纯虚数的是A .i(1+i)2B .i 2(1-i)C .(1+i)2D .i(1+i)2.【2017课标II ,文2】(1i)(2i)++=A.1i -B.13i +C.3i +D.33i +3.【2017课标3,文2】复平面内表示复数i(2i)z =-+的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限开始结束s=0,n=3n s=s+(-2)n=n-1≤n 1输出s是否4.【2017北京,文2】若复数(1i)(i)a -+在复平面内对应的点在第二象限,则实数a 的取值范围是(A )(,1)-∞ (B )(,1)-∞-(C )(1,)+∞ (D )(1,)-+∞5.【2017山东,文2】已知i 是虚数单位,若复数z 满足i 1i z =+,则2z =A.-2iB.2iC.-2D.26.【2017天津,文9】已知a ∈R ,i 为虚数单位,若i 2ia -+为实数,则a 的值为 . 7. 【2017浙江,12】已知a ,b ∈R ,2i 34i a b +=+()(i 是虚数单位)则22a b += ,ab = .1. 【2014高考广东卷.文.2】已知复数z 满足()3425i z -=,则z =( )A .34i --B .34+i -C .34i -D .34i +2. 【2016高考新课标1文数】设的实部与虚部相等,其中a 为实数,则a=( )(A )-3 (B )-2 (C )2 (D )33.【2015高考广东,文2】已知i 是虚数单位,则复数()21i +=( ) A .2- B .2 C .2i - D .2i 4. 【2016高考新课标2文数】设复数z 满足,则=( ) (A ) (B ) (C )(D ) 5.【2015高考湖南,文1】已知2(1)i z-=1i +(i 为虚数单位),则复数z = ( ) A 、1i + B 、1i - C 、 1i -+ D 、1i --6. 【2014山东.文1】 已知i R b a ,,∈是虚数单位,若,2bi i a -=+则()2bi a +=( ) (A )i 43- (B )i 43+ (C ) i 34- (D )i 34+7. [2016高考新课标Ⅲ文数]若,则=( )(A )1 (B ) (C ) (D )8.【2015高考山东,文2】若复数Z 满足1z i-i =,其中i 为虚数单位,则Z=( ) (A )1i - (B )1i + (C )1i -- (D )1i -+9.【2014高考陕西版文第3题】已知复数2z i =-,则z z ⋅的值为( ).5A B .3C D 10. 【2016高考四川文科】设i 为虚数单位,则复数2(1)i +=( )(A) 0 (B)2 (C)2i (D)2+2i11. 【2014全国2,文2】131i i+=-( ) A.12i + B. 12i -+ C. 12i - D. 12i --12. 【2016高考北京文数】复数( ) A. B. C. D.13. 【2016高考山东文数】若复数,其中i 为虚数单位,则 =( ) (A )1+i (B )1−i (C )−1+i (D )−1−i14. 【2014全国1,文3】设i iz ++=11,则=||z ( ) A. 21 B. 22 C. 23 D. 2 15.【2015高考新课标1,文3】已知复数z 满足(1)1z i i -=+,则z =( )(A ) 2i -- (B )2i -+ (C )2i - (D )2i +16. 【2014高考重庆文第1题】实部为-2,虚部为1 的复数所对应的点位于复平面的( ).A 第一象限 .B 第二象限.C 第三象限 .D 第四象限17. 【2014,安徽文1】设i 是虚数单位,复数321i i i++= ( )A .i -B . iC . 1-D . 118.【2015高考安徽,文1】设i 是虚数单位,则复数()()112i i -+=( )(A )3+3i (B )-1+3i (3)3+i (D )-1+i19.【2014年普通高等学校招生全国统一考试湖北卷2】i 为虚数单位,则=+-2)11(ii ( ) A. 1 B. 1- C. i D.i -20. 【2015高考湖北,文1】i 为虚数单位,607i =( )A .i -B .iC .1-D .121.【2014福建,文2】复数()32i i +等于 ( ).23.23.23.23A i B i C i D i---+-+22.【2015高考福建,文1】若(1)(23)i i a bi ++-=+(,,a b R i ∈是虚数单位),则,a b 的值分别等于( )A .3,2-B .3,2C .3,3-D .1,4-23. 【2015新课标2文2】若为a 实数,且2i 3i 1i a +=++,则a =( ) A .4- B .3- C .3 D .424. 【2014辽宁文2】设复数z 满足(2)(2)5z i i --=,则z =( )A .23i +B .23i -C .32i +D .32i -25. (2014课标全国Ⅰ,文3)设1i 1iz =++,则|z |=( ).A .12B C D .2 二、填空题1. 【 2014湖南文11】复数23i i+(i 为虚数单位)的实部等于_________. 2. 【2014四川,文12】复数 . 3. 【2015高考四川,文11】设i 是虚数单位,则复数1i i -=_________.4. 【2014年.浙江卷.文11】设已知i 是虚数单位,计算21(1)i i -=+________. 5. 【2016高考天津文数】i 是虚数单位,复数满足,则的实部为_______.6. 【2015高考重庆,文11】复数(12i)i 的实部为________.7. 【2014高考北京文第9题】若()()12x i i i x R +=-+∈,则x = .8. 【2015高考北京,文9】复数()1i i +的实部为 .9. 【2014上海,文2】若复数z=1+2i ,其中i 是虚数单位,则1()z z +z ⋅=___________.。

配套K12三年高考2015_2017高考数学试题分项版解析专题05函数图象与方程理

配套K12三年高考2015_2017高考数学试题分项版解析专题05函数图象与方程理

专题05 函数图象与方程一、选择题1.【2017山东,理10】已知当[]0,1x ∈时,函数()21y mx =-的图象与y m =的图象有且只有一个交点,则正实数m 的取值范围是 (A )(])0,123,⎡+∞⎣(B )(][)0,13,+∞ (C)()23,⎡+∞⎣(D )([)3,+∞【答案】B【解析】试题分析:当01m <≤时,11m≥ ,2(1)y mx =- 单调递减,且22(1)[(1),1]y mx m =-∈-,ym =单调递增,且[,1]y m m m =∈+ ,此时有且仅有一个交点;当1m >时,101m << ,2(1)y mx =-在1[,1]m上单调递增,所以要有且仅有一个交点,需2(1)13m m m -≥+⇒≥ 选B.【考点】函数的图象、函数与方程及函数性质的综合应用.2. 【2015高考北京,理7】如图,函数()f x 的图象为折线ACB ,则不等式()()2log 1f x x +≥的解集是( )A .{}|10x x -<≤B .{}|11x x -≤≤C .{}|11x x -<≤D .{}|12x x -<≤【答案】C【解析】如图所示,把函数2log y x =的图象向左平移一个单位得到2log (1)y x =+的图象1x =时两图象相交,不等式的解为11x -<≤,用集合表示解集选C【考点定位】本题考查作基本函数图象和函数图象变换及利用函数图象解不等式等有关知识,体现了数形结合思想.【名师点睛】本题考查作基本函数图象和函数图象变换及利用函数图象解不等式等有关知识,本题属于基础题,首先是函数图象平移变换,把2log y x =沿x 轴向左平移2个单位,得到2log (y x =+2)的图象,要求正确画出画出图象,利用数形结合写出不等式的解集.3.【2016高考新课标1卷】函数22xy x e =-在[]2,2-的图像大致为(A )(B )(C )(D )【答案】D 【解析】考点:函数图像与性质【名师点睛】函数中的识图题多次出现在高考试题中,也可以说是高考的热点问题,这类题目一般比较灵活,对解题能力要求较高,故也是高考中的难点,解决这类问题的方法一般是利用间接法,即由函数性质排除不符合条件的选项.4.【2016高考天津理数】已知函数f (x )=2(4,0,log (1)13,03)a x a x a x x x ⎧+<⎨++≥-+⎩(a >0,且a ≠1)在R上单调递减,且关于x 的方程|()|2f x x =-恰好有两个不相等的实数解,则a 的取值范围是( )(A )(0,23] (B )23,34] (C )13,23]{34}(D )13,23){34} 【答案】C 【解析】试题分析:由()f x 在R 上递减可知3401331,0134a a a a -≥⎧⇒≤≤⎨≥<<⎩,由方程|()|2f x x =-恰好有两个不相等的实数解,可知132,12a a ≤-≤,1233a ≤≤,又∵34a =时,抛物线2(43)3y x a x a =+-+与直线2y x =-相切,也符合题意,∴实数的去范围是123[,]{}334,故选C.考点:函数性质综合应用5.【2015高考新课标2,理10】如图,长方形ABCD 的边2AB =,1BC =,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记BOP x ∠=.将动P 到A 、B 两点距离之和表示为的函数()f x ,则()y f x =的图像大致为( )(D)(C)(B)(A)y424ππ424yy424ππ424yx【答案】B【解析】由已知得,当点P 在BC 边上运动时,即04x π≤≤时,tan PA PB x +=;当点P 在CD边上运动时,即3,442x x πππ≤≤≠时,DPCxPA PB +=,当2x π=时,PA PB +=当点P 在AD 边上运动时,即34x ππ≤≤时,tan PA PB x +=,从点P 的运动过程可以看出,轨迹关于直线2x π=对称,且()()42f f ππ>,且轨迹非线型,故选B .【考点定位】函数的图象和性质.【名师点睛】本题考查函数的图像与性质,表面看觉得很难,但是如果认真审题,读懂题意,通过点P 的运动轨迹来判断图像的对称性以及特殊点函数值的比较,也可较容易找到答案,属于中档题.6.【2015高考安徽,理9】函数()()2ax bf x x c +=+的图象如图所示,则下列结论成立的是( )(A )0a >,0b >,0c < (B )0a <,0b >,0c > (C )0a <,0b >,0c < (D )0a <,0b <,0c <【答案】C【解析】由()()2ax bf x x c +=+及图象可知,x c ≠-,0c ->,则0c <;当0x =时,2(0)0b f c =>,所以0b >;当0y =,0ax b +=,所以0bx a=->,所以0a <.故0a <,0b >,0c <,选C.【考点定位】1.函数的图象与应用.7.【2015高考天津,理8】已知函数()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩ 函数()()2g x b f x =-- ,其中b R ∈,若函数()()y f x g x =- 恰有4个零点,则的取值范围是( )(A )7,4⎛⎫+∞⎪⎝⎭ (B )7,4⎛⎫-∞ ⎪⎝⎭ (C )70,4⎛⎫ ⎪⎝⎭ (D )7,24⎛⎫⎪⎝⎭【答案】D【解析】由()()22,2,2,2,x x f x x x -≤⎧⎪=⎨->⎪⎩得222,0(2),0x x f x x x --≥⎧⎪-=⎨<⎪⎩, 所以222,0()(2)42,0222(2),2x x x y f x f x x x x x x x ⎧-+<⎪=+-=---≤≤⎨⎪--+->⎩, 即222,0()(2)2,0258,2x x x y f x f x x x x x ⎧-+<⎪=+-=≤≤⎨⎪-+>⎩()()()(2)y f x g x f x f x b =-=+--,所以()()y f x g x =-恰有4个零点等价于方程 ()(2)0f x f x b +--=有4个不同的解,即函数y b =与函数()(2)y f x f x =+-的图象的4个公共点,由图象可知72b <<. 【考点定位】求函数解析、函数与方程思、数形结合.8.【2017北京,理14】三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点A i 的横、纵坐标分别为第i 名工人上午的工作时间和加工的零件数,点B i 的横、纵坐标分别为第i 名工人下午的工作时间和加工的零件数,i =1,2,3.①记Q 1为第i 名工人在这一天中加工的零件总数,则Q 1,Q 2,Q 3中最大的是_________. ②记p i 为第i 名工人在这一天中平均每小时加工的零件数,则p 1,p 2,p 3中最大的是_________.【答案】1Q ;2.p【解析】试题分析:作图可得11A B 中点纵坐标比2233,A B A B 中点纵坐标大,所以第一位选1Q分别作123,,B B B 关于原点的对称点123,,B B B ''',比较直线112233,,A B A B A B ''' 斜率,可得22A B '最大,所以选2.p【考点】1.图象的应用;2.实际应用.9.【2017浙江,17】已知αR ,函数a a xx x f +-+=|4|)(在区间1,4]上的最大值是5,则的取值范围是___________. 【答案】9(,]2-∞ 【解析】试题分析:[][]41,4,4,5x x x∈+∈,分类讨论: ①.当5a ≥时,()442f x a x a a x x x =--+=--,函数的最大值9245,2a a -=∴=,舍去;②.当4a ≤时,()445f x x a a x x x=+-+=+≤,此时命题成立;③.当45a <<时,(){}max max 4,5f x a a a a =-+-+⎡⎤⎣⎦,则:4545a a a a a a ⎧-+≥-+⎪⎨-+=⎪⎩或:4555a a a a a a ⎧-+<-+⎪⎨-+=⎪⎩,解得:92a =或92a <综上可得,实数的取值范围是9,2⎛⎤-∞ ⎥⎝⎦.【考点】基本不等式、函数最值10.【2017江苏,14】设()f x 是定义在R 且周期为1的函数,在区间[0,1)上,2,,(),,x x D f x x x D ⎧∈⎪=⎨∉⎪⎩其中集合1,*n D x x n n -⎧⎫==∈⎨⎬⎩⎭N ,则方程()lg 0f x x -=的解的个数是 .【答案】8【解析】由于()[0,1)f x ∈ ,则需考虑110x ≤< 的情况 在此范围内,x Q ∈ 且x ∈Z 时,设*,,,2qx p q p p=∈≥N ,且,p q 互质 若lg x Q ∈ ,则由lg (0,1)x ∈ ,可设*lg ,,,2nx m n m m=∈≥N ,且,m n 互质 因此10n mq p =,则10()nm q p= ,此时左边为整数,右边非整数,矛盾,因此lg x Q ∉ 因此lg x 不可能与每个周期内x D ∈ 对应的部分相等, 只需考虑lg x 与每个周期x D ∉ 的部分的交点,画出函数图像,图中交点除外(1,0) 其他交点横坐标均为无理数,属于每个周期x D ∉ 的部分, 且1x = 处11(lg )1ln10ln10x x '==< ,则在1x =附近仅有一个交点因此方程解的个数为8个.【考点】函数与方程【名师点睛】对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.11. 【2014江苏,理13】已知()f x 是定义在R 上且周期为3的函数,当[)0,3x ∈时,21()22f x x x =-+,若函数()y f x a =-在区间[]3,4-上有10个零点(互不相同),则实数的取值范围是 . 【答案】1(0,)2【名师点晴】研究函数性质时一般要借助于函数图像,体现了数形结合思想;方程解的问题常转化为两熟悉的函数图像的交点个数问题来解决.图像的应用常见的命题角度有:(1)确定方程根的个数;(2)求参数的取值范围; (3)求不等式的解集.12.【2015高考江苏,13】已知函数|ln |)(x x f =,⎩⎨⎧>--≤<=1,2|4|10,0)(2x x x x g ,则方程1|)()(|=+x g x f 实根的个数为【答案】4【解析】由题意得:求函数()y f x =与1()y g x =-交点个数以及函数()y f x =与1()y g x =--交点个数之和,因为221,011()7,21,12x y g x x x x x <≤⎧⎪=-=-≥⎨⎪-<<⎩,所以函数()y f x =与1()y g x =-有两个交点,又221,011()5,23,12x y g x x x x x -<≤⎧⎪=--=-≥⎨⎪-<<⎩,所以函数()y f x =与1()y g x =--有两个交点,因此共有4个交点【考点定位】函数与方程13.【2015高考安徽,理15】设30x ax b ++=,其中,a b 均为实数,下列条件中,使得该三次方程仅有一个实根的是 .(写出所有正确条件的编号)①3,3a b =-=-;②3,2a b =-=;③3,2a b =->;④0,2a b ==;⑤1,2a b ==. 【答案】①③④⑤【解析】令3()f x x ax b =++,求导得2'()3f x x a =+,当0a ≥时,'()0f x ≥,所以()f x 单调递增,且至少存在一个数使()0f x <,至少存在一个数使()0f x >,所以3()f x x ax b =++必有一个零点,即方程30x ax b ++=仅有一根,故④⑤正确;当0a <时,若3a =-,则2'()333(1)(1)f x x x x =-=+-,易知,()f x 在(,1),(1,)-∞-+∞上单调递增,在[1,1]-上单调递减,所以()=(1)132f x f b b -=-++=+极大, ()=(1)132f x f b b =-+=-极小,要使方程仅有一根,则()=(1)1320f x f b b -=-++=+<极大或者()=(1)1320f x f b b =-+=->极小,解得2b <-或2b >,故①③正确.所以使得三次方程仅有一个实 根的是①③④⑤.【考点定位】1函数零点与方程的根之间的关系;2.函数的单调性及其极值.t()f x 与()g x 图象恰有四个交点.当()1y a x =-与23y x x =+(或()1y a x =--与23y x x =--)相切时,()f x 与()g x 图象恰有三个交点.把()1y a x =-代入23y x x =+,得()231x x a x +=-,即()230x a x a +-+=,由0D =,得()2340a a --=,解得1a =或9a =.又当0a =时,()f x 与()g x 仅两个交点,01a ∴<<或9a >.(方法二)显然1a ¹,∴231x x a x +=-.令1t x =-,则45a t t=++.∵(][),,444t t ???++,∴(][)45,19,t t?ゥ+++.结合图象可得01a <<或9a >.考点:方程的根与函数的零点.【名师点睛】本题考查函数图象与函数零点的有关知识,本题属于中等题,第一步正确画出图象,第二步涉计参数问题,针对参数进行分类讨论,按照题目所给条件要求,两函数图象有四个交点,找出符合零点要求的参数,讨论要全面,注意数形结合.14.【2016年高考北京理数】设函数33,()2,x x x a f x x x a ⎧-≤=⎨->⎩.①若0a =,则()f x 的最大值为______________; ②若()f x 无最大值,则实数的取值范围是________. 【答案】,(,1)-∞-.【解析】考点:1.分段函数求最值;2.数形结合的数学思想.【名师点睛】1.分段函数的函数值时,应首先确定所给自变量的取值属于哪一个范围,然后选取相应的对应关系.若自变量值为较大的正整数,一般可考虑先求函数的周期.若给出函数值求自变量值,应根据每一段函数的解析式分别求解,但要注意检验所求自变量的值是否属于相应段自变量的范围;2.在研究函数的单调性时,常需要先将函数化简,转化为讨论一些熟知的函数的单调性,因此掌握一次函数、二次函数、幂函数、对数函数等的单调性,将大大缩短我们的判断过程.15.【2015湖南理13】已知32,(),x x af x x x a ⎧≤=⎨>⎩,若存在实数,使函数()()g x f x b =-有两个零点,则的取值范围是 .【答案】),1()0,(+∞-∞ .【解析】试题分析:分析题意可知,问题等价于方程)(3a x b x ≤=与方程)(2a x b x >=的根的个数和为,若两个方程各有一个根:则可知关于的不等式组⎪⎪⎩⎪⎪⎨⎧≤->≤ab a b ab 31有解,∴23a b a <<,从而1>a ;若方程)(3a x b x ≤=无解,方程)(2a x b x >=有2个根:则可知关于的不等式组⎪⎩⎪⎨⎧>->ab a b 31有解,从而0<a ,综上,实数的取值范围是),1()0,(+∞-∞ .【考点定位】1.函数与方程;2.分类讨论的数学思想.16.【2016高考山东理数】已知函数2||,()24,x x m f x x mx m x m ≤⎧=⎨-+>⎩其中0m >,若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________________.【答案】()3,+∞【解析】试题分析:画出函数图象如下图所示:由图所示,要()f x b =有三个不同的根,需要红色部分图像在深蓝色图像的下方,即22m> >-⋅+->,解得3m m m m m m m24,30考点:1.函数的图象与性质;2.函数与方程;3.分段函数。

专题02 函数—三年高考(2015-2017)数学(文)真题分项版解析(解析版)

专题02 函数—三年高考(2015-2017)数学(文)真题分项版解析(解析版)

【2017年高考试题】1.【2017课标1,文8】函数sin21cos xy x=-的部分图像大致为A .B .C .D .【答案】C【考点】函数图象【名师点睛】函数图像问题首先关注定义域,从图象的对称性,分析函数的奇偶性,根据函数的奇偶性排除部分选择支,从图象的最高点、最低点,分析函数的最值、极值利用特值检验,较难的需要研究单调性、极值等,从图象的走向趋势,分析函数的单调性、周期性等确定图象.2.【2017课标3,文7】函数2sin 1xy x x=++的部分图像大致为( )A BD.C D【答案】D【考点】函数图像【名师点睛】(1)运用函数性质研究函数图像时,先要正确理解和把握函数相关性质本身的含义及其应用方向.(2)在运用函数性质特别是奇偶性、周期、对称性、单调性、最值、零点时,要注意用好其与条件的相互关系,结合特征进行等价转化研究.如奇偶性可实现自变量正负转化,周期可实现自变量大小转化,单调性可实现去f“”,即将函数值的大小转化自变量大小关系3.【2017浙江,5】若函数f(x)=x2+ ax+b在区间[0,1]上的最大值是M,最小值是m,则M –mA.与a有关,且与b有关B.与a有关,但与b无关C.与a无关,且与b无关D.与a无关,但与b有关【答案】B【解析】试题分析:因为最值在2(0),(1)1,()24a af b f a b f b==++-=-中取,所以最值之差一定与b无关,选B.【考点】二次函数的最值【名师点睛】对于二次函数的最值或值域问题,通常先判断函数图象对称轴与所给自变量闭区间的关系,结合图象,当函数图象开口向上,且对称轴在区间的左边,则函数在所给区间内单调递增;若对称轴在区间的右边,则函数在所给区间内单调递减;若对称轴在区间内,则函数图象顶点的纵坐标为最小值,区间端点距离对称轴较远的一端取得函数的最大值.4.【2017北京,文5】已知函数1()3()3x xf x =-,则()f x(A )是偶函数,且在R 上是增函数 (B )是奇函数,且在R 上是增函数 (C )是偶函数,且在R 上是减函数 (D )是奇函数,且在R 上是增函数 【答案】B【考点】函数的性质【名师点睛】本题属于基础题型,根据奇偶性的定义()f x -与()f x 的关系就可以判断函数的奇偶性,判断函数单调性的方法,1.平时学习过的基本初等函数的单调性;2.函数图象判断函数的单调性;3.函数的四则运算判断,增函数+增函数=增函数,增函数-减函数=增函数,判断函数的单调性;4.导数判断函数的单调性.5.【2017北京,文8】根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与MN最接近的是 (参考数据:lg3≈0.48)(A )1033(B )1053(C )1073 (D )1093 【答案】D 【解析】 试题分析:设36180310M x N == ,两边取对数,36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-=,所以93.2810x =,即M N 最接近9310,故选D. 【考点】对数运算【名师点睛】本题考查了转化与化归能力,本题以实际问题的形式给出,但本质就是对数的运算关系,以及指数与对数运算的关系,难点是36180310x =时,两边取对数,对数运算公式包含log log log a a a M N MN+=,log log log a a aMM N N-=,log log n a a M n M =.6.【2017山东,文9】设()()121,1x f x x x <<=-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫= ⎪⎝⎭A. 2B. 4C. 6D. 8 【答案】C【考点】分段函数求值【名师点睛】求分段函数的函数值,首先要确定自变量的范围,然后选定相应关系式代入求解;当给出函数值或函数值的取值范围求自变量的值或自变量的取值范围时,应根据每一段解析式分别求解,但要注意检验所求自变量的值或取值范围是否符合相应段的自变量的值或取值范围. 7.【2017天津,文6】已知奇函数()f x 在R上是增函数.若0.8221(log ),(log 4.1),(2)5a fb fc f =-==,则,,a b c 的大小关系为(A )a b c <<(B )b a c <<(C )c b a <<(D )c a b << 【答案】C 【解析】试题分析:由题意:()221log log 55a f f ⎛⎫=-= ⎪⎝⎭,且:0.822log 5log 4.12,122>><<,据此:0.822log 5log 4.12>>,结合函数的单调性有:()()()0.822log 5log 4.12f f f >>,即,a b c c b a >><<,本题选择C 选项. 【考点】1.指数,对数;2.函数性质的应用【名师点睛】本题主要考查函数的奇偶性与指数、对数的运算问题,属于基础题型,首先根据奇函数的性质和对数运算法则,()2log 5a f =,再比较0.822log 5,log 4.1,2比较大小.8.【2017课标II ,文8】函数2()ln(28)f x x x =-- 的单调递增区间是A.(,2)-∞-B. (,1)-∞-C. (1,)+∞D. (4,)+∞ 【答案】D【解析】函数有意义,则:2280x x --> ,解得:2x <- 或4x > ,结合二次函数的单调性、对数函数的单调性和复合函数同增异减的原则可得函数的单调增区间为()4,+∞ .故选D.【考点】复合函数单调区间【名师点睛】求函数单调区间的常用方法:(1)定义法和导数法,通过解相应不等式得单调区间;(2)图象法,由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集:二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接;(3)利用函数单调性的基本性质,尤其是复合函数“同增异减”的原则,此时需先确定函数的单调性.9.【2017课标1,文9】已知函数()ln ln(2)f x x x =+-,则A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称 【答案】C【考点】函数性质【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数()f x 的图象有对称中心(,0)2a b+.10.【2017山东,文10】若函数()e xf x (e=2.71828,是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是A .()2x f x -= B. ()2f x x = C. ()3x f x -= D. ()cos f x x =【答案】A【解析】由A,令()e2xx g x -=⋅,11'()e (22ln )e 2(1ln )022x x x x x g x ---=+=+>,则()g x 在R 上单调递增,()f x 具有M 性质,故选A. 【考点】导数的应用【名师点睛】(1)确定函数单调区间的步骤:① 确定函数f (x )的定义域;②求f ′(x );③解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间;④解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间.(2)根据函数单调性确定参数范围的方法:①利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.②转化为不等式的恒成立问题,即“若函数单调递增,则f ′(x )≥0;若函数单调递减,则f ′(x )≤0”来求解.11.【2017天津,文8】已知函数||2,1,()2, 1.x x f x x x x +<⎧⎪=⎨+≥⎪⎩设a ∈R ,若关于x 的不等式()||2xf x a ≥+在R 上恒成立,则a 的取值范围是 (A )[2,2]-(B)[-(C)[-(D)[-【答案】A零点是20x a =->,零点右边()()2xg x a f x =+<恒成立,零点左边()2xg x a =--,根据图象分析当0x =时,22a a -≤⇒≥-,即20a -≤< ,当0a =时,()()f x g x ≥恒成立,所以22a -≤≤,故选A.【考点】1.分段函数;2.函数图形的应用;3.不等式恒成立.【名师点睛】一般不等式恒成立求参数1.可以选择参变分离的方法,转化为求函数最值的问题;2.也可以画出两边的函数图象,根据临界值求参数取值范围;3.也可转化为()0F x >的问题,转化讨论求函数的最值求参数的取值范围.12.【2017课标II ,文14】已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+,则(2)f = ________. 【答案】12【考点】函数奇偶性【名师点睛】(1)已知函数的奇偶性求函数值或解析式,首先抓住奇偶性讨论函数在各个区间上的解析式,或充分利用奇偶性得出关于()f x 的方程,从而可得()f x 的值或解析式. (2)已知函数的奇偶性求参数,一般采用待定系数法求解,根据()()0f x f x ±-=得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值. 13.【2017北京,文11】已知0x ≥,0y ≥,且x +y =1,则22x y +的取值范围是__________.【答案】1,12⎡⎤⎢⎥⎣⎦【解析】 试题分析:22222(1)221,[0,1]xy x x x x x +=+-=-+∈ ,所以当01x =或时,取最大值1;当12x =时,取最小值12;因此取值范围为1[,1]2【考点】二次函数【名师点睛】本题考查了转化与化归的能力,除了象本题的方法,转化为二次函数求取值范围,也可以转化为几何关系求取值范围,当0,0x y ≥≥,1x y +=表示线段,那么22xy +的几何意义就是线段上的点到原点距离的平方,这样会更加简单.14.【2017课标3,文16】设函数10()20x x x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是__________. 【答案】1(,)4-+∞【考点】分段函数解不等式【名师点睛】分段函数的考查方向注重对应性,即必须明确不同的自变量所对应的函数解析式是什么然后代入该段的解析式求值.解决此类问题时,要注意区间端点是否取到及其所对应的函数值,尤其是分段函数结合点处函数值.15【2017山东,文14】已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当[3,0]x ∈- 时,()6x f x -=,则f (919)= .【答案】6 【解析】试题分析:由f (x +4)=f (x -2)可知,()f x 是周期函数,且6T =,所以(919)(66531)(1)f f f =⨯+= (1)6f =-=.【考点】函数奇偶性与周期性【名师点睛】与函数奇偶性有关问题的解决方法①已知函数的奇偶性,求函数值将待求值利用奇偶性转化为已知区间上的函数值求解. ②已知函数的奇偶性求解析式将待求区间上的自变量,转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.③已知函数的奇偶性,求函数解析式中参数的值常常利用待定系数法:利用f (x )±f (-x )=0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程求解. ④应用奇偶性画图象和判断单调性利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性. 16.【2017江苏,11】已知函数31()2e e x xf x x x =-+-, 其中e 是自然对数的底数. 若2(1)(2)0f a f a -+≤,则实数a 的取值范围是 ▲ .【答案】1[1,]2-【考点】利用函数性质解不等式【名师点睛】解函数不等式:首先根据函数的性质把不等式转化为(())(())f g x f h x >的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内17.【2017江苏,14】设()f x 是定义在R 且周期为1的函数,在区间[0,1)上,2,,(),,x x D f x x x D ⎧∈⎪=⎨∉⎪⎩ 其中集合1,*n D x x n n -⎧⎫==∈⎨⎬⎩⎭N ,则方程()lg 0f x x -=的解的个数是 . 【答案】8【解析】由于()[0,1)f x ∈ ,则需考虑110x ≤< 的情况 在此范围内,x Q ∈ 且x ∈Z 时,设*,,,2qx p q p p=∈≥N ,且,p q 互质 若lg x Q ∈ ,则由lg (0,1)x ∈ ,可设*lg ,,,2nx m n m m=∈≥N ,且,m n 互质 因此10n mq p= ,则10()nm q p = ,此时左边为整数,右边非整数,矛盾,因此lg x Q ∉ 因此lg x 不可能与每个周期内x D ∈ 对应的部分相等, 只需考虑lg x 与每个周期x D ∉ 的部分的交点,画出函数图像,图中交点除外(1,0) 其他交点横坐标均为无理数,属于每个周期x D ∉ 的部分,且1x = 处11(lg )1ln10ln10x x '==< ,则在1x =附近仅有一个交点因此方程解的个数为8个.【考点】函数与方程【名师点睛】对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.【2016,2015高考题】1. 【2016高考新课标1文数】若0a b >>,01c <<,则( ) (A )log a c <log b c (B )log c a <log c b (C )a c<bc(D )c a >c b【答案】B考点:指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数单调性进行比较,若底数不同,可考虑利用中间量进行比较.2. 【2014高考北京文第2题】下列函数中,定义域是R且为增函数的是()A.xy e-= B.3y x= C.lny x= D. y x=【答案】B【解析】对于选项A,在R上是减函数;选项C的定义域为(0,)+∞;选项D,在(,0)-∞上是减函数,故选B.考点:本小题主要考查函数的单调性,属基础题,难度不大.3. 【2014高考北京文第8题】加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足的函数关系2p at bt c=++(a、b、c是常数),下图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为()A.3.50分钟B.3.75分钟C.4.00分钟D.4.25分钟【答案】B考点:本小题以实际应用为背景,主要考查二次函数的解析式的求解、二次函数的最值等基础知识,考查同学们分析问题与解决问题的能力. 4. 【2014高考北京文第6题】已知函数()26log f x x x=-,在下列区间中,包含()f x 零点的区间是( ) A.()0,1 B.()1,2 C.()2,4 D.()4,+∞【答案】C【解析】因为(2)410f =->,3(4)202f =-<,所以由根的存在性定理可知:选C. 考点:本小题主要考查函数的零点知识,正确理解零点定义及根的存在性定理是解答好本类题目的关键.5. 【2015高考北京,文3】下列函数中为偶函数的是( ) A .2sin y x x = B .2cos y x x = C .ln y x =D .2xy -= 【答案】B【考点定位】函数的奇偶性.【名师点晴】本题主要考查的是函数的奇偶性,属于容易题.解题时一定要判断函数的定义域是否关于原点对称,否则很容易出现错误.解本题需要掌握的知识点是函数的奇偶性,即奇函数:定义域关于原点对称,且()()f x f x -=-;偶函数:定义域关于原点对称,且()()f x f x -=.6. 【2014高考广东卷.文.5】下列函数为奇函数的是( )A .122x x -B .3sin x x C .2cos 1x + D .22x x +【答案】A【解析】对于A 选项中的函数()12222x x x x f x -=-=-,函数定义域为R ,()()2222x x x x f x -----=-=-()f x =-,故A 选项中的函数为奇函数;对于B 选项中的函数()3sin g x x x =,由于函数31y x =与函数2sin y x =均为奇函数,则函数()3sin g x x x =为偶函数;对于C 选项中的函数()2cos 1hx x =+,定义域为R ,()()()2cos 12cos 1h x x x h x -=-+=+=,故函数()2cos 1h x x =+为偶函数;对于D 选项中的函数()22x x x ϕ=+,()13ϕ=,()312ϕ-=,则()()11ϕϕ-≠±,因此函数()22x x x ϕ=+为非奇非偶函数,故选A .【考点定位】本题考查函数的奇偶性的判定,着重考查利用定义来进行判断,属于中等题. 【名师点晴】本题主要考查的是函数的奇偶性,属于中等题.解题时一定要判断函数的定义域是否关于原点对称,否则很容易出现错误.解本题需要掌握的知识点是函数的奇偶性,即奇函数:定义域关于原点对称,且()()f x f x -=-;偶函数:定义域关于原点对称,且()()f x f x -=.7. 【2016高考新课标1文数】函数22xyx e=-在[]2,2-的图像大致为( )(A )(B )(C )(D )【答案】D考点:函数图像与性质【名师点睛】函数中的识图题多次出现在高考试题中,也可以说是高考的热点问题,这类题目一般比较灵活,对解题能力要求较高,故也是高考中的难点,解决这类问题的方法一般是利用间接法,即由函数性质排除不符合条件的选项.8. 【2015高考广东,文3】下列函数中,既不是奇函数,也不是偶函数的是( ) A .2sin y x x=+ B .2cos y x x=- C .122x xy =+D .sin 2y x x =+ 【答案】A 【解析】函数()2sin f x x x =+的定义域为R ,关于原点对称,因为()11sin1f =+,()11sin1f -=-,所以函数()2sin f x x x =+既不是奇函数,也不是偶函数;函数()2cos f x x x =-的定义域为R ,关于原点对称,因为()()()()22cos cos f x x x x x f x -=---=-=,所以函数()2cos f x x x =-是偶函数;函数()122x x f x =+的定义域为R ,关于原点对称,因为()()112222x x x x f x f x ---=+=+=,所以函数()122x x f x =+是偶函数;函数()sin 2f x x x =+的定义域为R ,关于原点对称,因为()()()sin 2sin 2f x x x x x f x -=-+-=--=-,所以函数()sin 2f x x x =+是奇函数.故选A .【考点定位】函数的奇偶性.【名师点晴】本题主要考查的是函数的奇偶性,属于容易题.解题时一定要判断函数的定义域是否关于原点对称,否则很容易出现错误.解本题需要掌握的知识点是函数的奇偶性,即奇函数:定义域关于原点对称,且()()f x f x -=-;偶函数:定义域关于原点对称,且()()f x f x -=.9. 【 2014湖南文4】下列函数中,既是偶函数又在区间(,0)-∞上单调递增的是( )21.()A f x x=2.()1B f x x =+3.()C f x x = .()2xD f x -= 【答案】A【考点定位】奇偶性 单调性【名师点睛】有关函数的基本性质的判断题目属于平时考试和练习的常见题型,解决问题的关键是根据所给选项对应的函数性质进行逐一发现验证即可.10. 【2016高考新课标2文数】下列函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是( )(A )y =x (B )y =lg x (C )y =2x(D )y=【答案】D 【解析】试题分析:lg 10xy x ==,定义域与值域均为()0,+∞,只有D 满足,故选D .考点: 函数的定义域、值域,对数的计算.【名师点睛】基本初等函数的定义域、值域问题,应熟记图象,运用数形结合思想求解. 11. 【2016高考新课标2文数】已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数y =|x 2-2x -3|与y =f (x ) 图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则1=mi i x =∑( )(A)0 (B)m (C) 2m (D) 4m 【答案】B 【解析】试题分析:因为2(),y |23|y f x x x ==--都关于1x =对称,所以它们交点也关于1x =对称,当m 为偶数时,其和为22m m ⨯=,当m 为奇数时,其和为1212m m -⨯+=,因此选B. 考点: 函数的奇偶性,对称性.【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数的图象有对称中心.12. 【2014山东.文3】 函数1log 1)(2-=x x f 的定义域为( )A. (0,2)B. (0,2]C. ),2(+∞D. [2,)+∞ 【答案】C考点:函数的定义域,对数函数的性质.【名师点睛】本题考查函数的概念、函数的定义域.解答本题关键是利用求函数定义域的基本方法,建立不等式组求解.本题属于基础题,注意基本概念的正确理解以及计算的准确性. 13. 【2014山东.文6】已知函数log ()(,a yx c a c =+为常数,其中0,1)a a >≠的图象如右图,则下列结论成立的是( )A.1,1ac >> B.1,01a c ><<C.01,1a c <<>D.01,01a c <<<<【答案】D【解析】由图可知, log ()a y x c =+的图象是由log a y x =的图象向左平移c 个单位而得到的,其中01c <<,再根据单调性易知01a <<,故选D .考点:对数函数的图象和性质.【名师点睛】本题考查对数函数的图象. 由于y =log a (x +c )的图象是由y =log a x 的图象向左平移c 个单位得到的,知0<c <1,根据图象从左向右是下降的,知0<a <1. 本题属于基础题,注意牢记常见初等函数的图象和性质并灵活运用. 14. [2016高考新课标Ⅲ文数]已知4213332,3,25a b c ===,则( )(A) b a c << (B)a b c <<(C) b c a <<(D) c a b <<【答案】A考点:幂函数的单调性.【技巧点拨】比较指数的大小常常根据三个数的结构联系相关的指数函数与对数函数、幂函数的单调性来判断,如果两个数指数相同,底数不同,则考虑幂函数的单调性;如果指数不同,底数相同,则考虑指数函数的单调性;如果涉及到对数,则联系对数的单调性来解决. 15. 【2016高考浙江文数】函数y =sin x 2的图象是( )【答案】D 【解析】试题分析:因为2sin =y x 为偶函数,所以它的图象关于y 轴对称,排除A 、C 选项;当22x π=,即x =时,1max y =,排除B 选项,故选D.考点:三角函数图象.【方法点睛】给定函数的解析式识别图象,一般从五个方面排除、筛选错误或正确的选项:(1)从函数的定义域,判断图象左右的位置,从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断函数的循环往复;(5)从特殊点出发,排除不符合要求的选项.16. 【2015高考山东,文2】设0.6 1.50.60.60.6 1.5a b c ===,,,则a b c ,,的大小关系是( )(A )a b c << (B ) a c b << (C )b a c << (D )b c a << 【答案】C【解析】由0.6xy =在区间(0,)+∞是单调减函数可知, 1.50.600.60.61<<<,又0.61.51>,故选C .【考点定位】1.指数函数的性质;2.函数值比较大小.【名师点睛】本题考查指数函数的性质,主要利用函数的单调性求解,题目看上去简单,但对指数函数底数的两种不同取值情况均做了考查.本题属于基础题,是教科书例题的简单改造,关键是要熟练掌握指数函数的性质. 17. 【2014山东.文5】 已知实数,x y 满足(01)xy a a a <<<,则下列关系式恒成立的是( ) A.33xy > B.sin sin x y >C.22ln(1)ln(1)xy +>+ D.221111x y >++ 【答案】A对于C ,取1,2,,x y x y ==->此时ln 2ln 5<,22ln(1)ln(1)x y +>+不成立;对于D ,取2,1,,x y x y ==->此时1152<,221111x y >++不成立; 故选A考点:指数函数的性质,不等式的性质.【名师点睛】本题考查指数函数、对数函数、正弦函数及幂函数的单调性.比较函数值大小问题,往往结合函数的单调性,有时通过引入“-1,0,1”等作为“媒介”.本题属于基础题,注意牢记常见初等函数的性质并灵活运用.18. 【2016高考浙江文数】已知a ,b >0,且a ≠1,b ≠1,若log >1a b ,则( ) A.(1)(1)0a b --< B. (1)()0a a b --> C. (1)()0b b a --<D. (1)()0b b a -->【答案】D 【解析】试题分析:log log 1>=a a b a ,当1>a 时,1>>b a ,10,0∴->->a b a ,(1)()0∴-->a b a ;当01<<a 时,01∴<<<b a ,10,0∴-<-<a b a ,(1)()0∴-->a b a .故选D . 考点:对数函数的性质.【易错点睛】在解不等式log 1a b >时,一定要注意对a 分为1a >和01a <<两种情况进行讨论,否则很容易出现错误.19. 【2015高考山东,文8】若函数21()2x x f x a+=-是奇函数,则使3f x >()成立的x 的取值范围为( ) (A )( ) (B)() (C )0,1() (D )1,+∞()【答案】C【考点定位】1.函数的奇偶性;2.指数运算.【名师点睛】本题考查函数的奇偶性及指数函数的性质,解答本题的关键,是利用函数的奇偶性,确定得到a 的取值,并进一步利用指数函数的单调性,求得x 的取值范围. 本题属于小综合题,在考查函数的奇偶性、指数函数的性质等基础知识的同时,较好地考查了考生的运算能力.20. 【2015高考山东,文10】设函数3,1()2,1xx b x f x x -<⎧=⎨≥⎩,若5(())46f f =,则b = ( )(A )1 (B )78 (C )34 (D)12【答案】D【解析】由题意,555()3,662f b b =⨯-=-由5(())46f f =得,51253()42b b b ⎧-<⎪⎪⎨⎪--=⎪⎩或5251224bb -⎧-≥⎪⎨⎪=⎩,解得12b =,故选D . 【考点定位】1.分段函数;2.函数与方程.【名师点睛】本题考查了分段函数及函数方程思想,解答本题的关键,是理解分段函数的概念,明确函数值计算层次,准确地加以计算.本题属于小综合题,在考查分段函数及函数方程思想的同时,较好地考查了考生的运算能力及分类讨论思想.21. 【2016高考浙江文数】已知函数f (x )=x 2+bx ,则“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A当0<b 时,(())f f x 的最小值为24-b ,所以“0<b ”能推出“(())f f x 的最小值与()f x 的最小值相等”;当0=b 时,4(())=f f x x 的最小值为0,()f x 的最小值也为0,所以“(())f f x的最小值与()f x 的最小值相等”不能推出“0<b ”.故选A . 考点:充分必要条件.【方法点睛】解题时一定要注意p q ⇒时,p 是q 的充分条件,q 是p 的必要条件,否则很容易出现错误.充分、必要条件的判断即判断命题的真假,在解题中可以根据原命题与其逆否命题进行等价转化.22. 【2015高考陕西,文4】设10()2,0xx f x x ⎧≥⎪=⎨<⎪⎩,则((2))f f -=( ) A .1- B .14 C .12 D .32【答案】C【解析】因为21(2)24f --==,所以111((2))()11422f f f -===-=,故答案选C【考点定位】1.分段函数;2.复合函数求值.【名师点睛】1.本题考查分段函数和复合函数求值,此题需要先求(2)f -的值,继而去求((2))f f -的值;2.若求函数[()]f f a 的值,需要先求()f a 的值,再去求[()]f f a 的值;若是解方程[()]f f x a =的根,则需先令()f x t =,即()f t a =,再解方程()f t a =求出t 的值,最后在解方程()f x t =;3.本题属于基础题,注意运算的准确性. 23. 【2016高考浙江文数】已知函数()f x 满足:()f x x ≥且()2,xf x x ≥∈R .( ) A.若()f a b ≤,则a b ≤ B.若()2bf a ≤,则a b ≤ C.若()f a b ≥,则a b ≥ D.若()2b f a ≥,则a b ≥ 【答案】B考点:函数的奇偶性.【思路点睛】先由已知条件可得()f x 的解析式,再由()f x 的解析式判断()f x 的奇偶性,进而对选项逐个进行排除.24. 【2014高考陕西版文第7题】下了函数中,满足“()()()f x y f x f y +=”的单调递增函数是( )(A )()3f x x = (B )()3xf x = (C )()23f x x = (D )()12xf x ⎛⎫= ⎪⎝⎭【答案】B 【解析】试题分析:A 选项:由()()3f x y x y +=+,()()333()f x f y x y xy =⋅=,得()()()f x y f x f y +≠,所以A 错误;B 选项:由()3x y f x y ++=,()()333x y x y f x f y +=⋅=,得()()()f x y f x f y +=;又函数()3x f x =是定义在R 上增函数,所以B 正确;C 选项:由()()23f x y x y +=+,()()f x f y 2233x y =⋅23()xy =,得()()()f x y f x f y +≠,所以C 错误;D 选项:函数()12xf x ⎛⎫= ⎪⎝⎭是定义在R 上减函数,所以D 错误;故选B . 考点:函数求值;函数的单调性.【名师点晴】本题主要考查的是函数求值;函数的单调性等知识,属于容易题;在解本题时可以首先由单调性排除D 选项, 再验证A ,,C 选项是否满足“()()()f x y f x f y +=”即可.在解答时对于正确选项要说明理由,对于错误选项则只要举出反例即可, 25. 【2015高考陕西,文9】 设()sin f x x x =-,则()f x =( )A .既是奇函数又是减函数B .既是奇函数又是增函数C .是有零点的减函数D .是没有零点的奇函数【答案】B【考点定位】函数的性质.【名师点睛】1.本题考查函数的性质,判断函数的奇偶性时,应先判断函数定义域是否关于原点对称,然后再判断()f x 和()f x -的关系,函数的单调性可以通过导函数判断.2.本题属于基础题,注意运算的准确性.26. 【2015高考陕西,文10】设()ln ,0f x x a b =<<,若p f =,()2a bq f +=,1(()())2r f a f b =+,则下列关系式中正确的是( ) A .q r p =< B .q r p => C .p r q =< D .p r q => 【答案】C【解析】1ln 2p f ab ===;()ln22a b a bq f ++==;11(()())ln 22r f a f b ab =+=因为2a b +>,由()ln f x x =是个递增函数,()2a b f f +>所以q p r >=,故答案选C 【考点定位】函数单调性的应用.【名师点睛】1.本题考查函数单调性,因为函数()ln f x x =是个递增函数,所以只需判断2a b+ 2.本题属于中档题,注意运算的准确性. 27. 【2016高考北京文数】已知(2,5)A ,(4,1)B ,若点(,)P x y 在线段AB 上,则2x y -的最大值为( )A.−1B.3C.7D.8 【答案】C考点: 函数最值【名师点睛】求函数值域的常用方法:①单调性法,如(5);②配方法,如(2);③分离常数法,如(1);④数形结合法;⑤换元法(包括代数换元与三角换元),如(2),(3);⑥判别式法,如(4);⑦不等式法,如(4),(5);⑧导数法,主要是针对在某区间内连续可导的函数;⑨图象法,求分段函数的值域通常先作出函数的图象,然后由函数的图象写出函数的值域,如(6);对于二元函数的值域问题,如(5),其解法要针对具体题目的条件而定,有些题目可以将二元函数化为一元函数求值域,有些题目也可用不等式法求值域.求函数的值域是个较复杂的问题,它比求函数的定义域难度要大,而单调性法,即根据函数在定义域内的单调性求函数的值域是较为简单且常用的方法,应重点掌握.28. 【2016高考北京文数】下列函数中,在区间(1,1)- 上为减函数的是( ) A.11y x=- B.cos y x = C.ln(1)y x =+ D.2x y -= 【答案】D 【解析】试题分析:由12()2xx y -==在R 上单调递减可知D 符合题意,故选D. 考点:函数单调性【名师点睛】函数单调性的判断:(1)常用的方法有:定义法、导数法、图象法及复合函数法.(2)两个增(减)函数的和仍为增(减)函数;一个增(减)函数与一个减(增)函数的差是增(减)函数;(3)奇函数在关于原点对称的两个区间上有相同的单调性,偶函数在关于原点对称的两个区间上有相反的单调性. 29. 【2014四川,文7】已知,,,,则下列等式一定成立的是( ) A 、B 、C 、D 、【答案】B 【解析】试题分析:5log ,lg b a b c ==相除得55log ,log 10lg b a ab c c==,又5510,log 10d d =∴=,所以ad cd a c=⇒=.选B. 【考点定位】指数运算与对数运算.【名师点睛】解题的关键是求得已知,求的最大值,接下来就线性规划问题了,利用线性规划求线性目标函数的最值,属于容易题,在画可行域时,首先必须找准可行域的范围,其次要注意目标函数对应的直线斜率的大小,从而确定目标函数取到最优解时所经过的点,切忌随手一画导致错解.30. 【2015高考四川,文5】下列函数中,最小正周期为π的奇函数是( )(A )y =sin (2x +2π) (B )y =cos (2x +2π)。

三年高考(2015-2017)高考数学试题解析16直线与圆理

三年高考(2015-2017)高考数学试题解析16直线与圆理

专题16 直线与圆1。

【2016高考新课标2理数】圆2228130x y x y +--+=的圆心到直线10a x y +-=的距离为1,则a=( ) (A )43- (B )34-(C )3(D )2【答案】A 【解析】试题分析:圆的方程可化为22(x 1)(y 4)4-+-=,所以圆心坐标为(1,4),由点到直线的距离公式得:24111a d a +-==+,解得43a =-,故选A .考点: 圆的方程、点到直线的距离公式。

【名师点睛】直线与圆的位置关系的判断方法(1)几何法:由圆心到直线的距离d 与半径长r 的大小关系来判断.若d 〉r ,则直线与圆相离;若d =r ,则直线与圆相切; 若d <r ,则直线与圆相交.2。

【2015高考山东,理9】一条光线从点()2,3--射出,经y 轴反射后与圆()()22321x y ++-=相切,则反射光线所在直线的斜率为( )(A )53-或35-(B )32-或23-(C)54-或45-(D )43-或34-【答案】D【解析】由光的反射原理知,反射光线的反向延长线必过点()2,3- ,设反射光线所在直线的斜率为,则反身光线所在直线方程为:()32y k x +=- ,即:230k x y k ---=.又因为光线与圆相切,()()22321x y ++-= 所以,2322311k k k ----=+ ,整理:21225120k k ++= ,解得:43k =-,或34k =-,故选D .3。

【2015高考广东,理5】平行于直线012=++y x 且与圆522=+y x 相切的直线的方程是( )A .052=+-y x 或052=--y xB 。

052=++y x 或052=-+y xC 。

052=+-y x 或052=--y x D. 052=++y x 或052=-+y x【答案】D .【解析】依题可设所求切线方程为20x y c ++=,则有2200521c++=+5c =±,所以所求切线的直线方程为250x y ++=或250x y +-=,故选D .【考点定位】直线与圆的位置关系,直线的方程.【名师点睛】本题主要考查直线与圆的位置关系,利用点到直线距离求直线的方程及转化与化归思想的应用和运算求解能力,根据题意可设所求直线方程为20x y c ++=,然后可用代数方法即联立直线与圆的方程有且只有一解求得,也可以利用几何法转化为圆心与直线的距离等于半径求得,属于容易题.4。

三年高考(2015-2017)数学(理)试题分项版分析+Word版含分析-专题07导数应用求函数最值、单调性等

三年高考(2015-2017)数学(理)试题分项版分析+Word版含分析-专题07导数应用求函数最值、单调性等

【2017年】1.【2017课标II ,理11】若2x =-是函数21()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为()A.1-B.32e --C.35e -D.1 【答案】A 【解析】试题分析:由题可得12121()(2)(1)[(2)1]x x x f x x a ex ax e x a x a e ---'=+++-=+++-因为(2)0f '-=,所以1a =-,21()(1)x f x x x e -=--,故21()(2)x f x x x e-'=+-令()0f x '>,解得2x <-或1x >,所以()f x 在(,2),(1,)-∞-+∞单调递增,在(2,1)-单调递减所以()f x 极小值为()111(111)1f e -=--=-,故选A 。

【考点】函数的极值;函数的单调性2.【2017浙江,7】函数y=f (x )的导函数()y f x '=的图像如图所示,则函数y=f (x )的图像可能是【答案】D【解析】试题分析:原函数先减再增,再减再增,且由增变减时,极值点大于0,因此选D . 【考点】导函数的图象【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与轴的交点为0x ,且图象在0x 两侧附近连续分布于轴上下方,则0x 为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数)('x f 的正负,得出原函数)(x f 的单调区间. 3.【2017课标II ,理】已知函数()2ln f x ax ax x x =--,且()0f x ≥。

(1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且()2202e f x --<<。

【答案】(1)1a =;(2)证明略。

【解析】试题解析:(1)()f x 的定义域为()0,+∞。

设()ln g x ax a x =--,则()()f x xg x =,()0f x ≥等价于()0g x ≥。

专题16 直线与圆—三年高考(2015-2017)数学(理)真题分项版解析(原卷版)

专题16 直线与圆—三年高考(2015-2017)数学(理)真题分项版解析(原卷版)

1.【2016高考新课标2理数】圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a=( )2.【2015高考山东,理9】一条光线从点()2,3--射出,经y 轴反射后与圆()()22321x y ++-=相切,则反射光线所在直线的斜率为( )3.【2015高考广东,理5】平行于直线012=++y x 且与圆522=+y x 相切的直线的方程是( )C. 052=+-y x 或052=--y xD. 052=++y x 或052=-+y x 4.【2015高考新课标2,理7】过三点(1,3)A ,(4,2)B ,(1,7)C -的圆交y 轴于M ,N 两点,则||MN =( )5.【2015高考重庆,理8】已知直线l :x +ay -1=0(a ∈R )是圆C :224210x y x y +--+=的对称轴过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |= ( )6.【2015江苏高考,10】在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线8.【2017江苏,13】在平面直角坐标系xOy 中,(12,0),(0,6),A B -点P 在圆2250O x y +=:上,若20,PA PB ⋅≤9.【2015高考湖北,理14】如图,圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点,A B(Ⅱ)过点A 任作一条直线与圆22:1O x y +=相交于,M N 两点,下列三个结论:22两点,过,A B11.【2016高考上海理数】已知平行直线012:,012:21=++=-+y x l y x l ,则21,l l 的距离___________.12.【2017课标3,理20】已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 与A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点()4,2P -,求直线l 与圆M 的方程.(1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.14.【2015高考广东,理20】已知过原点的动直线l 与圆221:650C x y x 相交于不同的两点A ,B .(1)求圆1C 的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线:(4)L yk x 与曲线C 只有一个交点:若存在,求出k 的取值范围;若不存在,说明理由.15.【2016高考江苏卷】(本小题满分16分)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆22:1214600M x y x y +--+=及其上一点(2,4)A (1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线6x =上,求圆N 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于,B C 两点,且BC OA =,求直线l 的方程;(3)设点(,0)T t 满足:存在圆M 上的两点P 和Q ,使得,TA TP TQ +=求实数t 的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题16 抛物线1.2017课标II ,文12】过抛物线2:4C y x =的焦点F ,C 于点M (M 在轴上方),为C 的准线,点N 在上且MN l ⊥,则M 到直线NF 的距离为【答案】C【考点】直线与抛物线位置关系【名师点睛】直线和圆锥曲线的位置关系,一般转化为直线方程与圆锥曲线方程组成的方程组,利用韦达定理或求根公式进行转化,涉及弦长的问题中,应熟练地利用根与系数关系,设而不求法计算弦长;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.涉及中点弦问题往往利用点差法. 2.【2014,安徽文3】抛物线241x y =的准线方程是( )A . 1-=yB . 2-=yC . 1-=xD . 2-=x 【答案】A . 【解析】试题分析:题中抛物线的标准形式为24x y =,则其准线方程为1y =-,故先A .考点:抛物线的准线方程.【名师点睛】在求解抛物线标准方程过程中,先要将给定方程转化成标准形式如2(0)y A x A =≠,则其焦点坐标为(,0)4A ,准线方程为4Ax =-;若2(0)x Ay A =≠,则其焦点坐标为(0,)4A ,准线方程为4Ay =-.3. 【2014全国1,文10】已知抛物线C : x y =2的焦点为F ,()00,A x y 是C 上一点,x F A 045=,则0x =( ) A. 1 B. 2 C. 4 D. 8 【答案】A【解析】试题分析:根据抛物线的定义:到焦点的距离等于到准线的距离,又抛物线的准线方程为:14x =-,则有:01||4AF x =+,即有001544x x +=,可解得01x =.考点:抛物线的方程和定义【名师点睛】本题主要考查了抛物线的定义和性质,同时考查了考生分析问题、转换问题的能力.4. 【2014辽宁文8】已知点(2,3)A -在抛物线C :22y px =的准线上,记C 的焦点为F ,则直线AF 的斜率为( ) A .43-B .1-C .34-D .12- 【答案】C【考点定位】1、抛物线的标准方程和简单几何性质;2、直线的斜率.【名师点睛】本题考查抛物线的标准方程、抛物线的几何性质、直线的斜率公式..注意从已知出发,确定焦点F 的坐标,进一步确定直线的斜率.本题是一道基础题,在较全面考查抛物线等基础知识的同时,考查考生的计算能力及分析问题解决问题的能力.5.【2014四川,文10】已知F 是抛物线2y x =的焦点,点A ,B 在该抛物线上且位于轴的两侧,2OA OB ⋅=(其中O 为坐标原点),则ABO ∆与AFO ∆面积之和的最小值是( ) A . B . CD【答案】B 【解析】试题分析:据题意得1(,0)4F ,设1122(,),(,)A x y B x y ,则221122,x y x y ==,221212122,2y y y y y y +==-或121y y =,因为,A B 位于轴两侧所以.所以122y y =-两面积之和为12211111224S x y x y y =-+⨯⨯221221121111112248y y y y y y y y =-+⨯⨯=-+⨯111218y y y =++⨯11298y y =+112938y y =+≥.【考点定位】1、抛物线;2、三角形的面积;3、重要不等式.【名师点睛】在圆锥曲线的问题中,我们通常使用设而不求的办法,此题中,我们设出1122(,),(,)A x y B x y 两点坐标,由2OA OB ⋅=,得122y y =-,接下来表示出ABO ∆与AFO∆面积之和,利用基本不等式即可求得最小值,利用基本不等式时,要注意“一正,二定,三相等”.6.【2015高考陕西,文3】已知抛物线22(0)y px p =>的准线经过点(1,1)-,则抛物线焦点坐标为( )A .(1,0)-B .(1,0)C .(0,1)-D .(0,1)【答案】B【解析】由抛物线22(0)y px p =>得准线2px =-,因为准线经过点(1,1)-,所以2p =, 所以抛物线焦点坐标为(1,0),故答案选B 【考点定位】抛物线方程和性质.【名师点睛】1.本题考查抛物线方程和性质,采用待定系数法求出p 的值.本题属于基础题,注意运算的准确性.2.给出抛物线方程要求我们能够找出焦点坐标和直线方程,往往这个是解题的关键.7. 【2016高考四川文科】抛物线24y x =的焦点坐标是( ) (A)(0,2) (B) (0,1) (C) (2,0) (D) (1,0) 【答案】D考点:抛物线的定义.【名师点睛】本题考查抛物线的定义.解析几何是中学数学的一个重要分支,圆锥曲线是解析几何的重要内容,它们的定义、标准方程、简单的性质是我们重点要掌握的内容,一定要熟记掌握.8.【2014全国2,文10】设F 为抛物线2:=3C y x 的焦点,过F 且倾斜角为30︒的直线交C 于A ,B 两点,则 AB =( )(A )3(B ) (C )12 (D )【答案】C【解析】由题意,得3(,0)4F .又因为0k tan 30==故直线AB 的方程为3y )4=-,与抛物线2=3y x 联立,得21616890x x -+=,设1122(x ,y ),(x ,y )A B ,由抛物线定义得,12x x AB p =++=168312162+=,选C . 【考点定位】直线与圆锥曲线的位置关系【名师点睛】本题考查了抛物线的标准方程,焦半径公式,属于中档题,深入理解抛物线的定义是解题的关键,注意韦达定理的使用.9.【2016高考新课标2文数】设F 为抛物线C :y 2=4x 的焦点,曲线y =kx(k >0)与C 交于点P ,PF ⊥x 轴,则k =( )(A )12 (B )1 (C )32(D )2【答案】D考点: 抛物线的性质,反比例函数的性质.【名师点睛】抛物线方程有四种形式,注意焦点的位置. 对函数y =kx(0)k ≠,当0k >时,在(,0)-∞,(0,)+∞上是减函数,当0k <时,在(,0)-∞,(0,)+∞上是增函数.10.【2017天津,文12】设抛物线24y x =的焦点为F ,准线为l .已知点C 在l 上,以C 为圆心的圆与y 轴的正半轴相切于点A.若120FAC ∠=︒,则圆的方程为 .【答案】22(1)(1x y ++=【解析】试题分析:设圆心坐标为(1,)C m -,则(0,)A m ,焦点(1,0)F ,(1,0),(1,)AC AF m =-=-,1cos 21AC AF CAF AC AF⋅∠===-⋅,m =C 与y 轴得正半轴相切,则取m =(-,半径为1,所求圆的方程为22(1)(1x y ++-=.【考点】1.抛物线的方程;2.圆的方程.【名师点睛】本题设计比较巧妙,考查了圆,抛物线的方程,同时还考查了向量数量积的坐标表示,本题只有一个难点,就是0120CAF ∠=,会不会用向量的坐标表示cos CAF ∠,根据图象,可设圆心为()1,C m -,那么方程就是()()2211x y m ++-=,若能用向量的坐标表示角,即可求得m ,问题也就迎刃而解了.11.【2014上海,文4】若抛物线y 2=2px 的焦点与椭圆15922=+y x 的右焦点重合,则该抛物线的准线方程为___________. 【答案】2x =-.【考点】椭圆与抛物线的几何性质【名师点睛】1.涉及抛物线几何性质的问题常结合图形思考,通过图形可以直观地看出抛物线的顶点、对称轴、开口方向等几何特征,体现了数形结合思想解题的直观性. 2.求抛物线方程应注意的问题(1)当坐标系已建立时,应根据条件确定抛物线方程属于四种类型中的哪一种; (2)要注意把握抛物线的顶点、对称轴、开口方向与方程之间的对应关系; (3)要注意参数p 的几何意义是焦点到准线的距离,利用它的几何意义来解决问题. 12.【2014高考陕西版文第11题】抛物线24y x =的准线方程为________. 【答案】1x =- 【解析】试题分析:由抛物线的几何性质知:抛物线24y x =的准线方程为1x =-,故答案为1x =-. 考点:抛物线的几何性质.【名师点晴】本题主要考查的是抛物线的几何性质,属于容易题,解题时直接利用抛物线的几何性质即可求得其准线方程13.【2017课标1,文20】设A ,B 为曲线C :y =24x 上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.【答案】(1)1; (2)7y x =+.于是直线AB 的斜率12121214y y x x k x x -+===-. (2)由24x y =,得2xy'=.设M (x 3,y 3),由题设知312x=,解得32x =,于是M (2,1).设直线AB 的方程为y x m =+,故线段AB 的中点为N (2,2+m ),|MN |=|m +1|.将y x m =+代入24x y =得2440x x m --=.当16(1)0m ∆=+>,即1m >-时,1,22x =±从而12||AB x x -=由题设知||2||AB MN =,即2(1)m =+,解得7m =. 所以直线AB 的方程为7y x =+. 【考点】直线与圆锥曲线的位置关系【名师点睛】本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用. 14.【2017浙江,21】(本题满分15分)如图,已知抛物线2x y =,点A11()24-,,39()24B ,,抛物线上的点)2321)(,(<<-x y x P .过点B 作直线AP 的垂线,垂足为Q .(Ⅰ)求直线AP 斜率的取值范围; (Ⅱ)求||||PQ PA ⋅的最大值. 【答案】(Ⅰ))1,1(-;(Ⅱ)2716试题解析:(Ⅰ)设直线AP 的斜率为k ,则2121412-=+-=x x x k ,∵1322x -<<,∴直线AP 斜率的取值范围是)1,1(-.(Ⅱ)联立直线AP 与BQ 的方程110,24930,42kx y k x ky k ⎧-++=⎪⎪⎨⎪+--=⎪⎩ 解得点Q 的横坐标是)1(23422+++-=k k k x Q ,因为|PA1)2x +=)1(12++k k |PQ |= 1)1)(1()(1222++--=-+k k k x x k Q ,所以|PA ||PQ |=3)1)(1(+--k k令3)1)(1()(+--=k k k f ,因为2)1)(24()('+--=k k k f ,所以 f (k )在区间)21,1(-上单调递增,)1,21(上单调递减,因此当k =12时,||||PQ PA ⋅取得最大值2716. 【考点】直线与圆锥曲线的位置关系【名师点睛】本题主要考查直线方程、直线与抛物线的位置关系等基础知识,同时考查解析几何的基本思想方法和运算求解能力,通过表达||PA 与||PQ 的长度,通过函数3)1)(1()(+--=k k k f 求解||||PQ PA ⋅的最大值.15.【2016高考新课标1文数】(本小题满分12分)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :22(0)y px p =>于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C于点H . (I )求OHON; (II )除H 以外,直线MH 与C 是否有其它公共点?说明理由. 【答案】(I )2(II )没有把直线MH 的方程x tpt y 2=-,与px y 22=联立得04422=+-t ty y ,解得t y y 221==,即直线MH 与C 只有一个公共点,所以除H 以外直线MH 与C 没有其它公共点.试题解析:(Ⅰ)由已知得),0(t M ,),2(2t pt P . 又N 为M 关于点P 的对称点,故),(2t p t N ,ON 的方程为x tp y =,代入px y 22=整理得0222=-x t px ,解得01=x ,p t x 222=,因此)2,2(2t pt H . 所以N 为OH 的中点,即2||||=ON OH . (Ⅱ)直线MH 与C 除H 以外没有其它公共点.理由如下:直线MH 的方程为x tp t y 2=-,即)(2t y p tx -=.代入px y 22=得04422=+-t ty y ,解得t y y 221==,即直线MH 与C 只有一个公共点,所以除H 以外直线MH 与C 没有其它公共点.考点:直线与抛物线【名师点睛】高考解析几何解答题大多考查直线与圆锥曲线的位置关系,直线与圆锥曲线的位置关系是一个很宽泛的考试内容,主要由求值、求方程、求定值、最值、求参数取值范围等几部分组成;解析几何中的证明问题通常有以下几类:证明点共线或直线过定点;证明垂直;证明定值问题.其中考查较多的圆锥曲线是椭圆与抛物线,解决这类问题要重视方程思想、函数思想及化归思想的应用.16.2016高考新课标Ⅲ文数]已知抛物线C :22y x =的焦点为F ,平行于轴的两条直线12,l l 分别交C 于,A B 两点,交C 的准线于P Q ,两点.(I )若F 在线段AB 上,R 是PQ 的中点,证明ARFQ ;(II )若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程. 【答案】(Ⅰ)见解析;(Ⅱ)21y x =-.试题解析:由题设)0,21(F .设b y l a y l ==:,:21,则0≠ab ,且)2,21(),,21(),,21(),,2(),0,2(22b a R b Q a P b b B a A +---. 记过B A ,两点的直线为,则的方程为0)(2=++-ab y b a x . .....3分 (Ⅰ)由于F 在线段AB 上,故01=+ab . 记AR 的斜率为1k ,FQ 的斜率为2k ,则222111k b aaba ab a b a a b a k =-=-==--=+-=, 所以ARFQ . ......5分(Ⅱ)设与轴的交点为)0,(1x D , 则2,2121211b a S x a b FD a b S PQF ABF -=--=-=∆∆. 由题设可得221211b a x a b -=--,所以01=x (舍去),11=x .设满足条件的AB 的中点为),(y x E . 当AB 与轴不垂直时,由DE AB k k =可得)1(12≠-=+x x yb a . 而y b a =+2,所以)1(12≠-=x x y . 当AB 与轴垂直时,E 与D 重合,所以,所求轨迹方程为12-=x y . ....12分 考点:1、抛物线定义与几何性质;2、直线与抛物线位置关系;3、轨迹求法.【方法归纳】(1)解析几何中平行问题的证明主要是通过证明两条直线的斜率相等或转化为利用向量证明;(2)求轨迹的方法在高考中最常考的是直接法与代入法(相关点法),利用代入法求解时必须找准主动点与从动点.17. 【2015高考湖南,文20】(本小题满分13分)已知抛物线21:4C x y =的焦点F 也是椭圆22222:1y x C a b+=(0)a b >>的一个焦点,1C 与2C 的公共弦长为,过点F 的直线与1C 相交于,A B 两点,与2C 相交于,C D 两点,且AC 与BD 同向. (I )求2C 的方程;(II )若AC BD =,求直线的斜率.【答案】(I )22198y x += ;(II) ±.2234341212()4()4x x x x x x x x +-=+-,设直线的斜率为,则的方程为1y kx =+,联立直线与抛物线方程、直线与椭圆方程、利用韦达定理进行计算即可得到结果.试题解析:(I )由21:4C x y =知其焦点F 的坐标为(0,1),因为F 也是椭圆2C 的一个焦点,所以221a b -= ①; 又1C 与2C 的公共弦长为,1C 与2C 都关于y 轴对称,且1C 的方程为21:4C x y =,由此易知1C 与2C 的公共点的坐标为3()2,229614a b∴+= ②,联立①②得229,8a b ==,故2C 的方程为22198y x +=。

相关文档
最新文档