Gradient Vector Flow A New External Force for Snakes
active contour model

Initial curve (High bending energy)
Final curve deformed by bending force. (low bending energy)
Thus the bending energy tries to smooth out the curve.
External force
Active Contour Models
(Snakes)
Amyn Poonawala EE 264 Instructor: Dr. Peyman Milanfar
What is the objective?
To perform the task of Image Segmentation. What is segmentation? Subdividing or partitioning an image into its constituent regions or objects. Why use it when there are many methods already existing??
Using variational calculus and by applying Euler-Lagrange differential equation we get following equation
αvss β vssss Eimage = 0
Equation can be interpreted as a force balance equation. Each term corresponds to a force produced by the respective energy terms. The contour deforms under the action of these forces.
常用流体力学单词

221
incompressible fluid
inertial coordinate system initial condition input intensity of turbulence
interface internal energy internal friction
inviscid fluid
I
脉动应力 流体 流体动力学 流场 流体机械 流体力学 流体质点 流体静力学 自由表面 摩擦系数 摩擦阻力 无粘性流体
气体常数 气体动力学 表压力 几何压力 几何相似 渐缩 渐扩
调和函数 压头损失 传热 亥姆霍兹方程 非均质流体 均质流体 水平力 水平线 水力直径 紊流光滑管区 流体静力学 流体静压力 流体静应力 高超音速流动 (m>5)
背压 斜压流体 气压计 正压流体 伯努利方程 叶片 质量力 边界条件 边界层,附面层 边界层分离 附面层厚度 体积模量 体积应力 流束 浮力 过渡层
218
C
Cauchy-Reimam condition
center of pressure coefficient coefficient of compressibility coefficient of eddy viscosity coefficient of viscosity cohesive forces combined boundary layer completely rough zone of turbulent pipe flow component velocity compressibility compressible fluid conservation equation of energy conservation equation of mass conservation of mechanical energy conservation of moment of momentum conservation of momentum continuity continuum continuum hypothesis control surface control volume convective acceleration convergent-divergent nozzle converging nozzle correction coefficient critical pressure critical Reynolds number critical speed of sound critical state cross section curvature radius curved shock cylindrical coordinate system
热能与动力工程专业英语-1-SDU

考察方式
最终成绩以平时表现和期末成绩为准 比例20%+80% 闭卷考试
Chapter 1 Intro to thermal sciences New words
Acoustic flowmeter 声波流量计 Adiabatic 绝热的 Aerodynamics 空气动力学 Affiliation 联系 Airfoil 机翼,螺旋桨 Alternative fuel 替代燃料 Anemometer [.æ ni‵mɔmitə] 风速计, 风力计
New words
Equilibrium 平衡 均衡 Fluid mechanics 流体力学 Forced convection 强制对流 Free convection 自然对流 Friction loss 摩擦损失 Glass ceramic 微晶玻璃,玻璃陶瓷 Heat engine 热机 Heat pump 热泵 Hydrofoil 水翼,水翼艇[英] [`haɪdrə.fɔɪl]
2012专业外语
授课教师: 赵红霞
授课内容
以阎维平 柳成文 主编的 《专业英语》 为 参考教材 课堂上尽量采用主动式交互式学习方式 尽量提高学生的口头英语表达能力
教学要求
掌握常见的英文热动制冷专业词汇 注意中英文之间的联系和对应 能够将中文科技资料翻译成英文 能够将英文资料翻译成中文
New words
Vortex shedding 漩涡脱落 Water faucet 水龙头,水嘴[`fɔ:sɪt]
Abbreviations
视频监控与视频分析第六章 图像分割2

2 1
v1
5
2
v2
Solve the dual maximum flow problem
Source
Compute the maximum flow between Source and Sink
9
Constraints Edges: Flow < Capacity
2 1
v1
5
2
v2
Nodes: Flow in = Flow out
0 1
v1
3
2
v2
0
Sink
Algorithms assume non-negative capacity
Maxflow Algorithms
Flow = 6
Source
Augmenting Path Based Algorithms
5 1. Find path from source to sink with positive capacity 2. Push maximum possible flow through this path 3. Repeat until no path can be found
(流值,容量)
(0,5)
v1 (6,10) v0 (0,3) (0,2) v5 (0,3) (0,4) v4 (0,5) (6,6) v2
例
(0,3)
Snake, Shape, and Gradient Vector Flow(报告)

可以把它部力 阻止拉伸和弯曲,而外部保守力(external potential force) 把snake推向理想的图像边缘。
为了得到公式(6)的解,引入除了s以外,还依赖时间t的函数 ,也就是 ,以让snake动态。下次,函数x的偏导数由公式(6)算得,如下:
Snake粗收敛的原因在图1(c)中说明了,图片上给出的是凹轮廓里面的外部力场。虽然外部力正确指向对象的边缘,但是在凹轮廓的内部,却指向水平的相反方向。因此,活动轮廓向U-型对象的“手指”部分拉开,但是不能向凹里的部分前进。这里没有参数 和 能解决这个问题。
关于传统snake公式重要的另一个问题是捕捉区域的限制,通过图1(c),很容易看出这点。图中,我们能看到外部力的大小在边缘附近很快消失。在方程式(5)中, 增大的时候,区域也增长,但是轮廓的细节越来越模糊和不清楚,最后对于太大的 ,凹部分本身最终被抹去。
3)一般化的平衡力方程式
图1(a)和2(a)上的两种snake解分别满足关于该能量模型的Euler方程式(6)。因此,收敛到对象函数(1)的局部最小会产生很粗的结果。有学者直接用平衡力方程式定义snake,得到了这个问题的解,这里把标准外部力 换成更一般化的外部力 :
。(9)
的选择对snake的实行和行为有很大影响。一般来说,外部力 可以分成两个部分:静态和动态。静态力由图像数据计算,所以在snake过程中保持不变。
1.前言
Snake[1],即活动的轮廓,是在图像领域中定义的曲线,它受到内部力(internal force)和外部力(external force)的影响。内部力是由曲线本身引起的,而外部力是用图像资料进行计算的。内部力和外部力使得snake
适应对象轮廓或者图像的特征。Snake用于很多方面:例如,边缘检测[1]、形态模型化[2],[3]、分割[4],[5]、运动跟踪[4],[6]。
蒲亦非-定义-答案-分数阶微积分在图像处理中的研究综述

万方数据万方数据万方数据万方数据万方数据万方数据万方数据万方数据分数阶微积分在图像处理中的研究综述作者:黄果, 许黎, 蒲亦非, HUANG Guo, XU Li, PU Yi-fei作者单位:黄果,HUANG Guo(乐山师范学院智能信息处理及应用实验室,四川乐山,614000), 许黎,XU Li(乐山师范学院物电学院,四川乐山,614000), 蒲亦非,PU Yi-fei(四川大学计算机学院,成都,610064)刊名:计算机应用研究英文刊名:Application Research of Computers年,卷(期):2012,29(2)被引用次数:4次1.LEIBNIZ G W Correspondatice de Leibniz avec Hugens,van Zulichem et le Marquis de L' Hospital 18532.MANDELBROT B B;Van NESS J W The fractional brounian motions,fractional noises and applications 1968(04)3.MANDELBROT B B The fractal geometry of nature 19834.袁晓;张红雨;虞厥邦分数导数与数字微分器设计[期刊论文]-电子学报 2004(10)5.陶然;齐林;王越分数阶Fourier变换的原理与应用 20046.陶然;张峰;王越分数阶Fourier变换离散化的研究进展[期刊论文]-中国科学E辑 2008(04)7.薛定宇;赵春娜分数阶系统的分数阶PID控制器设计[期刊论文]-控制理论与应用 2007(05)8.PODLUBNY I Fractional-order systems and controllers[外文期刊] 1999(01)9.ZAYED A I On the relationship between the Fourier transform and fractional Fourier transform 1996(12)10.廖科分数阶微积分运算数字滤波器设计与电路实现及其应用[学位论文] 200611.RODIECK R W Quantitative analysis of cat retinal ganglion cell response to visual stimuli 1965(11)12.蒲亦非;袁晓;廖科一种实现任意分数阶神经型脉冲振荡器的格形模拟分抗电路[期刊论文]-四川大学学报(工程科学版)2006(01)13.陈庆利;蒲亦非;黄果分数阶神经型脉冲振荡器[期刊论文]-四川大学学报(工程科学版) 2011(01)14.蒲亦非;王卫星数字图像的分数阶微分掩模及其数值运算规则[期刊论文]-自动化学报 2007(11)15.PU Yi-fei;WANG Wei-xing;ZHOU Ji-liu Fractional differential approach to detecting textural features of digital image and its fractional differential filter implementation[期刊论文]-Science in China Series F:Information Sciences 2008(09)16.蒲亦非将分数阶微分演算引入数字图像处理[期刊论文]-四川大学学报(工程科学版) 2007(03)17.蒲亦非分数阶微积分在现代信号分析与处理中的应用的研究[学位论文] 200618.蒲亦非;王卫星;周激流数字图像纹理细节的分数阶微分检测及其分数阶微分滤波器实现[期刊论文]-中国科学E辑 2008(12)19.蒲亦非将分数阶微分演算引入数字图像处理[期刊论文]-四川大学学报(工程科学版) 2007(03)20.PU Yi-fei;ZHOU Ji-liu;YUAN Xiao Fractional differential mask:a fractional differential-based approach for multiscale texture enhancement 2010(02)21.黄果;蒲亦非;陈庆利非整数步长的分数阶微分滤波器在图像增强中的应用[期刊论文]-四川大学学报(工程科学版) 2011(01)22.黄果;蒲亦非;陈庆利基于分数阶积分的图像去噪[期刊论文]-系统工程与电子技术 2011(04)23.杨柱中;周激流;黄梅基于分数阶微分的边缘检测[期刊论文]-四川大学学报(工程科学版) 2008(01)24.杨柱中;周激流;晏祥玉基于分数阶微分的图像增强[期刊论文]-计算机辅助设计与图形学学报 2008(03)25.杨柱中;周激流;黄梅用分数阶微分提取图像边缘[期刊论文]-计算机工程与应用 2007(35)26.MATHIEU B;MELCHIOR P;OUTSALOUP A Fractional differentiation for edge detection[外文期刊] 2003(11)27.李远禄;于盛林分数阶差分及边缘检测[期刊论文]-光电工程 2006(12)28.汪凯宇;肖亮;韦志辉基于图像整体变分和分数阶奇异性提取的图像恢复模型[期刊论文]-南京理工大学学报(自然科学版) 2003(04)29.刘红毅;韦志辉基于分数阶样条小波与IHS变换的图像融合[期刊论文]-南京理工大学学报(自然科学版) 2006(01)30.LIU Jun;CHEN Song-can;TAN Xiao-yang Fractional order singular value decomposition representation for face recognition 2007(01)31.左凯;孙同景;李振华二维分数阶卡尔曼滤波及其在图像处理中的应用[期刊论文]-电子与信息学报 2010(12)32.汪成亮;兰利彬;周尚波自适应分数阶微分在图像纹理增强中的应用[期刊论文]-重庆大学学报 2011(02)33.高朝邦;周激流基于四元数分数阶方向微分的图像增强[期刊论文]-自动化学报 2011(02)34.BAI Jian;FENG Xiang-chu Fractional-order anisotropic diffusion for image denoising[外文期刊] 2007(10)35.张军;韦志辉SAR图像去噪的分数阶多尺度变分PDE模型及自适应算法[期刊论文]-电子与信息学报 2010(07)36.张军;韦志辉一种基于卷积积分的图像去噪变分方法[期刊论文]-中国图象图形学报 2008(09)37.张军;韦志辉分数阶图像去噪变分模型及投影算法[期刊论文]-计算机工程与应用 2009(05)38.张军基于分数阶变分的图像建模与去噪算法研究[学位论文] 200939.ZHANG Jun;WEI Zhi-hui A class of fractional-order multi-scale variational models and alternating projection algorithm for image denoising 2011(05)40.沈淑君分数阶微分方程的数值解方法及误差分析 200541.庄平辉;刘发旺空间-时间分数阶扩散方程的显式差分近似 2005(51)42.MAINARDI F;LUCHKO Y;PAGNINI G;PARADISI G The fundamental solution of the space-time fractional diffusion2001(02)43.HUANG Feng-hui;LIU Fa-wang The fundamental solution of the space-time fractional advection dispersion equation 2005(1-2)44.TSCHUMPERLE D;DERICHE R Vector-valued image regularization with PDEs:a common framework for different applications[外文期刊] 2005(04)45.GILBOA G;SOCHEN N;ZEEVI Y V Variational denoising of partly textured images by spatially varying constraints [外文期刊] 2006(08)46.朱立新;王平安;夏德深引入耦合梯度保真项的非线性扩散图像去噪方法[期刊论文]-计算机研究与发展 2007(08)47.SUN Xiao-li;WANG Jun-ping;SONG Guo-xiang Anisotropic diffusion filtering method with a fidelity term[期刊论文] -Journal of Systems Engineering and Electronics 2008(08)48.陈利霞;冯象初;王卫卫加权变分的图像去噪算法[期刊论文]-系统工程与电子技术 2010(02)49.LEE S H;SEO J K Noise removal with Gauss curvature-driven diffusion[外文期刊] 2005(07)50.王新楼;乔明;邹谋炎一种基于偏微分方程的SAR图像去噪方法[期刊论文]-电子与信息学报 2005(09)51.PERONA P;MALIK J Scale-space and edge detection using anisotropic diffusion[外文期刊] 1990(07)52.RUDING L;OSHER S;FATEMI E Nonlinear total variation based noise removal algorithms 1992(1-4)53.OSHER S;RUDIN L I;FATEMI E Nonlinear total variation based noise removal algorithms 1992(03)54.LYSAKER M;LUNDERVOLD A;TAI X C Noise removal using fourth-order partial differential equation withapplications to medical magnetic resonance images in space and time[外文期刊] 2003(12)55.KASS M;WITKIN A;TERZOPOULOS D Snakes:active contour models 1988(04)56.XU Chen-yang;JERRY L P Snakes shapes and gradient vector flow 1998(03)57.XU Chen-yang;JERRY L P Generalized gradient vector flow external forces for active contours[外文期刊] 1998(02)1.勾荣基于Riemann-Liouville分数阶微分的图像增强[期刊论文]-制造业自动化2013(16)2.勾荣基于 G-L 分数阶微分的图像边缘检测[期刊论文]-计算机与现代化2013(11)3.勾荣基于分数阶微分的图像增强算法[期刊论文]-电子科技 2013(12)4.魏文力.李宝树.崔克彬.徐雪涛基于改进的最大熵航拍输电线路图像复原方法[期刊论文]-科学技术与工程 2013(32)本文链接:/Periodical_jsjyyyj201202003.aspx。
石油英语词汇(G3)_生物化学英语词汇

gov 气动阀gov. 调速器gov. 政府govern 统治governing equation 控制方程governing law 适用法律governing motion 调节装置governing principle 指导原则governing valve 调节阀government assurance 政府保证government benchmark 国家水准点government investment 国家投资government selling price 政府销售价government take 政府留成government 政府;管理;行政管理governmental authority 政府当局governor valve 节流阀governor 统治者;调节器gox 气态氧goz 沙丘状积砂gp shear-out safety joint 砾石充填剪切安全接头gp sliding sleeve 砾石充填滑套gp 表压gp 砾石充填gp 气体推进剂gp 通用的gp 一般化程序设计gpa 发电厂自动化gpa 天然气加工者协会gpa 通用放大器gpac 通用模拟计算机gpb 加仑桶gpc 凝胶渗透色谱法gpc 气相分配色谱gpc 通用计算机gpcv 天然气压力控制阀gpd 加仑日gpdc 通用数字计算机gpg 格令加仑gpg 克加仑gph 加仑小时gpi 对地位置指示器gpi 综合专利索引gpib 通用接口总线gpl 巨脉冲激光器gpm 加仑分gpps 通用程序设计系统gpr 通用寄存器gpr 通用雷达gps 加仑秒gps 全球定位系统gps 通用模拟程序gpss 通用系统模拟程序gpt 每千加仑中所加加仑数gpt 伽马定位器gr 保证试剂gr 传动比gr 收入总额gr 自然伽马测井gr-a 丁腈橡胶gr-i 异丁橡胶gr-m 氯丁橡胶gr-n 丁腈橡胶gr-p 聚硫橡胶gr-s 丁苯橡胶gr. 齿轮;传动装置gr. 等级;品位;度gr. 格令;粒gr. 接地gr. 克gr. 罗gr. 研磨gr. 重力gr.v. 自记伏特计gr.w. 自记瓦特计gr.wt 总重gra 地球化学储层分析器grab bucket dredger 抓斗式挖泥船grab dredger 抓斗式挖泥船grab pipe machine 抓管机grab rope 系索grab sample 定时取集的样品grab 夹具grabber 井架工grabbing 强制graben block 地堑断块graben cycle 地堑旋回graben deep 地堑深部graben fault 地堑断层graben faulting 地堑断陷作用graben segment 地堑截体graben shoulder 地堑肩graben 地堑graben-fill basin 地堑填充盆地graben-shaped basin 地堑形盆地graben-type basin 地堑型盆地graben-wide upward 地堑宽隆起grabenward inclination 向地堑侧倾斜grace of payment 付款宽限grace period 宽限期grad 梯度gradability 可分等级性gradation period 均夷相gradation zone 渐变带gradation 分级gradational boundary 分级界限gradational contact 渐变界面gradational stratification 渐变成层gradational type 过渡型gradational zone 序粒带grade estimation 质量评定grade line 坡降线grade of slope 坡度grade of steel 钢级grade rod 水准尺grade scale 粒级标准grade 度;等级gradeability 拖曳力;爬坡能力gradebuilder 斜板推土机graded bed 粒级层graded facies 粒级递变相graded filter 级配滤器graded gravel 按尺寸分级的砾石graded hydrolysis 分段水解graded plain 均夷平原graded potential 分级电位graded profile 均衡剖面graded rhythmite 粒级韵律层graded sand 粒级砂graded sediment 均粒沉积graded siltstone turbidite 序粒粉砂浊积岩graded suspension 递变悬浮graded unconformity 均夷不整合graded 分度的graded-density skin 变密度表层graded-density spun polyester 不同密度等级绕制滤心的聚酯纤维graded-stratified bed 层理状递变层grader man 推土机手grader 平路机gradient array 梯度排列;梯度电极系gradient correction factor 梯度校正因子gradient elution chromatography 梯度洗脱色谱法gradient method 梯度法gradient operator 梯度算子gradient search procedure 梯度搜索法gradient search 梯度搜索gradient slope 梯度坡度gradient solvent 梯度溶剂gradient start 梯度起点gradient stop 测压力梯度停点gradient trend line 递减率趋向线gradient vector 梯度向量gradient zone 梯度带gradient 梯度gradienter 测斜仪grading analysis 粒度分析grading factor 分选因素grading loading 级配装填grading 定坡降线;分选gradio log 压力梯度测井gradiomanometer sonde 压差密度计探头gradiomanometer tool 压差密度计gradiomanometer 压差密度计gradometer 梯度仪graduate school 研究生院graduated bottle 刻度瓶graduated cylinder 量筒graduated disk 刻度盘graduated glass 量杯graduated pipette 刻度移液管graduated scale 分度标尺graduated string 复合管柱graduated tube 刻度管graduated tubing 直径分段减小的油管柱graduated 刻上分度的graduation error 刻度误差graduation of data 数据修匀graduation 度;分度;刻度;级配;选分;分等级;加浓;毕业graduator 刻度器graf sea gravimeter 格拉夫海上重力仪graft copolymer 接枝共聚物graft copolymerization 接枝共聚graft modification 接枝改性graft polymer 接枝聚合物graft polymerization 接枝聚合graft polyol 接枝多元醇graft 嫁接grahamite 脆沥青;硅质中铁陨石grain angularity 颗粒的棱角性grain boundary 晶粒边界grain breakage 颗粒破碎grain cluster 团粒grain coating 颗粒涂层grain composition 颗粒组成grain contact point 颗粒接触点grain corner 颗粒棱角grain curvature 颗粒表面曲率grain density 颗粒密度grain diameter 粒径grain diminution 退变重结晶grain distribution 粒度分布grain flow 颗粒流grain fraction 颗粒组分grain fragmentation 晶粒碎裂grain grade 粒度grain growth 晶体长大grain limestone 粒屑石灰岩grain lineation 粒线理grain orientation 颗粒定向grain packing 颗粒充填;颗粒填塞grain pattern 颗粒结构grain repacking 颗粒重新排列充填grain roundness 颗粒圆度grain shape 颗粒形状;粒形grain size analysis 颗粒分析grain size segregation 粒度分级grain size 颗粒大小grain skeleton 颗粒骨架grain sphericity 颗粒球度grain structure 粒状构造grain 粒grain-by-grain settling 分粒沉降grain-flow sandstone 颗粒流砂岩grain-size comparator 粒度比测器grain-size distribution curve 粒度分布曲线grain-size graph 粒径图grain-size sorting 粒度分选grain-supported 颗粒支撑的grain-to-grain boundary 粒间边界grain-to-grain cementation 粒间胶结grain-to-grain cohesion 粒间粘聚grain-to-grain contact 粒间接触grain-to-grain loading 粒间载荷grain-to-grain stress 粒间接触应力grained formation sand 粒状地层砂grained 粒状的grainflat 粒面grainfoot 格令英尺graininess 粒状;粒度grainstone 粒状灰岩grainy 粒状gram atomic weight 克原子量gram calorie 克卡gram centimeter 克厘米gram force 克力gram formula weight 克式量gram ion 克离子gram mass 克质量gram molecular volume 克分子体积gram molecular weight 克分子量gram molecule 克分子gram particle weight 克粒量gram particle 克粒gram rad 克拉德gram 克gram-atom 克原子gram-element specific activity 克元素比放射性gram-equivalent 克当量gram-roentgen 克伦琴grambastichara 格氏轮藻属gramineae 禾本科graminidites 禾本粉属grammar 语法;文法;根本原理;入门书gramme =gramgrammite 硅灰石grammol 克分子gramophone 留声机grampus 大铁钳gran 粒状的granatohedron 菱形十二面体grand bank 大沙洲grand slam suite 全胜法grand slam 大满贯测井grand total 总计grandfather cycle 磁带原始周期;存档期grandfather file 原始文件grandfather tape 原始磁带grandfather 祖父;早两代的数据装置granexinis 粒面切壁孢属granide 花岗岩类granite gneiss 花岗片麻岩granite grus 花岗岩砂砾granite pegmatite 花岗伟晶岩granite porphyry 花岗斑岩granite wash 花岗质砂岩granite 花岗岩granite-greisen 花岗云英岩granitelle 二云花岗岩granitello 细粒花岗岩;斜长辉石花岗岩granitic mass 花岗岩岩体granitic microfeature 花岗状微地貌granitic texture 花岗结构granitic vein 花岗岩岩脉granitics 花岗质岩granitification 花岗岩化作用granitine 细晶岩;非花岗岩质结晶岩granitite 黑云花岗岩granitization 花岗岩化granitoid 花岗岩类;花岗岩状granitoidite 花岗状变质岩graniton 辉长岩granitophyre 花斑岩granitotrachytic texture 花岗粗面结构granny board 小凳;支承管线的杠棒granny knot 死绳结granny rag 拉拉布granoblastite 花岗变晶岩granoclastic 花岗碎裂granodiorite 花岗闪长岩granodiorite-porphyry 花岗闪长斑岩granodioritic basement 花岗闪长岩质基底granodioritization 花岗闪长岩化granodiscus 粒面球藻属granodolerite 花岗粒玄岩granofels 花岗变晶岩granofelsophyre 花岗霏细斑岩granogabbro 花岗辉长岩granolepidoblastic texture 花岗鳞片变晶结构granolite 花岗状火成岩;花岗深变岩granophyre 花斑岩;文象斑岩granophyric 花斑状的granospherite 放射球粒granosyenite 花岗正长岩grant 开采权;租让grantee 被授与者granter 授与者grantor =grantergranular aggregate 粒状集合体granular calcium chloride 粒状氯化钙granular cementation 粒状胶结granular fragment 粒状碎屑granular ice 晶水granular interlocking texture 粒状连生结构granular limestone 粒状灰岩granular loss circulation material 粒状防漏剂granular material arching 颗粒材料造拱granular moulding compound 粒状模塑化合物granular particle 颗粒granular polymer 粒状聚合物granular porosity 粒间孔隙性granular rock 粒状岩granular structure 粒状结构granular 粒状的granularity 粒度granulated welding composition 粒状焊剂granulated 成粒的;粒状的granulating machine 造粒机granulation tower 造粒塔granulation 粒化granulator 成粒机granule roundstone 细砾granule 颗粒granulichara 粒轮藻属granuliform 细粒状的granulite facies 麻粒岩相granulite 麻粒岩granulitization 压碎作用granulometer 颗粒测量仪granulometric analysis 粒度分析granulometric composition 粒度组成granulometric facies 粒度相granulometric 颗粒的;粒度的granulometry 粒度测定法granulophyre 微花斑岩granulose structure 麻粒构造granulose 淀粉糖;颗粒状的;粒面的granulyte 麻粒岩grape 葡萄;深紫色grapestone 葡萄石grapevine drainage 葡萄藤状水系grapevine stream-pattern 葡萄藤状水系graph of errors 误差曲线graph paper 方格纸graph plotter 绘图仪graph theory 图论graph 图graphecon 阴极射线记忆管grapher 自动记录器graphic adjustment 图解平差法graphic approach 图解法graphic art 图解法graphic calculation 图解计算graphic character 图形字符graphic chart 图表graphic computation 图解计算graphic data processing 图解数据处理graphic dead reckoning 航迹推算图解法graphic diagnostics 图象诊断学graphic differentiation 图解微分法graphic display 图形显示graphic exploration of the subsurface 地下勘探图示系统graphic formula 图解式graphic granite 文象花岗岩graphic instrument 图示仪器graphic interpolation 作图插值graphic interpretation 图示法graphic language 图象语言graphic log 图示录井图graphic meter 自动记录仪器graphic model 立体图graphic modeling 图形模拟graphic monitor 图形监视器graphic output 图形输出graphic package 图形程序包graphic presentation 图形显示graphic processor 图形处理机graphic representation 图示graphic scale 图示比例尺graphic solution 图解graphic symbol 图例graphic trend surface analysis 图解法趋势面分析graphic =graphical 图解的graphical evaluation and review technique 图解评审法graphical optimization 图解优化graphics display 绘图显示graphics monitor 图象监视器graphics pointer 图象指针graphics tablet 图象输入板graphics terminal 图象显示终端graphics 制图法;图解计算法;图形学graphiphyre 微文象斑岩graphiphyric 微文象斑状graphite anode 石黑阳极graphite composite material 石墨复合材料graphite crucible 石墨坩埚graphite fiber 石墨纤维graphite lubricating oil 石墨润滑油graphite 石墨graphite-mica schist 石墨云母片岩graphitic bitumen 含石墨沥青graphitic chert 含石墨燧石graphitic corrosion 石墨腐蚀graphitic lubricant 石墨润滑剂graphitite 不纯石墨graphitization 石墨化graphitized 石墨化的graphitizer 墨化剂graphitoid 次石墨graphocite 石墨片岩grapholith 粘土质页岩graphophyre 粗文象斑岩graphoscope 计算机显示器graphostatics 图解静力学graphtyper 字图电传机grapnel anchor 四爪锚grapnel 四爪锚grapple dredger 抓斗式挖泥船grapple 卡grapplers 脚扣grappling tool 抓捞工具grappling 锚定;探线graptolite 笔石graptolitic facies 笔石相grashof number 葛拉晓夫数grasp 地质检索和存储程序grasp 地质检索和摘要程序grasp 抓grass crop 露头grass swamp 草原沼泽grass 草;噪音细条;草;茅草干扰grassed earthen embankment 植草土堤grasshopper rig 轻型钻机grasshopper 液面控制装置grassroot project 新建项目grassroot refinery 新建炼厂grassroots refinery 新建炼厂grassroots 浅油砂层grate bar 炉箅grate 炉;格栅;环形固定装药机构;挡药板;喷油栅架;装格栅;摩擦;擦碎;轧grater 粗齿木锉;磨光机graticule line 方格线graticule mesh 格网graticule ticks 坐标网延长线graticule 格子量板;十字线grating analysis 筛析grating constant 晶格常数grating texture 格状结构grating 格子gratuity 赏金;小费grau 潮道grauwacke 杂砂岩grav 砾石gravel aggregate 砾石骨料gravel angularity 砾石棱角度gravel arrangement 砾石颗料排列gravel batch 一次配制的砾石用量gravel bearing fluid 含砾石液体gravel bed 砾石层gravel breakup 砾石破碎gravel bridging 砾石形成砂桥gravel buildup 砾石堆积gravel column 砾石充填柱gravel compaction equipment 砾石充填设备gravel compaction volumetric effeciency 砾石充填体积效率gravel concentration 砾石含量gravel containment 砾石储器gravel coverage 砾石覆盖率gravel deposition 砾石沉积gravel desert 砾漠gravel dune 砾石砂丘gravel dyke 砾石脉gravel fall rate 砾石沉降速率gravel fallout 砾石滑脱gravel fill 砾石充填gravel fillet 卵石gravel fillup 砾石充填gravel fine 细砾gravel flow packed liner completion 循环砾石充填衬管完井gravel fluid mixture 砾石与液体的混合物gravel fluid screen 砾石充填液滤器gravel fluidation 砾石流态化gravel height 砾石充填高度gravel injection blending unit 砾石充填混合装置gravel injection down-stream of the pump 泵后加砂砾石充填gravel input 砾石输入gravel insertion 砾石充填gravel island 砾石岛gravel laden fluid 携带砾石的液体gravel level 砾石顶面位置gravel lube line 砾石润滑管线gravel pack clutch joint 砾石充填离合短节gravel pack completion 砾石充填完井gravel pack fluid 砾石充填液gravel pack interval 砾石充填层段gravel pack packer 砾石充填封隔器gravel pack perforated extension 砾石充填带眼加长短节gravel pack pot 砾石罐gravel pack sand 砾石充填砂gravel pack screen sand control 砾石充填筛管防砂gravel pack seal bore receptacle 砾石充填密封座gravel pack sliding sleeve 砾石充填滑套gravel pack straddle tool 砾石充填对口皮碗工具gravel pack 砾石充填gravel packed perforation tunnel 填满砾石的射孔孔道gravel packed sand control liner 预充填的防砂衬管gravel packed well 砾石充填井gravel packer completion 砾石充填完井gravel packer 砾石滤层gravel packing cup 砾石充填皮碗gravel packing effectiveness 砾石充填效率gravel packing hookup 砾石充填装置gravel packing media 砾石充填携砂液gravel packing sand 砾石充填砂gravel packing screen 砾石充填筛管gravel packing zone 砾石充填层gravel placement 砾石充填gravel pore opening 砾石孔隙通道gravel ramp 砾石导向斜板gravel reserve 砾石储备gravel retainer cup 砾石承托碗gravel retainer plug 砾石承托塞gravel screen 砾石滤器gravel seal 砾石充填层间的密封gravel settling effect 砾石沉降效应gravel shattering 砾石破碎gravel sieve analysis 砾石筛析gravel sizing 砾石尺寸选择gravel slumping 砾石沉降gravel slurry 砾石砂浆gravel sorter 砾石分选机gravel spotting 砾石充填就位gravel supply cylinder 砾石供给罐gravel thickness 砾石厚度gravel to sand interface 砾石-地层砂界面gravel to sand size ratio 砾石-地层砂粒度比gravel top 砾石顶面gravel transport 砾石输送gravel 砾石gravel-pack assembly 砾石充填装置gravel-pack gravel 砾石充填用的砾石gravel-pack logging tool 砾石充填测井仪gravel-packed liner 砾石滤管gravel-packing fluid 砾石充填液gravel-slot combination 砾石与割缝的尺寸组合gravel-to-sand median diameter ratio 砾石-地层砂直径中值比gravelfluid ratiometer 砂比计gravelformation sand interface 砾石-地层砂界面gravelsand filled perforation tunnel 被砾石与地层砂混合物充填的射孔孔道graveyard shift 夜班graveyard tour 夜班gravics 重力场学gravimeter method 重力探矿法gravimeter survey 重力测量gravimeter 重力仪gravimetric analysis 重力分析gravimetric coating thickness test 称重法涂层厚度测试gravimetric correction 重力校正gravimetric density 重力密度gravimetric determination 重量法测定gravimetric map 重力图gravimetric method 重力勘探gravimetric network 重力测网gravimetric observation 重力观测gravimetric prover 称重式标准罐gravimetric proving 重力校正gravimetric response 重力响应gravimetric survey 重力测量gravimetric tank 称重罐gravimetric 重力测量的gravimetry 重力测量graving dock 干船坞gravipause 重力边缘gravireceptor 重力感受器gravisphere 引力范围gravitate 下沉gravitation tank 高位油罐gravitation 重力gravitational acceleration 重力加速度gravitational anomaly 重力异常gravitational attraction 地球引力gravitational compaction 重力压实gravitational constant 引力常数gravitational differentiation 重力分异作用gravitational displacement 重力位移gravitational energy 位能gravitational field 重力场gravitational flow 自流gravitational flux 重力通量gravitational force 重力gravitational gliding 重力滑动作用gravitational high 重力高gravitational low 重力低gravitational mass sensor 引力质量探测设备gravitational mass 引力质量gravitational moment 重力矩gravitational potential 重力势gravitational prospecting 重力勘探gravitational segregation 重力分选gravitational separation 重力分离gravitational settling 重力沉淀gravitational sliding 重力滑动作用gravitational tectogenesis 重力构造作用gravitational tide 引力潮gravitational torque 重力矩gravitational unit 重力单位gravitational vector 重力矢量gravitational wave 重力波gravitational 重力的gravitative differentiation 重力分异gravitative faulting 重力断层作用gravitative pressure 重力压力gravitometer 比重计graviton 重子gravity alignment 重力校准gravity anchor 重力锚gravity anomaly inversion 重力异常反演gravity anomaly 重力异常gravity apparatus 重力仪gravity balance 重力秤gravity base 重力基座;重力测量基点gravity based platform 重力基座平台gravity baumé 波氏比重gravity bottle 比重瓶gravity circulation 重力循环gravity contour 重力等值线gravity control 重力控制gravity conveyer 自重运输机gravity corer 重力取心器gravity correction 重力校正gravity coverage 重力测网gravity davit 重力式吊艇杆gravity density log 重力密度测井gravity descent tool 靠重力下井工具gravity dewaxing 重力除蜡gravity drainage field 重力驱油田gravity drainage 重力泄油gravity drive 重力驱动gravity fault 重力断层gravity feed tank 自流进油的油罐gravity feed type 重力送料式gravity feed 自流输送gravity field 重力场gravity filter 重力滤器gravity finger 重力指进gravity flood 重力驱油gravity flow 重力流动gravity flowage 重力流动gravity force capillary viscometer 重力毛细管粘度计gravity head 静压头gravity high 重力高gravity injection 重力流入gravity inversion method 重力反演法gravity line 自流管路gravity load 重力载荷gravity logging 重力测井gravity low 重力低gravity lubricating system 重力润滑系统gravity measuring system 重力测量系统gravity meter 重力仪gravity mistie 重力闭合差gravity mixer 阶梯式拌和机gravity negative 重力低gravity override 〔气gravity packing 重力填充法gravity pendulum 重力摆gravity placement 重力充填gravity plate separator 重力板式分离器gravity platform 重力基座平台gravity positive 重力高gravity potential 重力势gravity profile 重力剖面gravity prospecting 重力勘探gravity pump 重力泵gravity quaywall 重力式岸壁gravity reversal 重力反向gravity segregation 重力分异gravity sensing element 重力敏感单元gravity separation 重力分离gravity separator 重力分离器gravity settling section 重力沉降段gravity settling 重力沉降gravity slumping 重力滑动gravity splash lubrication system 重力飞溅式润滑系统gravity spring 下降泉gravity standard 重力标准值gravity stratification 重力分层gravity structure 重力基座平台gravity tank truck 自流加油油槽汽车gravity tank 高位罐gravity test 比重测定gravity tongue 重力舌gravity tube 比重计gravity type wharf 重力式码头gravity water 重力水gravity wave 重力波gravity welding 重力焊gravity well 自流井gravity 重力gravity-dominated displacement 重力控制的驱替gravity-fill tank 自流式泥浆补给罐gravity-mid percent curve 比重-中百分曲线gravity-operated tilt sensor 重力式测斜传感器gravity-slide deposit 重力滑动沉积gravity-stable displacement 重力稳定驱替gravpack 砾石充填gravure 照相凹版gray code 葛莱码gray durain =grey duraingray iron 灰口铁gray level 灰阶gray mud 灰色软泥gray scale 灰度gray shade scale 灰度等级gray system 灰色系统gray 灰色的;戈瑞gray-body emitter 灰体发射源gray-body radiation 灰体辐射gray-collar 灰领工人gray-scale plotting 灰度作图gray-scale rendition 灰度再现gray-scale value 灰度值gray-tone response 半色调特性graybody 灰体grayhound 短立根graywacke 硬砂岩graywackization 杂砂岩化作用grazing angle 切线角grazing incidence 临界入射grazing trail 觅食痕迹grazing wave 掠射波grc 自然伽马校正grd 接地;地面grd 接地的grd 研磨grease bleeding 润滑脂分油grease box 黄油盒grease compounding 润滑脂调制grease compressor 滑脂枪grease cover 黄油杯盖grease cup 润滑脂杯grease dispensing test 润滑脂流动试验grease filter 润滑脂过滤器grease fitting 润滑脂嘴grease gun 润滑脂枪grease hardening resistance 润滑脂抗硬化安定性grease hole 新油井grease monkey 泵端加油工grease nipple 黄油嘴grease oil 润滑油grease thickening 润滑脂稠化grease valve 润滑脂阀grease 润滑脂grease-proof 防油的;耐油的greaser 油井;油矿工工作服;注油工;注油器greasy money 轻易来的钱greasy 油性的great calorie 大卡great circle chart 大圆海图;日晷投影地图great circle distance 沿大圆弧的距离great circle route 大圆航线great coal 大煤great ice age 大冰期great interglacial 大间冰期great interpluvial 大间雨期great numbers 大数great pluvial 大雨期great 全部;大的;重大的;强烈的;极大的;久的;大写的greatest common divisor 最大公约数greatest common factor 最大公因子greatest common measure 最大公约数greatest lower bound 最大下界greatest peak 最大峰值greaves 金属渣greece 希腊greek 希腊的;希腊人;希腊语green acid 绿酸green algae 绿藻green bit 新钻头green coke 绿焦green earth 海绿石;绿鳞石green hand 没经验的人green labour 蓝领工人green mud 绿泥green oil 石蜡基原油green pattern 绿模式green river formation 绿河组green rubber 生胶green sandstone 绿砂岩green test 格林测定法green vitriol 绿矾green 绿色;草地;未成熟的;无经验的;新的;精力旺盛的;软的;生的;未淬火的;未加工的;湿的green's equivalent layer 格林等效层green's function 格林函数green's theorem 格林定理greenalite 铁蛇纹石greenbottle 潜水艇归航雷达设备greenhalghite 淡英钠粗安岩greenhouse effect 温室效应greenhouse gases 温室气体greenhouse 温室;周围有玻璃窗的座舱greenlandite 铁铝榴石;镁铝榴石;紫苏角闪岩greensand 绿砂greenschist 绿片岩greenwich civil time 格林尼治民用时greenwich hour angle 格林尼治时角greenwich mean time 格林尼治均时greenwich meridian 格林尼治子午线greenwich sidereal time 格林尼治恒星时greenwich 格林尼治gregaritic texture 辉石聚斑状结构gregorian calendar 格雷戈里历gregory-newton formula 格雷戈里-牛顿公式greisen 云英岩greisenization 云英岩化grex number 格列克通用支数grey cast iron 灰口铸铁grey durain 灰色暗煤grey level 灰度水平grey market 灰市场grey mud 灰色软泥grey 灰色greybox model 灰箱模型greyhounds 短立根greying 发灰色的;石墨化greyscale 灰度greywacke 硬砂岩grf 天然气采收率gri 气体研究所gri 自然伽马指数gri 组重复周期grid azimuth 坐标方位角grid bearing 坐标象限角grid bias 栅偏压grid block model 网格块模型grid board 坐标图板grid cell 网格单元grid chart 格网图grid circuit 栅极电路grid code 图格编码grid convergence 坐标纵线偏角grid coordinate 平面直角坐标grid dispersion 网格离差grid effect 网格效应grid electrode 栅极grid emission 栅发射grid equator 格网赤道grid extrapolation 网格外插grid interpolation 网格内插grid interval 网格间隔grid magnetic azimuth 栅磁方位角grid map 栅状图grid matrix 网格矩阵grid mesh 网格grid model 网格模型grid operator 网格因子grid overlay 格网叠置片grid pattern 网格图形grid point 网格点grid refinement 网格加密grid residual method 网格剩余法grid residual 网点剩余值法grid scale 坐标比例尺grid screen 栅屏grid smoothing 网点平滑grid spacing 网格步长grid system 坐标系grid test 划格法附着力试验grid tick 格网标记grid tray tower 栅板塔grid tray 栅板塔盘grid zone 坐标带grid 网grid-bias detector 栅偏压检波器grid-bias modulation 栅偏调制grid-reference 参考坐标网gridblock pressure 网格块压力gridblock saturation 网格块饱和度gridblock 网格块gridding technique 网格技术gridding 网格化;绘格线gridiron 格状物;管网;高压输电线网;格子船台;梁格结构;方格形;安装格栅gridistor 隐栅管gridline 方格坐标线grief joint 方钻杆grief kelly 方钻杆grief stem 方钻杆griffith crack 格里菲思裂纹griffith criterion of brittle 格里菲斯脆性破坏准则grillage 格子架;木垛;格排垛grillage-beams 交叉梁系grille 格grime 尘垢grind out 用离心机测定油中悬浮物和水的含量;内磨grind shoe 磨鞋grind 磨;折磨;刻苦grindability index 可磨细度指标grindability 可磨性grinder 磨工;磨床;研磨机;磨轮;无线电干扰声grindery 磨工车间grinding and buffing 打磨和抛光grinding machine 磨床grinding oil 研磨油grinding stone 磨石grinding wheel 砂轮grinding 破碎grindstone 磨石gringarten type curves 格林加顿解释图版grip end 抓物端grip head 夹头grip holder 夹头grip nut 夹紧螺母grip ring 夹环grip 夹gripe 紧握;抓牢;控制;制动器;柄gripper tube 卡管gripper 抓器;夹器gripping device 夹具gripping fork 叉形夹gripping head 夹头gripping pliers 夹管钳griquaite 透辉石榴岩grit blasting 喷丸处理;喷砂清理grit chamber 沉砂池grit 砾砂grit-blast 喷砂gritrock 粗砂岩gritstone 粗砂岩gritty 粗砂质的grivation 磁斜坐标纵线偏角grizzle 低级煤grizzly 格筛;灰色的;灰白的;有灰斑的grl 自然伽马测井grm 归一化互换法grm 克grn 自然伽马-中子测井grnd 接地grog 熟料groin 丁坝;防砂堤grommet type seals 环形密封圈grommet 护孔环groningen effect 格罗宁根效应groove angle 坡口角度groove cast 槽铸型groove depth 坡口深度groove face 坡口面groove long edge 坡口长边groove welding 槽焊groove width 坡口宽度groove 槽grooved disk 带槽圆盘grooved drill collar 螺旋钻铤grooved flow channel 沟槽式流动通道grooved joint 榫槽连接grooved pipe base 带沟槽的中心管grooved plunger 带槽柱塞grooved upland 沟切高原grooved 槽形的grooving corrosion 沟纹腐蚀gross area 总面积gross assets 投资总额;资产总额gross building area 总建筑面积gross calorific power 总热值gross calorific value 总热值gross count gamma ray 总自然伽马计数率gross cumulative production 总累积产量gross deadweight 总载重量gross domestic product 国内生产总值gross drilling time 总钻井时间gross earnings 毛利gross effect 有效功率gross efficiency 总效率gross error 总误差;过失误差gross estimates 毛估gross export value 出口总值gross fluid production rate 流体总产量gross freight ton 总载货吨gross gas-oil ratio 总气油比gross heat value 高位热值gross heating value 总热值gross import value 进口总值gross income 总收入gross industrial output value 工业总产值gross industrial output 工业总产值gross investment 投资总额gross load 总载荷gross meter factor 总仪表系数gross meter registration 仪表总累积值gross mis-tie 总闭合差gross national demand 国民总需求gross national expenditures 国民支出总额gross national product 国民总产值gross national supply 国民总供给gross negligence 严重过失gross pay thickness 产层总厚度gross pay 工资总额gross porosity 总孔隙度gross production 总产量gross profit 毛利润gross rate 毛费率gross record 原始记录gross recovery 总开采量gross reservoir interval 储层总厚度gross sales 销售总额gross sample 总样品gross sand 砂层总厚度gross section 总截面gross thermal value 总热值gross thickness 总厚度gross ton 长吨gross tonnage 总吨位;注册吨gross value 总值gross variation 总变化gross weight 毛重;总重gross yield 毛收益gross 总的gross-count rate 总计数率grossouvreite 粉状蛋白石grossular 钙铝榴石grossularite 钙铝榴石grott 洞穴grouan 花岗岩groud rent 地租ground a line 接地线ground anchor 地锚ground anisotropy 大地各向异性ground barium sulfate 重晶石粉ground beacon antenna 地面信标天线ground bearing pressure 地基承压力ground bed cable 地床电缆ground bed 地床ground block 地面滑轮ground brush 接地电刷ground cable em survey 地面导线电磁勘探法ground cable 接地线ground calcium carbonate 重质碳酸钙ground capacitance 对地电容ground chalk 重质碳酸钙ground circuit 地回路ground clamp 接地夹ground clearance 离地净高ground coat 底漆ground color 底色ground concentration 地面浓度ground conductivity 大地电导率ground configuration 地形ground connection 接地ground control equipment 地面控制设备ground controlled approach 地面控制进场雷达装置ground coordinate 地面坐标ground coupling 地面耦合ground cover 土被;植被;地面掩盖物ground coverage 地面覆盖范围ground current 接地电流ground discharge 大地放电ground dispensing point 地面配油点ground distance 地面距离ground engineering 地基工程ground equipment 地面设备ground feature 地貌ground filling point 地面装油点ground finish 磨光ground flare 地面火炬ground geophysics 地面地球物理学ground glass joint 磨口玻璃接头ground glass screen 毛玻璃筛ground glass stopper 磨口玻璃塞ground glass 磨砂玻璃ground hematite 赤铁矿粉ground hold 泊船具ground hydrant 地面消火栓ground inclination 地面坡度ground lamp 接地指示灯ground level 地平面ground line 基线;接地线;地平线ground location 地面定位ground loop 接地回路ground lug 接地片ground map 地形图ground marker navigation 地标导航ground mica 云母ground monitor 接地指示仪ground moraine 底碛ground motion 地表运动ground nadir 地面天底点ground navigation 地面导航ground noise 大地噪声;基底噪声ground nutshell 碎坚果壳ground object 地物ground pattern 底样ground photograph 地面摄影相片ground photography 地面摄影术ground plan 平面图ground plane antenna 接地平面天线ground plastics 堵漏碎塑料ground plate 接地板ground plot 地面图;地基图ground potential 大地电位ground pressure 地压ground prospecting apparatus 地面勘探仪器ground protection 接地保护ground radiation 地面辐射ground receiving station 地面接收站ground resistance 大地电阻ground resolution cell 地面分辨单元ground resolution 地面分辨率ground rod 接地杆ground roll 地滚波ground sample 地面取样ground slide 载片ground spill 地面溢溅ground stake 接地棒ground state level 基态能级ground state 基态;地面状态ground station 地面站ground stereo camera 地面立体摄影机ground stereogram 地面立体图ground stereophotography 地面立体摄影学ground strap 接地母线ground stress 地应力ground survey 地面测量ground swing error 地面反射误差ground swing 地面反射变化ground switch 接地开关ground tackle 锚设备ground temperature 地面温度ground terminal 接地端子ground track 地面航迹ground truth 地面真值ground unrest 背景噪声ground vegetation 地面植被ground water aquifer 地下水含水层ground water surface 地下水面ground water table 潜水面ground water 地下水ground wave 地面波ground ways 下水滑道ground wire 接地线ground 土地ground-drift indicator 地速-偏流角指示器ground-electrode 接地电极ground-moraine shoreline 底碛滨线ground-range image 地面距离图象ground-range scale 地面距离比例尺ground-seat union 接合面密封的由壬ground-thermometer 地温计groundbreaking 破土;动工grounded neutral 接地中性点grounded shield 接地屏蔽grounded 接地的;已打好基础的grounding circuit 接地电路grounding keel 坞龙骨grounding resistance 接地电阻grounding switch 接地开关grounding 接地groundmass 基质groundwater basin 地下水盆地groundwater circulation 地下水循环groundwater contamination 地下水污染groundwater development 地下水开发groundwater dynamics 地下水动力学groundwater evaluation 地下水评价groundwater exploration 地下水勘探groundwater flow 地下水流groundwater hydraulics 地下水水力学groundwater hydrology 地下水水文学groundwater laterite 潜水砖红壤groundwater monitoring 地下水监测groundwater occurrence 地下水分布groundwater origin 地下水起源groundwater protection 地下水保护groundwater reserve 地下水储量groundwater resource 地下水资源groundwater-forming condition 地下水形成条件groundwork 基础;基本原理;基本成分;土方工程group bottom 能群下限group code 群码group coding 分组编码group composition 族组成group cross-section 群截面group delay 群延迟group diffusion 群扩散group drilling 丛式钻井group drive 成组传动group element 同组元素group frequency 群频率group interval 道间距group item 组项group iterative method 群叠代法group knife 组合闸刀group maceral 显微组分组group mark 组标志group number 组号group of enterprises 企业集团group of piles 桩群group of seven 七国集团。
Snakes, Shapes, and Gradient Vector Flow翻译

图像处理学报,第7卷,第3期,1998年3月蛇、形状、梯度矢量流IEEE学生会员徐晨阳,IEEE高级会员Jerry L. Prince摘要-蛇,或活动轮廓,被广泛用于计算机视觉和图像处理应用,特别是定位对象的边界。
然而,初始化与深凹口收敛性差的问题,限制了它们的效用。
本文为活动轮廓模型提出了一种新的外力,主要是为了解决这两个问题。
这种外部力,我们称之为梯度矢量流(GVF),被计算成为一种灰度级或来自图像的边缘地图的二进制的梯度矢量的扩散。
它从根本上不同于传统的蛇的外力,因为它不能被写成的势函数的负梯度,一致的蛇蛇应是直接从力平衡条件而不是从变分公式化制定的。
通过使用几个二维(2-D)的例子和一个三维(3-D)的例子,我们表明GVF有一个很大的捕获范围,并能够使蛇进入深凹口。
关键词-活动轮廓模型,可变形表面模型,边缘检测,梯度矢量流,图像分割,形状表示和恢复,蛇。
I、简介蛇[1]或者说活动轮廓,是在一个在曲线本身弯曲所产生的内力和来自图像数据的外力的影响下可以移动的图像域内定义的曲线。
这样定义的内力和外力,正符合在一个图像中的对象边界和其他所需的功能。
蛇广泛应用于许多应用程序,包括边缘检测[1],形状建模[2],[3],分割[4],[5],和运动跟踪[4]、[6]。
在现在的文献中,通常有两种类型的活动轮廓模型,即参数活动轮廓模型[1]几何活动轮廓模型[7] - [9]。
在本文中,我们重点关注参数活动轮廓,尽管我们希望我们的研究结果也同样能应用在几何活动轮廓中。
参数活动轮廓在图像域中可以合成参数曲线并允许他们拥有我们所期望的性质,通用的边。
通常情况下,曲线被潜在力量的拉向边缘,这个潜在力量被势函数的负梯度所定义。
额外的力,如压力,和潜在的力一起组成外力。
当然也有设计好的内力保持曲线形状(弹性力)和防止曲线过度弯曲(弯曲力)。
手稿于1996年11月1日收到,修订于1997年3月17日。
这项工作由美国国家科学基金会的总统教职研究员奖MIP93-50336的支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Gradient Vector Flow:A New External Force for SnakesChenyang Xu and Jerry L.PrinceDepartment of Electrical and Computer EngineeringThe Johns Hopkins University,Baltimore,MD21218AbstractSnakes,or active contours,are used extensively in com-puter vision and image processing applications,particu-larly to locate object boundaries.Problems associated with initialization and poor convergence to concave boundaries, however,have limited their utility.This paper develops a new external force for active contours,largely solving both problems.This external force,which we call gradient vec-torflow(GVF),is computed as a diffusion of the gradient vectors of a gray-level or binary edge map derived from the image.The resultantfield has a large capture range and forces active contours into concave regions.Examples on simulated images and one real image are presented.1IntroductionSnakes[10],or active contours,are curves defined within an image domain that can move under the influence of inter-nal forces within the curve itself and external forces derived from the image data.The internal and external forces are defined so that the snake will conform to an object boundary or other desired features within an image.Snakes are widely used in many applications,including edge detection[10], shape modeling[16],segmentation[12],and motion track-ing[17].There are two general types of active contour models in the literature today:parametric active contours[10]and geometric active contours[1,13].In this paper,we focus on parametric active contours,which synthesize parametric curves within an image domain and allow them to move to-ward desired features,usually edges.Typically,the curves are drawn toward the edges by potential forces,which are defined to be the negative gradient of a potential function. Additional forces,such as pressure forces[4],together with the potential forces comprise the external forces.There are also internal forces designed to hold the curve together This paper is a condensed version of a paper that will appear in IEEE Trans.on Image Proc..This research was supported by NSF grant MIP9350336.Please address correspondence to prince@.(elasticity forces)and to keep it from bending too much (bending forces).There are two key difficulties with active contour al-gorithms.First,the initial contour must,in general,be close to the true boundary or else it will likely converge to the wrong result.The second problem is that active con-tours have difficulties progressing into concave boundary regions[7].Although many methods such as multireso-lution methods[11],pressure forces[4],distance potential forces[5],control points[7],and using solenoidal external fields[14]have been proposed,they either solve one prob-lem or solve both but creating new difficulties.For example, multiresolution methods have addressed the issue of initial-ization,but specifying how the snake should move across different resolutions remains problematic.Another exam-ple is that of pressure forces,which can push an active con-tour into boundary concavities,but cannot be too strong or “weak”edges will be overwhelmed[15].In this paper,we present a new class of external forces for active contour models that addresses the problems listed above.Thesefields,which we call gradient vectorflow (GVF)fields,are dense vectorfields derived from images by minimizing an energy functional in a variational frame-work.The minimization is achieved by solving a pair of de-coupled linear partial differential equations which diffuses the gradient vectors of a gray-level or binary edge map com-puted from the image.We call the active contour that uses the GVFfield as its external force a GVF snake.Particu-lar advantages of the GVF snake over a traditional snake are its insensitivity to initialization and ability to move into concave boundary regions.2Background2.1Parametric Snake ModelA traditional snake is a curve,,that moves through the spatial domain of an image to minimize the energy functional(1)where and are weighting parameters that control the snake's tension and rigidity,respectively.and denote thefirst and second derivatives of with respect to.The external energy function is derived from the image so that it takes on its smaller values at the features of interest,such as boundaries.Given a gray-level image(viewed as a function of continuous position variables),typical external en-ergies designed to lead an active contour toward step edges are[10]:(2)(3) where is a two-dimensional Gaussian function with standard deviation and is the gradient operator. If the image is a line drawing(black on white),then appro-priate external energies include[4]:(4)(5)It is easy to see from these definitions that larger's will cause the boundaries to become blurry and distorted.Such large's are often necessary,however,in order to make the effect of the boundary“felt”at some distance from the boundary—i.e.,to increase the“capture range”of the ac-tive contour.A snake that minimizes must satisfy the Euler equa-tion(6) This can be viewed as a force balance equationwhere and. The internal force discourages stretching and bending while the external potential force pulls the snake to-wards the desired image contour.Tofind a solution to(6),the snake is made dynamic by treating as function of time as well as—i.e.,. Then,the partial derivative of with respect to is then set equal to the left hand side of(6)as follows(7)When the solution stabilizes,the term van-ishes and we achieve a solution of(6).This dynamic equa-tion can also be viewed as a gradient descent algorithm[3] designed to solve(1).A solution to(7)can be found by discretizing the equation and solving the discrete system it-eratively(cf.[10]).2.2Generalized Force Balance EquationsThe external forces generated from the variational for-mulation(1)must enter the force balance equation(6)as a static irrotationalfield.1To add additionalflexibility to the snake model,it is possible to start from the force balance equation directly,and to replace with another force ,which need not be irrotational,as follows(8) Balloon models[4]comprise an important example of this approach.In these models is the sum of the traditional potential forces and pressure(or normal)forces,which act in a direction normal to the curve.This increases the capture range of an active contour,but also requires that the balloon be initialized to either shrink or grow.Also,the strength of the pressure forces may be difficult to set,since they must be large enough to overcome weak edges and noise,but small enough so they do not overwhelm legitimate edge forces.In this paper,we consider active contour formulations that do not include pressure forces.Without pressure forces,two issues become problematic: initialization and convergence to concave regions.Initial-ization is a problem because the capture range of the tradi-tional potential force is generally small.The capture range can be increased by using a larger,but this blurs and dis-torts the edges.This difficulty can be addressed using a multiresolution approach,but scheduling changes lead to extremely complex,and ad hoc,algorithms.The distance potential forces of Cohen and Cohen[5]increase the cap-ture range in an effective manner;however,as we have shown in[18]it does not solve the second issue.Convergence to concave regions is a problem in tradi-tional snakes,because the contour is often left split across boundary concavities.An example of this problem is shown in Fig.1.Fig.1a shows a(pixel)line drawing of a U-shaped object having a concave region(as viewed from the outside)at the top of thefigure,and Fig.1c shows a sequence of curves depicting the iterative progression of a traditional snake(,,no pressure forces) toward the boundary.Thefinal solution solves the Euler equations of the snake formulation,but remains split across the concave region.The reason for the poor convergence in Fig.1c is re-vealed in Fig.1b,where the potential forcefield,with(pixels),for this example is depicted.Al-though thefield correctly points toward the object boundary, in the concave portion the forces point horizontally in oppo-site directions.Thus,the curve is“pulled”apart toward the U-shape,but not made to progress downward into the con-cave region.The poor performance in this example lies in 1An irrotationalfield is the gradient of a scalarfield.Sometimes these fields are called conservative or curl-freefields.(a)(c)(b)Figure 1.A snake with traditional potential forces cannot move into the concave bound-ary region.the problem formulation,not its method of solution.In the following section,we introduce a new external force formu-lation which largely solves the problems discussed above.3Gradient Vector Flow FieldOur overall approach is to define a new non-irrotational external force field,which we call the gradient vector flow (GVF)fiing a force balance condition as a starting point (rather than a variational formulation)we then let the GVF field replace the potential force field in (7),defining a new snake,which we call the GVF snake .The GVF field points toward the object boundary when very near to the boundary,but varies smoothly over homogeneous image re-gions,extending to the image border.The main advantages of the GVF field are that it can capture a snake from a long range —from either side of the object boundary —and can force it into concave regions.3.1Edge MapWe begin by defining an edge map derived from the image having the property that it is larger near the image edges 2.Accordingly,we can use(9)where ,2,3,or 4.The field has vectors point-ing toward the edges,but it has a narrow capture range,in general.Furthermore,in homogeneous regions,isconstant,is zero,and therefore no information about nearby or distant edges is available.2Otherfeatures besides edges can be sought by redefiningtobe larger at desired features of interest,rather than edges.3.2Gradient Vector Flow (GVF)We define the gradient vector flow (GVF)field to be the vector field that minimizes the energy functional(10)This variational formulation follows a standard principle,that of making the result smooth when there is no data.In particular,we see that when is small,the energy is dominated by partial derivatives of the vector field,yield-ing a smooth field.On the other hand,when is large,the second term dominates the integrand,and is minimized by setting .The parameter is a regularization parameter governing the tradeoff between the first term and the second term.This parameter should be set according to the amount of noise present in the image (more noise,increase ).We note that the smoothing term —the first term within the integrand of (10)—is the same term used by Horn and Schunk in their classical formulation of optical flow [9].On one hand,it is known that this term leads to the Laplacian operator in the corresponding Euler equations.On the other hand,it has recently been shown that this term corresponds to an equal penalty on the divergence and curl of the vec-tor field [8].Therefore,the external field resulting from this minimization can be expected to be neither entirely ir-rotational (as are the traditional snake potential fields)nor entirely solenoidal.Using the calculus of variations [6],it can be shown that the GVF can be found by solving the following Euler equa-tions(11a)(11b)where is the Laplacian operator.These equations give us another intuition behind the GVF formulation.We note that in homogeneous regions,the second term of both equations (11a)and (11b)is zero (because the gradient of is zero).Therefore,within these regions,and are each determined by Laplace's equation.This results in a type of “filling-in”of information taken from the boundaries of the region.Equations (11a)and (11b)can be solved by treating and as functions of time and solving(12a)(12b)The steady-state solution(as)of these linear parabolic equations is the desired solution of the Euler equa-tions(11a)and(11b).Note that these equations are decou-pled,and therefore can be solved as separate scalar partial differential equations in and.The equations in(12)are known as generalized diffusion equations,and are known to arise in such diversefields as heat conduction,reactor physics,andfluidflow[2].For us,they have appeared from our description of desirable properties of externalfields for active contours.Diffusion is a natural outcome given the de-sired“filling in”property.A stable explicitfinite difference implementation for solving the steady-state solution of(12) was given in[19].3.3GVF SnakeAfter we compute,we replace the potential force in the dynamic snake equation of(7)by, yielding(13) We call the parametric curve solving the above dynamic equation as a GVF snake.This equation is solved in sim-ilar fashion to the traditional snake—i.e.,by discretization and iterative solution.We note that in[18],we generalized GVF to three di-mensions and implemented a GVF deformable surface.4GVF Fields and GVF SnakesThis section shows several examples of GVF external field computations on simple objects as well as on one real medical image and demonstrates the performance of GVF snakes.The parameters(for GVF)and and(for the snake)are specified in each case.All the edge map func-tions used for computing GVF are pre-normalized to the range.4.1Convergence to a Concave RegionIn ourfirst experiment,we computed the GVFfield for the line drawing of Fig.2a paring the resultingfield,shown in Fig.2b,to the potential forcefield of Fig.1b,reveals several key differences.First,the GVF field has a much larger capture range.It is clear that in order to get this extent using traditional potential forcefields,one would have to use a large in the Gaussianfilter.But this would have the effect of blurring(or perhaps even obliterat-ing)the edges,which is not happening in the GVFfield.A second observation is that the GVF vectors are point-ing somewhat downward into the top of the U-shape,which should cause an active contour to move farther into this con-cave region.Finally,it is clear that the GVFfieldbehaves(a)(c)(b)Figure2.A snake with GVF external forces moves into the concave boundary region.in an analogous fashion when viewed from the inside.That is,the vectors are pointing toward the boundary from as far away as possible and are pointing upward into the concave regions(thefingers of the U-shape)as viewed from the in-side.Fig.2c shows the result of applying a GVF snake with parameters and to the line drawing shown in Fig.2a(using the external GVFfield of Fig.2b).In this case,the snake was initialized farther away from the object than the initialization in Fig.1c,and yet it converges very well to the boundary of the U-shape.It should be noted that the blocky appearance of the U-shape results from the fact that the image is only pixels.The snake itself moves through the continuum(using bilinear interpolation to derive externalfield forces which are not at grid points) to arrive at a sub-pixel interpolation of the boundary.4.2Streamlines of external forcefieldsIt is interesting to compare the capture range between the traditional potential forcefields and GVFfields by look-ing at their streamlines.The streamlines are the paths over which a dense number of free particles move under the in-fluence of external forces when placed in the external force field.Fig.3a gives the streamlines for the potential forcefield of Fig.1b,and Fig.3b gives the streamlines for the GVF field of Fig.2b.Two effects are clear from thisfigure.First, the capture range of GVF is clearly much larger than that of the potential forces.Second,GVF provides downward forces within the concave region at the top of the U-shape, while potential forces only provide sideways forces.(a)(b)Figure 3.Stream lines of particles in (a)a po-tential force field and (b)a GVFfield.(a)(b)(c)Figure 4.A GVF snake converges to the same result from either the inside or the outside.4.3Snake InitializationFig.4a shows the computed GVF ()for the line drawing square shown using gray lines in Figs.4b and 4c.Figs.4b and 4c show GVF snake results using initializations from the inside (Fig.4b)and from the outside (Fig.4c).The two final configurations are nearly indistinguishable from each other,indicating that the GVF snake can be initialized either inside or outside the desired boundary.It should be noted that,unlike pressure forces,the GVF snake does not require the a priori knowledge of whether to shrink or ex-pand.It can also be seen from Figs.4b and 4c that the final con-figuration has slightly rounder corners than the square.This is one of the effects of ,the regularization parameter in the GVF formulation.Choosing smaller will tend to reduce this rounding,but will also reduce the strength of smooth-ing term.It should be noted,however,that thisparticular(a)(b)Figure 5.A GVF snake can also be initialized across the object boundary.image has only pixels,and the rounded corner of the snake is still within one pixel of the original corner.Figs.5a and 5b demonstrate a further initialization in-sensitivity:the initial snake can cross the boundary.The result shown in Fig.5a is nearly indistinguishable from that in Figs.4b and 4c;and the result shown in Fig.5b is nearly indistinguishable from that shown in Fig.2c.Of course,there must be limits on the full range of possible valid GVF snake initializations.A full theoretical and empirical study of these limits is a subject for future research.4.4Gray-level ImagesThe underlying formulation of GVF is valid for gray-level images as well as binary images.To compute GVF for gray-level images,the edge-map function must first be calculated.Two possible choices for the edge-map are or.A motivation for applying some Gaussian fil-tering to the underlying image is to reduce noise.Other more complicated noise-removal techniques such as median filtering,morphological filtering,and anisotropic diffusion could also be used to improve the underlying edge map.Given an edge-map function and an approximation to its gradient,GVF is computed in the usual way using Equa-tion (12).Fig.6a shows a ()magnetic resonance image (short-axis section)of the left ventrical of a human heart.Fig.6b shows an edge map computed usingwith (normalized to the range ).Fig.6c shows the computed GVF,and Fig.6d shows a se-quence of GVF snakes (plotted in a shade of gray)and the GVF snake result (plotted in white),both plotted on the original image.Clearly,many details on the endocardial border are captured by the GVF snake result,including the papillary muscles (the bumps that protrude into the cavity).(a)(b)(c)(d)Figure6.(a)A magnetic resonance image ofthe left ventrical of a human heart(short-axissection).(b)The edge map with .(c)The computed GVF.(d)Initial and intermediate contours(gray curves)and thefinal contour(white curve)of the GVF snake.5ConclusionWe have introduced a new external force model for snakes called gradient vectorflow(GVF).Thefield is cal-culated as a diffusion of the gradient vectors of a gray-level or binary edge map.We have shown that it allows forflex-ible initialization of the snake and encourages convergence to boundary concavities.Further investigations into the nature and uses of GVFare warranted.A complete characterization of the capture range of the GVFfield would help in snake initialization procedures.Investigations into the optimal selection of the GVF parameter,and the interplay between and the snake parameters and are desirable.Finally,the GVF framework might be useful in defining new connections be-tween parametric and geometric snakes,and might form the basis for a new geometric snake.AcknowledgmentsThe authors would like to thank Dzung Pham,Sandeep Gupta,and Prof.Joel Spruck for their discussions concern-ing this work.References[1]V.Caselles,F.Catte,T.Coll,and F.Dibos.A geometricmodel for active contours.Numerische Mathematik,66:1–31,1993.[2] A.H.Charles and T.A.Porsching.Numerical Analysis ofPartial Differential Equations.Prentice Hall,Engelwood Cliffs,NJ,1990.[3]I.Cohen,L.D.Cohen,and ing deformablesurfaces to segment3-D images and infer differential struc-tures.CVGIP:Image Understanding,56(2):242–263,Sept.1992.[4]L.D.Cohen.On active contour models and balloons.CVGIP:Image Understanding,53(2):211–218,Mar.1991.[5]L.D.Cohen and I.Cohen.Finite-element methods for activecontour models and balloons for2-D and3-D images.IEEE Trans.on Pattern Anal.Machine Intell.,15(11):1131–1147, Nov.1993.[6]R.Courant and D.Hilbert.Methods of MathematicalPhysics,volume1.Interscience,New York,1953.[7] C.Davatzikos and J.L.Prince.An active contour modelfor mapping the cortex.IEEE Trans.on Medical Imaging, 14(1):65–80,Mar.1995.[8]S.N.Gupta and J.L.Prince.Stochastic models for DIV-CURL opticalflow methods.IEEE Signal Processing Let-ters,3(2):32–35,1996.[9] B.K.P.Horn and B.G.Schunck.Determining opticalflow.Artificial Intelligence,17:185–203,1981.[10]M.Kass,A.Witkin,and D.Terzopoulos.Snakes:Activecontour puter Vision,1(4):321–331, 1987.[11] B.Leroy,I.Herlin,and L.D.Cohen.Multi-resolution al-gorithms for active contour models.In12th International Conference on Analysis and Optimization of Systems,pages 58–65,1996.[12] F.Leymarie and M.D.Levine.Tracking deformable objectsin the plane using an active contour model.IEEE Trans.on Pattern Anal.Machine Intell.,15(6):617–634,1993. [13]R.Malladi,J.A.Sethian,and B.C.Vemuri.Shape modelingwith front propagation:A level set approach.IEEE Trans.on Pattern Anal.Machine Intell.,17(2):158–175,1995. [14]J.L.Prince and C.Xu.A new external force model forsnakes.In1996Image and Multidimensional Signal Pro-cessing Workshop,pages30–31,1996.[15]H.Tek and B.B.Kimia.Image segmentation by reaction-diffusion bubbles.In Proc.Fifth Int.Conf.on Computer Vision,pages156–162,1995.[16] D.Terzopoulos and K.Fleischer.Deformable models.TheVisual Computer,4:306–331,1988.[17] D.Terzopoulos and R.Szeliski.Tracking with Kalmansnakes.In A.Blake and A.Yuille,editors,Active Vision,Ar-tificial Intelligence,pages3–20.The MIT Press,Cambridge, Massachusetts,1992.[18] C.Xu and J.L.Prince.Snakes,shapes,and gradient vectorflow.IEEE Trans.on Image Processing.to appear.[19] C.Xu and J.L.Prince.Snakes,shapes,and gradient vec-torflow.Technical Report JHU-ECE TR96-15,The Johns Hopkins University,Oct.1996.。