多元函数的定义域,极限

合集下载

多元函数及其极限

多元函数及其极限

多元函数及其极限多元函数在数学中起到重要的作用,与一元函数相比,多元函数是以多个自变量为输入并产生一个或多个因变量输出的函数。

本文将介绍多元函数的定义、性质以及多元函数的极限。

一、多元函数的定义和性质多元函数是指含有多个自变量的函数,通常用f(x₁, x₂, …, xn)表示。

其中x₁, x₂, …, xn是自变量,f(x₁, x₂, …, xn)是因变量。

多元函数可以是实函数或复函数。

多元函数的性质主要包括:1. 定义域:与一元函数类似,多元函数也有定义域,即自变量的取值范围,使得函数有意义;2. 值域:多元函数的值域是函数的输出范围,可以是实数集或复数集;3. 奇偶性:多元函数也可以具有奇偶性,即函数在自变量取相反值时的表现是否相同;4. 有界性:多元函数是否存在上下界;5. 连续性:多元函数的连续性代表着函数在自变量连续变化时,函数值是否连续变化。

二、多元函数的极限多元函数的极限是指当自变量趋近于某一点或无穷大时,函数值的变化趋势。

与一元函数类似,多元函数的极限也可以分为以下几种情况。

1. 极限存在与不存在多元函数f(x₁, x₂, …, xn)在自变量(x₁₀, x₂₀, …, xn₀)处的极限存在,如果无论自变量如何接近(x₁₀, x₂₀, …, xn₀),函数值f(x₁, x₂, …, xn)都趋近于某一确定值L。

数学上表示为:lim (x₁, x₂, …, xn)→(x₁₀, x₂₀, …, xn₀) f(x₁, x₂, …, xn) = L2. 极限的计算方法多元函数的极限计算方法与一元函数类似,可以通过直接代入、夹逼定理、极坐标转换等方法进行计算。

3. 偏导数多元函数的偏导数是指在函数中固定某些自变量,对剩余自变量求导数的过程。

一元函数的导数可以看作是对函数在某一点的率变化速度的测量,多元函数的偏导数可以看作是对函数在某一点沿着某一方向的变化速度的测量。

三、应用领域多元函数广泛应用于数学和其他学科中,例如:1. 物理学:多元函数用于描述物体的运动、力学等问题;2. 经济学:多元函数用于描述供求关系、成本函数等;3. 金融学:多元函数用于建立风险评估模型、资产定价模型等;4. 工程学:多元函数用于建立工程模型、优化设计等。

多元函数的基本概念

多元函数的基本概念

sin xy lim ( x , y )( 0 , 2 ) x 2 sin( x y) (2) lim ( x , y ) ( 0 , 0 ) x 2 y 2
(1)
1 (3) lim ( x y ) sin 2 ( x , y ) ( 0 , 0 ) x y2
二 多元函数的极限
(一)有关概念 (二)多元函数极限的定义
二元函数的图形 对于在z=f(x,y)的定义域内任意取定的点P(x,y),对应的
函数值为z=f(x,y). 当(x,y)遍取D上的一切点时,得到的空间点集
z
M
{( x, y, z ) | z f ( x, y ), ( x, y ) D}
称为二元函数的图形. 二元函数的图形通常是一张曲面. 二元函数的定义域
0
x2 y (2) f ( x , y ) 4 x y2
当 ( x , y ) (0,0) 时
多元函数的基本概念
一、多元函数的概念
二、多元函数的极限 三、多元函数的连续性
多元函数的基本概念
一、多元函数的概念
二、多元函数的极限 三、多元函数的连续性
三、 多元函数的连续性
(一)多元函数连续性的概念
空间点集
平面点集的有关概念 二维空间:
二元有序实数组(x,y)的全体, 即: {( x , y ) | x R, y R}
记作: R 2或 R R
注 (1) 二维空间的几何意义—坐标平面
(2) 二维空间的元素— P ( x, y ) 坐标平面内的点 平面点集: 二维空间的任一子集, 记作: E R2 注 平面点集E通常是具有某种性质的点的集合, 记作: E={(x,y)|(x,y)具有性质P}

8.2 多元函数的极限与连续

8.2  多元函数的极限与连续
y→2 y→2
13
8.2
多元函数的极限与连续
x2 x+ y
3− x + y +9 (3) lim x→0 x2 + y2
2 2 y→0
1 (4) lim(1 + ) x →∞ x y →a
1 =− . 解: 3)原式 = lim 2 ( x→0 2 2 2 6 ( x + y )(3 + x + y + 9) y→0
9
8.2
多元函数的极限与连续
若在开区域(或闭区域) D 内某些孤立点,或者沿 D 内 若在开区域(或闭区域) 内某些孤立点, 某些曲线,函数没有定义,但在 D 内其余部分, f ( x , y ) 都 某些曲线,函数没有定义, 内其余部分, 部分 有定义, 有定义,则这些孤立点或这些曲线上的点都是函数 f ( x , y ) 的间断点。 的间断点。

y = kx 3 , 取
x3 y x 3 ⋅ kx 3 k lim 6 = lim 6 , = 2 x →0 x + y 2 x →0 x + k 2 x 6 1+ k y→ 0 y = kx 3
的不同而变化, 其值随 k 的不同而变化, 故极限不存在. 故极限不存在.
关于二元函数的极限概念, 关于二元函数的极限概念,可相应地推广到 n 元函数
2.函数 f ( x, y) 在区域 D 上的连续性
如果函数 上任意一点都连续, 如果函数 z = f ( x , y ) 在区域 D 上任意一点都连续,则称
f ( x , y ) 在区域 D 上连续。 上连续。
二元连续函数的图形是一个没有任何孔隙和裂缝的曲面。 二元连续函数的图形是一个没有任何孔隙和裂缝的曲面。 连续函数的图形是一个没有任何孔隙和裂缝的曲面

多元函数的极值问题

多元函数的极值问题

多元函数的极值问题在数学中,多元函数的极值问题是一个重要的研究领域。

与一元函数的极值类似,多元函数的极值问题也是求函数在一定范围内取得最大值或最小值的问题。

在实际问题中,多元函数的极值问题有着广泛的应用,例如在经济学、物理学、工程学等领域都有着重要的作用。

本文将介绍多元函数的极值问题的基本概念、求解方法以及相关定理。

一、多元函数的定义首先,我们来回顾一下多元函数的定义。

在数学中,多元函数是指自变量不止一个的函数,通常表示为$z=f(x,y)$,其中$x$和$y$是自变量,$z$是因变量。

多元函数的定义域是自变量的取值范围,值域是因变量的取值范围。

二、多元函数的极值定义对于多元函数$z=f(x,y)$,极值的定义与一元函数类似,分为最大值和最小值。

具体定义如下:1. 最大值:如果存在点$(x_0,y_0)$,使得在$(x_0,y_0)$的某个邻域内,对于任意$(x,y)$,都有$f(x,y)\leq f(x_0,y_0)$,则称$f(x_0,y_0)$是函数$f(x,y)$的最大值,点$(x_0,y_0)$是最大值点。

2. 最小值:如果存在点$(x_0,y_0)$,使得在$(x_0,y_0)$的某个邻域内,对于任意$(x,y)$,都有$f(x,y)\geq f(x_0,y_0)$,则称$f(x_0,y_0)$是函数$f(x,y)$的最小值,点$(x_0,y_0)$是最小值点。

三、多元函数的极值求解方法求解多元函数的极值问题,通常可以通过以下步骤进行:1. 求偏导数:对多元函数$z=f(x,y)$,分别对$x$和$y$求偏导数$\frac{\partial f}{\partial x}$和$\frac{\partial f}{\partial y}$。

2. 解方程组:令$\frac{\partial f}{\partial x}=0$和$\frac{\partial f}{\partial y}=0$,解出方程组$\begin{cases} \frac{\partial f}{\partial x}=0 \\ \frac{\partial f}{\partial y}=0 \end{cases}$,得到极值点$(x_0,y_0)$。

高数一 9-1 多元函数的基本概念

高数一 9-1 多元函数的基本概念
E的边界点的全体 称为E的边界 记作E 聚点

内点
如果对于任意给定的0 点 P 的去心邻域 U (P, ) 内总 有E中的点 则称P是E的聚点
首页 上页 返回 下页 结束 铃

连通性 如果点集E内任何两点都可用折线连结起来 且该折线上 的点都属于E 则称E为连通集
D是连通的
上页 返回

下页
结束

点与点集之间的关系 •内点 如果存在点 P 的某一邻域 U(P) 使得U(P)E 则称P为E的内点 •外点 如果存在点 P 的某个邻域 U(P) 使得U(P)E 则称P点
•边界点 如果点P的任一邻域内既有属 于E的点 也有不属于E的点 则称P点为 E的边界点
y
x y 2
首页
上页
返回
下页
结束

2.n维空间 我们把n元有序实数组(x1 x2 xn)的全体所构成的集 合称为n维空间, 记为Rn 即 Rn{(x1 x2 xn)| xiR i1 2 n} xi称为点x的第i个坐标或n维向量x的第i个分量
多元函数的基本概念
一、平面点集 n维空间 二、多元函数概念 三、多元函数的极限 四、多元函数的连续性
首页
上页
返回
下页
结束

一、平面点集 n维空间
1.平面点集 坐标平面上具有某种性质P的点的集合 称为平面点集 记作 E{(x y)| (x y)具有性质P} 邻域 设P0(x0 y0)是xOy平面上的一个点 是某一正数 点P0的 邻域记为U(P0 ) 它是如下点集
首页 上页 返回 下页 结束
y
O
1
2 x

有界集 对于平面点集E 如果存在某一正数r 使得 EU(O r) 其中O是坐标原点 则称E为有界点集 无界集 一个集合如果不是有界集 就称这集合为无界集

高等数学 -多元函数的极值及其求法

高等数学 -多元函数的极值及其求法

16
方法2 拉格朗日乘数法. 例如,
在条件(x, y) 0下, 求函数 z f (x, y) 的极值.
如方法 1 所述 , 设 (x, y) 0 可确定隐函数 y (x),
则问题等价于一元函数 z f (x, (x)) 的极值问题, 故
极值点必满足
dz dx
fx
fy
dy dx
0
因d y x , 故有 dx y
23
例5:某公司可通过电台及报纸两种方式做商品销售
广告,根据资料知销售收入 R(万元)与电台广告费用
x 万元, 报纸广告费用 y 万元, 之间的关系公式:
R 15 14 x 32 y 8x y 2 x2 10y2
1、在广告费用不限的情况下求最优广告策略。
2、若提供的广告费用为1.5万元,求相应的最优广告策略
x y 1.5
x 0
y
1.5
即将广告费1.5万元全部用于报纸广告,可使利润最大.
32
例6:某公司的两个工厂生产同样的产品但所需成本
不同,第一个工厂生产 x 件产品和第二个工厂生产 y
件产品时的总成本是; Cx, y x2 2 y2 5 x y 700
若公司的生产任务是500件,问如何分配任务才能使总
解:最优广告策略即为用于广告费多少时可使得利润
函数 Lx, y 最大。由题意可知: Lx, y 15 14 x 32 y 8x y 2 x2 10y2 x y
15 13x 31y 8x y 2 x2 10y2
Lx 13 8 y 4 x 0 Ly 31 8 x 20 y 0
k 0
1 (0, 0, x 3y 10)
x 1 y 3 0 2
1 x 3y 10

多元函数的定义域

多元函数的定义域

多元函数的定义域在数学中,多元函数是指接受多个自变量并产生一个因变量的函数。

多元函数的定义域是指所有可能的自变量取值的集合,也就是函数的输入范围。

要确定多元函数的定义域,我们需要考虑自变量的限制条件以及函数的性质。

在多元函数中,每个自变量都有其取值范围,而函数的定义域是自变量取值范围的交集。

首先,我们来看一个简单的例子。

考虑一个二元函数f(x,y)= x^2+y^2,其中x和y是实数。

对于这个函数,我们可以发现它的定义域没有限制,因为实数集包含了所有可能的x和y值。

然而,并非所有的多元函数都没有限制。

考虑一个三元函数g(x,y, z)=1/(x+y+z),其中x、y和z是实数。

这个函数在定义时需要注意分母不能为零,因此定义域需要排除使得分母为零的情况。

因此,定义域可以表示为x+y+z≠0。

对于更复杂的多元函数,确定定义域可能需要考虑更多的条件。

例如,考虑一个二元函数h(x,y)=sqrt(x^2-y),其中x和y 是实数。

在这种情况下,函数的定义域需要满足x^2-y≥0,因为平方根函数的自变量不能为负数。

因此,定义域可以表示为x^2≥y。

除了简单的不等式条件外,定义域还可以受到其他限制,例如约束条件或特定问题的要求。

在应用数学中,定义域的限制可能与实际问题的物理性质或限制条件有关。

总结起来,多元函数的定义域是所有自变量取值范围的交集。

通过考虑自变量的限制条件、函数的性质以及特定问题的要求,我们可以确定多元函数的定义域。

对于不同的函数,定义域的确定可能需要应用不同的数学方法和条件。

通过深入理解多元函数的定义域,我们可以更好地分析和理解函数的性质,为解决实际问题提供数学工具和思维方法。

12多元函数的极值与最值

12多元函数的极值与最值

A 1 (24 2x 2x cos 24 2x) x sin
2
24x sin 2x2 sin x2 cos sin ( D : 0 x 12, 0 π )
2
x x
24 2x
2019年12月22日星期日
8
高等数学(下)主讲杨益民
拉格朗日乘数法推导(略)
2019年12月22日星期日
14
高等数学(下)主讲杨益民
例9 将正数12分成三个正数 x, y, z 之和,使得 U=x3 y2 z 最大。
解: 令:F ( x, y, z) x3 y2z ( x y z 12)
Fx 3 x2 y2z 0
解: 1. 利用隐方程组求偏导及必要条件zx=zy=0得驻点(1,-1); 2. 带入原方程求得相应的z=-2, z=6;
3. 隐方程组再求偏导得A,B,C; 4. 判断并求出极值。
注:偏导数不存在的点,也是极值可疑点。如:z x2 y2 , (0,0)
2019年12月22日星期日
5
高等数学(下)主讲杨益民
4
高等数学(下)主讲杨益民
例4 求函数
的极值。
解: 1. 求驻点(1, 0) , (1, 2) , (–3, 0) , (–3, 2) ; 2. 求相应的A,B,C; 3. 判断并求出极值。
例5 求由方程 x2 y2 z2 2x 2 y 4z 10 0 确定的 函数z=f (x, y)的极值。
过 P( x0 , y0 , z0 )的切平面方程为:
x0 a2
(x

x0
)

y0 b2
(
y

y0

8.4 多元函数的极值

8.4 多元函数的极值
( x, y ) ,都有
f ( x, y ) > f ( x0 , y0 )
则称函数 f ( x, y ) 在点P0 ( x0 , y0 ) 有极小值 f ( x0 , y0 ) ,点 P0 称为函数的极小值点.极大值和极小值统称为极值, 使得函数取得极值的点称为极值点.
2.n元函数极值的概念: 2. 元函数极值的概念:设n元函数u=f(p)的定义域为 D 元函数极值的概念
f x ( x0 , y0 ) = 0 的点( x0 , y0 ) 称为函数的驻点. f y ( x0 , y0 ) = 0
极值的必要条件可重述为:可偏导函数的极值点必为驻点 可偏导函数的极值点必为驻点. 可偏导函数的极值点必为驻点 注: (1)但驻点不一定是极值点. 例如, 有驻点(0, 0), 但在该点不取极值.
z
y
思考: 思考: 1) 当水箱封闭时, 长、宽、高的尺寸如何?x 提示: 利用对称性可知,x = y = z = 3 V0 提示:
2) 当开口水箱底部的造价为侧面的二倍时, 欲使造价 最省, 应如何设拉格朗日函数? 长、宽、高尺寸如何? 提示: F = 2(xz + yz) + 2 x y + λ (x yz −V0 ) 提示: 长、宽、高尺寸相等 .
例2. 求函数 解: 求驻点. 第一步 求驻点. 解方程组
的极值.
得驻点: (1, 0),(1, 2),(–3, 0),(–3, 2) . 第二步 判别. 求二阶偏导数 判别.
B
C
f xx (x, y) = 6x + 6, f xy (x, y) = 0, f yy (x, y) = −6y + 6
4.二元函数极值的充分条件 4.二元函数极值的充分条件

1多元函数的概念及极限

1多元函数的概念及极限

x0 x
x0 xy
x0 xy x0
y2y2y2y2令u xy , u 0
lim sin xy lim sin u 1 x0 xy u0 u
y2
例8
求极限
sin( x2 y)
lim
x0
x2
y2
.
y0

lim
x0
sin( x x2
2 y) y2
y0
lim
x0
sin( x2 x2 y
y)
x2 y x2 y2
四、小结
多元函数的定义 多元函数极限的概念
(注意趋近方式的任意性)
多元函数连续的概念 闭区域上连续函数的性质
思考题
若点( x, y)沿着无数多条平面曲线趋向于 点( x0 , y0 )时,函数 f ( x, y)都趋向于 A,能否 断定 lim f ( x, y) A?
( x, y )( x0 , y0 )
7、函数z arcsin y 的定义域是_______________. x
8、函数z
y2 y2
2x 的间断点是________________. 2x
二、求下列各极限:
1、lim 2 xy 4 ;
x0
xy
y0
2、lim sin xy ; x0 x
y0
3、lim x0
1 (x
cos( x 2 y2
z f ( x, y)当 x x0, y y0时的极限, 记为 lim f ( x, y) A
x x0 y y0
(或 f ( x, y) A ( 0)这里 | PP0 |).
说明:
•P0
(1)定义中 P P0 的方式是任意的;

多元函数的基本概念

多元函数的基本概念

f (P)
f (P0 )
则称n 元函数 f (P) 在点P0 处连续.
设P0 是函数 f (P) 的定义域的聚点,如果 f (P)在点P0 处不连续,则称P0 是函数f (P) 的
间断点.
例5
讨论函数
x3
f
(
x,
y)
x
2
y y
3 2
,
( x, y) (0,0)
0,
( x, y) (0,0)
空间两点间的距离.
n维空间中邻域、区域等概念
邻域: U(P0 , ) P | PP0 | , P Rn
内点、边界点、区域、聚点等概念也可定义.
(5)二元函数的定义
设D 是平面上的一个点集,如果对于每个点
P( x, y) D ,变量z 按照一定的法则总有确定的 值和它对应,则称z 是变量x, y 的二元函数,记为 z f ( x, y)(或记为z f ( P ) ).
(2)找两种不同趋近方式,使lim f ( x, y) 存在, x x0 y y0 但两者不相等,此时也可断言f ( x, y) 在点 P0 ( x0 , y0 )处极限不存在.
利用点函数的形式有n元函数的极限
定 义 2 设n 元 函 数 f (P) 的 定 义 域 为 点 集 D, P0是其聚点,如果对于任意给定的正数 , 总 存 在 正 数 , 使 得 对 于 适 合 不 等 式
也有不属于E 的点(点P 本身可以属于E ,也
可以不属于E ),则称 P 为 E 的边界点.
E 的边界点的全体称为E 的边界.
•P
设 D 是开集.如果对于D内
任何两点,都可用折线连结起来, E
且该折线上的点都属于D ,则称

微积分II全书整理

微积分II全书整理

第一部分 多变量微分学一、多元函数极限论 1. 多元函数极限的定义:(1)邻域型定义:设函数)(P f 的定义域为D ,0P 是D 的聚点,如果存在常数A ,对于任意给定的正数ε,总存在正数δ,使得当点)(0P U D P δ⋂∈时,都有ε<-A P f )(,那么就称常数A 为函数)(P f 当0P P →时的极限,记作.)(lim 0A P f P P =→(2)距离型定义:设函数)(P f 的定义域为D ,0P 是D 的聚点,如果存在常数A ,对于任意给定的正数ε,总存在正数δ,使得当点P D ∈,且δρ<<),(00P P 时,都有ε<-A P f )(,那么就称常数A 为函数)(P f 当0P P →时的极限,记作.)(lim 0A P f P P =→注:①这里给出的是数学分析中国际通用的定义,已自然排除了0P 邻域内的无定义点; ②极限存在的充要条件:点P 在定义域内以任何方式或途径趋近于0P 时,)(P f 都有极限; ③除洛必达法则、单调有界原理、穷举法之外,可照搬一元函数求极限的性质和方法,常用的有:等价无穷小替换、无穷小×有界量=无穷小、夹挤准则等;④若已知)(lim 0P f P P →存在,则可以取一条特殊路径确定出极限值;相反,如果发现点P 以不同的方式或途径于0P 时,)(P f 区域不同的值,则可断定)(lim 0P f P P →不存在.⑤二元函数的极限记为A y x f y x y x =→),(lim ),(),00(或A y x f y y x x =→→),(lim 0.2. 多元函数的连续性:设函数)(P f 的定义域为D ,0P 是D 的聚点,如果0P D ∈,且有)()(lim 00P f P f P P =→,则称)(P f 在0P 处连续;如果)(P f 在区域E 的每一点处都连续,则称)(P f 在区域E 上连续.注:①如果)()(lim 00P f P f P P ≠→,只称“不连续”,而不讨论间断点类型;②在有界闭区域上的连续函数拥有和一元函数类似的性质,如有界性定理、一致连续性定理、最大值最小值定理、介值定理等. 3.二重极限与累次极限累次极限与二重极限的存在性之间没有任何必然的联系,但若某个累次极限和二重极限都存在,则它们一定相等;反之,若两个累次极限存在而不相等,则二重极限一定不存在,又若两个累次极限存在且相等,称累次极限可以交换求极限的顺序.二、偏导数、全微分1.偏导数、全微分的相关理论问题 (以二元函数为例讨论)(1)偏导数的存在性:讨论对某个变量的偏导数,则将其他变量当作常数.),('),(),(lim 0000000y x f x x y x f y x f x x x ∆→=--;),('),(),(lim 0000000y x f y y y x f y x f y y y ∆→=--. (2)可微性:记),(),(0000y x f y y x x f z -∆+∆+=∆,则仅当0)()()(lim22=∆+∆∆+∆-∆→→y x y B x A z y x 时,),(y x f 在),(00y x 处可微,否则不可微.其中),('00y x f A x =,),('00y x f B y =. 注:等价于()22)()(y x o y B x A z ∆+∆+∆+∆=∆ 即()220000)()()(),(),(y x o y B x A y x f y y x x f ∆+∆=∆+∆--∆+∆+又即()()2020********)()())(,('))(,('),(),(y y x x o y y y x f x x y x f y x f y x f y x -+-=-+---记dy yzdx x z y B x A dz ∂∂+∂∂=∆+∆=为全微分),(y x f 在),(y x 处的全微分. 中值定理推广为:.1,0,),('),('2121<<∆∆++∆∆+∆+=∆θθθθy y y x f x y y x x f z y x (3)偏导数的连续性:讨论偏导连续性,先用定义求),('00y x f x 和),('00y x f y ,用公式求),('y x f x 和),('y x f y ,判断),('),('lim 000y x f y x f x x y y x x =→→和),('),('lim 0000y x f y x f y y y y x x =→→是否都成立,如果都成立则偏导数连续. ④逻辑关系:极限存在偏导存在可微连续偏导连续⇒⇓⇑⇒2.多元函数微分法: (1)链式求导法则:①从题目中的复合关系画出从起始变量经过中间变量到终变量的复合结构图;②求偏导就是“走路”的过程,有几条路,等号后就有几项;每条路上有几段,每项中就会有几部分相乘(注意:偏导写偏微分符号“∂”, 不偏则写微分符号“d ”); ③严格遵守用位置表示偏导数的规则,注意避免符号混乱和歧义;④对于求高阶偏导数的问题,不论对谁求导,也不论求了几阶导,求导后的新函数仍具有与原来函数相同的复合结构(注意若偏导连续则相等,要合并同类项).(2)全微分形式不变性:仅一阶全微分可以使用,高阶全微分不再成立. (3)隐函数存在性及求导法则:①一个方程的情形(以三个变量为例):设),,(z y x F 在点),,(000z y x 某邻域内偏导连续,且0),,(000=z y x F ,0),,('000≠z y x F z ,则方程0),,(=z y x F 在点),,(000z y x 内某邻域内可唯一确定单值函数),(y x z z =,这个函数在),(00y x 的某邻域内具有连续的偏导数,且''z x F F x z-=∂∂,''z y F F y z -=∂∂.结论不难推广到一般情形. ②方程组的情形:一般地,设方程组),2,1(0),,,;,,,(2121m i u u u x x x F m n i ==可确定m 个n 元函数),,,(21n i i x x x u u =.当雅可比行列式0),,,(),,,(11112212121112121≠∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂=∂∂=m m m m m m m u F u F u F u F u F u F u F u F u F u u u F F F J时,可以确定JJ x u j i *-=∂∂,其中*J 由将),,,(),,,(2121m m u u u F F F J ∂∂=分母中的第i 个元素替换成j x 得到.(雅可比行列式在横向上改变各自变量,纵向上改变各函数名称) 注:①求导前应事先判断,a 个变元,b 个方程可确定b 个)(a b -元函数; ②有些比较简单的问题不必使用此通法,可以考虑利用全微分形式不变性. ③经验结论:由0),(),,,(),,,(===v u F z y x v z y x u ψϕ确定的隐函数),(y x z z =,求22x z∂∂时,有0'')'(222221222=∂∂+∂∂+⎪⎭⎫⎝⎛∂∂x v F x u F x u F A ;求y x z ∂∂∂2时,有0'')'(222122=∂∂∂+∂∂∂+∂∂∂∂y x vF y x u F yu x u F A ; 求22yz∂∂时,有0'')'(222221222=∂∂+∂∂+⎪⎪⎭⎫ ⎝⎛∂∂y vF y u F y u F A , 其中=A 222112211122")'("''2")'(F F F F F F F +-.(0),(=y x F 的曲率:()232221)'()'(F F A+)三、多元微分学的几何学应用(以下的讨论主要为了计算,条件未必严格)1.曲线的切线和法平面:设曲线()()()⎪⎩⎪⎨⎧===t z z t y y t x x l : 在0P 处()()()000'''t z t y t x ,,都存在且不为0,则曲线l 在0P 处的: (1)切线方程为()()()000000'''t z z z t y y y t x x x -=-=-: (2)法平面方程为()()()0)(')(')('000000=-+-+-z z t z y y t y x x t x . 注:若曲线以⎩⎨⎧==0),,(0),,(z y x G z y x F 形式给出,切向量为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧,,,''''''''''''y x y x x z x z z y z y G G F F G G F F G G F F .2.曲面的切平面与法线:设曲面∑由方程0),,(=z y x F 确定,),,(z y x F 在点0P ),,(000z y x 处可微,且'''z y x F F F ,,不为0,则曲面∑在0P 处的:(1)切平面方程为0)(')(')('000=-+-+-z z F y y F x x F z y x (导数已经代入0P 坐标); (2)法线方程为'''000z y x F z z F y y F x x -=-=-. 注:二元函数在某点处的全微分等于其在这点处切平面竖坐标的增量. 3.方向导数: (1)定义式:0)()(limPP P f P f lu P P P -=∂∂→→(2)若函数),,(z y x f 在点0P 处可微,那么),,(z y x f 在点0P 处沿所有方向的方向导数存在,且γβαcos cos cos 0zfy f x f lf P ∂∂+∂∂+∂∂=∂∂→,其中γβαcos ,cos ,cos 为→l 的方向余弦.注:沿所有方向的方向导数存在不能推出可微,偏导数存在不能推出各方向导数存在. 4.梯度:(1)计算:gra d u =x u ∂∂i +y u ∂∂j +xu∂∂k ; (2)grad u是)(P u 在点P 的变化量最大的方向,其模等于这个最大变化率; (3)梯度的运算法则和一元函数的求导法则相似; (4)方向导数等于梯度在该方向上的投影.四、极值与最值问题1.二元函数的非条件极值问题(1)极值的必要条件:对偏导数存在的函数),(y x f ,在),(00y x M 处有极值的必要条件是0),(),(0000=∂∂=∂∂yy x f x y x f .(可推广到三元及以上)(2)极值的充分条件:设),(00y x M 为函数),(y x f 的驻点,且),(y x f 在),(00y x 处连续,记AC B y x f A C y x f B y x f A yy xy xx -=∆====2000000),,("),,("),,(",则: ①0<∆时,),(00y x 是极值点,当0>A 时,),(00y x f 为极小值;当0<A 时,),(00y x f 为极大值;②0>∆时,),(00y x 不是极值点; ③0=∆时,此法失效,另谋它法.注:本方法不可推广到三元及以上,三元及以上的充分条件中,要求黑塞矩阵正定或负定.(本知识不做要求,在出题人手下不会出现三元以上的极值判断问题) 2.条件极值与拉格朗日乘数法(1)一般情况下的拉格朗日乘数法:求函数),,,(21n x x x f u =在条件),,,(21n i x x x ϕ下的条件极值),,2,1(n m m i <= ,可以从函数),,,(),,,(),,,,,(2112111n i mi i n n n x x x x x x f x x F ϕλλλ∑=+=的驻点中得到可能的条件极值的极值点. 步骤:①构造辅助函数;(注意:变量均为独立变量) ②求各变量的一阶导并令其为零,联立得到方程组; ③解方程组得到所有驻点.(解无定法,尽量利用观察法) (2)对“条件极值”的解读:事实上,只利用拉格朗日乘数法求条件极值无异于掩耳盗铃.由于对于多元函数,构造拉格朗日函数后会出现至少三个变量,在数学上欲判断求得的驻点是否是极值点需要利用三阶以上的黑塞矩阵.而出题人为了回避这一知识点,通常以实际问题的形式来考察拉格朗日乘数法.由于在实际问题的背景下必存在最值,可以认为“所得即所求”,但是实际上求出的并不是真正的条件极值,而是在条件下的最值.所以,出题人通常在题目中会以“最值”来代替极值进行考察.五、习题1.已知方程02222=∂∂+∂∂y u x u 有⎪⎭⎫⎝⎛=x y u ϕ形式的解,求出此解.2.已知二元函数),(y x f z =可微,两个偏增量:,3)32(322222x y x xy x y x z x ∆+∆+∆+=∆.2233y x y y x z y ∆+∆=∆且,1)0,0(=f 求).,(y x f3.设0),(222=++++z y x z y x F 确定),(y x z z =,其中F 有二阶连续偏导数,求.2yx z∂∂∂ 4.已知函数),(y x f z =可微,且有,0≠∂∂xz满足方程.0)(=∂∂+∂∂-y z y x z z x 现在将x 作为z y ,的函数,求.yx∂∂ 5.设),,(t x f y =t 是由方程0),,(=t y x F 确定的x ,y 的函数,其中F 和f 均有一阶连续的偏导数,求.dxdy 6.设),,(),,(),,(v u f z v u y v u x ===ψϕz 是x ,y 的二元函数,求x z ∂∂及.yz∂∂ 7.求函数)ln(22z x e w y+=-在点),1,(2e e 处沿曲面uv v u v u e z e y e x ===-+,,的法线向量的方向导数.8.求g ra d[c ·r +21ln(c ·r )],其中c 为常向量,r 为向径,且c ·r >0. 9.设二元函数f 在),(000y x P 点某邻域内偏导数'x f 和'y f 都有界,证明:f 在此邻域内连续. 10.设),(00'y x f x 存在,),('y x f y 在),(00y x 处连续,证明:),(y x f 在),(00y x 处可微.11.证明:函数⎪⎩⎪⎨⎧≠≠+-=)0,0(),(0)0,0(),(),(2233y x y x y x y x y x f ,,在原点处偏导数存在但不可微.12.设),(y x z z =是由方程⎪⎭⎫⎝⎛=z y z x ϕ确定的二元函数,其中ϕ有连续的二阶导函数,证明:.222222⎪⎪⎭⎫⎝⎛∂∂∂=∂∂⋅∂∂y x z y z x z 13.证明:曲面)2(2z y f ezx -=-π是柱面,其中f 可微.第二部分 多变量积分学一、各类积分的计算公式及意义(一)二重积分 1.计算公式①直角坐标系下的二重积分:()()()⎰⎰⎰⎰⎰⎰==)()()()(2121,,,y x y x dcbax y x y Ddx y x f dy dy y x f dx dxdy y x f②极坐标系下的二重积分:()()()⎰⎰⎰⎰⎰⎰==)()()()(2121.sin ,cos sin ,cos ,r r bar r Dd r r f rdr rdr r r f d dxdy y x f ϕϕβαθθθθθθθθ③二重积分的变量替换:()[]dudv v u y x v u y v u x f dxdy y x f uvxy),(),(),(),,(,∂∂=⎰⎰⎰⎰σσ2.几何意义:()0,≥y x f 时,表示以0=z 为底,以()y x f z ,=为顶的曲顶柱体的体积. 3.物理意义:各点处面密度为()y x f ,的平面片D的质量. (二)三重积分 1.计算公式①直角坐标系下的三重积分: (1)柱型域:投影穿线法(先一后二法):()()()()⎰⎰⎰⎰⎰⎰=y x z y x z Vdz z y x f dxdy dV z y x f xy,,21,,,,σ(2)片型域:定限截面法(先二后一法):()()⎰⎰⎰⎰⎰⎰=zD z z Vdxdy z y x f dz dV z y x f ,,,,21②柱面坐标系下的三重积分:()()()()()⎰⎰⎰⎰⎰⎰⎰⎰⎰==βαθθθθθθθθ2121,,,sin ,cos ,sin ,cos ,,r r r z r z VVdzz r r f rdr d dz rdrd z r r f dV z y x f ③球面坐标系下的三重积分:()()()()()()()⎰⎰⎰⎰⎰⎰⎰⎰⎰==ϕθϕθθϕθϕβαϕθϕθϕϕϕθϕθϕϕθϕθϕ,,222121cos ,sin sin ,cos sin sin sin cos ,sin sin ,cos sin ,,r r VVdrr r r r f d d drd d r r r r f dV z y x f④三重积分的变量替换:()[]dudvdw w v u z y x w v u z w v u y w v u x f dV z y x f uvwxyzV V ),,(),,(),,(),,,(),,,(,,∂∂=⎰⎰⎰⎰⎰⎰2.物理意义:各点处体密度为()z y x f ,,的几何形体Ω的质量.(三)第一型曲线积分: 1.计算公式①平面曲线的情形:(1)()()b t a t y y t x x C ≤≤⎩⎨⎧==,,:则()()()()()().,,22⎰⎰'+'=b aC dt t y t x t y t x f ds y x f(2)()b x a x g y C ≤≤=,:则()()()()⎰⎰+=baCdx x g x g x f ds y x f .'1,,2(3)()βθαθ≤≤=,:r r C 则()()()()()()⎰⎰'+=βαθθθθθθθ.sin ,cos ,22d r r r r f ds y x f C②空间曲线的情形:()()()b t a t z z t y y t x x C ≤≤⎪⎩⎪⎨⎧===,,,::()()()()()()()().',,,,222⎰⎰+'+'=βαdt t z t y t x t z t y t x f ds z y x f C2.几何意义:以C 为准线,母线平行于z 轴的柱面介于0=z 与()y x f z ,=间的面积. 3.物理意义:各点处线密度为()y x f ,(或()z y x f ,,)的曲线C 的质量. (四)第一型曲面积分: 1.计算公式:()()().1,,,,,22⎰⎰⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+=xydxdy y z x z y x z y x f dS z y x f Sσ 2.物理意义:各点处面密度为()z y x f ,,的曲面S 的质量. (五)第二型曲线积分:1.计算公式:①平面曲线的情形:()()b t a t y y t x x C ≤≤⎩⎨⎧==,,:⎰⎰+=+baCt dy t y t x Q t dx t y t x P dy y x Q dx y x P )())(),(()())(),((),(),(②空间曲线的情形:()()()b t a t z z t y y t x x C ≤≤⎪⎩⎪⎨⎧===,,,:)())(),(),(()())(),(),(()())(),(),((),,(),,(),,(t dz t z t y t x z t dy t z t y t x Q t dx t z t y t x P dz z y x R dy z y x Q dx z y x P baC ⎰⎰++=++2.物理意义:力场F =P(x,y ,z )i + Q (x,y ,z )j +R (x ,y,z )k 沿有向曲线C 所做的功.(六)第二型曲面积分: 1.计算公式:.)),(,,()),(,,()),(,,(),,(),,(),,(⎰⎰⎰⎰⎥⎦⎤⎢⎣⎡+⎪⎪⎭⎫⎝⎛∂∂-+⎪⎭⎫ ⎝⎛∂∂-±=++xy dxdy y x z y x R y x z y x Q y z y x z y x P x z dxdyz y x R dzdx z y x Q dydz z y x P Sσ 2. 物理意义:流速场v=P (x ,y,z )i + Q (x,y ,z )j+R (x ,y,z)k 单位时间通过有向曲面S流向指定一侧的净通量.二、各种积分间的联系1. 第一型曲线积分与第二型曲线积分:[]⎰⎰++=++CCds R Q P Rdz Qdy Pdx .cos cos cos γβα2. 第一型曲面积分与第二型曲面积分:[].cos cos cos ⎰⎰⎰⎰++=++SSdS R Q P Rdxdy Qdzdx Pdydz γβα3. 第二型曲线积分与二重积分(Gr een 公式):.dxdy y P x Q Qdy Pdx D C ⎰⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=+4. 第二型曲面积分与三重积分(Gaus s公式):.dV z R y Q x P Rdxdy Qdzdx Pdydz S V ⎰⎰⎰⎰⎰⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂=++5. 第二型曲线积分与第二型曲面积分(Stokes 公式):.dxdy y P x Q dzdx x R z P dydz z Q y R Rdz Qdy Pdx S C ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=++⎰⎰⎰ 三、各种积分的通用性质1.黎曼积分的性质1°()()[]()().⎰⎰⎰ΩΩΩΩ±Ω=Ω±d P g d P f d P g P f βαβα2°()()()⎰⎰⎰ΩΩΩΩ+Ω=Ω21d P f d P f d P f ,其中Ω=Ω⋃Ω21,且1Ω与2Ω无公共内点.3°若()()P g P f ≤,Ω∈P ,则()().⎰⎰ΩΩΩ≤Ωd P g d P f若()()()()P g P f P g P f ≠≤,,且()()P g P f ,连续,Ω∈P ,则()().⎰⎰ΩΩΩ<Ωd P g d P f4°()().⎰⎰ΩΩΩ≤Ωd P f d P f5° 若()P f 在积分区域Ω上的最大值为M ,最小值为m ,则().Ω≤Ω≤Ω⎰ΩM d P f m6° 若()P f 在有界闭区域Ω上连续,则至少有一点Ω∈*P ,使()().Ω=Ω*Ω⎰P f d P f7° 若2R ⊂Ω关于坐标轴对称,当()P f 关于垂直该轴的坐标是奇函数则为0;若3R ⊂Ω关于坐标平面对称,当()P f 关于垂直该平面坐标轴的坐标是奇函数时为0.8° 将坐标轴重新命名,如果积分区域不变,则被积函数中的x ,y ,z 也同样作变化后,积分值保持不变.2.第二型积分的性质1° 设-Ω是与Ω方向相反的几何体,则.)()(→Ω→→Ω→Ω-=Ω⎰⎰-d P A d P A2° ()()()().⎰⎰⎰Ω→→Ω→→Ω→→Ω±Ω=Ω⎥⎦⎤⎢⎣⎡±d P B d P A d P B P A βαβα3°若21Ω+Ω=Ω,则.)()()(21→Ω→→Ω→→Ω→Ω+Ω=Ω⎰⎰⎰d P A d P A d P A4°若e p ()P A →⊥,,Ω∈P 则.0)(=Ω→Ω→⎰d P A5°设,Ω∈P e p ={}P P P γβαcos cos cos ,,,()P A →={})(),(),(P R P Q P P ,则[]⎰⎰Ω→Ω→Ω++=Ωd P R P Q P P d P A P P Pγβαcos )(cos )(cos )()(6° 将坐标轴重新命名,如果曲线或曲面的方程不变,则被积函数中的x,y ,z 也同样作变化后,积分值保持不变.四、各种积分的应用1.形心坐标公式:(),ΩΩ=⎰Ωxd M x μ()().,ΩΩ=ΩΩ=⎰⎰ΩΩzd M z yd M y μμ质心坐标公式:()(),⎰⎰ΩΩΩΩ=d M xd M x μμ()()()().,⎰⎰⎰⎰ΩΩΩΩΩΩ=ΩΩ=d M zd M z d M yd M y μμμμ2.转动惯量:()().2⎰ΩΩ=d M r M I μ 3.旋度:r otF (M)= ⎪⎪⎭⎫⎝⎛∂∂-∂∂z Q y R i +⎪⎭⎫ ⎝⎛∂∂-∂∂x R z P j +⎪⎪⎭⎫⎝⎛∂∂-∂∂y P x Q k.4.散度:div F (M)= .Mz R y Q x P ⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂ 五、习题1.计算,2dxdy y D⎰⎰其中D由横轴和摆线⎩⎨⎧-=-=)cos 1()sin (t a y t t a x 的一拱)0,20(>≤≤a t π围成. 2.计算,)(sin 12dxdy y x D⎰⎰+-其中D: .0,0ππ≤≤≤≤y x 3.计算,222dxdy y x a D⎰⎰--其中D : .0,,22>≥≤+a x y ay y x 4.计算,22dxdy y x D⎰⎰+ 其中D : .0,0a y a x ≤≤≤≤5.计算[],)(1⎰⎰⎰+VdV z xf y 其中V 是由不等式组2230,1,11y x z y x x +≤≤≤≤≤≤-所限定的区域,)(z f 为任一连续函数.6.计算,222⎰⎰⎰+VdV z y x 其中V 是由不等式组1)1(,1222222≤-++≥++z y x z y x 所确定的空间区域. 7.计算,1222⎰⎰⎰-++VdV z y x 其中V 是由锥面22y x z +=和平面1=z 围成的立体.8.计算,)32(⎰⎰⎰++VdV z y x 其中V是顶点在)000(,,处,底为平面3=++z y x 上以)111(,,为圆心,1为半径的圆的圆锥体.8.计算,⎰lxds 其中l 为双曲线1=xy 上点)2,21(到)1,1(的弧段.9.计算⎰++Lds xy zx yz ,)222(其中L 是空间圆周.232222⎪⎩⎪⎨⎧=++=++az y x a z y x10.计算,ds z y x z D⎰⎰),,(ρ其中S 是椭球面122222=++z y x 的上半部分,点π,),,(S z y x P ∈为S 在点P处的切平面,),,(z y x ρ为原点)000(,,到平面π的距离.11.计算,cos )sin 1(2⎰--+ly y xdx e dy x e x 其中l 是由由原点沿2x y =到点)1,1(的曲线.12.计算⎰Γ+++++,)()()(222222dz y x dy x z dx z y 其中(),024:22222>⎪⎩⎪⎨⎧=+=++Γz xy x xz y x从z 轴正向看Γ取逆时针方向.13.计算,)()(22⎰+++-ly x dy y x dx y x 其中l 为摆线⎩⎨⎧-=--=ty t t x cos 1sin π从0=t 到π2=t 的弧段. 14.计算,)6()22(22223ydxdy z dzdx x z y x zy dydz e xx S-+++--⎰⎰-π其中S 是由抛物面224y x z --=,坐标面xo z,yo z及平面1,1,21===y x y z 所围成的立体表面的外侧. 15.计算,)()()(232323dxdy x z dzdx z y dydz y x S-+-+-⎰⎰其中S 是由锥面22z x y +=与半球面)0(222>--+=R z x R R y 构成的闭曲面的外侧.16.计算,dxdy y x f y z z dzdx y x f dydz y x f y x ⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎰⎰∑其中∑是由122++=z x y 和229z x y --=所围立体表面的外侧, )(u f 是有连续导数的函数.17.计算,4)1(2)18(2dxdy yz dzdx y xdydz y S ⎰⎰--++其中S 是由()3101≤≤⎪⎩⎪⎨⎧=-=y x y z 绕y 轴旋转一周所得到的曲面,它的法向量与y 轴正向夹角恒大于.2π18.计算,222dzdx z x Sy ⎰⎰+其中S是曲面22z x y +=及1=y ,2=y 所围立体表面外侧.19.求闭曲面z a z y x 32222)=++(所围成的立体体积. 20.求锥面222x z y =+含在圆柱面222a y x =+内部分的面积.21.求由曲线L :)21(ln 2142≤≤-=x x x y 绕直线8943-=x y 旋转形成的旋转曲面的面积. 22.求平面曲线段l :)10(233≤≤+=x x x y 绕直线L:x y 34=旋转形成的旋转曲面的面积. 23.设函数)(x f 在区间]1,0[上连续,并设,)(1⎰=A dx x f 求⎰⎰110.)()(xdy y f x f dx24.求线密度为x 的物质曲线()0222222≥⎪⎩⎪⎨⎧=+=++z Rxy x Rz y x 对三个坐标轴转动惯量之和. 25.设r =x i +yj +z k , r=|r |.(1)求)(r f ,使div[)(r f r ]=0;(2)求)(r f ,使di v[grad )(r f ]=0.26.设函数)(x f 在区间]1,0[上连续、正值且单调下降,证明:.)()()()(110210102⎰⎰⎰⎰≤dx x f dxx f dxx xf dxx xf27.设函数)(t f 连续,证明:⎰⎰⎰--=-DAAdt t A t f dxdy y x f .|)|)(()(28.证明:()),0()323(31085335>+≤+++≤⎰⎰∑a a a dS a z y x a ππ其中∑是球面:.022222222=+---++a az ay ax z y x29.设Γ是弧长为s 的光滑曲线段,函数),,(),,,(),,,(z y x R z y x Q z y x P 在Γ上连续,且.max 222R Q P M ++=Γ证明:.Ms Rdz Qdy Pdx ≤++⎰Γ30.设在上半平面{}0|),(>=y y x D 内函数),(y x f 具有连续偏导数,且对任意的0>t ,都有).,(),(2y x f tty tx f -=证明:0),(),(=-⎰dy y x xf dx y x yf L,其中L 是D 内任意分段光滑的有向简单闭曲线.第三部分 无穷级数一、数项级数(一)数项级数的基本性质1.收敛的必要条件:收敛级数的一般项必趋于0. 2.收敛的充要条件(柯西收敛原理):对任意给定的正数ε,总存在N 使得对于任何两个N 大于的正整数m 和n ,总有ε<-n m S S .(即部分和数列收敛)3.收敛级数具有线性性(即收敛级数进行线性运算得到的级数仍然收敛),而一个收敛级数和一个发散级数的和与差必发散.4.对收敛级数的项任意加括号所成级数仍然收敛,且其和不变. 5.在一个数项级数内去掉或添上有限项不会影响敛散性. (二)数项级数的性质及敛散性判断 1.正项级数的敛散性判断方法(1)正项级数基本定理:如果正项级数的部分和数列有上界,则正项级数收敛. (2)比较判别法(放缩法):若两个正项级数∑∞=1n nu和∑∞=1n nv之间自某项以后成立着关系:存在常数0>c ,使),2,1( =≤n cv u n n ,那么 (i)当级数∑∞=1n nv收敛时,级数∑∞=1n nu亦收敛;(ii)当级数∑∞=1n nu发散时,级数∑∞=1n nv亦发散.推论:设两个正项级数∑∞=1n n u 和∑∞=1n n v ,且自某项以后有nn n n v v u u 11++≤,那么 (i)当级数∑∞=1n nv收敛时,级数∑∞=1n nu亦收敛;(ii)当级数∑∞=1n nu发散时,级数∑∞=1n nv亦发散.(3)比较判别法的极限形式(比阶法):给定两个正项级数∑∞=1n n u 和∑∞=1n n v ,若0lim>=∞→l v u nnn ,那么这两个级数敛散性相同.(注:可以利用无穷小阶的理论和等价无穷小的内容)另外,若0=l ,则当级数∑∞=1n nv收敛时,级数∑∞=1n nu亦收敛;若∞=l ,则当级数∑∞=1n nu发散时,级数∑∞=1n nv亦发散.常用度量: ①等比级数:∑∞=0n nq,当1<q 时收敛,当1≥q 时发散;②p-级数:∑∞=11n p n ,当1>p 时收敛,当1≤p 时发散(1=p 时称调和级数); ③广义p -级数:()∑∞=2ln 1n pn n ,当1>p 时收敛,当1≤p 时发散.④交错p -级数:∑∞=--111)1(n pn n ,当1>p 时绝对收敛,当10≤<p 时条件收敛. (4)达朗贝尔判别法的极限形式(商值法):对于正项级数∑∞=1n n u ,当1lim1<=+∞→r u u nn n 时级数∑∞=1n n u 收敛;当1lim 1>=+∞→r u u n n n 时级数∑∞=1n n u 发散;当1=r 或1=r 时需进一步判断. (5)柯西判别法的极限形式(根值法):对于正项级数∑∞=1n nu,设n n n u r ∞→=lim ,那么1<r 时此级数必为收敛,1>r 时发散,而当1=r 时需进一步判断. (6)柯西积分判别法:设∑∞=1n nu为正项级数,非负的连续函数)(x f 在区间),[+∞a 上单调下降,且自某项以后成立着关系:n n u u f =)(,则级数∑∞=1n nu与积分⎰+∞)(dx x f 同敛散.2.任意项级数的理论与性质(1)绝对收敛与条件收敛:①绝对收敛级数必为收敛级数,反之不然; ②对于级数∑∞=1n nu,将它的所有正项保留而将负项换为0,组成一个正项级数∑∞=1n nv,其中2nn n u u v +=;将它的所有负项变号而将正项换为0,也组成一个正项级数∑∞=1n nw,其中2nn n u u w -=,那么若级数∑∞=1n nu绝对收敛,则级数∑∞=1n nv和∑∞=1n nw都收敛;若级数∑∞=1n nu条件收敛,则级数∑∞=1n nv和∑∞=1n nw都发散.③绝对收敛级数的更序级数(将其项重新排列后得到的级数)仍绝对收敛,且其和相同. ④若级数∑∞=1n nu和∑∞=1n nv都绝对收敛,它们的和分别为U 和V ,则它们各项之积按照任何方式排列所构成的级数也绝对收敛,且和为UV .特别地,在上述条件下,它们的柯西乘积⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=11n n n n v u 也绝对收敛,且和也为UV . 注:⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛=∑∑∑∞=∞=∞=111n n n n n n v u c ,这里121121v u v u v u v u c n n n n n ++++=-- .(2)交错级数的敛散性判断(莱布尼兹判别法):若交错级数∑∞=--11)1(n n n u 满足0lim =∞→n n u ,且{}n u 单调减少(即1+≥n n u u ),则∑∞=--11)1(n n n u 收敛,其和不超过第一项,且余和的符号与第一项符号相同,余和的值不超过余和第一项的绝对值.二、函数项级数(一)幂级数1.幂级数的收敛半径、收敛区间和收敛域 (1)柯西-阿达马定理:幂级数∑∞=-00)(n n nx x a在R x x <-0内绝对收敛,在R x x >-0内发散,其中R 为幂级数的收敛半径. (2)阿贝尔第一定理:若幂级数∑∞=-00)(n n nx x a在ξ=x 处收敛,则它必在00x x x -<-ξ内绝对收敛;又若∑∞=-00)(n n nx x a在ξ=x 处发散,则它必在00x x x ->-ξ也发散.推论1:若幂级数∑∞=0n n nx a在)0(≠=ξξx 处收敛,则它必在ξ<x 内绝对收敛;又若幂级数∑∞=0n n nx a在)0(≠=ξξx 处发散,则它必在ξ>x 时发散.推论2:若幂级数∑∞=-00)(n n nx x a在ξ=x 处条件收敛,则其收敛半径0x R -=ξ,若又有0>n a ,则可以确定此幂级数的收敛域.(3)收敛域的求法:令1)()(lim 1<+∞→x a x a nn n 解出收敛区间再单独讨论端点处的敛散性,取并集.2.幂级数的运算性质(1)幂级数进行加减运算时,收敛域取交集,满足各项相加;进行乘法运算时,有:∑∑∑∑∞==-∞=∞=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛0000n n n i i n i n n n n n n x b a x b x a ,收敛域仍取交集. (2)幂级数的和函数)(x S 在收敛域内处处连续,且若幂级数∑∞=-00)(n n nx x a在Rx x -=0处收敛,则)(x S 在[)R x R x +-00,内连续;又若幂级数∑∞=-00)(n n nx x a在R x x +=0处收敛,则)(x S 在(]R x R x +-00,内连续.(3)幂级数的和函数)(x S 在收敛域内可以逐项微分和逐项积分,收敛半径不变. 3.函数的幂级数展开以及幂级数的求和 (1)常用的幂级数展开:① +++++=nxx n x x e !1!2112∑∞==0!n n n x ,x ∈(-∞, +∞).②=11x -1+x +x 2+···+x n +··· =∑∞=0n n x ,x ∈(-1, 1). 从而,∑∞=-=+0)(11n n x x ,∑∞=-=+022)1(11n nn x x . ③∑∞=+++-=++-+-+-=0121253)!12()1()!12()1(!51!31sin n n nn n n x n x x x x x ,x ∈(-∞, +∞).④∑∞=-=+-+-+-=02242)!2()1()!2()1(!41!211cos n n n n n n x n x x x x ,x ∈(-∞, +∞). ⑤∑∞=-+-=++-+-+-=+11132)1(11)1(3121)1ln(n n n n n n x x n x x x x ,x ∈(-1, 1].⑥ ++--++-++=+n x n n x x x !)1()1(!2)1(1)1(2ααααααα,x ∈(-1, 1).⑦1202123)12()!(4)!2(12!)!2(!)!12(321arcsin +∞=+∑+=++-+++=n n n n x n n n n x n n x x x ,x ∈[-1, 1].⑧120123121)1(121)1(31arctan +∞=++-=++-++-=∑n n n n n x n x n x x x ,x ∈[-1, 1]. (2)常用的求和经验规律:①级数符号里的部分x 可以提到级数外;②系数中常数的幂中若含有n ,可以与x 的幂合并,如将n c 和n x 合并为ncx )(; ③对∑∞=0n nnx a求导可消去n a 分母因式里的n ,对∑∞=0n n n x a 积分可消去n a 分子因式里的1+n ;④系数分母含!n 可考虑x e 的展开,含)!2(n 或)!12(+n 等可考虑正余弦函数的展开; ⑤有些和函数满足特定的微分方程,可以考虑通过求导发现这个微分方程并求解. (二)傅里叶级数1.狄利克雷收敛定理(本定理为套话,不需真正验证,条件在命题人手下必然成立) 若)(x f 以l 2为周期,且在[-l , l ]上满足: ①连续或只有有限个第一类间断点; ②只有有限个极值点;则)(x f 诱导出的傅里叶级数在[-l , l ]上处处收敛. 2. 傅里叶级数)(x S 与)(x f 的关系:⎪⎪⎪⎩⎪⎪⎪⎨⎧-++--++=.2)0()0(2)0()0()()(为边界点,为间断点;,为连续点;,x l f l f x x f x f x x f x S3.以l 2为周期的函数的傅里叶展开展开:∑∞=⎪⎪⎭⎫⎝⎛++=10sin cos 2)(~)(n n n l x n b l x n a a x S x f ππ(1)在[-l , l]上展开:⎪⎪⎪⎩⎪⎪⎪⎨⎧===⎰⎰⎰---l ln l l n l l dx l x n x f l b dx l x n x f l a dx x f l a ππsin )(1cos )(1)(10;(2)正弦级数与余弦级数:①奇函数(或在非对称区间上作奇延拓)展开成正弦级数:⎪⎪⎩⎪⎪⎨⎧===⎰l n n dxl x n x f l b a a 00sin )(200π;②偶函数(或在非对称区间上作偶延拓)展开成余弦级数:⎪⎪⎪⎩⎪⎪⎪⎨⎧===⎰⎰0cos )(2)(2000n l n l b dx l x n x f l a dx x f l a π;4.一些在展开时常用的积分: (1);0cos ;1)1(sin 010=+-=⎰⎰+ππnxdx n nxdx n(2)2sin 1cos ;1sin 2020πππn n nxdx n nxdx ==⎰⎰;(3)2022010)1(2cos 1)1(cos ;)1(sin nnxdx x n nxdx x n nxdx x nn n -=--=-=⎰⎰⎰+πππππ;; (4)C nx n nx a e n a nxdx e axax +-+=⎰)cos sin (1sin 22; C nx a nx n e na nxdx e axax +++=⎰)cos sin (1cos 22; (5)C x n a n a x n a n a nxdx ax +--+++-=⎰)sin()(21)sin()(21sin sin ;C x n a n a x n a n a nxdx ax +--+++-=⎰)sin()(21)sin()(21cos cos .注:①求多项式与三角函数乘积的积分时可采用列表法,注意代入端点后可能有些项为0; ②展开时求积分要特别注意函数的奇偶性及区间端点和间断点的特殊性; ③对于π≠l 的情形,事先令x lt π=对求积分通常是有帮助的.五、习题1.判断下列数项级数的敛散性,若收敛,不是正项级数的指出是绝对收敛还是条件收敛. (1)∑∞=⎪⎭⎫ ⎝⎛+1212n nn n ;(2)nn n βα∑∞=1,其中β非负;(3)∑⎰∞=140tan n n n xdx λπ,其中0>λ;(4)np n n n1111)1(+∞=-∑-;(5)n n nnn !)(1∑∞=-α,其中0>α; (6)!)!12(!)!32()1(2---∑∞=n n n n.2.求幂级数nn n n x n ∑∞=+132的收敛域. 3.求幂级数nn n n x n b n a ∑∞=⎪⎪⎭⎫ ⎝⎛+1的收敛域,其中b a ,为正数.4.将下列函数展开成x 的幂级数. (1)xx 21-;(2)x arcsin ;(3)x x x x -+-+arctan 2111ln 41. 5.求下列幂级数的收敛域及和函数.(1)n n n x n ∑∞=+-121)1(;(2))12()1(211--∑∞=-n n x n n n ; (3)()∑∞=03!3n nn x ; 6.求数项级数∑∞=-⋅-1212)!2(2)1(n nn n n 的和. 7.设(),arctan )(2x x f =分别求出)0()12(-n f 和)0()2(n f .8.求极限∑⎰∞=+→+112sin 0202)sin(lim n n n xx n x dt t . 9.求极限.)!14(!11!7!31)!34(!9!51lim 448444840-++++-++++--→n n n n x ππππππ10.将函数⎪⎪⎩⎪⎪⎨⎧≤≤-≤≤=l x l x l l x x x f 2,20,)(展开成正弦级数.11.将函数⎪⎪⎩⎪⎪⎨⎧≤≤≤≤=l x l l x l x x f 2,020,cos )(π展开成余弦级数. 12.将函数)arcsin(sin )(x x f =展开成傅里叶级数. 13.证明:幂级数n n n k x n k ∑∑∞==112)!2()!(在)3,3(-内绝对收敛. 14.求函数⎰-+=πππdt t x f t f x F )()(1)(的傅里叶系数nn B A ,,其中)(x f 是以π2为周期的连续函数,n n b a ,是其傅里叶系数.并证明:).(2)(1212202n n n b a a dt t f ++=∑⎰∞=-πππ。

高等数学中的多元函数

高等数学中的多元函数

高等数学中的多元函数在高等数学中,多元函数是指拥有多个自变量的函数。

与一元函数不同,多元函数的自变量可以是两个或更多个。

1. 多元函数的定义多元函数可以理解为一个函数,它的输入可以是多个变量,输出为一个变量。

如f(x, y) = x² + y²,其中x和y都是自变量,而f(x, y)则是因变量。

多元函数的定义域是自变量的取值范围,其值域是函数的所有可能输出。

2. 多元函数的图像和一元函数一样,多元函数也可以通过绘制图像来直观地展示。

对于二元函数f(x, y),可以在三维坐标系中绘制出其图像。

图像上的每一个点(x, y, z)代表了函数在对应自变量取值下的输出值。

通过观察图像的形状和特征,我们可以对多元函数的性质有更深入的理解。

3. 多元函数的极限多元函数也存在极限的概念。

对于二元函数f(x, y),当自变量(x, y)趋近于某一点(x₀, y₀)时,函数值f(x, y)可能趋近于一个有限的值L,我们称L为函数f(x, y)当(x, y)趋近于(x₀, y₀)时的极限。

多元函数的极限性质和一元函数类似,我们可以通过定义和极限的性质来推导多元函数的极限。

4. 多元函数的偏导数多元函数的偏导数是指函数在某一点处对某个自变量的导数。

对于二元函数f(x, y),其偏导数可以分别求关于x和y的导数。

偏导数可以帮助我们研究多元函数在某一点的变化率和方向。

通过求解偏导数为零的点,我们可以找到多元函数的极值点。

5. 多元函数的泰勒展开多元函数的泰勒展开公式是将一个多元函数在某一点附近用多项式来逼近的方法。

泰勒展开可以帮助我们更好地理解多元函数的性质和行为。

通过泰勒展开,我们可以将复杂的多元函数近似为简单的多项式,从而简化问题的求解过程。

6. 多元函数的积分多元函数的积分是对多元函数在某个区域上的求和操作。

与一元函数积分类似,多元函数的积分可以分为定积分和不定积分。

通过对多元函数的积分,我们可以求解多元函数在某个区域上的总量、平均值等问题。

多元函数单调性知识点总结

多元函数单调性知识点总结

多元函数单调性知识点总结一、多元函数的定义及基本概念1. 多元函数的定义多元函数是指在n维欧式空间中的定义域为n维的实数向量空间,值域为实数的函数。

多元函数的自变量和因变量都是n维向量。

一般地,设D⊂R^n, f: D→R为n个实变量的函数,那么称f为n元函数,记作f(x_1,x_2, …, x_n),其中x_i(i=1,2,…,n)称为自变量,函数值y=f(x_1, x_2, …, x_n)称为因变量。

2. 多元函数的单调性多元函数的单调性是指当自变量变化时,函数值的变化趋势。

当函数值随着自变量的增加而增加,称函数在该区间上是单调递增的;当函数值随着自变量的增加而减小,称函数在该区间上是单调递减的。

二、多元函数的偏导数及一阶导数1. 多元函数的偏导数对于n元函数f(x_1, x_2, …, x_n),如果在(x_1, x_2, …, x_n)处存在偏导数,那么对于每一个自变量x_i,在其它自变量不变的情况下,可以对f关于x_i求导,得到f关于x_i的偏导数,记作∂f/∂x_i。

偏导数的定义如下:●当f在点(x_1, x_2, …, x_n)处存在偏导数∂f/∂x_i时,即该函数在该点沿着第i个自变量的方向有导数。

这个导数叫做偏导数,记作∂f/∂x_i,也可简称为偏导。

其计算公式为:∂f/∂x_i = lim(h→0) (f(x_1, x_2, …, x_i+h, …, x_n) - f(x_1, x_2, …, x_i, …, x_n)) / h●如果在点(x_1, x_2, …, x_n)的邻域内,各个偏导数∂f/∂x_i都存在,则称多元函数f(x_1,x_2, …, x_n)在该点可偏导。

2. 多元函数的一阶导数对于n元函数f(x_1, x_2, …, x_n),当其在点(x_1, x_2, …, x_n)处的各个偏导数∂f/∂x_i都存在时,称f在该点可偏导。

此时,函数f的一阶导数是一个n维向量,称为梯度,记作∇f(x_1, x_2, …, x_n) = (∂f/∂x_1, ∂f/∂x_2, …, ∂f/∂x_n)。

多元函数微分学

多元函数微分学
1 2 2 ( x y ) sin 2 2 例10 设 f ( x , y ) x y 0 x2 y2 0 x y 0
2 2
问在(0,0)处,f(x, y)的偏导数是否存在?偏 Biblioteka 数是否连续?f(x, y)是否可微?
5.方向导数 , 定义5 设 z f ( x , y )在 点M 0 ( x0, y0 )的 某 邻 域 内 有 定 义
xy si n x y ) ( 证 明l i m 0. 2 2 x 0 x y y 0
si n ( ) xy 求lim x 0 y y 0
例2
例3
xy 2 lim 2 是否存在? 4 x 0 x y y0
xy l n (x 2 y 2 ) x 2 y 2 0, 研 究 函 数 ( x, y) f 0 x2 y2 0 在( 0,0)处 的 连 续 性 。
(2) z x 4 y 3 2 x
在1, 2处
( 34dx 12dy)
xy x2 y2 0 2 例9 设f ( x , y ) x y 2 x2 y2 0 0 求f x (0,0), f y (0,0), 并 讨 论 f ( x , y ) 在 (0,0) 处 的 可 微 性 .
在 点M 0沿 任 一 方 向的 方 向 导 数 都 存 在 , 且 l
M0 M0
当 l 与grad f ( M 0 )同方向时,z在M 0的方向 导数取最大值,且最大 grad f ( M 0 ), 值 当 l 与grad f ( M 0 )反方向时,z在M 0的方向 导数取最小值,且最小 grad f ( M 0 ) 值
多元函数微分法
1. 多元函数的极限:

第八节多元函数的极值及其求法

第八节多元函数的极值及其求法

z a2 2xy 2(x y)
代入V 的表达式,得
V xy a2 2xy 2(x y)
再求它的无条件极值就行了.
这是一种间接求条件极值的方法. 但是,在很多情形,条件极值问题不能或很难化为
无条件极值问题,(比如,从附加条件不能将其中一个 变量由其余变量表示出来),这时, 上述方法就行不 通了. 可是, 实际中又有大量这类问题需要解决, 为此, 下面给大家介绍一种直接求条件极值的方法,
对该邻域内的异于 (x0, y0) 的任意点 (x, y), 都有 f (x, y) f (x0, y0) .
取定 y y0,当0 | x x0 | 时, 点(x, y0) U (P0, ) , 且(x, y0) (x0, y0), 因而应有
f (x, y0) f (x0, y0)
即 当0 | x x0 | 时, 有
第三步 根据极值的充分条件, 对驻点 (x0, y0) 是否为极值点,以及是极大值点还是极小值点
作出判断。
例1 求函数 f (x, y) x3 y3 3x2 3y2 9x 的极值.
解 定义域: 整个平面
fx 3x2 6x 9 0
fy
3y2 6y
0
解得: x 1 x 1 x 3
求 V xyz (x 0, y 0, z 0)
在附加条件 2xy 2yz 2zx a2
下的最大值.
条件极值问题
怎样求条件极值? 有些可以化为无条件极值问题来求。
例如上面的问题:
求 V xyz (x 0, y 0, z 0) 在附加条件 2xy 2yz 2zx a2
下的最大值. 由附加条件解得
f (x, y) f (x0, y0)
( )
则称函数 f (x,y) 在点 (x0 ,y0) 有极大值 f(x0 ,y0), (极小值)

.2 多元函数的概念

.2 多元函数的概念

结论: 一切多元初等函数在其定义区域内连续.
应用:若函数f (x, y)为初等函数,
且P0 (x0 , y0 )为其定义区域内的点,
则 lim P P0
f (P)
f (P0 )
18/19
3.【有界闭区域上连续函数的性质】 (1)最大值和最小值定理 在有界闭区域D上的多元连续函数,在D 上至少取得它的最大值和最小值各一次.
【注】二元函数定义域的画法(重点)
例7.6、例7.7
6/19
根据已知函数求未知函数
如已知
f
x, y

4xy x2 y2
4xy x

f

xy,
x y

f

xy,
x y


y
x2 y2

x2 y2
4y2 y4 1
已知 f x y,ey x2 y 求 f x, y
设 x y u , ey v 则 y ln v x u ln v
则 f u,v u ln v2 ln v
f x, y x ln y2 ln y
二、二元函数的极限
7/19
1【. 定义】设函数z f (x, y)在点 P0(x0, y0) 的附近有定义(点 P0 可
8/19
例1:设 f (x, y) x2 y2 则 lim f (x, y) 0 x0 y0
二重极限存在指的是,点 P(x, y)以任何方式趋于
P0 (x0, y0 ) 时, 函数 f (x, y)都趋于A, 如果点 P(x, y)
以某种特殊方式趋于点P0 (x0, y0 )时极限存在,不能 说明二重极限存在。

8.1 多元函数的概念与极限

8.1  多元函数的概念与极限

3 有界点集 若存在的点 A及常数 M 0, 使得 P G 都有
PA M , 则称 G 是有界的。

例如:
A
M
( x, y) | 1 x
2
y2 4

有界闭区域
( x, y) | x y 1 无界开区域
二 多元函数的定义
定义1 设 D R 2 , 称映射
则称点 P0 是 G 的内点。 若 G 中的点全是它的内点,
则称 G 是开集。 例如:
G ( x, y) | 1 x 2 y 2 4 开集

P0


(不是内点)
P0
(2)边界点于边界
若点 P0 的任一邻域内既有 G 中的点又有不在 G 中的点, 则称点 P0 是 G 的边界点。 G 的全体边界点组成的集合, 称为 G 的边界,记为 G.
第八章 多元函数的微分法及其应用
§8.1 多元函数的概念与极限
一 平面上的点集 二 多元函数的定义
三 多元函数的极限 四 多元函数的连续性
一 平面上的点集
1 邻域 设 P0 ( x0 , y0 ) R 2 , 0, 称点集
U ( P0 , ) P | PP0

( x, y ) | ( x x0 ) 2 ( y y0 ) 2
2
(4) lim (1 xy) x 0
y 0
y 0
解 (1) lim x 0
y 0
xy 4 2 lim x 0 xy y 0
1 1 xy 4 2 4
x 0, y 0
(2)
sin xy x2 y 2

1 2 x y2 x2 y 2 2

多元函数的基本概念

多元函数的基本概念

在其他领域中的应用
化学反应动力学
在化学反应动力学中, 多元函数可以用来描述 反应速率与反应物浓度 之间的关系。
生物种群动态
在生物种群动态中,多 元函数可以用来描述种 群数量随时间的变化趋 势,如Logistic增长模 型。
图像卷 积操作和滤波器设计。
THANKS
感谢观看
可微性
总结词
可微性是指函数在某一点或某一方向上 的导数存在。
VS
详细描述
在多元函数中,如果一个函数在某一点或 某一方向上的导数存在,则称该函数在该 点或该方向上可微。可微性是多元函数的 重要性质之一,它揭示了函数在某一点或 某一方向上的局部变化率。
偏导数
总结词
详细描述
偏导数是指在多元函数的某个自变量固定时, 该函数对其他自变量的导数。
在经济中的应用
供需模型
多元函数可以用来描述商品价格与供需量之 间的关系,通过求导数来分析价格变动对供 需量的影响。
投资组合优化
多元函数可以用来描述投资组合的预期收益与风险 之间的关系,通过优化算法来找到最优的投资组合 。
生产成本分析
在生产成本分析中,多元函数可以用来描述 不同生产要素之间的成本关系,帮助企业进 行成本控制和优化。
多元函数的基本概念
• 引言 • 多元函数的定义与表示 • 多元函数的性质 • 多元函数的极限 • 多元函数的积分 • 多元函数的应用
01
引言
多元函数的概念
多元函数是数学中的一个概念,它是 一个函数,其自变量和因变量都是多 个。在多元函数中,因变量的值依赖 于多个自变量的取值。
多元函数的定义域是一个点的集合, 这些点在各个自变量的取值范围内。 而函数的值域则是一组因变量的值, 这些值由各个自变量的取值确定。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档