概率论与数理统计综合作业
概率论考核作业(综合测试题)完整版
概率论考核作业(综合测试题)完整版综合测试题概率论与数理统计(经管类)综合试题一(课程代码 4183)一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.下列选项正确的是 ( B ).A. A B A B +=+B.()A B B A B +-=-C. (A -B )+B =AD. AB AB = 2.设()0,()0P A P B >>,则下列各式中正确的是( D ).A.P (A -B )=P (A )-P (B )B.P (AB )=P (A )P (B )C. P (A +B )=P (A )+P (B )D. P (A +B )=P (A )+P (B )-P (AB )3.同时抛掷3枚硬币,则至多有1枚硬币正面向上的概率是 ( D ).A.18 B. 16 C. 14 D. 124.一套五卷选集随机地放到书架上,则从左到右或从右到左卷号恰为1,2,3,4,5顺序的概率为 ( B ).A.1120 B. 160C. 15D. 125.设随机事件A ,B 满足B A ?,则下列选项正确的是 ( A ).A.()()()P A B P A P B -=-B. ()()P A B P B +=C.(|)()P B A P B =D.()()P AB P A =6.设随机变量X 的概率密度函数为f (x ),则f (x )一定满足 ( C ).A. 0()1f x ≤≤B. f (x )连续C.()1f x dx +∞-∞=?D. ()1f +∞=7.设离散型随机变量X 的分布律为(),1,2,...2kbP X k k ===,且0b >,则参数b的值为( D ).A.12 B. 13 C. 15D. 1 8.设随机变量X , Y 都服从[0, 1]上的均匀分布,则()E X Y += ( A ). A.1 B.2 C.1.5 D.09.设总体X 服从正态分布,21,()2EX E X =-=,1210,,...,X X X 为样本,则样本均值101110ii X X ==∑~( D ).A.(1,1)N -B.(10,1)NC.(10,2)N -D.1(1,)10N - 10.设总体2123(,),(,,)X N X X X μσ 是来自X 的样本,又12311?42X aX X μ=++ 是参数μ的无偏估计,则a = ( B ).A. 1B.14 C. 12 D. 13二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
概率论与数理统计作业及答案
概率论与数理统计作业及答案单选题(共100分)说明:()1.的分布函数为,其中为标准正态分布的分布函数,则_______(6分)(A) :0(B) :0.3(C) :0.7(D) :1参考答案:C解题思路:无2. 根据德莫弗-拉普拉斯定理可知_______(6分)(A) : 二项分布是正态分布的极限分布(B) : 正态分布是二项分布的极限分布(C) : 二项分布是指数分布的极限分布(D) : 二项分布与正态分布没有关系参考答案:B解题思路:无3.和独立,其方差分别为6和3,则_______(7分)(A) :9(B) :15(C) :21(D) :27参考答案:D解题思路:无4.设随机变量的分布函数为,则_______(7分)(A) :(B) :(C) :(D) :参考答案:B解题思路:无5.如果和满足, 则必有_______(6分)(A) :和不独立(B) :和的相关系数不为零(C) :和独立(D) :和的相关系数为零参考答案:D解题思路:无6.设随机变量的方差存在,则_______(6分)(A) :(B) :(C) :(D) :参考答案:D解题思路:无7.将一枚硬币重复掷次,以和分别表示正面向上和反面向上的次数,则和的相关系数等于_______(7分)(A) :-1(B) :0(C) :(D) :1参考答案:A解题思路:无8.设是随机变量,,则对任意常数,必有_______(7分)(A) :(B) :(C) :(D) :参考答案:D解题思路:无9.设随机变量的方差存在,为常数),则_______(7分)(A) :(B) :(C) :(D) :参考答案:C解题思路:无10.设随机变量~,~,且相关系数,则_______(7分)(A) :(B) :(C) :(D) :参考答案:D解题思路:无11.设随机变量,…相互独立,且都服从参数为的指数分布,则_______(6分)(A) :(C) :(D) :参考答案:A解题思路:无12.设随机变量~,服从参数的指数分布,则_______(7分)(A) :(B) :(C) :(D) :参考答案:A解题思路:无13. 有一批钢球,质量为10克、15克、20克的钢球分别占55%,20%,25%。
概率论与数理统计作业及解答
概率论与数理统计作业及解答第一次作业★1. 甲, 乙, 丙三门炮各向同一目标发射一枚炮弹, 设事件A , B , C 分别表示甲, 乙, 丙击中目标, 则三门炮最多有一门炮击中目标如何表示. 事件E ={事件,,A B C 最多有一个发生},则E 的表示为;E ABC ABC ABC ABC =+++或;ABACBC =或;ABACBC =或;ABACBC =或().ABC ABC ABC ABC =-++(和A B +即并A B ,当,A B 互斥即AB φ=时,A B 常记为A B +.) 2. 设M 件产品中含m 件次品, 计算从中任取两件至少有一件次品的概率.221M mM C C --或1122(21)(1)m M m m M C C C m M m M M C -+--=- ★3. 从8双不同尺码鞋子中随机取6只, 计算以下事件的概率.A ={8只鞋子均不成双},B ={恰有2只鞋子成双},C ={恰有4只鞋子成双}.61682616()32()0.2238,143C C P A C ===1414872616()80()0.5594,143C C C P B C === 2212862616()30()0.2098.143C C C P C C === ★4. 设某批产品共50件, 其中有5件次品, 现从中任取3件, 求:(1)其中无次品的概率; (2)其中恰有一件次品的概率.(1)34535014190.724.1960C C == (2)21455350990.2526.392C C C ==5. 从1~9九个数字中, 任取3个排成一个三位数, 求:(1)所得三位数为偶数的概率; (2)所得三位数为奇数的概率.(1){P 三位数为偶数}{P =尾数为偶数4},9=(2){P 三位数为奇数}{P =尾数为奇数5},9=或{P 三位数为奇数}1{P =-三位数为偶数45}1.99=-=6. 某办公室10名员工编号从1到10,任选3人记录其号码,求:(1)最小号码为5的概率;(2)最大号码为5的概率.记事件A ={最小号码为5}, B ={最大号码为5}.(1) 253101();12C P A C ==(2) 243101().20C P B C ==7. 袋中有红、黄、白色球各一个,每次从袋中任取一球,记下颜色后放回,共取球三次,求下列事件的概率:A ={全红},B ={颜色全同},C ={颜色全不同},D ={颜色不全同},E ={无黄色球},F ={无红色且无黄色球},G ={全红或全黄}.311(),327P A ==1()3(),9P B P A ==33333!2(),339A P C ===8()1(),9P D P B =-=3328(),327P E ==311(),327P F ==2()2().27P G P A ==☆.某班n 个男生m 个女生(m ≤n +1)随机排成一列, 计算任意两女生均不相邻的概率.☆.在[0, 1]线段上任取两点将线段截成三段, 计算三段可组成三角形的概率. 14第二次作业 1. 设A , B 为随机事件, P (A )=0.92, P (B )=0.93, (|)0.85P B A =, 求:(1)(|)P A B , (2)()P A B ∪. (1) ()()0.85(|),()0.850.080.068,()10.92P AB P AB P B A P AB P A ====⨯=-()()()()()()P AB P A P AB P A P B P AB =-=-+0.920.930.0680.058,=-+=()0.058(|)0.83.()10.93P AB P A B P B ===-(2)()()()()P A B P A P B P AB =+-0.920.930.8620.988.=+-=2. 投两颗骰子,已知两颗骰子点数之和为7,求其中有一颗为1点的概率. 记事件A ={(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)}, B ={(1,6),(6,1)}. 21(|).63P B A ==★.在1—2000中任取一整数, 求取到的整数既不能被5除尽又不能被7除尽的概率. 记事件A ={能被5除尽}, B ={能被7除尽}.4001(),20005P A ==取整2000285,7⎡⎤=⎢⎥⎣⎦28557(),2000400P B ==200057,57⎡⎤=⎢⎥⨯⎣⎦57(),2000P AB = ()()1()1()()()P AB P A B P A B P A P B P AB ==-=--+1575710.686.54002000=--+=3. 由长期统计资料得知, 某一地区在4月份下雨(记作事件A )的概率为4/15, 刮风(用B 表示)的概率为7/15, 既刮风又下雨的概率为1/10, 求P (A |B )、P (B |A )、P (A B ).()1/103(|),()7/1514P AB P A B P B ===()1/103(|),()4/158P AB P B A P A ===()()()()P A B P A P B P AB =+-47119.15151030=+-=4. 设某光学仪器厂制造的透镜第一次落下时摔破的概率是1/2,若第一次落下未摔破,第二次落下时摔破的概率是7/10,若前二次落下未摔破,第三次落下时摔破的概率是9/10,试求落下三次而未摔破的概率.记事件i A ={第i 次落下时摔破},1,2,3.i = 1231213121793()()(|)(|)111.21010200P A A A P A P A A P A A A ⎛⎫⎛⎫⎛⎫==---= ⎪⎪⎪⎝⎭⎝⎭⎝⎭5. 设在n 张彩票中有一张奖券,有3个人参加抽奖,分别求出第一、二、三个人摸到奖券概率.记事件i A ={第i 个人摸到奖券},1,2,3.i =由古典概率直接得1231()()().P A P A P A n ===或212121111()()()(|),1n P A P A A P A P A A n n n-====-31231213121211()()()(|)(|).12n n P A P A A A P A P A A P A A A n n n n--====--或 第一个人中奖概率为11(),P A n=前两人中奖概率为12122()()(),P A A P A P A n +=+=解得21(),P A n=前三人中奖概率为1231233()()()(),P A A A P A P A P A n ++=++=解得31().P A n=6. 甲、乙两人射击, 甲击中的概率为0.8, 乙击中的概率为0.7, 两人同时射击, 假定中靶与否是独立的.求(1)两人都中靶的概率; (2)甲中乙不中的概率; (3)甲不中乙中的概率.记事件A ={甲中靶},B ={乙中靶}.(1) ()()()0.70.70.56,P AB P A P B ==⨯=(2) ()()()0.80.560.24,P AB P A P AB =-=-= (3) ()()()0.70.560.14.P AB P B P AB =-=-=★7. 袋中有a 个红球, b 个黑球, 有放回从袋中摸球, 计算以下事件的概率: (1)A ={在n 次摸球中有k 次摸到红球}; (2)B ={第k 次首次摸到红球};(3)C ={第r 次摸到红球时恰好摸了k 次球}.(1) ();()k n kk n kk k nnna b a b P A C C a b a b a b --⎛⎫⎛⎫== ⎪ ⎪+++⎝⎭⎝⎭(2) 11();()k k kb a ab P B a b a b a b --⎛⎫== ⎪+++⎝⎭ (3) 1111().()rk rr k rr r k k ka b a b P C CCa b a b a b ------⎛⎫⎛⎫== ⎪ ⎪+++⎝⎭⎝⎭8.一射手对一目标独立地射击4次, 已知他至少命中一次的概率为80.81求该射手射击一次命中目标的概率.设射击一次命中目标的概率为,1.p q p =-4801121,,1.818133q q p q =-===-= 9. 设某种高射炮命中目标的概率为0.6, 问至少需要多少门此种高射炮进行射击才能以0.99的概率命中目标.(10.6)10.99,n -<-0.40.01,n <由50.40.01024,=60.40.01,<得 6.n ≥ ☆.证明一般加法(容斥)公式1111()()()()(1)().nn n n i i i i j i j k i i i i ji j kP A P A P A A P A A A P A -===<<<=-+++-∑∑∑证明 只需证分块111,,k k n k i i i i i i A A A A A A +⊂只计算1次概率.(1,,n i i 是1,,n 的一个排列,1,2,,.k n =)分块概率重数为1,,k i i A A 中任取1个-任取2个1(1)k -++-任取k 个,即121(1)1k k k k k C C C --++-=⇔ 121(1)(11)0.k k k k k k C C C -+++-=-=将,互换可得对偶加法(容斥)公式1111()()()()(1)().nnn n i i i ij ij k i i i i ji j kP A P A P A A P AA A P A -===<<<=-+++-∑∑∑☆.证明 若A , B 独立, A , C 独立, 则A , B ∪C 独立的充要条件是A , BC 独立. 证明(())()()()()P A B C P AB AC P AB P AC P ABC ==+- ()()()()()P A P B P A P C P ABC =+- 充分性:⇐(())()()()()(),P A B C P A P B P A P C P ABC =+-代入()()()P ABC P A P BC = ()(()()())P A P B P C P BC =+-()(),P A P B C = 即,A B C 独立. 必要性:⇒(())()()P A B C P A P B C =()(()()())P A P B P C P BC =+-()()()()()()P A P B P A P C P A P BC =+-()()()()()P A P B P A P C P ABC =+- ()()(),P ABC P A P BC =即,A BC 独立.☆.证明:若三个事件A 、B 、C 独立,则A ∪B 、AB 及A -B 都与C 独立. 证明 因为[()]()()()()()()()()()()()[()()()()]()()()P A B C P AC BC P AC P BC P ABC P A P C P B P C P A P B P C P A P B P A P B P C P A B P C ==+-=+-=+-=[()]()()()()[()()]()()()P AB C P ABC P A P B P C P A P B P C P AB P C ==== [()]()()()()()()()()[()()]()()()P A B C P AC B P AC P ABC P A P C P A P B P C P A P AB P C P A B P C -=-=-=-=-=-所以A ∪B 、AB 及A -B 都与C 独立. 第三次作业1. 在做一道有4个答案的选择题时, 如果学生不知道问题的正确答案时就作随机猜测. 设他知道问题的正确答案的概率为p , 分别就p =0.6和p =0.3两种情形求下列事件概率: (1)学生答对该选择题; (2)已知学生答对了选择题,求学生确实知道正确答案的概率. 记事件A ={知道问题正确答案},B ={答对选择题}.(1) 由全概率公式得()()(|)()(|)P B P A P B A P A P B A =+113,444p pp -=+=+ 当0.6p =时,13130.67()0.7,444410p P B ⨯=+=+==当0.3p =时,13130.319()0.475.444440p P B ⨯=+=+== (2) 由贝叶斯公式得()4(|),13()1344P AB p pP A B p P B p ===++当0.6p =时,440.66(|),13130.67p P A B p ⨯===++⨯ 当0.3p =时,440.312(|).13130.319p P A B p ⨯===++⨯ 2. 某单位同时装有两种报警系统A 与B , 当报警系统A 单独使用时, 其有效的概率为0.70; 当报警系统B 单独使用时, 其有效的概率为0.80.在报警系统A 有效的条件下, 报警系统B 有效的概率为0.84.计算以下概率: (1)两种报警系统都有效的概率; (2)在报警系统B 有效的条件下, 报警系统A 有效的概率; (3)两种报警系统都失灵的概率.()0.7,()0.8,(|)0.84.P A P B P B A ===(1) ()()(|)0.70.840.588,P AB P A P B A ==⨯=(2) ()0.588(|)0.735,()0.8P AB P A B P B === (3) ()()1()1()()()P AB P A B P A B P A P B P AB ==-=--+10.70.80.5880.088.=--+=☆.为防止意外, 在矿内同时设有两种报警系统A 与B . 每种系统单独使用时, 其有效的概率系统A 为0. 92, 系统B 为0.93, 在A 失灵的条件下, B 有效的概率为0.85,. 求: (1)发生意外时, 两个报警系统至少有一个有效的概率; (2) B 失灵的条件下, A 有效的概率.3. 设有甲、乙两袋, 甲袋中有n 只白球, m 只红球; 乙袋中有N 只白球, M 只红球. 从甲袋中任取一球放入乙袋, 在从乙袋中任取一球, 问取到白球的概率是多少. 记事件A ={从甲袋中取到白球},B ={从乙袋中取到白球}. 由全概率公式得()()(|)()(|)P B P A P B A P A P B A =+111n N m Nn m N M n m N M +=+++++++().()(1)n N n m n m N M ++=+++☆.设有五个袋子, 其中两个袋子, 每袋有2个白球, 3个黑球. 另外两个袋子, 每袋有1个白球, 4个黑球, 还有一个袋子有4个白球, 1个黑球. (1)从五个袋子中任挑一袋, 并从这袋中任取一球, 求此球为白球的概率. (2)从不同的三个袋中任挑一袋, 并由其中任取一球, 结果是白球, 问这球分别由三个不同的袋子中取出的概率各是多少?★4. 发报台分别以概率0.6和0.4发出信号 “·” 及 “-”. 由于通信系统受到于扰, 当发出信号 “·” 时, 收报台分别以概率0.8及0.2收到信息 “·” 及 “-”; 又当发出信号 “-” 时, 收报台分别以概率0.9及0.l 收到信号 “-” 及 “·”. 求: (1)收报台收到 “·”的概率;(2)收报台收到“-”的概率;(3)当收报台收到 “·” 时, 发报台确系发出信号 “·” 的概率;(4)收到 “-” 时, 确系发出 “-” 的概率.记事件B ={收到信号 “·”},1A ={发出信号 “·”},2A ={发出信号“-”}. (1) )|()()|()()(2211A B P A P A B P A P B P +=;52.01.04.0)2.01(6.0=⨯+-⨯= (2) ()1()10.520.48;P B P B =-=-=(3) 1111()()(|)(|)()()P A B P A P B A P A B P B P B ==0.60.8120.923;0.5213⨯=== (4)2222()()(|)(|)()()P A B P A P B A P A B P B P B ==0.40.930.75.0.484⨯=== 5. 对以往数据分析结果表明, 当机器调整良好时, 产品合格率为90%, 而机器发生某一故障时, 产品合格率为30%. 每天早上机器开动时, 机器调整良好的概率为75%. (1)求机器产品合格率,(2)已知某日早上第一件产品是合格品, 求机器调整良好的概率. 记事件B ={产品合格},A ={机器调整良好}. (1) 由全概率公式得()()(|)()(|)P B P A P B A P A P B A =+0.750.90.250.30.75,=⨯+⨯= (2) 由贝叶斯公式得()()(|)(|)()()P AB P A P B A P A B P B P B ==0.750.90.9.0.75⨯== ☆.系统(A), (B), (C)图如下, 系统(A), (B)由4个元件组成, 系统(C)由5个元件组成,每个元件的可靠性为p , 即元件正常工作的概率为p , 试求整个系统的可靠性.(A) (B) (C) 记事件A ={元件5正常},B ={系统正常}.(A) 222(|)(1(1)(1))(44),P B A p p p p p =---=-+ (B) 2222(|)1(1)(1)(2),P B A p p p p =---=- (C) 由全概率公式得()()(|)()(|)P B P A P B A P A P B A =+2222(44)(1)(2)p p p p p p p =⋅-++-- 23452252.p p p p =+-+第四次作业1. 在15个同型零件中有2个次品, 从中任取3个, 以X 表示取出的次品的个数, 求X 的分布律.2213315(),0,1,2.k k C C P X k k C -===☆.经销一批水果, 第一天售出的概率是0.5, 每公斤获利8元, 第二天售出的概率是0.4, 每公斤获利5元, 第三天售出的概率是0.1, 每公斤亏损3元. 求经销这批水果每公斤赢利X0,3,(3)(3)0.1,35,()(5)(3)(5)0.10.40.5,58,(8)1,8.x F P X x F x F P X P X x F x <-⎧⎪-==-=-≤<⎪=⎨==-+==+=≤<⎪⎪=≥⎩2. 抛掷一枚不均匀的硬币, 每次出现正面的概率为2/3, 连续抛掷8次, 以X 表示出现正面的次数, 求X 的分布律.(8,2/3),X B n p ==8821(),0,1,,8.33k kk P X k C k -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭3. 一射击运动员的击中靶心的命中率为0.35, 以X 表示他首次击中靶心时累计已射击的次数, 写出X 的分布律, 并计算X 取偶数的概率.(0.35),X G p =11()0.350.65,1,2.k k P X k pq k --===⨯= ()+()=1,()()=,P X P X P X P X q ⎧⎪⎨⎪⎩奇偶偶奇 解得0.6513()=0.394.110.6533q P X q ==++偶4. 一商业大厅里装有4个同类型的银行刷卡机, 调查表明在任一时刻每个刷卡机使用的概率为0.1,求在同一时刻:(1)恰有2个刷卡机被使用的概率;(2)至少有3个刷卡机被使用的概率; (3)至多有3个刷卡机被使用的概率;(4)至少有一个刷卡机被使用的概率. 在同一时刻刷卡机被使用的个数(4,0.1).X B n p ==(1) 2224(2)0.10.90.00486,P X C ==⨯⨯= (2) 3344(3)(3)(4)0.10.90.10.0037,P X P X P X C ≥==+==⨯⨯+= (3) 4(3)1(4)10.10.9999,P X P X ≤=-==-=(4)4(1)1(0)10.910.65610.3439.P X P X ≥=-==-=-=5. 某汽车从起点驶出时有40名乘客, 设沿途共有4个停靠站, 且该车只下不上. 每个乘客在每个站下车的概率相等, 并且相互独立, 试求: (1)全在终点站下车的概率; (2)至少有2个乘客在终点站下车的概率; (3)该车驶过2个停靠站后乘客人数降为20的概率. 记事件A ={任一乘客在终点站下车},乘客在终点站下车人数(40,1/4).X B n p ==(1) 40231(40)8.271810,4P X -⎛⎫===⨯ ⎪⎝⎭(2) 403940140313433(2)1(0)(1)1144434P X P X P X C ⎛⎫⎛⎫⎛⎫≥=-=-==--⨯=-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭10.0001340880.999865912.=-=(3) 记事件B ={任一乘客在后两站下车},乘客在后两站下车人数(40,1/2).Y B n p ==2020202040404011(20)0.1268.222C P Y C ⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭(精确值)应用斯特林公式!2,nn n n e π⎛⎫ ⎪⎝⎭2020202040404011(20)222C P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭24040!(20!)2= 402204040202e e ⎫⎪⎝⎭⎫⎫⎪⎪⎪⎭⎭0.1262.=其中 1.7724538509.π==参:贝努利分布的正态近似.6. 已知瓷器在运输过程中受损的概率是0.002, 有2000件瓷器运到, 求: (1)恰有2个受损的概率; (2)小于2个受损的概率; (3)多于2个受损的概率; (4)至少有1个受损的概率.受损瓷器件数(2000,0.002),X B n p ==近似为泊松分布(4).P n p λ=⨯=(1) 2441480.146525,2!P e e --=== (2) 4424150.0915782,1!P e e --⎛⎫=+== ⎪⎝⎭(3) 431211130.761897,P P P e-=--=-= (4) 4410.981684.P e -=-=7. 某产品表面上疵点的个数X 服从参数为1.2的泊松分布, 规定表面上疵点的个数不超过2个为合格品, 求产品的合格品率.产品合格品率2 1.2 1.21.2 1.212.920.879487.1!2!P e e --⎛⎫=+=== ⎪⎝⎭ ★8. 设随机变量X求:X 的分布函数, 以及概率(||5).X ≤ 随机变量X 的分布函数为0,3,(3)(3)0.2,35,()(5)(3)(5)0.20.50.7,58,(8)1,8.x F P X x F x F P X P X x F x <-⎧⎪-==-=-≤<⎪=⎨==-+==+=≤<⎪⎪=≥⎩(36)(5)0.5,P X P X <≤===(1)(5)(8)0.50.30.8,P X P X P X >==+==+=(5)(||5)(5)(3)(5)0.20.50.7,P X P X F P X P X ≤=≤===-+==+=第五次作业1. 学生完成一道作业的时间X 是一个随机变量(单位: 小时), 其密度函数是2,00.5()0,kx x x f x ⎧+≤≤=⎨⎩其他试求: (1)系数k ; (2)X 的分布函数; (3)在15分钟内完成一道作业的概率; (4)在10到20分钟之间完成一道作业的概率. (1) 0.50.523200111(0.5),21,32248kk F kx xdx x x k ⎛⎫==+=+=+= ⎪⎝⎭⎰(2) 23200,01()()217,00.5,2(0.5)1,0.5.x x F x P X x x xdx x x x F x <⎧⎪⎪=≤=+=+≤<⎨⎪=≥⎪⎩⎰(3) 322011119()2170.140625,442464x F P X x x xdx ⎛⎫⎛⎫⎛⎫=≤=+=+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰(4) 3212316111111129217.6336424108P X F F x xdx ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫≤≤=-=+=+= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎰2. 设连续型随机变量X 服从区间[-a , a ](a >0)上的均匀分布, 且已知概率1(1)3P X >=, 求: (1)常数a ; (2)概率1()3P X <.(1) 1111(1),3,223aa P X dx a a a ->====⎰(2) 13311115()3.36639P X dx -⎛⎫<==+= ⎪⎝⎭⎰3. 设某元件的寿命X 服从参数为θ 的指数分布, 且已知概率P (X >50)=e -4, 试求:(1)参数θ 的值; (2)概率P (25<X <100) . 补分布()()|,0.x x xx x S x P X x e dx e ex θθθθ+∞--+∞->==-=>⎰ (1) 504502(50)(50),0.08,25x S P X e dx e e θθθθ+∞---=>=====⎰(2) 由()(),,0,rxr S rx e S x r x θ-==>取50,x =依次令1,2,2r =得12282(25)(25)(50),(100)(100)(50)S P X S e S P X S e --=>===>==0.0003354563,=其中 2.7182818284.e28(25100)(25)(100)P X P X P X e e --<<=>->=- 0.135334650.00033545630.1349991937.=-= 4. 某种型号灯泡的使用寿命X (小时)服从参数为1800的指数分布, 求: (1)任取1只灯泡使用时间超过1200小时的概率; (2)任取3只灯泡各使用时间都超过1200小时的概率. (1) 1312008002(1200)0.2231301602,P X ee -⨯->===1.6487212707001.= (2) 932(1200)0.0111089965.P X e->==5. 设X ~N (0, 1), 求: P (X <0.61), P (-2.62<X <1.25), P (X ≥1.34), P (|X |>2.13). (1) (0.61)(0.61)0.72907,P X <=Φ=(2) ( 2.62 1.25)(1.25)( 2.62)(1.25)(2.62)1P X -<<=Φ-Φ-=Φ+Φ-0.894359956010.88995,=+-=(3) ( 1.34)1(1.34)10.909880.09012,P X >=-Φ=-= (4)(|| 2.13)22(2.13)220.983410.03318.P X >=-Φ=-⨯=6. 飞机从甲地飞到乙地的飞行时间X ~N (4, 19). 设飞机上午10: 10从甲地起飞, 求: (1)飞机下午2: 30以后到达乙地的概率; (2)飞机下午2: 10以前到达乙地的概率; (3)飞机在下午1: 40至2: 20之间到达乙地的概率.(1) 131331/34111(1)10.841340.15866,331/3P X P X -⎛⎫⎛⎫⎛⎫>=-≤=-Φ=-Φ=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2) (4)(0)0.5,P X <=Φ=(3) 72525/647/24261/31/3P X --⎛⎫⎛⎫⎛⎫<<=Φ-Φ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭13122⎛⎫⎛⎫=Φ+Φ- ⎪ ⎪⎝⎭⎝⎭0.691460.9331910.62465.=+-=★7. 设某校高三女学生的身高X ~N (162, 25), 求: (1)从中任取1个女学生, 求其身高超过165的概率; (2)从中任取1个女学生, 求其身高与162的差的绝对值小于5的概率; (3)从中任取6个女学生, 求其中至少有2个身高超过165的概率.(1) 162165162(165)0.61(0.6)10.72580.2742,55X P X P --⎛⎫>=>==-Φ=-=⎪⎝⎭ (2) 162(|162|5)12(1)120.8413410.6827,5X P X P ⎛-⎫-<=<=Φ-=⨯-= ⎪⎝⎭(3) 记事件A ={任一女生身高超过165}, ()(165)0.2742,p P A P X ==>= 随机变量Y 贝努利分布(6,0.2742),B n p ==6156(2)1(0)(1)1(1)(1)0.52257.P Y P Y P Y p C p p ≥=-=-==----=第六次作业★1.设随机变量X 的分布律为(1)求Y =|X |的分布律; (2)求Y =X 2+X 的分布律. (1)(2)★.定理X 密度为()X f x ,()y g x =严格单调,反函数()x x y =导数连续,则()Y g X =是连续型变量,密度为(())|()|,()(),()0,XY f x y x y g x y g x f y αβ'=<<=⎧=⎨⎩极小值极大值其它. 证明 1)若()0,x x y ''=>{}{()()}{},Y y g X g x X x ≤=≤=≤()()(()())()(),Y X F y P Y y P g X g x P X x F x =≤=≤=≤= 两边对y 求导,()(())(),.Y X f y f x y x y y αβ'=<<2)若()0,x x y ''=<{}{()()}{},Y y g X g x X x ≤=≤=≥()()(()())()1(),Y X F y P Y y P g X g x P X x F x =≤=≤=≥=- 两边对y 求导,()(())(),.Y X f y f x y x y y αβ'=-<<因此总有()(())|()|,.Y X f y f x y x y y αβ'=<< 或证明()(),()0,()()(()())()1(),()0,X Y X P X x F x g x F y P Y y P g X g x P X x F x g x '≤=>⎧=≤=≤=⎨'≥=-<⎩ 两边对y 求导,(),()(),X Y X dF x dxdx dyf y dF x dx dx dy ⎧⎪⎪=⎨⎪-⎪⎩或两边微分()(),()()()(),X X Y Y X XdF x f x dx dF y f y dy dF x f x dx =⎧==⎨-=-⎩(),()(),X Y X dx f x dy f y dxf x dy ⎧⎪=⎨-⎪⎩(())|()|,.X f x y x y y αβ'=<<2. 设随机变量X 的密度函数是f X (x ), 求下列随机变量函数的密度函数: (1)Y =tan X ; (2)1Y X=; (3)Y =|X |. (1) 反函数()arctan ,x y y ='21(),1x y y =+由连续型随机变量函数的密度公式得'21()(())|()|(arctan ).1Y X Xf y f x y x y f y y ==+ 或 反函数支()arctan ,i x y i y i π=+为整数,'21(),1i x y y =+ '21()(())|()|(arctan ).1Y X i iX i i f y f x y x y f i y y π+∞+∞=-∞=-∞==++∑∑(2) 1,X Y =反函数1,y x y ='211()()().Y X y y X f y f x x f y y==(3) ()()(||)()()()Y X X F y P Y y P X y P y X y F y F y =≤=≤=-≤≤=--. 两边对y 求导得Y 的密度函数为()()(),0.Y X X f y f y f y y =+->★3. 设随机变量X ~U [-2, 2], 求Y =4X 2-1的密度函数.2()()(41)(115,Y F y P Y y P X y P X y =≤=-≤=≤=-≤≤两边对y 求导得随机变量Y 的密度为()115.Y f y y =-≤≤ 或解反函数支12()()x y x y =='''112211()(())|()|(())|()|2(())()115.Y X X X f y f x y x y f x y x y f x y x y y =+==-≤≤★4. 设随机变量X 服从参数为1的指数分布, 求Y =X 2的密度函数(Weibull 分布). 当0y ≤时, 2Y X =的分布()0Y F y =,当0y >时,2()()()(Y X F y P Y y P X y P X F =≤=≤=≤= 两边对y 求导得()Y X f y f '==0,()0.Y y f y >=⎩或反函数y x='()()0.Y X y y f y f x x y ==>★5. 设随机变量X~N (0, 1), 求(1)Y =e X 的密度函数; (2)Y =X 2的密度函数(Gamma 分布). (1) 当0y ≤时, e X Y =的分布()0Y F y =,当0y >时,()()(e )(ln )(ln ),X Y F y P Y y P y P X y y =≤=≤=≤=Φ 因而Y 的密度为''1()(ln )(ln )(ln )(ln ),Y f y y y y y y ϕϕ=Φ=={}2(ln ),0,2()0,0.Y y y f y y ->=≤⎩ 或 反函数ln ,X Y =ln ,y x y ='1()()(ln )Y y y f y x x y y ϕϕ=={}2(ln ),0.2y y =-> (2) 当0y ≤时,()0Y F y =;当0Y >时,2()()()((Y X X F y P Y y P X y P X F F =≤=≤=≤≤=-.两边对y 求导得Y的密度函数为2,0,()0.yY y f y ->=⎩或反函数支12()()x y x y =''21122()(())|()|(())|()|,0.yY X X f y f x y x y f x y x y y -=+=>6. 设随机变量X 的密度函数是21,1()0,1X x f x x x ⎧>⎪=⎨⎪≤⎩, 求Y =ln X 的概率密度. 反函数,y y x e ='()()(),0.y y y Y X y y X f y f x x f e e e y -===>第七次作业☆.将8个球随机地丢入编号为1, 2, 3, 4, 5的五个盒子中去, 设X 为落入1号盒的球的个数, Y 为落入2号盒的球的个数, 试求X 和Y 的联合分布律.1. 袋中装有标上号码1, 2, 2的3个球, 从中任取一个并且不再放回, 然后再从袋中任取一球,. 以X , Y 分别记第一、二次取到球上的号码数, 求: (1)(X , Y )的联合分布律(设袋中各球被取机会相等); (2)X , Y 的边缘分布律; (3)X 与Y 是否独立? (1)(X , Y )的联合分布律为(1,1)0,P X Y ===1(1,2)(2,1)(2,2).3P X Y P X Y P X Y =========(2) X , Y 的分布律相同,12(1),(2).33P X P X ====(3) X 与Y 不独立.2. 设二维连续型变量(,)X Y 的联合分布函数35(1)(1),,0,(,)0,.x y e e x y F x y --⎧-->=⎨⎩其它求(,)X Y 联合密度.2(,)(,),f x y F x y x y ∂=∂∂3515,,0,(,)0,.x y e x y f x y --⎧>=⎨⎩其它★3. 设二维随机变量(X , Y )服从D 上的均匀分布, 其中D 是抛物线y =x 2和x =y 2所围成的区域, 试求它的联合密度函数和边缘分布密度函数, 并判断Y X ,是否独立.分布区域面积213123200211,333x S x dx x x ⎛⎫==-=-= ⎪⎝⎭⎰⎰联合密度213,1,(,)0,.x y f x y S ⎧=<<<⎪=⎨⎪⎩其它边缘X的密度为22()),01,X xf x dy x x ==-<<边缘Y的密度为22()),0 1.Y yf y dy y y ==<<(,)()(),X Y f x y f x f y ≠⋅因此X 与Y 不独立.或(,)f x y 非零密度分布范围不是定义在矩形区域上,因此X 与Y 不独立.4. 设二维离散型变量),(Y X 联合分布列是问,p q 取何值时X 与Y两行成比例1/151/52,1/53/103q p ===解得12,.1015p q ==★5.设(,)X Y 的联合密度为2,11,0,(,)0,.y Ax e x y f x y -⎧-<<>=⎨⎩其它求:(1)常数A ;(2)概率1(0,1);2P X Y <<>(3)边缘概率密度f X (x ), f Y (y ); (4)X 与Y 是否相互独立? (1) 2220()(,),11,y y X f x f x y dy Ax e dy Ax e dy Ax x +∞+∞+∞--====-<<⎰⎰⎰112112()1,3X f x dx Ax dx A --===⎰⎰3.2A = (2) 112201113(0,1)(0)(1).22216ye P X Y P X P Y x dx e dy -+∞-<<>=<<>==⎰⎰ (3) 23(),11,2X f x x x =-<<111221113()(,),0.2y yy Y f y f x y dx Ax e dx e x dx e y ------====>⎰⎰⎰(4)由23,11,0()()(,),20,yX Y x e x y f x f y f x y -⎧-<<>⎪⋅==⎨⎪⎩其它得X 与Y 独立. 或因为2(,),11,0,y f x y Ax e x y -=-<<>可表示为x 的函数与y 的函数的积且分布在矩形区域上,所以X 与Y 相互独立.由此得(),0;y Y f y e y -=>2(),11,X f x Ax x =-<<112112()1,3X f x dx Ax dx A --===⎰⎰3.2A = 112201113(0,1)(0)(1).22216y e P X Y P X P Y x dx e dy -+∞-<<>=<<>==⎰⎰6. 设X 服从均匀分布(0,0.2),U Y 的密度为55,0,()0,y Y e y f y -⎧>=⎨⎩其它.且,X Y 独立.求:(1)X的密度;(2) (,)X Y 的联合密度. (1)X 的密度为()5,00.2,X f x x =≤≤(2)(,)X Y 的联合密度为525,00.2,0,(,)0,y e x y f x y -⎧≤≤>=⎨⎩其它.第八次作业★1.求函数(1)Z 1=X +Y , (2) Z 2=min{X , Y }, (3) Z 3=max{X , Y }的分布律.(1) 11(0)(0),6P Z P X Y =====1111(1)(0,1)(1,0),362P Z P X Y P X Y ====+===+=1111(2)(0,2)(1,1),12126P Z P X Y P X Y ====+===+=11(3)(1,2).6P Z P X Y =====(2) 2111(1)(1,1)(1,2),1264P Z P X Y P X Y ====+===+=223(0)1(1).4P Z P Z ==-==(3) 31(0)(0),6P Z P X Y =====31117(1)(0,1)(1,1)(1,0),312612P Z P X Y P X Y P X Y ====+==+===++=3111(2)(0,2)(1,2).1264P Z P X Y P X Y ====+===+=2. 设随机变量(求函数Z =X /Y 的分布律.(/1)(1)(1)0.250.250.5,P Z X Y P X Y P X Y =====+==-=+= (/1)1(/1)0.5.P Z X Y P Z X Y ==-=-===3. 设X 与Y 相互独立, 概率密度分别为220()00,xX e x f x x -⎧>=⎨≤⎩0()00,y Y e y f y x -⎧>=⎨≤⎩试求Z =X +Y 的概率密度.()(,)()()zzZ X Y f z f x z x dx f x f z x dx =-=-⎰⎰20222(1),0.z zx z x z x z z e e dx e e dx e e z --+----===->⎰⎰★4. 设X ~U (0, 1), Y ~E (1), 且X 与Y 独立, 求函数Z =X +Y 的密度函数.,01,0,(,)0,y e x y f x y -⎧<<>=⎨⎩其它,当01z <≤时,()(,)()()zzZ X Y f z f x z x dx f x f z x dx =-=-⎰⎰01,zz z x z xz x e dx e e -+-+-====-⎰当1z >时,11110()(,)()().zz x z xz z Z X Y x f z f x z x dx f x f z x dx e dx e e e -+-+--==-=-===-⎰⎰⎰因此11,01,(),1,0,.z z z Z e z f z e e z ---⎧-≤≤⎪=->⎨⎪⎩其它★5. 设随机变量(X , Y )的概率密度为()101,0(,)10x y e x y f x y e -+-⎧⎪<<<<+∞=⎨-⎪⎩其它(1)求边缘概率密度f X (x ), f Y (y ); (2)求函数U =max (X , Y )的分布函数; (3)求函数V =min(X , Y )的分布函数.(1) 1,01,()10,xX e x f x e --⎧<<⎪=-⎨⎪⎩其它.,0,()0,y Y e y f y -⎧>=⎨⎩其它. (2) 11000,0,1()(),01,111,1xx x x X X x e e F x f x dx dx x e e x ----≤⎧⎪-⎪===<<⎨--⎪≥⎪⎩⎰⎰.min{,1}10,0,1,01x x e x e --≤⎧⎪=⎨->⎪-⎩. 0,0,()1,0Y yy F y e y -≤⎧=⎨->⎩.21(1),01,()()()11,1x U X Y x e x F x F x F x e e x ---⎧-<<⎪==-⎨⎪-≥⎩. min{,1}1(1)(1),0.1x x e e x e -----=>-(3) 111,0,()1(),01,10,1x X X x e eS x F x x e x ---≤⎧⎪-⎪-=<<⎨-⎪≥⎪⎩.min{,1}111,0,,01x x e e x e---≤⎧⎪=⎨->⎪-⎩.1,0,()1(),0Y Y yy S y F y e y -≤⎧-=⎨>⎩.112111()11,01,()1()()111,1x x x xV X Y e e e e e e x F x S x S x e e x ---------⎧---+-=<<⎪=-=--⎨⎪≥⎩. 1min{,1}111,01x x x e e e x e --------+=>-.6. 设某种型号的电子管的寿命(以小时计)近似地服从N (160, 202)分布. 随机地选取4只求其中没有一只寿命小于180小时的概率.随机变量2(160,20),X N 180160(180)(1)0.84134,20P X -⎛⎫≤=Φ=Φ= ⎪⎝⎭没有一只寿命小于180小时的概率为444(180)(1(1))(10.84134)0.00063368.P X >=-Φ=-=第九次作业★1.试求: E (X ), E (X 2+5), E (|X |).20.110.210.320.130.10.4,i i iEX x p ==-⨯-⨯+⨯+⨯+⨯=∑2222222(2)0.1(1)0.210.320.130.1 2.2,i i iEX x p ==-⨯+-⨯+⨯+⨯+⨯=∑22(5)57.2,E X EX +=+=||||20.110.210.320.130.1 1.2.i i iE X x p ==⨯+⨯+⨯+⨯+⨯=∑2. 设随机变量X 的概率密度为0 0,() 01, 1.x x f x x x Ae x -⎧≤⎪=<≤⎨⎪>⎩求: (1)常数A ; (2)X 的数学期望.(1) 1100111(),2x f x dx xdx Ae dx Ae +∞+∞--==+=+⎰⎰⎰,2e A =(2) 12100114()2.2323x e e EX xf x dx x dx xe dx e +∞+∞--==+=+⨯=⎰⎰⎰★3. 设球的直径D 在[a , b ]上均匀分布,试求: (1)球的表面积的数学期望(表面积2D π);(2)球的体积的数学期望(体积316D π).(1) 22222()();3ba x E D ED dx a ab b b a ππππ===++-⎰ (2) 33322()().6624b a x E D ED dx a b a b b a ππππ⎛⎫===++ ⎪-⎝⎭⎰ ★4. 设二维离散型随机变量(X , Y )的联合分布律为求E (X ), E (Y ), E (XY ).2(0.10.050.050.1)2(0.10.150.050.1)i i iEX x p ==-⨯++++⨯+++∑20.320.350.1,=-⨯+⨯=1(0.10.050.1)2(0.050.15)j j jEY y p ==⨯+++⨯+∑3(0.050.10.05)4(0.10.20.05) 2.65,+⨯+++⨯++=,()i j i j ijE XY x y p =∑∑2(10.120.0530.0540.01)2(10.120.1530.0540.05)=-⨯⨯+⨯+⨯+⨯+⨯⨯+⨯+⨯+⨯ 1.5 1.50.=-+=★5. 设随机变量X 和Y 独立, 且具有概率密度为2,01,()0,X x x f x <<⎧=⎨⎩其它,3(1)3,1,()0, 1.y Y ey f y y --⎧>=⎨≤⎩(1)求(25)E X Y +; (2)求2()E X Y .(1) 112002()2,3X EX xf x dx x dx ===⎰⎰3(1)114()3,3y Y EY yf y dy ye dy +∞+∞--===⎰⎰或随机变量1Z Y =-指数分布(3),E 141,,33EZ EY EY =-==24(25)25258.33E X Y EX EY +=+=⨯+⨯=(2) 11223001()2,2X EX x f x dx x dx ===⎰⎰由X 和Y 独立得22142().233E X Y EX EY ==⨯=第十次作业1. 设离散型随机变量试求: (1) D (X ); (2) D (-3X +2) .(1) 20.110.210.320.130.10.4,i i iEX x p ==-⨯-⨯+⨯+⨯+⨯=∑2222222(2)0.1(1)0.210.320.130.1 2.2,i i iEX x p ==-⨯+-⨯+⨯+⨯+⨯=∑2222.20.4 2.04.DX EX E X =-=-=(2) 2(32)(3)9 2.0418.36.D X DX -+=-=⨯=★2. 设随机变量X 具有概率密度为22,02,()0,Ax x x f x ⎧+<<=⎨⎩其他,试求: (1)常数A ; (2)E (X ); (3) D (X ); (4) D (2X -3) .(1) 22081()(2)4,3f x dx Ax x dx A +∞-∞==+=+⎰⎰解得9.8A =-(2) 22095()(2).86EX xf x dx x x x dx +∞-∞==-+=⎰⎰(3) 22222094()(2),85EX x f x dx x x x dx +∞-∞==-+=⎰⎰2224519.56180DX EX E X ⎛⎫=-=-= ⎪⎝⎭(4) 21919(23)24.18045D X DX -==⨯=★3. 设二维随机变量(,)X Y 联合概率密度为2,01,01,(,)0,x y x y f x y --<<<<⎧=⎨⎩其他,试求: (1),X Y 的协方差和相关系数A ; (2)(21).D X Y -+(1) 103()(,)(2),01,2X f x f x y dy x y dy x x +∞-∞==--=-<<⎰⎰由,x y 的对称性3(),0 1.2Y f y y y =-<<1035(),212X EX xf x dx x x dx EY +∞-∞⎛⎫==-== ⎪⎝⎭⎰⎰12222031(),24X EX x f x dx x x dx EY +∞-∞⎛⎫==-== ⎪⎝⎭⎰⎰2221511,412144DX EX E X DY ⎛⎫=-=-== ⎪⎝⎭11001()(,)(2),6E XY xyf x y dydx xy x y dydx +∞+∞-∞-∞==--=⎰⎰⎰⎰ 因此2151(,)(),612144Cov X Y E XY EXEY ⎛⎫=-=-=- ⎪⎝⎭,1.11X Y ρ==-(2) 由随机变量和的方差公式()2(,)D X Y DX DX Cov X Y +=++得(21)(2)()2(2,)D X Y D X D Y Cov X Y -+=+-+-22592(1)22(1)(,).144DX DY Cov X Y =+-+⨯⨯-⨯=★4. 设二维随机变量(,)X Y 具有联合分布律试求,,,EX DX EY DY 以及X 和Y 的相关系数. (1) X 的分布列为0.45由变量X 分布对称得0,EX =或10.4500.4510.450,i i iEX x p ==-⨯+⨯+⨯=∑22222(1)0.4500.4510.450.9,i i iEX x p ==-⨯+⨯+⨯=∑220.9.DX EX E X =-=(2) Y 的分布列为j (,)X Y 取值关于原点中心对称由变量Y 分布对称得0,EY =或20.20.250.2520.20,j j iEY y p ==-⨯-++⨯=∑222222(2)0.2(1)0.2510.2520.2 2.1,j j iEY y p ==-⨯+-⨯+⨯+⨯=∑22 2.1.DY EY E Y =-=(3) 由二维变量(,)X Y 的联合分布列关于两坐标轴对称得,()0,i j i j ijE XY x y p ==∑∑(,)()0,Cov X Y E XY EXEY =-=因此,0.X Y ρ==5. 设随机变量X 服从参数为2的泊松分布(2)P ,随机变量Y 服从区间(0,6)上的均匀分布(0,6),U 且,X Y 的相关系数,X Y ρ=记2,Z X Y =-求,.EZ DZ (1) 2,EX =063,2EY +==(2)2223 4.EZ E X Y EX EY =-=-=-⨯=-(2) 2(60)2, 3.12DX DY -===由,X Y ρ==得(,)1,Cov X Y = 由随机变量和的方差公式()2(,)D X Y DX DY Cov X Y +=++得2(2)(2)2(,2)(2)4(,)10.DZ D X Y DX D Y Cov X Y DX DY Cov X Y =-=+-+-=+--=第十一次作业★1. 试用切比雪夫不等式估计下一事件概率至少有多大: 掷1000次均匀硬币, 出现正面的次数在400到600次之间.出现正面的次数~(1000,0.5),X B n p == 10000.5500,EX np ==⨯=10000.50.5250,DX npq ==⨯⨯=应用切比雪夫不等式,有239(400600)(|500|100)1.10040DX P X P X ≤≤=-≤≥-=2. 若每次射击目标命中的概率为0.1, 不断地对靶进行射击, 求在500次射击中, 击中目标的次数在区间(49, 55)内的概率.击中目标的次数~(500,0.1),X B n p ==5000.150,EX np ==⨯=5000.10.945.DX npq ==⨯⨯= 根据中心极限定理,X 近似服从正态分布(50,45).N EX DX ==(4955)P X P ≤≤=≤≤1≈Φ-Φ=Φ+Φ-⎝⎭⎝⎭ (0.74)(0.15)10.77040.559610.33.=Φ+Φ-=+-=★3. 计算器在进行加法时, 将每个加数舍入最靠近它的整数.设所有舍入误差是独立的且在(-0.5, 0.5)上服从均匀分布, (1)若将1500个数相加, 问误差总和的绝对值超过15的概率是多少?(2)最多可有几个数相加使得误差总和的绝对值小于10的概率不小于0.90.(1) 误差变量,1,2,.i X i =⋅⋅⋅独立同均匀分布(0.5,0.5),X U -10,.12EX DX ==由独立变量方差的可加性150011500125,12i i D X =⎛⎫== ⎪⎝⎭∑15001i i X =∑近似(0,125).N15001||15i i P X =⎧⎫>⎨⎬⎩⎭∑15001|ii P X =⎧⎪=>=⎨⎪⎪⎩⎭∑2222(1.34)220.90990.1802.≈-Φ=-Φ=-⨯=⎝⎭(2) 1||10n i i P X =⎧⎫<⎨⎬⎩⎭∑1||n i P X =⎧⎪=<=⎨⎪⎩210.90,⎛≈Φ-≥ ⎝0.95,⎛Φ≥ ⎝1.645,≥2124.4345.1.645n ≤= 因此,最多可有4个数相加,误差总和的绝对值小于10的概率不小于0.90.★4. 一个系统由n 个相互独立的部件所组成, 每个部件的可靠性(即部件正常工作的概率)为0.90. 至少有80%的部件正常工作才能使整个系统正常运行, 问n 至少为多大才能使系统正常运行的可靠性不低于0.95.正常工作的部件数~(,),X B n p 其中0.9.p =0.9,EX np n ==0.09.DX npq n ==(0.8)P X n≥3P ⎛=≥==-⎭0.95,3⎛≈Φ≥ ⎝⎭1.645,24.354.n ≥≥因此n 至少取25.★5. 有一大批电子元件装箱运往外地, 正品率为0.8, 为保证以0.95的概率使箱内正品数多于1000只, 问箱内至少要装多少只元件?正品数~(,),X B n p 其中0.8.p =0.8,EX np n ==0.16.DX npq n ==(1000)P X≥P =≥=0.95,≈Φ≥1.645,0.810000.n ≥-≥ 解得1637.65,n ≥因此n 至少取1638.★.贝努利分布的正态近似.投掷一枚均匀硬币40次出现正面次数20X =的概率. 正面次数(40,1/2),X B n p ==400.520,400.50.510.EX np DX npq ==⨯===⨯⨯= 离散值20X =近似为连续分组区间19.520.5,X <<(20)(19.520.5)P X P X =<<0.16P ⎫=<=⎪⎭2((0.16)0.5)2(0.56360.5)0.1272.=Φ-=⨯-= 第十二次作业★1. 设X 1, X 2, ⋅⋅⋅, X 10为来自N (0, 0.32)的一个样本, 求概率1021{ 1.44}i i P X =>∑.标准化变量(0,1),1,2,...,10.0.3iXN i =由卡方分布的定义,10222211~(10).0.3ii Xχχ==∑1021 1.44i i P X =⎧⎫>⎨⎬⎩⎭∑10222211 1.44(10)160.1,0.30.3i i P X χ=⎧⎫==>=≈⎨⎬⎩⎭∑ 略大,卡方分布上侧分位数20.1(10)15.9872.χ= ★2. 设X 1, X 2, X 3, X 4, X 5是来自正态总体X ~(0, 1)容量为5的样本, 试求常数c , 使得统计量t 分布, 并求其自由度.由独立正态分布的可加性,12(0,2),X X N +标准化变量(0,1),U N =由卡方分布的定义,22222345~(3),X X X χχ=++U 与2χ独立.由t 分布的定义,(3),T t ===因此c =自由度为3.★3. 设112,,,n X X X 为来自N (μ1, σ2)的样本, 212,,,nY Y Y 为来自N (μ2, σ2)的样本, 且两样本相互独立, 2212,S S 分别为两个样本方差, 222112212(1)(1)2pn S n S S n n -+-=+-. 试证明22().p E S σ=证 由221112(1)~(1),n S n χσ--及()211(1)1E n n χ-=-得()2211112(1)(1)1,n S E E n n χσ⎛⎫-=-=- ⎪⎝⎭221.ES σ= 类似地222.ES σ=222112212(1)(1)2pn S n S ES E n n ⎛⎫-+-= ⎪+-⎝⎭22212121212(1)(1).22n n ES ES n n n n σ--=+=+-+-。
概率论与数理统计作业
第一章随机事件与概率1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。
试写出样本空间及事件C B A ,,中的样本点。
解:{}反正正、正反、反正、反=Ω{}正正、正反=A ,{}正正=B ,{}正正、正反、反正=C2.设31)(=A P ,21)(=B P ,试就以下三种情况分别求)(A B P :(1)AB =∅,(2)B A ⊂,(3)81)(=AB P解:(1)5.0)()()()()(==-=-=B P AB P B P AB B P A B P(2)6/13/15.0)()()()()()(=-=-=-=-=A P B P AB P B P AB B P A B P (3)375.0125.05.0)()()()(=-=-=-=AB P B P AB B P A B P3.某人忘记了电话号码的最后一个数字,因而随机的拨号,求他拨号不超过三次而接通所需的电话的概率是多少?如果已知最后一个数字是奇数,那么此概率是多少?解: 记H 表拨号不超过三次而能接通。
Ai 表第i 次拨号能接通。
注意:第一次拨号不通,第二拨号就不再拨这个号码。
如果已知最后一个数字是奇数(记为事件B )问题变为在B 已发生的条件下,求H 再发生的概率。
4.进行一系列独立试验,每次试验成功的概率均为,试求以下事件的概率: (1)直到第r 次才成功;(2)在n 次中取得)1(n r r ≤≤次成功;解: (1)p p P r 1)1(--= (2)r n rr np p C P --=)1( 5. 设事件A ,B 的概率都大于零,说明以下四种叙述分别属于那一种:(a )必然对,(b )必然错,(c )可能对也可能错,并说明理由。
(1)若A ,B 互不相容,则它们相互独立。
(2)若A 与B 相互独立,则它们互不相容。
(3)()()0.6P A P B ==,则A 与B 互不相容。
概率论与数理统计综合练习(文科各专业本、专科),附答案
概率论与数理统计综合练习(文科各专业本、专科)一、选择题1.设()0P A >,()0P B >,则下列公式正确的是( ) A.()()()1P A B P A P B -=-⎡⎤⎣⎦ B.()()()P AB P A P B =⋅ C.()()()P AB P B P A B =D.()()P A B P B A =2.对于任意两个事件,A B ,则()() P A B -= A.()()P A P B - B.()()P A P AB - C.()()P A P B ⋅D.()()()P A P B P AB -+3.事件,A B 是两个相互独立的随机事件,且()P A p =,()P B q =,()01,01p q <<<<,则()P A B ⋃() = A.p q +B.()()11p q --C.p q pq +-D.()1p q -4.设,A B 是两个互不相容的随机事件,()0P A >,()0P B >,则() A.()()1P A P B =- B.()()()=P AB P A P BC.()=1P A B ⋃D. ()=1P AB5.设()=0P AB ,则( ) A.A 和B 没有关系B.A 和B 独立C.()0P A =或()=0P BD.()()P A B P A -=6.设A 和B 是对立事件,则( ) A.A 和B 没有关系B.A 和B 独立C.()0P A =或()=0P BD.()()P A B P A -=7.设A 和B 为两个相互独立的随机事件,()=0.5P A ,()=0.6P B ,则()=P A B ⋃( ) A.0.6B.0.7C.0.8D.0.98.口袋中有4个白球,2个黑球,从中随机地取出3个球,则取得2个白球、1个黑球的概率是() A.0.3B.0.4C.0.5D.0.69.若函数()y f x =是一随机变量X 的概率密度,则一定成立的是( )A.()f x 的定义域为[]0,1B.()f x 的值域为[]0,1 C.()f x 在(),-∞+∞内连续 D.()f x 为非负10.设随机变量ξ服从()2,N μσ(其中2,μσ已知,且0σ>),如果{}12P k ξ<=,则k =( ) A.0B.μC.μσD.2μσ11.若()1F x ,()2F x 为分布函数,下列说法正确的是( ) A.()()()12F x F x F x =+是分布函数 B.()()121F F -∞=-∞= C.()()121F F +∞=+∞=D.()()1122a F x a F x +不是分布函数12.若连续型随机变量ξ的分布函数()20, 0, 061, 6x F x Ax x x <⎧⎪=≤≤⎨⎪>⎩,则必有() A =A.6B.1/6C.1/18D.1/3613.设离散型随机变量X 的分布律表如下,则常数c =( )题13表A.12B.4C.13D.1614.设随机变量X 的分布律为{}15k P X k ==,1,2,3,4,5k =,则15=22P X ⎧⎫<<⎨⎬⎩⎭()A.15B.25C.35D.4515.设随机变量X 的分布律为{},1,2,3,4,5P X k a k ===,则3{3}2P X <≤=( ) A.15B.25C.35D.4516.设离散型随机变量X 的分布函数()2, 2351, 3F x x x⎪⎪=-≤<⎨⎪≤⎪⎩,则X 的分布律为()17.设随机变量X 的分布律为{}15k P X k ==,1,2,3,4,5k =,则15=22P X ⎧⎫<<⎨⎬⎩⎭()A.45B.25C.35D.1518.设连续型随机变量X 的概率密度为()1, 00, 0x e x F x x -⎧->=⎨≤⎩,则{}()0.1 P X ≤=A.0.11e -+B.0.11e -C.0.11e --D.0.11e +19.设二维随机变量(),X Y 的联合概率密度函数是(),x y ϕ,则关于X 的边缘分布函数()=X F x ( )A.(),xx y dx ϕ-∞⎰B.(){},x x y dy dx ϕ+∞-∞-∞⎰⎰C.(),x ϕ+∞D.(),xx y dy ϕ-∞⎰20.设(,)X Y 的联合分布律表如下,则()()1 P XY ==A.0.1B.0.2C.0.3D.0.4 21.设离散型随机变量X 的分布律如下,则()=E X ( )A.-0.2B.0.1C.0.2D.-0.122.已知随机变量X 的分布函数为(), 0441, 4x F x x x ⎪⎪=<≤⎨⎪>⎪⎩,则()=E X ( )A.2B.4C.1D.323.设随机变量ξ服从区间()1,3上的均匀分布,则()=E ξ( ) A.0B.1C.2D.324.设(){}20, 0, 011, 1x F x P x X x x x <⎧⎪=≤=≤≤⎨⎪>⎩,则()() E X =A.13x dx ⎰B.122x dx ⎰C.12x dx ⎰D.202x dx -∞⎰25.下面的数学期望与方差都存在,当随机变量,ξη相互独立时,下列中错误的是( )A.()()()E E E ξηξη=B.()()()D D D ξηξη±=+C.()()()D D D ξηξη=D.()cov ,0ξη=26.下列关于协方差的性质,错误的是( ) A.cov(,)()X X D X =B. cov(,)cov(,)aX aY a Y X =(其中a 为常数)C. cov(,)cov(,)X Y Y X =D. cov(,)0C X =(其中C 为任意常数)27.设随机变量X 服从区间()1,3-的均匀分布,则()E x =( ) A.12B.34C. 1D.4328.设随机变量X 服从区间()1,3-的均匀分布,则()() D x = A.12B.34C. 1D.4329.设随机变量X ()10,0.4B ,则()() D x =A.1B. 1.2C. 2.4D. 430.下面的数学期望与方差都存在,当随机变量,ξη相互独立时,下列中错误的是()A.()()()E E E ξηξη=B.()()()D D D ξηξη±=+C.()()()D D D ξηξη=D.()cov ,0ξη=二.填空题1. 设C B A ,,为三个事件,请用C B A ,,的运算关系表示下列事件: (1) A ,B ,C 都发生 ; (2)B A ,发生而C 不发生 ; (3)A 发生而B ,C 都不发生 ; (4) A ,B ,C 至少有一个发生 ; (5) A ,B ,C 都不发生 ; (6) A ,B ,C 不都发生 ; (7) A ,B ,C 至多有2个发生 ; (8) A ,B ,C 至少有2个发生 .2.设B A ,为两个事件,且5.0)()(,7.0)(===⋃B P A P B A P ,则=)(B A P ,=)|(B A P 。
09概率论与数理统计作业题及参考答案(090510)
东北农业大学网络教育学院 概率论与数理统计作业题(一)一、填空题1.将A ,A ,C ,C ,E ,F ,G 这7个字母随机地排成一行,恰好排成GAECF AC 的概率为 。
2.用随机变量X 来描述掷一枚硬币的试验结果. 则X 的分布函数为 。
3.已知随机变量X 和Y 成一阶线性关系,则X 和Y 的相关系数=XY ρ 。
4.简单随机样本的两个特点为:5.设21,X X 为来自总体),(~2σμN X 的样本,若2120041X CX +为μ的一个无偏估计,则C = 。
二、选择题1.关系( )成立,则事件A 与B 为互逆事件。
(A )Φ=AB ; (B )Ω=B A ; (C )Φ=AB Ω=B A ; (D )A 与B 为互逆事件。
2.若函数)(x f y =是一随机变量X 的概率密度,则( )一定成立。
)(A )(x f y =的定义域为[0,1] )(B )(x f y =非负)(C )(x f y =的值域为[0,1] )(D )(x f y =在),(+∞-∞内连续3.设Y X ,分别表示甲乙两个人完成某项工作所需的时间,若EY EX <,DY DX >则 ( ) (A ) 甲的工作效率较高,但稳定性较差 (B ) 甲的工作效率较低,但稳定性较好 (C ) 甲的工作效率及稳定性都比乙好 (D ) 甲的工作效率及稳定性都不如乙4.样本4321,,,X X X X 取自正态分布总体X ,μ=EX 为已知,而2σ=DX 未知,则下列随机变量中不能作为统计量的是( )(.A ).∑==4141i i X X (B ).μ241++X X (C ).∑=-=4122)(1i i X X k σ (D ).∑=-=4122)(31i i X X S 5.设θ是总体X 的一个参数,θˆ是θ的一个估计量,且θθ=)ˆ(E ,则θˆ是θ的( )。
(A )一致估计 (B )有效估计 (C )无偏估计 (D )一致和无偏估计三、计算题1.两封信随机地投向标号1,2,3,4的四个空邮筒,问:(1)第二个邮筒中恰好投入一封信的概率是多少;(2)两封信都投入第二个邮筒的概率是多少?2.一批产品20个, 其中有5个次品, 从这批产品中随意抽取4个, 求(1)这4个中的次品数X 的分布列;(2))1(<X p3.已知随机变量X 的分布密度函数为 ⎪⎩⎪⎨⎧≤<-≤<=其他,021,210,)(x x x x x f ,求DX EX ,.4.设随机变量X 与Y(1)求X 与Y 的边缘分布列 (2)X 与Y 是否独立?5.总体X 服从参数为λ的泊松分布)(λp ,λ未知,设n X X X ,,, 21为来自总体X 的一个样本: (1)写出)(21n X X X ,,, 的联合概率分布; (2)}{max 1i ni X ≤≤,21X X +,212XX n -,5,∑=ni iX 12)(λ-中哪些是统计量?6.某车间生产滚珠,从长期实践可以认为滚珠的直径服从正态分布,且直径的方差为04.02=σ,从某天生产的产品中随机抽取9个,测得直径平均值为15毫米,试对05.0=α,求出滚珠平均直径的区间估计)96.1,645.1(025.005.0==Z Z概率论与数理统计作业题(二)一、填空题1.将A ,A ,C ,C ,E ,F ,G 这7个字母随机地排成一行,恰好排成GAECF AC 的概率为 。
自考作业答案概率论与数理统计.docx
答案和题目概率论与数理统计(经管类)综合试题一(课程代码 4183 )一、单项选择题(本大题共 10 小题,每小题 2 分,共 20 分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在 题后的括号内。
错选、多选或未选均无分。
1.下列选项正确的是( B).A.ABABB.(AB)BABC. (A- B)+B=AD. AB AB2. 设P( A) 0,P(B) 0,则下列各式中正确的是( D).A. P(A- B)=P(A)- P(B)B.P(AB)=P(A)P(B)C. P(A+B)= P(A)+P(B)D. P(A+B)=P(A)+P(B)- P(AB)3.同时抛掷 3 枚硬币,则至多有 1 枚硬币正面向上的概率是(D).A. 1B.1 C.1D.186424.一套五卷选集随机地放到书架上, 则从左到右或从右到左卷号恰为 1,2,3,4,5 顺序的概率为( B).A.1B. 1C. 1D.112060 5 25.设随机事件 A ,B 满足 B A ,则下列选项正确的是( A).A. P(A B) P(A) P(B)B. P( A B) P(B)C.P(B | A) P( B)D. P( AB) P(A)6.设随机变量 X 的概率密度函数为 f (x),则 f (x)一定满足( C).A. 0 f ( x) 1B. f (x)连续C.f ( x)dx1D. f ( )17.设离散型随机变量 X 的分布律为 P( X k )bk , k1,2,... ,且 b0 ,则参数b2的值 为(D ).A.1B.1C. 1D.12358.设随机变量 X, Y 都服从 [0, 1]上的均匀分布, 则 E( X Y ) =( A ).A.1B.2C.1.5D.09.设总体 X 服从正态分布, EX1,E(X 2)2 , X 1 , X 2 ,..., X 10 为样本,则样本 均值 110~XX i10 i 1( D).A. N ( 1,1)B. N (10,1)C.N(10, 2)D. N(1,1)1010.设总体 X : N ( ,2),( X 1, X 2, X 3) 是来自 X 的样本,又 ?1X 1 aX 21X 342是参数的无偏估计,则 a = ( B).A. 1B. 1C.1D.14 23二、填空题(本大题共 15 小题,每小题 2 分,共 30 分)请在每小题的空格中填上正确答案。
(完整word版)概率论与数理统计习题集及答案(word文档良心出品)
《概率论与数理统计》作业集及答案第1章 概率论的基本概念§1 .1 随机试验及随机事件1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ;(2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ;B :两次出现同一面,则= ;C :至少有一次出现正面,则C= .§1 .2 随机事件的运算1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件:(1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则(1)=⋃B A ,(2)=AB ,(3)=B A , (4)B A ⋃= ,(5)B A = 。
§1 .3 概率的定义和性质1. 已知6.0)(,5.0)(,8.0)(===⋃B P A P B A P ,则(1) =)(AB P , (2)()(B A P )= , (3))(B A P ⋃= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = .§1 .4 古典概型1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3) 至少有2个女同学的概率.2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率.§1 .5 条件概率与乘法公式1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。
概率论与数理统计总习题及答案
试题一、填空1、设P(A)=0.4,P(AUB)=0.7,A与B不相容,则P(B)=0.3 解:由公式,P(AUB)= P(A)+ P(B)所以P(B)= 0.7-0.4=0.32、若X~B(n,p),则X的数学期望E(X)= n*p解:定义:二项分布E(X)= n*p D(X)=n*p(1-p)3、甲盒中有红球4个,黑球2个,白球2个;乙盒中有红球5个,黑球3个;丙盒中有黑球2个,白球2个。
从这3个盒子中任取1个盒子,再从中任取1球,他是红球的概率0.375解:设甲为A1,乙为A2,丙为A3,红球为B则P(B)=P(A1)P(B| A1)+P(A2)P(B| A2)+P(A3)P(B| A3)=1/3*1/2+1/3*5/8+1/3*0=0.3754、若随机变量X的分布函数为f(x)={0,x<0√x,0≤x<1 1, x≥1则P{0.25<X≤1}=0.5解:分布函数求其区间概率即右端点函数值减去左端点函数值F (1)-F (0.25) = 1-0.5=0.55、设(X1,X2,…X n)为取自正态分布,总体X~N(μ,σ2),的样本,则X的分布为N(μ,σ2n )解:定义6、设ABC表示三个随机变量事件,ABC至少有一个发生,可表示为AUBUC解:至少;如果是一切发生为A∩B∩C7、设X为连续随机变量,C是一个常数,则P{X=C}=0 解:取常数,取一个点时,恒定为08、一射手对同一目标独立地进行4次射击,若至少命中1次的概率为80/81,则该射击的命中率为2/3解:射击,即伯努利试验。
求P(X=0)=Cn0p0(1−p)4=1−80/81(1−p)4=181,1−p=13,p=239、设X~N(−1,2),Y~N(1,3)且X与Y相互独立,则X+ 2Y~N(1,14)解:因为X与Y相互独立,再由正态分布得E(X)=-1,D(X)=2;E(Y)=1,D(Y)=3;所以E(X+2Y)=E(X)+2E(Y)=-1+2*1=1D(x+2Y)=D(X)+4D(Y)=2+4*3=14所以X+2Y~N(1,14)10、设随机变量X的方差为2.5,利用切比雪夫不等式估计概率得P{|X−E(X)|≥7.5}≤ 2.57.52解:由切比雪夫不等式P{|X−μ|≥ε}≤σ2ε2≤ 2.57.52二、 计算1、 从0,1,2,…9中任意取出3个不同的数字,求下列的概率。
概率论与数理统计作业
概率论与数理统计作业
【原创版】
目录
1.概率论与数理统计的定义和重要性
2.概率论的基本概念和应用
3.数理统计的基本概念和应用
4.如何有效学习和掌握概率论与数理统计
5.总结
正文
概率论与数理统计是我们在学术和实际生活中都会接触到的重要学科,它们为我们理解和预测各种现象提供了有力的工具。
首先,概率论是研究随机现象的理论,它为我们提供了描述和度量随机事件可能性的方法。
其基本概念包括随机事件、概率分布、条件概率等,广泛应用于金融、保险、生物、通信等领域。
其次,数理统计是基于概率论的理论,它主要研究如何从样本数据中推断总体的性质和参数。
其基本概念包括描述性统计、推断性统计、假设检验等,常用于数据分析、科学研究、社会调查等。
对于如何有效学习和掌握概率论与数理统计,我们需要从以下几个方面入手:一是理解基本概念和原理,二是多做练习,通过实践来加深理解,三是掌握一些常用的概率分布和统计方法,四是了解其在实际应用中的案例,以提高我们的应用能力。
总的来说,概率论与数理统计是一门重要的学科,它为我们理解和预测世界提供了有力的工具。
第1页共1页。
概率论与数理统计的作业及解答
概率论与数理统计作业及解答第一次作业★1. 甲乙丙三门炮各向同一目标发射一枚炮弹设事件A B C 分别表示甲乙丙击中目标则三门炮最多有一门炮击中目标如何表示. 事件E {事件,,A B C 最多有一个发生},则E 的表示为;E ABCABC ABCABC 或;ABACBC 或;ABACBC 或;ABACBC 或().ABC ABCABC ABC (和A B 即并AB ,当,A B 互斥即AB时AB 常记为AB )2. 设M 件产品中含m 件次品计算从中任取两件至少有一件次品的概率.221Mm M CC或1122(21)(1)mMm mMC CCm Mm M MC★3. 从8双不同尺码鞋子中随机取6只计算以下事件的概率.A {8只鞋子均不成双},B {恰有2只鞋子成双},C {恰有4只鞋子成双}. 61682616()32()0.2238,143C C P A C1414872616()80()0.5594,143C C C P B C2212862616()30()0.2098.143C C C P C C★4. 设某批产品共50件其中有5件次品现从中任取3件求(1)其中无次品的概率 (2)其中恰有一件次品的概率(1)34535014190.724.1960C C(2)21455350990.2526.392C C C5. 从1~9九个数字中任取3个排成一个三位数求(1)所得三位数为偶数的概率 (2)所得三位数为奇数的概率(1){P 三位数为偶数}{P 尾数为偶数4},9(2){P 三位数为奇数}{P 尾数为奇数5},9或{P 三位数为奇数}1{P 三位数为偶数45}1.996.某办公室10名员工编号从1到10任选3人记录其号码求(1)最小号码为5的概率(2)最大号码为5的概率记事件A {最小号码为5}, B {最大号码为5}. (1) 253101();12C P A C(2) 243101().20C P B C7.袋中有红、黄、白色球各一个每次从袋中任取一球记下颜色后放回共取球三次求下列事件的概率:A ={全红}B ={颜色全同}C ={颜色全不同}D ={颜色不全同}E ={无黄色球}F ={无红色且无黄色球}G ={全红或全黄}.311(),327P A 1()3(),9P B P A 33333!2(),339A P C 8()1(),9P D P B3328(),327P E 311(),327P F 2()2().27P G P A ☆.某班n 个男生m 个女生(m n 1)随机排成一列计算任意两女生均不相邻的概率.☆.在[0 1]线段上任取两点将线段截成三段计算三段可组成三角形的概率.14第二次作业1. 设A B 为随机事件P (A)0.92P(B )0.93(|)0.85P B A 求(1)(|)P A B (2)()P A B ∪(1)()()0.85(|),()0.850.080.068,()10.92P AB P AB P B A P AB P A ()()()()()()P AB P A P AB P A P B P AB 0.920.930.0680.058,()0.058(|)0.83.()10.93P AB P A B P B (2)()()()()P AB P A P B P AB 0.920.930.8620.988.2. 投两颗骰子已知两颗骰子点数之和为7求其中有一颗为1点的概率. 记事件A {(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)}, B {(1,6),(6,1)}. 21(|).63P B A ★.在1—2000中任取一整数求取到的整数既不能被5除尽又不能被7除尽的概率记事件A {能被5除尽}, B {能被7除尽}.4001(),20005P A 取整2000285,728557(),2000400P B 200057,5757(),2000P AB ()()1()1()()()P AB P AB P A B P A P B P AB 1575710.686.540020003. 由长期统计资料得知某一地区在4月份下雨(记作事件A )的概率为4/15刮风(用B 表示)的概率为7/15既刮风又下雨的概率为1/10求P (A |B )、P (B |A )、P (A B )()1/103(|),()7/1514P AB P A B P B ()1/103(|),()4/158P AB P B A P A ()()()()P AB P A P B P AB 47119.151510304设某光学仪器厂制造的透镜第一次落下时摔破的概率是1/2若第一次落下未摔破第二次落下时摔破的概率是7/10若前二次落下未摔破第三次落下时摔破的概率是9/10试求落下三次而未摔破的概率.记事件i A ={第i 次落下时摔破}1,2,3.i1231213121793()()(|)(|)111.21010200P A A A P A P A A P A A A 5设在n 张彩票中有一张奖券有3个人参加抽奖分别求出第一、二、三个人摸到奖券概率.记事件i A ={第i 个人摸到奖券}1,2,3.i 由古典概率直接得1231()()().P A P A P A n 或212121111()()()(|),1n P A P A A P A P A A n n n31231213121211()()()(|)(|).12n n P A P A A A P A P A A P A A A nn nn或第一个人中奖概率为11(),P A n 前两人中奖概率为12122()()(),P A A P A P A n解得21(),P A n前三人中奖概率为1231233()()()(),P A A A P A P A P A n解得31().P A n 6甲、乙两人射击甲击中的概率为08乙击中的概率为07两人同时射击假定中靶与否是独立的求(1)两人都中靶的概率 (2)甲中乙不中的概率 (3)甲不中乙中的概率记事件A ={甲中靶}B ={乙中靶}. (1)()()()0.70.70.56,P AB P A P B (2)()()()0.80.560.24,P AB P A P AB (3)()()()0.70.560.14.P AB P B P AB ★7袋中有a 个红球b 个黑球有放回从袋中摸球计算以下事件的概率(1)A {在n 次摸球中有k 次摸到红球}(2)B {第k 次首次摸到红球}(3)C {第r 次摸到红球时恰好摸了k 次球}(1) ();()kn kk n kk k nnna b a bP A CC a b a b a b (2) 11();()k k kbaabP B a b a b a b (3) 1111().()rk rr k rr r k k kaba bP C CCa b a b a b 8一射手对一目标独立地射击4次已知他至少命中一次的概率为80.81求该射手射击一次命中目标的概率设射击一次命中目标的概率为,1.p q p 4801121,,1.818133q qp q9设某种高射炮命中目标的概率为0.6问至少需要多少门此种高射炮进行射击才能以0.99的概率命中目标(10.6)10.99,n0.40.01,n由50.40.01024,60.40.01,得 6.n☆.证明一般加法(容斥)公式1111()()()()(1)().nn n n i i i i j i j k i i i i ji j kP A P A P A A P A A A P A 证明只需证分块111,,kk nki i i ii i A A A A A A 只计算1次概率.(1,,n i i 是1,,n 的一个排列1,2,,.kn )分块概率重数为1,,ki i A A 中任取1个任取2个1(1)k 任取k 个即121(1)1k k kkk C CC121(1)(11)0.kk kk kkC CC将,互换可得对偶加法(容斥)公式1111()()()()(1)().nn n n i i i i j i j k i i i i ji j kP A P A P A A P A A A P A ☆.证明若A B 独立A C 独立则A B ∪C 独立的充要条件是A BC 独立. 证明(())()()()()P A B C P AB AC P AB P AC P ABC ()()()()()P A P B P A P C P ABC 充分性:(())()()()()(),P A BC P A P B P A P C P ABC 代入()()()P ABC P A P BC ()(()()())P A P B P C P BC ()(),P A P B C 即,A B C 独立.必要性:(())()()P A B C P A P B C ()(()()())P A P B P C P BC ()()()()()()P A P B P A P C P A P BC ()()()()()P A P B P A P C P ABC ()()(),P ABC P A P BC 即,A BC 独立.☆.证明:若三个事件A 、B 、C 独立,则A ∪B 、AB 及A -B 都与C 独立.证明因为[()]()()()()()()()()()()()[()()()()]()()()P A B C P AC BC P AC P BC P ABC P A P C P B P C P A P B P C P A P B P A P B P C P AB PC [()]()()()()[()()]()()()P AB C P ABC P A P B P C P A P B P C P AB P C [()]()()()()()()()()[()()]()()()P A B C P AC B P AC P ABC P A P C P A P B P C P A P AB P C P AB PC 所以A ∪B 、AB 及A -B 都与C 独立. 第三次作业1在做一道有4个答案的选择题时如果学生不知道问题的正确答案时就作随机猜测设他知道问题的正确答案的概率为p 分别就p 0.6和p 0.3两种情形求下列事件概率(1)学生答对该选择题 (2)已知学生答对了选择题求学生确实知道正确答案的概率记事件A ={知道问题正确答案}B ={答对选择题}. (1) 由全概率公式得()()(|)()(|)P B P A P B A P A P B A 113,444p p p当0.6p时13130.67()0.7,444410p P B当0.3p 时13130.319()0.475.444440p P B (2) 由贝叶斯公式得()4(|),13()1344P AB p p P A B p P B p当0.6p 时440.66(|),13130.67p P A B p 当0.3p时440.312(|).13130.319p P A B p2某单位同时装有两种报警系统A 与B 当报警系统A 单独使用时其有效的概率为0.70当报警系统B 单独使用时其有效的概率为0.80.在报警系统A 有效的条件下报警系统B 有效的概率为0.84.计算以下概率 (1)两种报警系统都有效的概率 (2)在报警系统B 有效的条件下报警系统A 有效的概率 (3)两种报警系统都失灵的概率.()0.7,()0.8,(|)0.84.P A P B P B A (1) ()()(|)0.70.840.588,P AB P A P B A (2) ()0.588(|)0.735,()0.8P AB P A B P B (3) ()()1()1()()()P AB P A B P A B P A P B P AB 10.70.80.5880.088.☆.为防止意外在矿内同时设有两种报警系统A 与B 每种系统单独使用时其有效的概率系统A 为092系统B 为0.93在A 失灵的条件下B 有效的概率为0.85求: (1)发生意外时两个报警系统至少有一个有效的概率 (2) B 失灵的条件下A 有效的概率3设有甲、乙两袋甲袋中有n 只白球m 只红球乙袋中有N 只白球M 只红球从甲袋中任取一球放入乙袋在从乙袋中任取一球问取到白球的概率是多少记事件A ={从甲袋中取到白球}B ={从乙袋中取到白球}. 由全概率公式得()()(|)()(|)P B P A P B A P A P B A 111n N m N nm NM nm NM().()(1)nN n m n m NM☆.设有五个袋子其中两个袋子每袋有2个白球 3个黑球另外两个袋子每袋有1个白球 4个黑球还有一个袋子有4个白球 1个黑球 (1)从五个袋子中任挑一袋并从这袋中任取一球求此球为白球的概率 (2)从不同的三个袋中任挑一袋并由其中任取一球结果是白球问这球分别由三个不同的袋子中取出的概率各是多少?★4发报台分别以概率06和04发出信号“·”及“”由于通信系统受到于扰当发出信号“·”时收报台分别以概率08及02收到信息“·”及“”又当发出信号“”时收报台分别以概率09及0l 收到信号“”及“·”求: (1)收报台收到“·”的概率(2)收报台收到“”的概率(3)当收报台收到“·”时发报台确系发出信号“·”的概率(4)收到“”时确系发出“”的概率记事件B ={收到信号“·”}1A ={发出信号“·”}2A ={发出信号“”}. (1) )|()()|()()(2211A B P A P A B P A P B P ;52.01.04.0)2.01(6.0(2) ()1()10.520.48;P B P B (3) 1111()()(|)(|)()()P A B P A P B A P A B P B P B 0.60.8120.923;0.5213(4)2222()()(|)(|)()()P A B P A P B A P A B P B P B 0.40.930.75.0.4845对以往数据分析结果表明当机器调整良好时产品合格率为90%而机器发生某一故障时产品合格率为30%每天早上机器开动时机器调整良好的概率为75%(1)求机器产品合格率(2)已知某日早上第一件产品是合格品求机器调整良好的概率记事件B ={产品合格}A ={机器调整良好}. (1) 由全概率公式得()()(|)()(|)P B P A P B A P A P B A 0.750.90.250.30.75,(2) 由贝叶斯公式得()()(|)(|)()()P AB P A P B A P A B P B P B 0.750.90.9.0.75☆.系统(A) (B) (C)图如下系统(A) (B)由4个元件组成系统(C)由5个元件组成每个元件的可靠性为p 即元件正常工作的概率为p 试求整个系统的可靠性. (A) (B) (C) 记事件A ={元件5正常}B ={系统正常}. (A) 222(|)(1(1)(1))(44),P B A p p p p p (B) 2222(|)1(1)(1)(2),P B A p p p p (C) 由全概率公式得()()(|)()(|)P B P A P B A P A P B A 2222(44)(1)(2)p p pp p p p 23452252.pp p p 第四次作业1在15个同型零件中有2个次品从中任取3个以X 表示取出的次品的个数求X 的分布律.2213315(),0,1,2.k k C C P Xk k CX0 1 2 P22/35 12/35 1/35☆.经销一批水果第一天售出的概率是0.5每公斤获利8元第二天售出的概率是0.4每公斤获利5元第三天售出的概率是0.1每公斤亏损3元求经销这批水果每公斤赢利X 的概率分布律和分布函数X 3 5 8P0.10.40.50,3,(3)(3)0.1,35,()(5)(3)(5)0.10.40.5,58,(8)1,8.xF P X xF x F P XP Xx F x2抛掷一枚不均匀的硬币每次出现正面的概率为2/3连续抛掷8次以X 表示出现正面的次数求X 的分布律.(8,2/3),XB np8821(),0,1,,8.33kkk P Xk Ck 3一射击运动员的击中靶心的命中率为0.35以X 表示他首次击中靶心时累计已射击的次数写出X 的分布律并计算X 取偶数的概率(0.35),XG p11()0.350.65,1,2.k k P Xk pqk()+()=1,()()=,P X P X P X P X q奇偶偶奇解得0.6513()=0.394.110.6533q P X q偶4一商业大厅里装有4个同类型的银行刷卡机调查表明在任一时刻每个刷卡机使用的概率为0.1求在同一时刻(1)恰有2个刷卡机被使用的概率(2)至少有3个刷卡机被使用的概率(3)至多有3个刷卡机被使用的概率(4)至少有一个刷卡机被使用的概率在同一时刻刷卡机被使用的个数(4,0.1).X B n p (1) 2224(2)0.10.90.00486,P X C(2) 3344(3)(3)(4)0.10.90.10.0037,P X P X P X C(3) 4(3)1(4)10.10.9999,P X P X (4)4(1)1(0)10.910.65610.3439.P XP X5某汽车从起点驶出时有40名乘客设沿途共有4个停靠站且该车只下不上每个乘客在每个站下车的概率相等并且相互独立试求(1)全在终点站下车的概率(2)至少有2个乘客在终点站下车的概率 (3)该车驶过2个停靠站后乘客人数降为20的概率记事件A ={任一乘客在终点站下车}乘客在终点站下车人数(40,1/4).X B n p (1) 40231(40)8.271810,4P X (2) 403940140313433(2)1(0)(1)1144434P XP X P XC10.0001340880.999865912.(3) 记事件B ={任一乘客在后两站下车}乘客在后两站下车人数(40,1/2).YB np2020202040404011(20)0.1268.222CP YC(精确值)应用斯特林公式!2,nn n n e 2020202040404011(20)222CP XC24040!(20!)2402204040240202202ee10.1262.25其中3.1415926536, 1.7724538509.参贝努利分布的正态近似6已知瓷器在运输过程中受损的概率是0.002有2000件瓷器运到求 (1)恰有2个受损的概率 (2)小于2个受损的概率 (3)多于2个受损的概率 (4)至少有1个受损的概率受损瓷器件数(2000,0.002),X B np近似为泊松分布(4).P n p (1) 2441480.146525,2!P ee (2) 4424150.0915782,1!P ee(3) 431211130.761897,P P P e (4) 4410.981684.P e7某产品表面上疵点的个数X 服从参数为1.2的泊松分布规定表面上疵点的个数不超过2个为合格品求产品的合格品率产品合格品率21.21.21.2 1.212.920.879487.1!2!Pee★8设随机变量X 的分布律是X3 5 8P0.20.50.3求X 的分布函数以及概率(36),(1),(5),(||5).P XP XP X P X 随机变量X 的分布函数为0,3,(3)(3)0.2,35,()(5)(3)(5)0.20.50.7,58,(8)1,8.xF P X xF x F P XP X x F x(36)(5)0.5,P X P X (1)(5)(8)0.50.30.8,P X P XP X (5)(||5)(5)(3)(5)0.20.50.7,P XP X F P XP X第五次作业1学生完成一道作业的时间X 是一个随机变量(单位小时)其密度函数是2,00.5()0,kx x x f x 其他试求 (1)系数k (2)X 的分布函数 (3)在15分钟内完成一道作业的概率 (4)在10到20分钟之间完成一道作业的概率(1) 0.50.5232111(0.5),21,32248k k F kxxdxxxk (2) 23200,01()()217,00.5,2(0.5)1,0.5.x xF x P Xx xxdx xx x F x(3) 32211119()2170.140625,442464x FP Xx xxdx (4) 3212316111111129217.6336424108PXFF xxdx2设连续型随机变量X 服从区间[a a](a 0)上的均匀分布且已知概率1(1)3P X 求(1)常数a (2)概率1()3P X (1) 1111(1),3,223aa P X dxa aa(2) 13311115()3.36639P Xdx3设某元件的寿命X 服从参数为的指数分布且已知概率P (X 50)e 4试求(1)参数的值 (2)概率P(25X 100) 补分布()()|,0.xxxxxS x P Xx edxeex(1) 504502(50)(50),0.08,25xS P Xedx ee (2) 由()(),,0,rxrS rx eS x r x 取50,x依次令1,2,2r得12282(25)(25)(50),(100)(100)(50)S P X S e S P XS e0.0003354563,其中 2.7182818284.e28(25100)(25)(100)P XP X P X ee0.135334650.00033545630.1349991937.4某种型号灯泡的使用寿命X (小时)服从参数为1800的指数分布求 (1)任取1只灯泡使用时间超过1200小时的概率 (2)任取3只灯泡各使用时间都超过1200小时的概率(1) 1312008002(1200)0.2231301602,P Xee此处 1.6487212707001.e (2) 932(1200)0.0111089965.P Xe5设X ~N (0 1)求P (X 061)P (262X 125)P (X 134)P (|X |213)(1) (0.61)(0.61)0.72907,P X (2) ( 2.621.25)(1.25)(2.62)(1.25)(2.62)1P X0.894359956010.88995,(3) ( 1.34)1(1.34)10.909880.09012,P X(4)(|| 2.13)22(2.13)220.983410.03318.P X 6飞机从甲地飞到乙地的飞行时间X ~N (419)设飞机上午1010从甲地起飞求(1)飞机下午2 30以后到达乙地的概率 (2)飞机下午2 10以前到达乙地的概率 (3)飞机在下午1 40至2 20之间到达乙地的概率(1) 131331/34111(1)10.841340.15866,331/3P X P X (2) (4)(0)0.5,P X (3) 72525/647/24261/31/3PX131220.691460.9331910.62465.★7设某校高三女学生的身高X ~N (16225)求(1)从中任取1个女学生求其身高超过165的概率(2)从中任取1个女学生求其身高与162的差的绝对值小于5的概率(3)从中任取6个女学生求其中至少有2个身高超过165的概率(1) 162165162(165)0.61(0.6)10.72580.2742,55X P X P (2)162(|162|5)12(1)120.8413410.6827,5X P X P(3) 记事件A ={任一女生身高超过165}()(165)0.2742,pP A P X随机变量Y 贝努利分布(6,0.2742),B np6156(2)1(0)(1)1(1)(1)0.52257.P YP Y P Yp C p p 第六次作业★1.设随机变量X 的分布律为(1)求Y |X |的分布律 (2)求Y X 2X 的分布律(1)X 211p k121416112Y0 1 2 P1/6 1/3 1/2(2)Y0 2 P2/12 7/12 ★.定理(连续型随机变量函数的密度公式)设连续型变量X 密度为()X f x ,()y g x 严格单调,反函数()xx y 导数连续,则()Yg X 是连续型变量,密度为(())|()|,()(),()0,X Y f x y x y g x yg x f y 极小值极大值其它.证明1)若()0,xx y {}{()()}{},Yy g X g x Xx ()()(()())()(),Y X F y P Y y P g X g x P X x F x 两边对y 求导,()(())(),.Y X f y f x y x y y2)若()0,xx y {}{()()}{},Yy g X g x Xx ()()(()())()1(),Y X F y P Y y P g X g x P X x F x 两边对y 求导, ()(())(),.Y X f y f x y x y y因此总有()(())|()|,.Y X f y f x y x y y或证明()(),()0,()()(()())()1(),()0,X Y X P X x F x g x F y P Yy P g X g x P Xx F x g x 两边对y 求导,(),()(),X Y X dF x dxdx dy f y dF x dxdx dy或两边微分()(),()()()(),X X Y Y X X dF x f x dx dF y f y dy dF x f x dx (),()(),X Y X dx f x dy f y dx f x dy(())|()|,.X f x y x y y 2设随机变量X 的密度函数是f X (x )求下列随机变量函数的密度函数(1)Y tan X (2)1YX(3)Y |X|(1) 反函数()arctan ,x y y '21(),1x y y 由连续型随机变量函数的密度公式得'21()(())|()|(arctan ).1Y X Xf y f x y x y f y y 或反函数支()arctan ,i x y iy i 为整数,'21(),1i x y y '21()(())|()|(arctan ).1Y X i i X iif y f x y x y f iy y (2) 1,XY 反函数1,y x y '211()()().Y X y yX f y f x x f y y(3) ()()(||)()()()Y X X F y P Y y P X y P y X y F y F y 两边对y 求导得Y 的密度函数为()()(),0.Y X X f y f y f y y★3设随机变量X ~U [2 2]求Y 4X 21的密度函数2111()()(41)(11)1,115,224Y F y P Y y P X y P y Xy y y 两边对y 求导得随机变量Y 的密度为1(),115.81Y f y y y 或解反函数支1211()1,()1,22x y y x y y '''1122111()(())|()|(())|()|2(())(),115.81Y X X X f y f x y x y f x y x y f x y x y yy ★4设随机变量X 服从参数为1的指数分布求Y X 2的密度函数(Weibull 分布)当0y 时, 2Y X 的分布()0Y F y ,当0y 时,2()()()()(),Y X F y P Yy P Xy P X y F y 两边对y 求导得1()()(),2yY X f y f y y e y1,0,2()0,0.y Y e y yf y y 或反函数,yx y '1()(),0.2yY X y yf y f x x ey y★5设随机变量X~N (0 1)求(1)Y e X的密度函数 (2)Y X 2的密度函数(Gamma 分布)(1) 当0y 时, e X Y 的分布()0Y F y ,当0y 时,()()(e)(ln )(ln ),XY F y P Yy P y P X y y 因而Y 的密度为''1()(ln )(ln )(ln )(ln ),Y f y y y y y y 2(ln )1exp ,0,2()20,0.Yy y f y y y 或反函数ln ,X Y ln ,y x y '1()()(ln )Y y yf y x x y y 2(ln )1exp ,0.22y y y(2)当0y 时,()0Y F y ;当0Y时,2()()()()()()Y X X F y P Y y P X y P y Xy F y F y两边对y 求导得Y 的密度函数为21,0,()20,0.y Y e y f y y y 或反函数支12(),(),x y y x y y ''211221()(())|()|(())|()|,0.2y Y X X f y f x y x y f x y x y e y y6设随机变量X 的密度函数是21,1()0,1X x f x xx 求Y ln X 的概率密度反函数,y yx e '()()(),0.y yy Y X y yX f y f x x f e e e y第七次作业☆.将8个球随机地丢入编号为12345的五个盒子中去设X 为落入1号盒的球的个数Y 为落入2号盒的球的个数试求X 和Y 的联合分布律1袋中装有标上号码1 2 2的3个球从中任取一个并且不再放回然后再从袋中任取一球以X Y 分别记第一、二次取到球上的号码数求 (1)(X Y )的联合分布律(设袋中各球被取机会相等) (2)X Y 的边缘分布律 (3)X 与Y 是否独立?(1)(X Y )的联合分布律为(1,1)0,P X Y 1(1,2)(2,1)(2,2).3P X Y P X Y P X Y (2) X Y 的分布律相同12(1),(2).33P X P X (3) X 与Y 不独立2设二维连续型变量(,)X Y 的联合分布函数35(1)(1),,0,(,)0,.xyeex y F x y 其它求(,)X Y 联合密度2(,)(,),f x y F x y x y3515,,0,(,)0,.x yex y f x y 其它★3设二维随机变量(X Y )服从D 上的均匀分布其中D 是抛物线y x 2和x y 2所围成的区域试求它的联合密度函数和边缘分布密度函数并判断Y X ,是否独立分布区域面积21311232211,333xxSdydxx x dxxx联合密度213,1,(,)0,.x y x f x y S 其它边缘X 的密度为22()33(),01,x X xf x dy x x x边缘Y 的密度为22()33(),01.y Y y f y dy y y y (,)()(),X Y f x y f x f y 因此X 与Y 不独立.或(,)f x y 非零密度分布范围不是定义在矩形区域上,因此X 与Y 不独立.4.设二维离散型变量),(Y X 联合分布列是Y X1 351115q 151p15310问,p q 取何值时X 与Y 相互独立. 两行成比例1/151/52,1/53/103q p解得12,.1015pq★5.设(,)X Y 的联合密度为2,11,0,(,)0,.yAx e x y f x y 其它求(1)常数A (2)概率1(0,1);2P XY(3)边缘概率密度f X (x)f Y (y) (4)X 与Y 是否相互独立? (1)222()(,),11,yyX f x f x y dyAx e dyAxe dyAx x 112112()1,3X f x dxAx dx A3.2A (2) 112201113(0,1)(0)(1).22216yeP X Y P XP Y x dxe dy(3) 23(),11,2X f x x x111221113()(,),0.2yyyY f y f x y dxAx e dxex dxe y(4)由23,11,0()()(,),20,yX Y x e x y f x f y f x y 其它得X 与Y 独立.或因为2(,),11,0,yf x y Ax e x y可表示为x 的函数与y 的函数的积且分布在矩形区域上,所以X 与Y 相互独立.由此得(),0;y Y f y e y 2(),11,X f x Ax x 112112()1,3X f x dx Ax dx A 3.2A 112201113(0,1)(0)(1).22216yeP XYP XP Yx dxe dy6.设X 服从均匀分布(0,0.2),U Y 的密度为55,0,()0,yY ey f y 其它.且,X Y 独立.求(1)X的密度(2) (,)X Y 的联合密度(1)X 的密度为()5,00.2,X f x x(2)(,)X Y 的联合密度为525,00.2,0,(,)0,yex y f x y 其它.第八次作业★1设随机变量(X Y)的联合分布律是XY 0 12 0 1/6 1/3 1/12 11/61/121/6求函数(1)Z 1X Y (2) Z2min{X Y } (3) Z3max{X Y }的分布律(1) 11(0)(0),6P Z P XY1111(1)(0,1)(1,0),362P Z P X Y P XY 1111(2)(0,2)(1,1),12126P Z P X YP XY11(3)(1,2).6P Z P XY(2) 2111(1)(1,1)(1,2),1264P Z P X Y P X Y223(0)1(1).4P Z P Z (3) 31(0)(0),6P Z P X Y 31117(1)(0,1)(1,1)(1,0),312612P Z P X Y P X Y P X Y 3111(2)(0,2)(1,2).1264P Z P XYP XY2设随机变量(X Y )的联合分布律是XY1 1 1 0.25 0.125 10.1250.25求函数Z X /Y 的分布律(/1)(1)(1)0.250.250.5,P Z X Y P XYP X Y(/1)1(/1)0.5.P ZX YP Z X Y3设X 与Y 相互独立概率密度分别为220()0,xX e x f x x 0(),yY e y f y x 试求Z X Y 的概率密度()(,)()()z z Z X Y f z f x z x dxf x f zx dx200222(1),0.z z xz xzxzze edx ee dxe e z★4设X~U (0 1)Y ~E (1)且X 与Y 独立求函数Z X Y 的密度函数,01,0,(,)0,ye xyf x y 其它,当01z 时()(,)()()zzZ X Y f z f x z x dxf x f zx dx1,zzz xz x zx edx ee 当1z 时11110()(,)()().z z xz xzzZ X Y x f z f x zx dxf x f zx dxedx eee 因此11,01,(),1,0,.zzzZ e z f z ee z 其它★5设随机变量(X Y )的概率密度为()101,0(,)10x y ex y f x y e 其它(1)求边缘概率密度f X (x )f Y (y )(2)求函数U max (X ,Y )的分布函数(3)求函数V min (X ,Y )的分布函数(1) 1,01,()10,x X ex f x e 其它.,0,()0,yY e y f y 其它.(2)110,0,1()(),01,111,1x x xxX X xee F xf x dx dxxeex.min{,1}10,0,1,01x xex e.0,0,()1,0Y yyF y e y .21(1),01,()()()11,1x U X Y xe x F x F x F x ee x .min{,1}1(1)(1),0.1xx e ex e(3) 111,0,()1(),01,10,1xX X x eeS x F x x e x .min{,1}111,0,,01x x eex e.1,0,()1(),0Y Y yy S y F y e y.112111()11,01,()1()()111,1xxx xV X Y ee eeeex F x S x S x e ex .1min{,1}111,01x xxeeex e.6设某种型号的电子管的寿命(以小时计)近似地服从N (160 202)分布随机地选取4只求其中没有一只寿命小于180小时的概率随机变量2(160,20),XN 180160(180)(1)0.84134,20P X没有一只寿命小于180小时的概率为444(180)(1(1))(10.84134)0.00063368.P X 第九次作业★1. 设离散型随机变量X 具有概率分布律X 2 1 0 12 3 P0.1 0.2 0.2 0.30.10.1试求E (X )E (X 25)E(|X|)20.110.210.320.130.10.4,i iiEX x p 2222222(2)0.1(1)0.210.320.130.1 2.2,i iiEXx p 22(5)57.2,E X EX ||||20.110.210.320.130.1 1.2.i iiE X x p 2. 设随机变量X 的概率密度为0 0,()01,1.xx f x x x Aex 求 (1)常数A (2)X 的数学期望(1) 11111(),2xf x dx xdxAe dx Ae ,2e A (2) 121114()2.2323xe e EXxf x dxx dx xe dxe★3. 设球的直径D 在[a b ]上均匀分布试求 (1)球的表面积的数学期望(表面积2D)(2)球的体积的数学期望(体积316D )(1) 22222()();3b ax E D EDdxaab b ba(2) 33322()().6624b axEDEDdx a b a b b a ★4. 设二维离散型随机变量(X Y )的联合分布律为XY1 2 3 4 2 0.10 0.05 0.05 0.10 0 0.05 0 0.10 0.20 20.100.150.050.05求E (X )E (Y )E (XY )2(0.10.050.050.1)2(0.10.150.050.1)i iiEXx p 20.320.350.1,1(0.10.050.1)2(0.050.15)j jjEYy p3(0.050.10.05)4(0.10.20.05)2.65,,()ij i jijE XY x y p 2(10.120.0530.0540.01)2(10.120.1530.0540.05)1.5 1.50.★5. 设随机变量X 和Y 独立且具有概率密度为2,01,()0,X x x f x 其它,3(1)3,1,()0,1.y Y ey f y y (1)求(25)E X Y (2)求2()E X Y (1) 1122()2,3X EXxf x dx x dx 3(1)114()3,3y Y EYyf y dy yedy或随机变量1ZY 指数分布(3),E 141,,33EZEY EY24(25)25258.33E XY EXEY(2) 112231()2,2X EXx f x dxx dx 由X 和Y 独立得22142().233E X Y EX EY第十次作业1. 设离散型随机变量X 的分布列为X 21 0 12 3P01 0.2 0.2 0.3 0.1 0.1试求 (1) D (X ) (2) D (3X 2)(1) 20.110.210.320.130.10.4,i i iEXx p 2222222(2)0.1(1)0.210.320.130.1 2.2,i iiEXx p 2222.20.42.04.DXEXE X (2) 2(32)(3)9 2.0418.36.D XDX★2. 设随机变量X 具有概率密度为22,02,()0,Axx x f x 其他,试求 (1)常数A (2)E (X ) (3) D (X ) (4) D (2X 3) (1) 2281()(2)4,3f x dx Axx dx A解得9.8A (2) 2295()(2).86EX xf x dxx xx dx (3) 2222294()(2),85EXx f x dx x xx dx 2224519.56180DXEXE X(4) 21919(23)24.18045D XDX★3. 设二维随机变量(,)X Y 联合概率密度为2,01,01,(,)0,x y x y f x y 其他,试求 (1),X Y 的协方差和相关系数A (2)(21).D X Y (1) 13()(,)(2),01,2X f x f x y dyx y dy x x由,x y 的对称性3(),0 1.2Y f y y y1035(),212X EXxf x dxxx dx EY 1222231(),24X EX x f x dx xx dx EY 2221511,412144DXEXE XDY 1101()(,)(2),6E XY xyf x y dydx xy x y dydx因此2151(,)(),612144Cov X Y E XY EXEY,(,)1.11X YCov X Y DXDY (2) 由随机变量和的方差公式()2(,)D X Y DX DX Cov X Y 得(21)(2)()2(2,)D X Y D X D Y Cov X Y 22592(1)22(1)(,).144DXDY Cov X Y ★4. 设二维随机变量(,)X Y 具有联合分布律YX2 1 0 1 2 1 0.1 0.1 0.05 0.1 0.1 00.050.051 0.1 0.10.05 0.1 0.1试求,,,EX DX EY DY 以及X 和Y 的相关系数(1) X 的分布列为X1 0 1 ip 0.450.10.45由变量X 分布对称得0,EX或10.4500.4510.450,i iiEX x p 22222(1)0.4500.4510.450.9,iiiEXx p 220.9.DX EXE X(2) Y 的分布列为Y21 0 12 jp0.20.250.10.250.2(,)X Y 取值关于原点中心对称由变量Y 分布对称得0,EY或20.20.250.2520.20,j jiEYy p222222(2)0.2(1)0.2510.2520.2 2.1,j j iEYy p222.1.DYEYE Y (3) 由二维变量(,)X Y 的联合分布列关于两坐标轴对称得,()0,ij i jijE XY x y p (,)()0,Cov X Y E XY EXEY因此,(,)0.X YCov X Y DXDY5. 设随机变量X 服从参数为2的泊松分布(2)P 随机变量Y 服从区间(0,6)上的均匀分布(0,6),U 且,X Y 的相关系数,1.6X Y记2,Z X Y 求,.EZ DZ (1) 2,EX 063,2EY (2)2223 4.EZ E XY EXEY (2) 2(60)2, 3.12DXDY由,(,)1,6X YCov X Y DXDY 得(,)1,Cov X Y 由随机变量和的方差公式()2(,)D XY DXDYCov X Y 得2(2)(2)2(,2)(2)4(,)10.DZD XY DXD Y Cov X Y DX DYCov X Y 第十一次作业★1. 试用切比雪夫不等式估计下一事件概率至少有多大掷1000次均匀硬币出现正面的次数在400到600次之间出现正面的次数~(1000,0.5),X B n p 10000.5500,EXnp10000.50.5250,DXnpq应用切比雪夫不等式有239(400600)(|500|100)1.10040DX P XP X2. 若每次射击目标命中的概率为0.1不断地对靶进行射击求在500次射击中击中目标的次数在区间(49 55)内的概率击中目标的次数~(500,0.1),X B n p5000.150,EXnp5000.10.945.DXnpq根据中心极限定理,X 近似服从正态分布(50,45).N EX DX 4950505550(4955)454545X P XP555049505513154545(0.74)(0.15)10.77040.559610.33.★3. 计算器在进行加法时将每个加数舍入最靠近它的整数.设所有舍入误差是独立的且在(0.5 0.5)上服从均匀分布 (1)若将1500个数相加问误差总和的绝对值超过15的概率是多少?(2)最多可有几个数相加使得误差总和的绝对值小于10的概率不小于0.90(1) 误差变量,1,2,.i X i 独立同均匀分布(0.5,0.5),X U 10,.12EXDX由独立变量方差的可加性150011500125,12ii DX 15001i i X 近似(0,125).N 15001||15i i P X 1500111535||5125125i i P X 352222(1.34)220.90990.1802.5(2)1||10ni i P X 112123||2ni i P X nn n32210.90,n320.95,n321.645,n212 4.4345.1.645n 因此最多可有4个数相加误差总和的绝对值小于10的概率不小于0.90★4. 一个系统由n 个相互独立的部件所组成每个部件的可靠性(即部件正常工作的概率)为0.90至少有80%的部件正常工作才能使整个系统正常运行问n 至少为多大才能使系统正常运行的可靠性不低于0.95正常工作的部件数~(,),X B n p 其中0.9.p 0.9,EX np n 0.09.DX npq n (0.8)P X n 0.80.80.930.90.1XEX nEXn n n PDXDXn 0.95,3n 1.645,24.354.3n n因此n 至少取25.★5. 有一大批电子元件装箱运往外地正品率为0.8为保证以0.95的概率使箱内正品数多于1000只问箱内至少要装多少只元件?正品数~(,),X B n p 其中0.8.p 0.8,EX np n 0.16.DXnpqn。
概率论与数理统计a综合练习答案
综合练习一一、单项选择题1.设A 与B 为两个随机事件,则表示A 与B 不都发生是【 】.(A )A B (B )AB (C )AB (D )AB2.设A 、B 、C 为三个随机事件,则表示A 与B 都不发生,但C 发生的是【】. (A )A BC (B )()A B C + (C )ABC (D )A B C +3.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为【】. (A )甲种产品滞销,乙种产品畅销 (B )甲、乙两种产品均畅销 (C )甲种产品滞销 (D )甲种产品滞销或乙种产品畅销4.对于任意两个事件A 与B ,均有=-)(B A P 【】. (A) )()(B P A P - (B) )()()(AB P B P A P +- (C) )()(AB P A P - (D) )()()(AB P B P A P -+5.已知事件A 与B 互斥,8.0)(=+B A P ,5.0)(=B P ,则=)(A P 【】. (A) 0.3 (B) 0.7 (C) 0.5 (D) 0.6 6.若21)(=A P ,31)(=B P ,61)(=AB P ,则A 与B 的关系为【】. (A) 互斥事件 (B) 对立事件 (C) 独立事件 (D) A B ⊃7.已知事件A 与B 相互独立,8.0)(=+B A P ,5.0)(=B P ,则()P A =【】. (A) 0.3 (B) 0.2 (C) 0.5 (D) 0.6 8.若事件A 与B 相互独立,0)(>A P ,0)(>B P ,则错误的是【 】. (A) A 与B 独立 (B) A 与B 独立 (C) )()()(B P A P B A P = (D) A 与B 一定互斥 9. 设事件A 与事件B 互不相容,则【 】.(A )()0P AB = (B )()()()P AB P A P B = (C )()1()P A P B =- (D )()1P AB =10. 设A 、B 为任意两个事件,且,()0A B P B ⊂>, 则下列选项必然成立的是【】. C A D C B C D D D B(A )()()P A P A B < (B ) ()()P A P A B ≤ (C )()()P A P A B > (D )()()P A P A B ≥二、填空题11.设C B A ,,为三个事件,试用C B A ,,表示下列事件:(1)C B A ,,中至少有一个发生 ; (2)C B A ,,中恰好有一个发生 ;(3)C B A ,,三个事件都发生 ; (4)C B A ,,三个事件都不发生 ;(5)B A ,都发生而C 不发生 ; (6)A 发生而C B ,都不发生 ;12. 某人向目标射击三次,事件=i A {第i 次击中},3,2,1=i ,用事件的运算关系表示下列各事件,(1)只击中第一枪 ; (2)只击中一枪 ___________; (3)三枪都未击中 ; (4)至少击中一枪 ; (5)目标被击中 ; (6)三次都击中 ;(7)至少有两次击中 _______________________________; (8)三次恰有两次击中 _____________. 13. 已知事件A 与B 相互对立,则AB = ,A B += ,()P AB = ,()P A B += .14. 已知3.0) (=B A P ,则=+)(B A P .15. 已知事件B A ⊂,9.0)(=+B A P ,3.0)(=AB P ,则=-)(A B P. 16. 设A 与B 为两个事件,且7.0)(=A P ,3.0)(=-B A P ,则=)(AB P .17. 已知事件A 与B 相互独立,4.0)(=A P ,3.0)(=B P ,则=+)(B A P. 18. 设,,A B C 是三个相互独立事件,且5.0)(=A P ,6.0)(=B P ,7.0)(=C P ,则()P A B C ++=. 19. 一张考卷上有5道选择题,每道题列出4个可能答案,其中有1个答案是正确的.某学生靠猜测能答对4道题的概率是 . 20. 已知在3次独立重复试验中,事件A 至少发生一次的概率为2726,则事件A 在一次试验中A B C ++ABC ABC ABC ++ABC ABC ABC ABC 123A A A 123123123A A A A A A A A A ++123A A A 123A A A ++123A A A ++123A A A 123123123123A A A A A A A A A A A A +++123123123A A A A A A A A A ++∅U 01.07.06.06.058.094()()44151344C21. 设A 与B 相互独立,()0.5,()0.8P A P A B =+=,则()P B =,()P AB = . 22. 若112(),(),(),233P A P B P B A === 则()P A B = .23.投掷两个均匀骰子,出现点数之和为6*24. 设两个相互独立的事件A 和B 都不发生的概率为1/9,A 发生B 不发生的概率与B 发生A 不发生的概率相等,则)(A P三、计算题24. 设4.0)(=A P ,3.0)(=B P ,6.0)(=+B A P ,求(1))(AB P ;(2)) (B A P ;(3)) (B A P ;(4))(B A P +.25. 已知7.0)(=A P ,()0.9P B =,()0.7P A B =,求()P A B +.四、解答题26. 某城市中发行2种报纸A 与B , 经调查, 在全市人中, 订阅A 报的有45%,订阅B 报的有35%, 同时订阅2种报纸A , B 的有10%. 求只订一种报纸的概率..06.021解:()由()()()()1P A B P A P B P AB +=+-得()()()()P AB P A P B P A B =+-+....;04030601=+-=()()()2P AB P A B =-()()P A P AB =-...;040103=-=()()()31P AB P A B =-+..;10604=-=()()()4P A B P AB +=()1P AB =-...10109=-=解:()()(|)P AB P B P A B =...,0907063=⨯=()()()()P A B P A P B P AB +=+-...0709063=+-..097=解:由题意得().,().,().,04503501P A P B P AB ===()()()P AB AB P AB P AB ∴+=+()()P A B P B A =-+-()()()()P A P AB P B P AB =-+-....0450103501=-+-..06=答:只订一种报纸的概率为..0627. 袋中有10个球,其中7个白球,3个红球,从中任取三个,求(1)全是白球的概率; (2)恰有两个白球的概率;(3)至少一个白球的概率.28. 一副扑克牌52张,每次抽一张,共抽取2次,分两种方式抽取, 求两张都是A 的概率. (1)取后不放回; (2)取后放回.*29.(配对问题)三个学生证混放在一起,现将其随意发给三名学生,试求事件A ={学生都没有拿到自己的学生证}的概率.解:()(全是白球)373101C P C =;724=()(恰有个白球)217331022C C P C =;2140=()(至少有个白球)(全是红球)311P P =-333101C C =-11120=-.119120=解:()(张都是)43125251P A =⨯;1221=()(张都是)44225252P A =⨯.1169=解:()2111323P A =⨯⨯=综合练习二一、单项选择题1. 已知离散型随机变量X 的概率分布表为:则下列计算结果中正确是【 】. (A) {3}0P X == (B) {0}0P X== (C) {1}1P X >-= (D) {4}1P X <= 2. 设随机变量X 的分布列如下,则c =【 】.(A) 0.1 (B) 0.2 (C) 1 (D) 2*3. 设随机变量X 的分布函数()F x ,在下列概率中可表示为}{)(a X P a F <-的是【 】.(A )}{a X P ≤ (B )}{a X P > (C )}{a X P ≥ (D )}{a X P =4. 设随机变量X 的概率密度为:(),020,cx x f x ≤≤⎧=⎨⎩其它 ,则c =【 】.(A) 1 (B) 2 (C)12 (D) 145. 设随机变量X 的概率密度为:()1,080,x x cf x ⎧≤≤⎪=⎨⎪⎩其它 ,则c =【 】.(A) 1 (B) 2 (C) 3 (D) 46. 设随机变量~(3,4)X N -,则随机变量=Y 【】~(0,1)N . (A)43-X (B) 43+X (C) 23-X (D) 23+X 7.设随机变量2~(10,)X N σ,且3.0}2010{=<<X P ,则=<<}100{X P 【】. (A) 0.3 (B) 0.2 (C) 0.1 (D) 0.58. 设随机变量X 服从泊松分布,且已知{}{}02P X P X ===,则参数λ=【 】.(A)12 (B) 2A A C D D A D D9. 设随机变量X 的概率分布律为⎪⎪⎭⎫⎝⎛1.03.06.0210,则E X =()【 】. (A) 1 (B)13(C) 0 (D) 05. 10. 有一批钢球,重量为10克、15克、20克的钢球分别占55%、20%、25%,现从中任取一个钢球,重量X 的期望为【 】. (A )12.1克 (B )13.5克 (C )14.8克 (D )17.6克11. 设随机变量~(,)X B n p ,则下列等式中【】恒成立. (A )12(-X E np 2)=(B )14)12(-=-np X E (C )1)1(4)12(--=-p np X D(D ))1(4)12(p np X D -=-12. 设随机变量X 的密度函数为⎩⎨⎧≤≤+=其它,010,)(x b ax x f ,且0E X =(),则【 】. (A) 6,4a b =-= (B) 1,1a b =-= (C) 6,1a b == (D) 1,5a b ==13. 设随机变量~(2,16)X N ,则下列等式中不成立的是【 】.(A )()2E X =(B )()4D X =(C ){16}0P X == (D ) {2}0.5P X ≤=14. 设随机变量X ,且10)10(=X D ,则=)(X D 【 】.(A )101(B ) 1 (C ) 10 (D )100 二、填空题15. 某射手射击目标的命中率为8.0=p ,他向目标射击3枪,用X 表示命中的枪数,则随机变量2=X 的概率为___________.16. 设随机变量~(2,)X B p ,若9{1}25P X ≥=,则p ={2}P X = 17. 设随机变量X 服从泊松分布,且{1}{2}P X P X ===,则参数λ= ,{0}P X == ;{2}P X == ;{4}P X == . 18. 设X 服从()0,5上的均匀分布,则==}5{X P ____,=≤≤}42{X P ______,=≤≤}64{X P. D B D A B A .038422e -223e -0.02.0422e -19. 设每次试验失败的概率为(01)p p <<, 则在3次重复独立试验中成功2次的概率为________________.20. 设随机变量X ,4)13(=+-X E ,则=)(X E .21. 设随机变量)21,100(~B X ,则=)(X E _________; =+)32(X E _________. 22. 已知随机变量X ,且9)3(=X E ,4)2(=X D ,则=)(2X E . 23. 设X 和Y 相互独立,4)(=X D ,2)(=Y D ,则(32)D X Y -= .24. 设X 服从参数为λ的泊松分布,4)(=X D ,则=)(X E ,=λ .25. 设),(~b a U X ,3)(=X E ,3)(=X D ,则=a ,=b .26. 设X 服从指数分布,4)4(=X D ,则=)(X E .27. 设)4,2(~N X ,则=)(X E ,()D X = ,=)(2X E .三、计算题28. 6个零件中有4个正品2个次品,从中任取 3个零件,用X 表示所取出的 3 个零件中正品的个数, 求随机变量X 的概率分布.29.设随机变量X 在[2,5]上服从均匀分布,现对X 进行三次独立观测。
《概率论与数理统计》作业册练习题
习题1-21. 选择题(1) 设随机事件A ,B 满足关系A B ⊃,则下列表述正确的是( ).(A) 若A 发生, 则B 必发生. (B) A , B 同时发生.(C) 若A 发生, 则B 必不发生. (D) 若A 不发生,则B 一定不发生. (2) 设A ,B 为任意两个事件,则下列关系式成立的是( ).(A) (AU B)-B =A (B) (AU B)-B A ⊂ (C) (AU B)-B A ⊃ (D) (A —B)U B =A2. 设A,B,C 为三个事件,试用A,B,C 的运算关系表示下列事件: (1)A 发生,B 与C 不发生; (2)A 与B 都发生,C 不发生; (3)A,B,C 都发生; (4)A,B,C 都不发生; (5)A,B,C 不都发生;(6)A,B,C 中至少有一个发生; (7)A,B,,C 中多于一个发生; (8)A,B,C 中至少有两个发生.习题1-31. 选择题(1) 随机事件A 与B 互不相容, 且P (A )>P (B )>0,则结论正确的是 ( ). (A) P(A)=1-P(B) (B) P(AB)=P(A)P(B) (C) P(A ⋃B)=1 (D) P(AB)1= (2) 若两个事件A 和B 同时出现的概率P (AB )=0,则下列结论正确的是 ( ). (A) A 和B 互不相容. (B) AB 是不可能事件. (C) AB 不一定是不可能事件. (D) P (A )=0或P (B )=0. (3) 若事件A 与B 相容,则有( ). (A)()()()P AB P A P B =+ (B)()()()()P A B P A P B P AB =+- (C)()1()()P A B P A P B =-- (D) ()1()()P AB P A P B =-2. 设P (AB )=P (AB ), 且P (A )=p ,求P (B ).3. 已知()0.4P A =,()0.3P B =,()0.4P A B =, 则()P AB .4. 已知1()()()4P A P B P C ===,()0P AB =, 1()()12P AC P BC ==, 求A , B , C 全不发生的概率.习题1-51. 选择题(1) 设随机事件A , B 满足P (A |B )=1, 则下列结论正确的是( ).(A) A 是必然事件. (B) B 是必然事件. (C) AB B =. (D)()()P AB P B =.(2) 设A , B 为两个随机事件, 且0()1P A <<, 则下列命题正确的是( ).(A) 若()()P AB P A =, 则A , B 互斥. (B) 若()1P B A =, 则()0P AB =.(C) 若()()1P AB P AB +=, 则A , B 为对立事件. (D) 若(|)1P B A =, 则B 为必然事件.2.填空题(1)()0.92,()0.93,(|)0.85,(|)___,()___.P A P B P B A P A B P A B =====则(2) 掷两颗骰子,已知两颗骰子的点数之和为6,则其中有一颗为1点的概率为________.(3) 已知P(A )=0.3,P(B )=0.4,P(B A )=0.5,P(B |A B )=____________.3. 甲、乙、丙三人同时对某飞机进行射击, 三人击中的概率分别为0.4, 0.5, 0.7. 飞机被一人击中而被击落的概率为0.2, 被两人击中而被击落的概率为0.6, 若三人都击中, 飞机必定被击落. 求该飞机被击落的概率.4. 在某工厂里有甲、乙、丙3台机器生产螺丝钉它们的产量各占25%、35%、40%,并且在各自的产品里,不合格品各占5%、4%、2%.现从产品中任取一只,求(1)恰好取到不合格品的概率;(2)求此不合格品分别是机器甲、乙、丙生产的概率.5.某一地区患有癌症的人占0.005,患者对一种试验反应是阳性的概率为0.95,正常人对这种试验反应是阳性的概率为0.04,现抽查了一个人,试验反应是阳性,问此人是癌症患者的概率有多大?习题1-61. 选择题(1) 设随机事件A 与B 互不相容, 且有P (A )>0, P (B )>0, 则下列关系成立的是( ). (A) A , B 相互独立. (B) A , B 不相互独立. (C) A , B 互为对立事件. (D) A , B 不互为对立事件. (2) 设事件A 与B 独立, 则下面的说法中错误的是( ).(A) A 与B 独立. (B) A 与B 独立. (C) ()()()P AB P A P B =. (D) A 与B 一定互斥.(3)设A ,B ,C 是两两独立且不能同时发生的随机事件,且P(A)=P(B)=P(C)=p ,则p 的最大值为( ).(A)0.5 (B)l (C)1/3 (D)0.25 2. 设三事件A , B 和C 两两独立, 满足条件:,ABC =∅1()()()2P A P B P C ==<, 且9()16P A B C =,求()P A .3.一射手对同一目标进行四次独立的射击,若至少射中一次的概率为8180,求此射手每次射击的命中率.总习题一1. 选择题:设,,A B C 是三个相互独立的随机事件, 且0()1P C <<, 则在下列给定的四对事件中不相互独立的是( ).(A)()A B 与C . (B)()AC 与C .(C) ()A B 与C . (D) AB 与C .2. 一批产品由95件正品和5件次品组成, 先后从中抽取两件, 第一次取出后不再放回.求: (1) 第一次抽得正品且第二次抽得次品的概率; (2) 抽得一件为正品, 一件为次品的概率.3. 某学生接连参加同一课程的两次考试.第一次考试及格的概率为p ,如果他第一次及格,则第二次及格的概率也为p ,如果他第一次不及格,则第二次及格的概率为2p . ⑴ 求他第一次与第二次考试都及格的概率. ⑵ 求他第二次考试及格的概率.⑶ 若在这两次考试中至少有一次及格,他便可以取得某种证书,求该学生取得这种证书的概率. ⑷ 若已知第二次考试他及格了,求他第一次考试及格的概率4. 甲、乙、丙三人同时各用一发子弹对目标进行射击,三人各自击中目标的概率分别是0.4、0.5、0.7。
(完整word版)概率论与数理统计习题集及答案(word文档良心出品).doc
4}
;(2)AB
{ x : 2
x
3};(3)
AB { x : 3 x
4};
(4)A B { x : 0
x
1或2 x
5};(5)A B { x : 1 x 4}。
§1
.31:(1)
P( AB )=0.3,
(2)
P( A B)=0.2,
(3)P( A
B)=
0.7. 2:P( AB))=0.4.
- 2 -
(2)
最多有2个女同学概率
,(3)至少有
2个女同学的概率.
2.
将3
个不同的球随机地投入到
4个盒子中,求有三个盒子各一球的概率.
§1 .5条件概率与乘法公式
1.丢甲、乙两颗均匀的骰子,已知点数之和为
7,则其中一颗为
1的概率是
。
2.
已知P( A) 1/ 4, P(B | A)
1/3, P(A|B)
1/2,则P(A
已知P(A
B)
0.8, P( A) 0.5, P(B) 0.6
,则
(1)P( AB)
,
(2)(
P(A B))=
,
(3)P(A B)=
.
2.
已知P( A)
0.7,
P(AB)
0.3,
则P(AB)=
.
§1 .4古典概型
1.某班有30个同学,其中8个女同学,随机地选10个,求:(1)正好有2个女同学的概率,
A)P(B|
A)
=
2
1
8
2
2
10
9
10
9
10
,
两人抽“中‘的概率相同
与先后次序无关。
概率论与数理统计 第一章概率论与数理统计作业
概率论与数理统计作业班级 姓名 学号 任课教师第一章 概率论的基本概念教学要求:一、了解样本空间的概念,理解随机事件的概念,掌握事件的关系及运算.二、理解概率、条件概率的概念,掌握概率的基本性质,会计算古典概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式及贝叶斯公式.三、理解事件的独立性的概念,掌握用事件独立性进行概率计算,理解独立重复试验的概念,掌握计算有关事件概率的方法.重点:事件的表示与事件的独立性;概率的性质与计算.难点:复杂事件的表示与分解;试验概型的选定与正确运用公式计算概率;条件概率的理解与应用;独立性的应用.练习一 随机试验、样本空间、随机事件1.写出下列随机事件的样本空间(1)同时掷两颗骰子,记录两颗骰子点数之和;(2)生产产品直到有5件正品为止,记录生产产品的总件数;(3)在单位圆内任意取一点,记录它的坐标.解:(1){=Ω2;3;4;5;6;7;8;9;10;11;12}; (2){=Ω5;6;7;…};(3)(){}1,22≤+=Ωy x y x 2.设C B A ,,三事件,用C B A ,,的运算关系表示下列事件:(1)A 发生,B 与C 不发生,记为 C B A ;(2)C B A ,,至少有一个发生,记为C B A ;(3) C B A ,,中只有一个发生,记为C B A C B A C B A ;(4)C B A ,,中不多于两个发生,记为ABC .3.一盒中有3个黑球,2个白球,现从中依次取球,每次取一个,设i A ={第i 次取到黑球},,2,1=i 叙述下列事件的内涵:(1)21A A ={}次都取得黑球次、第第21.(2)21A A ={}次取得黑球次或地第21.(3)21A A ={}次都取得白球次、第第21 .(4)21A A ={}次取得白球次或地第21.(5)21A A -={}次取得白球次取得黑球,且第第21.4.若要击落飞机,必须同时击毁2个发动机或击毁驾驶舱,记1A ={击毁第1个发动机};2A ={击毁第2个发动机};3A ={击毁驾驶舱};试用1A 、2A 、3A 事件表示=B {飞机被击落}的事件.解:321A A A B =练习二 频率与概率、等可能概型(古典概率)1.若41)()()(===C P B P A P ,0)()(==BC P AB P , 163)(=AC P , 求事件A 、B 、C 都不发生的概率.解:由于 ,AB ABC ⊂ 则 ()(),00=≤≤AB P ABC P 得(),0=ABC P 于是()()()()()()()()ABC P BC P AC P AB P C P B P A P C B A P +---++=169163414141=-++= 所以 ()().16716911=-=-=C B A P C B A P2.设,)(,)(,)(r B A P q B P p A P === 求B A P ().解:因为 ()()(),AB A P B A P B A P -=-=且,A AB ⊂则()()().AB P A P B A P -= 又 ()()()(),r q p B A P B P A P AB P -+=-+=所以()()()().q r r q p p AB P A P B A P -=-+-=-=3.已知在8只晶体管中有2只次品,在其中任取三次,取后不放回,求下列事件的概率:(1)三只都是正品;(2)两只是正品,一只是次品.解:(1)设=A {任取三次三只都是正品},则基本事件总数5638==C n ,A 包含基本事件数2036==C m ,于是 ()1455620==A P . (2)设=B {任取三次两只是正品,一只是次品},则基本事件总数5638==C n ,B 包含基本事件数,301226==C C m 于是().28155630==B P 4.在房间里有10个人,分别佩戴从1号到10号的纪念章,任选3人记录其纪念章的号码,(1)求最小号码为6的概率;(2)求最大号码为6的概率.解:(1)设=A {最小号码为6},则基本事件总数,120310==C n A 包含基本事件数,624==C m 于是().2011206==A P (2)设=B {最大号码为6},则基本事件总数,120310==C n B 包含基本事件数,1025==C m 于是().12112010==B P 5.一盒中有2个黑球1个白球,现从中依次取球,每次取一个,设i A ={第i 次取到白球},3,2,1=i . 求)(i A P , 3,2,1=i .解: ()311=A P ; ()=2A P 312312=⨯⨯, ()311231123=⨯⨯⨯⨯=A P . 6.掷两颗均匀的骰子,问点数之和等于7与等于8的概率哪个大?解:样本空间基本事件总数,3666=⨯=n 设=1A {点数之和等于7},=2A {点数之和等于8},则 =1A {()()()()()()3,4;4,3;2,5;5,2;1,6;6,1},1A 包含基本事件数等于6 ;=2A {()()()()()3,5;5,3;4,4;2,6;6,2},2A 包含基本事件数等于5 ;于是 ()613661==A P ; ()3652=A P .所以()()21A P A P > . 7.一批产品共100件,对其抽样检查,整批产品不合格的条件是:在被检查的4件产品中至少有1件是废品.如果在该批产品有5﹪是废品,问该批产品被拒收的概率.解:设=A {被检查的4件产品至少有1件废品},则()812.05100495==C C A P ;所以 ()()188.01=-=A P A P .8.将3个球随机放入4个杯子中,求杯子中球数的最大值为2的概率.解:基本事件总数34444=⨯⨯=n ,设=A {杯子中球数最大值为2},则A 包含的基本事件数36131423==C C C m (3个球任取两个,然后4个杯子任取1个放入,再对1个球在3个杯子中任取一个放入),于是()3436=A P . 练习三 条件概率1.甲、乙两班共有70名同学,其中女同学40名.设甲班有30名同学,而女生15名.求在碰到甲班同学时,正好碰到1名女同学的概率.解:设=A {碰到甲班同学},=B {碰到乙班同学},则();7030=A P (),7015=AB P 于是 ()()()5.0301570307015====A P AB P A B P . 2.箱子里有10个白球,5个黄球,10个黑球.从中随机地抽取1个.已知它不是黑球,求它是黄球的概率.解:设=A {任取一个不是黑球},=B {任取一个是黄球},则(),532515==A P ();51255==B P 又A B ⊂ ,则()()B P AB P = ,于是()()()315351===A P AB P A B P3.某人有5把钥匙,其中2把能打开房门.从中随机地取1把试开房门,求第3次才打开房门的概率.解:设=i A {第i 次能打开门} ,;3,2,1=i 则 =321A A A {第3次才打开门},于是由乘法公式有()()()()51324253213121321=⨯⨯==A A A P A A P A P A A A P .4.假设某地区位于甲、乙二河流的汇合处,当任一河流泛滥时,该地区就遭受水灾.设某时期内甲河流泛滥的概率为0.1,乙河流泛滥的概率为0.2.当甲河流泛滥时,乙河流泛滥的概率为0.3.求(1)该时期内这个地区遭受水灾的概率;(2)当乙河泛滥时甲河流泛滥的概率.解:设=A {某时期甲河泛滥},=B {某时期乙河泛滥},则(),1.0=A P ()2.0=B P , ()3.0=A B P于是()()()()()()15.02.03.01.0=⨯===B P A B P A P B P AB P B A P ()()()03.015.02.0=⨯==B A P B P AB P()()()()27.003.02.01.0=-+=-+=AB P B P A P B A P5. 甲、乙两车间加工同一种产品,已知甲、乙两车间出现废品的概率分别为3﹪、2﹪,加工的产品放在一起,且已知甲车间加工的产品是乙车间加工的产品的两倍.求任取一个产品是合格品的概率.解:设=A {任取一个为甲生产的产品},=B {任取一个产品为废品},则()()()()%2%,3,31,32====A B P A B P A P A P 由全概率公式有 ()()()()()752100231100332=⨯+⨯=+=A B P A P A B P A P B P 6.设甲袋中有3个红球及1个白球.乙袋中有4个红球及2个白球.从甲袋中任取一个球(不看颜色)放到乙袋中后,再从乙袋中任取一个球,求最后取得红球的概率.解:设=A {从甲袋中任取一个球为红球},=B {最后从乙袋中任取一个球为红球},则 ()()()();74,75,41,43====A B P A B P A P A P 由全概率公式 ()()()()().281974417543=⨯+⨯=+=A B P A P A B P A P B P 7.玻璃杯成箱出售,每箱20只,假设各箱含0,1,2只残次品的概率分别为0.8,0.1和0.1,一顾客欲购一箱玻璃杯,在购买时,售货员随意取一箱,而顾客随机的一次性抽取4只察看,若无残次品,则买下该箱玻璃杯,否则退回,试求:(1)顾客买下该箱的概率;(2)在顾客买下的一箱中,确实没有残次品的概率.解:设=i A {售货员任取一箱玻璃杯有i 个残品},2,1,0=i ,=B {顾客买下该箱玻璃杯},则()()();1.0,1.0,8.0210===A P A P A P()()();632.0,8.0,1420418242041910≈====C C A B P C C A B P A B P (1)由全概率公式得()()()()()()()943.0632.01.08.01.018.0221100=⨯+⨯+⨯≈++=A B P A P A B P A P A B P A P B P(2)由贝叶斯公式得 ()()()().848.0943.018.0000≈⨯==B P A B P A P B A P 8.已知一批产品中有95﹪是合格品,检查产品质量时,一个合格品被误判为次品的概率为0.02,一个次品被误判为合格品的概率是0.03,求:(1)任意抽查一个产品,它被判为合格品的概率;(2)一个经检查被判为合格的产品确实是合格品的概率.解:设=A {任取一个产品为合格品},=B {任取一个产品被判为合格品},则()()()();03.0,98.002.01,05.0,95.0==-===A B P A B P A P A P于是(1) 任意抽查一个产品,它被判为合格品的概率是 ()()()()()9325.003.005.098.095.0=⨯+⨯=+=A B P A P A B P A P B P(2)一个经检查被判为合格的产品确实是合格品的概率是 ()()()().9984.09325.098.095.0≈⨯==B P A B P A P B A P 练习四 事件的独立性1.设甲、乙两人独立射击同一目标,他们击中目标的概率分别为0.9和0.8,求在一次射击中目标被击中的概率.解:设 =A {甲击中目标},=B {乙击中目标}, 则=B A {目标被击中},()()8.0,9.0==B P A P ,于是()()()()()()()().98.08.0098.09.0=⨯-+=-+=-+=B P A P B P A P AB P B P A P B A P2.三人独立地去破译一个密码,他们能译出的概率分别是41,31,51,问能将此密码译出的概率是多少?解:设=i A {第i 人破译密码} ,;3,2,1=i =B {破译密码}, 则 ()()(),41,31,51321===A P A P A P 321A A A B =, 于是()()()()()()().5343325411111321321321=⨯⨯-=-=-=-=-=A P A P A P A A A P A A A P B P B P3.电路由元件A 与两个并联的元件B 及C 串联而成,且它们工作是相互独立的.设元件A 、B 、C 损坏的概率分别是0.3,0.2,0.2,求电路发生间断的概率.解:设=D {电路正常},则()C A B A C B AD ==, 则 ()()()()()()()()()()().672.08.08.07.08.07.08.07.0=⨯⨯-⨯+⨯=-+=-+=CP B P A P C P A P B P A P C B A P C A P B A P D P 所以 ()()328.0672.011=-=-=D P D P4. 设每次射击时命中率为0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9?解:设至少要进行n 次独立射击,则至少击中一次的概率不小于0.9可表为:()(),9.0011≥=-=≥k P k P n n由于,2.0=p 则,8.0=q 于是()n n k P 8.0101-==-,所以有,1.08.0≥n即 32.103.0ln 2.0ln =≥n 所以至少进行11次独立射击才能使至少击中一次的概率不小于0.9.综合练习题一、选择题1.设事件B A ,,有A B ⊂,则下列式子正确的是( A ).(A ));()(A P B A P = (B) );()(A P AB P =(C) );()|(B P A B P = (D) ).()()(A P B P A B P -=-2.设A 与B 为两个相互独立的事件,0)(>A P ,0)(>B P ,则一定有=)(B A P ( B ).(A ))()(B P A P + (B ))()(1B P A P -(C ))()(1B P A P + (D ))(1AB P -.3.设B A ,为两事件,且B A ⊃,则下列结论成立的是( C ).(A )A 与B 互斥;(B ) A 与B 互斥;(C)A 与B 互斥;(D) A 与 B 互斥.4.设B A ,为任意两事件,且,0)(,>⊂B P B A 则下列选择必然成立的是( C ).(A))|()(B A P A P <; (B) )|()(B A P A P >;(C) )|()(B A P A P ≤; (D) )|()(B A P A P ≥.5.假设事件A 和B 满足1)(=A B P ,则下列正确的是( D ).(A )A 是必然事件; (B )();0=A B P ; (C )A B ⊂ ; (D )B A ⊂.6.对于任意二事件B A ,( B ).(A) 若AB ≠∅,则B A ,一定独立; (B) ,AB ≠∅则B A ,有可能独立;(C) AB =∅,则B A ,一定独立; (D) AB ≠∅,则B A ,一定不独立;7.若事件A 和B 满足)}(1)}{(1{)(B P A P B A P --= ,则正确的是( D ).(A )互不相容与B A ; (B ) 互不相容与B A ;(C ) B A ⊃; (D ) 互为独立与B A .8.设当事件A 与B 同时发生时,事件C 必发生,则( B ).(A )1)()()(-+≤B P A P C P ; (B )1)()()(-+≥B P A P C P ;(C ))()(AB P C P =; (D ))()(B A P C P =.9.设B A 、是两个事件,则=-)(B A P ( C ).(A ))()(B P A P -; (B ))()()(AB P B P A P +-;(C) )()(AB P A P -; (D) )()()(AB P B P A P ++.10.设C B A ,,是三个随机事件,41)()()(===C P B P A P ,81)(=AB P ,0)()(==AC P BC P ,则C B A ,,三个随机事件中至少有一个发生的概率是( B ).(A )43; (B ) 85; (C ) 83; (D ) 81. 11.某学生做电路实验,成功的概率是0(p ﹤p ﹤1),则在3次重复实验中至少失败1次的概率是( B ).(A )3p ; (B )31p -; (C )3)1(p -; (D )3)1(p -)1()1(22p P p p -+-+.12.设A P B P A P (,7.0)(,8.0)(==|8.0)=B ,则下面结论正确的是( A ).(A )事件A 与B 互相独立; (B )事件A 与B 互不相容;(C );B A ⊂ (D )).()()(B P A P B A P +=13.下列事件中与A 互不相容的事件是( D )(A )ABC ; (B) C B C B A ; (C) )(C B A ; (D) ))()((B A B A B A .14.若事件A 、B 相互独立且互不相容,则{}=)(),(min B P A P ( C ).(A) )(A P ; (B ) )(B P ; (C ) 0; (D ) )()(B P A P -.15.,1)|()|(,1)(0,1)(0=+<<<<B A P B A P B P A P 设则( A ).(A) )()|(A P B A P = ; (B) A B =; (C) Φ≠AB ; (D) )()()(B P A P AB P ≠.二、填空题1.已知B A ⊂,3.0)(,2.0)(==B P A P ,则)(B A P - 0 .2.设7.0)(=A P ,5.0)(=B P .则的最小值为)(AB P 0.2 .3.三次独立的试验中,成功的概率相同,已知至少成功一次的概率为2719,则每次试验成功的概率为 1/3 .4.已知()0.5,()0.8P A P B ==,且(|)0.8 P B A =,则=)(B A P 0.9 .5. 设5.0)(=A P ,4.0)(=B P ,6.0)|(=B A P ,则)|(B A A P = 20/29 .6.假设事件A 和B 满足1)(=A B P ,则A 和B 的关系是B A ⊂.7.已知7.0)(=A P ,3.0)(=-B A P ,则=)(AB P 0.4 . 8.已知41)(=A P ,31)(=AB P ,21)(=B A P ,则=)(B A P 1/3 . 9.设两个相互独立的事件A 和B 都不发生的概率为91,A 发生B 不发生的概率与B 发生A 不发生的概率相等,则=)(A P 2/3 .10.设C B A ,,构成一个完备事件组,且()0.5,()0.7P A P B ==,则=)(C P 0.2 .11.设A 与B 为互不相容的事件,0)(>B P ,则=)(B A P 0 .12.设事件C B A ,,两两互斥,且,4.0)(,3.0)(,2.0)(===C P B P A P则=-])[(C B A P 0.5 .13.设事件A 与B 相互独立,已知1)()(-==a B P A P ,97)(=B A P ,则=a 5/3或4/3 .14.甲、乙两人独立的对同一目标射击一次,其命中率分别为6.0和5.0,现已知目标被命中,则它是甲射中的概率为 3/4 .15.假设随机事件A 与B 满足),()(B A P AB P =且p A P =)(,则=)(B P p -1.三、应用题1.甲、乙、丙3人同向一飞机射击,设击中飞机的概率分别为0.4,0.5,0.7.如果只有一人击中飞机,则飞机被击落的概率是0.2;如果有2人击中飞机,则飞机被击落的概率是0.6;如果3人都击中飞机,则飞机一定被击落.求飞机被击落的概率.解:设=i A {第i 人击中飞机},=i 甲,乙,丙;=i B {i 人击中飞机};3,2,1,0=i ,=C {飞机被击落};则()()();7.0;5.0;4.0321===A P A P A P()()()()36.03213213211=++=A A A P A A A P A A A P B P ,()()()()41.03213213212=++=A A A P A A A P A A A P B P , ()()14.03213==A A A P B P ;(),2.01=B C P (),6.02=B C P ();13=B C P所以()()()()()()()458.0332211=++=B C P B P B C P B P B C P B P C P2.甲、乙2人投篮命中率分别为0.7,0.8,每人投篮三次,求(1)两人进球数相等的概率;(2)甲比乙进球数多的概率.解:设=i A {甲人三次投篮进i 个球},=i B {乙人三次投篮进i 个球},;3,2,1=i 则()(),027.07.0130=-=A P ()(),189.07.017.02131=-⨯⨯=C A P ()()(),411.07.017.02232=-⨯⨯=C A P ()();343.07.03333=⨯=C A P ()(),008.08.0130=-=B P ()(),096.08.018.02131=-⨯⨯=C B P ()()(),384.08.018.02232=-⨯⨯=C B P ()();512.08.033==B P (1)=C {两人进球相等}33221100B A B A B A B A =,()()()()()()()()()()()()();36332.03322110033221100=+++=+++=B P A P B P A P B P A P B P A P B A P B A P B A P B A P C P (2)=D { 甲比乙进球数多}331303120201B A B A B A B A B A B A =()()()()()()()()()()()()().21476.0231303120201=+++++=B P A P B P A P B P A P B P A P B P A P B P A P D P3.一射手命中10环的概率为0.7,命中9环的概率为0.3.该射手3发子弹得到不小于29环的概率.解:设=1A {命中10环},=2A {命中9环},则;,2121Ω=Φ=A A A A 于是=B {3发子弹得到不小于29环}={3发子弹均为10环} {有2发击中10环},所以()()()()()()784.03.07.03.07.023223033333=⨯⨯+⨯⨯=+=C C P P B P4.有2500人参加人寿保险,每年初每人向保险公司交付保险费12元.若在这一年内投保人死亡,则其家属可以向保险公司领取2000元.假设每人在这一年内死亡的概率都是0.002,求保险公司获利不少于10000元的概率.解:设参加保险的人中有x 人死亡,当,100002000122500≥-⨯x 即10≤x 时,保险公司获利不少于10000元。
《概率论与数理统计》作业
1、已知为三个事件,则中至少有两个发生这一事件可以表示为 ,,A B C ,,A B C .2、设事件互不相容,且,则,A B (),()P A p P B q ==()P AB = .3、设A ,B 为随机事件,且P (A )=0.7,P (A −B )=0.3,则P (AB )= .4、设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0, P (AC )=1/12,则A ,B ,C 至少有一个发生的概率为 .5、盒子里有4个红球鞋,5个白球,现从中任取两个,恰好有2个红球的概率为 . 二、计算题 1、从52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?2、从一批由45件正品,5件次品组成的产品中任取三件,求其中恰的一件次品的概率.3、在电话号码簿中任取一电话号码,求后面4个数全不相同的概率(设后面4个数中的每一个数都等可能地取自0,1,2,……,9).4、一个袋内装有大小相同的7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率.5、从5双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率.6、两人约定上午9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.1、设事件,A B 满足:11(|)(|,()33P B A P B A P A ===,则 ()P B =.2、设()()()2212()P A B =U ,,53P A P A B P B A ===,则 .3、设随机事件满足,则 ,A B ()0.6,()0.9,(|)0.5P A P A B P B A ==U =()P B =.4、设事件两两独立,且,,A B C 1,()()()2ABC P A P B P C =∅==<,,则 ()9/16P A B C =U U ()P A =__________.5、设在一次试验中,事件A 发生的概率为p . 现进行次独立试验,则n A 至少发生一次的概率为 ,而事件A 至多发生一次的概率为 . 二、计算题1、某光学仪器厂制造的透镜,第一次落下时打破的概率是1/2,第一次落下未打破,第二次落下打破的概率为7/10,若前两次落下还未打破,第三次落下被打破的概率为9/10,试求透镜落下三次而未打破的概率.2、将两信息分别编码为A 和B 传递出来,接收站收到时,A 被误收作B 的概率为0.02,而B 被误收作A 的概率为0.01.信息A 与B 传递的频繁程度为2:1.问(1) 接收站收到信息A 的概率是多少?(2) 若接收站收到的信息是A ,试问原发信息是A 的概率是多少?3、加工某一零件需要经过四道工序,设第一、二、三、四道工序的次品率分别为0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率.4、掷一枚均匀硬币直到出现3次正面才停止. (1)问正好在第6次停止的概率;(2)问正好在第6次停止的情况下,第5次也是出现正面的概率.1、设随机变量X 的分布律为{},1,2,,aP X k k N N===L ,则 a =.2、设随机变量X 的分布函数为0,,0)(≥<−⎩⎨⎧=−x x e A x F x. (12)P 则= A ;ξ<≤= . 3、设随机变量X 的密度函数为()⎪⎩⎪⎨⎧≤≤⎟⎠⎞⎜⎝⎛−=其它0211122x x x f 则X 的分布函数 ()=x F .4、设,且,则 ~()X P λ(1)(2P X P X ===)(1)P X ≥=, 2(03)P X <<=.5、设随机变量X 的分布律为X 1− 1 02k p 2.01.03.04.0 则随机变量2X Y =的分布律为 . 6、设随机变量X 的分布函数为0,10.4,11()()0.8,131,3x x F x P X x x x <−⎧⎪−≤<⎪=≤=⎨≤<⎪⎪≥⎩则X 的分布律为 .二、计算题(请写在背面并标好题序,如果背面不够写请写在信笺上并装订好再交上来)1、设在15只同类型零件中有2只为次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出的次品个数,求:(1)X 的分布律; (2)X 的分布函数;(3){}133,1,1,12222P X P X P X P X ⎧⎫⎧⎫⎧⎫≤<≤≤≤<⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭<.2、有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少? 3、已知随机变量X 的密度函数为,求: ||(),x f x Ae x −=−∞<<+∞(1)A 值; (2){}0P X <<1; (3)随机变量X 的分布函数. ()F x 4、设()2~3,2X N (1)求{}{}{}{}25,410,2,P X P X P X P X <≤−<≤>>3; (2)确定使c {}{}P X c P X c >=≤. 5、设()~0,1X N (1)求的概率密度; (2)求的概率密度.X Y e =22Y X =+11、设二维离散型随机变量(,)X Y 具有概率分布律\36912151810.010.030.020.010.050.0620.020.020.010.050.030.0730.050.040.030.010.020.0340.030.090.060.150.090.02X Y则X 和Y 的边缘分布律分别为和 . 2、设二维随机变量(,)X Y 的联合分布函数为42(1)(1),0,0(,)0,x y e e x y F x y −−⎧−−>=⎨⎩其他> 则二维随机变量(,)X Y 的联合概率密度函数为 . 3、设二维随机变量(,)X Y 的联合分布函数为ππsin sin ,0,0(,)220,x y x y F x y ⎧≤≤≤≤⎪=⎨⎪⎩其他则πππ0,463P x y ⎧<≤<≤=⎨⎩⎭⎫⎬ .4、设随机变量,X Y 的概率密度分别为, 0,0(),0X xx f x e x −<⎧=⎨≥⎩0,0(),0Y y y f y e y −<⎧=⎨≥⎩且,X Y 相互独立,则二维随机变量(,)X Y 的联合密度函数为 . 5、设随机变量,X Y 相互独立,且,则()(~100,0.2,~50,0.2X b Y b )~Z X Y =+ . 二、计算题1、设随机变量(,)X Y 的概率密度为(6),02,24(,)0,k x y x y f x y −−<<<<⎧=⎨⎩其他(1)确定常数;(2)求k {}1,3P X Y ≤≤;(3)求{}1.5P X ≤;(4)求{}4P X Y +≤;(5)求边缘概率密度. 2、袋中有五个号码1从中任取三个,记其中最小的号码为,2,3,4,5.X ,最大的号码为Y .(1)求X 与Y 的联合概率分布;(2)X 与是否相互独立? Y 3、设某种型号的电子管的寿命(以小时计)近似地服从.随机地选取4只,求其中没有一只寿命小于180的概率.(160,400)N1、设随机变量,,X Y Z 相互独立,且,则 ()5,()11,()8E X E Y E Z ===(231)E X Y ++=; (4)E YZ X −=.2、设随机变量X 的分布律为123101X P p p p −且已知,则2()0.1,()0.9E X E X ==1p = ;2p = ;3p = .3、设随机变量(,)X Y 的概率密度为2,01,0(,)0,x y xf x y <<<<⎧=⎨⎩其他 则 ()E XY =.4、已知,,则= 4.1)(=X E 24)(2X E .0)(=X D .5、已知随机变量,且~(2)X P 22−=X Z ,则 _________, _________.()=Z E ()D Z =6、设连续型随机变量X 的密度函数为()1221−+−=x x e x f π()+∞<<∞−x 则_______.()=X D 7、设随机变量~(,)X U a b ,且,()3=X E ()34=X D ,则 a =, b =. 8、已知随机变量,则~(,),()12,()8X b n p E X D X ==p = ; n =.9、设且~(1,9),~(2,4)X N Y N ,X Y 相互独立,则(23)E X Y −= , (23)D X Y −=. 10、已知,则 ()2,()3,cov(,)1D X D Y X Y ===−cov(321,42)X Y X Y −++−=. 二、计算题1、设(,)X Y 的联合分布律为\1010.20.10.120.100.1300.30.1X Y −1求(),(),Y E X E Y E X ⎛⎞⎜⎟⎝⎠.2、设随机变量X 的概率密度为,0(,)2,120,1x x f x y x x ≤<⎧⎪=−≤≤⎨⎪⎩其他求.(),()E X D X 3、设随机变量,X Y 的概率密度分别为22e ,0()0,0x X x f x x −⎧>=⎨≤⎩ 44e ,0()0,0y Y y f y y −⎧>=⎨≤⎩求.2(),(23E X Y E X Y +−)4、设二维随机变量(,)X Y 在以为顶点的三角形区域上服从均匀分布,求(0,0),(0,1),(1,0)cov(,)X Y 和XY ρ.1、如果12,,,n X X X L 为来自总体X 的样本,X 的分布函数为,则()F x 12,,,n X X X L 的联合分布函数为 ;如果X 的概率密度为()f x ,则12,,,n X X X L 的联合概率密度为 .2、设1234,,,,5X X X X X 是来自总体的样本,则 (0,1)X N ∼521i i Z X ==∑∼.3、设2~(,)X N μσ,12,,,n X X X L 为来自总体X 的样本,则()E X = ,()D X = .4、设12~(),,,,n X P X X X λL 为来自总体X 的样本,则()E X =______,()D X =______.5、如果,且它们相互独立,则2(4),(5)X Y χχ∼∼2X Y +∼ .6、如果,则 2(10)X χ∼()E X =; ()D X =.7、 20.025(30)χ=, 20.05(61)χ=.8、设,且2(0,1),~(100)X N Y χ∼,X Y 相互独立,则统计量~t = .9、 0.01(20)t =, 0.25(50)t =.10、设,且相互独立,则统计量22(20),(30)U V χχ∼∼,U V 3~2UF V= .11、 0.05(9,12)F =,则 ()0.9512,9F =.12、设12,,,n X X X L 相互独立,2(,)i i X N iμσ∼,则 1ni i i a X η==∑∼.X 13、设12,,,n X X X L 是来自正态总体2~(,)X N μσ的样本,则X ∼ ,. ∼14、设12,,,n X X X L 相互独立,(,则 0i X N ∼,1)21~ni i T X ==∑.15、设两个随机变量X 与Y 相互独立,并且2(0,1),()X N Y n χ∼∼,则T =∼ . 二、计算题1、设总体,从总体X 中抽取一个容量为100的样本,求样本均值与总体均值之差的绝对值大于3的概率. (2~60,15X N )2、从一正态总体中抽取容量为10的样本,假定有2%的样本均值与总体均值之差的绝对值在4以上,求总体的标准差.1、设总体()~1,X b p ,12,,,n X X X L 是从总体X 中抽取的一个样本,则参数p 的矩估计量为=pˆ___________. 2、设总体X 的分布律为()()22123211X P θθθθ−−10<<θ是未知参数,12,,,n X X X L 是从中抽取的一个样本,则参数θ的矩估计量 =θˆ. 3、设,()~X E λ12,,,n x x x L 为X 的一组样本观察值,则的最大似然估计为 θ. 4、设2~(,)X N μσ,123,,,4X X X X 是来自总体X 的样本,设1230.10.30.24X X X α+++X 是(0)μμ≠的无偏估计,则 α=.5、设总体,根据来自2~(,0.04)X N μX 的容量为16的样本,测得样本均值为10.05x =,则总体均值μ的置信水平为的置信区间为 0.95.二、计算题1、设总体(1),0~()0,x x X f x θθ⎧+<=⎨⎩其他1<其中,1θ>−12,,,n X X X L 是X 的一个样本,求的矩估计量及极大似然估计量.θ2、设某种砖头的抗压强度(2,N )μσ,今随机抽取20块砖头,测得数据如下(kg.cm -2):64 69 49 92 55 97 41 84 88 99 84 66 100 98 72 74 87 84 48 81 (1)求μ的置信概率为0.95的置信区间. (2)求的置信概率为0.95的置信区间. 2σ三、证明题设X 1,X 2是从正态总体(2,N )μσ中抽取的样本 11221231211311ˆˆˆ;;3344222;X X X X X μμμ=+=+=+X 试证123ˆˆˆ,,μμμ都是μ的无偏估计量,并求出每一估计量的方差.1、已知某炼铁厂的铁水含碳量在正常情况下服从正态分布.现在测了5炉铁水,其含碳量(%)分别为()2~ 4.55,1.108X N 4.28 4.40 4.42 4.35 4.37问若标准差不改变,总体平均值有无显著性变化(=0.05)? α2、某种矿砂的5个样品中的含镍量(%)经测定为: 3.24 3.26 3.24 3.27 3.25设含镍量服从正态分布,问在=0.01下能否接收假设:这批矿砂的含镍量为3.25. α3、测量某种溶液中的水分,从它的10个测定值得出()()0.452%,0.037%x s ==.设测定值总体为正态,μ为总体均值,为总体标准差,试在水平下检验.σ0.05α=(1).()()01:0.5%;:0.5%H H μμ=<(2)()0:0.04%H σ=;()1:0.04%H σ<.。
概率论与数理统计综合练习册
2012.9目录综合练习一 (1)综合练习二 (5)综合练习三 (7)综合练习四 (9)综合练习五 (11)综合练习六 (13)综合练习七 (15)综合练习八 (17)综合练习一一、填空题(3×4=12分)1. 设3.0)(=A P ,5.0)(=B P ,7.0)(=B A P ,则=)|(B A P _____________.2. 设随机变量ξ服从参数为λ的泊松分布,且}2{}1{===ξξP P ,则=≥}1{ξP _________.3. 从标有号码1,2,…,9的9张卡片中任取2张,用ξ表示取到的号码的平均值,则=)(ξE _______.4.设总体)3.0,0(~2N ξ,nξξξ,,,21 是总体样本,则=⎭⎬⎫⎩⎨⎧>∑=44.11012i i P ξ________________. 二、选择题(3×4=12分)1. 设321,,x x x 是总体ξ的样本,则下列统计量中,是总体均值的最小方差无偏估计的是[ ]. (A)321613121x x x ++; (B) )(31321x x x ++; (C) 321x x x -+; (D) )(2121x x +. 2. 设A ,B 是两个事件,则“这两个事件至少有一个没发生”可表示为[ ]. (A) AB ; (B) B A B A ; (C) B A ; (D) B A .3. 设随机变量ξ在[0,5]上服从均匀分布,则方程02442=+++ξξx x 有实根的概率为[ ]. (A)53; (B) 52; (C) 1; (D) 31. 4. 设随机变量ξ与η相互独立,其概率分布为和则下列式子中,正确的是[ ].(A) ηξ=; (B) 1}{==ηξP ; (C) 95}{==ηξP ; (D) 0}{==ηξP . 三、完成下列各题(6×8=48分)1. 已知10个元件中有7个合格品及3个次品,每次随机抽取1个测试,测试后不放回,直至将3个次品都找到为止,求需要测试次数ξ的概率分布.2. 设),0(~2σξN ,求||ξη=的概率密度.3. 甲、乙、丙3门炮向某一目标射击,每次射击时,甲、乙、丙击中目标的概率分别是0.l ,0.2,0.3,问3门炮需齐射多少次,方能使目标被击中的概率不小于99%?(设各炮各次射击时是否击中目标是相互独立的.)4. 某厂生产的某种设备的寿命ξ(单位:年)服从指数分布,其概率密度为⎪⎩⎪⎨⎧≤>=-0041)(4x x ex f x,工厂规定,若出售的设备在1年内损坏,则可予以调换,已知工厂售出1台设备获利100元,调换1台设备厂方需花费300元,试求厂方出售1台设备净获利的数学期望.5. 设某厂生产的灯泡的寿命),1600(~2σξN ,如要求975.0}1200{≥>ξP ,问σ应满足什么条件?6. 设某种零件的长度服从正态分布),(2σμN ,测得8个零件长度(单位:mm)为97,99,94,102,103,97,98,102. (1)若已知μ=100,求2σ的置信区间; (2)未知μ,求2σ的置信区间.(均取α=0.05)7. 计算机在做加法运算时,对每个加数取整(取为最接近它的整数),设所有的取整数误差是相互独立的,且它们都在(-0.5,0.5)上服从均匀分布,如将1500个数相加,问误差总和的绝对值超过15的概率是多少?8. 设总体ξ的样本观察值为n x x x ,,,21 ,证明:∑-=+--=11212)()1(21ˆn i i i x x n σ是总体方差的无偏估计.四、(9分)设(ξ,η)的概率密度⎩⎨⎧≤≤≤≤=其他,00,10,15),(2xy x xy y x ϕ,(1)求ξ,η的边缘概率密度,说明ξ,η是否独立;(2)求ξ,η的协方差.五、(9分)在长度为L 的线段上随机取一点,这点把该线段分成两段,求较短的一段与较长的一段长度之比小于41的概率. 六、(10分)在8件产品中,次品数从0到4是等可能的,检查其中任意4件,发现3件是合格品,l 件是次品,问在剩下的4件产品中,再任取2件来检查,这2件都是合格品的概率是多少?综合练习二一、填空题(3×4=12分)1. 设事件A ,B 相互独立2.0)(=A P ,4.0)(=B P ,则=)(B A B A P _____________. 2. 设),(~2σμξN ,k ,h 为常数,0≠k ,h k +=ξη,则相关系数=||ξηρ____________.3. 将3个球随机放到5个盒子中去,则有球的盒子数的数学期望为_______________.4. 将6张同排连号的电影票随机分给3个男生,3个女生,则男女生相间而坐的概率为_______________. 二、选择题(3×4=12分)1. 袋中有3个白球,2个红球,现从中依次取出2个(取后不放回),则第2次取到红球的概率为[ ].(A)52; (B) 43; (C) 42; (D) 53. 2. 已知事件A 及B 的概率都是21,则下列结论中,一定正确的是[ ].(A) 1)(=B A P ; (B) 41)(=AB P ; (C) )()(B A P AB P =; (D)21)(=AB P .3. 设随机变量),(~p n B ξ,已知E (ξ)=0.5,D (ξ)=0.45,则n ,p 的值为[ ]. (A) n =5,p =0.3; (B) n =10,p =0.05; (C) n =1,p =0.5; (D) n =5,p =0.1.4. 若随机变量ξ与η满足D (ξ+η)=D (ξ-η),则下列式子中,正确的是[ ].(A) ξ与η相互独立; (B) ξ与η不相关; (C) D (ξ)=0; (D) D (ξ)·D (η)=0.三、完成下列各题(6×8=48分)1. 猎人在距离100m 处射击一动物,击中的概率为0.6,如果第1次未击中,则进行第2次射击,但由于动物逃跑而使距离变为150m ,如果第2次又未击中,则进行第3次射击,这时距离变为200m ,假定击中的概率与距离成反比,求猎人击中动物的概率.2. 测量到某一目标的距离时发生的随机误差ξ(m)具有概率密度3200)20(22401)(--=x ex πϕ,求在3次测量中,至少有一次误差的绝对值不超过30m 的概率.3. 每次射击时,击中目标的炮弹数的数学期望为2,标准差为1.5,求在100次射击中,有180到220发炮弹命中目标的概率.4. 设随机变量ξ,η相互独立,)21,2(~B ξ,)32,2(~B η,求ξ+η的概率分布及P {ξ>η}. 5. 设总体ξ的概率密度为)(21);(||+∞<<-∞=-x e x x θθθϕ,其中θ>0,若样本观测值为n x x x ,,,21 ,求θ的极大似然估计.6. 两批导线,从第一批中抽取4根,从第二批中抽取5根,测得它们的电阻(单位:Ω)如下第一批:0.143,0.142,0.143,0.137; 第二批:0.140,0.142,0.136,0.138,0.140.设两批导线的电阻分别服从正态分布),(211σμN 及),(222σμN ,其中,1μ,2μ,1σ,2σ都是未知参数,求这两批导线电阻的均值差1μ-2μ对应于置信概率0.95的置信区间(假定1σ=2σ).7. 为了估计灯泡使用时数的数学期望μ及标准差σ,试验10个灯泡,得到x =1500h ,s =20h ,设灯炮使用时数服从正态分布,求 (1)求μ的置信区间;(2)求σ的置信区间.(均取α=0.05)8. 设三事件A ,B ,C 相互独立,证明A -B 与C 也相互独立.四、(9分)甲、乙、丙3人各自加工1个产品,检验的结果是在3个产品中发现1个次品,设甲、乙、丙加工产品的次品率分别是0.1,0.2,0.3,分别求这个次品是甲、乙、丙加工的概率.五、(9分)甲、乙两人约定某日上午8:00~12:00在某地相会,设两人到达该地的时间是相互独立的,求两人相会前等待时间的数学期望及方差.六、(10分)甲、乙两人在某一局乒乓球比赛时,双方得分打成20:20平,按规定,在后面的比赛中,只有当某一方连得2分时,方能取得该局的胜利. 设在后面的比赛中,甲每个球得分的概率均为0.6,乙均为0.4,各球的胜负是相互独立的,求甲在该局获胜的概率.综合练习三一、填空题(3×4=12分)1. 设事件A ,B ,C 相互独立,P (A )=0.2,P (B )=0.4,P (C )=0.7,则)(C B A P =_______________.2. 设ξ~B (10,0.3),则在P {ξ=m }(m =0,l ,…,10)中,最大的值是_________________.3. 设ξ~N (2,σ2),P {2<ξ<4}=0.3,则P {ξ<0}=_____________.4. 设ξ服从泊松分布P (λ),抽取样本1x ,2x ,…,n x ,则样本均值x 的概率分布为_____________.二、选择题(3×4=12分)l. 从5双不同型号的鞋中任取4只,则至少有2只鞋配成1双的概率为[ ].(A) 211; (B) 2112; (C) 218; (D) 2113. 2. 设总体ξ~N (μ,σ2),其中σ2已知,则总体均值μ的置信区间长度L 与置信度1-α的关系是[ ].(A) 当1-α缩小时,L 缩短; (B) 当1-α缩小时,L 增长;(C) 当1-α缩小时,L 不变; (D) 以上说法都不对.3. 设离散型随机变量ξ的分布律为P {ξ=k }=αβk (k =1,2,…),且α>0,则β为[ ].(A) 11-=αβ; (B) 1+=ααβ; (C) 11+=αβ; (D) 1+=αβ. 4. 设两个相互独立的随机变量ξ和η的方差分别为6和3,则随机变量2ξ-3η的方差是[ ].(A) 51l ; (B) 21; (C) -3; (D) 36.三、完成下列各题(6×8=48分)1. 射击运动中,1次射击最多能得10环,设某运动员在1次射击中得10环的概率为0.4,得9环的概率为0.3,得8环的概率为0.2,求该运动员在5次独立射击中得到不少于48环的概率.2. 设ξ在[-2,2]上服从均匀分布,η=ξ2,求η的概率密度及D (η).3. 设二维随机变量(ξ,η)的概率密度为])()[(2122221221),(μμσπσϕ-+--=y x e y x ,其中σ>0,求随机变量U =a ξ+b η,V =a ξ-b η的相关系数r uv ,其中a ,b 为常数.4. a ,b ,c 3个盒子,a 盒中有1个白球和2个黑球,b 盒中有1个黑球和2个白球,c 盒中有3个白球和3个黑球,扔一骰子以决定选盒;若出现1,2,3点,则选a 盒;若出4点,则选b 盒;若出现5,6点,则选c 盒. 在选中的盒中任选1球,试求(1)选中白球的概率;(2)当选中的是白球时,问此自球来自a 盒的概率.5. 某系统备有30个电子元件a l ,a 2,…,a 30,先使用a l ,若a l 损坏,立即使用a 2;若a 2损坏,则立即使用a 3;…直至30个元件用尽. 设a i 的寿命(单位:h)服从参数为λ=0.1的指数分布,ξ为30个元件使用的总时间,求ξ超过350h 的概率.6. 设η服从参数为1的指数分布,ξ1,ξ2是0-l 分布, ⎩⎨⎧>≤=1,11,01ηηξ; ⎩⎨⎧>≤=.2,1;2,02ηηξ 求(ξ1,ξ2)的概率分布及E (ξ1ξ2).7. 在半径为R 的圆的某一直径上任取一点,过该点做垂直于该直径的弦,求弦长的数学期望及方差.8. 设随机变量ξ的数学期望为E (ξ),方差为D(ξ),证明对任意实数C ,均有)(])[(2ξξD C E ≥-.四、(9分)化工试验中要考虑温度对产品断裂力的影响,在70℃及80℃的条件下分别进行8次试验,测得产品断裂力(单位:kg)的数据如下70℃时,20.5,18.8,19.8,20.9,21.5,19.5,21.0,21.2;80℃时,17.7,20.3,20.0,18.8,19.0,20.1,20.2,19.1.已知产品断裂力服从正态分布,检验(1)两种温度下,产品断裂力的方差是否相等;(取α=0.05)(2)两种温度下,产品断裂力的平均值是否有显著差异. (取α=0.05)五、(9分)设ξ,η相互独立,ξ在[0,1]上服从均匀分布,η服从参数21=λ的指数分布,求方程022=++ηξt t 有实根的概率.六、(10分)甲、乙两排球队进行比赛,若有一队胜4场,则比赛结束. 假定甲队在每场比赛中获胜的概率均为0.6,乙均为0.4,求比赛场数的数学期望及甲队胜4场的概率.综合练习四一、填空题(3×4=12分)1. 一批产品,其中有10个正品和2个次品,任意抽取2次,每次抽1个,抽出后不再放回,则第2次抽出的是次品的概率为_______________.2. 在区间(0,l)中随机地取两个数,则事件“两数之和小于56”的概率为_____________________. 3. ξ的分布函数⎪⎪⎩⎪⎪⎨⎧≥<≤<≤--<=≤=.3,1;31,8.0;11,4.0;1,0}{)(x x x x x P x F ξ 则ξ的分布列为_________________________.4. ξ与η独立,且都服从N (0,32)分布,ξ1,ξ2,…,ξ9和η1,η2,…,η9分别是来自于总体ξ和η的随机样本,则统计量292191ηηξξ++++= U 服从______________分布.二、选择题(3×4=12分)1. 对于任意两个事件A ,B ,有P (A -B )=[ ].(A) P (A )-P (B ); (B) P (A )-P (B )+P (AB );(C) P (A )-P (AB ); (D) P (A )+P (B )-P (A B ).2. 设随机变量ξ~N (μ,σ2),则随σ的增大,P {|ξ−μ|<σ}[ ].(A) 单调增加; (B) 单调减小; (C) 保持不变; (D) 增减不定.3. 设两个随机变量ξ与η相互独立,且服从同分布P {ξ=-1}=P {η=-1}=21,P {ξ=1}=P {η=1}=21,则下面各式中,成立的是[ ]. (A) P {ξ=η}=21; (B) P {ξ=η}=1; (C) P {ξ+η=0}=41; (D) P {ξη}=41. 4. 设ξ和η的方差存在且不为零,则D (ξ+η)=D (ξ)+D (η)是ξ和η[ ].(A) 不相关的充分条件,但不是必要条件; (B) 独立的充分条件,但不是必要条件;(C) 不相关的充分必要条件; (D) 独立的充分必要条件.三、完成下列各题(6×8=48分)1. 设有一群高射炮,每一门击中飞机的概率都是0.6,今有一架敌机入侵领空,欲以99%的概率击中它,问需要多少高射炮射击.2. 把4个球随机地放入3个盒子中去,设ξ,η可分别表示第1个、第2个盒子中的球数,求(l)(ξ,η)的分布;(2)边缘分布;(3)已知η=1时ξ的条件分布.3. 做一件事情,一次成功的概率p =0.1,若进行100次重复独立试验,问事情最可能成功多少次,并求出其概率.4. 设ξ服从泊松分布 P {ξ=k }=!k e k λλ-(k =0,1,2,…),问当k 取何值时,P {ξ=k }为最大.5. 已知一本300页的书中每页印刷错误的个数服从泊松分布P (0.2),求这本书印刷错误的总数不超过70的概率.6. 已知高度表的误差的标准差σ=15m ,求飞机上应该有多少这样的仪器,才能使得以概率0.98保证平均高度x 的误差的绝对值小于30m ?假定高度表的误差服从正态分布.7. 求抛硬币多少次,才能使子样均值x 落在0.4和0.6之间的概率至少为0.9?8. 设(ξ,η)在区域D :0<x <1,|y |<x 内服从均匀分布,求(1)关于ξ的边缘分布密度;(2) η=2ξ+l 的方差.四、(9分)某箱装有100件产品,其中一、二、三等品分别为80,10和10件,现在从中随机抽取1件,记⎩⎨⎧=.,0;,1其他等品若抽取i i ξ (i =l ,2,3) 试求(1) ξ1和ξ2的联合分布;(2) ξ1和ξ2的相关系数.五、(9分)设ξ,η独立,证明D (ξ-η)=D (ξ)+D (η).六、(10分)某城市每天的耗电量不超过100万kW ·h ,每天的耗电量与百万kW ·h 的比值称为耗电率,设该城市的耗电率为ξ,其分布密度为 ⎩⎨⎧<<-=.0;10),1()(2其他x x A x ϕ 如果发电厂每天的供电量为80万kW ·h ,问任意一天供电量不足的概率为多少?综合练习五一、填空题(3×4=12分)1. 已知P (A )=P (B )=P (C )=41,P (AB )=0,P (AC )=P (BC )=81,则A ,B ,C 全不发生的概率为_________________.2. 设ξ的密度121)(-+-=x x e x πϕ,则ξ的期望为_______________,方差为_____________________.3. 设ξ服从参数为1的指数分布,则)(2ξξ-+e E =_______________________________.4. 设ξ1,ξ2,ξ3相互独立,其中ξ1在[0,6]上服从均匀分布,ξ2服从正态分布N (0, 22),ξ3服从参数λ=3的泊松分布,记η=ξ1+2ξ2+3ξ3,则D(η)=_________________________.二、选择题(3×4=12分)1. 设A ,B 为任意两个事件,且B A ⊂,P (B )>0,则下列选项中,必然成立的是[ ].(A) P (A )<P (A |B ); (B) P (A )≤P (A |B );(C) P (A )>P (A |B ); (D) P (A )≥P (A |B ).2. 设两个相互独立的随机变量ξ和η分别服从正态分布N (0, 1)和N (1, l),则[ ].(A) P {ξ+η≤0}=21; (B) P {ξ+η≤1}=21; (C) P {ξ-η≤0}=21; (D) P {ξ-η≤1}=21. 3. 设两个相互独立的随便机变量ξ和η的方差分别为4和2,则3ξ-2η的方差是[ ].(A) 8; (B) 16; (C) 28; (D)44.4. 设x 1,…,x n 是母体ξ的n 个子样. 21)(σ=x D ,∑==n i i x n x 11,∑=--=n i i x x n s 122)(11,则[ ].(A) s 是σ的无偏估计量; (B) s 是σ的极大似然会计量;(C) s 是σ的一致估计量; (D) s 与x 相互独立.三、完成下列各题(6×8=48分)1. 任取两个真分数,求它们乘积不大于41下的概率.2. 设ξ在]2,2[ππ-上服从均匀分布,求η=cos ξ的概率密度. 3. 一电子仪器由两个部件构成,以ξ和η分别表示两个部件的寿命(单位:h),已知ξ和η的联合分布函数为⎩⎨⎧≥≥+--=+---.,0;0,0,1),()(5.05.05.0其他y x e e e y x F y x y x 问(1) ξ与η是否独立;(2)求两个部件的寿命都超过100h 的概率.4. 在长为L 的线段上任取两点,求两点间距离的数学期望及均方差.5. 为了确定事件A 的概率,需要进行一系列的试验,在100次试验中,A 发生了36次;如果取频率0.36作为A 的概率p 的近似值,求误差小于0.05的概率.6.要求某种导线电阻的标准差不得超过0.005(Ω),今在生产的一批导线中取样品9根,测得s =0.007(Ω),设总体服从正态分布,问在水平α=0.05下,能否认为这批导线的标准差显著地偏大.7. 过半径为R 的圆周上的一点,任意做圆的弦,求这些弦的平均长度.8. 从南郊乘汽车前往北郊火车站乘火车,有两条路线可走.第一条穿过市区,路程较短,但交通拥挤,所需时间(单位:min)服从正态分布N (50, 102);第二条路沿环城公路走,路程较长,但意外阻塞较少,所需时间服从正态分布N (60, 42),若有70min 时间可用,问应走哪条路?四、(9分)2台同样的自动记录仪,每台记录仪无故障工作的时间服从参数为5的指数分布.首先开动其中1台,当其发生故障时,停用,而另1台自动开动.试求2台记录仪无故障工作的总时间T 的概率密度.五、(9分)设总体ξ服从指数分布,其密度 ⎩⎨⎧≤>=-.0,0;0,)(x x ae x ax ϕ (a>0为常数) 求子样均值x 的分布. 六、(10分)设一大型设备在任何长为t 的时间内发生故障的次数N (t )服从参数为λt 的泊松分布,试求(1)相继两次故障的时间间隔T 的概率分布;(2)求在设备已经无故障工作8h 的情况下,再无故障运行8h 的概率.综合练习六一、填空题(3×4=12分)1. 已知P (A)=0.5, P (B )=0.6, 以及P (B |A )=0.8, 则P (B A )=____________.2. 若ξ在(1, 6)上服从均匀分布, 则x 2+ξx +1=0有实根的概率是______________.3. 某灯泡使用时数在1000h 以上的概率为0.2, 今3个灯泡在使用1000h 以后最多只坏1个的概率为________.4. 设由来自正态总体ξ~N (μ, σ2), 容量为9的简单随机样本得样本均值x =5, 则未知参数μ的置信度为0.95的置信区间是___________________________.二、选择题(3×4=12分)1. 若两个事件A 和B 同时出现的概率P (AB )=0, 则[ ].(A) A 和B 互不相容; (B) AB 是不可能事件; (C) AB 未必是不可能事件; (D) P (A )=0或P (B )=0.2. 设随机变量ξ的密度函数φ(x ), 且φ(-x )=φ(x ), F (x )是ξ的分布函数, 则对任意数a , 有[ ].(A) F (-a )=1-⎰a dx x 0)(ϕ; (B) F (-a )=211-⎰a dx x 0)(ϕ; (C) F (-a )= F (a ); (D) F (-a )= F (a )-1.3. 设随机变量ξ与η相互独立, 其概率分布为和 则下式中, 正确的是[ ].(A) ξ=η; (B) P {ξ=η}=0; (C) P {ξ=η}=21; (D) P {ξ=η}=1. 4. 设x 1, …, x n 是来自正态总体N (μ, σ2)的简单随机样本, x 是平均值, 记∑=--=n i i x x n s 1221)(11; ∑=-=n i i x x n s 1222)(1; ∑=--=n i i x n s 1223)(11μ; ∑=-=ni i x n s 1224)(1μ. 则服从自由度为n -1的t 分布的随机变量是[ ].(A) 11--=n s x t μ; (B) 12--=n s x t μ; (C) n s x t 3μ-=; (D) n s x t 4μ-=.三、完成下列各题(6×8=48分)1. 第一箱中有10个球, 其中有8个白球和2个黑球. 第二箱中有20个球, 其中有4个白球和16个黑球. 现从每箱中任取1球, 然后从这两球中任取1球. 问取到白球的概率是多少?2. 某种型号的电子管的寿命ξ(单位:h)具有以下的概率密度: ⎪⎩⎪⎨⎧>=.,0;1000,1000)(2其他x x x ϕ现有一大批此种管子, 任取5只, 问其中有2只寿命大于1500h 的概率是多少?3. 某工厂生产过程中, 出现次品的概率为0.05, 每100个产品为一批. 检查产品质量时, 在每批中任取一半来检查, 若发现次品不多于1个, 则认为这批产品是合格的, 求一批产品被认为是合格的概率.4. 点随机地落在中心在原点, 半径为R 的圆周上, 并且对弧长是均匀分布的. 求这点的横坐标的概率密度.5. 设x 和y 分别是取正态总体N (μ, σ2)的容量为n 的两组子样(x 1, …, x n )和(y 1, …, y n )的均值, 试确定n , 使两组子样的均值之差超过σ的概率大约为0.01.6. 某计算机系统有120个终端, 每个终端有5%时间在使用, 若各个终端使用与否是相互独立的, 试求有10个或更多终端在使用的概率.7. 某转炉炼某特种钢, 每一炉钢的合格率为0.7, 现有若干个转炉同时冶炼, 若要求至少能够炼出一炉合格钢的把握为99%, 问同时至少要有几个转炉炼钢?8. 对某一目标连续射击, 直到命中n 次为止, 设每次射击的命中率为p , 求子弹消耗量的数学期望.四、(9分)设二维随机变量(ξ, η)的密度为 ⎩⎨⎧≤≤=.,0;1,),(22其他y x y cx y x ϕ (1)试确定常数c ; (2)求边缘概率密度.五、(9分)设总体ξ~P (λ), 抽取样本x 1, …, x n , 求样本均值x 的概率分布、数学期望及方差.六、(10分)设随机变量ξ1, ξ2, ξ3, ξ4, 相互独立, 且同分布. P (ξi =0)=0.6, P (ξi =1)=0.4(i =1, 2, 3, 4), 求行列式4321ξξξξη=的概率分布.综合练习七一、填空题1.已知P (A)=0.5, P (B )=0.6, 以及P (B |A )=0.8, 则P (B A )=____________.2.设事件A ,B ,C 相互独立,P (A )=0.2,P (B )=0.4,P (C )=0.7,则)(C B A P =_______________.3.一批产品,其中有10个正品和2个次品,任意抽取2次,每次抽1个,抽出后不再放回,则第2次抽出的是次品的概率为_______________.4.将3个球随机放到5个盒子中去,则有球的盒子数的数学期望为_______________.5.设X ~N (2,σ2),P {2<X <4}=0.3,则P {X <0}=_____________.6.设X 1,X 2,X 3相互独立,其中X 1在[0,6]上服从均匀分布,X 2服从正态分布N (0, 22),X 3服从参数λ=3的泊松分布,记Y =X 1+2X 2+3X 3,则D (Y )=_________________________.7.在区间(0,l)中随机地取两个数,则事件“两数之和小于56”的概率为_____________________.二、选择题1.对于任意两个事件A ,B ,有P (A -B )=[ ].(A) P (A )-P (B ); (B) P (A )-P (B )+P (AB ); (C) P (A )-P (AB ); (D) P (A )+P (B )-P (A B ).2.设随机变量X 在[0,5]上服从均匀分布,则方程02442=+++X Xx x 有实根的概率为[ ].(A) 53; (B) 52; (C) 1; (D) 31. 3.设随机变量X 与Y 相互独立, 其概率分布为和 (A)X =Y ; (B) P {X =Y }=0; (C) P {X =Y }=21; (D) P {X =Y }=1. 4.设A ,B 为任意两个事件,且B A ⊂,P (B )>0,则下列选项中,必然成立的是[ ].(A) P (A )<P (A |B ); (B) P (A )≤P (A |B ); (C) P (A )>P (A |B ); (D) P (A )≥P (A |B ).5.设两个相互独立的随便机变量X 和Y 的方差分别为4和2,则3X -2Y 的方差是[ ].(A) 8; (B) 16; (C) 28; (D)44.6.若随机变量X 与η满足D (X +Y )=D (X -Y ),则下列式子中,正确的是[ ].(A) X 与Y 相互独立; (B) X 与Y 不相关; (C) D (X )=0; (D) D (X )·D (Y )=0.7.设总体X ~N (μ,σ2),其中σ2已知,则总体均值μ的置信区间长度L 与置信度1-α的关系是[ ].(A) 当1-α缩小时,L 缩短; (B) 当1-α缩小时,L 增长;(C) 当1-α缩小时,L 不变; (D) 以上说法都不对.8.设随机变量),(~p n B X ,已知E (X )=0.5,D (X )=0.45,则n ,p 的值为[ ].(A) n =5,p =0.3; (B) n =10,p =0.05; (C) n =1,p =0.5; (D) n =5,p =0.1.三、完成下列各题1.a ,b ,c 3个盒子,a 盒中有1个白球和2个黑球,b 盒中有1个黑球和2个白球,c 盒中有3个白球和3个黑球,扔一骰子以决定选盒;若出现1,2,3点,则选a 盒;若出4点,则选b 盒;若出现5,6点,则选c 盒. 在选中的盒中任选1球,试求(1)选中白球的概率;(2)当选中的是白球时,问此自球来自a 盒的概率.2.某计算机系统有120个终端, 每个终端有5%时间在使用, 若各个终端使用与否是相互独立的, 试求有10个或更多终端在使用的概率.3.已知(X ,Y )的概率密度函数为 ⎩⎨⎧<<<<+=其它010,10),(y x y x y x f ,求:(1)相关系数XY ρ;(2)判断X 与Y 的独立性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论与数理统计(经管类)综合试题一(课程代码 4183)一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.下列选项正确的是 ( B ).A. A B A B +=+B.()A B B A B +-=-C. (A -B )+B =AD. AB AB =2.设()0,()0P A P B >>,则下列各式中正确的是 ( D ). A.P (A -B )=P (A )-P (B ) B.P (AB )=P (A )P (B )C. P (A +B )=P (A )+P (B )D. P (A +B )=P (A )+P (B )-P (AB )3.同时抛掷3枚硬币,则至多有1枚硬币正面向上的概率是 ( D ). A.18 B. 16 C. 14 D. 124.一套五卷选集随机地放到书架上,则从左到右或从右到左卷号恰为1,2,3,4,5顺序的概率为 ( B ).A.1120 B. 160C. 15D. 125.设随机事件A ,B 满足B A ⊂,则下列选项正确的是 ( A ).A.()()()P A B P A P B -=-B. ()()P A B P B +=C.(|)()P B A P B =D.()()P AB P A =6.设随机变量X 的概率密度函数为f (x ),则f (x )一定满足 ( C ). A. 0()1f x ≤≤ B. f (x )连续C.()1f x dx +∞-∞=⎰D. ()1f +∞=7.设离散型随机变量X 的分布律为(),1,2, (2)k bP X k k ===,且0b >,则参数b 的值为 ( D ).A. 12B. 13C. 15D. 18.设随机变量X , Y 都服从[0, 1]上的均匀分布,则()E X Y += ( A ). A.1 B.2 C.1.5 D.09.设总体X 服从正态分布,21,()2EX E X =-=,1210,,...,X X X 为样本,则样本均值101110i i X X ==∑~ ( D ).A.(1,1)N -B.(10,1)NC.(10,2)N -D.1(1,)10N - 10.设总体2123(,),(,,)X N X X X μσ 是来自X 的样本,又12311ˆ42X aX X μ=++ 是参数μ的无偏估计,则a = ( B ).A. 1B.14 C. 12 D. 13二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
11.已知121(),(),()433P A P B P C ===,且事件C ,B ,A 相互独立,则事件A ,B ,C 至少有一个事件发生的概率为 6.12. 一个口袋中有2个白球和3个黑球,从中任取两个球,则这两个球恰有一个白球一个黑球的概率是____0.6_______.13.设随机变量X 的概率分布为)(x F 为X 的分布函数,则(2)F = 0.6 .14. 设X 服从泊松分布,且3=EX ,则其概率分布律为33(),0,1,2,...!k P X k e k k -===15.设随机变量X 的密度函数为22,0()0,0x e x f x x -⎧>=⎨≤⎩,则E (2X +3) = 4.16.设二维随机变量(X , Y )的概率密度函数为2221(,),2x yf x y e π+-=(,)x y -∞<<+∞.则(X , Y )关于X 的边缘密度函数()X f x 22()x x --∞<<+∞.17.设随机变量X 与Y 相互独立,且1()0.5,(1)0.3,2P X P Y ≤=≤=则1(,1)2P X Y ≤≤= 0.15 .18.已知,4,1,0.5X Y DX DY ρ===,则D (X -Y )= 3 .19.设X 的期望EX 与方差DX 都存在,请写出切比晓夫不等式.2(||)DX P X EX εε-≥≤,或2(||)1DXP X EX εε-<≥- .20. 对敌人的防御地段进行100次轰炸,每次轰炸命中目标的炮弹数是一个随机变量,其数学期望为2,方差为2.25,则在100轰炸中有180颗到220颗炮弹命中目标的概率为 0.816 . (附:0(1.33)0.908Φ=)21.设随机变量X 与Y 相互独立,且22(3),(5)X Y χχ ,则随机变量53XYF (3,5) . 22.设总体X 服从泊松分布P (5),12,,,n X X X 为来自总体的样本,X 为样本均值,则E X = 5 .23.设总体X 服从[0,θ]上的均匀分布,(1, 0, 1, 2, 1, 1)是样本观测值,则θ的矩估计为____2______ .24.设总体),(~2σμN X ,其中202σσ=已知,样本12,,,n X X X 来自总体X ,X 和2S 分别是样本均值和样本方差,则参数μ的置信水平为1-α的置信区间为22[,]X X αα+.25.在单边假设检验中,原假设为00:H μμ≤,则备择假设为H 1: 10:H μμ>. 三、计算题(本大题共2小题,每小题8分,共16分)26.设A ,B 为随机事件,()0.3,(|)0.4,(|)0.5P A P B A P A B ===,求()P AB 及()P A B +.解:()()(|)0.30.40.12P AB P A P B A ==⨯=;由(|)0.5P A B =得:(|)10.50.5P A B =-=,而()(|)()P AB P A B P B =,故 ()0.12()0.24(|)0.5P AB P B P A B ===.从而()()()()0.30.240.120.42.P A B P A P B P AB +=+-=+-=27.设总体0()0x e x X f x λλ-⎧>=⎨⎩~其它,其中参数0λ>未知,),,,(21n X X X是来自X 的样本,求参数λ的极大似然估计.解:设样本观测值0,1,2,...,.i x i n >=则 似然函数111()()nii i n n x x n i i i L f x e eλλλλλ=--==∑===∏∏取对数ln 得:1ln ()ln ni i L n x λλλ==-⋅∑,令1ln ()0ni i d L n x d λλλ==-=∑,解得λ的极大似然估计为11ˆnii nxxλ===∑.或λ的极大似然估计量为1ˆX λ=. 四、综合题(本大题共2小题,每小题12分,共24分)28.设随机变量X 的密度函数为1,022()0,x x f x ⎧<<⎪=⎨⎪⎩其它,求:(1)X 的分布函数F (x );(2)1(1)2P X -<≤;(3) E (2X +1)及DX .解:(1)当x <0时,F (x )=0. 当02x ≤<时,2011()()24xxF x f t dt tdt x -∞===⎰⎰. 当2x ≥时,221()()012xx F x f t dt tdt dt -∞==+=⎰⎰⎰.所以,X 的分布函数为: 20,01(),0241,2x F x x x x <⎧⎪⎪=≤<⎨⎪≥⎪⎩.(2)1(1)2P X -<≤=111()(1)0.21616F F --=-=或1(1)2P X -<≤=11221011().216f t dt tdt -==⎰⎰(3)因为22014()23EX xf x dx x dx +∞-∞===⎰⎰,222301()22EX x f x dx x dx +∞-∞===⎰⎰,所以,11(21)213E X EX +=+=; 222()9DX EX EX =-=. 29.二维离散型随机变量(X ,Y )的联合分布为(1)求X 与Y 的边缘分布;(2)判断X 与Y 是否独立? (3)求X 与Y 的协方差),(Y X Cov .(1)因为(0)0.3,(1)0.7P X P X ====,(0)0.4,(1)0.2,(2)0.4P Y P Y P Y ======,所以,边缘分布分别为:(2)因为(0,0)0.2P X Y ===,而(0)(0)0.30.40.12P X P Y ===⨯=,(0,0)(0)(0)P X Y P X P Y ==≠==,所以X 与Y 不独立;(3)计算得:0.7,1,()0.9EX EY E XY ===,所以(,)()Cov X Y E XY EXEY =-=0.9-0.7=0.2.五、应用题(10分)30. 已知某车间生产的钢丝的折断力X 服从正态分布N (570, 82).今换了一批材料,从性能上看,折断力的方差不变.现随机抽取了16根钢丝测其折断力, 计算得平均折断力为575.2,在检验水平0.05α=下,可否认为现在生产的钢丝折断力仍为570? (0.025 1.96u =)解:一个正态总体,总体方差28σ=已知,检验01:570:570H H μμ=≠对. 检验统计量为~(01).U N =,检验水平=0.05α,临界值为0.0521.96u =,得拒绝域:|u |>1.96.计算统计量的值:575.2570575.2,|| 2.6 1.962x u -===>,所以拒绝H 0,即认为现在生产的钢丝折断力不是570.概率论与数理统计(经管类)综合试题二(课程代码 4183)一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.某射手向一目标射击3次,i A 表示“第i 次击中目标”,i =1,2,3,则事件“至 少击中一次”的正确表示为 ( A ). A. 123A A A B. 123A A A C. 123A A A D. 123A A A2. 抛一枚均匀的硬币两次,两次都是正面朝上的概率为 ( C ). A.12 B. 13 C. 14D. 153. 设随机事件A 与B 相互对立,且0)(>A P ,0)(>B P ,则有 ( C ). A. A 与B 独立 B. ()()P A P B > C. )()(B P A P = D. ()()P A P B =4. 设随机变量X 的概率分布为则(10)P X -≤≤= ( B ). A. 0.3 B. 0.8 C. 0.5 D. 15. 已知随机变量X 的概率密度函数为⎩⎨⎧≤≤=其他10)(2x ax x f ,则a = ( D ).A. 0B. 1C. 2D. 36.已知随机变量X 服从二项分布,且44.14.2==DX EX ,,则二项分布中的参数n ,p 的值分别为 ( B ). A.6.04==p n , B.4.06==p n , C.3.08==p n , D.1.024==p n ,7. 设随机变量X 服从正态分布N (1,4),Y 服从[0,4]上的均匀分布,则E (2X+Y )= ( D ).A. 1B. 2C. 3D. 48. 设随机变量X 的概率分布为则D (X +1)= ( C )A. 0B. 0.36C. 0.64D. 19. 设总体~(1,4)X N ,(X 1,X 2,…,X n ) 是取自总体X 的样本(1)n >,221111()1n n i i i i X X S X X n n ====--∑∑,分别为样本均值和样本方差,则有 B A.~(0,1)X N 4B.~(1,)X N n22C.(1)~()n S n χ- 1D.~(1)X t n S-- 10. 对总体X 进行抽样,0,1,2,3,4是样本观测值,则样本均值x 为 BA. 1B. 2C. 3D. 4二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。