2019-2020年河北省沧州市盐山县七年级上册期末数学试卷有答案
2019-2020学年冀教版数学七年级上学期期末试卷(含解析)7
2018-2019学年七年级上学期期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)﹣的相反数是()A.﹣3 B.3 C.D.2.(3分)地球绕太阳公转的速度约是110000千米/时,将110000用科学记数法表示为()A.11×104B.1.1×105C.1.1×104D.0.11×1053.(3分)在代数式x2+5,﹣1,x2﹣3x+2,π,,x2+中,整式有()A.3个B.4个C.5个D.6个4.(3分)下列各组运算中,结果为负数的是()A.﹣(﹣3)B.(﹣3)×(﹣2)C.﹣|﹣3| D.﹣(﹣2)35.(3分)下列各式计算正确的是()A.4m2n﹣2mn2=2mn B.﹣2a+5b=3abC.4xy﹣3xy=xy D.a2+a2=a46.(3分)有下列生活,生产现象:①用两个钉子就可以把木条固定在墙上.②从A地到B地架设电线,总是尽可能沿着线段AB架设.③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线.④把弯曲的公路改直,就能缩短路程.其中能用“两点之间,线段最短”来解释的现象有()A.①②B.①③C.②④D.③④7.(3分)下列各组中的两项,属于同类项的有()①2x2y与﹣x2y;②3a2bc与a2cb;③x3与x;④1与;⑤m2n与mn2.A.2组B.3组C.4组D.5组8.(3分)如图的平面展开图是()A.B.C.D.9.(3分)若∠A=20°18′,∠B=20°15′30〞,∠C=20.25°,则()A.∠A>∠B>∠C B.∠B>∠A>∠C C.∠A>∠C>∠B D.∠C>∠A>∠B10.(3分)某车间有60名工人生产太阳能,1名工人每天可生产镜片200片或镜架50个,怎样分配工人生产镜片和镜架,能使每天生产的产品配套?设x人生产镜片,可列方程为()A.2×200x=50(60﹣x)B.200x=2×50(60﹣x)C.2×50x=200(60﹣x)D.50x=2×200(60﹣x)11.(3分)如图,下列四个天平中,相同形状的物体的重量是相等的,其中第①个天平是平衡的,根据第①个天平,后三个天平仍然平衡的有()A.0个B.1个C.2个D.3个12.(3分)已知点A,B,C在同一直线上,若AB=20cm,AC=30cm,线段BC的长是()A.10cm B.50cm C.25cm D.10cm或50cm二、填空题(共8小题,每小题3分,满分24分)13.(3分)x的一半与y的3倍的差,可列式表示为.14.(3分)如图,△OAB绕点O逆时针旋转80°到△OCD的位置,已知∠AOB=45°,则∠AOD等于度.15.(3分)规定a•b=a+2b,则2•(﹣3)的值为.16.(3分)若|x﹣2|与(y+3)2互为相反数,则x+y=.17.(3分)小明在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是:x﹣3=2(x+1)﹣,怎么办呢?小明想了想,便翻看书后答案,此方程的解是x=﹣3,于是很快就补好了这个常数,他补出的这个常数是.18.(3分)在数轴上表示两个实数的点的位置如图所示,则化简|b|+|a﹣b|=.19.(3分)观察下列算式:12﹣02=1+0=1;22﹣12=2+1=3;32﹣22=3+2=5;42﹣32=4+3=7;52﹣42=5+4=9;….若字母n表示自然数,请把你观察到的规律用含n的等式表示出来:.20.(3分)有一个商店把某件商品按进价加20%作为定价,可是总卖不出去;后来老板按定价减价20%以96元出售,很快就卖掉了.则这次生意的盈亏情况为.三、解答题(共6小题,满分60分)21.(14分)计算:(1)﹣23﹣24×()(2)解方程:.22.(8分)先化简,再求值:(4x2﹣5x+2)﹣3(x2﹣x),其中x=3.23.(8分)如图,∠COD=110°,∠BOD=90°,OA平分∠BOC,求∠AOD的度数.24.(8分)如图,B、C两点把线段AD分成2,4,3三部分,点P是AD的中点,已知CD=5,求线段PC 的长.25.(10分)小明早晨跑步,他从自家向东跑了2千米到达小彬家,继续向东跑了1.5千米到达小红家,然后向西跑了4.5千米到达中心广场,最后回到家.(1)以小明家为原点,以向东的方向为正方向,用1 个单位长度表示1千米,你能在数轴上表示出中心广场,小彬家和小红家的位置吗?(2)小彬家距中心广场多远?(3)小明一共跑了多少千米?26.(12分)某旅游景点门票价格规定如下:购票张数1﹣45张46﹣90张91张以上每张票的价格 90元 80元 70元某校2014-2015学年七年级组织甲、乙两个班共92人去该景点游玩,其中甲班人数多余乙班人数且甲班人数不够90人,如果两个班单独购买门票,一共应付7760元.(1)如果甲、乙两个班联合起来购买门票,那么比各自购买门票可以节省多少钱?(2)甲、乙两个班各有多少学生?(3)如果甲班有10名学生因学校有任务不能参加这次旅游,请你作为两个班设计出购买门票的方案,并指出最省钱的方案.河北省沧州市2014-2015学年七年级上学期期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)﹣的相反数是()A.﹣3 B.3 C.D.考点:相反数.分析:直接利用相反数的定义得出即可.解答:解:﹣的相反数是:.故选:D.点评:此题主要考查了相反数的概念,正确把握相反数的定义是解题关键.2.(3分)地球绕太阳公转的速度约是110000千米/时,将110000用科学记数法表示为()A.11×104B.1.1×105C.1.1×104D.0.11×105考点:科学记数法—表示较大的数.专题:常规题型.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.解答:解:将110000用科学记数法表示为:1.1×105.故选:B.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)在代数式x2+5,﹣1,x2﹣3x+2,π,,x2+中,整式有()A.3个B.4个C.5个D.6个考点:整式.分析:根据整式的定义进行解答.解答:解:和分母中含有未知数,则不是整式,其余的都是整式.故选:B点评:本题重点对整式定义的考查:整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除数不能含有字母.单项式和多项式统称为整式.4.(3分)下列各组运算中,结果为负数的是()A.﹣(﹣3)B.(﹣3)×(﹣2)C.﹣|﹣3| D.﹣(﹣2)3考点:有理数的混合运算.专题:计算题.分析:先根据相反数、绝对值的意义及有理数的乘法、乘方运算法则化简各式,再根据小于0的数是负数进行选择.解答:解:A、﹣(﹣3)=3>0,A选项错误;B、(﹣3)×(﹣2)=6>0,B选项错误;C、﹣|﹣3|=﹣3<0,C选项正确;D、﹣(﹣2)3=8>0,D选项错误.故选:C.点评:注意:两数相乘,同号得正,异号得负,并把绝对值相乘;乘方是乘法的特例,因此乘方运算可转化成乘法法则,由乘法法则又得到了乘方符号法则,即正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶数次幂是正数.0的任何次幂都是0.5.(3分)下列各式计算正确的是()A.4m2n﹣2mn2=2mn B.﹣2a+5b=3abC.4xy﹣3xy=xy D.a2+a2=a4考点:合并同类项.分析:利用合并同类项法则分别判断得出即可.解答:解:A、4m2n﹣2mn2,无法计算,故此选项错误;B、﹣2a+5b,无法计算,故此选项错误;C、4xy﹣3xy=xy,此选项正确;D、a2+a2=2a2,故此选项错误;故选:C.点评:此题主要考查了合并同类项,正确掌握运算法则是解题关键.6.(3分)有下列生活,生产现象:①用两个钉子就可以把木条固定在墙上.②从A地到B地架设电线,总是尽可能沿着线段AB架设.③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线.④把弯曲的公路改直,就能缩短路程.其中能用“两点之间,线段最短”来解释的现象有()A.①②B.①③C.②④D.③④考点:线段的性质:两点之间线段最短.分析:四个现象的依据是两点之间,线段最短和两点确定一条直线,据此作出判断.解答:解:根据两点之间,线段最短,得到的是:②④;①③的依据是两点确定一条直线.故选C.点评:本题主要考查了定理的应用,正确确定现象的本质是解决本题的关键.7.(3分)下列各组中的两项,属于同类项的有()①2x2y与﹣x2y;②3a2bc与a2cb;③x3与x;④1与;⑤m2n与mn2.A.2组B.3组C.4组D.5组考点:同类项.分析:根据同类项是字母相同且相同字母的指数也相同,可得答案.解答:解:①2x2y与﹣x2y是同类项;②3a2bc与a2cb是同类项;③x3与x相同字母的指数不同不是同类项;④1与是同类项;⑤m2n与mn2相同字母的指数不同不是同类项,故选:B.点评:本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了2015届中考的常考点.8.(3分)如图的平面展开图是()A.B.C.D.考点:几何体的展开图.分析:根据正方体的展开与折叠.可以动手折叠看看,充分发挥空间想象能力解决也可以.解答:解:如图的平面展开图是.故选:C.点评:本题着重考查学生对立体图形与平面展开图形之间的转换能力,与课程标准中“能以实物的形状想象出几何图形,由几何图形想象出实物的形状”的要求相一致,充分体现了实践操作性原则.要注意空间想象哦,哪一个平面展开图对面图案都相同.9.(3分)若∠A=20°18′,∠B=20°15′30〞,∠C=20.25°,则()A.∠A>∠B>∠C B.∠B>∠A>∠C C.∠A>∠C>∠B D.∠C>∠A>∠B考点:度分秒的换算.专题:计算题.分析:∠A、∠B已经是度、分、秒的形式,只要将∠C化为度、分、秒的形式,即可比较大小.解答:解:∵∠A=20°18′,∠B=20°15′30〞,∠C=20.25°=20°15′,∴∠A>∠B>∠C.故选A.点评:主要考查了两个角比较大小.在比较时要注意统一单位后再比较.10.(3分)某车间有60名工人生产太阳能,1名工人每天可生产镜片200片或镜架50个,怎样分配工人生产镜片和镜架,能使每天生产的产品配套?设x人生产镜片,可列方程为()A.2×200x=50(60﹣x)B.200x=2×50(60﹣x)C.2×50x=200(60﹣x)D.50x=2×200(60﹣x)考点:由实际问题抽象出一元一次方程.分析:设x人生产镜片,(60﹣x)人生产镜架,根据2个镜片和1个镜架恰好配一套,列方程即可.解答:解:设x人生产镜片,由题意得,200x=2×50(60﹣x).故选B.点评:本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.11.(3分)如图,下列四个天平中,相同形状的物体的重量是相等的,其中第①个天平是平衡的,根据第①个天平,后三个天平仍然平衡的有()A.0个B.1个C.2个D.3个考点:等式的性质.专题:图表型.分析:根据第①个天平可知,一个球的重量=两个圆柱的重量.根据等式的性质可得出答案.解答:解:因为第①个天平是平衡的,所以一个球的重量=两个圆柱的重量;②中2个球的重量=4个圆柱的重量,根据等式1,即可得到①的结果;③中,一个球的重量=两个圆柱的重量;④中,一个球的重量=1个圆柱的重量;综上所述,故选C.点评:本题的实质是考查等式的性质,先根据①判断出一个球的重量=两个圆柱的重量,再据此解答.12.(3分)已知点A,B,C在同一直线上,若AB=20cm,AC=30cm,线段BC的长是()A.10cm B.50cm C.25cm D.10cm或50cm考点:两点间的距离.分析:分类讨论:点B在线段AC上,点B在线段AB的延长线上,根据线段的和差,可得答案.解答:解:当点B在线段AC上时,由线段的和差,得BC=AC﹣AB=30﹣20=10cm;当点B在线段AB的延长线上时,由线段的和差,得BC=AC+AB=30+20=50cm.故选:D.点评:本题考查了两点间的距离,利用了线段的和差,分类讨论是解题关键,以防遗漏.二、填空题(共8小题,每小题3分,满分24分)13.(3分)x的一半与y的3倍的差,可列式表示为x﹣3y.考点:列代数式.分析:根据语言叙述x的一半为x,y的3倍为3y,再求差即可.解答:解:根据题意得:x﹣3y.点评:本题考查了列代数式,要注意题中关键词中包含的运算关系.14.(3分)如图,△OAB绕点O逆时针旋转80°到△OCD的位置,已知∠AOB=45°,则∠AOD等于35度.考点:旋转的性质.分析:根据旋转的意义,找到旋转角∠BOD;再根据角相互间的和差关系即可求出∠AOD的度数.解答:解:∵△OAB绕点O逆时针旋转80°到△OCD的位置,∴∠BOD=80°,∵∠AOB=45°,则∠AOD=80°﹣45°=35°.故填35.点评:本题考查了图形的旋转变化,学生主要要看清是顺时针还是逆时针旋转,旋转多少度,难度不大,但易错.注意∠AOD=∠BOD﹣∠AOB.15.(3分)规定a•b=a+2b,则2•(﹣3)的值为﹣4.考点:有理数的混合运算.专题:新定义.分析:根据运算法则,把2•(﹣3)化为2+2×(﹣3),计算即可.解答:解:原式=2+2×(﹣3)=﹣4,故答案为﹣4.点评:本题考查了有理数的混合运算,熟练掌握运算的性质是解题的关键.16.(3分)若|x﹣2|与(y+3)2互为相反数,则x+y=﹣1.考点:相反数;非负数的性质:绝对值;非负数的性质:偶次方.专题:常规题型.分析:根据相反数的定义列式,然后根据非负数的性质列式求出x、y的值,再代入进行计算即可得解.解答:解:∵|x﹣2|与(y+3)2互为相反数,∴|x﹣2|+(y+3)2=0,∴x﹣2=0,y+3=0,解得x=2,y=﹣3,∴x+y=2+(﹣3)=﹣1.故答案为:﹣1.点评:本题考查了相反数的定义,绝对值非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.17.(3分)小明在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是:x﹣3=2(x+1)﹣,怎么办呢?小明想了想,便翻看书后答案,此方程的解是x=﹣3,于是很快就补好了这个常数,他补出的这个常数是.考点:一元一次方程的解.分析:设被污染的常数为a,再把x=﹣3代入即可得出答案.解答:解:设被污染的常数为a,把x=﹣3代入x﹣3=2(x+1)﹣a,得﹣﹣3=2(﹣3+1)﹣a,解得a=.故答案为.点评:本题考查了一元一次方程的解,方程的解就是能够使方程左右两边相等的未知数的值.18.(3分)在数轴上表示两个实数的点的位置如图所示,则化简|b|+|a﹣b|=2b﹣a.考点:整式的加减;绝对值;实数与数轴.专题:计算题.分析:根据题意,由数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.解答:解:根据数轴上点的位置得:a<0<b,且|a|>|b|,∴a﹣b<0,则原式=b+b﹣a=2b﹣a,故答案为:2b﹣a点评:此题考查了整式的加减,绝对值,以及实数与数轴,熟练掌握运算法则是解本题的关键.19.(3分)观察下列算式:12﹣02=1+0=1;22﹣12=2+1=3;32﹣22=3+2=5;42﹣32=4+3=7;52﹣42=5+4=9;….若字母n表示自然数,请把你观察到的规律用含n的等式表示出来:n2﹣(n﹣1)2=2n﹣1.考点:规律型:数字的变化类.分析:根据题意,分析可得:(0+1)2﹣02=1+2×0=1;(1+1)2﹣12=2×1+1=3;(1+2)2﹣22=2×2+1=5;…进而发现规律,用n表示可得答案.解答:解:根据题意,分析可得:(0+1)2﹣02=1+2×0=1;(1+1)2﹣12=2×1+1=3;(1+2)2﹣22=2×2+1=5;…若字母n表示自然数,则有:n2﹣(n﹣1)2=2n﹣1;故答案为:n2﹣(n﹣1)2=2n﹣1.点评:此题主要考查了数字变化规律,这类题型在2015届中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.20.(3分)有一个商店把某件商品按进价加20%作为定价,可是总卖不出去;后来老板按定价减价20%以96元出售,很快就卖掉了.则这次生意的盈亏情况为亏本4元.考点:一元一次方程的应用.专题:应用题.分析:设进价为x元,则根据题意列出方程x(1+20%)(1﹣20%)=96,解方程后,比较96与x的大小,即可知盈亏情况.解答:解:设进价为x元,则根据题意,得x(1+20%)(1﹣20%)=96,解得x=100,∵100﹣96=4,∴这次生意亏本4元.点评:解答本题时,根据题意理清思路,列出一元一次方程,再依据有理数的混合运算法则来解答方程.此题是一道生活中运用数学知识的典型,好题.三、解答题(共6小题,满分60分)21.(14分)计算:(1)﹣23﹣24×()(2)解方程:.考点:有理数的混合运算;解一元一次方程.专题:计算题.分析:(1)原式第一项利用乘方的意义计算,第二项利用乘法分配律计算,即可得到结果;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.解答:解:(1)原式=﹣8﹣2+20﹣9=1;(2)去分母得:4x+2﹣5x+1=6,移项合并得:﹣x=3,解得:x=﹣3.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.(8分)先化简,再求值:(4x2﹣5x+2)﹣3(x2﹣x),其中x=3.考点:整式的加减—化简求值.专题:计算题.分析:原式去括号合并得到最简结果,把x的值代入计算即可求出值.解答:解:原式=2x2﹣x+1﹣3x2+x=﹣x2﹣x+1,当x=3时,原式=﹣9﹣3+1=﹣11.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.(8分)如图,∠COD=110°,∠BOD=90°,OA平分∠BOC,求∠AOD的度数.考点:角平分线的定义.分析:先由∠COB=∠COD﹣∠BOD求出∠COB=20°,再根据角平分线定义求出∠AOB=∠BOC=10°,然后根据∠AOD=∠AOB+∠BOD即可求解.解答:解:∵∠C OD=110°,∠BOD=90°,∴∠COB=110°﹣90°=20°,∵OA平分∠BOC,∴∠AOB=∠BOC=10°,∴∠AOD=∠AOB+∠BOD=10°+90°=100°.点评:本题考查了角平分线的定义,角的和差以及角的运算,准确识图是解题的关键.24.(8分)如图,B、C两点把线段AD分成2,4,3三部分,点P是AD的中点,已知CD=5,求线段PC 的长.考点:两点间的距离.分析:根据AB:BC:CD=2:4:3,可得AB、BC的长,根据线段的和差,可得AD的长,根据线段中点的性质,可得PD的长,根据线段的和差,可得答案.解答:解:由AB:BC:CD=2:4:3,CD=5,得AB=,BC=,由线段的和差,得AD=AB+BC+CD=++5=15,由点P是AD的中点,得PD=AD=×15=,由线段的和差,得PC=PD﹣﹣CD=﹣5=.点评:本题考查了两点间的距离,利用了线段的和差,线段中点的性质.25.(10分)小明早晨跑步,他从自家向东跑了2千米到达小彬家,继续向东跑了1.5千米到达小红家,然后向西跑了4.5千米到达中心广场,最后回到家.(1)以小明家为原点,以向东的方向为正方向,用1 个单位长度表示1千米,你能在数轴上表示出中心广场,小彬家和小红家的位置吗?(2)小彬家距中心广场多远?(3)小明一共跑了多少千米?考点:有理数的加减混合运算;正数和负数.专题:计算题.分析:(1)根据题意画出即可;(2)计算2+1即可求出答案;(3)求出每个数的绝对值,相加即可求出答案.解答:(1)解:能,如图:(2)解:2+|﹣1|=3,答:小彬家距中心广场3千米.(3)解:|2|+|1.5|+|4.5|+|1|=9,答:小明一共跑了9千米.点评:本题考查了有理数的加减运算,正数和负数,绝对值等知识点的应用,进而此题的关键是能根据题意列出算式,题目比较典型,难度适中,用的数学思想是转化思想,即把实际问题转化成数学问题,用数学知识来解决.26.(12分)某旅游景点门票价格规定如下:购票张数1﹣45张46﹣90张91张以上每张票的价格 90元 80元 70元某校2014-2015学年七年级组织甲、乙两个班共92人去该景点游玩,其中甲班人数多余乙班人数且甲班人数不够90人,如果两个班单独购买门票,一共应付7760元.(1)如果甲、乙两个班联合起来购买门票,那么比各自购买门票可以节省多少钱?(2)甲、乙两个班各有多少学生?(3)如果甲班有10名学生因学校有任务不能参加这次旅游,请你作为两个班设计出购买门票的方案,并指出最省钱的方案.考点:一元一次方程的应用.分析:(1)联合购买需付费:92×70,然后和7760比较即可;(2)由于甲班人数多于乙班人数,且甲班人数不够90人,所以甲班人数在46﹣90之间.乙班人数在1﹣45之间.等量关系为:甲班付费+乙班付费=7760;(3)方案1为:分别付费;方案2:联合购买92﹣10=83张付费;方案3:联合买91张按40元每张付费.解答:解:(1)如果甲、乙两班联合起来购买门票需70×92=6440(元),比各自购买门票共可以节省:7760﹣6440=1320(元);(2)设甲班有学生x人(依题意46<x<90),则乙班有学生(92﹣x)人.依题意得:80x+90×(92﹣x)=7760,解得:x=52.则92﹣52=40(人).故甲班有52人,乙班有40人;(3)方案一:各自购买门票需42×90+40×90=6860(元);方案二:联合购买门票需(42+40)×80=6560(元);方案三:联合购买91张门票需91×70=6370(元);∵6860>6560>6370,∴应该甲乙两班联合起来选择按70元一次购买91张门票最省钱.点评:本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.。
2019-2020年河北省沧州市盐山县七年级上册期末数学试题有答案
河北省沧州市盐山县第一学期七年级期末试卷一、选择题(本大题共16个小题,1-10小题,每小题3分;11-16小题,每小题3分,共42分)1.2017的相反数是()A.2017B.﹣2017C.D.﹣2.下列说法正确的是()A.的次数是2B.﹣2y与4y是同类项C.4不是单项式D.的系数是3.方程去分母后,正确的是()A.4﹣1=3﹣3B.4﹣1=3+3C.4﹣12=3﹣3D.4﹣12=3+34.大量事实证明,环境污染治理刻不容缓.据统计,全球每秒钟约有14.2万吨污水排入江河湖海.把14.2万用科学记数法表示为()A.1.42×105B.1.42×104C.142×103D.0.142×1065.设a为最小的正整数,b是最大的负整数,c是绝对值最小的数,d是倒数等于自身的有理数,则a﹣b+c﹣d的值为()A.1B.3C.1或3D.2或﹣16.下列说法正确的是()A.经过已知一点有且只有一条直线与已知直线平行B.两个相等的角是对顶角C.互补的两个角一定是邻补角D.直线外一点与直线上各点连接的所有线段中,垂线段最短7.一个两位数,个位上的数字是a,十位上的数字比个位的数字小1,则这个两位数可以表示为()A.a(a﹣1)B.(a+1)a C.10(a﹣1)+a D.10a+(a﹣1)8.规定一种新运算,a*b=a+b,a#b=a﹣b,其中a、b为有理数,化简a2b*3ab+5a2b#4ab的结果为()A.6a2b+ab B.﹣4a2b+7ab C.4a2b﹣7ab D.6a2b﹣ab9.a,b,c三个数的位置如图所示,下列结论不正确的是()A.a+b<0B.b+c<0C.b+a>0D.a+c>010.如图,下列说法不正确的是()A.直线AC经过点AB.BC是线段C.点D在直线AC上D.直线AC与线段BD相交于点A11.如图是一个正方体包装盒的表面展开图,若在其中的三个正方形A、B、C内分别填上适当的数,使得将这个表面展开图沿虚线折成正方体后,相对面上的两数互为相反数,则填在A、B、C的三个数依次是()A.0,﹣3,4B.0,4,﹣3C.4,0,﹣3D.﹣3,0,412.某同学买80分邮票与一元邮票共花16元,已知买的一元邮票比80分邮票少2枚,设买80分邮票枚,则依题意得到方程为()A.0.8+(﹣2)=16B.0.8+(+2)=16C.80+(﹣2)=16D.80+(+2)=1613.下列几何体中,俯视图是三角形的几何体是()A.长方体B.圆柱C.三棱柱D.球14.一项工程,A独做10天完成,B独做15天完成,若A先做5天,再A、B合做,完成全部工程的,共需()A.8天B.7天C.6天D.5天15.某测绘装置上一枚指针原指向南偏西55°,把这枚指针按逆时针方向旋转80°,则结果指针的指向()A.南偏东35°B.北偏西35°C.南偏东25°D.北偏西25°16.观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561……通过观察,用你所发现的规律写出32017的末尾数字是()A.3B.9C.7D.1二、填空题(本题共4个小题,每小题3分,共12分,把答案写在题中的横线上)17.﹣的倒数是,﹣5的相反数是,绝对值大于2而小于4的整数有.18.在22y,﹣2y2,32y,﹣y四个代数式中,找出两个同类项,并合并这两个同类项得.19.如图,将一副三角板叠放在一起,使直角顶点重合于O点,则∠AOC+∠BOD= 度.20.如图是某超市中某种洗发水的价格标签,一名服务员不小心将标签损坏,使得原价无法看清,请帮忙算一算该种洗发水的原价是元/瓶.三、解答题(本大题共7小题,共66分。
2019-2020学年七年级数学上学期期末原创卷B卷(河北)(参考答案)
2019-2020学年上学期期末原创卷B 卷七年级数学·参考答案17.5-18.119.5或3.520.【解析】(1)(-2)2×5-(-2)3÷4=4×5-(-8)÷4 =20+2 =22.(2分)(2)(-10)3+[(-4)2-(1-32)×2] =-1000+[16-(-8)×2] =-1000+32 =-968.(4分) (3)3a +abc -21133c -(9a -c 2) =3a +abc -213c -3a +13c 2 =abc .(6分)当a =-16,b =2,c =-3时,原式=1. (4)(-3123x y 2)+12x -2(x -13y 2)=-3123x y 2+12x -2x +23y 2=-3x +y 2 当x =-2,y =23时,原式=-3×(-2)+(23)2=649.(8分) 21.【解析】(1)5x +2=7x -8,5x –7x =-8–2, -2x =-10, x =5.(4分)(2)根据题意得:3x -1-4x +6=0,移项合并得:-x =-5, 解得:x =5.(9分)22.【解析】(1)∵()215290a b -+-=,∴()215a -=0,29b -=0,(2分) ∵a 、b 均为非负数, ∴a =15,b =4.5.(4分)(2)∵点C 为线段AB 的中点,AB =15, ∴17.52AC AB ==, ∵CE =4.5,∴AE =AC +CE =12,(7分) ∵点D 为线段AE 的中点, ∴DE =12AE =6, ∴CD =DE −CE =6−4.5=1.5.(9分) 23.【解析】(1)112551055(5)2222S x x =⨯⨯-⨯⨯-=+.(5分) (2)当x =3时,25532022S =+⨯=.(9分) 24.【解析】(1)没有符合要求的“奇异方程”,理由如下:把2a =-代入原方程解得:x =2b,(2分) 若为“中点方程”,则x =22b-+,∵2b ≠22b -+, ∴不符合“中点方程”定义,故不存在.(5分) (2)∵2ax b bx +=, ∴(2a –b )x +b =0.(7分)∵关于x 的方程2ax b bx +=是“中点方程”, ∴x =22a b b-+=a . 把x =a 代入原方程得:2a 2–ab +b =0,∴26332019a ab b +--=3(2a 2–ab +b )–2019=3⨯0–2019=–2019.(10分)25.【解析】(1)200×9=180,∵169<180,∴第一次购物不享受优惠,第一次购买的标价为169元,500×0.9=450元,∵180<441<450,∴第二次购物享受九折优惠,(2分)设第二购物的标价为x元,根据题意得:0.9x=441,解得:x=490,∴第二次购买的标价为490元.(4分)(2)他要一次购买的商品的价格为:169+490=659(元),应付款为:500×0.9+(659–500)×0.8=450+127.2=577.2(元).169+441–577.2=32.8元,∴他可节约32.8元.(7分)(3)490×0.9=441(元),441+8=449(元),∵她第一次购买的商品标价较高,∴第一次享受九折优惠,第二次不享受优惠,设张女士第一次购买商品标价为x元,根据题意得:0.9x+(490–x)=449,解得:x=410,∴张女士第一次购买商品花费了410×0.9=369元.故张女士第一次购买商品花费了369元.(10分)26.【解析】(1)①∵∠AON+∠BOM=90°,∠COM=∠MOB,∵∠AOC=30°,∴∠BOC=2∠COM=150°,∴∠COM=75°,∴∠CON=15°,∴∠AON=∠AOC–∠CON=30°–15°=15°,解得:t=15°÷3°=5秒.(3分)②是,理由如下:∵∠CON=15°,∠AON=15°,∴ON平分∠AOC.(5分)(2)15秒时OC平分∠MON,理由如下:∵∠AON+∠BOM=90°,∠CON=∠COM,∵∠MON=90°,∴∠CON=∠COM=45°,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∵∠AOC–∠AON=45°,可得:6t–3t=15°,解得:t=5秒.(8分)(3)OC平分∠MOB,∵∠AON+∠BOM=90°,∠BOC=∠COM,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∴∠COM为12(90°–3t),∵∠BOM+∠AON=90°,可得:180°–(30°+6t)=12(90°–3t),解得:t=23.3秒,画图如图,(11分)。
河北省20192020学年七年级上期末考试数学试题及
一、河北省 2019-2020 学年七年级上期末考试数学试题及答案1. 以下说法正确的选项是()是最小的有理数 B.一个有理数不是正数就是负数C. 分数不是有理数D.没有最大的负数2.气温由 -1 ℃上涨 2℃后是()℃℃℃℃3. 有理数 a,b 在数轴上的地点如图 1 所示,化简3a 2b 3 a b 的结果是(A.2a+2b4. 截止年 3 月尾,某市人口总数已达到4230000 人,用科学记数法表示为(× 107×106× 105×1045.以下各式中,归并同类项错误的选项是A.x x x x3B.3ab3ab 0C.5a 2a 7aD.4x2 y 5x2 y x2 y6. 若方程(21)25=0是对于 x 的一元一次方程,则 a 的值为a-x - ax +B. -1D.1 227. 在解方程x53x75 时,去分母的过程正确的选项是()23A.3(x-5)+2(3x+7)=30B.3(x-5)+2(3x+7)=5C.x-5+3x+7=5D.x-5+3x+7=308. 以下各式中,与x3y 是同类项的是()23y32y39.如图 2,∠ AOB是平角, OC是射线, OD均分∠ AOC, OE均分∠BOC,∠ BOE=15°,则∠ AOD 的度数为()DA.65°B.75°A O图 2))()()CEBC.85°D.90°10. 整理一批图书,由一个人做要40h 达成,现计划有一部分人先做4h,而后增添 2 人与他们一同做8h,达成这项工作,假定这些人的工作效率同样,详细应先安排多少人工作?假如设安排x 人先做4h,以下四个方程中正确的选项是()A.4( x2)8x1 B.4x8(x2)1 40404040C. 4 x 8(x2)1D.4x8x14040404011. 以下图形中,不可以经过折叠围成正方体的是()..A. B. C. D.12. 将图 2 绕某点逆时针旋转90°后,获得的图形是()二、填空题(每题 3 分,共 18 分)13.假如∠ 1 与∠ 2 互补,∠ 2 为锐角,则用∠ 1 表示∠ 2 的余角的算式是。
2019-2020年七年级数学上期期末考试参考答案
2019-2020年七年级数学上期期末考试参考答案说明:1.如果考试的解答与本参考答案提供的解法不同,可根据提供的解法的评分标准精神进行评分.2.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定对后面给分的多少,但原则上不超过后继部分应得分数之半.3.评分标准中,如无特殊说明,均为累计给分.4.评分过程中,只给整数分数. 一、选择题(每小题3分,共18分) 题号 1 2 3 4 5 6 答案ADDCCB二、 填空题(每小题3分,共27分) 题号 7891011 12131415 答案5-圆柱,圆锥2145°(0.8b-10)4487月14号(或7月15号)三、解答题(共55分) 16.解:21)2(6)1(2011⨯-÷--)23(1---= ……………………………………4分21=. ………………………………………………………………………6分 17.解:(1)如图;…………………………2分 (2)如图; …………………………4分 (3)MN ⊥PH . ……………………6分18.解:①. …………………………………………………………………………1分6)15()12(2=--+x x .61524=+-+x x . ………………………………………4分 62154+--=-x x .3=-x .3-=x . ……………………………………………6分19.解:理由如下:设这个数是x ,则 …………………………………………………1分[][].)10(10)10(141014)10()75(214x x x x =-÷-=-÷+--=-÷-⨯--20. 解:(1)(名)50%2412=÷.该班共50名同学; ………………………………………………3分 (2) 如图; ………………………………………6分学生平均每天完成作业用时统计图/学生平均每天完成作业用时统…………………………………………………4分…………………………………………………6分…………………………………………………8分(3)这名同学平均每天完成作业用时为1小时的可能性最大,因为从扇形统计图可以看出平均每天完成作业用时为1小时占的区域最大. ………………9分21. 解:(1)三角形个数依次为:0,5,10; ………3分(2)5(n -1)个; …………………………6分 (3)不能. ………………7分因为5(n -1)=2011, 而52016=n 不是整数,所以不能.…………………10分 22. 解:(1)设经过x 秒后,农用车发出的噪声开始使小明受到影响. 由题可得2064100+=+x x . 解得40=x .经过40秒时,农用车发出的噪声开始使小明受到影响. ……………………4分 (2)设小明受到农用车噪声的影响会持续y 秒. 由题可得202046++=y y . 解得20=y .小明受到农用车噪声的影响会持续20秒. ……………………7分(3) 农用车刚好经过小明身旁时,小明立刻停下来,受农用车噪声影响持续的时间比(2)短. …………………8分理由如下: 设农用车从离小明20米到追上小明用z 秒.由题可得2046+=z z . 解得10=z .因为313620=÷,311331310=+<20.所以农用车刚好经过小明身旁时,小明立刻停下来,受农用车噪声影响持续的时间比(2)短. ……………………10分。
2019-2020 学年七年级上学期期末数学试题(解析版 )
初中2019级第一学期末教学质量监测数学第Ⅰ卷(选择题,共36分)一、选择题(本大题共12个小题,每小题3分,共36分.)1. 5的相反数是( )A. 15B.15- C. 5 D. 5-【答案】D【解析】【分析】根据相反数的定义解答.【详解】解:只有符号不同的两个数称为互为相反数,则5的相反数为-5,故选D.【点睛】本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.2. 下列四个几何体中,是三棱柱的为( ).A. B.C. D.【答案】C【解析】【分析】分别判断各个几何体的形状,然后确定正确的选项即可.【详解】解:A、该几何体为四棱柱,不符合题意;B、该几何体为四棱锥,不符合题意;C、该几何体为三棱柱,符合题意;D、该几何体为圆柱,不符合题意.故选C.【点睛】考查了认识立体图形的知识,解题的关键是能够认识各个几何体,难度不大.3. 中国陆地面积约为29600000km ,将数字9600000用科学记数法表示为()A. 59610⨯B. 69.610⨯C. 79.610⨯D. 80.9610⨯ 【答案】B【解析】【分析】根据科学记数法的表示方法写出即可.【详解】解:将9600000用科学记数法表示为69.610⨯.故选B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a <,n 为整数,表示时关键要正确确定a 的值以及n 的值.4. 如果单项式312m x y +-与2x 4y n+3的差是单项式,那么(m+n)2019的值为( ) A. 1-B. 0C. 1D. 22019【答案】A【解析】 【分析】 根据312m x y +-和2x 4y n+3是同类项,求出m 和n 的值,即可得出答案. 【详解】∵单项式312m x y +-与2x 4y n+3的差是单项式 ∴m+3=4,n+3=1解得:m=1,n=-2∴(m+n)2019=[1+(-2)]2019=-1故答案选择A.【点睛】本题考查的是同类项的定义:①字母相同;②相同字母的指数相同.5. 若(k ﹣5)x |k |﹣4﹣6=0是关于x 的一元一次方程,则k 的值为( )A. 5B. ﹣5C. 5 或﹣5D. 4 或﹣4【答案】B【解析】【分析】由一元一次方程的定义可得|k |﹣4=1且k ﹣5≠0,计算即可得到答案.【详解】∵(k ﹣5)x |k |﹣4﹣6=0是关于x 的一元一次方程, ∴|k |﹣4=1且k ﹣5≠0,解得:k =﹣5.故选B .【点睛】本题考查一元一次方程的定义,解题的关键是掌握一元一次方程的定义.6. 用四舍五入法得到的近似数1.02×104,其精确度为( )A. 精确到十分位B. 精确到十位C. 精确到百位D. 精确到千位【答案】C【解析】【分析】 先把近似数还原,再求精确度,即可得出答案.【详解】1.02×104=10200,2在百位上,故答案选择C. 【点睛】本题考查的是近似数的精确度,比较简单,近似数最后一位所在的数位即为该数的精确度. 7. 下列说法错误的是 ( )A. 若a=b,则3-2a=3-2bB. 若a b c c =,则a=b C. 若a b =,则a=bD. 若a=b,则ca=cb【答案】C【解析】【分析】 根据等式的性质逐一判断即可得出答案.【详解】A :因为a=b ,所以-2a=-2b ,进而3-2a=3-2b ,故选项A 正确;B :因为a b c c =,所以a=b ,故选项B 正确;C :因为a b =,所以a=b 或a=-b ,故选项C 错误;D :因为a=b ,所以ca=cb ,故选项D 正确;故答案选择C.【点睛】本题考查的是等式的性质,比较简单,需要熟练掌握等式的基本性质.8. 一张试卷有25道选择题,做对一题得4分,做错一题得-1分,某同学做完了25道题,共得70分,那么他做对的题数是( )A. 17道B. 18道C. 19道D. 20道【答案】C【解析】【分析】设作对了x道,则错了(25-x)道,根据题意列出方程进行求解.【详解】设作对了x道,则错了(25-x)道,依题意得4x-(25-x)=70,解得x=19故选C.【点睛】此题主要考查一元一次方程的应用,解题的关键是根据题意找到等量关系.9. 已知x2+3x=2,则多项式3x2+9x﹣4的值是()A. 0B. 2C. 4D. 6【答案】B【解析】【分析】【详解】解:∵x²+3x=2,∴3x²+9x−4=3(x²+3x)−4=3×2−4=6−4=2,故选B. 10. 已知数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|c﹣b|的结果是()A. a+bB. ﹣a﹣cC. a+cD. a+2b﹣c【答案】C【解析】【分析】首先根据数轴可以得到a、b、c的取值范围,然后利用绝对值的定义去掉绝对值符号后化简即可.【详解】解:通过数轴得到a<0,c<0,b>0,|a|<|b|<|c|,∴a+b>0,c﹣b<0∴|a+b|﹣|c﹣b|=a+b﹣b+c=a+c,故答案为a+c.故选C11. 观察如图所示图形,则第n个图形中三角形的个数是( )A. 2n+2B. 4n+4C. 4nD. 4n-4【答案】C【解析】【分析】由已知的三个图可得到一般的规律,即第n个图形中三角形的个数是4n,根据一般规律解题即可.【详解】解:根据给出的3个图形可以知道:第1个图形中三角形的个数是4,第2个图形中三角形的个数是8,第3个图形中三角形的个数是12,从而得出一般的规律,第n个图形中三角形的个数是4n.故选C.【点睛】此题考查了学生由特殊到一般的归纳能力.解此题时要注意寻找各部分间的联系,找到一般规律.12. 如图,将两块三角尺AOB与COD的直角顶点O重合在一起,若∠AOD=4∠BOC,OE为∠BOC的平分线,则∠DOE的度数为()A. 36°B. 45°C. 60°D. 72°【答案】D【解析】【分析】先推出∠AOD+∠BOC=180°,结合∠AOD=4∠BOC,求出∠BOC的度数,再根据角平分线求出∠COE的度数,利用∠DOE=∠COD-∠COE即可解答.【详解】解:∵∠AOB=90°,∠COD=90°,∴∠AOB+∠COD=180°,∵∠AOB=∠AOC+∠BOC,∠COD=∠BOC+∠BOD ,∴∠AOC+∠BOC+∠BOC+∠BOD=180°,∴∠AOD+∠BOC=180°,∵∠AOD=4∠BOC,∴4∠BOC+∠BOC=180°,∴∠BOC=36°,∵OE 为∠BOC 的平分线,∴∠COE=12∠BOC=18°,∴∠DOE=∠COD−∠COE=90°−18°=72°,故选择:A.【点睛】本题考查了角平分线的定义,角的和差计算及数形结合的数学思想,根据图中的数量关系求出∠BOC=36°是解答本题的关键.第Ⅱ卷(非选择题,共64分)二、填空题:(本大题共6小题,每小题3分,共18分.)13. 建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上,这样做的依据是:__________.【答案】两点确定一条直线【解析】【分析】由直线公理可直接得出答案.【详解】建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上,沿着这条线就可以砌出直的墙,则其中的道理是:两点确定一条直线.故答案为:两点确定一条直线.【点睛】本题主要考查的是直线的性质,掌握直线的性质是解题的关键.14. 用“>、=、<”符号填空:45-______78-.【答案】> 【解析】【分析】先求绝对值,再用绝对值相减即可得出答案.【详解】∵44=55-,77=88-又4732-353-==-0 584040<∴47 < 58∴47 ->-58故答案为:>【点睛】本题考查的是负数的比较大小,先取绝对值,再比较大小,绝对值大的反而小.15. 如图,OA是北偏东28°36′方向的一条射线,OB是北偏西71°24′方向的一条射线,则∠AOB=__________.【答案】100°【解析】【分析】根据题意求出∠AOC和∠BOC的度数,相加即可得出答案.【详解】根据题意可得:∠AOC =28°36′,∠BOC=71°24′∠AOB=71°24′+28°36′=100°故答案为:100°【点睛】本题考查的是角度的计算,比较简单,角度的计算记住满60进1.16. 已知|3m ﹣12|+212n ⎛⎫+ ⎪⎝⎭=0,则2m ﹣n=_____. 【答案】10【解析】【分析】【详解】∵|3m ﹣12|+2(1)2n +=0,∴|3m ﹣12|=0,2(1)2n +=0,∴m =4,n =﹣2,∴2m ﹣n =8﹣(﹣2)=10.点睛:本题考查了非负数的性质,几个非负数的和等于0,则每个数都等于0,初中范围内的非负数有:绝对值,算术平方根和偶次方.17. 规定“Δ”是一种新的运算法则,满足:a △b=ab-3b ,示例:4△(-3)=4×(-3)-3×(-3)=-12+9=-3.若-3△(x+1)=1,则x=____________. 【答案】76- 【解析】【分析】根据新定义代入得出含x 的方程,解方程即可得出答案.【详解】∵a △b=ab-3b∴-3△(x+1)=-3(x+1)-3(x+1)=-6(x+1)∴-6(x+1)=1解得:x=76- 【点睛】本题考查的是新定义,认真审题,理清题目意思是解决本题的关键.18. 在数轴上点A 对应的数为-2,点B 是数轴上的一个动点,当动点B 到原点的距离与到点A 的距离之和为6时,则点B 对应的数为_________.【答案】-4或2【解析】【分析】先设点B 对应的数为b ,再用距离公式计算即可得出答案.【详解】设点B 对应的数为b解:设点B 表示的数为b ,①当点B 在点A 的左侧时,则有-2-b-b=6,解得,b=-4,②当点B 在OA 之间时,AB+AO=2≠6,因此此时不存在,③当点B 在原点的右侧时,则有b+2+b=6,解得,b=2,故答案为:-4或2.【点睛】本题考查的是数轴的动点问题,解题关键是利用距离公式进行计算.三、解答题(本大题共6个小题,共46分.)19. 计算:100211(10.5)3(3)3⎡⎤---⨯⨯--⎣⎦ 【答案】0【解析】【分析】按照有理数的混合运算顺序:先算乘方,再算乘除,最后算加减,若有括号先算括号内的,计算即可. 【详解】解:100211(10.5)3(3)3⎡⎤---⨯⨯--⎣⎦ =-1-12×13×(3-9) =-1-16×(-6) =-1+1=0【点睛】本题考查有理数的混合运算,掌握运算顺序及法则,正确计算是本题的解题关键.20. 解方程:12136x x x -+-=- 【答案】27x =-【解析】【分析】方程两边同时乘以最小公倍数去掉分母,进而去括号、移项、合并同类项即可求解.【详解】解:去分母得:6x-2(1-x )=x+2-6,去括号得:6x-2+2x=x+2-6,移项得:6x+2x-x=2-6+2,合并同类项得:7x=-2,解得:27x =-. 【点睛】本题考查一元一次方程的解法,掌握解方程的步骤正确计算是本题的关键.21. 先化简,再求值:已知()()222242x x y x y --+- ,其中1x =-,y=2. 【答案】22x y +;5.【解析】【分析】先去括号再合并同类项,然后把1x =-,y=2代入计算.【详解】解:原式=22222422=2x x y x y x y --+++, 当1x =-,y=2时,原式=(-1)2+2×2=5. 【点睛】本题考查了整式的加减−化简求值:先去括号,再合并同类项,然后把满足条件的字母的值代入计算得到对应的整式的值.22. 如图所示,已知C ,D 是线段AB 上的两个点,M ,N 分别为AC ,BD 的中点,若AB=10cm ,CD=4cm ,求线段MN 的长;【答案】7cm【解析】【分析】根据题目求出AC+DB 的值,进而根据中点求出AM+DN 的值,即可得出答案.【详解】解:∵AB=10cm ,CD=4cm∴AC+DB=AB-CD=6cm又M ,N 分别为AC ,BD 的中点∴AM=CM=12AC ,DN=BN=12DB ∴AM+DN=12(AC+DB)=3cm ∴MN=AB-(AM+DN)=7cm【点睛】本题考查的是线段的中点问题,解题关键是根据进行线段之间等量关系的转换.23. 小魏和小梁从A ,B 两地同时出发,小魏骑自行车,小梁步行,沿同条路线相向匀速而行。
2019-2020学年七年级(上)期末考试数学试卷及答案
2019-2020学年七年级(上)期末考试数学试卷一、选择题(本大题共10小题,共30.0分)1.一个数的相反数是它本身,则该数为()A. 0B. 1C.D. 不存在2.有下列四个算式:①(-5)+(+3)=-8 ②-(-2)3=6③(+)+(-)=④-3÷(-)=9其中,错误的有()A. 0个B. 1个C. 2个D. 3个3.下列说法正确的是()A. 有理数a的相反数是B. 有理数a的倒数是C. 精确到千分位D.4.a,b是有理数,它们在数轴上的对应点的位置如所示:把a,-a,b,-b按照由小到大的顺序排列是()A. B. C.D.5.下列说法正确的是()A. 一点确定一条直线B. 两条射线组成的图形叫角C. 两点之间线段最短D. 若,则B为AC的中点6.下列计算正确的是()A. B.C. D.7.下面四个图形中,经过折叠能围成如图所示的几何图形的是()A.B.C.D.8.父亲与小强下棋(设没有平局),父亲胜一盘记2分,小强胜一盘记3分,下了10盘后,两人得分相等,则小强胜的盘数是()A. 2B. 3C. 4D. 59.由5个小立方体搭成如图所示的几何体,从左面看到的平面图形是()A. B. C.D.10.已知某商店有两个进价不同的计算器都卖了60元,其中一个盈利25%,另一个亏损20%,在这次买卖中,这家商店()A. 不赢不亏B. 盈利3元C. 亏损12元D. 亏损3元二、填空题(本大题共10小题,共20.0分)11.若a,b互为倒数,则3ab+2=______.12.若单项式若3x m+6y2和x3y n是同类项,则(m+n)2019=______.13.沧州市图书馆共藏书558000册,数558000用科学记数法表示为______册.14.设关于x的方程x m+2-m+2=0是一元一次方程,则这个方程的解是______.15.已知|a|=1,|b|=2,如果a>b,那么a+b=______.16.若方程=2(x-1)的解为x=3,则a的值是______.17.已知线段AB=5cm,点C在直线AB上,且BC=3cm,则线段AC=______.18.如图,某海域有三个小岛A,B,O,在小岛O处观测小岛A在它北偏东62°52′38″的方向上,观测小岛B在南偏东38°12′36″的方向上,则∠AOB的度数是______.19.如图将两块三角板的直角顶点重叠在一起,∠DOB与∠DOA的比是2:11,则∠BOC=______.20.边长相同的小正方体如图摆放,最上面是第一层,第一层有一个小正方体,第二层有三个小正方体,第三层有六个小正方体,按此规律摆放下去,第六层有______个小正方体,第n层有______个小正方体.三、计算题(本大题共2小题,共30.0分)21.有理数的运算或解方程(1)4+(-2)2×5-(-0.28)÷4(2)-12019-18×(-+)(3)2(x-3)-5(x+4)=4(4)-=2-22.整式的运算(1)化简求值:x-2(x-y2)+(-x+y2),其中x=,y=-2;(2)化简求值:3a2b-[2ab2-2(ab-a2b)+ab]+3ab2,其中a,b满足(a+4)2+|b-|=0.四、解答题(本大题共5小题,共40.0分)23.作图题:如图,平面内有四个点A、B、C、D,请你利用直尺和圆规,根据下列语句画出符合要求的图,请保留作图痕迹.(1)画直线AB,射线AC,线段BC;(2)在直线AB上找一点M,使线段MD与线段MC之和最小;(3)在线段AD的延长线上截AE=3AD,连线段CE交直线AB于点F.24.如图,已知线段AB,延长AB到C,使得BC=AB,D为AC中点且AC=30,求线段BD的长.25.如图,图①所示是一个长为2m,宽为2n的长方形,用剪刀均分成四个小长方形,然后按图②的方式拼成一个大正方形.(1)图②中的大正方形的边长等于______,图②中的小正方形的边长等于______;(2)图②中的大正方形的面积等于______,图②中的小正方形的面积等于______;图①中每个小长方形的面积是______;(3)观察图②,你能写出(m+n)2,(m-n)2,mn这三个代数式间的等量关系吗?______.26.苏宁电器商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.(1)若苏宁电器商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?27.如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=112°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,问:直线ON是否平分∠AOC?请说明理由;(2)将图1中的三角板绕点O按每秒4°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为多少?(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究:∠AOM与∠NOC之间的数量关系,并说明理由.答案和解析1.【答案】A【解析】解:∵0的相反数是0,∴一个数的相反数是它本身,则该数为0.故选:A.根据0的相反数是0解答.本题考查了相反数的定义,是基础题,要注意0的特殊性.2.【答案】B【解析】解:∵(-5)+(+3)=-8,故①正确,∵-(-2)3=-(-8)=8,故②错误,∵(+)+(-)==,故③正确,∵-3÷(-)=3×3=9,故④正确,故选:B.根据题目中的式子可以计算出正确的结果,从而可以解答本题.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.3.【答案】A【解析】解:A、有理数a的相反数是-a,正确;B、有理数a的倒数是(a≠0),故此选项错误;C、2.0197≈2.020(精确到千分位),故此选项错误;D、|-a|=a(a≥0),故此选项错误;故选:A.直接利用相反数的定义以及互为倒数的定义和近似数和绝对值的性质分别分析得出答案.此题主要考查了相反数的定义以及互为倒数的定义和近似数和绝对值的性质,正确把握相关定义是解题关键.4.【答案】B【解析】解:∵由图可知,b<0<a,|b|<a,∴0<-b<a,-a<b<0,∴a>-b>b>-a.故选:B.先根据a,b两点在数轴上的位置判断出a、b的符号及其绝对值的大小,再比较出其大小即可.本题考查的是有理数的大小比较,熟知数轴上各点所表示的数的特点是解答此题的关键.5.【答案】C【解析】解:A、两点确定一条直线,故本选项错误;B、应为有公共端点的两条射线组成的图形叫做角,故本选项错误;C、两点之间线段最短,故本选项正确;D、若AB=BC,则点B为AC的中点错误,因为A、B、C三点不一定共线,故本选项错误.故选:C.根据两点确定一条直线,角的定义,线段中点的定义对各选项分析判断后利用排除法求解.本题考查了线段的性质,直线的性质,以及角的定义,是基础题,熟记概念与各性质是解题的关键.6.【答案】C【解析】解:A、原式不能合并,错误;B、原式不能合并,错误;C、原式=a2b,正确;D、原式=-y2,错误,故选:C.利用合并同类项法则判断即可.此题考查了合并同类项,熟练掌握合并同类项法则是解本题的关键.7.【答案】B【解析】解:根据立体图形可得,展开图中三角形图案的顶点应与圆形的图案相对,而选项A,D与此不符,所以错误;三角形图案所在的面应与圆形的图案所在的面相邻,而选项C与此也不符,正确的是B.故选:B.根据图中三角形,圆,正方形所处的位置关系即可直接选出答案.此题主要考查了展开图折叠成几何体,同学们可以动手折叠一下,有助于空间想象力的培养.8.【答案】C【解析】解:设小强胜了x盘,则父亲胜了(10-x)盘,根据题意得:3x=2(10-x),解得:x=4.答:小强胜了4盘.故选:C.设小强胜了x盘,则父亲胜了(10-x)盘,根据3×小强胜的盘数=2×父亲胜的盘数,即可得出关于x的一元一次方程,解之即可得出结论.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.9.【答案】D【解析】解:从左边看第一层两个小正方形,第二层右边一个小正方形,故选:D.根据从左边看得到的图形是左视图,可得答案.本题考查了简单组合体的三视图,从左边看得到的图形是左视图.10.【答案】D【解析】解:设盈利25%的进价为x元,亏本20%的进价是y元,由题意,得:x(1+25%)=60,y(1-20%)=60,解得:x=48,y=75,∴这次买卖的利润为:60×2-48-75=-3元.故选:D.设盈利25%的进价为x元,亏本20%的进价是y元,由销售问题的数量关系建立方程求出其解即可.本题考查了销售问题在实际生活中的运用,一元一次方程的解法的运用,有理数大小比较的运用,解答时哟由销售问题的数量关系建立方程是关键.11.【答案】5【解析】解:∵a,b互为倒数,∴ab=1,∴3ab+2=3+2=5.故答案为:5.直接利用互为倒数的定义计算得出答案.此题主要考查了倒数,正确把握倒数的定义是解题关键.12.【答案】-1【解析】解:∵单项式若3x m+6y2和x3y n是同类项,∴m+6=3,n=2,解得:m=-3,故(m+n)2019=-1.故答案为:-1.直接利用同类项的定义得出m,n的值,进而得出答案.此题主要考查了同类项,正确把握同类项的定义是解题关键.13.【答案】5.58×105【解析】解:数558000用科学记数法表示为5.58×105册.故答案为:5.58×105.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.【答案】-3【解析】解:由题意可知:m+2=1,∴m=-1,∴该方程为:x+1+2=0,∴x=-3,故答案为:-3根据一元一次方程的定义即可求出答案.本题考查一元一次方程的定义,解题的关键是熟练运用一元一次方程的定义,本题属于基础题型.15.【答案】-1或-3【解析】解:∵|a|=1,|b|=2,∴a=±1,b=±2,∵a>b,∴①a=1,b=-2,则:a+b=1-2=-1;②a=-1,b=-2,则a+b=-1-2=-3,故答案是:-1或-3.根据绝对值的性质可得a=±1,b=±2,再根据a>b,可得①a=1,b=-2②a=-1,b=-2,然后计算出a+b即可.此题主要考查了绝对值得性质,以及有理数的加法,关键是掌握绝对值的性质,绝对值等于一个正数的数有两个.16.【答案】2【解析】解:把x=3代入=2(x-1),可得:,解得:a=2,故答案为:2方程的解就是能够使方程两边左右相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.就得到关于a的一个方程,解方程就可求出a.本题主要考查了方程解的定义,已知x=3是方程的解实际就是得到了一个关于字母a的方程.17.【答案】2cm或8cm【解析】解:当点C在线段AB上时,则AC+BC=AB,所以AC=5cm-3cm=2cm;当点C在线段AB的延长线上时,则AC-BC=AB,所以AC=5cm+3cm=8cm.故答案为2cm或8cm.讨论:当点C在线段AB上时,则AC+BC=AB;当点C在线段AB的延长线上时,则AC-BC=AB,然后把AB=5cm,BC=3cm分别代入计算即可.本题考查了两点间的距离:连接两点间的线段的长度叫两点间的距离.18.【答案】78°54′46″【解析】解:∠AOB=180°-62°52′38″-38°12′36″=78°54′46″,故答案为:78°54′46″.先根据题意列出算式,再求出即可.本题考查了度、分、秒的换算,能根据题意列出算式是解此题的关键.19.【答案】70°【解析】解:设∠DOB为2x,∠DOA为11x;∴∠AOB=∠DOA-∠DOB=9x,∵∠AOB=90°,∴9x=90°,∴x=10°,∴∠DOB=20°,∴∠BOC=∠COD-∠DOB=90°-20°=70°;故答案为:70°设出适当未知数∠DOB为2x,∠DOA为11x,得出∠AOB=9x,由∠AOB=90°,求出x=10°,得出∠DOB=20°,即可求出∠BOC=∠COD-∠DOB=70°.本题考查看余角的定义;设出适当未知数,弄清各个角之间的关系得出方程,解方程即可得出结果.20.【答案】21【解析】解:∵第1层有1个小正方体,第2层有1+2=3个小正方体,第3层有1+2+3=6个小正方体,……∴第6层有1+2+3+4+5+6=21个小正方体,第n层有1+2+3+…+n=个小正方体,故答案为:21,.由第1层有1个小正方体,第2层有1+2=3个小正方体,第3层有1+2+3=6个小正方体,知第n层小正方体是连续n个正整数的和,据此求解可得.本题主要考查认识立体图形和图形的变化规律,解题的关键是根据已知图形得出第n层小正方体是连续n个正整数的和.21.【答案】解:(1)4+(-2)2×5-(-0.28)÷4=4+4×5+0.07=4+20+0.07=24.07;(2)-12019-18×(-+)=-1-18×+18×-18×=-1-9+15-12=-7;(3)2(x-3)-5(x+4)=4,2x-6-5x-20=4,2x-5x=4+6+20,-3x=30,x=-10;(4)-=2-,4(5y+4)-3(y-1)=24-(5y-5),20y+16-3y+3=24-5y+5,20y-3y+5y=24+5-16-3,22y=10,y=.【解析】(1)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,注意乘法分配律的运用;(3)去括号、移项、合并同类项、系数化为1,依此即可求解;(4)去分母、去括号、移项、合并同类项、系数化为1,依此即可求解.考查了解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.同时考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.22.【答案】解:(1)原式=x-2x+y2-x+y2=-3x+y2,当x=,y=-2时,原式=-3×+(-2)2=-2+4=2;(2)原式=3a2b-2ab2+2(ab-a2b)-ab+3ab2=3a2b-2ab2+2ab-3a2b-ab+3ab2=ab+ab2,∵(a+4)2+|b-|=0,∴a=-4,b=,则原式=-4×+(-4)×()2=-2-4×=-2-1=-3.【解析】(1)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值;(2)原式去括号合并得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.此题考查了整式的加减-化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.23.【答案】解:(1)如图,直线AB,射线AC,线段BC为所作;(2)如图,点M为所作;(3)如图,点E、F为所作.【解析】(1)根据几何语言画出对应几何图形;(2)连接CD交AB于M,利用两点之间线段最短可得到此时M点使线段MD 与线段MC之和最小;(3)在AD的延长线截取DE=2AD,然后连接CE交AB于F.本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).24.【答案】解:∵BC=AB,∴AC=3BC,∵AC=30,∴BC=AC=×30=10,∵D为AC中点且AC=30,∴CD=AC=15,∴BD=CD-BC=5.【解析】根据D是AC的中点求出CD的长,根据BD=CD-CB即可得出结论.本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.25.【答案】m+n m-n(m+n)2(m-n)2mn(m+n)2-(m-n)2=4mn【解析】解:(1)图②中的大正方形的边长等于m+n,图②中的小正方形的边长等于m-n;故答案为:m+n,m-n;(2)图②中的大正方形的面积等于(m+n)2,图②中的小正方形的面积等于(m-n)2;图①中每个小长方形的面积是mn;故答案为:(m+n)2,(m-n)2,mn;(3)由图②可得,(m+n)2,(m-n)2,mn这三个代数式间的等量关系为:(m+n)2-(m-n)2=4mn.故答案为:(m+n)2-(m-n)2=4mn.(1)依据小长方形的边长,即可得到大正方形的边长以及小正方形的边长;(2)依据正方形的边长即可得到正方形的面积,依据小长方形的边长,即可得到小长方形的面积;(3)依据大正方形的面积减去小正方形的面积等于四个小长方形的面积之和,即可得到三个代数式间的等量关系.本题考查了完全平方公式的几何背景,即运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.26.【答案】解:按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算,设购A种电视机x台,则B种电视机y台.①当选购A,B两种电视机时,B种电视机购(50-x)台,可得方程:1500x+2100(50-x)=90000,即5x+7(50-x)=300,解得:x=25,则B种电视机购50-25=25(台);②当选购A,C两种电视机时,C种电视机购(50-x)台,可得方程:1500x+2500(50-x)=90000,解得:x=35,则C种电视机购50-35=15(台);③当购B,C两种电视机时,C种电视机为(50-y)台,可得方程:2100y+2500(50-y)=90000,解得:y=,(不合题意,舍去)由此可选择两种方案:一是购A,B两种电视机25台;二是购A种电视机35台,C种电视机15台.(2)若选择(1)中的方案①,可获利150×25+200×25=8750(元),若选择(1)中的方案②,可获利150×35+250×15=9000(元),因为9000>8750,所以为了获利最多,选择第二种方案.【解析】(1)本题的等量关系是:两种电视的台数和=50台,买两种电视花去的费用=9万元.然后分进的两种电视是A、B,A、C,B、C三种情况进行讨论.求出正确的方案;(2)根据(1)得出的方案,分别计算出各方案的利润,然后判断出获利最多的方案.此题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系:两种电视的台数和=50台,买两种电视花去的费用=9万元.列出方程,再求解.27.【答案】解:(1)平分,理由:延长NO到D,∵∠MON=90°∴∠MOD=90°∴∠MOB+∠NOB=90°,∠MOC+∠COD=90°,∵∠MOB=∠MOC,∴∠NOB=∠COD,∵∠NOB=∠AOD,∴∠COD=∠AOD,∴直线NO平分∠AOC;(2)分两种情况:①如图2,∵∠BOC=112°∴∠AOC=68°,当直线ON恰好平分锐角∠AOC时,∠AOD=∠COD=34°,∴∠BON=34°,∠BOM=56°,即逆时针旋转的角度为56°,由题意得,4t=56°解得t=14(s);②如图3,当NO平分∠AOC时,∠NOA=34°,∴∠AOM=56°,即逆时针旋转的角度为:180°+56°=236°,由题意得,4t=236°,解得t=59(s),综上所述,t=14s或59s时,直线ON恰好平分锐角∠AOC;(3)∠AOM-∠NOC=22°,理由:∵∠AOM=90°-∠AON∠NOC=68°-∠AON,∴∠AOM-∠NOC=(90°-∠AON)-(68°-∠AON)=22°.【解析】(1)延长NO到D,根据余角的性质得到∠MOB=∠MOC,等量代换得到∠COD=∠AOD,于是得到结论;(2)分两种情况:ON的反向延长线平分∠AOC或射线ON平分∠AOC,分别根据角平分线的定义以及角的和差关系进行计算即可;(3)根据∠MON=90°,∠AOC=68°,分别求得∠AOM=90°-∠AON,∠NOC=68°-∠AON,再根据∠AOM-∠NOC=(90°-∠AON)-(68°-∠AON)进行计算,即可得出∠AOM与∠NOC的数量关系.此题考查了角的计算,关键是应该认真审题并仔细观察图形,找到各个量之间的关系,是解题的关键.。
金考卷:冀教版河北省2019-2020学年七年级数学上学期期末原创卷(含解析版答案)
河北省2019-2020学年上学期期末原创卷七年级数学(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:冀教版七上全册。
第Ⅰ卷一、选择题(本大题共16小题,共42分,1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.-3的相反数是 A .3B .13C .3-D .13-2.下列等式变形不一定正确的是 A .若x =y ,则x –5=y –5B .若x =y ,则ax =ayC .若x =y ,则3–2x =3–2yD .若x =y ,则x ya a= 3.已知下列方程:①0x =;②21x y -=;③20n n +=;④532yy =+;⑤221x x -=+.其中一元一次方程的个数是 A .1B .2C .3D .44.计算:(-2)2018+(-2)2019所得结果是A .22018B .-1C .-2D .-220185.下列各组代数式中,是同类项的是 A .5x 2y 与xyB .-5x 2y 与yx 2C .5ax 2与yx 2D .83与x 36.下列解方程的步骤正确的是A .由2431x x +=+,得2314x x +=+B .由0.50.75 1.3x x x -=-,得57513x x -=-C .由()()3223x x -=+,得3626x x -=+D .由12226x x -+-=,得22212x x --+= 7.若多项式1(4)62ax a x --+是关于x 的四次三项式,则a 的值是A .4-B .2C .4-或4D .48.如果一个数的十位数字是a ,个位数字是b ,则这个两位数用代数式表示为 A .abB .baC .10a +bD .10ab9.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,这四个数中,绝对值最小的是A .dB .cC .bD .a10.当1x =时,代数式31px qx ++的值为2019,则当1x =-时,代数式31px qx ++的值为A .–2017B .–2019C .2018D .201911.已知∠α与∠β互补,∠α=150°,则∠β的余角的度数是A .30°B .60°C .45°D .90°12.时钟的时针和分针垂直的时刻A .12:15B .3:00C .3:30D .11:4513.已知,如图,B 、C 两点把线段AD 分成253∶∶三部分,M 为AD 的中点,9cm BM =,则AD 的长为A .20cmB .30cmC .25cmD .35cm14.将一些课外书分给某班学生阅读,若每分2本,则剩余35本,若每人分4本,则还差25本,设这个班共有x 名学生,则可列方程A .2x +35=4x +25B .2x +35=4x –35C .2x –35=4x +25D .2x +35=25–4x15.下面每个表格中的四个数都是按相同规律填写的:14292632038435410554…20a bx…第1个 第2个 第3个 第4个根据此规律确定x 的值为 A .135B .170C .209D .25216.如图,两人沿着边长为90 m 的正方形,按A →B →C →D →A …的方向行走,甲从A 点以65 m/min 的速度、乙从B 点以75 m/min 的速度行走,当乙第一次追上甲时,将在正方形的哪条边上A .BCB .DCC .AD D .AB第Ⅱ卷二、填空题(本大题共3小题,共12分.17~18小题各3分;19小题有两个空,每空3分) 17.关于x 的方程(m +3)x |m +4|–5=1是一元一次方程,那么m 的值是__________. 18.已知2A x mx =+,2241B nx x =--,且多项式3A B +的值与字母x 的值无关,那么32m n +=__________.19.如图,数轴上线段AB =2,CD =4,点A 在数轴上表示的数是-10,点C 在数轴上表示的数是16,若线段AB 以6个单位长度/秒的速度向右匀速运动,同时线段CD 以2个单位长度/秒的速度向左匀速运动.当B 点运动到线段CD 上时,P 是线段AB 上一点,且有关系式3BD APPC-=成立,则线段PD 的长为__________.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分8分)计算或化简求值:(1)(-2)2×5-(-2)3÷4;(2)(-10)3+[(-4)2-(1-32)×2];(3)求代数式3a +abc -21133c -(9a -c 2)的值,其中a =-16,b =2,c =-3.(4)先化简再求值:223111()2()2323x y x x y -++--,其中x =-2,y =23.21.(本小题满分9分)(1)解方程:5x +2=7x -8.(2)代数式3x -1与-4x +6的值互为相反数,求x 的值.22.(本小题满分9分)如图,点C 为线段AB 的中点,点E为线段AB 上的点,点D 为线段AE 的中点.(1)若线段AB =a ,CE =b ,且()215|29|0a b -+-=,求a ,b 的值; (2)在(1)的条件下,求线段CD 的长.23.(本小题满分9分)如图所示是一个长方形,阴影部分的面积为S (单位:cm 2).根据图中尺寸,解答下列问题:(1)用含x 的代数式表示阴影部分的面积S ; (2)若x =3,求S 的值.24.(本小题满分10分)定义:若一个关于x 的方程0(0)ax b a +=≠的解为2a bx +=,则称此方程为“中点方程”.如:103x -=的解为13x =,而111(1)323=⨯-;210x -=的解为12x =,而11(21)22=⨯-. (1)若2a =-,有符合要求的“中点方程”吗?若有,请求出该方程的解;若没有请说明理由;(2)若关于x 的方程2ax b bx +=是“中点方程”,求代数式26332019a ab b +--的值.25.(本小题满分10分)某市场对顾客实行优惠,规定:若一次购物不超过200元,则不给折扣;若一次购物超过200元,但不超过500元,按标价给予九折优惠;若一次购物超过500元,其中500元按上述九折优惠之外,超过500元的部分按八折优惠,某人两次购物分别付款169元和441元. (1)第1次和第2次购买的商品分别标价多少元?(2)若将第1次和第2次合起来去购买同样价值的商品,则他可节约多少元?(3)张女士分两次从该市场购买了标价共为490元的商品,若她获得的优惠比合起来一次购买同样标价的商品获得的优惠少8元,又知她第一次购买的商品标价较高,请求出张女士第一次购买商品花费了多少元吗?26.(本小题满分11分)如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(∠M =30°)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方. (1)将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t 秒后,OM 恰好平分∠BOC . ①求t 的值;②此时ON 是否平分∠AOC ?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠MON ?请说明理由;(3)在(2)问的基础上,经过多长时间OC 平分∠MOB ?请画图并说明理由.2019-2020学年上学期期末原创卷七年级数学·全解全析1.【答案】A【解析】–3的相反数是3,故选A . 2.【答案】D【解析】A .若x =y ,按照等式的性质1,两边同时减去5,等式仍然成立,故本选项正确; B .若x =y ,按照等式的性质2,两边同时乘以a ,等式仍然成立,故本选项正确;C .若x =y ,先按照等式的性质2,两边同时乘以-2,再按照等式的性质1,两边同时加上3,等式仍然成立,故本选项正确;D .若x =y ,如果a =0,则变形不符合等式的性质2,无意义,故本选项不一定正确.故选D . 3.【答案】C【解析】①x =0是一元一次方程;②2x –y =1是二元一次方程;③n 2+n =0是一元二次方程; ④532yy =+是一元一次方程;⑤x –2=2x +1是一元一次方程,故选C . 4.【答案】D【解析】(-2)2018+(-2)2019=22018-22019=22018(1-2)=-22018,故选D . 5.【答案】B【解析】A 、相同字母的指数不同,故A 不是同类项; B 、字母相同且相同字母的指数也相同,故B 是同类项; C 、D 、字母不同,故C 、D 不是同类项,故选B . 6.【答案】C【解析】A .由2431x x +=+,得2314x x -=-,故不正确; B .由0.50.75 1.3x x x -=-,得575013x x x -=-,故不正确; C .由()()3223x x -=+,得3626x x -=+,正确; D .由12226x x -+-=,得()33212x x --+=,故不正确, 故选C . 7.【答案】A【解析】∵多项式1(4)62ax a x --+是关于x 的四次三项式, ∴4a =,(4)0a --≠, ∴4a =-.故选A . 8.【答案】C【解析】十位数字为a ,个位数字为b 的意义是a 个10与b 个1的和为:10a +b . 故选C . 9.【答案】C【解析】∵1<|a |<2,0<|b |<1,1<|c |<2,2<|d |<3,∴这四个数中,绝对值最小的是b . 故选C . 10.【答案】A【解析】∵当x =1时,代数式px 3+qx +1的值为2019,∴代入得:p +q +1=2019,∴p +q =2018, ∴当x =–1时,代数式px 3+qx +1=–p –q +1=–(p +q )+1=–2018+1=–2017,故选A . 11.【答案】B【解析】∵∠α与∠β互补,且∠α=150°, ∴∠β=180°–150°=30°,∴∠β的余角903060=︒-︒=︒,故选B . 12.【答案】B【解析】时钟的时针和分针垂直,即时钟与分针的夹角是90︒,3点整时,时针指向3,分针指向12,钟表12个数字,每相邻两个数字之间的夹角为30︒,因此3点整分针与时针的夹角正好是90︒. 同理,12:15时分针与时针的夹角为30︒×3–30︒×1560=85︒; 3:30分针与时针的夹角为30︒×2+30︒×3060=75︒; 11:45分针与时针的夹角为30︒×2+30︒×4560=82.5︒.故选B . 13.【答案】B【解析】由题意,设AB 为2x ,BC 为5x ,CD 为3x ,则AD 为10x , 因为M 是AD 的中点,所以AM =12AD =5x , ∴BM =AM –AB =5x –2x =3x =9 cm , ∴x =3 cm ,∴AD =10×3=30 cm .故选B . 14.【答案】B【解析】设这个班共有x 名学生,根据题意,得:2x +35=4x –25.故选B . 15.【答案】C【解析】由分析可知,2a +2=20,解得a =9,∴b =10,∴x =20b +a =209,故选C . 16.【答案】C【解析】设乙x 分钟后追上甲,由题意得,75x −65x =270,解得:x =27, 而75×27=5×360+212×90,即乙第一次追上甲是在AD 边上.故选C . 17.【答案】5-【解析】由题意得:41m +=,且30m +≠, ∴5m =-或3-,且3m ≠-, ∴5m =-. 故答案为:5-. 18.【答案】1【解析】∵2A x mx =+,2241B nx x =--,∴222333241(32)(34)1A B x mx nx x n x m x +=++--=++--, ∵多项式3A B +的值与字母x 的值无关, ∴320n +=,340m -=, ∴23n =-,34m =, ∴32431m n +=-=, 故答案为:1.19.【答案】5或3.5【解析】设线段AB 未运动时点P 所表示的数为x ,B 点运动时间为t ,则此时C 点表示的数为16-2t ,D 点表示的数为20-2t ,A 点表示的数为-10+6t ,B 点表示的数为-8+6t ,P 点表示的数为x +6t ,∴BD =20-2t -(-8+6t )=28-8t ,AP =x +6t -(-10+6t )=10+x ,PC =|16-2t -(x +6t )|=|16-8t -x |,PD =20-2t -(x +6t )=20-8t -x =20-(8t +x ),∵BD APPC-=3,∴BD -AP =3PC ,∴28-8t -(10+x )=3|16-8t -x |,即:18-8t -x =3|16-8t -x |.①当C 点在P 点右侧时,18-8t -x =3(16-8t -x )=48-24t -3x ,∴x +8t =15, ∴PD =20-(8t +x )=20-15=5;②当C 点在P 点左侧时,18-8t -x =-3(16-8t -x )=-48+24t +3x ,∴x +8t =332, ∴PD =20-(8t +x )=20-332=3.5, ∴PD 的长有2种可能,即5或3.5.故答案为:5或3.5. 20.【解析】(1)(-2)2×5-(-2)3÷4=4×5-(-8)÷4 =20+2 =22.(2分)(2)(-10)3+[(-4)2-(1-32)×2] =-1000+[16-(-8)×2] =-1000+32 =-968.(4分) (3)3a +abc -21133c -(9a -c 2) =3a +abc -213c -3a +13c 2=abc .(6分)当a =-16,b =2,c =-3时,原式=1. (4)(-3123x y 2)+12x -2(x -13y 2)=-3123x y 2+12x -2x +23y 2=-3x +y 2当x =-2,y =23时,原式=-3×(-2)+(23)2=649.(8分) 21.【解析】(1)5x +2=7x -8,5x –7x =-8–2, -2x =-10,x =5.(4分)(2)根据题意得:3x -1-4x +6=0, 移项合并得:-x =-5, 解得:x =5.(9分)22.【解析】(1)∵()215290a b -+-=,∴()215a -=0,29b -=0,(2分) ∵a 、b 均为非负数, ∴a =15,b =4.5.(4分)(2)∵点C 为线段AB 的中点,AB =15, ∴17.52AC AB ==, ∵CE =4.5,∴AE =AC +CE =12,(7分) ∵点D 为线段AE 的中点,∴DE =12AE =6,∴CD =DE −CE =6−4.5=1.5.(9分)23.【解析】(1)112551055(5)2222S x x =⨯⨯-⨯⨯-=+.(5分) (2)当x =3时,25532022S =+⨯=.(9分) 24.【解析】(1)没有符合要求的“奇异方程”,理由如下:把2a =-代入原方程解得:x =2b,(2分) 若为“中点方程”,则x =22b-+,∵2b ≠22b -+, ∴不符合“中点方程”定义,故不存在.(5分) (2)∵2ax b bx +=, ∴(2a –b )x +b =0.(7分)∵关于x 的方程2ax b bx +=是“中点方程”, ∴x =22a b b-+=a . 把x =a 代入原方程得:2a 2–ab +b =0,∴26332019a ab b +--=3(2a 2–ab +b )–2019=3⨯0–2019=–2019.(10分)25.【解析】(1)200×9=180,∵169<180,∴第一次购物不享受优惠,第一次购买的标价为169元, 500×0.9=450元, ∵180<441<450,∴第二次购物享受九折优惠,(2分) 设第二购物的标价为x 元, 根据题意得:0.9x =441, 解得:x =490,∴第二次购买的标价为490元.(4分)(2)他要一次购买的商品的价格为:169+490=659(元), 应付款为:500×0.9+(659–500)×0.8=450+127.2=577.2(元). 169+441–577.2=32.8元, ∴他可节约32.8元.(7分) (3)490×0.9=441(元), 441+8=449(元),∵她第一次购买的商品标价较高,∴第一次享受九折优惠,第二次不享受优惠, 设张女士第一次购买商品标价为x 元, 根据题意得:0.9x +(490–x )=449, 解得:x =410,∴张女士第一次购买商品花费了410×0.9=369元. 故张女士第一次购买商品花费了369元.(10分) 26.【解析】(1)①∵∠AON +∠BOM =90°,∠COM =∠MOB ,∵∠AOC =30°, ∴∠BOC =2∠COM =150°, ∴∠COM =75°, ∴∠CON =15°,∴∠AON =∠AOC –∠CON =30°–15°=15°, 解得:t =15°÷3°=5秒.(3分) ②是,理由如下:∵∠CON =15°,∠AON =15°, ∴ON 平分∠AOC .(5分)(2)15秒时OC 平分∠MON ,理由如下: ∵∠AON +∠BOM =90°,∠CON =∠COM , ∵∠MON =90°, ∴∠CON =∠COM =45°,∵三角板绕点O 以每秒3°的速度,射线OC 也绕O 点以每秒6°的速度旋转, 设∠AON 为3t ,∠AOC 为30°+6t , ∵∠AOC –∠AON =45°, 可得:6t –3t =15°, 解得:t =5秒.(8分) (3)OC 平分∠MOB ,∵∠AON +∠BOM =90°,∠BOC =∠COM ,∵三角板绕点O 以每秒3°的速度,射线OC 也绕O 点以每秒6°的速度旋转, 设∠AON 为3t ,∠AOC 为30°+6t , ∴∠COM 为12(90°–3t ), ∵∠BOM +∠AON =90°, 可得:180°–(30°+6t )=12(90°–3t ), 解得:t =23.3秒, 画图如图,(11分)。
沧州市初一上学期数学期末试卷带答案
沧州市初一上学期数学期末试卷带答案一、选择题1.如图,已知线段AB 的长度为a ,CD 的长度为b ,则图中所有线段的长度和为( )A .3a+bB .3a-bC .a+3bD .2a+2b2.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是( ) A .两点之间线段最短 B .两点确定一条直线 C .垂线段最短 D .两点之间直线最短3.底面半径为r ,高为h 的圆柱的体积为2r h π,单项式2r h π的系数和次数分别是( ) A .π,3 B .π,2 C .1,4 D .1,3 4.计算(3)(5)-++的结果是( ) A .-8B .8C .2D .-25.下列调查中,适宜采用全面调查的是() A .对现代大学生零用钱使用情况的调查 B .对某班学生制作校服前身高的调查 C .对温州市市民去年阅读量的调查D .对某品牌灯管寿命的调查6.若21(2)0x y -++=,则2015()x y +等于( ) A .-1 B .1 C .20143 D .20143- 7.用代数式表示“m 的两倍与n 平方的差”,正确的是 ( )A .22()m n -B .2(2m-n)C .22m n -D .2(2)m n -8.若OC 是∠AOB 内部的一条射线,则下列式子中,不能表示“OC 是∠AOB 的平分线”的是( ) A .∠AOC=∠BOC B .∠AOB=2∠BOC C .∠AOC=12∠AOB D .∠AOC+∠BOC=∠AOB9.如果代数式﹣3a 2m b 与ab 是同类项,那么m 的值是( ) A .0B .1C .12D .310.已知105A ∠=︒,则A ∠的补角等于( ) A .105︒B .75︒C .115︒D .95︒11.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是( )A .两点确定一条直线B .两点之间线段最短C .垂线段最短D .连接两点的线段叫做两点的距离12.如果2|2|(1)0a b ++-=,那么()2020a b +的值是( )A .2019-B .2019C .1-D .1二、填空题13.在数轴上,若A 点表示数﹣1,点B 表示数2,A 、B 两点之间的距离为 . 14.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.15.把53°30′用度表示为_____. 16.=38A ∠︒,则A ∠的补角的度数为______.17.已知m ﹣2n =2,则2(2n ﹣m )3﹣3m+6n =_____.18.在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项44x y -,因式分解的结果是()()()22x y x y x y-++,若取9x =,9y =时,则各个因式的值是:()18x y +=,()0x y -=,()22162x y +=,于是就可以把“180162”作为一个六位数的密码,对于多项式324x xy -,取36x =,16y =时,用上述方法产生的密码是________ (写出一个即可).19.如图,将△ABE 向右平移3cm 得到△DCF,若BE=8cm ,则CE=______cm.20.方程x +5=12(x +3)的解是________. 21.若代数式x 2+3x ﹣5的值为2,则代数式2x 2+6x ﹣3的值为_____.22.如图,已知线段16AB cm =,点M 在AB 上:1:3AM BM =,P Q 、分别为AM AB 、的中点,则PQ 的长为____________.23.用度、分、秒表示24.29°=_____.24.线段AB=2cm ,延长AB 至点C ,使BC=2AB ,则AC=_____________cm.三、解答题25.保护环境人人有责,垃圾分类从我做起.某市环保部门为了解垃圾分类的实施情况,抽样调查了部分居民小区一段时间内的生活垃圾分类,对数据进行整理后绘制了如下两幅统计图(其中A 表示可回收垃圾,B 表示厨余垃圾,C 表示有害垃圾,D 表示其它垃圾)根据图表解答下列问题(1)这段时间内产生的厨余垃圾有多少吨?(2)在扇形统计图中,A 部分所占的百分比是多少?C 部分所对应的圆心角度数是多少? (3)其它垃圾的数量是有害垃圾数量的多少倍?条形统计图中表现出的直观情况与此相符吗?为什么?26.如图,线段AB 8=,点C 是线段AB 的中点,点D 是线段BC 的中点.()1求线段AD 的长;()2在线段AC 上有一点E ,1CE BC 3=,求AE 的长.27.如图,OM 是∠AOC 的平分线,ON 是∠BOC 的平分线. (1)如图1,当∠AOB 是直角,∠BOC=60°时,∠MON 的度数是多少? (2)如图2,当∠AOB=α,∠BOC=60°时,猜想∠MON 与α的数量关系;(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON 与α、β有数量关系吗?如果有,指出结论并说明理由.28.如图所示,OC 是AOD ∠的平分线,OE 是BOD ∠的平分线,65 25EOC DOC ∠=︒∠=,,求AOB ∠的度数.29.计算:()()320192413-÷--⨯-30.已知,数轴上点A 、C 对应的数分别为a 、c ,且满足()2020710a c ++-=,点B对应点的数为-3.(1)a =______,c =______;(2)若动点P 、Q 分别从A 、B 同时出发向右运动,点P 的速度为3个单位长度/秒;点Q 的速度为1个单位长度/秒,求经过多长时间P 、Q 两点的距离为43; (3)在(2)的条件下,若点Q 运动到点C 立刻原速返回,到达点B 后停止运动,点P 运动至点C 处又以原速返回,到达点A 后又折返向C 运动,当点Q 停止运动点P 随之停止运动.求在整个运动过程中,两点P ,Q 同时到达的点在数轴上表示的数.四、压轴题31.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______; (3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.32.已知数轴上,点A 和点B 分别位于原点O 两侧,AB=14,点A 对应的数为a ,点B 对应的数为b.(1) 若b =-4,则a 的值为__________. (2) 若OA =3OB ,求a 的值.(3) 点C 为数轴上一点,对应的数为c .若O 为AC 的中点,OB =3BC ,直接写出所有满足条件的c 的值.33.问题一:如图1,已知A ,C 两点之间的距离为16 cm ,甲,乙两点分别从相距3cm 的A ,B 两点同时出发到C 点,若甲的速度为8 cm/s ,乙的速度为6 cm/s ,设乙运动时间为x (s ), 甲乙两点之间距离为y (cm ). (1)当甲追上乙时,x = . (2)请用含x 的代数式表示y . 当甲追上乙前,y = ;当甲追上乙后,甲到达C 之前,y = ; 当甲到达C 之后,乙到达C 之前,y = .问题二:如图2,若将上述线段AC 弯曲后视作钟表外围的一部分,线段AB 正好对应钟表上的弧AB (1小时的间隔),易知∠AOB=30°.(1)分针OD 指向圆周上的点的速度为每分钟转动 cm ;时针OE 指向圆周上的点的速度为每分钟转动 cm .(2)若从4:00起计时,求几分钟后分针与时针第一次重合.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】依据线段AB长度为a,可得AB=AC+CD+DB=a,依据CD长度为b,可得AD+CB=a+b,进而得出所有线段的长度和.【详解】∵线段AB长度为a,∴AB=AC+CD+DB=a,又∵CD长度为b,∴AD+CB=a+b,∴图中所有线段的长度和为:AB+AC+CD+DB+AD+CB=a+a+a+b=3a+b,故选A.【点睛】本题考查了比较线段的长度和有关计算,主要考查学生能否求出线段的长度和知道如何数图形中的线段.2.B解析:B【解析】因为两点确定一条直线,所以把一根木条固定在墙面上,至少需要两枚钉子故选B. 3.A解析:A【解析】【分析】由题意根据单项式系数和次数的确定方法即可求出答案得到选项.【详解】π的系数和次数分别是π,3;解:单项式2r h故选:A.【点睛】本题考查单项式定义,解题的关键是理解单项式系数和次数的确定方法,本题属于基础题型.4.C解析:C【解析】【分析】根据有理数加法法则计算即可得答案.【详解】-++(3)(5)=5+-3-=2故选:C.【点睛】本题考查有理数加法,同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数与0相加,仍得这个数;熟练掌握有理数加法法则是解题关键.5.B解析:B【解析】【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:A、对现代大学生零用钱使用情况的调查,工作量大,用抽样调查,故此选项错误;B、对某班学生制作校服前身高的调查,需要全面调查,故此选项正确;C、对温州市市民去年阅读量的调查,工作量大,用抽样调查,故此选项错误;D、对某品牌灯管寿命的调查,有破坏性,用抽样调查,故此选项错误.故选:B.【点睛】本题考查的是调查方法的选择,正确选择调查方式要根据全面调查和抽样调查的优缺点再结合实际情况去分析.6.A解析:A(y+2)2=0,列出方程x-1=0,y+2=0,求出x=1、y=-2,代入所求代数式(x+y)2015=(1﹣2)2015=﹣1.故选A7.C解析:C【解析】【分析】根据题意可以用代数式表示m的2倍与n平方的差.【详解】用代数式表示“m的2倍与n平方的差”是:2m-n2,故选:C.【点睛】本题考查了列代数式,解题的关键是明确题意,列出相应的代数式.8.D解析:D【解析】A. ∵∠AOC=∠BOC,∴OC平分∠AOB,即OC是∠AOB的角平分线,正确,故本选项错误;B. ∵∠AOB=2∠BOC=∠AOC+∠BOC,∴∠AOC=∠BOC,∴OC平分∠AOB,即OC是∠AOB的角平分线,正确,故本选项错误;C. ∵∠AOC=12∠AOB,∴∠AOB=2∠AOC=∠AOC+∠BOC,∴∠AOC=∠BOC,∴OC平分∠AOB,即OC是∠AOB的角平分线,正确,故本选项错误;D. ∵∠AOC+∠BOC=∠AOB,∴假如∠AOC=30°,∠BOC=40°,∠AOB=70°,符合上式,但是OC不是∠AOB的角平分线,故本选项正确.故选D.点睛:本题考查了角平分线的定义,注意:角平分线的表示方法,①OC是∠AOB的角平分线,②∠AOC=∠BOC,③∠AOB=2∠BOC(或2∠AOC),④∠AOC(或∠BOC)=12∠AOB.9.C【解析】【分析】根据同类项的定义得出2m=1,求出即可.【详解】解:∵单项式-3a2m b与ab是同类项,∴2m=1,∴m=12,故选C.【点睛】本题考查了同类项的定义,能熟记同类项的定义是解此题的关键,所含字母相同,并且相同字母的指数也分别相同的项,叫同类项.10.B解析:B【解析】【分析】由题意直接根据互补两角之和为180°求解即可.【详解】解:∵∠A=105°,∴∠A的补角=180°-105°=75°.故选:B.【点睛】本题考查补角的知识,属于基础题,掌握互补两角之和为180°是关键.11.A解析:A【解析】【分析】根据公理“两点确定一条直线”来解答即可.【详解】解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选:A.【点睛】此题考查的是直线的性质在实际生活中的运用,此类题目有利于培养学生生活联系实际的能力.12.D解析:D【解析】根据非负数的性质可求得a ,b 的值,然后代入即可得出答案. 【详解】解:因为2|2|(1)0a b ++-=, 所以a +2=0,b -1=0, 所以a =-2,b =1, 所以()2020a b +=(-2+1)2020=(-1)2020=1.故选:D. 【点睛】本题主要考查了非负数的性质——绝对值和偶次方,根据几个非负数的和为零,则这几个数均为零求出a ,b 的值是解决此题的关键.二、填空题 13.3 【解析】试题分析:用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离.解:2﹣(﹣1)=3. 故答案为3 考点:数轴.解析:3 【解析】试题分析:用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离. 解:2﹣(﹣1)=3. 故答案为3 考点:数轴.14.【解析】 【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可. 【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元,共用去:(2a+3b)元 解析:(23)a b +【解析】 【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a元的苹果2千克用去2a元,买单价为b元的香蕉3千克用去3b元,共用去:(2a+3b)元.故选C.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.15.5°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:5330’用度表示为53.5,故答案为:53.5.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以解析:5°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53︒30’用度表示为53.5︒,故答案为:53.5︒.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由大单位化小单位要乘以60才行.16.【解析】【分析】根据两个角互补的定义对其进行求解.【详解】解:,的补角的度数为:,故答案为:.【点睛】本题考查互补的含义,解题关键就是用180度直接减去即可.解析:142︒【解析】【分析】根据两个角互补的定义对其进行求解.【详解】解:∠=,38A∴A∠的补角的度数为:18038142-=,故答案为:142︒.【点睛】本题考查互补的含义,解题关键就是用180度直接减去即可.17.-22【解析】【分析】将m﹣2n=2代入原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)计算可得.【详解】解:当m﹣2n=2时,原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)=2×(﹣2)3解析:-22【解析】【分析】将m﹣2n=2代入原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)计算可得.【详解】解:当m﹣2n=2时,原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)=2×(﹣2)3﹣3×2=﹣16﹣6=﹣22,故答案为:﹣22.【点睛】本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.18.36684或36468或68364或68436或43668或46836等(写出一个即可) 【解析】【分析】首先对多项式进行因式分解,然后把字母的值代入求得各个因式,从而写出密码【详解】=x(解析:36684或36468或68364或68436或43668或46836等(写出一个即可)【解析】【分析】首先对多项式进行因式分解,然后把字母的值代入求得各个因式,从而写出密码【详解】32x xy=x(x+2y)(x-2y).4当x=36,y=16时,x+2y=36+32=68x-2y=36-32=4.则密码是36684或36468或68364或68436或43668或46836故答案为36684或36468或68364或68436或43668或46836【点睛】此题考查因式分解的应用,解题关键在于把字母的值代入19.5【解析】【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案. 【详解】∵△ABE向右平移3cm得到△DCF,∴B C=3cm,∵BE=8cm,∴C解析:5【解析】【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案.【详解】∵△ABE向右平移3cm得到△DCF,∴BC=3cm,∵BE=8cm,∴CE=BE-BC=8-3=5cm,故答案为:5.【点睛】本题考查了平移的性质,熟练掌握对应点间的距离等于平移距离的性质是解题的关键.20.x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.解析:x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.21.17【解析】【分析】【详解】解:根据题意可得:+3x=7,则原式=2(+3x)+3=2×7+3=17.故答案为:17【点睛】本题考查代数式的求值,利用整体代入思想解题是关键解析:17【解析】【分析】【详解】解:根据题意可得:2x+3x=7,则原式=2(2x+3x)+3=2×7+3=17.故答案为:17【点睛】本题考查代数式的求值,利用整体代入思想解题是关键22.6cm【解析】【分析】根据已知条件得到AM=4cm.BM=12cm,根据线段中点的定义得到AP=AM=2cm,AQ=AB=8cm,从而得到答案.【详解】解:∵AB=16cm,AM:BM=1解析:6cm【解析】【分析】根据已知条件得到AM=4cm.BM=12cm,根据线段中点的定义得到AP=12AM=2cm,AQ=12AB=8cm,从而得到答案.【详解】解:∵AB=16cm,AM:BM=1:3,∴AM=4cm.BM=12cm,∵P,Q分别为AM,AB的中点,∴AP=12AM=2cm,AQ=12AB=8cm,∴PQ=AQ-AP=6cm;故答案为:6cm.【点睛】本题考查了线段的长度计算问题,把握中点的定义,灵活运用线段的和、差、倍、分进行计算是解决本题的关键.23.【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′解析:241724︒'"【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′24″.故答案为24°17′24″.【点睛】此类题是进行度、分、秒的转化运算,相对比较简单,注意以60为进制.24.6【解析】如图,∵AB=2cm,BC=2AB,∴BC=4cm,∴AC=AB+BC=6cm.故答案为:6.解析:6【解析】如图,∵AB=2cm,BC=2AB,∴BC=4cm,∴AC=AB+BC=6cm.故答案为:6.三、解答题25.(1)餐厨垃圾有280吨;(2)在扇形统计图中,A部分所占的百分比是50%,C部分所对应的圆心角度数是18°;(3)2倍,相符,理由是纵轴的数量是从0开始的,并且单位长度表示的数相同【解析】【分析】(1)求出样本容量,进而求出厨余垃圾的吨数;(2)A部分由400吨,总数量为800吨,求出所占的百分比,C部分占整体的40800,因此C部分所在的圆心角的度数为360°的40 800.(3)求出“其它垃圾”的数量是“有害垃圾”的倍数,再通过图形得出结论.【详解】解:(1)80÷10%=800吨,800﹣400﹣40﹣80=280吨,答:厨余垃圾有280吨;(2)400÷800=50%,360°×40800=18°,答:在扇形统计图中,A部分所占的百分比是50%,C部分所对应的圆心角度数是18°.(3)80÷40=2倍,相符,理由是纵轴的数量是从0开始的,并且单位长度表示的数相同.【点睛】考查扇形统计图、条形统计图的意义和制作方法,从两个统计图中获取数量及数量之间的关系是解决问题的关键,样本估计总体是统计中常用的方法.26.(1)6,(2)83.【解析】【分析】()1根据AD AC CD=+,只要求出AC、CD即可解决问题;()2根据AE AC EC=-,只要求出CE即可解决问题;【详解】解:()1AB8=,C是AB的中点,AC BC4∴==,D是BC的中点,1CD DB BC 22∴===, AD AC CD 426∴=+=+=.()12CE BC 3=,BC 4=, 4CE 3∴=, 48AE AC CE 433∴=-=-=. 【点睛】本题考查两点间距离、线段的和差定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.27.(1)45°;(2)∠MON=12α.(3)∠MON=12α 【解析】【分析】(1)求出∠AOC 度数,求出∠MOC 和∠NOC 的度数,代入∠MON=∠MOC ﹣∠NOC 求出即可;(2)求出∠AOC 度数,求出∠MOC 和∠NOC 的度数,代入∠MON=∠MOC ﹣∠NOC 求出即可;(3)求出∠AOC 度数,求出∠MOC 和∠NOC 的度数,代入∠MON=∠MOC ﹣∠NOC 求出即可.【详解】解:(1)如图1,∵∠AOB=90°,∠BOC=60°,∴∠AOC=90°+60°=150°,∵OM 平分∠AOC ,ON 平分∠BOC ,∴∠MOC=12∠AOC=75°,∠NOC=12∠BOC=30° ∴∠MON=∠MOC ﹣∠NOC=45°. (2)如图2,∠MON=12α, 理由是:∵∠AOB=α,∠BOC=60°,∴∠AOC=α+60°,∵OM 平分∠AOC ,ON 平分∠BOC ,∴∠MOC=12∠AOC=12α+30°,∠NOC=12∠BOC=30° ∴∠MON=∠MOC ﹣∠NOC=(12α+30°)﹣30°=12α. (3)如图3,∠MON=12α,与β的大小无关.理由:∵∠AOB=α,∠BOC=β,∴∠AOC=α+β.∵OM 是∠AOC 的平分线,ON 是∠BOC 的平分线,∴∠MOC=12∠AOC=12(α+β), ∠NOC=12∠BOC=12β, ∴∠AON=∠AOC ﹣∠NOC=α+β﹣12β=α+12β. ∴∠MON=∠MOC ﹣∠NOC =12(α+β)﹣12β=12α 即∠MON=12α. 考点:角的计算;角平分线的定义.28.130︒【解析】【分析】根据题意直接利用角平分线的性质得出∠AOD 和∠BOD ,进而求出AOB ∠的度数.【详解】解:∠EOD=∠EOC -∠DOC=65°-25°=40°,∵OC 是∠AOD 的平分线,OE 是∠BOD 的平分线,∴∠AOD=2∠DOC=2⨯25°=50°,∠BOD=2∠EOD=2⨯40°=80°,∴∠AOB=∠AOD +∠BOD =50°+80°=130°.【点睛】本题主要考查角的运算,熟练运用角平分线的定义以及正确掌握角平分线的性质是解题关键.29.1【解析】【分析】根据有理数的乘方、绝对值、有理数的乘除法和加减法可以解答本题.【详解】解:()()3201924132(3)1-÷--⨯-=---= 【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.30.(1)-7,1.(2)经过43秒或83秒P ,Q 两点的距离为43.(3)在整个运动过程中,两点P ,Q 同时到达的点在数轴上表示的数分别是-1,0,-2.【分析】(1)由绝对值和偶次方的非负性列方程组可解;(2)设经过t 秒两点的距离为43,根据题意列绝对值方程求解即可; (3)分类讨论:点P 未运动到点C 时;点P 运动到点C 返回时;当点P 返回到点A 时.分别求出不同阶段的运动时间,进而求出相关点所表示的数即可.【详解】(1)由非负数的性质可得:7010a c +=⎧⎨-=⎩, ∴7a =-,1c =,故答案为:-7,1;(2)设经过t 秒两点的距离为43, 由题意得:41433t t ⨯+-=, 解得43t =或83, 答:经过43秒或83秒P ,Q 两点的距离为43; (3)点P 未运动到点C 时,设经过x 秒P ,Q 相遇,由题意得:34x x =+,∴2x =,表示的数为:7321-+⨯=-,点P 运动到点C 返回时,设经过y 秒P ,Q 相過,由题意得:()34217y y ++=--⎡⎤⎣⎦,∴3y =,表示的数是:()331710⨯----=⎡⎤⎣⎦,当点P 返回到点A 时,用时163秒,此时点Q 所在位置表示的数是13-, 设再经过z 秒相遇, 由题意得:()1373z z +=---, ∴53z =, 表示的数是:57323-+⨯=-, 答:在整个运动过程中,两点P ,Q 同时到达的点在数轴上表示的数分别是-1,0,-2.本题综合考查了绝对值和偶次方的非负性、利用方程来解决动点问题与行程问题,本题难度较大.四、压轴题31.(1)4;(2)12或72;(3)27或2213或2 【解析】【分析】(1)根据题目得出棋子一共运动了t+2t+3t=6t 个单位长度,当t=4时,6t=24,为MN 长度的整的偶数倍,即棋子回到起点M 处,点3Q 与M 点重合,从而得出13Q Q 的长度.(2)根据棋子的运动规律可得,到3Q 点时,棋子运动运动的总的单位长度为6t,,因为t<4,由(1)知道,棋子运动的总长度为3或12+9=21,从而得出t 的值.(3)若t 2,≤则棋子运动的总长度10t 20≤,可知棋子或从M 点未运动到N 点或从N 点返回运动到2Q 的左边或从N 点返回运动到2Q 的右边三种情况可使242Q Q =【详解】解:(1)∵t+2t+3t=6t,∴当t=4时,6t=24,∵24122=⨯,∴点3Q 与M 点重合,∴134Q Q =(2)由已知条件得出:6t=3或6t=21, 解得:1t 2=或7t 2= (3)情况一:3t+4t=2, 解得:2t 7= 情况二:点4Q 在点2Q 右边时:3t+4t+2=2(12-3t) 解得:22t 13=情况三:点4Q 在点2Q 左边时:3t+4t-2=2(12-3t)解得:t=2.综上所述:t 的值为,2或27或2213. 【点睛】本题是一道探索动点的运动规律的题目,考查了学生数形结合的能力,探索规律的能力,用一元一次方程解决问题的能力.最后要注意分多种情况讨论.32.(1)10;(2)212±;(3)288.5±±,【解析】【分析】(1)根据题意画出数轴,由已知条件得出AB=14,OB=4,则OA=10,得出a的值为10.(2)分两种情况,点A在原点的右侧时,设OB=m,列一元一次方程求解,进一步得出OA的长度,从而得出a的值.同理可求出当点A在原点的左侧时,a的值.(3)画数轴,结合数轴分四种情况讨论计算即可.【详解】(1)解:若b=-4,则a的值为 10(2)解:当A在原点O的右侧时(如图):设OB=m,列方程得:m+3m=14,解这个方程得,7m2 =,所以,OA=212,点A在原点O的右侧,a的值为212.当A在原点的左侧时(如图),a=-21 2综上,a的值为±212.(3)解:当点A在原点的右侧,点B在点C的左侧时(如图), c=-28 5.当点A在原点的右侧,点B在点C的右侧时(如图), c=-8.当点A在原点的左侧,点B在点C的右侧时,图略,c=28 5.当点A在原点的左侧,点B在点C的左侧时,图略,c=8.综上,点c的值为:±8,±28 5.【点睛】本题考查的知识点是通过画数轴,找出数轴上各线段间的数量关系并用一元一次方程来求解,需要注意的是分情况讨论时要考虑全面,此题充分锻炼了学生动手操作能力以及利用数行结合解决问题的能力.33.问题一、(1)32;(2)3-2x ;2x -3;13-6x ;问题一、(1)35;120;24011. 【解析】【分析】问题一根据等量关系,路程=速度⨯时间,路程差=路程1-路程2,即可列出方程求解。
沧州市七年级上册数学期末试题及答案解答
沧州市七年级上册数学期末试题及答案解答一、选择题1.如果一个角的补角是130°,那么这个角的余角的度数是( ) A .30° B .40° C .50° D .90° 2.若关于x 的方程234k x -=与20x -=的解相同,则k 的值为( )A .10-B .10C .5-D .5 3.底面半径为r ,高为h 的圆柱的体积为2r h π,单项式2r h π的系数和次数分别是( ) A .π,3B .π,2C .1,4D .1,34.如图,数轴的单位长度为1,点A 、B 表示的数互为相反数,若数轴上有一点C 到点B 的距离为2个单位,则点C 表示的数是( )A .-1或2B .-1或5C .1或2D .1或55.如图,OA ⊥OC ,OB ⊥OD ,①∠AOB=∠COD ;②∠BOC+∠AOD=180°;③∠AOB+∠COD=90°;④图中小于平角的角有6个;其中正确的结论有几个( )A .1个B .2个C .3个D .4个6.下列方程变形正确的是( ) A .方程110.20.5x x --=化成1010101025x x--= B .方程 3﹣x=2﹣5(x ﹣1),去括号,得 3﹣x=2﹣5x ﹣1 C .方程 3x ﹣2=2x+1 移项得 3x ﹣2x=1+2 D .方程23t=32,未知数系数化为 1,得t=1 7.已知关于x 的方程ax ﹣2=x 的解为x =﹣1,则a 的值为( ) A .1 B .﹣1 C .3 D .﹣3 8.计算:2.5°=( )A .15′B .25′C .150′D .250′ 9.下列各数中,绝对值最大的是( )A .2B .﹣1C .0D .﹣310.不等式x ﹣2>0在数轴上表示正确的是( ) A . B . C .D .11.某同学晚上6点多钟开始做作业,他家墙上时钟的时针和分针的夹角是120°,他做完作业后还是6点多钟,且时针和分针的夹角还是120°,此同学做作业大约用了( ) A .40分钟B .42分钟C .44分钟D .46分钟12.把 1,3,5,7,9,⋯排成如图所示的数表,用十字形框中表内的五个数,当把十字形上下左右移动,保证每次十字形要框中五个数,则框中的五个数的和不可能是( )A .1685B .1795C .2265D .2125二、填空题13.已知x=5是方程ax ﹣8=20+a 的解,则a= ________14.若代数式mx 2+5y 2﹣2x 2+3的值与字母x 的取值无关,则m 的值是__. 15.把53°30′用度表示为_____. 16.若212-my x 与5x 3y 2n 是同类项,则m +n =_____. 17.单项式22ab -的系数是________.18.如果向东走60m 记为60m +,那么向西走80m 应记为______m. 19.若单项式 3a 3 b n 与 -5a m+1 b 4所得的和仍是单项式,则 m - n 的值为_____. 20.如图,已知OC 是∠AOB 内部的一条射线,∠AOC =30°,OE 是∠COB 的平分线.当∠BOE =40°时,则∠AOB 的度数是_____.21.建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:____________________________; 22.若关于x 的方程1210m x m -++=是一元一次方程,则这个方程的解是_______. 23.定义:从一个角的顶点出发,把这个角分成1: 2 的两个角的射线,叫做这个角的三分线,显然,一个角的三分线有两条.如图,90AOB ︒∠=,OC 、OD 是∠AOB 的两条三分线,以O 为中心,将∠COD 顺时针最少旋转__________ ,OA 恰好是∠COD 的三等分线.24.a ※b 是新规定的这样一种运算法则:a ※b =a ﹣b+2ab ,若(﹣2)※3=_____.三、压轴题25.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.26.问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律. 探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个? 如图①,连接边长为2的正三角形三条边的中点,从上往下看: 边长为1的正三角形,第一层有1个,第二层有3个,共有个;边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.27.已知数轴上两点A、B,其中A表示的数为-2,B表示的数为2,若在数轴上存在一点C,使得AC+BC=n,则称点C叫做点A、B的“n节点”.例如图1所示:若点C表示的数为0,有AC+BC=2+2=4,则称点C为点A、B的“4节点”.请根据上述规定回答下列问题:(1)若点C为点A、B的“n节点”,且点C在数轴上表示的数为-4,求n的值;(2)若点D是数轴上点A、B的“5节点”,请你直接写出点D表示的数为______;(3)若点E在数轴上(不与A、B重合),满足BE=12AE,且此时点E为点A、B的“n节点”,求n的值.28.已知有理数a,b,c在数轴上对应的点分别为A,B,C,且满足(a-1)2+|ab+3|=0,c=-2a+b.(1)分别求a,b,c的值;(2)若点A和点B分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t秒.i)是否存在一个常数k,使得3BC-k•AB的值在一定时间范围内不随运动时间t的改变而改变?若存在,求出k的值;若不存在,请说明理由.ii)若点C以每秒3个单位长度的速度向右与点A,B同时运动,何时点C为线段AB的三等分点?请说明理由.29.如图,以长方形OBCD的顶点O为坐标原点建立平面直角坐标系,B点坐标为(0,a),C点坐标为(c,b),且a、b、C满足6a +|2b+12|+(c﹣4)2=0.(1)求B、C两点的坐标;(2)动点P从点O出发,沿O→B→C的路线以每秒2个单位长度的速度匀速运动,设点P 的运动时间为t秒,DC上有一点M(4,﹣3),用含t的式子表示三角形OPM的面积;(3)当t为何值时,三角形OPM的面积是长方形OBCD面积的13?直接写出此时点P的坐标.30.已知:如图,点M 是线段AB 上一定点,12AB cm =,C 、D 两点分别从M 、B 出发以1/cm s 、2/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)()1若4AM cm =,当点C 、D 运动了2s ,此时AC =________,DM =________;(直接填空)()2当点C 、D 运动了2s ,求AC MD +的值.()3若点C 、D 运动时,总有2MD AC =,则AM =________(填空) ()4在()3的条件下,N 是直线AB 上一点,且AN BN MN -=,求MN AB的值.31.如图所示,已知数轴上A ,B 两点对应的数分别为-2,4,点P 为数轴上一动点,其对应的数为x .(1)若点P 到点A ,B 的距离相等,求点P 对应的数x 的值.(2)数轴上是否存在点P ,使点P 到点A ,B 的距离之和为8?若存在,请求出x 的值;若不存在,说明理由.(3)点A ,B 分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P 以5个单位长度/分的速度从O 点向左运动.当遇到A 时,点P 立即以同样的速度向右运动,并不停地往返于点A 与点B 之间.当点A 与点B 重合时,点P 经过的总路程是多少? 32.如图①,点O 为直线AB 上一点,过点O 作射线OC ,使∠AOC=120°,将一直角三角板的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方. (1)将图①中的三角板OMN 摆放成如图②所示的位置,使一边OM 在∠BOC 的内部,当OM 平分∠BOC 时,∠BO N= ;(直接写出结果)(2)在(1)的条件下,作线段NO 的延长线OP (如图③所示),试说明射线OP 是∠AOC 的平分线;(3)将图①中的三角板OMN 摆放成如图④所示的位置,请探究∠NOC 与∠AOM 之间的数量关系.(直接写出结果,不须说明理由)【参考答案】***试卷处理标记,请不要删除1.B解析:B【解析】【分析】直接利用互补的定义得出这个角的度数,进而利用互余的定义得出答案.【详解】解:∵一个角的补角是130︒,∴这个角为:50︒,∴这个角的余角的度数是:40︒.故选:B.【点睛】此题主要考查了余角和补角,正确把握相关定义是解题关键.2.D解析:D【解析】【分析】根据同解方程的定义,先求出x-2=0的解,再将它的解代入方程2k-3x=4,求得k的值.【详解】解:∵方程2k-3x=4与x-2=0的解相同,∴x=2,把x=2代入方程2k-3x=4,得2k-6=4,解得k=5.故选:D.【点睛】本题考查了同解方程的概念和方程的解法,关键是根据同解方程的定义,先求出x-2=0的解.3.A解析:A【解析】【分析】由题意根据单项式系数和次数的确定方法即可求出答案得到选项.【详解】π的系数和次数分别是π,3;解:单项式2r h故选:A.【点睛】本题考查单项式定义,解题的关键是理解单项式系数和次数的确定方法,本题属于基础题型.4.D【解析】【分析】如图,根据点A、B表示的数互为相反数可确定原点,即可得出点B表示的数,根据两点间的距离公式即可得答案.【详解】如图,设点C表示的数为m,∵点A、B表示的数互为相反数,∴AB的中点O为原点,∴点B表示的数为3,∵点C到点B的距离为2个单位,=2,∴3m∴3-m=±2,解得:m=1或m=5,∴m的值为1或5,故选:D.【点睛】本题考查了数轴,熟练掌握数轴上两点间的距离公式是解题关键.5.C解析:C【解析】【分析】根据垂直的定义和同角的余角相等分别计算后对各小题进行判断,由此即可求解.【详解】∵OA⊥OC,OB⊥OD,∴∠AOC=∠BOD=90°,∴∠AOB+∠BOC=∠COD+∠BOC=90°,∴∠AOB=∠COD,故①正确;∠BOC+∠AOD=90°﹣∠AOB+90°+∠AOB=180°,故②正确;∠AOB+∠COD不一定等于90°,故③错误;图中小于平角的角有∠AOB,∠AOC,∠AOD,∠BOC,∠BOD,∠COD一共6个,故④正确;综上所述,说法正确的是①②④.故选C.【点睛】本题考查了余角和补角,垂直的定义,是基础题,熟记概念与性质并准确识图,理清图中各角度之间的关系是解题的关键.解析:C 【解析】 【分析】各项中方程变形得到结果,即可做出判断. 【详解】解:A 、方程x 1x 10.20.5--=化成10x 1010x25--=1,错误; B 、方程3-x=2-5(x-1),去括号得:3-x=2-5x+5,错误; C 、方程3x-2=2x+1移项得:3x-2x=1+2,正确,D 、方程23t 32=,系数化为1,得:t=94,错误; 所以答案选C. 【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.7.B解析:B 【解析】 【分析】将1x =-代入2ax x -=,即可求a 的值. 【详解】解:将1x =-代入2ax x -=, 可得21a --=-, 解得1a =-, 故选:B . 【点睛】本题考查一元一次方程的解;熟练掌握一元一次方程的解与方程的关系是解题的关键.8.C解析:C 【解析】 【分析】根据“1度=60分,即1°=60′”解答. 【详解】解:2.5°=2.5×60′=150′. 故选:C . 【点睛】考查了度分秒的换算,度、分、秒之间是60进制,将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.解析:D 【解析】试题分析:∵|2|=2,|﹣1|=1,|0|=0,|﹣3|=3,∴|﹣3|最大,故选D . 考点:D .10.C解析:C 【解析】 【分析】先求出不等式的解集,再在数轴上表示出来,找出符合条件的选项即可. 【详解】 移项得,x >2, 在数轴上表示为:故选:C . 【点睛】本题考查的是在数轴上表示一元一次不等式的解集,解答此类题目的关键是熟知实心圆点与空心圆点的区别.11.C解析:C 【解析】试题解析:设开始做作业时的时间是6点x 分, ∴6x ﹣0.5x=180﹣120, 解得x≈11;再设做完作业后的时间是6点y 分, ∴6y ﹣0.5y=180+120, 解得y≈55,∴此同学做作业大约用了55﹣11=44分钟. 故选C .12.B解析:B 【解析】 【分析】寻找这五个数和的规律,设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,这五个数的和为5a ,用每个数字除以5,可得中间数字,结果的末位只能是3或5或7,不能是1或9. 【详解】解:设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,1010225a a a a a a +-+++-++=,A 选项51685,357a a ==,可以作为中间数;B 选项51795,359a a ==,不能作为中间数;C 选项52265,453a a ==,可以作为中间数;D 选项52125,425a a ==,可以作为中间数.故选:B【点睛】本题考查了数的表示及规律探究,找准这五个数与中间数的规律是解题的关键.二、填空题13.7【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a 的一元一次方程,从而可求出a 的值.解:把x=5代入方程ax ﹣8=20+a得:5a ﹣8=20+a ,解析:7【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a 的一元一次方程,从而可求出a 的值.解:把x=5代入方程ax ﹣8=20+a得:5a ﹣8=20+a ,解得:a=7.故答案为7.考点:方程的解.14.2【解析】解:mx2+5y2﹣2x2+3=(m ﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x 的取值无关,则m ﹣2=0,解得m=2.故答案为2.点睛:本题主要考查合并同类解析:2【解析】解:mx 2+5y 2﹣2x 2+3=(m ﹣2)x 2+5y 2+3,∵代数式mx 2+5y 2﹣2x 2+3的值与字母x 的取值无关,则m ﹣2=0,解得m =2.故答案为2.点睛:本题主要考查合并同类项的法则.即系数相加作为系数,字母和字母的指数不变.与字母x 的取值无关,即含字母x 的系数为0.15.5°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:5330’用度表示为53.5,故答案为:53.5.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以解析:5°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53︒30’用度表示为53.5︒,故答案为:53.5︒.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由大单位化小单位要乘以60才行.16.4【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【详解】解:根据题意得:2n=2,m=3,解得:n=1,m=3,则解析:4【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【详解】解:根据题意得:2n=2,m=3,解得:n=1,m=3,则m+n=4.故答案是:4.【点睛】本题考查了利用同类项的定义求字母的值,熟练掌握同类项的定义是解答本题的关键,所含字母相同,并且相同字母的指数也相同的项,叫做同类项,根据相同字母的指数相同列方程(或方程组)求解即可.17.【解析】【分析】直接利用单项式的系数的概念分析得出即可.【详解】解:单项式的系数是,故答案为:.【点睛】此题主要考查了单项式,正确把握相关定义是解题关键.解析:12-【解析】【分析】直接利用单项式的系数的概念分析得出即可.【详解】解:单项式22ab-的系数是12-,故答案为:1 2 -.【点睛】此题主要考查了单项式,正确把握相关定义是解题关键.18.-80【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:如果向东走60m记为,那么向西走80m应记为.故答案为.【点睛】本题考查正数和负数解析:-80【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:如果向东走60m 记为60m +,那么向西走80m 应记为80m -.故答案为80-.【点睛】本题考查正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.19.-2【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n ,m 的值,再代入代数式计算即可.【详解】根据题意得m+1=3,n=4,解得m=2,n=4.则m-解析:-2【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n ,m 的值,再代入代数式计算即可.【详解】根据题意得m+1=3,n=4,解得m=2,n=4.则m-n=2-4=-2.故答案为-2.【点睛】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点.20.110【解析】【分析】由角平分线的定义求得∠BOC=80°,则∠AOB=∠BOC+∠AOC=110°.【详解】解:∵OE 是∠COB 的平分线,∠BOE=40°,∴∠BOC=80°,∴∠A解析:110【解析】由角平分线的定义求得∠BOC=80°,则∠AOB=∠BOC+∠AOC=110°.【详解】解:∵OE是∠COB的平分线,∠BOE=40°,∴∠BOC=80°,∴∠AOB=∠BOC+∠AOC=80°+30°=110°,故答案为:110°.【点睛】此题主要考查角度的求解,解题的关键是熟知角平分线的性质.21.两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直解析:两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.故答案为:两点确定一条直线.【点睛】考核知识点:两点确定一条直线.理解课本基本公理即可.22.【解析】【分析】【详解】由题意知m-1=1,因此m=2,把m=2代入原方程x+2m+1=0可得x=-5.考点:一元一次方程的概念及解x=-解析:5【解析】【分析】【详解】由题意知m-1=1,因此m=2,把m=2代入原方程x+2m+1=0可得x=-5.考点:一元一次方程的概念及解23.40【分析】由OA 恰好是COD 的三等分线可得或,旋转角为,求出其度数取最小值即可. 【详解】解:因为,OC 、OD 是AOB 的两条三分线,所以 因为OA 恰好是COD 的解析:40【解析】【分析】由OA 恰好是∠COD 的三等分线可得'10AOD ︒∠=或'20AOD ︒∠=,旋转角为'DOD ∠,求出其度数取最小值即可.【详解】解:因为90AOB ︒∠=,OC 、OD 是∠AOB 的两条三分线,所以30AOD ︒∠=因为OA 恰好是∠COD 的三等分线,所以'10AOD ︒∠=或'20AOD ︒∠=,当'10AOC ︒∠=时,''301040DOD AOD AOD ︒︒︒∠=∠+∠=+=当'20AOD ︒∠=时,''302050DOD AOD AOD ︒︒︒∠=∠+∠=+=,综上所述将∠COD 顺时针最少旋转40︒.故答案为:40︒【点睛】本题考查了角的平分线,熟练掌握角平分线的相关运算是解题的关键.24.-17【解析】【分析】根据题中的新定义将所求式子化为算式-2-3+2×(-2)×3,计算即可得到结果.【详解】∵a ※b =a ﹣b+2ab ,∴(﹣2)※3=﹣2﹣3+2×(﹣2)×3=﹣解析:-17【解析】【分析】根据题中的新定义将所求式子化为算式-2-3+2×(-2)×3,计算即可得到结果. 【详解】∵a ※b =a ﹣b+2ab ,∴(﹣2)※3=﹣2﹣3+2×(﹣2)×3=﹣2﹣3﹣12=﹣17.故答案为:﹣17.【点睛】此题考查了有理数的混合运算,属于新定义题型,弄清题中的新定义是解本题的关键.三、压轴题25.(1)40º;(2)84º;(3)7.5或15或45【解析】【分析】(1)利用角的和差进行计算便可;(2)设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON 在不同情况下的定值,再根据角的和差确定t 的不同方程进行解答便可.【详解】解:(1))∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD又∵∠AOD+∠BOC=160°且∠AOB=120°∴COD AOD BOC AOB ∠=∠+∠-∠160120=︒-︒40=︒(2)3DOE AOE ∠=∠,3COF BOF ∠=∠∴设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒则3COF y ∠=︒,44120COD AQD BOC AOB x y ∴∠=∠+∠-∠=︒+︒-︒EOF EOD FOC COD ∠=∠+∠-∠()()3344120120x y x y x y =︒+︒-︒+︒-︒=︒-︒+︒72EOF COD ∠=∠ 7120()(44120)2x y x y ∴-+=+- 36x y ∴+=120()84EOF x y ∴︒+︒︒∠=-=(3)当OI 在直线OA 的上方时,有∠MON=∠MOI+∠NOI=12(∠AOI+∠BOI ))=12∠AOB=12×120°=60°, ∠PON=12×60°=30°, ∵∠MOI=3∠POI , ∴3t=3(30-3t )或3t=3(3t-30),解得t=152或15; 当OI 在直线AO 的下方时,∠MON ═12(360°-∠AOB )═12×240°=120°, ∵∠MOI=3∠POI ,∴180°-3t=3(60°-61202t -)或180°-3t=3(61202t --60°),解得t=30或45,综上所述,满足条件的t的值为152s或15s或30s或45s.【点睛】此是角的和差的综合题,考查了角平分线的性质,角的和差计算,一元一次方程(组)的应用,旋转的性质,有一定的难度,体现了用方程思想解决几何问题,分情况讨论是本题的难点,要充分考虑全面,不要漏掉解.26.探究三:16,6;结论:n²,;应用:625,300.【解析】【分析】探究三:模仿探究一、二即可解决问题;结论:由探究一、二、三可得:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,边长为1的正三角形共有个;边长为2的正三角形共有个;应用:根据结论即可解决问题.【详解】解:探究三:如图3,连接边长为4的正三角形三条边的对应四等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,共有个;边长为2的正三角形有个.结论:连接边长为的正三角形三条边的对应等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,……,第层有个,共有个;边长为2的正三角形,共有个.应用:边长为1的正三角形有=625(个),边长为2的正三角形有(个).故答案为探究三:16,6;结论:n², ;应用:625,300.【点睛】本题考查规律型问题,解题的关键是理解题意,学会模仿例题解决问题.27.(1)n= 8;(2)-2.5或2.5;(3)n=4或n=12.【解析】【分析】(1)根据“n节点”的概念解答;(2)设点D表示的数为x,根据“5节点”的定义列出方程分情况,并解答;(3)需要分类讨论:①当点E在BA延长线上时,②当点E在线段AB上时,③当点E在AB延长线上时,根据BE=12AE,先求点E表示的数,再根据AC+BC=n,列方程可得结论.【详解】(1)∵A表示的数为-2,B表示的数为2,点C在数轴上表示的数为-4,∴AC=2,BC=6,∴n=AC+BC=2+6=8.(2)如图所示:∵点D是数轴上点A、B的“5节点”,∴AC+BC=5,∵AB=4,∴C在点A的左侧或在点A的右侧,设点D表示的数为x,则AC+BC=5,∴-2-x+2-x=5或x-2+x-(-2)=5,x=-2.5或2.5,∴点D表示的数为2.5或-2.5;故答案为-2.5或2.5;(3)分三种情况:①当点E在BA延长线上时,∵不能满足BE=12 AE,∴该情况不符合题意,舍去;②当点E在线段AB上时,可以满足BE=12AE,如下图,n=AE+BE=AB=4;③当点E在AB延长线上时,∵BE=12 AE,∴BE=AB=4,∴点E表示的数为6,∴n=AE+BE=8+4=12,综上所述:n=4或n=12.【点睛】本题考查数轴,一元一次方程的应用,解题的关键是掌握“n节点”的概念和运算法则,找出题中的等量关系,列出方程并解答,难度一般.28.(1)1,-3,-5(2)i)存在常数m,m=6这个不变化的值为26,ii)11.5s【解析】【分析】(1)根据非负数的性质求得a、b、c的值即可;(2)i)根据3BC-k•AB求得k的值即可;ii)当AC=13AB时,满足条件.【详解】(1)∵a、b满足(a-1)2+|ab+3|=0,∴a-1=0且ab+3=0.解得a=1,b=-3.∴c=-2a+b=-5.故a,b,c的值分别为1,-3,-5.(2)i)假设存在常数k,使得3BC-k•AB不随运动时间t的改变而改变.则依题意得:AB=5+t,2BC=4+6t.所以m•AB-2BC=m(5+t)-(4+6t)=5m+mt-4-6t与t的值无关,即m-6=0,解得m=6,所以存在常数m,m=6这个不变化的值为26.ii)AC=13 AB,AB=5+t,AC=-5+3t-(1+2t)=t-6,t-6=13(5+t),解得t=11.5s.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.29.(1)B点坐标为(0,﹣6),C点坐标为(4,﹣6)(2)S△OPM=4t或S△OPM=﹣3t+21(3)当t为2秒或133秒时,△OPM的面积是长方形OBCD面积的13.此时点P的坐标是(0,﹣4)或(83,﹣6)【解析】【分析】(1)根据绝对值、平方和算术平方根的非负性,求得a,b,c的值,即可得到B、C两点的坐标;(2)分两种情况:①P 在OB 上时,直接根据三角形面积公式可得结论;②P 在BC 上时,根据面积差可得结论;(3)根据已知条件先计算三角形OPM 的面积为8,根据(2)中的结论分别代入可得对应t 的值,并计算此时点P 的坐标.【详解】(1)∵6a ++|2b +12|+(c ﹣4)2=0,∴a +6=0,2b +12=0,c ﹣4=0,∴a =﹣6,b =﹣6,c =4,∴B 点坐标为(0,﹣6),C 点坐标为(4,﹣6).(2)①当点P 在OB 上时,如图1,OP =2t ,S △OPM 12=⨯2t ×4=4t ; ②当点P 在BC 上时,如图2,由题意得:BP =2t ﹣6,CP =BC ﹣BP =4﹣(2t ﹣6)=10﹣2t ,DM =CM =3,S △OPM =S 长方形OBCD ﹣S △0BP ﹣S △PCM ﹣S △ODM =6×412-⨯6×(2t ﹣6)12-⨯3×(10﹣2t )12-⨯4×3=﹣3t +21. (3)由题意得:S △OPM 13=S 长方形OBCD 13=⨯(4×6)=8,分两种情况讨论: ①当4t =8时,t =2,此时P (0,﹣4); ②当﹣3t +21=8时,t 133=,PB =2t ﹣626188333=-=,此时P (83,﹣6). 综上所述:当t 为2秒或133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83,﹣6).【点睛】本题考查了一元一次方程的应用,主要考查了平面直角坐标系中求点的坐标,动点问题,求三角形的面积,还考查了绝对值、平方和算术平方根的非负性、解一元一次方程,分类讨论是解答本题的关键.30.(1)2AC cm =,4DM cm =;(2)6AC MD cm +=;(3)4AM =;(4)13MN AB =或1. 【解析】【详解】(1)根据题意知,CM=2cm,BD=4cm.∵AB=12cm,AM=4cm,∴BM=8cm,∴AC=AM﹣CM=2cm,DM=BM﹣BD=4cm.故答案为2,4;(2)当点C、D运动了2 s时,CM=2 cm,BD=4 cm.∵AB=12 cm,CM=2 cm,BD=4 cm,∴AC+MD=AM﹣CM+BM﹣BD=AB﹣CM﹣BD=12﹣2﹣4=6 cm;(3)根据C、D的运动速度知:BD=2MC.∵MD=2AC,∴BD+MD=2(MC+AC),即MB=2AM.∵AM+BM=AB,∴AM+2AM=AB,∴AM=13AB=4.故答案为4;(4)①当点N在线段AB上时,如图1.∵AN﹣BN=MN.又∵AN﹣AM=MN,∴BN=AM=4,∴MN=AB﹣AM﹣BN=12﹣4﹣4=4,∴MNAB=412=13;②当点N在线段AB的延长线上时,如图2.∵AN﹣BN=MN.又∵AN﹣BN=AB,∴MN=AB=12,∴MNAB=1212=1.综上所述:MNAB=13或1.【点睛】本题考查了两点间的距离,灵活运用线段的和、差、倍、分转化线段之间的数量关系是十分关键的一点.31.(1)x=1;(2) x=-3或x=5;(3) 30.【解析】【分析】(1)根据题意可得4-x=x-(-2),解出x的值;(2)此题分为两种情况,当点P在B的右边时,当点P在B的左边时,分别列出方程求解即可;(3)设经过x分钟点A与点B重合,根据题意得:2x=6+x进而求出即可.【详解】(1)4-x=x-(-2),解得:x=1,(2)①当点P在B的右边时得:x-(-2)+x-4=8,解得:x=5,②当点P在B的左边时得:-2-x+4-x=8,解得:x=-3,则x=-3或x=5.(3)设经过x分钟点A与点B重合,根据题意得:2x=6+x,解得:x=6,则5x=30,故答案为30个单位长度.【点睛】本题主要考查了一元二次方程的应用,解此题的要点在于根据数轴得出点的位置. 32.(1)60°;(2)射线OP是∠AOC的平分线;(3)30°.【解析】整体分析:(1)根据角平分线的定义与角的和差关系计算;(2)计算出∠AOP的度数,再根据角平分线的定义判断;(3)根据∠AOC,∠AON,∠NOC,∠MON,∠AOM的和差关系即可得到∠NOC 与∠AOM之间的数量关系.解:(1)如图②,∠AOC=120°,∴∠BOC=180°﹣120°=60°,又∵OM平分∠BOC,∴∠BOM=30°,又∵∠NOM=90°,∴∠BOM=90°﹣30°=60°,故答案为60°;(2)如图③,∵∠AOP=∠BOM=60°,∠AOC=120°,∴∠AOP=12∠AOC,∴射线OP是∠AOC的平分线;(3)如图④,∵∠AOC=120°,∴∠AON=120°﹣∠NOC,∵∠MON=90°,∴∠AON=90°﹣∠AOM,∴120°﹣∠NOC=90°﹣∠AOM,即∠NOC﹣∠AOM=30°.。
河北省沧州市2019-2020学年七年级上学期期末数学试卷 (含解析)
河北省沧州市2019-2020学年七年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.−|−2|的相反数的倒数是()A. 2B. 12C. −12D. −22.某天的温度上升了−3℃的意义是()A. 上升了3℃B. 没有变化C. 下降了−3℃D. 下降了3℃3.下图中的图形绕虚线旋转一周,可得到的几何体是()A.B.C.D.4.我国是最早使用负数的国家,东汉初,在我国著名的数学书《九章算术》中,明确提出了“正负术”.如果盈利2000元记作“+2000元”,那么亏损3000元记作()A. −3000元B. 3000元C. 5000元D. −5000元5.如图,M是线段AB的中点,NB为MB的三分之一,MN=a,则AB表示为()A. 83a B. 43a C. 2a D. 3a6.已知实数a,b,c在数轴上的对应点如图,则下列式子正确的是()A. cb>abB. ac>abC. cb<abD. c+b>a+b7.如图,将△AOB绕点O按逆时针方向旋转60°后得到△A′OB′,若∠AOB=25°,则∠AOB′的度数是()A. 60°B. 45°C. 35°D.25°8.下列单项式中,次数为3的是()A. −2x2y3B. mn C. 3a2 D. −72ab2c9.若(|m|−1)x2−(m−1)x−8=0是关于x的一元一次方程,则m的值为()A. −1B. 1C. ±1D. 不能确定10.“今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、物价各几何?”这是我国古代名著九章算术中记载的古典名题,其题意是:有若干人一起买鸡.如果每人出9文钱,就多出11文钱;如果每人出6文钱,就相差16文钱.问买鸡的人数、鸡的价格各是多少?若设买鸡的人数为x人,则列方程正确的是()A. 9x+11=6x+16B. 9x+11=6x−16C. 9x−11=6x+16D. 9x−11=6x−16二、填空题(本大题共10小题,共30.0分)11.比较大小:−56 ___−23(填“>”或“<”)12._________′〞;13.已知2x−y=3,那么1−4x+2y=______ .14.在墙上固定一根木条,至少需要钉两颗钉子.能解释这一实际应用的数学知识是______.15.如图,CD是线段AB上两点,若CB=4cm,DB=7cm,且D是AC中点,则AC的长等于______.16.若单项式−x m−2y3与23x n y2m−3n的和仍是单项式,则m−n=______.17.用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab−(a+b),若3☆x=5,则x=______.18.某件商品的成本价为a元,按成本价提高15%后标价,又以n折销售,这件商品的售价为______元.19.如图,点O在直线AB上,且OC⊥OD,若∠AOC=36°,则∠BOD的大小为______.20.如图所示,将形状、大小完全相同的“☆”和线段按照一定规律摆成下列图形,第1幅图形中“☆”的个数为a1,第2幅图形中“☆”的个数为a2,第3幅图形中“☆”的个数为a3,…,以此类推,则1a1+1a2+1a3+⋯+1a19=______.三、计算题(本大题共1小题,共10.0分)21.计算:(1)|−7|−3×(−13)+(−4);(2)−22−4÷(−23)−(−1)2019.四、解答题(本大题共5小题,共50.0分)22.先化简再求值:2(−3x2y+4xy2)−4(12xy2−32x2y+2)其中x、y满足|x−1|+(y+2)2=0.23.若方程1−2x6+x+13=1−2x+14与关于x的方程x+6x−a3=a6−3x的解相同,求a的值.24.如图,直线AB与CD相交于O,OF,OD分别是∠AOE,∠BOE的平分线.(1)写出∠DOE的补角:(2)若∠BOE=62°,求∠AOD和∠EOF的度数.25.如图,ABCD是400米的环形跑道,现在把跑道分成相等的4段,即两条直道和两条弯道长度都相同.甲、乙二人沿着环形跑道ABCD练习跑步(匀速),甲从A点出发,乙从B点出发,甲比乙每秒多跑1米.(1)如果甲按照顺时针方向跑,同时乙按照逆时针方向跑,经过25秒两人第一次相遇,求甲、乙两人的速度.(2)如果两人按照原来(1)中的速度,沿相同的方向同时起跑,当第一次相遇时,甲在环形跑道ABCD的哪一条直道或弯道上?说明理由.26.已知点A、B在数轴上表示的数分别为m、n.(1)对照数轴完成下表:m5−3−4−4n203−2A、B两点间的距离______ 3______ ______(2)若A、B两点间的距离为d,试写出d与m、n之间数量关系,并用文字语言描述这个数量关系;(3)已知A、B两点在数轴上表示的数分别为x和−2,则A、B两点的距离d可表示为______;如果d=3,求x的值;(4)若数轴上表示数m的点位于表示数−5和3的点之间(不包括表示−5和3的点),求|m+5|+ |m−3|的值(用含x的式子表示)-------- 答案与解析 --------1.答案:B.解析:解:−|−2|的相反数的倒数是12故选:B.利用倒数,相反数及绝对值的定义求解即可.本题主要考查了倒数,相反数及绝对值,解题的关键是熟记倒数,相反数及绝对值的定义.2.答案:D解析:本题主要考查了正数与负数,关键是熟练掌握负数表示的实际意义.根据正数与负数的意义即可得到答案.解:上升了−3℃表示温度下降了3℃.故选D.3.答案:B解析:本题考查的是平面图形和立体图形的认识以及点,线,面,体的关系.根据面动成体结合平面图形的特征易得答案.解:由图形可知,长方形绕一边旋转一周可得圆柱体,直角三角形绕一条直角边旋转一周可得圆锥体,由此可知此图形绕一边旋转一周可得圆锥体和圆柱体的组合体.故选B.4.答案:A解析:此题考查了正数与负数,熟练掌握相反意义量的定义是解本题的关键.利用相反意义量的定义判断即可.解:如果盈利2000元记作“+2000元”,那么亏损3000元记作“−3000元”,故选A.5.答案:D解析:本题考查的是线段上两点间的距离,是基础题.根据M是线段AB的中点可知,MB=AB2,再由NB为MB的13可知,MN=23MB=a,再把两式相乘即可得出答案.解:∵M是线段AB的中点,∴MB=AB2,∵NB为MB的13,∴MN=23MB=a,∴23×AB2=a,∴AB=3a.故选D.6.答案:A解析:本题考查了数轴上数的表示,在0的左边的数小于0,在0的右边的数大于0.由0向两边递增,两边的数绝对值依次增加.即向右延伸,数越来越大,向左延伸,数越来越小.解:由图知a>0>b>c,A.cb>ab,正确;B.ac<ab,错误;C.cb>ab,错误;D.c+b<a+b,错误,故选A.7.答案:C解析:解:∵△AOB绕点O按逆时针方向旋转60°后得到△A′OB′,∴∠BOB′=60°.∵∠AOB=25°,∴∠AOB′=∠BOB′−∠AOB=60°−25°=35°.故选:C.根据旋转的性质可知,旋转角等于60°,从而可以得到∠BOB′的度数,由∠AOB=25°可以得到∠AOB′的度数.本题考查旋转的性质,解题的关键明确旋转角是什么,对应边旋转前后的夹角是旋转角.8.答案:A解析:根据一个单项式中所有字母的指数的和叫做单项式的次数可得答案.此题主要考查了单项式,关键是掌握单项式次数.次数为3,故此选项正确;解:A、−2x2y3B、mn次数为2,故此选项错误;C、3a2次数为2,故此选项错误;ab2c次数为4,故此选项错误;D、−72故选:A.9.答案:A解析:此题考查了一元一次方程的定义,熟练掌握一元一次方程的定义是解本题的关键.利用一元一次方程的定义判断即可.解:∵(|m|−1)x2−(m−1)x−8=0是关于x的一元一次方程,∴|m|−1=0,m−1≠0,解得:m=−1,故选A.10.答案:C解析:本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.设买鸡的人数为x人,根据鸡的价钱不变,即可得出关于x的一元一次方程,此题得解.解:设买鸡的人数为x人,根据题意得:9x−11=6x+16.故选C.11.答案:<解析:本题考查了有理数的大小比较,掌握有理数的大小比较的方法是解决问题的关键.根据两个负数绝对值大的反而小进行比较即可.解:∵|−56|=56,|−23|=23=46,∴56>23,∴−56<−23,故答案为<.12.答案:60,33,36解析:本题主要考查了度分秒的换算,熟练掌握角的换算制是解题的关键,明确角的度分秒的换算是60进位制是根本,根据此即可得出结论.解:,=63°+33.6′,=63°+33′+0.6×60″,=63°+33′+36″,=63°33′36″,故答案为60,33,36.13.答案:−5解析:解:∵2x−y=3,∴1−4x+2y=1−2(2x−y)=1−6=−5.因为2x−y=3,把2x−y当成一个整体代入1−4x+2y即可求出结果.主要考查了代数式求值问题.代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取关于2x−y的代数式的值,然后把所求的代数式变形整理出题设中的形式,利用“整体代入法”求代数式的值.14.答案:两点确定一条直线解析:解:在墙上固定一根木条,至少需要钉两颗钉子.能解释这一实际应用的数学知识是两点确定一条直线.故答案为:两点确定一条直线.直接利用直线的性质进而分析得出答案.此题主要考查了直线的性质,正确把握直线的性质是解题关键.15.答案:6cm解析:解:由线段的和差,得DC=DB−CB=7−4=3cm,由且D是AC中点,得AC=2DC=6cm,故答案为:6cm.根据线段的和差,可得DC的长,根据线段中点的性质,可得答案.本题考查了两点间的距离,利用线段的和差得出DC的长是解题关键.16.答案:13x n y2m−3n的和仍是单项式,解析:解:∵单项式−x m−2y3与23∴m−2=n,2m−3n=3,解得:m=3,n=1,∴m−n=3−1=1;3故答案为:1.3根据同类项的定义:所含字母相同,相同字母的指数相同,可得出m和n的值,然后求得m−n的值.本题考查同类项的知识,比较简单,注意掌握同类项的定义.17.答案:4解析:已知等式利用题中的新定义化简,计算即可求出x的值.此题考查了解一元一次方程,弄清题中的新定义是解本题的关键.解:根据题中的新定义得:3x−(3+x)=5,去括号得:3x−3−x=5,移项合并得:2x=8,解得:x=4,故答案为:4.18.答案:0.115an解析:该商品提高成本价的15%后的标价为(1+15%)a,又以n折销售,则售价为标价×n×10%本题考查了列代数式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的数量关系.解:依题意得,(1+15%)a×n×10%=0.115an(元).故答案是:0.115an.19.答案:54°解析:解:由图可知,∠DOB=180°−∠COA−∠COD=180°−36°−90°=54°.故答案为:54°.根据图形∠DOB=180°−∠COA−∠COD,计算即可得解.本题考查了余角和补角,准确识图是解题的关键.20.答案:589840解析:解:观察图形,可知:a1=3=1×3,a2=8=2×4,a3=15=3×5,a4=24=4×6,…,∴a n=n(n+2)(n为正整数),∴1a n =12(1n−1n+2),∴1a1+1a2+1a3+⋯+1a19=12(1−13+12−14+13−15+⋯+119−121)=12(1+12−120−121)=589840.故答案为:589840.根据给定几个图形中黑点数量的变化可找出变化规律“a n=n(n+2)(n为正整数)”,进而可得出1 a n =12(1n−1n+2),将其代入1a1+1a2+1a3+⋯+1a19中即可求出结论.本题考查了规律型:图形的变化类,根据图形中黑点数量的变化找出变化规律“a n=n(n+2)(n为正整数)”是解题的关键.21.答案:解:(1)|−7|−3×(−13)+(−4)=7+1+(−4)=4;(2)−22−4÷(−23)−(−1)2019=−4−4×(−32)−(−1)=−4+6+1 =3.解析:(1)根据绝对值、有理数的乘法和加减法可以解答本题;(2)根据有理数的除法和减法可以解答本题.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.22.答案:解:原式=−6x2y+8xy2−2xy2+6x2y−8=6xy2−8,∵|x−1|+(y+2)2=0,∴x=1,y=−2,∴原式=6×1×(−2)2−8=24−8=16.解析:此题考查了整式的加减−化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.23.答案:解:将第一个方程两边同乘12,得2(1−2x)+4(x+1)=12−3(2x+1),去括号,得2−4x+4x+4=12−6x−3,移项、合并同类项,得6x=3,系数化为1,得x=12,把x=12代入第二个方程,得12+3−a3=a6−32,去分母,得3+2(3−a)=a−9,移项、合并同类项,得3a=18,解得a=6.解析:本题解决的关键是能够求解关于x的方程,根据同解的定义建立方程,因为两个方程的解相同,即第一个方程的解也是第二个方程的解,所以只要先求出第一个方程的解,然后将这个解代入第二个方程即可求出a的值.24.答案:解:(1)∠DOE的补角为:∠COE,∠AOD,∠BOC.(2)∵OD是∠BOE的平分线,∴∠BOD=1∠BOE=31°,2∴∠AOD=180°−∠BOD=149°;∵∠AOE=180°−∠BOE=118°,又∵OF是∠AOE的平分线,∠AOE=59°.∴∠EOF=12即∠AOD=149°,∠EOF=59°.解析:本题考查余角与补角,角平分线的定义,对顶角的性质,角度的计算,是基础题,熟记性质并准确识图,找出图中各角之间的关系是解题的关键.(1)根据邻互补的定义和对顶角的性质可以确定∠DOE的补角有三个:∠COE,∠AOD,∠BOC.(2)先根据角平分线的定义得出∠BOD的度数,再由邻补角定义可得∠AOD=180°−∠BOD;先根据邻补角定义可得∠AOE=180°−∠BOE,再由角平分线的定义得出∠EOF的度数.25.答案:解:(1)设乙的速度为x米/秒,则甲的速度为(x+1)米/秒,由题意,得依题意可得:25(x+x+1)=300解得:x=5.5.∴甲的速度为:5.5+1=6.5米/秒.答:甲的速度为6.5米/秒,乙的速度为5.5米/秒;(2)当甲乙两人都按顺时针方向跑,设第一次相遇时用了y秒.由题意,得6.5y−5.5y=300,解得:y=300.此时甲跑的路程为:6.5×300=1950=400×4+350米,∴甲跑到弯道AB上;当甲乙两人都按逆时针方向跑,设第一次相遇时走了z秒,由题意,得6.5z−5.5z=100,解得:z=100,∴此时甲跑的路程为:6.5×100=650=400+250.∴甲跑到弯道CD上.解析:(1)设乙的速度为x米/秒,则甲的速度为(x+1)米/秒,由环形问题的数量关系建立方程求出其解即可;(2)先根据速度求出甲乙的相遇时间,进行分类讨论当甲、乙按照顺时针方向跑求出相遇时间和甲、乙按照逆时针方向跑求出相遇时间就可以求出结论.本题考查了追击问题的数量关系的运用,快者跑的路程=原来相距的路程+慢者跑的路程的运用,环形问题的数量关系的运用,分类讨论思想的运用,解答时根据追击问题的数量关系建立方程是关键.26.答案:解:(1)A、B两点间的距离为5−2=3,3−(−4)=7,−2−(−4)=2,故答案为3,7,2;(2)d=|m−n|;A、B两点间的距离等于点A、B在数轴上表示的数的差的绝对值;(3)A、B两点的距离d表示为:|x+2|,故答案为|x+2|;如果d=3,那么3=|x+2|,解得,x=1或−5;(4)根据题意得出:−5<m<3,|m+5|+|m−3|=m+5+3−m=8.解析:本题主要考查的是数轴,整式的加减,绝对值,首先要牢记绝对值的定义以及几何和代数的意义.(1)根据两点间的距离公式解答;(2)首先要明确两点间的距离,即为两数差的绝对值得出即可.(3)通过观察研究可知:数轴上表示x和−2的两点之间的距离;(4)根据题意得出−5<m<3,依此求解即可.。
2019-2020学年河北省沧州市七年级上册期末数学试卷(有答案)-推荐
2019-2020学年河北省沧州市七年级(上)期末数学试卷一、选择题1.温度-4℃比-9℃高()A. ℃B. ℃C. ℃D. ℃2.若x=2是关于x的方程2x+3m-1=0的解,则m的值为()A. B. 0 C. 1 D.3.下列说法中正确的是()A. 数轴上距离原点2个单位长度的点表示的数是2B. 是最大的负整数C. 任何有理数的绝对值都大于0D. 0是最小的有理数4.下列合并同类项中,正确的是()A. B. C. D.5.如图,O是线段AB的中点,C在线段OB上,AC=4,CB=3,则OC的长等于()A. B. 1 C. D. 26.已知m-2n=-1,则代数式1-2m+4n的值是()A. B. C. 2 D. 37.将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是()A. B.C. D.8.小马虎在计算16-x时,不慎将“-”看成了“+”,计算的结果是17,那么正确的计算结果应该是()A. 15B. 13C. 7D.9.某商店把一件商品按进价增加20%作为定价,可是总卖不出去,后来老板把定价降低20%,以48元的价格出售,很快就卖出了,则老板卖出这件商品的盈亏情况是()A. 亏2元B. 亏4元C. 赚4元D. 不亏不赚10.如图所示,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,……按此规律,则第50个图形中面积为1的正方形的个数为()A. 1322B. 1323C. 1324D. 1325二、填空题11.绝对值大于1且小于3的整数有______.12.度数为8 ° ′16″的角的补角的度数为______.13.x、y两数的平方和减去它们的积的2倍,用代数式表示为______.14.已知∠1与∠2互余,∠2与∠3互补,∠ =67°,则∠3=______.15.如图是一个时钟的钟面,8:00的时针及分针的位置如图所示,则此时分针与时针所成的∠α是______度.16.已知某商品降价20%后的售价为2800元,则该商品的原价为______元.17.12a m-1b3与a3b n是同类项,则m+n=______.18.下列等式变形:①a=b,则=;②若=,则a=b;③若4a=7b,则=7;④若=7,则4a=7b,其中一定正确的有______(填序号)19.有理数a、b在数轴上的位置如图所示,则化简|2a|+|a+b|-|a-b|的结果为______.20.有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车;若每辆客车乘43人,则最后一辆车有2个空位.给出下面五个等式:①40m+10=43m-2;②40m-10=43m+2;③=;④=;⑤43m=n+2.其中正确的是______(只填序号).三、解答题21.计算:(1)-16-(-1+)÷ ×[ -(-4)2](2)解方程:7-=-1(3)先化简,再求值:2(x2-2xy)+[2y2-3(x2-2xy+y2)+x2],其中x=1,y=-.22.如图,已知数轴上点A表示的为8,B是数轴上一点,且AB=14,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数______,点P表示的数______(用含t的代数式表示);(2)动点H从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、H同时出发,问点P运动多少秒时追上点H?23.已知:如图,∠AOB是直角,∠AOC= °,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?24.为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)假如你是本次购买任务的负责人,你认为到哪家商场购买比较合算?25.如图,点C在AB上,点M、N分别是AC、BC的中点,(1)若AC=12cm,BC=10cm,求线段MN的长;(2)若点C为线段AB上任意一点,满足AC+BC=acm,其它条件不变,你能猜想MN的长度吗?并说明理由;(3)若点C在线段AB的延长线上,且满足AC-BC=bcm,点M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,并说明理由.请用一句简洁的话描述你发现的结论.答案和解析1.【答案】B【解析】解:∵-4-(-9)=5,∴温度-4℃比-9℃高5℃.故选:B.温度-4℃比-9℃高多少度就是-4与-9的差.本题主要考查有理数的减法在实际中的应用,熟记减去一个数等于加上这个数的相反数是解题的关键.2.【答案】A【解析】解:∵x=2是关于x的方程2x+3m-1=0的解,∴ × + m-1=0,解得:m=-1.故选:A.根据方程的解的定义,把x=2代入方程2x+3m-1=0即可求出m的值.本题的关键是理解方程的解的定义,方程的解就是能够使方程左右两边相等的未知数的值.3.【答案】B【解析】解:A、数轴上距离原点2个单位长度的点表示的数是2或-2,故A错误;B、-1是最大的负整数,故B正确;C、0的绝对值等于零,故C错误;D、没有最小的有理数,故D错误;故选:B.根据数轴上到一点距离相等的点有两个,可判断A;根据整数,可判断B;根据绝对值的意义,可判断C;根据有理数,可判断D.本题考查了有理数,没有最大的有理数,也没有最小的有理数.4.【答案】D【解析】解:A、不是同类项的不能合并,故A错误;B、不是同类项的不能合并,故B错误;C、系数相加字母及指数不变,故C错误;D、系数相加字母及指数不变,故D正确;故选:D.根据合并同类项,系数相加字母及指数不变,可得答案.本题考查了合并同类项,合并同类项系数相加字母部分不变.5.【答案】A【解析】解:∵AC=4,CB=3,∴AB=AC+CB=4+3=7,∵O是线段AB的中点,∴OB=AB=3.5,∴OC=OB-CB=3.5-3=0.5.故选:A.先计算出AB=AC+CB=4+3=7,再根据线段中点的定义得到OB=AB=3.5,然后利用OC=OB-CB进行计算.本题考查了两点间的距离:两点间的连线段长叫这两点间的距离.也考查了线段中点的定义.6.【答案】D【解析】解:∵m-2n=-1,∴1-2m+4n=1-2(m-2n)=1- ×(-1)=3.故选:D.把代数式1-2m+4n为含m-2n的代数式,然后把m-2n=-1整体代入求得数值即可.此题考查代数式求值,注意整体代入思想的渗透.7.【答案】C【解析】解:A、∠α与∠β不互余,故本选项错误;B、∠α与∠β不互余,故本选项错误;C、∠α与∠β互余,故本选项正确;D、∠α与∠β不互余,∠α和∠β互补,故本选项错误;故选:C.根据图形,结合互余的定义判断即可.本题考查了对余角和补角的应用,主要考查学生的观察图形的能力和理解能力.8.【答案】A【解析】解:根据题意得:16+x=17,解得:x=3,则原式=16-x=16-1=15,故选:A.由错误的结果求出x的值,代入原式计算即可得到正确结果.此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.9.【答案】A【解析】解:设商品进价为x,根据题意得:x(1+20%)(1-20%)=48解得x=50,以48元出售,可见亏2元.故选:A.依据题意,商品按进价增加20%后又降价20%以48元的价格出售的等量关系可列出等式.考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.10.【答案】D【解析】解:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有 + + +…+(n+1)=个.当n=50时,==1325,即第50个图形中面积为1的正方形的个数为1325,故选:D.第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有 + + +…+n+ =.此题考查图形的变化规律,找出图形与数字之间的运算规律,利用规律解决问题.11.【答案】±【解析】解:绝对值大于1且小于3的整数有± .求绝对值大于1且小于3的整数,即求绝对值等于2的整数.根据绝对值是一个正数的数有两个,它们互为相反数,得出结果.主要考查了绝对值的性质.本题要注意不要漏掉-2.绝对值规律总结:绝对值是一个正数的数有两个,它们互为相反数;绝对值是0的数就是0;没有绝对值是负数的数.12.【答案】97° 9′44″.【解析】解:度数为8 ° ′ 6″的角的补角的度数为: 8 °-8 ° ′ 6″=97° 9′ ″.故答案为97° 9′ ″.若两个角的和等于 8 °,则这两个角互补,其中一个角叫做另一个角的补角.根据已知条件直接求出补角的度数.本题考查了补角的定义,解题时牢记定义是关键.13.【答案】x2+y2-2xy【解析】解:x2+y2-2xy.故答案为:x2+y2-2xy.把x、y两数首先平方,再想加,进一步减去两数积的2倍即可.此题考查列代数式,注意语言叙述的运算方法和运算顺序.14.【答案】 7°【解析】解:∵∠1与∠2互余,∠2与∠3互补,∴∠ =9 °-∠1,∠ = 8 °-∠3,∴9 °-∠ = 8 °-∠3,∴∠ =9 °+∠1,∵∠ =67°,∴∠ =9 °+67°= 7°.故答案为: 7°.根据互余的两个角的和等于9 °,互补的两个角的和等于 8 °用∠1表示出∠3,再代入数据进行计算即可得解.本题考查了余角和补角,是基础题,熟记概念是解题的关键.15.【答案】120【解析】解:时针每小时转动: 6 ÷ = °;当8:00时,时针转动了 °×8= °;故∠α= 6 °- °= °.此类钟表问题,需理清时针每小时所转动的度数,然后再求解.解答此类钟表问题时,一定要搞清时针和分针每小时、每分钟转动的角度.时针12小时转 6 °,每小时转( 6 ÷ = )度,每分钟( ÷6 = . )度;分针1小时转 6 °,即每分钟转( 6 ÷6 =6)度.16.【答案】3500【解析】解:设原价为x,那么:x×8 %= 8 元,解得x=3500,故原价为3500元.依据题意商品的原价格= 8 ÷(1-20%).此题的关键是把原价当成单位1来计算.17.【答案】7【解析】解:∵12a m-1b3与a3b n是同类项,∴m-1=3,n=3,∴m=4,n=3,则m+n=7,故答案为:7.根据同类项是字母相同,且相同的字母的指数也相同,可得二元一次方程组,根据解二元一次方程组,可得m、n的值,根据有理数的加法,可得答案.本题考查了同类项,同类项是字母相同,且相同的字母的指数也相同,可得二元一次方程组,根据解二元一次方程组,可得m、n的值,根据有理数的加法,可得答案.18.【答案】②④【解析】解:①a=b,x不能等于0,则=,错误;②若=,则a=b,正确;③若4a=7b,b≠ ,则=,错误;④若=,则4a=7b,正确;故答案为:②④根据等式的性质进行计算,判断即可.本题考查的是等式的性质,性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.19.【答案】0【解析】解:原式=-2a+a+b+a-b=0,故答案为0.根据数轴,可去掉绝对值,再计算即可.本题考查了整式的加减,熟练运用合并同类项的法则,这是各地中考的常考点.20.【答案】①③⑤【解析】解:根据总人数列方程,应是40m+10=43m-2,①正确,②错误;根据客车数列方程,应该为=,③正确,④错误;根据总人数和客车数列方程得:43m=n+2.故答案为:①③⑤.首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.21.【答案】解:(1)原式=-1-(-)××(-14)=-1-7=-;(2)去分母,得3(x-7)-2(2x-5)=-6,去括号,得3x-21-4x+10=-6,移项,得3x-4x=-6+21-10,合并,得-x=5所以,x=-5;(3)原式=2x2-4xy+(2y2-3x2+6xy-3y2+x2)=2x2-4xy+2y2-3x2+6xy-3y2+x2=2xy-y2.当x=1,y=-时,原式= × ×(-)-(-)2=-3-9=-5.【解析】(1)先计算16、(-4)2,再算括号里面和乘除法,最后算减法得结果;(2)按解一元一次方程的步骤求解即可;(3)先对代数式进行化简,然后再代入求值.本题考查了有理数的混合运算、整式的加减、解一元一次方程等知识点.解决(1)的关键是掌握有理数混合运算的顺序,注意(2)去分母时勿漏乘,(3)需先化简再求值..22.【答案】-6 8-5t【解析】解:(1)∵OA=8,AB=14,∴OB=6,∴点B表示的数为-6,∵PA=5t,∴P点表示的数为8-5t,故答案为-6,8-5t;(2)根据题意得5t=14+3t,解得t=7.答:点P运动7秒时追上点H.(1)先计算出线段OB,则可得到出点B表示的数;利用速度公式得到PA=5t,易得P点表示的数为8-5t;(2)点P比点H要多运动14个单位,利用路程相差14列方程得5t=14+3t,然后解方程即可.本题考查了一元二次方程的应用:利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.23.【答案】解:(1)∵∠AOB是直角,∠AOC= °,∴∠AOB+∠AOC=9 °+ °= °,∵OM是∠BOC的平分线,ON是∠AOC的平分线,∴∠ ∠ 6 °,∠ ∠ °.∴∠MON=∠MOC-∠NOC=6 °- °= °,(2)当锐角∠AOC的大小发生改变时,∠MON的大小不发生改变.∵∠ ∠ ∠ ∠ ∠ ∠ ∠ =∠ ,又∠AOB是直角,不改变,∴∠ ∠ °.【解析】(1)根据∠AOB是直角,∠AOC= °,可得∠AOB+∠AOC=9 °+ °= °,再利用OM 是∠BOC的平分线,ON是∠AOC的平分线,即可求得答案.(2)根据∠MON=∠MOC-∠NOC,又利用∠AOB是直角,不改变,可得.此题主要考查角的计算和角平分线的定义等知识点的理解和掌握,难度不大,属于基础题.24.【答案】解:(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据题意得2(x+50)=3x,解得x=100,x+50=150.答:每套队服150元,每个足球100元;(2)到甲商场购买所花的费用为: × + (a-)=100a+14000(元),到乙商场购买所花的费用为: × + .8× •a=80a+15000(元);(3)当在两家商场购买一样合算时,100a+14000=80a+15000,解得a=50.所以购买的足球数等于50个时,则在两家商场购买一样合算;购买的足球数多于50个时,则到乙商场购买合算;购买的足球数少于50个时,则到甲商场购买合算【解析】(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据两套队服与三个足球的费用相等列出方程,解方程即可;(2)根据甲、乙两商场的优惠方案即可求解;(3)先求出到两家商场购买一样合算时足球的个数,再根据题意即可求解.本题考查了一元一次方程的应用解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.25.【答案】解:(1)由M、N分别是AC、BC的中点,得MC=AC,CN=BC.由线段的和差,得MN=MC+CN=AC+BC=× +× =6+ = cm;(2)MN=,理由如下:由M、N分别是AC、BC的中点,得MC=AC,CN=BC.由线段的和差,得MN=MC+CN=AC+BC=(AC+BC)=cm;(3)MN=,理由如下:由M、N分别是AC、BC的中点,得MC=AC,CN=BC.由线段的和差,得MN=MC-CN=AC-BC=(AC-BC)=cm;如图:,只要满足点C在线段AB所在直线上,点M、N分别是AC、BC的中点.那么MN就等于AB的一半.【解析】(1)根据线段中点的性质,可得MC、CN,再根据线段的和差,可得答案;(2)根据线段中点的性质,可得MC、CN,再根据线段的和差,可得答案;(3)根据线段中点的性质,可得MC、CN,再根据线段的和差,可得答案.本题考查了两点间的距离,利用了线段中点的性质,线段的和差.。
河北沧州2019-2020年上学期七年级期末试卷 数学(含答案)
河北沧州2019-2020年上学期七年级期末试卷数学本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题.本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)一、选择题(本大题有16个小题,共42分.1—10小题各3分,11—16小题各2分,每小题给出的四个选项中,只有一项符合题目要求。
)1.数字﹣1207000用科学记数法表示为()A.﹣ 1.207×106 B.﹣ 0.1207×107 C.1.207×106 D.﹣1.207×105 2.如图,该几何体的展开图是( )A. B. C. D.3.如图,OA⊥OB,若∠1=40°,则∠2的度数是()A.20°B.40°C.50°D.60°4.在下列式子ab3,﹣4x,﹣35abc,a,0,a﹣b,0.95,x+y3中,单项式有()A.5个B.6个C.7个D.8个5.下列方程中,以-1为解的方程是( )A.3x-2=2x B.4x-1=2x+3 C.5x-3=6x-2 D.3x+1=2x-16.下列说法错误的个数是()①单独一个数0不是单项式; ②单项式-a的次数为0;③多项式-a2+abc+1是二次三项式; ④-a2b的系数是1.A.1B.2C.3D.47.运用等式性质的变形,下面正确的是( ) A. 如果a =b ,那么a +c =b -c B. 如果a c =bc,那么a =b C. 如果a =b ,那么a c =bcD. 如果a =3,那么2a =23a8.若2x 2m y 3与 - 5xy 2n 是同类项,则|m -n|的值是( ) A.0 B.1C.7D.-19、下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线; ③从A 地到B 地架设电线,总是尽可能沿着线段AB 架设; ④把弯曲的铁路改直,就能缩短路程,其中可用公理“两点之间,线段最短”来解释的现象有( ) A . ①② B . ①③ C . ②④ D . ③④10、已知实数a ,b 在数轴上对应的点如图所示,则下列式子正确的是( )A.ab>0B.|a|>|b|C.a -b>0D.a+b>011.已知一个多项式与3x 2+9x 的和等于3x 2+4x -1,则这个多项式是( )A.-5x -1B.5x+1C.-13x -1D.13x+112.下列解方程过程中,变形正确的是( ) A.由2x -1=3得2x=3-1 B.由x4+1=3x+10.1+1.2得x 4+1=3x+101+12C.由-25x=26得x=- 2526 D.由x3-x 2=1得2x -3x=6 13.如图所示,下列说法错误的是( )A .∠1与∠2是同旁内角 B.∠1与∠3是同位角 C.∠1与∠5是内错角 D.∠1和∠6是同位角(第3题)(第10题)(第13题)14.某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电量15万度.如果设上半年每月平均用电x度,则所列方程正确的是()A.6x+6(x﹣2000)=150000 B.6x+6(x+2000)=150000C.6x+6(x﹣2000)=15 D.6x+6(x+2000)=1515.某个体商贩在一次买卖中同时卖出两件上衣,每件售价均为135元,若按成本计算,其中一件盈利25%,一件亏本25%, 则在这次买卖中他()A.不赚不赔B.赚9元C.赔18元D.赚18元16.如图,甲乙两人同时沿着边长为30米的等边三角形,按逆时针的方向行走,甲从A以65米/分的速度,乙从B以71米/分的速度行走,当乙第一次追上甲时在等边三角形的()A.AB边上B.点B处C.BC边上D.AC边上卷II(非选择题,共78分)二、填空题(本大题4个小题,每小题3分,共12分。
2019—2020年冀教版七年级数学第一学期期末考试模拟检测及答案解析(1).docx
七年级上学期期末数学试卷一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题2分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2分)若火箭发射点火前10秒记为﹣10秒,那么火箭发射点火后5秒应记为()A.﹣5秒B.﹣10秒C.+5秒D.+10秒2.(2分)2015的相反数是()A.﹣B.2015 C.D.﹣20153.(2分)下列说法中,(1)﹣a一定是负数;(2)|﹣a|一定是正数;(3)倒数等于它本身的数是±1;(4)绝对值等于它本身的数是1.其中正确的个数是()A.1个B.2个C.3个D.4个4.(2分)比﹣1大的数是()A.﹣3 B.0C.﹣D.﹣15.(2分)已知∠α=25°37′,则∠α的余角的度数是()A.65°63′B.64°23′C.155°63′D.155°23′6.(2分)2014年三月发生了一件举国悲痛的空难事件﹣﹣马航失联,该飞机上有中国公民154名.噩耗传来后,我国为了搜寻生还者及找到失联飞机,在搜救方面花费了大量的人力物力,已花费人民币大约934千万元.把934千万元用科学记数法表示为()元.A.9.34×102B.0.934×103C.9.34×109D.9.34×10107.(3分)下列说法正确的是()A.的次数是2 B.﹣2xy与4yx是同类项C.4不是单项式D.的系数是8.(3分)如图,点O、A、B在数轴上,分别表示数0、1.5、4.5,数轴上另有一点C,到点A的距离为1,到点B的距离小于3,则点C位于()A.点O的左边B.点O与点A之间C.点A与点B之间D.点B的右边9.(3分)如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A.2a﹣3b B.4a﹣8b C.2a﹣4b D.4a﹣10b10.(3分)希望中学2015届九年级1班共有学生49人,当该班少一名男生时,男生的人数恰好为女生人数的一半.设该班有男生x人,则下列方程中,正确的是()A.2(x﹣1)+x=49 B.2(x+1)+x=49 C.x﹣1+2x=49 D.x+1+2x=4911.(3分)如图,下午2点30分时,时钟的分针与时针所成角的度数为()A.90°B.120°C.105°D.135°12.(3分)如图a和图b分别表示两架处于平衡状态的简易天平,对a,b,c三种物体的质量判断正确的是()A.a<c<b B.a<b<c C.c<b<a D.b<a<c13.(3分)将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体为()A.B.C.D.14.(3分)如图是一个运算程序的示意图,若开始输入x的值为81,则第2014次输出的结果为()A.3B.27 C.9D.115.(3分)如图所示,将一长方形纸的一角斜折过去,使顶点A落在A′处,BC为折痕,如果BD为∠A′BE的平分线,则∠CBD=()A.90°B.80°C.100°D.70°16.(3分)过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为()A.B.C.D.二、填空题(本大题共4个小题,每小题3分,共12分,把答案写在题中横线上)17.(3分)计算:﹣14=.18.(3分)将有理数0,﹣,2.7,﹣4,0.14按从小到大的顺序排列,用“<”号连接起来应为.19.(3分)已知5是关于x的方程3x﹣2a=7的解,则a的值为.20.(3分)a是不为1的有理数,我们把称为a的差倒数,如:2的差倒数是=﹣1,已知a1=﹣,a2是a3的差倒数,a3是a2的差倒数,…依此类推,那么a6=,a2015=.三、解答题(本大题共7个小题,共66分,解答应写出文字说明、证明过程或演算步骤)21.(3分)12+(﹣7)﹣(﹣18)﹣32.5.22.(5分)求代数式﹣3(x2y﹣x2y+1)+(6x2y﹣2xy2+4)﹣2的值,其中x=1,y=﹣1.23.(5分)解方程:1﹣=﹣.24.(8分)如图是由一些棱长都为1cm的小正方体组合成的简单几何体.(1)该几何体的表面积(含下底面)为;(2)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图.25.(9分)(1)将一张纸如图1所示折叠后压平,点F在线段BC上,EF、GF为两条折痕,若∠1=57°,∠2=20°,求∠3的度数.(2)如图2,已知线段AB和CD的公共部分BD=AB=CD,线段AB、CD的中点E、F之间距离是10cm,求AB、CD的长.26.(10分)情景:试根据图中信息,解答下列问题:(1)购买6根跳绳需元,购买12根跳绳需元.(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有请说明理由.27.(12分)阅读理解:我们知道:一条线段有两个端点,线段AB和线段BA表示同一条线段.若在直线l上取了三个不同的点,则以它们为端点的线段共有条,若取了四个不同的点,则共有线段条,…,依此类推,取了n个不同的点,共有线段条(用含n的代数式表示)类比探究:以一个锐角的顶点为端点向这个角的内部引射线.(1)若引出两条射线,则所得图形中共有个锐角;(2)若引出n条射线,则所得图形中共有个锐角(用含n的代数式表示)拓展应用:一条铁路上共有8个火车站,若一列客车往返过程中必须停靠每个车站,则铁路局需为这条线路准备多少种车票?28.(12分)如图,在长方形ABCD中,AB=12厘米,BC=6厘米,点P沿AB边从点A 开始向点B以2厘米/秒的速度移动;点Q沿DA边从点D开始向点A以1厘米/秒的速度移动,如果P、Q同时出发,用t(秒)表示移动的时间,那么:(1)如图1,当t为何值时,线段AQ的长度等于线段AP的长度?(2)如图2,当t为何值时,AQ与AP的长度之和是长方形ABCD周长的?(3)如图3,点P到达B后继续运动,到达C点后停止运动;Q到达A后也继续运动,当P点停止运动的同时点Q也停止运动.当t为何值时,线段AQ的长度等于线段CP长度的一半?参考答案与试题解析一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题2分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2分)若火箭发射点火前10秒记为﹣10秒,那么火箭发射点火后5秒应记为()A.﹣5秒B.﹣10秒C.+5秒D.+10秒考点:正数和负数.分析:首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.解答:解:∵火箭发射点火前10秒记为﹣10秒,∴火箭发射点火后5秒应记为+5秒.故选C.点评:解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.(2分)2015的相反数是()A.﹣B.2015 C.D.﹣2015考点:相反数.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:解:2015的相反数是﹣2015,故选:D.点评:本题考查了相反数,在一个数的前面加上符号就是这个数的相反数.3.(2分)下列说法中,(1)﹣a一定是负数;(2)|﹣a|一定是正数;(3)倒数等于它本身的数是±1;(4)绝对值等于它本身的数是1.其中正确的个数是()A.1个B.2个C.3个D.4个考点:有理数;相反数;绝对值;倒数.分析:本题须根据负数、正数、倒数、绝对值的有关定义以及表示方法逐个分析每个说法,得出正确的个数.解答:解:∵如果α为负数时,则﹣α为正数,∴﹣α一定是负数是错的.∵当a=0时,|﹣a|=0,∴|﹣a|一定是正数是错的.∵倒数等于它本身的数只有±1,∴(3)题对.∵绝对值都等于它本身的数是非负数,不只是1,∴绝对值等于它本身的数是1的说法是错误的.所以正确的说法共有1个.故选:A.点评:本题考查了负数、正数、倒数、绝对值的有关定义以及表示方法.4.(2分)比﹣1大的数是()A.﹣3 B.0C.﹣D.﹣1考点:有理数大小比较.分析:先根据有理数的大小比较法则比较大小,即可得出选项.解答:解:∵﹣3<﹣1,0>﹣1,﹣1>﹣,﹣1=﹣1,∴比﹣1大的数是0,故选B.点评:本题考查了对有理数的大小比较法则的应用,注意:正数都大于0,负数都小于0,正数都大于负数,两个负数比较大小,其绝对值大的反而小.5.(2分)已知∠α=25°37′,则∠α的余角的度数是()A.65°63′B.64°23′C.155°63′D.155°23′考点:余角和补角;度分秒的换算.分析:根据互为余角的两个角的和等于90°列式进行计算即可得解.解答:解:∵∠α=25°37′,∴∠α的余角的度数=90°﹣25°37′=64°23′.故选B.点评:本题考查了余角的定义,熟记互为余角的两个角的和等于90°是解题的关键,要注意度分秒是60进制.6.(2分)2014年三月发生了一件举国悲痛的空难事件﹣﹣马航失联,该飞机上有中国公民154名.噩耗传来后,我国为了搜寻生还者及找到失联飞机,在搜救方面花费了大量的人力物力,已花费人民币大约934千万元.把934千万元用科学记数法表示为()元.A.9.34×102B.0.934×103C.9.34×109D.9.34×1010考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于934千万有10位,所以可以确定n=10﹣1=9.解答:解:934千万=9340 000 000=9.34×109.故选:C.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.7.(3分)下列说法正确的是()A.的次数是2 B.﹣2xy与4yx是同类项C.4不是单项式D.的系数是考点:单项式;同类项.分析:根据单项式的定义、同类项的定义及单项式系数的定义,结合选项即可作出判断.解答:解:A、的次数是3,而不是2,故本选项错误;B、﹣2xy与4yx是同类项,故本选项正确;C、4是单项式,故本选项错误;D、的系数为π,不是,故本选项错误;故选B.点评:本题考查了单项式及多项式的知识,注意掌握单项式的定义、单项式系数的判断及同类项的定义,属于基础知识的考察.8.(3分)如图,点O、A、B在数轴上,分别表示数0、1.5、4.5,数轴上另有一点C,到点A的距离为1,到点B的距离小于3,则点C位于()A.点O的左边B.点O与点A之间C.点A与点B之间D.点B的右边考点:数轴.分析:根据题意分析出点C表示的实数是2.5,然后确定点C的位置.解答:解:∵点C到点A的距离为1∴所以C点表示的数为0.5或2.5又∵点C到点B的距离小于3∴点C表示的实数为2.5即点C位于点A和点B之间.故选C.点评:这道题主要考查实数和数轴上的点是一一对应的关系,根据实数确定位置.9.(3分)如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A.2a﹣3b B.4a﹣8b C.2a﹣4b D.4a﹣10b考点:整式的加减;列代数式.专题:几何图形问题.分析:根据题意列出关系式,去括号合并即可得到结果.解答:解:根据题意得:2[a﹣b+(a﹣3b)]=4a﹣8b.故选B点评:此题考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键.10.(3分)希望中学2015届九年级1班共有学生49人,当该班少一名男生时,男生的人数恰好为女生人数的一半.设该班有男生x人,则下列方程中,正确的是()A.2(x﹣1)+x=49 B.2(x+1)+x=49 C.x﹣1+2x=49 D.x+1+2x=49考点:由实际问题抽象出一元一次方程.分析:利用该班少一名男生时,男生人数恰为女生人数的一半用男生的人数表示出女生的人数,利用女生人数+男生人数=49求解.解答:解:设男生人数为x人,则女生为2(x﹣1),根据题意得:2(x﹣1)+x=49,故选A.点评:本题考查了由实际问题抽象出一元一次方程,解题的关键是找到正确的等量关系.11.(3分)如图,下午2点30分时,时钟的分针与时针所成角的度数为()A.90°B.120°C.105°D.135°考点:钟面角.分析:根据钟面平均分成12份,可得每份的度数,根据时针与分针相距的份数乘以每份的度数,可得答案.解答:解:下午2点30分时,时针与分针相距3.5份,下午2点30分时下午2点30分时3.5×30°=105°,故选:C.点评:本题考查了钟面角,利用了时针与分针相距的份数乘以每份的度数.12.(3分)如图a和图b分别表示两架处于平衡状态的简易天平,对a,b,c三种物体的质量判断正确的是()A.a<c<b B.a<b<c C.c<b<a D.b<a<c考点:等式的性质.专题:分类讨论.分析:根据等式的基本性质:等式的两边同时乘以或除以同一个不为0的数或字母,等式仍成立.分别列出等式,再进行变形,即可解决.解答:解:由图a可知,3a=2b,即a=b,可知b>a,由图b可知,3b=2c,即b=c,可知c>b,∴a<b<c.故选B.点评:本题主要考查等式的性质.需利用等式的性质对根据已知得到的等式进行变形,从而找到最后的答案.13.(3分)将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体为()A.B.C.D.考点:点、线、面、体.分析:根据面动成体的原理:一个直角三角形绕它的最长边旋转一周,得到的是两个同底且相连的圆锥.解答:解:A、圆柱是由一长方形绕其一边长旋转而成的;B、圆锥是由一直角三角形绕其直角边旋转而成的;C、该几何体是由直角梯形绕其下底旋转而成的;D、该几何体是由直角三角形绕其斜边旋转而成的.故选:D.点评:解决本题的关键是掌握各种面动成体的体的特征.14.(3分)如图是一个运算程序的示意图,若开始输入x的值为81,则第2014次输出的结果为()A.3B.27 C.9D.1考点:代数式求值.专题:图表型.分析:根据运算程序进行计算,然后得到规律从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3,然后解答即可.解答:解:第1次,×81=27,第2次,×27=9,第3次,×9=3,第4次,×3=1,第5次,1+2=3,第6次,×3=1,…,依此类推,偶数次运算输出的结果是1,奇数次运算输出的结果是3,∵2014是偶数,∴第2014次输出的结果为1.故选:D.点评:本题考查了代数式求值,根据运算程序计算出从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3是解题的关键.15.(3分)如图所示,将一长方形纸的一角斜折过去,使顶点A落在A′处,BC为折痕,如果BD为∠A′BE的平分线,则∠CBD=()A.90°B.80°C.100°D.70°考点:角的计算;翻折变换(折叠问题).分析:利用角平分线的性质和平角的定义计算.解答:解:∵将顶点A折叠落在A′处,∴∠ABC=∠A′BC,又∵BD为∠A′BE的平分线,∴∠A′BD=∠DBE,∵∠ABC+∠A′BC+∠A′BD+∠DBE=180°,∴2∠A′BC+2∠A′BD=180°,∴∠CBD=∠A′BC+′A′BD=90°.故选A.点评:本题考查了折叠性质,角平分线,角的计算的应用,关键是推出∠A′BC+′A′BD=90°.16.(3分)过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为()A.B.C.D.考点:几何体的展开图;截一个几何体.分析:由平面图形的折叠及立体图形的表面展开图的特点解题.解答:解:选项A、C、D折叠后都不符合题意,只有选项B折叠后两个剪去三角形与另一个剪去的三角形交于一个顶点,•与正方体三个剪去三角形交于一个顶点符合.故选:B.点评:考查了截一个几何体和几何体的展开图.解决此类问题,要充分考虑带有各种符号的面的特点及位置.二、填空题(本大题共4个小题,每小题3分,共12分,把答案写在题中横线上)17.(3分)计算:﹣14=﹣1.考点:有理数的乘方.专题:计算题.分析:原式利用乘方的意义计算即可.解答:解:原式=﹣1.故答案为:﹣1.点评:此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.18.(3分)将有理数0,﹣,2.7,﹣4,0.14按从小到大的顺序排列,用“<”号连接起来应为一4<一<0<0.14<2.7.考点:有理数大小比较.分析:根据有理数比较大小的法则负数都小于零,正数都大于0;两个负数相比较,绝对值大的反而小可得答案.解答:解:根据负数都小于零,正数都大于0得<0,﹣4<0,2.7>0,0.14>0,根据两个负数相比较,绝对值大的反而小可得>﹣4.一4<一<0<0.14<2.7.点评:此题主要考查了有理数的比较大小,关键是掌握有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.19.(3分)已知5是关于x的方程3x﹣2a=7的解,则a的值为4.考点:一元一次方程的解.专题:计算题.分析:根据方程的解的定义,把x=5代入方程3x﹣2a=7,即可求出a的值.解答:解:∵x=5是关于x的方程3x﹣2a=7的解,∴3×5﹣2a=7,解得:a=4.故答案为:4.点评:本题的关键是理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.20.(3分)a是不为1的有理数,我们把称为a的差倒数,如:2的差倒数是=﹣1,已知a1=﹣,a2是a3的差倒数,a3是a2的差倒数,…依此类推,那么a6=4,a2015=.考点:规律型:数字的变化类;倒数.分析:把a1代入差倒数的关系式,计算出a2,a3,a4…,得到相应规律,分别找到所求数对应哪一个数即可.解答:解:a1=﹣,a2==,a3==4,a4==﹣,因此数列以﹣,,4三个数以此不断循环出现.6÷3=2,2015÷3=671…2,所以a6=4,a2015=.故答案为:,4.点评:考查数字的变化规律;得到相应的数据及变化规律是解决本题的关键.三、解答题(本大题共7个小题,共66分,解答应写出文字说明、证明过程或演算步骤)21.(3分)12+(﹣7)﹣(﹣18)﹣32.5.考点:有理数的加减混合运算.分析:首先利用符号法则对式子进行化简,然后把正数、负数分别相加,然后把所得的结果相加即可求解.解答:解:原式=12﹣+18﹣=12+18﹣﹣=30﹣40=﹣10.点评:本题考查了有理数的加减混合运算,正确确定运算的顺序是关键.22.(5分)求代数式﹣3(x2y﹣x2y+1)+(6x2y﹣2xy2+4)﹣2的值,其中x=1,y=﹣1.考点:整式的加减—化简求值.专题:计算题.分析:原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.解答:解:原式=﹣3x2y+3x2y﹣3+3x2y﹣xy2+2﹣2=2x2y﹣3,当x=1,y=﹣1时,原式=2﹣3=﹣1.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.(5分)解方程:1﹣=﹣.考点:解一元一次方程.专题:计算题.分析:方程去分母,去括号,移项合并,把x系数化为1,即可求出解.解答:解:去分母得:6﹣2(2x﹣4)=﹣(x﹣7),去括号得:6﹣4x+8=﹣x+7,移项合并得:﹣3x=﹣7,解得:x=.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.24.(8分)如图是由一些棱长都为1cm的小正方体组合成的简单几何体.(1)该几何体的表面积(含下底面)为26cm2;(2)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图.考点:作图-三视图;几何体的表面积.分析:(1)直接利用几何体的表面积求法,分别求出各侧面即可;(2)利用从不同角度进而得出观察物体进而得出左视图和俯视图.解答:解:(1)该几何体的表面积(含下底面)为:4×4+2+4+4=26(cm2);故答案为:26cm2;(2)如图所示:点评:此题主要考查了几何体的表面积求法以及三视图画法,注意观察角度是解题关键.25.(9分)(1)将一张纸如图1所示折叠后压平,点F在线段BC上,EF、GF为两条折痕,若∠1=57°,∠2=20°,求∠3的度数.(2)如图2,已知线段AB和CD的公共部分BD=AB=CD,线段AB、CD的中点E、F之间距离是10cm,求AB、CD的长.考点:两点间的距离;角的计算.分析:(1)根据折叠的性质,可得∠EFB′=∠1,∠GFC′=∠3,根据角的和差,可得答案;(2)根据BD=AB=CD,可得BD=xcm,则AB=3xcm,CD=4xcm,AC=6xcm,根据线段中点的性质,可得AE、CF的长,根据线段的和差,可得关于x的方程,根据AB=3xcm,CD=4xcm,可得答案.解答:解:(1)∠3=23°,理由如下:∠EFB′=∠1=57°,∠GFC′=∠3,∠2=20°,∵∠3=180°﹣∠EFB′﹣∠1﹣∠GFC′﹣∠2,∴∠3=180°﹣57°﹣57°﹣∠3﹣20°,2∠3=46°,即∠3=23°;(2)设BD=xcm,则AB=3xcm,CD=4xcm,AC=6xcm,∵点E、点F分别为AB、CD的中点,∴AE=AB=1.5xcm,CF=CD=2xcm.∴EF=AC﹣AE﹣CF=2.5xcm.∵EF=10cm,∴2.5x=10,解得x=4,AB=12cm,CD=16cm.点评:本题考查了两点间的距离,(1)利用了折叠的性质,(2)利用了线段中点的性质,线段的和差.26.(10分)情景:试根据图中信息,解答下列问题:(1)购买6根跳绳需150元,购买12根跳绳需240元.(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有请说明理由.考点:一元一次方程的应用.专题:图表型.分析:(1)根据总价=单价×数量,现价=原价×0.8,列式计算即可求解;(2)设小红购买跳绳x根,根据等量关系:小红比小明多买2跟,付款时小红反而比小明少5元;即可列出方程求解即可.解答:解:(1)25×6=150(元),25×12×0.8=300×0.8=240(元).答:购买6根跳绳需150元,购买12根跳绳需240元.(2)有这种可能.设小红购买跳绳x根,则25×0.8x=25(x﹣2)﹣5,解得x=11.故小红购买跳绳11根.点评:考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.27.(12分)阅读理解:我们知道:一条线段有两个端点,线段AB和线段BA表示同一条线段.若在直线l上取了三个不同的点,则以它们为端点的线段共有3条,若取了四个不同的点,则共有线段6条,…,依此类推,取了n个不同的点,共有线段条(用含n的代数式表示)类比探究:以一个锐角的顶点为端点向这个角的内部引射线.(1)若引出两条射线,则所得图形中共有6个锐角;(2)若引出n条射线,则所得图形中共有个锐角(用含n的代数式表示)拓展应用:一条铁路上共有8个火车站,若一列客车往返过程中必须停靠每个车站,则铁路局需为这条线路准备多少种车票?考点:直线、射线、线段;角的概念.专题:阅读型;规律型.分析:阅读理解:根据线段的定义解答;类比探究:根据角的定义解答;拓展应用:先计算出线段的条数,再根据两站之间需要两种车票解答.解答:解:阅读理解:三个不同的点,以它们为端点的线段共有3条,若取了四个不同的点,则共有线段6条,…,依此类推,取了n个不同的点,共有线段条;类比探究:(1)引出两条射线,共有4条射线,锐角的个数为6;(2)引出n条射线,共有n+2条射线,锐角的个数:;拓展应用:8个火车站共有线段条数=28,需要车票的种数:28×2=56.故答案为:3,6,;6;;56.点评:本题考查了直线、射线、线段,角的概念,熟记概念是解题的关键,要注意两站之间需要两种车票.28.(12分)如图,在长方形ABCD中,AB=12厘米,BC=6厘米,点P沿AB边从点A 开始向点B以2厘米/秒的速度移动;点Q沿DA边从点D开始向点A以1厘米/秒的速度移动,如果P、Q同时出发,用t(秒)表示移动的时间,那么:(1)如图1,当t为何值时,线段AQ的长度等于线段AP的长度?(2)如图2,当t为何值时,AQ与AP的长度之和是长方形ABCD周长的?(3)如图3,点P到达B后继续运动,到达C点后停止运动;Q到达A后也继续运动,当P点停止运动的同时点Q也停止运动.当t为何值时,线段AQ的长度等于线段CP长度的一半?考点:一元一次方程的应用;两点间的距离.专题:几何动点问题.分析:(1)根据题意得出QD=tcm,AQ=(6﹣t)cm,AP=2tcm,进而利用AQ=AP 求出即可;(2)根据题意得出QD=tcm,AQ=(6﹣t)cm,AP=2tcm,进而利用AQ与AP的长度之和是长方形ABCD周长的求出即可;(3)根据题意得出AQ=(6﹣t)cm,CP=(18﹣2t)cm,进而利用线段AQ的长度等于线段CP长度的一半求出即可.解答:解:(1)由题意可得:QD=tcm,AQ=(6﹣t)cm,AP=2tcm,则6﹣t=2t,解得:t=2;(2)由题意可得:QD=tcm,AQ=(6﹣t)cm,AP=2tcm,则6﹣t+2t=×2×(6+12),解得:t=3;(3)由题意可得:AQ=(6﹣t)cm,CP=(18﹣2t)cm,则6﹣t=(18﹣2T),解得:t=7.5.点评:此题主要考查了一元一次方程的应用以及两点间的距离,根据题意用t表示出线段长是解题关键.。
沧州2019-2020学年度七年级数学上册期末
2019-2020学年河北省沧州市七年级(上)期末数学试卷一、正确选择(本大题10个小题,每小题2分,共20分)1. (2015秋•吴中区期末)下列算式中,运算结果为负数的是( )A .﹣(﹣2)B .|﹣2|C .(﹣2)3D .(﹣2)22. (2015秋•西城区期末)科学家发现,距离银河系约2 500 000光年之遥的仙女星系正在向银河系靠近.其中2 500 000用科学记数法表示为( )A .0.25×107B .2.5×106C .2.5×107D .25×1053. (2015秋•西城区期末)下列各式中正确的是( )A .﹣(2x+5)=﹣2x+5B .﹣(4x ﹣2)=﹣2x+2C .﹣a+b=﹣(a ﹣b )D .2﹣3x=﹣(3x+2)4. (2015秋•西城区期末)下列计算正确的是( )A .7a+a=7a 2B .3x 2y ﹣2yx 2=x 2yC .5y ﹣3y=2D .3a+2b=5ab5. (2015秋•西城区期末)已知a ﹣b=1,则代数式2a ﹣2b ﹣3的值是( ) A .1B .﹣1C .5D .﹣56. (2015秋•西城区期末)空调常使用的三种制冷剂的沸点如下表所示,那么这三种制冷剂按沸点从低到高排列的顺序是( ) 制冷剂编号 R 22R 12 R 410A 制冷剂 二氟一氯甲烷 二氟二氯甲烷 二氟甲烷50%,五氟乙烷50%沸点近似值 (精确到1℃)﹣41﹣30 ﹣52 A .R 12,R 22,R 410A B .R 22,R 12,R 410AC .R 410A ,R 12,R 22D .R 410A ,R 22,R 127.(2015秋•西城区期末)历史上,数学家欧拉最先把关于x的多项式用记号f(x)来表示,把x等于某数a时的多项式的值用f(a)来表示,例如x=﹣1时,多项式f(x)=x2+3x ﹣5的值记为f(﹣1),那么f(﹣1)等于()A.﹣7 B.﹣9 C.﹣3 D.﹣18.(2015秋•西城区期末)下列说法中,正确的是()①射线AB和射线BA是同一条射线;②若AB=BC,则点B为线段AC的中点;③同角的补角相等;④点C在线段AB上,M,N分别是线段AC,CB的中点.若MN=5,则线段AB=10.A.①②B.②③C.②④D.③④9.(2分)(2015秋•西城区期末)点M,N,P和原点O在数轴上的位置如图所示,点M,N,P对应的有理数为a,b,c(对应顺序暂不确定).如果ab<0,a+b>0,ac>bc,那么表示数b的点为()A.点M B.点N C.点P D.点O10.(2分)(2015秋•西城区期末)用8个相同的小正方体搭成一个几何体,从上面看它得到的平面图形如图所示,那么从左面看它得到的平面图形一定不是()A.B.C.D.二、准确填空(本大题10个小题,每小题3分,共30分)11.小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数共有__________个.12.已知∠α=53°27′,则它的余角等于__________.13.当x=1时,代数式4﹣3x的值是__________.14.已知单项式3a m b2与﹣a4b n﹣1是同类项,那么4m﹣n=__________.15.一个多项式与﹣x2﹣2x+11的和是3x﹣2,则这个多项式为__________.16.已知|x|=3,|y|=4,且x>y,则2x﹣y的值为__________.17.若时钟由2点30分走到2点55分,则时针、分针转过的角度分别为__________.18.如图,点O是直线AD上的点,∠AOB,∠BOC,∠COD三个角从小到大依次相差25°,则这三个角的度数是__________.19.已知方程的解也是方程|3x﹣2|=b的解,则b=__________.20.小明在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是:2y﹣=y﹣▌,怎么办呢?小明想了一想便翻看了书后的答案,此方程的解是y=﹣,于是很快补好了这个常数,你能补出这个常数是多少吗?它应是__________.三、解答题(本大题7个小题,共70分)21.计算:(1)﹣|﹣1|﹣(+2)﹣(﹣2.75)(2)﹣14﹣[1﹣(1﹣0.5×)]×6.22.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)通过计算说明小虫是否回到起点P.(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.23.如图所示,已知∠AOC=∠BOD=100°,且∠AOB:∠AOD=2:7,求∠BOC和∠COD 的度数.24.请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和20个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)25.已知A=x2﹣2x+1,B=2x2﹣6x+3.求:(1)A+2B.(2)2A﹣B.26.观察下列解题过程:计算:1+5+52+53+…+524+525的值.解:设S=1+5+52+53+…+524+525,(1)则5S=5+52+53+…+525+526(2)(2)﹣(1),得4S=526﹣1S=通过阅读,你一定学会了一种解决问题的方法,请用你学到的方法计算:(1)1+3+32+33+…+39+310(2)1+x+x2+x3+…+x99+x100.27.观察图,解答下列问题.(1)图中的小圆圈被折线隔开分成六层,第一层有1个小圆圈,第二层有3个圆圈,第三层有5个圆圈,…,第六层有11个圆圈.如果要你继续画下去,那么第八层有几个小圆圈?第n层呢?(2)某一层上有65个圆圈,这是第几层?(3)数图中的圆圈个数可以有多种不同的方法.比如:前两层的圆圈个数和为(1+3)或22,由此得,1+3=22.同样,由前三层的圆圈个数和得:1+3+5=32.由前四层的圆圈个数和得:1+3+5+7=42.由前五层的圆圈个数和得:1+3+5+7+9=52.…根据上述请你猜测,从1开始的n个连续奇数之和是多少?用公式把它表示出来.(4)计算:1+3+5+…+99的和;(5)计算:101+103+105+…+199的和.2019-2020学年河北省沧州市七年级(上)期末数学试卷一、正确选择(本大题10个小题,每小题2分,共20分)1.若向东走5m,记为+5m,则﹣3m表示为( )A.向东走3m B.向南走3m C.向西走3m D.向北走3m【考点】正数和负数.【分析】根据正数和负数表示相反意义的量,向东走记为正,可得向西走的表示方法.【解答】解:向东走5m,记为+5m,则﹣3m表示为向西走3米,故选:C.【点评】本题考查了正数和负数,相反意义的量用正数和负数表示.2.下列各图中,能正确表示数轴的是( )A.B.C.D.【考点】数轴.【分析】根据数轴的三要素:原点、正方向、单位长度,即可解答.【解答】解:由数轴的三要素:原点、正方向、单位长度,可知A正确;故选:A.【点评】本题考查了数轴,解决本题的关键是熟记数轴的三要素:原点、正方向、单位长度.3.数轴上点A表示﹣4,点B表示2,则表示A,B两点间的距离的算式是( )A.﹣4+2 B.﹣4﹣2 C.2﹣(﹣4)D.2﹣4【考点】数轴.【分析】此题可借助数轴用数形结合的方法求解.结合图形:点A在数轴负方向上,点B 在数轴正方向上,A,B两点间的距离通过有理数减法求得.【解答】解:由数轴得,表示A,B两点间的距离的算式是2﹣(﹣4).故选C.【点评】本题考查了数轴上两点间的距离公式:如果A、B两点在数轴上表示的数分别为x1,x2,那么AB=|x1﹣x2|,是需要掌握的内容.4.下表是我国几个城市某年一月份的平均气温,其中气温最低的城市是( )城市北京武汉广州哈尔滨﹣4.6 3.8 13.1 ﹣19.4平均气温(单位℃)A.北京 B.武汉 C.广州 D.哈尔滨【考点】有理数大小比较.【分析】四个城市中,求气温最低的城市,即求这四个数中的最小数.根据有理数大小比较的方法可知结果.【解答】解:因为﹣19.4<﹣4.6<3.8<13.1,所以气温最低的城市是哈尔滨.故选:D.【点评】本题考查了有理数的大小比较在实际生活中的应用,体现了数学的应用价值.将实际问题转化为数学问题是解决问题的关键.5.下列说法正确的是( )①教科书是长方形;②教科书是长方体,也是棱柱;③教科书的表面是长方形.A.①②B.①③C.②③D.①②③【考点】认识立体图形.【分析】教科书是有一定厚度的实物体,因此不是什么平面形,只能说它的表面是什么形状,当作命题判定即可.【解答】解:∵教科书是一个空间实物体,是长方体∴不能说它是一个长方形,∵有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱∴它是棱柱.教科书的表面是一个长方形.故选C.【点评】本题考查了实物图的认识,做题时要仔细认真.6.下列说法正确的是( )A.射线AB与射线BA表示同一条射线B.连接两点的线段叫做这两点的距离C.平角是一条直线D.若∠1+∠2=90°,∠1+∠3=90°,则∠2=∠3【考点】余角和补角;直线、射线、线段;两点间的距离;角的概念.【分析】根据射线的定义,两点间的距离的概念,平角的定义,余角的性质即可作出选择.【解答】解:A、射线AB与射线BA表示不同的两条射线,故本选项错误;B、连接两点的线段的长度叫做这两点的距离,故本选项错误;C、平角的两条边在一条直线上,故本选项错误;D、若∠1+∠2=90°,∠1+∠3=90°,则∠2=∠3是正确的,故本选项正确.故选D.【点评】考查了射线的定义,两点间的距离的概念,平角的定义,余角的性质:同角(或等角)的余角相等.7.苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需( ) A.(a+b)元 B.(3a+2b)元C.(2a+3b)元D.5(a+b)元【考点】列代数式.【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【解答】解:买单价为a元的苹果2千克用去2a元,买单价为b元的香蕉3千克用去3b元,共用去:(2a+3b)元.故选:C.【点评】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.8.下列说法正确的是( )A.0不是单项式B.x没有系数C.是多项式D.﹣xy5是单项式【考点】单项式.【分析】本题涉及单项式、多项式等考点.解答时根据单项式系数、次数的定义来一一分析,然后排除错误的答案.【解答】解:A、0是单项式,故错误;B、x的系数是1,故错误;C、分母中含字母,不是多项式,故正确;D、符合单项式的定义,故正确.故选D.【点评】解决此类题目的关键是熟记单项式和多项式的概念.根据题意可对选项一一进行分析,然后排除错误的答案.注意单个的字母和数字也是单项式,分母中含字母的不是多项式.9.若关于x的方程mx m﹣2﹣m+3=0是一元一次方程,则这个方程的解是( )A.x=0 B.x=3 C.x=﹣3 D.x=2【考点】一元一次方程的定义.【专题】计算题.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0),高于一次的项系数是0.【解答】解:由一元一次方程的特点得m﹣2=1,即m=3,则这个方程是3x=0,解得:x=0.故选:A.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.10.某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人( )A.赚16元B.赔16元C.不赚不赔 D.无法确定【考点】一元一次方程的应用.【分析】此类题应算出实际赔了多少或赚了多少,然后再比较是赚还是赔,赔多少、赚多少,还应注意赔赚都是在原价的基础上.【解答】解:设赚了25%的衣服的售价x元,则(1+25%)x=120,解得x=96元,则实际赚了24元;设赔了25%的衣服的售价y元,则(1﹣25%)y=120,解得y=160元,则赔了160﹣120=40元;∵40>24;∴赔大于赚,在这次交易中,该商人是赔了40﹣24=16元.故选B.【点评】本题考查了一元一次方程的应用,注意赔赚都是在原价的基础上,故需分别求出两件衣服的原价,再比较.二、准确填空(本大题10个小题,每小题3分,共30分)11.小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数共有7个.【考点】数轴.【分析】根据题意画出数轴,找出墨迹盖住的整数即可.【解答】解:如图所示:被墨迹盖住的整数有:﹣5,﹣4,﹣3,﹣2,﹣1,2,3,共7个.故答案为:7;【点评】本题考查的是数轴,根据题意利用数形结合求解是解答此题的关键.12.已知∠α=53°27′,则它的余角等于36°33′.【考点】余角和补角.【专题】计算题.【分析】根据互为余角的两个角的和为90度作答.【解答】解:根据定义∠α的余角度数是90°﹣53°27′=36°33′.故答案为:36°33′.【点评】本题考查角互余的概念:和为90度的两个角互为余角.属于基础题,较简单13.当x=1时,代数式4﹣3x的值是1.【考点】代数式求值.【专题】计算题;整式.【分析】把x=1代入代数式4﹣3x,求值即可.【解答】解:将x=1代入代数式4﹣3x,得4﹣3x=4﹣3×1=1,所以4﹣3x=1.故答案为:1.【点评】本题考查了代数式求值,是基础题,准确计算是解题的关键.14.已知单项式3a m b2与﹣a4b n﹣1是同类项,那么4m﹣n=13.【考点】同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),求出n,m的值,再代入代数式计算即可.【解答】解:根据题意得:,解得:,则4m﹣n=16﹣3=13.故答案是:13.【点评】本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.15.一个多项式与﹣x2﹣2x+11的和是3x﹣2,则这个多项式为x2+5x﹣13.【考点】整式的加减.【分析】设此多项式为A,再根据多项式的加减法则进行计算即可.【解答】解:设此多项式为A,∵A+(﹣x2﹣2x+11)=3x﹣2,∴A=(3x﹣2)﹣(﹣x2﹣2x+11)=x2+5x﹣13.故答案为:x2+5x﹣13.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.16.已知|x|=3,|y|=4,且x>y,则2x﹣y的值为10或﹣2.【考点】代数式求值;绝对值.【专题】计算题.【分析】根据题意,利用绝对值的代数意义求出x与y的值,即可求出2x﹣y的值.【解答】解:∵|x|=3,|y|=4,且x>y,∴x=3,y=﹣4;x=﹣3,y=﹣4,则2x﹣y=10或﹣2,故答案为:10或﹣2.【点评】此题考查了代数式求值,绝对值,熟练掌握运算法则是解本题的关键.17.若时钟由2点30分走到2点55分,则时针、分针转过的角度分别为12.5°,150°.【考点】钟面角.【分析】根据时针旋转的速度乘以时针旋转的时间,可得答案;根据分针旋转的速度乘以分针旋转的时间,可得答案.【解答】解:时针旋转的角度是0.5×(55﹣30)=12.5°,分针旋转的角度是6×(55﹣30)=150°,故答案为:12.5°,150°.【点评】本题考查了钟面角,利用时针旋转的速度乘以时针旋转的时间是解题关键,注意时针的旋转速度是0.5°每分钟,分针旋转的速度是6°每分钟.18.如图,点O是直线AD上的点,∠AOB,∠BOC,∠COD三个角从小到大依次相差25°,则这三个角的度数是35°,60°,85°.【考点】角的计算.【专题】计算题.【分析】由题意可知,三个角之和为180°,又知三个角之间的关系,故能求出各个角的大小.【解答】解:设∠AOB=x,∠BOC=x+25°,∠COD=x+50°,∵∠AOB+∠BOC+∠COD=180°,∴3x+75°=180°,x=35°,∴这三个角的度数是35°,60°,85°,故答案为35°,60°,85°.【点评】本题考查角与角之间的运算,注意结合图形,发现角与角之间的关系,进而求解.19.已知方程的解也是方程|3x﹣2|=b的解,则b=.【考点】含绝对值符号的一元一次方程;同解方程.【专题】方程思想.【分析】先解方程,得x=,因为这个解也是方程|3x﹣2|=b的解,根据方程的解的定义,把x代入方程|3x﹣2|=b中求出b的值.【解答】解:2(x﹣2)=20﹣5(x+3),2x﹣4=20﹣5x﹣15,7x=9,解得:x=.把x=代入方程|3x﹣2|=b得:|3×﹣2|=b,解得:b=.故答案为:.【点评】本题考查了解一元一次方程和方程的解的定义,方程的解就是能够使方程左右两边相等的未知数的值.20.小明在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是:2y﹣=y﹣▌,怎么办呢?小明想了一想便翻看了书后的答案,此方程的解是y=﹣,于是很快补好了这个常数,你能补出这个常数是多少吗?它应是3.【考点】一元一次方程的解.【专题】计算题;一次方程(组)及应用.【分析】把y的值代入方程计算即可求出所求常数的值.【解答】解:设所求常数为a,把y=﹣代入方程得:2×(﹣)﹣=×(﹣)﹣a,即﹣﹣=﹣﹣a,解得:a=3,故答案为:3【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.三、解答题(本大题7个小题,共70分)21.计算:(1)﹣|﹣1|﹣(+2)﹣(﹣2.75)(2)﹣14﹣[1﹣(1﹣0.5×)]×6.【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式利用减法法则及绝对值的代数意义化简,计算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=0.4﹣1.5﹣2.25+2.75=0.4﹣3.75+2.75=0.4﹣1=﹣0.6;(2)原式=﹣1﹣(1﹣1+)×6=﹣1﹣1=﹣2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)通过计算说明小虫是否回到起点P.(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.【考点】有理数的加减混合运算;正数和负数.【专题】应用题.【分析】(1)把记录到得所有的数字相加,看结果是否为0即可;(2)记录到得所有的数字的绝对值的和,除以0.5即可.【解答】解:(1)∵(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10),=5﹣3+10﹣8﹣6+12﹣10,=0,∴小虫能回到起点P;(2)(5+3+10+8+6+12+10)÷0.5,=54÷0.5,=108(秒).答:小虫共爬行了108秒.【点评】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.23.如图所示,已知∠AOC=∠BOD=100°,且∠AOB:∠AOD=2:7,求∠BOC和∠COD 的度数.【考点】角的计算.【分析】设∠AOB和∠AOD分别为2x、7x,根据题意列出方程,解方程即可.【解答】解:设∠AOB和∠AOD分别为2x、7x,由题意得,2x+100°=7x,解得,x=20°,则∠AOB=40°,∠AOD=70°,∠BOC=∠AOC﹣∠AOB=60°,∠COD=∠BOD﹣∠BOC=40°.【点评】本题考查的是角的计算,正确读懂图形、灵活运用数形结合思想是解题的关键.24.请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和20个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)【考点】一元一次方程的应用.【专题】销售问题;优选方案问题.【分析】(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意列出方程,求出方程的解即可得到结果;(2)计算出两商场得费用,比较即可得到结果.【解答】解:(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意得:3x+4(48﹣x)=152,解得:x=40,则一个水瓶40元,一个水杯是8元;(2)甲商场所需费用为(40×5+8×20)×80%=288(元);乙商场所需费用为5×40+×8=280(元),∵288>280,∴选择乙商场购买更合算.【点评】此题考查了一元一次方程的应用,弄清题意是解本题的关键.25.已知A=x2﹣2x+1,B=2x2﹣6x+3.求:(1)A+2B.(2)2A﹣B.【考点】整式的加减.【专题】计算题.【分析】(1)根据题意可得A+2B=x2﹣2x+1+2(2x2﹣6x+3),去括号合并可得出答案.(2)2A﹣B=2(x2﹣2x+1)﹣(2x2﹣6x+3),先去括号,然后合并即可.【解答】解:(1)由题意得:A+2B=x2﹣2x+1+2(2x2﹣6x+3),=x2﹣2x+1+4x2﹣12x+6,=5x2﹣14x+7.(2)2A﹣B=2(x2﹣2x+1)﹣(2x2﹣6x+3),=2x2﹣4x+2﹣2x2+6x﹣3,=2x﹣1.【点评】本题考查了整式的加减,难度不大,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.26.观察下列解题过程:计算:1+5+52+53+…+524+525的值.解:设S=1+5+52+53+…+524+525,(1)则5S=5+52+53+…+525+526(2)(2)﹣(1),得4S=526﹣1S=通过阅读,你一定学会了一种解决问题的方法,请用你学到的方法计算:(1)1+3+32+33+…+39+310(2)1+x+x2+x3+…+x99+x100.【考点】规律型:数字的变化类.【专题】阅读型.【分析】这道题是求等比数列前n项的和:(1)设S=1+3+32+33+…+39+310,等号两边都乘以3可解决;(2)需要分类讨论:Ⅰ当x=1时,易得结果;Ⅱ当x≠1时,设S=1+x+x2+x3+…+x99+x100等号两边都乘以x可解决.【解答】解:(1)设S=1+3+32+33+…+39+310①则3S=3+32+33+…+39+310+311②②﹣①得2S=311﹣1,所以S=;(2)由于x为未知数,故需要分类讨论:Ⅰ当x=1时,1+x+x2+x3+…+x99+x100=1+1+12+…+199+1100=101;Ⅱ当x≠1时,设S=1+x+x2+x3+…+x99+x100①则xS=x+x2+x3+…+x99+x100+x101②②﹣①得(x﹣1)S=x101﹣1,所以S=.【点评】此题参照例子,采用类比的方法就可以解决.27.观察图,解答下列问题.(1)图中的小圆圈被折线隔开分成六层,第一层有1个小圆圈,第二层有3个圆圈,第三层有5个圆圈,…,第六层有11个圆圈.如果要你继续画下去,那么第八层有几个小圆圈?第n层呢?(2)某一层上有65个圆圈,这是第几层?(3)数图中的圆圈个数可以有多种不同的方法.比如:前两层的圆圈个数和为(1+3)或22,由此得,1+3=22.同样,由前三层的圆圈个数和得:1+3+5=32.由前四层的圆圈个数和得:1+3+5+7=42.由前五层的圆圈个数和得:1+3+5+7+9=52.…根据上述请你猜测,从1开始的n个连续奇数之和是多少?用公式把它表示出来.(4)计算:1+3+5+…+99的和;(5)计算:101+103+105+…+199的和.【考点】规律型:图形的变化类;规律型:数字的变化类.【分析】(1)根据已知数据即可得出每一层小圆圈个数是连续的奇数,进而得出答案;(2)利用(1)中发现的规律得出答案即可;(3)利用已知数据得出答案即可;(4)利用(3)中发现的规律得出答案即可;(5)利用(3)中发现的规律得出答案即可.【解答】解:(1)第八层有15个小圆圈,第n层有(2n﹣1)个小圆圈;(2)令2n﹣1=65,得,n=33.所以,这是第33层;(3)1+3+5+…+(2n﹣1)=n2;(4)1+3+5+…+99=502=2500;(5)101+103+105+...+199=(1+3+5+...+199)﹣(1+3+5+ (99)=1002﹣502=7500.【点评】此题主要考查了图形的变化类,根据已知得出数字的变化规律是解题关键.。
沧州市初一上学期数学期末试卷带答案
沧州市初一上学期数学期末试卷带答案一、选择题=.按如图所示方法用圆规在数轴上截取1.如图,点A,B在数轴上,点O为原点,OA OB=,若点A表示的数是a,则点C表示的数是( )BC AB-A.2a B.3a-C.3a D.2a2.下列说法中正确的有()A.连接两点的线段叫做两点间的距离B.过一点有且只有一条直线与已知直线垂直C.对顶角相等D.线段AB的延长线与射线BA是同一条射线3.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,…,像这样,则20条直线相交最多交点的个数是()A.171 B.190 C.210 D.3804.将图中的叶子平移后,可以得到的图案是()A.B.C.D.5.下列调查中,适宜采用全面调查的是()A.对现代大学生零用钱使用情况的调查B.对某班学生制作校服前身高的调查C.对温州市市民去年阅读量的调查D.对某品牌灯管寿命的调查6.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°7.在直线AB上任取一点O,过点O作射线OC、OD,使OC⊥OD,当∠AOC=40°时,∠BOD的度数是()A.50°B.130°C.50°或 90°D.50°或 130°8.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF,以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC+∠ABD=90°;④∠BDC=∠BAC;其中正确的结论有()A.1个B.2个C.3个D.4个9.﹣2020的倒数是()A.﹣2020 B.﹣12020C.2020 D.1202010.若(1,2)表示教室里第1列第2排的位置,则教室里第2列第3排的位置表示为( ) A.(2,1) B.(3,3) C.(2,3) D.(3,2)11.如果方程组223x yx y+=⎧⎨-=⎩的解为5xy=⎧⎨=⎩,那么“口”和“△”所表示的数分别是( )A.14,4 B.11,1 C.9,-1 D.6,-412.阅读:关于x方程ax=b在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=ba;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x 的方程 3x •a= 2x ﹣ 16(x ﹣6)无解,则a 的值是( ) A .1B .﹣1C .±1D .a≠1 二、填空题13.把53°30′用度表示为_____.14.多项式2x 3﹣x 2y 2﹣1是_____次_____项式.15.定义一种对正整数n 的“C 运算”:①当n 为奇数时,结果为3n +1;②当n 为偶数时,结果为2k n (其中k 是使2kn 为奇数的正整数)并且运算重复进行,例如,n =66时,其“C 运算”如下:若n =26,则第2019次“C 运算”的结果是_____.16.单项式22ab -的系数是________. 17.如图,这是一种数值转换机的运算程序,若第一次输入的数为7,则第2018次输出的数是_____;若第一次输入的数为x ,使第2次输出的数也是x ,则x =_____.18.分解因式: 22xy xy +=_ ___________19.已知a ,b 是正整数,且a 5b <<,则22a b -的最大值是______.20.比较大小:﹣(﹣9)_____﹣(+9)填“>”,“<”,或”=”符号)21.﹣225ab π是_____次单项式,系数是_____. 22.如图,在平面直角坐标系中,动点P 按图中箭头所示方向从原点出发,第1次运动到P 1(1,1),第2次接着运动到点P 2(2,0),第3次接着运动到点P 3(3,-2),…,按这的运动规律,点P 2019的坐标是_____.23.用“>”或“<”填空:13_____35;223-_____﹣3. 24.3.6=_____________________′三、压轴题25.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)如图2,经过t 秒后,OP 恰好平分∠BOC .①求t 的值;②此时OQ 是否平分∠AOC ?请说明理由;(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).26.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线. (1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小;(2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.27.如图,己知数轴上点A 表示的数为8,B 是数轴上一点,且AB=22.动点P 从点A 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B 表示的数____,点P 表示的数____(用含t 的代数式表示);(2)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q?(列一元一次方程解应用题)(3)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问 秒时P 、Q 之间的距离恰好等于2(直接写出答案)(4)思考在点P 的运动过程中,若M 为AP 的中点,N 为PB 的中点.线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN 的长.28.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角尺(∠M =30°)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.(1)若将图1中的三角尺绕点O 以每秒5°的速度,沿顺时针方向旋转t 秒,当OM 恰好平分∠BOC 时,如图2.①求t 值;②试说明此时ON 平分∠AOC ;(2)将图1中的三角尺绕点O 顺时针旋转,设∠AON =α,∠COM =β,当ON 在∠AOC 内部时,试求α与β的数量关系;(3)若将图1中的三角尺绕点O 以每秒5°的速度沿顺时针方向旋转的同时,射线OC 也绕点O 以每秒8°的速度沿顺时针方向旋转,如图3,那么经过多长时间,射线OC 第一次平分∠MON ?请说明理由.29.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河北省沧州市盐山县第一学期七年级期末试卷一、选择题(本大题共16个小题,1-10小题,每小题3分;11-16小题,每小题3分,共42分)1.2017的相反数是()A.2017B.﹣2017C.D.﹣2.下列说法正确的是()A.的次数是2B.﹣2y与4y是同类项C.4不是单项式D.的系数是3.方程去分母后,正确的是()A.4﹣1=3﹣3B.4﹣1=3+3C.4﹣12=3﹣3D.4﹣12=3+34.大量事实证明,环境污染治理刻不容缓.据统计,全球每秒钟约有14.2万吨污水排入江河湖海.把14.2万用科学记数法表示为()A.1.42×105B.1.42×104C.142×103D.0.142×1065.设a为最小的正整数,b是最大的负整数,c是绝对值最小的数,d是倒数等于自身的有理数,则a﹣b+c﹣d的值为()A.1B.3C.1或3D.2或﹣16.下列说法正确的是()A.经过已知一点有且只有一条直线与已知直线平行B.两个相等的角是对顶角C.互补的两个角一定是邻补角D.直线外一点与直线上各点连接的所有线段中,垂线段最短7.一个两位数,个位上的数字是a,十位上的数字比个位的数字小1,则这个两位数可以表示为()A.a(a﹣1)B.(a+1)a C.10(a﹣1)+a D.10a+(a﹣1)8.规定一种新运算,a*b=a+b,a#b=a﹣b,其中a、b为有理数,化简a2b*3ab+5a2b#4ab的结果为()A.6a2b+ab B.﹣4a2b+7ab C.4a2b﹣7ab D.6a2b﹣ab9.a,b,c三个数的位置如图所示,下列结论不正确的是()A.a+b<0B.b+c<0C.b+a>0D.a+c>010.如图,下列说法不正确的是()A.直线AC经过点AB.BC是线段C.点D在直线AC上D.直线AC与线段BD相交于点A11.如图是一个正方体包装盒的表面展开图,若在其中的三个正方形A、B、C内分别填上适当的数,使得将这个表面展开图沿虚线折成正方体后,相对面上的两数互为相反数,则填在A、B、C的三个数依次是()A.0,﹣3,4B.0,4,﹣3C.4,0,﹣3D.﹣3,0,412.某同学买80分邮票与一元邮票共花16元,已知买的一元邮票比80分邮票少2枚,设买80分邮票枚,则依题意得到方程为()A.0.8+(﹣2)=16B.0.8+(+2)=16C.80+(﹣2)=16D.80+(+2)=1613.下列几何体中,俯视图是三角形的几何体是()A.长方体B.圆柱C.三棱柱D.球14.一项工程,A独做10天完成,B独做15天完成,若A先做5天,再A、B合做,完成全部工程的,共需()A.8天B.7天C.6天D.5天15.某测绘装置上一枚指针原指向南偏西55°,把这枚指针按逆时针方向旋转80°,则结果指针的指向()A.南偏东35°B.北偏西35°C.南偏东25°D.北偏西25°16.观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561……通过观察,用你所发现的规律写出32017的末尾数字是()A.3B.9C.7D.1二、填空题(本题共4个小题,每小题3分,共12分,把答案写在题中的横线上)17.﹣的倒数是,﹣5的相反数是,绝对值大于2而小于4的整数有.18.在22y,﹣2y2,32y,﹣y四个代数式中,找出两个同类项,并合并这两个同类项得.19.如图,将一副三角板叠放在一起,使直角顶点重合于O点,则∠AOC+∠BOD=度.20.如图是某超市中某种洗发水的价格标签,一名服务员不小心将标签损坏,使得原价无法看清,请帮忙算一算该种洗发水的原价是元/瓶.三、解答题(本大题共7小题,共66分。
解答应写出文字说明、证明过程或演算步骤)21.(10分)计算:(1)12+(﹣7)﹣(﹣18)﹣32.5(2)﹣23﹣24×(﹣+)22.(10分)解方程(1)﹣2﹣9=8+1(2)﹣=123.(12分)阅读下面解题过程.利用运算律有时能进行简便计算.例1:98×12=(100﹣2)×12=1200﹣24=1176;例2:﹣16×233+17×233=(﹣16+17)×233=233请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(﹣15)(2)999×118+999×(﹣)﹣999×1824.(6分)按要求作图,并保图作图痕迹.如图,已知线段a、b、c,用圆规和直尺作线段AD,使AD=a+2b﹣c.25.(6分)如图,A地和B地都是海上观测站,从A地发现它的北偏东30°方向有一艘船,同时从B地发现这艘船在它的北偏西45°方向,试在图中确定这艘船的位置.26.(10分)某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负.某天自A地出发到收工时所走路线(单位:千米)为:+10,﹣3,+4,+2,﹣8,+13,﹣2,+12,+8,+5.(1)收工时在A地的哪边?距A地多少千米?(2)若每千米耗油0.2升,问从A地出发到收工时共耗油多少升?27.(12分)阅读理解:我们知道:一条线段有两个端点,线段AB和线段BA表示同一条线段.若在直线l上取了三个不同的点,则以它们为端点的线段共有条,若取了四个不同的点,则共有线段条,…,依此类推,取了n个不同的点,共有线段条(用含n的代数式表示)类比探究:以一个锐角的顶点为端点向这个角的内部引射线.(1)若引出两条射线,则所得图形中共有个锐角;(2)若引出n条射线,则所得图形中共有个锐角(用含n的代数式表示)拓展应用:一条铁路上共有8个火车站,若一列客车往返过程中必须停靠每个车站,则铁路局需为这条线路准备多少种车票?参考答案与试题解析一、选择题1.【解答】解:2017的相反数是﹣2017,故选:B.2.【解答】解:A、的次数是3,而不是2,故本选项错误;B、﹣2y与4y是同类项,故本选项正确;C、4是单项式,故本选项错误;D、的系数为π,不是,故本选项错误;故选:B.3.【解答】解:去分母得:4﹣12=3(﹣1),去括号得:4﹣12=3﹣3,故选:C.4.【解答】解:14.2万=142000=1.42×105.故选:A.5.【解答】解:∵设a为最小的正整数,∴a=1;∵b是最大的负整数,∴b=﹣1;∵c是绝对值最小的数,∴c=0;∵d是倒数等于自身的有理数,∴d=±1.∴当d=1时,a﹣b+c﹣d=1﹣(﹣1)+0﹣1=1+1﹣1=1;当d=﹣1时,a﹣b+c﹣d=1﹣(﹣1)+0﹣(﹣1)=1+1+1=3,则a﹣b+c﹣d的值1或3.故选:C.6.【解答】解:A、应为在同一平面内,经过直线外一点有且只有一条直线与已知直线平行,故本选项错误;B、对顶角相等,但相等的两个角不一定是对顶角,故本选项错误;C、邻补角互补,但互补的两个角不一定是邻补角,故本选项错误;D、直线外一点与直线上各点连接的所有线段中,垂线段最短,故本选项正确.故选:D.7.【解答】解:∵个位上的数字是a,十位上的数字比个位的数字小1,∴十位上的数字为a﹣1,∴这个两位数可表示为10(a﹣1)+a,故选:C.8.【解答】解:根据题中的新定义得:原式=a2b+3ab+5a2b﹣4ab=6a2b﹣ab,故选:D.9.【解答】解:根据数轴上点的位置得:﹣4<b<﹣3<﹣1<0<1<c,即|a|<|c|<|b|,∴a+b<0,b+c<0,b+a<0,a+c>0,故选:C.10.【解答】解:A、直线AC经过点A,正确;B、BC是线段,正确;C、点D在直线AC外,不在直线AC上,故本选项错误;D、直线AC与线段BD相交于点A,正确;故选:C.11.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“A”与“0”是相对面,“B”与“3”是相对面,“C”与“﹣4”是相对面,∵相对面上的两数互为相反数,∴A、B、C内的三个数依次是0、﹣3、4.故选:A.12.【解答】解:设买80分邮票枚,则买一元邮票(﹣2)枚.根据等量关系列方程得:0.8+(﹣2)=16,故选:A.13.【解答】解:A、正方体的三视图均为正方形,故本选项错误;B、圆柱的俯视图是圆,故本选项错误;C、三棱柱的俯视图是三角形,故本选项正确;D、球体的三视图均为圆,故本选项错误;故选:C.14.【解答】解:设共需天.根据题意得: +(﹣5)(+)=解得:=6.故选:C.15.【解答】解:∵这枚指针按逆时针方向旋转80°,∴80°﹣55°=25°,即这枚指针按逆时针方向旋转80°,则结果指针的指向是南偏东25°;故选:C.16.【解答】解:式子末尾数字以3、9、7、1这4个一循环,2017÷4=504…1,所以32017的末位数字是3.故选:A.二、填空题(本题共4个小题,每小题3分,共12分,把答案写在题中的横线上)17.【解答】解:﹣的倒数是﹣4,﹣5的相反数是5,绝对值大于2而小于4的整数有±3.故答案为:﹣4,5,±3.18.【解答】解:22y和32y是同类项.22y+32y=52y.故答案是:52y.19.【解答】解:由直角三角形,得∠AOB=90°,∠COD=90°.由角的和差,得∠AOC+∠BOD=(∠AOB+∠BOC)+∠BOD=∠AOB+(∠BOC+∠BOD)=∠AOB+∠COD=90°+90°=180°,故答案为:180.20.【解答】解:设原价为元.则可列方程:80%=16解得:=20(元)故答案是:20.三、解答题(本大题共7小题,共66分。
解答应写出文字说明、证明过程或演算步骤)21.【解答】解:(1)原式=12+18﹣7﹣32.5=30﹣40=﹣10;(2)原式=﹣8﹣2+20﹣9=1.22.【解答】解:(1)﹣2﹣9=8+1,﹣2﹣8=1+9,﹣10=10,=﹣1;(2)﹣=1,2(2+1)﹣(5﹣1)=6,4+2﹣5+1=6,4﹣5=6﹣2﹣1,﹣=3,=﹣3.23.【解答】解:(1)999×(﹣15)=(1000﹣1)×(﹣15)=1000×(﹣15)﹣1×(﹣15)=﹣15000+15=﹣14985;(2)999×118+999×(﹣)﹣999×18=999×[118+(﹣)+(﹣18)]=999×100=99900.24.【解答】解:如图所示:AE即为所求.25.【解答】解:如图所示:点M即为这艘船的位置.26.【解答】解:(1)10﹣3+4+2﹣8+13﹣2+12+8+5=41(千米);(2)|+10|+|﹣3|+|+4|+|+2|+|﹣8|+|+13|+|﹣2|+|+12|+|+8|+|+5|=67,67×0. 2=13.4(升).答:收工时在A地前面41千米,从A地出发到收工时共耗油13.4升.27.【解答】解:阅读理解:三个不同的点,以它们为端点的线段共有3条,若取了四个不同的点,则共有线段6条,…,依此类推,取了n个不同的点,共有线段条;类比探究:(1)引出两条射线,共有4条射线,锐角的个数为6;(2)引出n条射线,共有n+2条射线,锐角的个数:;拓展应用:8个火车站共有线段条数=28,需要车票的种数:28×2=56.故答案为:3,6,;6;;56.。