九年级(上)第一章证明(二)单元测试卷4--九年级数学试题(可用)(北师大版)[1]1
北师大九年级数学上册全套单元测试题【含答案】
北师大九年级数学上册全套单元测试题【含答案】2010~2011学年度上期目标检测题九年级 数学第一章 证明(Ⅱ)班级 姓名 学号 成绩一、判断题(每小题2分,共10分)下列各题正确的在括号内画“√”,错误的在括号内画“×”.1、两个全等三角形的对应边的比值为1 . ( )2、两个等腰三角形一定是全等的三角形. ( )3、等腰三角形的两条中线一定相等. ( )4、两个三角形若两角相等,则两角所对的边也相等. ( )5、在一个直角三角形中,若一边等于另一边的一半,那么,一个锐角一定等于30°.( )二、选择题(每小题3分,共30分)每小题只有一个正确答案,请将正确答案的番号填在括号内.1、在△ABC 和△DEF 中,已知AC=DF ,BC=EF ,要使△ABC ≌△DEF ,还需要的条件是( )A 、∠A=∠DB 、∠C=∠FC 、∠B=∠ED 、∠C=∠D2、下列命题中是假命题的是( )A 、两条中线相等的三角形是等腰三角形B 、两条高相等的三角形是等腰三角形C 、两个内角不相等的三角形不是等腰三角形D 、三角形的一个外角的平分线平行于这个三角形的一边,则这个三角形是等腰三角形3、如图(一),已知AB=AC ,BE=CE ,D 是AE 上的一点,则下列结论不一定成立的是( )A 、∠1=∠2B 、AD=DEC 、BD=CD D 、∠BDE=∠CDE4、如图(二),已知AC 和BD 相交于O 点,AD ∥BC ,AD=BC ,过O (一)任作一条直线分别交AD 、BC 于点E 、F ,则下列结论:①OA=OC②OE=OF ③AE=CF ④OB=OD ,其中成立的个数是( )A 、1B 、2C 、3D 、45、若等腰三角形的周长是18,一条边的长是5,则其他两边的长是( ) (二)A 、5,8B 、6.5,6.5C 、5,8或6.5,6.5D 、8,6.56、下列长度的线段中,能构成直角三角形的一组是( )A 、543,, ;B 、6, 7, 8;C 、12, 25, 27;D 、245232,,7、如图(三),AC=AD BC=BD ,则下列结果正确的是( ) (三)A 、∠ABC=∠CAB B 、OA=OBC 、∠ACD=∠BDCD 、AB ⊥CD8、如图(四),△ABC 中,∠A=30°,∠C=90°AB 的垂直平分线交AC 于D 点,交AB 于E 点,则下列结论错误的是( )A 、AD=DB B 、DE=DCC 、BC=AED 、AD=BC (四)9、如图(五),在梯形ABCD 中,∠C=90°,M 是BC 的中点,DM 平分∠ADC ,∠CMD=35°,则∠MAB 是( )A 、35°B 、55°C 、70°D 、20°10、如图(六),在Rt △ABC 中,AD 平分∠BAC ,AC=BC , (五) ∠C=Rt ∠,那么,DCAC 的值为( ) A 、112∶)(- B 、()112∶+ C 、12∶ D 、 12∶ (六)三、填空题,(每空2分,共20分)1、如图(七),AD=BC ,AC=BD AC 与BD 相交于O 点,则图中全等三角形共有 对. (七)2、如图(八),在△ABC 和△DEF 中,∠A=∠D ,AC=DF ,若根据“ASA ”说明△ABC ≌△DEF ,则应添加条件 = . (八) 或 ∥ .3、一个等腰三角形的底角为15°,腰长为4cm ,那么,该三角形的面积等于 .4、等腰三角形一腰上的高与底边的夹角等于45°,则这个三角形的顶角等于 .5、命题“如果三角形的一个内角是钝角,则其余两个内角一定是锐角”的逆命题是 于D ,则CD= .9、如图(十)的(1)中,ABCD 是一张正方形纸片,E ,F 分别为AB ,CD 的中点,沿过点D 的折痕将A 角翻折,使得点A 落在(2)中EF 上,折痕交AE 于点G ,那么∠ADG= .四、作图题(保留作图的痕迹,写出作法)(共6分) (十)如图(十一),在∠AOB 内,求作点P ,使P 点到OA ,OB 的 距离相等,并且P 点到M ,N 的距离也相等.(十一)五、解答题(5分)如图(十二),一根旗杆的升旗的绳垂直落地后还剩余1米,若将绳子拉直, 则绳端离旗杆底端的距离(BC)有5米.求旗杆的高度.(十二)六、证明题(第1,第2两小题各6分,第3小题8分,第4小题9分)1、已知:如图(十三),AB ∥CD ,F 是AC 的中点,求证:F 是DE 中点.(十三)2、已知:如图(十四),AB=AD , CB=CD ,E ,F 分别是AB ,AD 的中点.求证:CE=CF .(十四)3、如图(十五),△ABC 中,AD 是∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F.求证:(1)AD ⊥EF ;(2)当有一点G 从点D 向A 运动时,DE ⊥AB 于E ,DF ⊥AC 于F ,此时上面结论是否成立?(十五)4、如图(十六),△ABC 、△DEC 均为等边三角形,点M 为线段AD 的中点,点N 为线段BE 的中点,求证:△CNM 为等边三角形.(十六)2010~2011学年度上期目标检测题九年级 数学第二章 一元二次方程班级 姓名 学号 成绩一、填空题(每小题2分,共36分)1.一元二次方程)3(532-=x x 的二次项系数是 ,一次项系数是 , 常数项是 .2.当m 时, 012)1(2=+++-m mx x m 是一元二次方程.3.方程022=-x x 的根是 ,方程036)5(2=--x 的根是 . 4.方程)32(5)32(2-=-x x 的两根为==21,x x .5.a 是实数,且0|82|42=--+-a a a ,则a 的值是 .6.已知322--x x 与7+x 的值相等,则x 的值是 . 7.(1)22___)(96+=++x x x ,(2)222)2(4___p x p x -=+-. 8.如果-1是方程0422=-+bx x 的一个根,则方程的另一个根是 ,b 是 .9.若1x 、2x 为方程0652=-+x x 的两根,则21x x +的值是,21x x 的值是. 10.用22cm 长的铁丝,折成一个面积为228cm 的矩形,这个矩形的长是__ __.11.甲、乙两人同时从A 地出发,骑自行车去B 地,已知甲比乙每小时多走3千米,结果比乙早到0.5小时,若A 、B 两地相距30千米,则乙每小时 千米.二、选择题(每小题3分,共18分)每小题只有一个正确答案,请将正确答案的番号填在括号内.1、已知关于的方程,(1)ax 2+bx+c=0;(2)x 2-4x=8+x 2;(3)1+(x-1)(x+1)=0;(4)(k 2+1)x 2 + kx + 1= 0中,一元二次方程的个数为( )个A 、1B 、2C 、3D 、42、如果01)3(2=+-+mx x m 是一元二次方程,则 ( )A 、3-≠mB 、3≠mC 、0≠mD 、 03≠-≠m m 且3、已知方程()031222=+--m x m x 的两个根是互为相反数,则m 的值是 ( )A 、1±=mB 、1-=mC 、1=mD 、0=m4、将方程0982=++x x 左边变成完全平方式后,方程是( )A 、7)4(2=+xB 、25)4(2=+xC 、9)4(2-=+xD 、7)4(2-=+x5、如果022=--m x x 有两个相等的实数根,那么022=--mx x 的两根和是 ( )A 、 -2B 、 1C 、 -1D 、 26、一种药品经两次降价,由每盒50元调至40.5元,平均每次降价的百分率是 ( )A 、 5%B 、 10%C 、15%D 、 20% 三、按指定的方法解方程(每小题3分,共12分)1.02522=-+)(x (直接开平方法) 2. 0542=-+x x (配方法) 3.025)2(10)2(2=++-+x x (因式分解法) 4. 03722=+-x x (公式法) 四、适当的方法解方程(每小题4分,共8分)1.036252=-x 2. 0)4()52(22=+--x x 五、完成下列各题(每小题5分,共15分)1、已知函数222a ax x y --=,当1=x 时,0=y , 求a 的值. 2、若分式1|3|432----x x x 的值为零,求x 的值. 3、关于x 的方程021)1(2)21(2=-+--k x k x k 有实根.(1)若方程只有一个实根,求出这个根;(2)若方程有两个不相等的实根1x ,2x ,且61121-=+x x ,求k 的值. 六、应用问题(第1小题5分,第2小题6分,共11分)1、请求解我国古算经《九章算术》中的一个题:在一个方形池,每边长一丈,池中央长了一颗芦苇,露出水面恰好一尺,把芦苇的顶端收到岸边,芦苇顶端和岸边水面恰好相齐,问水深和芦苇的长度各是多少?(1丈=10尺)2、某科技公司研制成功一种新产品,决定向银行贷款200万元资金用于生产这种产品,签定的合同约定两年到期时一次性还本付息,利息为本金的8%,该产品投放市场后,由于产销对路,使公司在两年到期时除还清贷款的本金和利息外,还盈余72万元;若该公司在生产期间每年比上一年资金增长的百分数相同,试求这个百分数.2010~2011学年度上期目标检测题九年级 数学第三章 证明(Ⅲ)班级 姓名 学号 成绩一、选择题(每题4分,共40答案的番号填在括号内. 1、如图1中,O 为对角线AC 、BD 则图中共有相等的角( )A 、4对B 、5对C 、6对D 、8对 2、如图2,已知E 、F 的中点, 连接AE 、CF 所形成的四边形AECF 的面 的面积的比为( )A 、1:1B 、1:2C 、1:3D 、1:43、过四边形ABCD 的顶点A 、B 、C 、D 作BD 、AC 的平行线围成四边形EFGH,若EFGH 是菱形,则四边形ABCD 一定是( ) A 、平行四边形 B 、菱形C 、矩形D 、对角线相等的四边形4、在菱形ABCD 中,,,CD AF BC AE ⊥⊥ 且E 、F 分别是BC 、CD 的中点, 那么=∠EAF ( )A 、075B 、055C 、450D 、0605、矩形的一条长边的中点与另一条长边构成等腰直角三角形,已知矩形的周长是36,则矩形一条对角线长是( )A 、56B 、55C 、54D 、356、矩形的内角平分线能够组成一个( )A 、矩形B 、菱形C 、正方形D 、平行四边形7、以正方形ABCD 的一组邻边AD 、CD 向形外作等边三角形ADE 、CDF ,则下列结论中错误的是( )A 、BD 平分EBF ∠B 、030=∠DEFC 、BD EF ⊥ D 、045=∠BFD8、已知正方形ABCD 的边长是10cm ,APQ ∆是等边三角形,点P 在BC 上,点Q 在CD 上,则BP 的边长是( )A 、55cmB 、3320cm C 、)31020(-cm D 、)31020(+cm 9、若两个三角形的两条中位线对应相等且两条中位线与一对应边的夹角相等,则这两个三角形的关系是( )A 、全等B 、周长相等C 、不全等D 、不确定10、正方形具有而菱形不具有的性质是( )A 、四个角都是直角B 、两组对边分别相等C 、内角和为0360 D 、对角线平分对角 二、填空题(每空1分,共11分)1、平行四边形两邻边上的高分别为32和33,这两条高的夹角为060,此平行四边形的周长为 ,面积为 .2、等腰梯形的腰与上底相等且等于下底的一半,则该梯形的腰与下底的夹角为 .3、三角形三条中位线围成的三角形的周长为19,则原三角形的周长为 .4、在ABC ∆中,D 为AB 的中点,E 为AC 上一点,AC CE 31=,BE 、CD 交于点O ,cm BE 5=,则=OE .5、顺次连接任意四边形各边中点的连线所成的四边形是 .6、将长为12,宽为5的矩形纸片ABCD 沿对角线AC 对折后,AD 与BC 交于点E ,则DE 的长度为 .7、从矩形的一个顶点作一条对角线的垂线,这条垂线分这条对角线成1:3两部分,则矩形的两条对角线夹角为 .8、菱形两条对角线长度比为1:3,则菱形较小的内角的度数为 .9、正方形的一条对角线和一边所成的角是 度.10、已知四边形ABCD 是菱形,AEF ∆是正三角形,E 、F 分别在BC 、CD 上,且CD EF =,则=∠BAD .三、解答题(第1、2小题各10分,第3、4小题各5分,共30分)1、如图3,AB//CD ,090=∠ACB ,E 是AB CE=CD ,DE 和AC 相交于点F.求证:(1)AC DE ⊥; (2)ACE ACD ∠=∠.2、如图4,ABCD 为平行四边形,DFEC 和BCGH 34四、(第1、2小题各6分,第3小题7分,共1、如图5,正方形纸片ABCD 的边BC 上有一点E ,E 重合,则纸片折痕的长是多少?2、如图6,在矩形ABCD 中,E 是BC 上一点且AE=AD3、如图7,已知P 是矩形ABCD 的内的一点.求证:2010~2011学年度上期目标检测题九年级 数学半期检测题(总分120分,100分钟完卷)班级 姓名 学号 成绩一、选择题(每小题3分,共36案的番号填在括号内.1、下列数据为长度的三条线段可以构成直角三角形的是((A )3、5、6 (B )2、3、4(C ) 6、7、9 (D )9、12、15 2、如图(一):AB=AC ,D 、E 、F 分别是三边中点,则图中全等三角形共有( )(A ) 5对 (B ) 6对 (C ) 7对 (D ) 8对 3、△ABC 中,∠A=150º,AB=10,AC=18,则△ABC (A )45 (B )90 (C )180 (D )不能确定4、已知△ABC 中,∠C=90º,∠A=30º,BD 平分∠B 交AC 于点D ,则点D ( )(A )是AC 的中点 (B )在AB 的垂直平分线上(C )在AB 的中点 (D )不能确定5、关于x 的一元二次方程01)1(22=-++-a x x a 的一个根是0,则a 的值是( )(A )1 (B ) -1 (C ) 1或-1 (D )21 6、方程x x 52=的根是( )(A )5=x (B )0=x (C ) 5,021==x x (D ) 0,521=-=x x7、用配方法将二次三项式9642-+x x 变形,结果为( )(A )100)2(2++x (B )100)2(2--x (C )100)2(2-+x (D ) 100)2(2+-x8、两个连续奇数的乘积是483,则这两个奇数分别是( )(A ) 19和21 (B ) 21和23 (C ) 23和25 (D ) 20和229、根据下列条件,能判定一个四边形是平行四边形的是( )(A )两条对角线相等 (B )一组对边平行,另一组对边相等(C )一组对角相等,一组邻角互补 (D )一组对角互补,一组对边相等10、能判定一个四边形是矩形的条件是( )(A )对角线相等 (B )对角线互相平分且相等(C )一组对边平行且对角线相等 (D )一组对边相等且有一个角是直角11、如果一个四边形要成为一个正方形,那么要增加的条件是( )(A )对角线互相垂直且平分 (B )对角互补(C )对角线互相垂直、平分且相等 (D )对角线相等12、矩形的四个内角平分线围成的四边形( )(A )一定是正方形 (B )是矩形 (C )菱形 (D )只能是平行四边形 二、填空题(每空2分,共38分)1、直角三角形两直角边分别是5cm 和12cm ,则斜边长是 ,斜边上的高 是 cm.2、命题“对顶角相等”的逆命题是 ,这个逆命题是 命题.3、有一个角是304、如图( 二),△ABC 中,AB=AC ,∠BAC=120AD ⊥AC ,DC=8,则BD= .5、已知:如图(三),△ABC 中,AB=AC ,∠AB 的中垂线交AC 于点D ,交AB 于点E , 则∠C= ,∠DBC= .6、若关于x 的方程42322-=+x x kx 则k 的取值范围是 .7、关于x 的方程124322+-=-a ax x x ,若常数项为0,则a = .8、如果m x x ++32是一个完全平方式,则m = .9、已知9)2(222=++y x ,则=+22y x . 10、方程012=--x x 的根是 .11、已知04322=--y xy x ,则yx 的值是 . 12、如图(四),平行四边形ABCD 中,AD=6cm ,AB=9cm,AE 平分∠DAB ,则CE= cm. (四)13、已知矩形ABCD 的周长是24 cm,点M 是CD 中点,∠AMB=90°,则AB= cm,AD= cm.14、已知菱形周长为52,一条对角线长是24,则这个菱形的面积是 .15、等腰梯形上底长与腰长相等,而一条对角线与一腰垂直,则梯形上底角的度数是 .三、解方程(每小题4分,共16分)1、0862=--x x (用配方法).2、23142-=--x x x (用公式法).3、04)5(=+-x x x (用因式分解法).4、02)12(2=++-x x .四、解答题(每小题5分,共15分)1、为响应国家“退耕还林”的号召,改变我省水土流失严重的状况,2002年我省退耕还林1600亩,计划2004年退耕还林1936亩,问这两年平均每年退耕还林的增长率是多少?2、学校准备在图书管后面的场地边上建一个面积为50平方米的长方形自行车棚,一边利用图书馆的后墙,并利用已有的总长为25米的铁围栏,请你设计,如何搭建较合适?3、如图(五),ΔABC 中,AB=20,AC=12,AD 是中线,且AD=8,求BC 的长. 五、证明(计算)(每小题5分,共15分)1、已知:如图(六),点C 、D 在BE 上,BC=DE ,AB ∥EF ,AD ∥CF.求证:AD=CF.2、如图(七),正方形ABCD 中,E 为CD 上一点,F 为BC (1)求证:△BCE ≌△DCF ;(2)若∠BEC=600,求∠EFD3、已知:如图(八),在直角梯形ABCD 中,AB ∥CD ,AD ⊥求证:CD=CE.(八)2010~2011学年度上期目标检测题九年级数学第四章视图与投影班级姓名学号成绩一、选择题(每小题4分,共32分)下列每小题都给出了四个答案,其中只有一个答案是正确的,请把正确答案的代号填在该小题的括号内.1、一个几何体的主视图和左视图都是相同的长方形,府视图为圆,则这个几何体为()A、圆柱B、圆锥C、圆台D、球2、从早上太阳升起的某一时刻开始到晚上,旭日广场的旗杆在地面上的影子的变化规律是()A、先变长,后变短B、先变短,后变长C、方向改变,长短不变D、以上都不正确3、在相同的时刻,物高与影长成比例.如果高为1.5米人测竿的影长为2.5米,那么影长为30米的旗杆的高是()A、20米B、16米C、18米D、15米4、下列说法正确的是()A、物体在阳光下的投影只与物体的高度有关B、小明的个子比小亮高,我们可以肯定,不论什么情况,小明的影子一定比小亮的影子长.C、物体在阳光照射下,不同时刻,影长可能发生变化,方向也可能发生变化.D、物体在阳光照射下,影子的长度和方向都是固定不变的.5、关于盲区的说法正确的有()(1)我们把视线看不到的地方称为盲区(2)我们上山与下山时视野盲区是相同的(3)我们坐车向前行驶,有时会发现一些高大的建筑物会被比矮的建筑物挡住(4)人们常说“站得高,看得远”,说明在高处视野盲区要小,视野范围大A、1 个B、2个C、3个D、4个6、如图1是空心圆柱体在指定方向上的视图,正确的是()图17、如图2所示,这是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.2m,桌面距离地面1m,若灯泡距离地面3m,则地面上阴影部分的面积为()图 2A、0.36πm2B、0.81πm2C、2πm2D、3.24πm28、如图(三)是小明一天上学、放学时看到的一根电线杆的影子的府视图,按时间先后顺序进行排列正确的是()(三)A、(1)(2)(3)(4)B、(4)(3)(1)(2)C、(4)(3)(2)(1)D、(2)(3)(4)(1)二、填空题(每小题3分,共21分)1、主视图、左视图、府视图都相同的几何体为(写出两个).2、太阳光线形成的投影称为,手电筒、路灯、台灯的光线形成的投影称为 .3、我们把大型会场、体育看台、电影院建为阶梯形状,是为了 .4、为了测量一根电线杆的高度,取一根2米长的竹竿竖直放在阳光下,2米长的竹竿的影长为1米,并且在同一时刻测得电线杆的影长为7.3米,则电线杆的高为米.5、如果一个几何体的主视图、左视图都是等腰三角形,俯视图为圆,那么我们可以确定这个几何体是 .6、将一个三角板放在太阳光下,它所形成的投影是,也可能是 .7、身高相同的小明和小华站在灯光下的不同位置,如果小明离灯较远,那么小明的投影比小华的投影 .三、解答题(本题7个小题,共47分)1、某糖果厂为儿童设计一种新型的装糖果的不倒翁(如图4所示)请你为包装厂设计出它的主视图、左视图和府视图.图 42、画出图5中三棱柱的主视图、左视图、俯视图.图 53、画出图6中空心圆柱的主视图、左视图、俯视图.图 64、如图7所示,屋顶上有一只小猫,院子里有一只小老鼠,若小猫看见了小老鼠,则小老鼠就会有危险,试画出小老鼠在墙的左端的安全区.图 75、如图8为住宅区内的两幢楼,它们的高AB=CD=30m,两楼间的距离AC=30m,现需了解甲楼对乙楼的采光的影响情况,(1)当太阳光与水平线的夹角为30°角时,求甲楼的影3 1.73);(2)若要甲楼的影子刚好不落在乙楼的子在乙楼上有多高(精确到0.1m,墙上,此时太阳与水平线的夹角为多少度?图 86、阳光通过窗口照到教室内,竖直窗框在地面上留下2.1m长的影子[如图(9)所示],已知窗框的影子DE到窗下墙脚的距离CE=3.9m,窗口底边离地面的距离BC=1.2m,试求窗口的高度(即AB的值)图 97、一位同学想利用有关知识测旗杆的高度,他在某一时刻测得高为0.5m的小木棒的影长为0.3m,但当他马上测量旗杆的影长时,因旗杆靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,他先测得留在墙上的影子CD=1.0m,又测地面部分的影长BC=3.0m,你能根据上述数据帮他测出旗杆的高度吗?图 102010~2011学年度上期目标检测题九年级 数学第五章 反比例函数班级 姓名 学号 成绩一、填空题(每小题3分,共30分)1、近视眼镜的度数y (度)与镜片焦距x 成反比例.已知400度近视眼镜片的焦距为0.25米,则眼镜度数y 与镜片焦距x 之间的函数关系式是 .2、如果反比例函数xk y =的图象过点(2,-3),那么k = . 3、已知y 与x 成反比例,并且当x=2时,y=-1,则当y=3时,x 的值是 . 4、已知y 与(2x+1)成反比例,且当x=1时,y=2,那么当x=0,y 的值是 . 5、若点A (6,y 1)和B (5,y 2)在反比例函数x y 4-=的图象上,则y 1与y 2的大小关系是 .6、已知函数xy 3=,当x <0时,函数图象在第 象限,y 随x 的增大而 . 7、若函数12)1(---=m m x m y 是反比例函数,则m 的值是 .8、直线y=-5x+b 与双曲线x y 2-=相交于 点P (-2,m ),则b= .9、如图1,点A 在反比例函数图象上,过点A 作AB 垂直于x 轴,垂足为B ,若S △AOB =2,则这个反比例函数的解析式为 . 图 110、如图2,函数y=-kx(k≠0)与xy 4-=的图 象交于点A 、B ,过点A 作AC 垂直于y 轴,垂足为C ,则△BOC 的面积为 . 图 2二、选择题(每小题3分,共30分)下列每个小题都给出了四个答案,其中只有一个答案是正确的,请把正确答案的代号填在该小题后的括号内.1、如果反比例函数的图象经过点P (-2,-1),那么这个反比例函数的表达式为( )A 、x y 21=B 、x y 21-=C 、x y 2=D 、xy 2-= 2、已知y 与x 成反比例,当x=3时,y=4,那么当y=3时,x 的值等于( )A 、4B 、-4C 、3D 、-33、若点A (-1,y 1),B(2,y 2),C (3,y 3)都在反比例函数xy 5=的图象上,则下列关系式正确的是( )A 、y 1<y 2<y 3B 、y 2<y 1<y 3C 、y 3<y 2<y 1D 、y 1<y 3<y 24、反比例函数xm y 5-=的图象的两个分支分别在第二、四象限内,那么m 的取值范围是( )A 、m <0B 、m >0C 、m <5D 、m >55、已知反比例函数的图象经过点(1,2),则它的图象也一定经过( )A 、(-1,-2)B 、(-1,2)C 、(1,-2)D 、(-2,1)6、若一次函数b kx y +=与反比例函数xk y =的图象都经过点(-2,1),则b 的值是( ) A 、3 B 、-3 C 、5 D 、-57、若直线y=k 1x(k 1≠0)和双曲线xk y 2=(k 2≠0)在同一坐标系内的图象无交点,则k 1、k 2的关系是( )A 、k 1与k 2异号B 、k 1与k 2同号C 、k 1与k 2互为倒数D 、k 1与k 2的值相等8、已知点A 是反比例函数图象上一点,它到原点的距离为5,到x 轴的距离为3,若点A 在第二象限内,则这个反比例函数的表达式为( )A 、x y 12=B 、x y 12-=C 、x y 121=D 、xy 121-= 9、如果点P 为反比例函数x y 6=的图像上的一点,PQ 垂直于x 轴,垂足为Q ,那么 △POQ 的面积为( )A 、12B 、6C 、3D 、1.510、已知反比例函数xk y =(k≠0),当x >0时,y 随x 的增大而增大,那么一次函数y=kx-k 的图象经过( )A 、第一、第二、三象限B 、第一、二、三象限C 、第一、三、四象限D 、第二、三、四象限三、解答题(本题6个小题,共40分)1、(6分)已知矩形的面积为6,求它的长y 与宽x 之间的函数关系式,并在直角坐标系中作出这个函数的图象.2、(6分)一定质量的氧气,它的密度ρ(kg/m 3)是它的体积v (m 3)的反比例函数,当v =10m 3时,ρ=1.43kg/m 3. (1)求ρ与v 的函数关系式;(2)求当v =2m 3时,氧气的密度ρ.3、(7分)某蓄水池的排水管每时排水8m 3,6小时(h )可将满水池全部排空.(1)蓄水池的容积是多少?(2)如果增加排水管,使每时的排水量达到Q (m 3),那么将满池水排空所需的时间t(h)将如何变化?(3)写出t 与Q之间的关系式(4)如果准备在5h 内将满池水排空,那么每时的排水量至少为多少?(5)已知排水管的最大排水量为每时12m 3,那么最少多长时间可将满池水全部排空?4、(7分)某商场出售一批进价为2元的贺卡,在市场营销中发现此商品的日销售单价x (元)与日销售量y (个)之间有如下关系:(2)猜测并确定y 与x 之间的函数关系式,并画出图象;(3)设经营此贺卡的销售利润为W元,求出W与x 之间的函数关系式.若物价局规定此贺卡的售价最高不能超过10元/个,请你求出当日销售单价x 定为多少时,才能获得最大日销售利润?5、(7分)如图3,点A是双曲线x k y =与直线y=-x-(k+1)在第二象限内的交点, AB⊥x 轴于B ,且S△ABO =23. (1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC 的面积.图 36、(7分)已知反比例函数xk y 2=和一次函数y=2x-1,其中一次函数的图象经过(a,b ),(a+1,b+k )两点.(1)求反比例函数的解析式;(2)如图4,已知点A 在第一象限,且同时在上述两个函数的图象上,求点A 的坐标;(3)利用(2)的结果,请问:在x 轴上是否存在点P ,使△AOP 为等腰三角形?若存在,把符合条件的P 点坐标都求出来;若不存在,请说明理由.图 42010~2011学年度上期目标检测题九年级 数学第六章 频率与概率班级 姓名 学号 成绩一、选择题(每小题4分,共40分)下列每个小题都给出了四个答案,其中只有一个答案是正确的,请把正确答案的代号填在该小题后的括号内.1、一个事件发生的概率不可能是( )A 、0B 、1C 、21D 、23 2、下列说法正确的是( ) A 、投掷一枚图钉,钉尖朝上、朝下的概率一样 B 、统一发票有“中奖”和“不中奖”两种情形,所以中奖的概率是21 C 、投掷一枚均匀的硬币,正面朝上的概率是21 D 、投掷一枚均匀的骰子,每一种点数出现的概率都是61,所以每投6次,一定会出现一次“1点”.3、关于频率和概率的关系,下列说法正确的是( )A 、频率等于概率B 、当实验次数很大时,频率稳定在概率附近C 、当实验次数很大时,概率稳定在频率附近D 、实验得到的频率与概率不可能相等4、小明练习射击,共射击60次,其中有38次击中靶子,由此可估计,小明射击一次击中靶子的概率是( )A 、38%B 、60%C 、约63%D 、无法确定5、随机掷一枚均匀的硬币两次,两次都是正面的概率是( )A 、21B 、31C 、41 D 、无法确定 6、从口袋中随机摸出一球,再放回口袋中,不断重复上述过程,共摸了150次,其中有50次摸到黑球,已知口袋中有黑球10个和若干个白球.由此估计口袋中大约有多少个白球( )A 、10个B 、20个C 、30个D 、无法确定7、某商场举办有奖销售活动,办法如下:凡购物满100元者得奖券一张,多购多得.每10000张奖券为一个开奖单位,设特等奖1个,一等奖50个,二等奖100个,那么买100元商品的中奖概率是( )A 、100001B 、1000050C 、10000100D 、10000151 8、柜子里有2双鞋,随机取出两只刚好配成一双鞋的概率是( ) A 、21 B 、31 C 、41 D 、61 9、某校九年级一班共有学生50人,现在对他们的生日(可以不同年)进行统计,则正确的说法是( )A 、至少有两名学生生日相同B 、不可能有两名学生生日相同C 、可能有两名学生生日相同,但可能性不大D 、可能有两名学生生日相同,且可能性很大10、某城市有10000辆自行车,其牌照编号为00001到10000,则某人偶然遇到一辆自行车,其牌照编号大于9000的概率是( )A 、101 B 、109 C 、1001 D 、1009 二、填空题(每小题3分,共24分) 1、在装有6个红球、4个白球的袋中摸出一个球,是红球的概率是 .2、某电视台综艺节目组接到热线电话3000个.现要从中抽取“幸运观众”10名,张华同学打通了一次热线电话,那么他成为“幸运观众”的概率是 .3、袋中装有一个红球和一个黄球,它们除了颜色外都相同.随机从中摸出一球,记录下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到黄球的概率是 .4、小明和小华在玩纸牌游戏,有两组牌,每组各有2张,分别都是1、2,每人每次从每组牌中抽出一张,两张牌的和为3的概率为 .5、一个口袋中有15个黑球和若干个白球,从口袋中一次摸出10个球,求出黑球数与10的比值,不断重复上述过程,总共摸了10次,黑球数与10的比值的平均数为1/5,因此可估计口袋中大约有 个白球.6、转盘甲被分成完全相等的三个扇形,颜色分别是红、蓝、绿,转盘乙被分成完全相等的两个扇形,颜色分别是红、蓝,任意转动这两个转盘,一个转盘转出蓝色,一个转盘转出红色(即配成紫色)的概率是 .7、一个密码锁的密码由四个数字组成,每个数字都是0~9这十个数字中的一个,只有当四个数字与所设定的密码相同时,才能将锁打开.小亮忘了密码的前面两个数字,他随意按下前两个数字,则他一次就能打开锁的概率是 .8、某市民政部门今年元宵节期间举行了“即开式社会福利彩票”销售活动,设置彩票3000是 .三、解答题(本题有5个小题,共36分)1、(7分)有30张牌,牌面朝下,每次抽出一张记下花色再放回,洗牌后再抽,抽到红桃、黑桃、梅花、方块的频率依次为20%、32%、45%、3%,试估计四种花色的牌各有多少张?2、(7分)一则广告称:本次抽奖活动的中奖率为50%,其中一等奖的中奖率为10%,小明看到这则广告后,想:“50%=21,那么我抽二张就会有一张中奖,抽10张就会有1张中一等奖”.你认为小明的想法对吗?请说明理由.3、(7分)桌上放着6张扑克牌,全部正面朝下,其中恰有2张是老K.两人做游戏,游戏规则是:随机取2张牌并把它们翻开,若2张牌中没有老K,则红方胜,否则蓝方胜.你愿意充当红方还是蓝方?请说明理由.4、(7分)为了估计鱼塘中有多少条鱼,先从鱼塘捕捞100条鱼做上标记,然后放回鱼塘,经过一段时间,待有标记的鱼完全混合于鱼群后,又捕捞了两次,第一次捕捞了200条鱼,其中有24条有标记,第二次捕捞了220条,其中有18条有标记.请问你能否估计出鱼塘中鱼的数量?若能,鱼塘中大约有多少条鱼?若不能,请说明理由.5、(8分)小红计划到外婆家度暑假,为此她准备了一件粉色衬衣,一件白色衬衣,又买了三条不同款式的裙子:一步裙、太阳裙和牛仔裙.(1)她一共有多少种搭配方法?(2)如果在30天中她每天都变换一种搭配,她有几天穿白衬衣?几天穿牛仔裙?有几天白衬衣配牛仔裙?2010~2011学年度上期目标检测题九年级 数学第一章 证明(Ⅱ)参考答案一、判断题 1 √,2 ×,3 ×,4 ×,5 ×二、选择题 1、C 2、C 3、B 4、D 5、C 6、D 7、D 8、D 9、A 10、B三、填空题 1、三;2、∠ACB=∠DFE ,AB ∥DE ;3、4cm 2 ;4、90°;5、如果两个内角是锐角,那么另一个内角是钝角;6、三角形有两个内角是钝角; 7、cm 52;8、4cm ;9、15°.四、作图题 (略)五、解答题:设旗杆的高度为x 米 列方程 ()22251+=+x x 解 12=x六、证明题: 1、证明(略)2、连结AC 先证△ABC ≌△ADC 再证△AEC ≌△DFC3、先证△AED ≌△AFD 得AE=AF ∠EAD=∠FAD 由等腰三角形三线合一得 AD ⊥EF(或 证AE=AF DE=DF 得A 点在EF 的中垂线上,D 点在EF 的中垂线上 )。
北师大版九年级数学上册-第一章-特殊的平行四边形-单元测试题(有答案)
九年级数学上册第一章特殊的平行四边形单元测试题班级:姓名:成绩:一.选择题(共10小题,每小题3分,共30分)1.下列属于菱形性质的是()A.对角线相等 B.对角线互相垂直C.对角互补 D.四个角都是直角2.如图,AC=AD,BC=BD,则正确的结论是()A.AB 垂直平分CD B.CD垂直平分ABC.AB与CD互相垂直平分D.四边形ABCD是菱形3.如图,四边形ABCD的对角线相交于点O,且点O是BD的中点,若AB=AD=5,BD=8,∠ABD=∠CDB,则四边形ABCD的面积为()A.40 B.24 C.20 D.154.如图,O为矩形ABCD的对角线AC的中点,过点O作AC的垂线EF分别交AD、BC于点E、F,连结CE.若该矩形的周长为20,则△CDE的周长为()A.10 B.9 C.8 D.55.如图,在▱ABCD中,对角线AC与BD 交于点O,添加下列条件不能判定▱ABCD为矩形的只有()A.AC=BD B.AB=6,BC=8,AC=10 C.AC⊥BD D.∠1=∠26.如图,在▱ABCD中,对角线AC、BD相交于点O,且OA=OD,∠OAD=55°,则∠OAB的度数为()A.35°B.40°C.45°D.50°7.如图,在正方形ABCD中,分别以点B,C为圆心,BC长为半径画弧,两弧相交于点E,连接AE,BE得到△ABE,则△ABE与正方形ABCD的面积比为()A.1:2 B.1:3 C.1:4 D.8.已知四边形ABCD中,∠A=∠B=∠C=90°,如添加一个条件,使得该四边形成为正方形,那么所添加的这个条件可以是()A.∠D=90°B.AB=CD C.AB=BC D.AC=BD9.如图,在平面直角坐标系中,菱形ABCD的边长为6,它的一边AB在x轴上,且AB的中点是坐标原点,点D在y轴正半轴上,则点C的坐标为()A.(3,3)B.(3,3)C.(6,3)D.(6,3)二.填空题(共8小题,每小题3分,共24分)10.矩形(非正方形)四个内角的平分线围成的四边形是形.(填特殊四边形)11.如图,E是菱形ABCD的对角线BD上一点,过点E作EF⊥BC于点F.若EF =4,则点E到边AB的距离为.12.在菱形ABCD中,AC=12cm,若菱形ABCD的面积是96cm2,则AB=.13.如图,矩形ABCD的对角线AC与BD相交点O,∠AOB=60°,AB=10,E、F 分别为AO、AD的中点,则EF的长是.14.如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,则∠BCE的度数是.15.如图,菱形ABCD的周长是20,对角线AC、BD相交于点O.若BO=3,则菱形ABCD的面积为.16.已知:如图,在长方形ABCD中,AB=2,AD=3.延长BC到点E,使CE=1,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为时,△ABP和△DCE全等.17.如图,在正方形ABCD和正方形CEFG中,BC=1,CE=3,点D是CG边上一点,H是AF 的中点,那么CH的长是.三.解答题(共7小题,共66分)18.已知:如图所示,菱形ABCD中,DE⊥AB于点E,且E为AB的中点,已知BD=4,求菱形ABCD的周长和面积.19.如图,已知四边形ABCD是平行四边形,AE⊥BC,AF⊥DC,垂足分别是E,F,并且BE =DF.求证;四边形ABCD是菱形.20.如图,在矩形ABCD中,AE⊥BD于点E,∠DAE=2∠BAE,求∠EAC的度数.21.如图,在四边形ABCD中,AD∥BC,∠D=90°,E为边BC上一点,且EC=AD,连结AC.(1)求证:四边形AECD是矩形;(2)若AC平分∠DAB,AB=5,EC=2,求AE的长,22.如图,在边长12的正方形ABCD中,点E是CD的中点,点F在边AD上,且AF=3DF,连接BE,BF,EF,请判断△BEF的形状,并说明理由.23.如图,正方形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC.(1)求证:四边形OCED是正方形.(2)若AC =,则点E到边AB 的距离为.24.如图,已知四边形ABCD为正方形,AB=4,点E为对角线AC上一动点,连接DE、过点E作EF⊥DE.交BC点F,以DE、EF为邻边作矩形DEFC,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.参考答案一.选择题1.解:A、菱形的对角线互相垂直,但不一定相等,故原命题错误,不符合题意;B、菱形的对角线互相垂直,故原命题正确,符合题意;C、菱形的对角相等,故原命题错误,不符合题意;D、矩形的四个角都是直角,菱形不一定是,故原命题错误,不符合题意,故选:B.2.解:∵AC=AD,BC=BD,∴AB垂直平分CD,故选:A.3.解:∵AB=AD,点O是BD的中点,∴AC⊥BD,∠BAO=∠DAO,∵∠ABD=∠CDB,∴AB∥CD,∴∠BAC=∠ACD,∴∠DAC=∠ACD,∴AD=CD,∴AB=CD,∴四边形ABCD是菱形,∵AB=5,BO =BD=4,∴AO=3,∴AC=2AO=6,∴四边形ABCD 的面积=×6×8=24,故选:B.4.解:∵O为矩形ABCD的对角线AC的中点,∴AO=OC,∵过点O作AC的垂线EF分别交AD、BC于点E、F,∴AE=CE,∵矩形的周长为20,∴AD+DC=AB+BC=10,∴△CDE的周长为CD+DE+CE=CD+DE+AE=CD+AD=10,故选:A.5.解:A、正确.对角线相等的平行四边形是矩形.B、正确.∵AB=6,BC=8,AC=10,∴AB2+BC2=62+82=102,∴∠ABC=90°,∴平行四边形ABCD为矩形.C、错误.对角线垂直的平行四边形是菱形,D、正确,∵∠1=∠2,∴AO=BO,∴AC=BD,∴平行四边形ABCD是矩形.故选:C.6.解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OD,∴AC=BD,∴四边形ABCD是矩形,∴∠DAB=90°,∵∠OAD=55°,∴∠OAB=∠DAB﹣∠OAD=35°故选:A.7.解:过E作EF⊥AB于F,由题意得,△BCE是等边三角形,∴∠EBC=60°,∵四边形ABCD是正方形,∴∠ABC=90°,∴∠ABE=30°,∴EF =BE,设正方形的边长为a,则AB=BE=BC=a,∴EF =a,∴S△ABE =AB•EF =•a a =a,S正方形ABCD=a2,∴△ABE与正方形ABCD的面积比为1:4,故选:C.8.解:由∠A=∠B=∠C=90°可判定四边形ABCD为矩形,因此再添加条件:一组邻边相等,即可判定四边形ABCD为正方形,故选:C.9.解:过点D作BC的垂线,交BC的延长线于F,∵∠ADC=∠ABC=90°,∴∠A+∠BCD=180°,∵∠FCD+∠BCD=180°,∴∠A=∠FCD,又∠AED=∠F=90°,AD=DC,∴△ADE≌△CDF,∴DE=DF,S四边形ABCD=S正方形DEBF=16,∴DE=4.故选:C.10.解:∵四边形ABCD是菱形∴AB=AD=CD=6,AB∥CD∵AB的中点是坐标原点,∴AO=BO=3,∴DO ==3∴点C坐标(6,3)故选:D.二.填空题11.解:∵AF,BE是矩形的内角平分线.∴∠ABF=∠BAF﹣90°.故∠1=∠2=90°.同理可证四边形GMON四个内角都是90°,则四边形GMON为矩形.又∵有矩形ABCD且AF、BE、DK、CJ为矩形ABCD四角的平分线,∴有等腰直角△DOC,等腰直角△AMD,等腰直角△BNC,AD=BC.∴OD=OC,△AMD≌△BNC,∴NC=DM,∴NC﹣OC=DM﹣OD,即OM=ON,∴矩形GMON为正方形,故答案为:正方.12.解:∵四边形ABCD为菱形,∴BD平分∠ABC,∵E为BD上的一点,EF=4,∴点E到AB的距离=EF=4,故答案为:4.13.解:如图,∵四边形ABCD是菱形∴AO=CO=6cm,BO=DO,AC⊥BD ∵S菱形ABCD =×AC×BD=96∴BD=16cm∴BO=DO=8cm∴AB ==10cm故答案为:10cm14.解:∵四边形ABCD是矩形,∴AO=OC,DO=BO,AC=BD,∴DO=CO=AO=BO,∵∠AOB=60°,∴△AOB是等边三角形,∵AB=10,∴AO=OB=DO=10,∵E、F分别为AO、AD的中点,∴EF =DO ==5,故答案为:5.15.解:∵四边形ABCD是正方形,∴∠CAE=45°=∠ACB.∵AE=AC,∴∠ACE=(180°﹣45°)÷2=67.5°.∴∠BCE=∠ACE﹣∠ACB=67.5°﹣45°=22.5°.故答案为22.5°.16.解:∵菱形ABCD的周长是20,∴AB=5,AC⊥BD,AO=CO,BO=DO=3,∴AO ==4∴AC=8,BD=6∴菱形ABCD 的面积=AC×BD=24,故答案为:2417.解:因为AB=CD,若∠ABP=∠DCE=90°,BP=CE=1,根据SAS证得△ABP≌△DCE,由题意得:BP=2t=1,所以t=0.5,因为AB=CD,若∠BAP=∠DCE=90°,AP=CE=1,根据SAS证得△BAP≌△DCE,由题意得:AP=8﹣2t=1,解得t=3.5.所以,当t的值为0.5或3.5秒时.△ABP和△DCE全等.故答案为:0.5秒或3.5秒.18.解:∵四边形ABCD和四边形CEFG都是正方形,∴∠ACD=45°,∠FCG=45°,AC =BC =,CF =CE=3,∴∠ACF=45°+45°=90°,在Rt△ACF中,由勾股定理得:AF ===2,∵H是AF的中点,∴CH =AF =.故答案为:.三.解答题19.解:∵DE⊥AB于E,且E为AB的中点,∴AD=BD,∵四边形ABCD是菱形,∴AD=BA,∴AB=AD=BD,∴△ABD是等边三角形,∴∠DAB=60°;∵BD=4,∴DO=2,AD=4,∴AO ==2,∴AC=4;∴AB ===4,∴菱形ABCD的周长为4×4=16;菱形ABCD 的面积为:BD•AC =×4×4=8.20.证明:∵四边形ABCD是平行四边形,∴∠B=∠D,∵AE⊥BC,AF⊥DC∴∠AEB=∠AFD=90°.又∵BE=DF,∴△ABE≌△ADF(AAS)∴DA=AB,∴平行四边形ABCD是菱形.21.解:∵四边形ABCD是矩形,∴AC=BD,AO=OC,OD=OB,∠BAD=90°,∴OA=OB,∵∠BAD=90°,∠DAE=2∠BAE,∴∠BAE=30°,∵AE⊥BD,∴∠AEB=90°,∴∠ABO=90°﹣30°=60°,∵OA=OB,∴△OAB是等边三角形,∴∠BAO=60°,∴∠EAC=∠BAO﹣∠BAE=60°﹣30°=30°.22.解:(1)证明:∵AD∥BC,EC=AD,∴四边形AECD是平行四边形.又∵∠D=90°,∴四边形AECD是矩形.(2)∵AC平分∠DAB.∴∠BAC=∠DAC.∵AD∥BC,∴∠DAC=∠ACB.∴∠BAC=∠ACB.∴BA=BC=5.∵EC=2,∴BE=3.∴在Rt△ABE中,AE ===4.23.解:△BEF是直角三角形,理由如下:∵四边形ABCD是正方形,∴∠A=∠C=∠D=90°.∵点E是CD的中点,∴DE=CE =CD=6.∵AF=3DF,∴DF =AD=3.∴AF=3DF=9.在Rt△ABF中,由勾股定理可得BF2=AB2+AF2=144+81=225,在Rt△BCE中,由勾股定理可得BE2=CB2+CE2=144+36=180,在Rt△DEF中,由勾股定理可得EF2=DF2+DE2=9+36=45,∵BE2+EF2=180+45=225,BF2=225,∴BE2+EF2=BF2.∴△BEF是直角三角形.24.(1)证明:∵CE∥BD,DE∥AC,∴四边形OCED是平行四边形,在正方形ABCD中,AC⊥BD,OD=OC,∴∠COD=90°,∴四边形OCED是正方形.(2)解:如图,连接EO并延长,交AB于G,交CD于H,由(1)知:四边形OCED是正方形,∴CD⊥OE,∵四边形ABCD是正方形,∴AB∥CD,∴EG⊥AB,∵AC =,∴AB=BC=1=GH,Rt△DCE中,∵DE=CE,EH⊥CD,∴DH=CH,∴EH =CD=0.5,∴EG=1+0.5=1.5,∴点E到边AB的距离为1.5;故答案为:1.5.25.解:(1)如图所示,过E作EM⊥BC于M点,过E作EN⊥CD于N点,∵正方形ABCD,∴∠BCD=90°,∠ECN=45°,∴∠EMC=∠ENC=∠BCD=90°,且NE=NC,∴四边形EMCN为正方形,∵四边形DEFG是矩形,∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,∴∠DEN=∠MEF,又∠DNE=∠FME=90°,在△DEN和△FEM中,,∴△DEN≌△FEM(ASA),∴ED=EF,∴矩形DEFG为正方形,(2)CE+CG的值为定值,理由如下:∵矩形DEFG为正方形,∴DE=DG,∠EDC+∠CDG=90°,∵四边形ABCD是正方形,∵AD=DC,∠ADE+∠EDC=90°,∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴AE=CG,∴AC=AE+CE=AB=×4=8,∴CE+CG=8是定值.。
北师大九年级数学 第一章《证明(二)》质量测试卷
2012—2013学年度第一学期九年级(上)数学单元测试卷第一章 《证明(二)》(说明:本试题满分150分,考试时间90分钟)一、选择题:(每小题3分,共45分)1、等腰三角形的一边为4,另一边为9,则这个三角形的周长为( )A 、17B 、22C 、13D 、17或222、如图,在△ABC 中,∠A=50°,AB=AC ,AB 的垂直平分线DE 交AC 于D ,则∠DBC 的度数是( )A 、15°B 、20°C 、30°D 、25°3、如图,给出下列四组条件:①AB DE BC EF AC DF ===,,;②AB DE B E BC EF =∠=∠=,,;③B E BC EF C F ∠=∠=∠=∠,,;④AB DE AC DF B E ==∠=∠,,.其中,能使ABC DEF △≌△的条件共有( )A 、1组B 、2组C 、3组D 、4组4、如图,△ABC 中,AB=AC ,点D 在AC 边上, 且BD=BC=AD ,则∠A 的度数为( )A 、30°B 、36°C 、45°D 、70°5、如图所示,A 、B 、C 分别表示三个村庄,AB=1000米,BC=600米, AC=800米,在社会主义新农村建设中,为了丰富群众生活,拟建一个 文化活动中心, 要求这三个村庄到活动中心的距离相等,则活动中心P 的位置应在( )A 、AB 中点 B 、BC 中点C 、AC 中点D 、∠C 的平分线与AB 的交点6、具有下列条件的两个等腰三角形,不能判断它们全等的是( )A 、顶角、一腰对应相等B 、底边、一腰对应相等C 、两腰对应相等D 、一底角、底边对应相等7、在平面直角坐标系xoy 中,已知A (2,–2),在y 轴上确定点P ,使△AOP 为等到腰三角形,则符合条件的点P 共有( )A 、2个B 、3个C 、4个D 、5个A B DE (第3题) 第4题第5题8、三角形的三个内角中,锐角的个数不少于 ( )A 、1 个B 、2 个C 、3个D 、不确定9、如图,在△ABC 中,∠A :∠B :∠C = 1 :2 :3,CD ⊥AB ,AB =a ,则DB =( )A 、4a B 、3a C 、2a D 、43a10、已知Rt △ABC 中,∠C =90°,若cm c cm b a 1014==+,,则S Rt △ABC =( )A 、24cm 2B 、36cm 2C 、48cm 2D 、50cm 211、如图,在△ABC 中,AB =AC ,AB 的垂直平分线交BC 的延长线于E ,交AC 于F ,∠A =50,AB +BC =16cm ,则如图,△BCF 的周长和∠EFC 分别为( )A 、16cm ,40°B 、8cm ,50°C 、16cm ,50°D 、8cm ,40°12、以下命题中,真命题的是 ( )A 、两条直线相交只有一个交点B 、同位角相等C 、两边和一角对应相等的两个三角形全等D 、等腰三角形底边中点到两腰相等13、有两个角和其中一个角的对边对应相等的两个三角形 ( )A 、必定全等B 、必定不全等C 、不一定全等D 、以上答案都不对14、如图,⊿ABC ≅⊿FED ,那么下列结论正确的是 ( )A EC = BDB EF ∥ABC DE = BD D AC ∥ED15、适合条件∠A =∠B =31∠C 的三角形一定是 ( )A 、锐角三角形B 、钝角三角形C 、直角三角形D 、任意三角形一、填空题:(每小题5分,共25分)16、等腰三角形的底边长为2,面积等于1,则它的顶角的度数为 。
2022-2023学年北师大版九年级数学上册《第1章特殊的平行四边形》单元综合达标测试题(附答案)
2022-2023学年北师大版九年级数学上册《第1章特殊的平行四边形》单元综合达标测试题(附答案)一.选择题(共9小题,满分36分)1.下列说法中,不正确的是()A.两组对边分别平行的四边形是平行四边形B.一组对边平行另外一组对边相等的四边形是平行四边形C.对角线互相平分且垂直的四边形是菱形D.有一组邻边相等的矩形是正方形2.已知四边形ABCD中,AC⊥BD,再补充一个条件使得四边形ABCD为菱形,这个条件可以是()A.AC=BD B.AB=BCC.AC与BD互相平分D.∠ABC=90°3.如图,平面直角坐标系中,菱形ABCD的顶点A(3,0),B(﹣2,0),顶点D在y轴正半轴上,则点C的坐标为()A.(﹣3,4)B.(﹣4,5)C.(﹣5,5)D.(﹣5,4)4.如图,在四边形ABCD中,AD=BC,点E、F、G、H分别是AB、BD、CD、AC的中点,则四边形EFGH是()A.矩形B.菱形C.正方形D.平行四边形5.如图,在△ABC中,∠C=90°,AC=8,BC=6,点P为斜边AB上一动点,过点P作PE⊥AC于E,PF⊥BC于点F,连接EF,则线段EF的最小值为()A.24B.3.6C.4.8D.56.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点C作CE⊥BD,垂足为E.已知∠BCE=4∠DCE,则∠COE的度数为()A.36°B.45°C.60°D.67.5°7.在正方形ABCD的外侧,作等边三角形ADE,则∠CBE的度数为()A.80°B.75°C.70°D.65°8.如图,正方形ABCD的边长为8,在各边上顺次截取AE=BF=CG=DH=5,则四边形EFGH的面积是()A.30B.34C.36D.409.如图,矩形ABCD和矩形BDEF,点A在EF边上,设矩形ABCD和矩形BDEF的面积分别为S1、S2,则S1与S2的大小关系为()A.S1=S2B.S1>S2 C.S1<S2D.3S1=2S2二.填空题(共8小题,满分32分)10.如图,菱形ABCD中,若BD=24,AC=10,则AB的长等于.菱形ABCD的面积等于.11.如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=30°,则∠E=度.12.如图,P是矩形ABCD的边AD上一个动点,矩形的两条边AB、BC的长分别为6和8,那么点P到矩形的两条对角线AC和BD的距离之和是.13.如图所示,在矩形ABCD中,DE平分∠ADC,且∠EDO等于15°,∠DOE=°.14.菱形OBCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为.15.将n个边长都为1cm的正方形按如图所示的方法摆放,点A1、A2…A n分别是各正方形的中心,则n个这样的正方形重叠部分(阴影部分)的面积的和为cm2.16.如图是阳光广告公司为某种商品设计的商标图案,图中阴影部分为红色.若每个小长方形的面积都是1,则红色的面积是.17.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是.三.解答题(共7小题,满分52分)18.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)求证:BD=DF;(2)求证:四边形BDFG为菱形;(3)若AG=13,CF=6,求四边形BDFG的周长.19.如图,点P是菱形ABCD中对角线AC上的一点,且PE=PB.(1)求证:PE=PD;(2)求证:∠PDC=∠PEB;(3)若∠BAD=80°,连接DE,试求∠PDE的度数,并说明理由.20.如图,过△ABC的顶点A分别作∠ACB及其外角的平分线的垂线,垂直分布为E、F,连接EF交AB于点M,交AC于点N,求证:(1)四边形AECF是矩形;(2)MN=BC.21.某校数学兴趣小组开展了一次课外活动,过程如下:如图①,正方形ABCD中,AB=4,将三角板放在正方形ABCD上,使三角板的直角顶点与D点重合.三角板的一边交AB 于点P,另一边交BC的延长线于点Q.(1)求证:AP=CQ;(2)如图②,小明在图1的基础上作∠PDQ的平分线DE交BC于点E,连接PE,他发现PE和QE存在一定的数量关系,请猜测他的结论并予以证明;(3)在(2)的条件下,若AP=1,求PE的长.22.如图,平行四边形ABCD中,AD=9cm,CD=3cm,∠B=45°,点M、N分别以A、C为起点,1cm/秒的速度沿AD、CB边运动,设点M、N运动的时间为t秒(0≤t≤6)(1)求BC边上高AE的长度;(2)连接AN、CM,当t为何值时,四边形AMCN为菱形;(3)作MP⊥BC于P,NQ⊥AD于Q,当t为何值时,四边形MPNQ为正方形.23.如图①,在正方形ABCD中,E为CD上一动点,连接AE交对角线BD于点F,过点F 作FG⊥AE交BC于点G.(1)求证:AF=FG;(2)如图②,连接EG,当BG=3,DE=2时,求EG的长.24.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且P A =PE,PE交CD于F.(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.参考答案一.选择题(共9小题,满分36分)1.解:A、正确.两组对边分别平行的四边形是平行四边形;B、错误.比如等腰梯形,满足条件,不是平行四边形;C、正确.对角线互相平分且垂直的四边形是菱形;D、正确.有一组邻边相等的矩形是正方形;故选:B.2.解:∵在四边形ABCD中,对角线AC,BD互相平分,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形.故选:C.3.解:∵菱形ABCD的顶点A(3,0),B(﹣2,0),∴CD=AD=AB=5,OA=3,∴OD===4∵AB∥CD,∴点C的坐标为(﹣5,4)故选:D.4.解:∵在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,∴EF∥AD,HG∥AD,∴EF∥HG,同理:HE∥GF,∴四边形EFGH是平行四边形,∵E、F、G、H分别是AB、BD、CD、AC的中点,∴GH=AD,GF=BC,∵AD=BC,∴GH=GF,∴平行四边形EFGH是菱形;故选:B.5.解:连接PC,∵PE⊥AC,PF⊥BC,∴∠PEC=∠PFC=∠C=90°,∴四边形ECFP是矩形,∴EF=PC,∴当PC最小时,EF也最小,即当CP⊥AB时,PC最小,∵AC=8,BC=6,∴AB=10,∴PC的最小值为:=4.8.∴线段EF长的最小值为4.8.故选:C.6.解:∵四边形ABCD为矩形,∴∠BCD=90°,OC=OB,∵∠BCE=4∠DCE,∴5∠DCE=90°,∴∠DCE=18°,∴∠BCE=72°,∵CE⊥BD,∴∠EBC=90°﹣∠BCE=18°,∵OB=OC,∴∠OCB=18°,∴∠COE=36°,故选:A.7.解:∵四边形ABCD是正方形,∴∠BAD=∠ABC=90°,AB=AD,∵△ADE是等边三角形,∴∠EAD=60°,AE=AD,∴∠BAE=150°,AB=AE,∴∠ABE=∠AEB=15°,∴∠CBE=90°﹣15°=75°,故选:B.8.解:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,∵AE=BF=CG=DH,∴AH=BE=CF=DG.在△AEH、△BFE、△CGF和△DHG中,,∴△AEH≌△BFE≌△CGF≌△DHG(SAS),∴EH=FE=GF=GH,∠AEH=∠BFE,∴四边形EFGH是菱形,∵∠BEF+∠BFE=90°,∴∠BEF+∠AEH=90°,∴∠HEF=90°,∴四边形EFGH是正方形,∵AB=BC=CD=DA=8,AE=BF=CG=DH=5,∴EH=FE=GF=GH==,∴四边形EFGH的面积是:×=34,故选:B.9.解:∵矩形ABCD的面积S1=2S△ABD,S△ABD=S矩形BDEF,∴S1=S2.故选:A.二.填空题(共8小题,满分32分)10.解:∵菱形ABCD中,BD=24,AC=10,∴BO=12,AO=5,AC⊥BD,∴AB==13,∴菱形ABCD的面积==120故答案为:13,12011.解:连接AC,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,且∠ADB=∠CAD=30°,∴∠E=∠DAE,又∵BD=CE,∴CE=CA,∴∠E=∠CAE,∵∠CAD=∠CAE+∠DAE,∴∠E+∠E=30°,即∠E=15°,故答案为:15.12.解:连接OP,∵矩形的两条边AB、BC的长分别为6和8,∴S矩形ABCD=AB•BC=48,OA=OC,OB=OD,AC=BD==10,∴OA=OD=5,∴S△ACD=S矩形ABCD=24,∴S△AOD=S△ACD=12,∵S△AOD=S△AOP+S△DOP=OA•PE+OD•PF=×5×PE+×5×PF=(PE+PF)=12,解得:PE+PF=4.8.故答案为:4.8.13.解:∵四边形ABCD是矩形,∴∠ADC=∠BAD=90°,AO=CO,BO=DO,AC=BD,∴OA=OD,∵DE平分∠ADC∴∠CDE=∠ADE=45°,∴△ADE是等腰直角三角形,∴AD=AE,又∵∠EDO=15°,∴∠ADO=60°;∴△OAD是等边三角形,∴∠AOD=∠OAD=60°,∴AD=AO=DO,∴AO=AE,∴∠AOE=∠AEO,∵∠OAE=90°﹣∠OAD=30°,∴∠AOE=∠AEO=(180°﹣30°)=75°,∴∠DOE=60°+75°=135°,故答案为:135.14.解:连接ED,如图,∵点B关于OC的对称点是点D,∴DP=BP,∴ED即为EP+BP最短,∵四边形OBCD是菱形,顶点B(2,0),∠DOB=60°,∴点D的坐标为(1,),∴点C的坐标为(3,),∴可得直线OC的解析式为:y=x,∵点E的坐标为(0,﹣1),∴可得直线ED的解析式为:y=(1+)x﹣1,∵点P是直线OC和直线ED的交点,∴点P的坐标为方程组的解,解方程组得:,所以点P的坐标为(),故答案为:().15.解:由题意可得阴影部分面积等于正方形面积的,即是,5个这样的正方形重叠部分(阴影部分)的面积和为×4,n个这样的正方形重叠部分(阴影部分)的面积和为×(n﹣1)=cm2.故答案为:.16.解:设每个小长方形长为a,宽为b,则ab=1.用大长方形的面积减去三个空白部分的三角形面积,就等于阴影部分的面积.4a×4b﹣a×4b﹣3a×3b﹣×3a×3b=5ab=5.故填5.17.解:∵正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,∴AB=BC=1,CE=EF=3,∠E=90°,延长AD交EF于M,连接AC、CF,则AM=BC+CE=1+3=4,FM=EF﹣AB=3﹣1=2,∠AMF=90°,∵四边形ABCD和四边形GCEF是正方形,∴∠ACD=∠GCF=45°,∴∠ACF=90°,∵H为AF的中点,∴CH=AF,在Rt△AMF中,由勾股定理得:AF===2,∴CH=,故答案为:.三.解答题(共7小题,满分52分)18.(1)证明:∵∠ABC=90°,BD为AC的中线,∴BD=AC,∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CF⊥BD,∴CF⊥AG,又∵点D是AC中点,∴DF=AC,∴BD=DF;(2)证明:∵BD=DF,∴四边形BGFD是菱形,(3)解:设GF=x,则AF=13﹣x,AC=2x,∵在Rt△ACF中,∠CF A=90°,∴AF2+CF2=AC2,即(13﹣x)2+62=(2x)2,解得:x=5,∴四边形BDFG的周长=4GF=20.19.(1)解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,AB∥CD,∠DCP=∠BCP,在△DCP和△BCP中,,∴△CDP≌△CBP(SAS),∴PB=PD,∵PE=PB,∴PE=PD;(2)证明:∵PE=PB,∴∠PBC=∠PEB,∵△CDP≌△CBP,∴∠PDC=∠PBC,∴∠PDC=∠PEB;(3)解:如图所示:∠PDE=40°;理由如下:在四边形DPEC中,∵∠DPE=360°﹣(∠PDC+∠PEC+∠DCB)=360°﹣(∠PEB+∠PEC+∠DCB)=360°﹣(180°+80°)=100°,∴∠PDE=∠PED=40°.20.证明:(1)∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠BCE=∠ACB,∠ACF=∠ACD,∵∠ACB+∠ACD=180°,∴∠ACE+∠ACF=90°,即∠ECF=90°,又∵AE⊥CE,AF⊥CF,∴∠AEC=∠AFC=90°,∴四边形AECF是矩形;(2)∵四边形AECF是矩形,∴EN=FN,AN=CN=AC,∴CN=EF=EN,∴∠NEC=∠ACE=∠BCE,∴EN∥BC,∴==,∴MN=BC.21.(1)证明:∵四边形ABCD是正方形,∴∠ADC=∠A=∠B=∠BCD=∠DCQ=90°,AD=BC=CD=AB=4,∵∠PDQ=90°,∴∠ADP=∠CDQ,在△APD和△CQD中,,∴△APD≌△CQD(ASA),(2)解;PE=QE,理由如下:由(1)得:△APD≌△CQD,∴PD=QD,∵DE平分∠PDQ,∴∠PDE=∠QDE,在△PDE和△QDE中,,∴△PDE≌△QDE(SAS),∴PE=QE;(3)解:由(2)得:PE=QE,由(1)得:CQ=AP=1,∴BQ=BC+CQ=5,BP=AB﹣AP=3,设PE=QE=x,则BE=5﹣x,在Rt△BPE中,由勾股定理得:32+(5﹣x)2=x2,解得:x=3.4,即PE的长为3.4.22.解:(1)∵四边形ABCD是平行四边形,∴AB=CD=3cm.在直角△ABE中,∵∠AEB=90°,∠B=45°,∴AE=AB•sin∠B=3×=3(cm);(2)∵点M、N分别以A、C为起点,1cm/秒的速度沿AD、CB边运动,设点M、N运动的时间为t秒(0≤t≤6),∴AM=CN=t,∵AM∥CN,∴四边形AMCN为平行四边形,∴当AN=AM时,四边形AMCN为菱形.∵BE=AE=3,EN=6﹣t,∴AN2=32+(6﹣t)2,∴32+(6﹣t)2=t2,解得t=.故当t为时,四边形AMCN为菱形;(3)∵MP⊥BC于P,NQ⊥AD于Q,QM∥NP,∴四边形MPNQ为矩形,∴当QM=QN时,四边形MPNQ为正方形.∵AM=CN=t,BE=3,∴AQ=EN=BC﹣BE﹣CN=9﹣3﹣t=6﹣t,∴QM=AM﹣AQ=|t﹣(6﹣t)|=|2t﹣6|(注:分点Q在点M的左右两种情况),∵QN=AE=3,∴|2t﹣6|=3,解得t=4.5或t=1.5.故当t为4.5或1.5秒时,四边形MPNQ为正方形.23.(1)证明:如图①,连接CF,在正方形ABCD中,AB=BC,∠ABF=∠CBF=45°,在△ABF和△CBF中,,∴△ABF≌△CBF(SAS),∴AF=CF,∠BAF=∠BCF,∵FG⊥AE,∴在四边形ABGF中,∠BAF+∠BGF=360°﹣90°﹣90°=180°,又∵∠BGF+∠CGF=180°,∴∠BAF=∠CGF,∴∠CGF=∠BCF,∴AF=FG;(2)如图②,把△ADE顺时针旋转90°得到△ABH,则AH=AE,BH=DE,∠BAH=∠DAE,∵AF=FG,FG⊥AE,∴△AFG是等腰直角三角形,∴∠EAG=45°,∴∠HAG=∠BAG+∠DAE=90°﹣45°=45°,∴∠EAG=∠HAG,在△AHG和△AEG中,,∴△AHG≌△AEG(SAS),∴HG=EG,∵HG=BH+BG=DE+BG=2+3=5,∴EG=5.24.(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴P A=PC,∴PC=PE;(2)由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵P A=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴P A=PC,∠BAP=∠BCP,∵P A=PE,∴PC=PE,∴∠DAP=∠DCP,∵P A=PC,∴∠DAP=∠AEP,∴∠DCP=∠AEP∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠AEP,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,。
2020秋北师大版九年级数学上第一、二章检测题含答案
单元测试(一) 特殊平行四边形(满分:150分,考试用时120分钟)一、选择题(本大题共15个小题,每小题3分,共45分)1.如图,在Rt△ABC中,CD是斜边AB上的中线,若AB=8,则CD的长是( )A.6 B.5 C.4 D.32.如图,矩形ABCD中,对角线AC、BD相交于点O,若∠OAD=40°,则∠COD=( )A.20° B.40° C.80° D.100°3.如图,在菱形ABCD中,对角线AC、BD交于点O,下列说法错误的是( )A.AB∥DC B.AC=BD C.AC⊥BD D.OA=OC4.如图,在矩形ABCD中,对角线AC、BD相交于点O,若OA=2,则BD的长为( )A.4 B.3 C.2 D.15.如果要证明ABCD为正方形,那么我们需要在四边形ABCD是平行四边形的基础上,进一步证明( )A.AB=AD且AC⊥BD B.AB=AD且AC=BDC.∠A=∠B且AC=BD D.AC和BD互相垂直平分6.菱形的两条对角线长分别是6和8,则此菱形的边长是( )A.10 B.8 C.6 D.57.在正方形ABCD中,AB=12,对角线AC,BD相交于点O,则△ABO的周长是( )A.12+12 2 B.2+6 2C.12+ 2 D.24+6 28.如图,在菱形ABCD中,对角线AC、BD相交于点O,E为AB的中点,且OE=a,则菱形ABCD的周长为( ) A.16a B.12aC.8a D.4a9.正方形的一条对角线长为4,则这个正方形面积是( )A.8 B.4 2C.8 2 D.1610.下列命题中,错误的是( )A.平行四边形的对角线互相平分B.菱形的对角线互相垂直平分C.矩形的对角线相等且互相垂直平分D.角平分线上的点到角两边的距离相等11.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件中能够判定四边形ACED为菱形的是( )A.AB=BC B.AC=BCC.∠B=60° D.∠ACB=60°12.如图,E是矩形ABCD中BC边的中点,将△ABE沿AE折叠到△AFE,F在矩形ABCD内部,延长AF交DC于G点,若∠AEB=55°,则∠DAF=( )A.40° B.35°C.20° D.15°13.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为( )A.75° B.60° C.55° D.45°14.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=( )A. 2 B.2 C. 6 D.2 215.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是( )A.AB=BE B.DE⊥DCC.∠ADB=90° D.CE⊥DE二、填空题(本大题共5个小题,每小题5分,共25分)16.如图,菱形ABCD的一条对角线的中点O到AB的距离为2,那么O点到另一边的距离为________.17.如图,在矩形ABCD中,对角线AC、BD相交于点O,∠ACB=30°,则∠AOB的大小为________度.18.如图所示,已知ABCD,下列条件:①AC=BD,②AB=AD,③∠1=∠2,④AB⊥BC中,能说明ABCD是矩形的有________(填写序号).19.如图,在四边形ABCD中,AB=BC=CD=DA,对角线AC与BD相交于点O,若不增加任何字母与辅助线,要使四边形ABCD是正方形,则还需增加一个条件是________________.20.已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD=________度.三、解答题(本大题共7个小题,各题分值见题号后,共80分)21.(8分)如图,矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形的周长的和是86 cm,对角线长是13 cm,那么矩形的周长是多少?22.(8分)如图,四边形ABCD中,AB=CD,∠BAD+∠ADC=180°,AC与BD相交于点O,△AOB是等边三角形,求证:四边形ABCD是矩形.23.(10分)如图,已知正方形ABCD,延长AB到E,使AE=AC,以AE为一边作菱形AEFC,若菱形的面积为92,求正方形的边长.24.(12分)如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.25.(12分)如图,在正方形ABCD中,点E,F分别在边AB,BC上,AF=DE,AF和DE相交于点G.(1)观察图形,写出图中所有与∠AED相等的角;(2)选择图中与∠AED相等的任意一个角,并加以证明.26.(14分)以边长为2的正方形的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于A、B两点,求线段AB的最小值.27.(16分)已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD∶AB=________时,四边形MENF是正方形.参考答案1.C2.C3.B4.A5.B6.D7.A8.C9.A 10.C 11.B 12.C 13.B 14.A 15.B 16.2 17.60 18.①④ 19.AC =BD 或AB ⊥BC 20.22.521.∵△AOB 、△BOC 、△COD 和△AOD 四个小三角形的周长和为86 cm ,且AC =BD =13 cm , ∴AB +BC +CD +DA =86-2(AC +BD)=86-4×13=34(cm), 即矩形ABCD 的周长是34 cm.22.证明:∵∠BAD +∠ADC =180°, ∴AB ∥CD.又∵AB =CD ,∴四边形ABCD 是平行四边形. ∵△AOB 是等边三角形, ∴AO =BO.∴2AO =2BO ,即AC =BD. ∴四边形ABCD 是矩形. 2 23.设正方形的边长为x ,∵AC 为正方形ABCD 的对角线,∴AC =2x.∴S 菱形AEFC =AE ·CB =2x ·x =2x 2.∴2x 2=9 2. ∴x 2=9.∴x =±3.舍去x =-3. ∴正方形边长为3.24.(1)在菱形ABCD 中,AB =AD ,∠A =60°, ∴△ABD 为等边三角形. ∴∠ABD =60°.(2)由(1)可知BD =AB =4, 又∵O 为BD 的中点, ∴OB =2.又∵OE ⊥AB ,∠ABD =60°, ∴∠BOE =30°. ∴BE =12OB =1.25.(1)由图可知,∠DAG ,∠AFB ,∠CDE 与∠AED 相等. (2)选择∠AFB =∠AED ,证明如下: ∵四边形ABCD 是正方形,∴∠DAB =∠B =90°,AB =AD.在Rt △BAF 和Rt △ADE 中,⎩⎪⎨⎪⎧BA =AD ,AF =DE ,∴Rt △BAF ≌Rt △ADE(HL).∴∠AFB =∠AED.26.∵四边形CDEF 是正方形,∴∠OCD =∠ODB =45°,∠COD =90°,OC =OD. ∵AO ⊥OB , ∴∠AOB =90°.∴∠AOC +∠AOD =90°,∠AOD +∠BOD =90°. ∴∠AOC =∠BOD.∵在△COA 和△DOB 中,⎩⎪⎨⎪⎧∠OCA =∠ODB ,OC =OD ,∠AOC =∠BOD ,∴△COA ≌△DOB.∴OA =OB.∵∠AOB =90°,∴△AOB 是等腰直角三角形.由勾股定理得AB =OA 2+OB 2=2OA , 要使AB 最小,只要OA 取最小值即可, 根据垂线段最短,OA ⊥CD 时,OA 最小, ∵四边形CDEF 是正方形, ∴FC ⊥CD ,OD =OF =OC. ∴CA =DA. ∴OA =12CF =1.∴AB = 2.∴AB 的最小值为 2.27.(1)证明:∵四边形ABCD 是矩形, ∴AB =CD ,∠A =∠D =90°. 又∵M 是AD 的中点, ∴AM =DM.在△ABM 和△DCM 中,⎩⎪⎨⎪⎧AB =CD ,∠A =∠D ,AM =DM ,∴△ABM ≌△DCM(SAS).(2)四边形MENF 是菱形.证明:∵E ,F ,N 分别是BM ,CM ,CB 的中点, ∴NE ∥MF ,NE =MF.∴四边形MENF 是平行四边形. 由(1),得BM =CM , ∴ME =MF.∴四边形MENF 是菱形.(3)当AD ∶AB =2∶1时,四边形MENF 是正方形.理由: ∵M 为AD 中点, ∴AD =2AM.∵AD ∶AB =2∶1, ∴AM =AB. ∵∠A =90°,∴∠ABM =∠AMB =45°. 同理:∠DMC =45°.∴∠EMF =180°-45°-45°=90°. ∵四边形MENF 是菱形, ∴四边形MENF 是正方形. 故答案为2∶1.单元测试(二) 一元二次方程(满分:150分,考试用时120分钟)一、选择题(本大题共15个小题,每小题3分,共45分) 1.下列方程中,关于x 的一元二次方程是( )A .x 2+2y =1 B.1x 2+1x-2=0C .ax 2+bx +c =0 D .x 2+2x =12.用公式法解一元二次方程3x 2-2x +3=0时,首先要确定a ,b ,c 的值,下列叙述正确的是( )A .a =3,b =2,c =3B .a =-3,b =2,c =3C .a =3,b =2,c =-3D .a =3,b =-2,c =33.若关于x 的方程2x m -1+x -m =0是一元二次方程,则m 为( )A .1B .2C .3D .04.一元二次方程x 2-2x -1=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根5.一元二次方程x 2+4x -3=0的两根为x 1,x 2,则x 1·x 2的值是( )A .4B .-4C .3D .-3 6.方程x(x +2)=0的根是( )A .x =2B .x =0C .x 1=0,x 2=-2D .x 1=0,x 2=27.用配方法解方程x 2-2x -5=0时,原方程应变形为( )A .(x +1)2=6B .(x -1)2=6C .(x +2)2=9D .(x -2)2=9 8.根据下面表格中的对应值:判断方程ax 2+bx +c =A .3<x <3.23 B .3.23<x <3.24 C .3.24<x <3.25 D .3.25<x <3.26 9.解方程(x +1)(x +3)=5较为合适的方法是( )A .直接开平方法B .配方法C .公式法或配方法D .分解因式法10.已知x =1是一元二次方程x 2+mx +n =0的一个根,则m 2+2mn +n 2的值为( )A .0B .1C .2D .411.三角形两边长分别为3和6,第三边是方程x 2-6x +8=0的根,则三角形的周长为( )A .11B .13C .15D .11或13 12.下列说法不正确的是( )A .方程x 2=x 有一根为0B .方程x 2-1=0的两根互为相反数C .方程(x -1)2-1=0的两根互为相反数D .方程x 2-x +2=0无实数根13.对二次三项式x 2-10x +36,小聪同学认为:无论x 取什么实数,它的值都不可能等于11;小颖同学认为:可以取两个不同的值,使它的值等于11.你认为( )A.小聪对,小颖错 B.小聪错,小颖对C.他们两人都对 D.他们两人都错14.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7 644平方米,则道路的宽应为多少米?设道路的宽为x米,则可列方程为( )A.100×80-100x-80x=7 644B.(100-x)(80-x)+x2=7 644C.(100-x)(80-x)=7 644D.100x+80x=35615.若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是( )二、填空题(本大题共5小题,每小题5分,共25分)16.将方程3x(x-1)=5化为ax2+bx+c=0的形式为____________.17.若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为________.18.若(m+n)(m+n+5)=6,则m+n的值是________.19.一件工艺品进价100元,标价135元售出,每天可售出100件,根据销售统计,一件工艺品每降低1元出售,则每天可多售出4件,要使顾客尽量得到优惠,且每天获得的利润为3 596,每件工艺品需降价________元.20.已知关于x的方程x2-(a+b)x+ab-1=0,x1、x2是此方程的两个实数根,现给出三个结论:①x1≠x2;②x1x2<ab;③x21+x22<a2+b2.则正确结论的序号是________.(填上你认为正确的所有序号)三、解答题(本大题共7个小题,各题分值见题号后,共80分)21.(8分)选择适当的方法解下列方程:(1)(x-3)2=4;(2)x2-5x+1=0.22.(8分)已知m,n是关于x的一元二次方程x2-3x+a=0的两个解,若mn+m+n=2,求a的值.23.(10分)随着市民环保意识的增强,烟花爆竹销售量逐年下降.咸宁市2013年销售烟花爆竹20万箱,到2015年烟花爆竹销售量为9.8万箱.求咸宁市2013年到2015年烟花爆竹年销售量的平均下降率.24.(12分)小林准备进行如下操作实验:把一根长为40 cm的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm2,小林该怎么剪?(2)小峰对小林说:“这两个正方形的面积之和不可能等于48 cm2.”他的说法对吗?请说明理由.25.(12分)已知:关于x的方程x2+2mx+m2-1=0.(1)不解方程,判别方程的根的情况;(2)若方程有一个根为3,求m的值.26.(14分)观察下列一元二次方程,并回答问题:第1个方程:x2+x=0;第2个方程:x2-1=0;第3个方程:x2-x-2=0;第4个方程:x2-2x-3=0;…(1)第2 016个方程是____________________;(2)直接写出第n个方程,并求出第n个方程的解;(3)说出这列一元二次方程的解的一个共同特点.27.(16分)已知关于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a,b,c分别为△ABC三边的长.(1)如果x=-1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.参考答案1.D 2.D 3.C 4.B 5.D 6.C 7.B 8.C 9.C 10.B 11.B 12.C 13.D 14.C 15.B 16.3x 2-3x -5=0 17.-3 18.-6或1 19.6 20.①② 21.(1)x 1=1,x 2=5. (2)x 1=5+212,x 2=5-212.22.∵m ,n 是关于x 的一元二次方程x 2-3x +a =0的两个解,∴m +n =3,mn =a. ∵mn +m +n =2,∴a +3=2.解得a =-1.23.设年销售量的平均下降率为x ,依题意,得20(1-x)2=9.8. 解这个方程,得x 1=0.3,x 2=1.7. ∵x 2=1.7不符合题意, ∴x =0.3=30%.答:咸宁市2013年到2015年烟花爆竹年销售量的平均下降率为30%.24.(1)设其中一个正方形的边长为x cm ,则另一个正方形的边长为(10-x)cm.由题意,得x 2+(10-x)2=58.解得x 1=3,x 2=7.4×3=12,4×7=28.答:小林把绳子剪成12 cm 和28 cm 的两段.(2)假设能围成.由(1)得x 2+(10-x)2=48.化简得x 2-10x +26=0. ∵b 2-4ac =(-10)2-4×1×26=-4<0, ∴此方程没有实数根. ∴小峰的说法是对的.25.(1)∵b 2-4ac =(2m)2-4×1×(m 2-1)=4>0, ∴方程有两个不相等的实数根.(2)将x =3代入原方程,得9+6m +m 2-1=0.解得m 1=-2,m 2=-4.26.(1)x 2-2 014x -2 015=0(2)第n 个方程是x 2-(n -2)x -(n -1)=0,解得x 1=-1,x 2=n -1.(3)这列一元二次方程的解的一个共同特点:有一根是-1. 27.(1)△ABC 是等腰三角形.理由: ∵x =-1是方程的根,∴(a +c)×(-1)2-2b +(a -c)=0. ∴a +c -2b +a -c =0. ∴a -b =0. ∴a =b.∴△ABC 是等腰三角形.(2)∵方程有两个相等的实数根,∴(2b)2-4(a +c)(a -c)=0.∴4b 2-4a 2+4c 2=0. ∴a 2=b 2+c 2.∴△ABC 是直角三角形. (3)∵△ABC 是等边三角形,∴(a +c)x 2+2bx +(a -c)=0可整理为2ax 2+2ax =0. ∴x 2+x =0.解得x 1=0,x 2=-1.。
北师大版九年级数学上册第一章特殊平行四边形单元测试题
北师大版九年级数学上册第一章特殊平行四边形单元测试题第一章特殊平行四边形第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.如图菱形ABCD的对角线AC,BD的长分别为6和8,则这个菱形的周长是()A.20B.24C.40D.482.如图2,菱形ABCD的周长为20,对角线AC,BD相交于点O,E是CD的中点,则OE的长是()A.2.5B.3C.4D.5图23如图3,在平行四边形ABCD中,M,N是BD上两点,BM=DN,连接AM,MC,CN,NA,添加一个条件,使四边形AMCN是矩形,这个条件可以是()A.OM=ACB.MB=MOC.BD⊥ACD.∠AMB=∠CND4.如图在菱形ABCD中,E,F分别是AC,AB的中点,如果EF=3,那么菱形ABCD的周长为()B.18C.12D.95.如图4,O是矩形ABCD的对角线AC的中点,M是CD边的中点.若OB=5,OM=3,则矩形ABCD的面积为()A.48B.50C.60D.80图46.如图5,在△ABC中,D是BC上一点,AB=AD,E,F分别是AC,BD的中点,EF=2,则AC的长是()A.3B.4C.5D.6图57.直角三角形斜边上的高与中线的长分别为5cm和6cm,则它的面积为()A.30cm2B.60cm2C.45cm2D.15cm28.如图6是由8个全等的小矩形组成的大正方形,线段AB的两个端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接P A,PB,那么使△ABP为等腰直角三角形的点P的个数是()A.2C.4D.5图6 图79.如图,在△OAB中,顶点O(0,0),A(-3,4),B(3,4).将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为()A.(10,3)B.(-3,10)C.(10,-3)D.(3,-10)10.如图,在正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG 翻折得到△AFG,延长GF交DC于点E,则DE的长是()A.1B.1.5C.2D.2.5第Ⅱ卷(非选择题共90分)二、填空题(每小题3分,共18分)11.如图9,四边形ABCD是正方形,延长AB到点E,使AE=AC,则∠BCE的度数是.图9 图1012.如图10,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B 的对应点E落在CD上,且DE=EF,则AB的长为.13.如图11,在菱形ABCD中,AB=4,线段AD的垂直平分线交AC 于点N,△CND的周长是10,则AC的长为.图11 图1214.如图12,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH,若OB=4,S菱形ABCD=24,则OH的长为.15.如图13,四边形OABC是矩形,点A的坐标为(8,0),点C的坐标为(0,4),把矩形OABC沿OB折叠,点C落在点D处,则点D的坐标为.图13 图1416.如图14是各大小型号的纸张长宽关系裁剪对比图,可以看出纸张大小的变化规律:把A0纸对折后变为A1纸;把A1纸对折后变为A2纸;把A2纸对折后变为A3纸;把A3纸对折后变为A4纸……A4规格的纸是我们日常生活中最常见的,那么一张A4纸可以裁张A8纸.三、解答题(共72分)17.(6分)如图15,在正方形ABCD中,对角线BD所在的直线上有两点E,F,且满足BE=DF,连接AE,AF,CE,CF.(1)求证:△ABE≌△ADF;(2)试判断四边形AECF的形状,并说明理由.图1518.(6分)如图16,E是正方形ABCD外一点,F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE,CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.图1619.(8分)如图17,在△ABC中,∠BAC=90°,AD是斜边上的中线,E是AD的中点,过点A作AF∥BC交BE的延长线于点F,连接CF.(1)求证:BD=AF;(2)判断四边形ADCF的形状,并证明你的结论.图1720.(8分)如图18,将矩形ABCD沿对角线AC翻折,点B落在点F 处,FC交AD于点E.(1)求证:△AFE≌△CDE;(2)若AB=4,BC=8,求图中阴影部分的面积.图1821.(10分)已知:如图9,在平行四边形ABCD中,对角线AC与BD相交于点E,G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.22.(10分)如图20,在△ABC和△BCD 中,∠BAC=∠BCD=90°,AB=AC,BC=CD,延长CA至点E,使AE=AC,延长CB至点F,使BF=BC,连接AD,AF,DF,EF,延长DB交EF于点N.(1)求证:AD=AF;(2)试判断四边形ABNE的形状,并说明理由.图2023.(12分)如图21,在正方形ABCD中,E是边CD上一点(点E不与点C,D重合),连接BE.【感知】如图①,过点A作AF⊥BE交BC于点F,易证△ABF≌△BCE.(不需要证明) 【探究】如图②,取BE的中点M,过点M作FG⊥BE交BC于点F,交AD于点G.(1)求证:BE=GF;(2)连接CM.若CM=1,则GF的长为.【应用】如图③,取BE的中点M,连接CM.过点C作CG⊥BE交AD于点G,连接EG,MG.若CM=3,则四边形GMCE的面积为.图2124.(12分)背景阅读早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五.它被记载于我国古代著名数学著作《周髀算经》中.在本题中,我们把三边的比为3∶4∶5的三角形称为(3,4,5)型三角形.例如:三边长分别为9,12,15的三角形就是(3,4,5)型三角形.用矩形纸片按下面的操作方法可以折出这种类型的三角形.实践操作如图22①,在矩形纸片ABCD中,AD=8cm,AB=12cm.第一步:如图②,将图①中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.第二步:如图③,将图②中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.第三步:如图④,将图③中的矩形纸片沿AH折叠,得到△AD'H,再沿AD'折叠,折痕为AM,AM与折痕EF交于点N,然后展平.问题解决(1)请在图②中证明四边形AEFD是正方形;(2)请在图④中判断NF与ND'的数量关系,并加以证明;(3)请在图④中证明△AEN是(3,4,5)型三角形.图22。
北师大版九年级上册数学第一章单元测试卷及解析
北师大版九年级上册数学第一章单元测试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题)A. 四个角相等的四边形是矩形B. 对角线相等的平行四边形是矩形C. 对角线垂直的四边形是菱形D. 对角线垂直的平行四边形是菱形2.在四边形ABCD 中,对角线AC 和BD 交于点O ,下列条件中不能判定四边形是平行四边形的是( )A. OA =OC ,OB =ODB. AD ∥BC ,AB ∥DCC. AB =DC ,AD =BCD. AB ∥DC ,AD =BC3.若顺次连接四边形ABCD 四边中点而得的图形是矩形,则四边形ABCD 一定是( )A. 矩形B. 菱形C. 对角线相等的四边形D. 对角线互相垂直的四边形4.如图,在菱形ABCD 中,AB =6,∠ABD =30°,则菱形ABCD 的面积是( )A. 18B. 18√3C. 36D. 36√35.如图,已知在Rt △ABC 中,∠ABC=90°,点D 是BC 边的中点,分别以B 、C 为圆心,大于线段BC 长度一半的长为半径圆弧,两弧在直线BC 上方的交点为P ,直线PD 交AC 于点E ,连接BE ,则下列结论:①ED ⊥BC ;②∠A=∠EBA ;③EB 平分∠AED ;④ED=AB 中,一定正确的是()A .①②③B .①②④C .①③④D .②③④6.如图,将矩形ABCD 沿EF 折叠,使顶点C 恰好落在AB 边的中点C′上.若AB=6,BC=9,则BF 的长为( )12.5 D. 5第II卷(非选择题)二、解答题(题型注释)E,F是对角线AC上的两点,且AE=CF.(1)图中有哪几对全等三角形,请一一列举;(2)求证:ED∥BF.8.如图,在正方形ABCD中,点G为BC上任意一点,连接AG,过B,D两点分别作BE⊥AG,DF⊥AG,垂足分别为E,F两点.求证:△ADF≌△BAE.9.如图,在四边形ABCD中,∠BAD=∠BCD=90°,点M,N分别是对角线BD,AC的中点.求证:直线MN是线段AC的垂直平分线.10.如图,在矩形ABCD中,对角线AC与BD交于点O,且△ADO为等边三角形,过点A 作AE⊥BD于点E.(1)求∠ABD的度数;(2)若BD=10,求AE的长.11.如图,点D,E分别是不等边△ABC(即AB,BC,AC互不相等)的边AB,AC的中点.点O是△ABC所在平面上的动点,连接OB,OC,点G,F分别是OB,OC的中点,顺次连接点D,G,F,E.(1)如图,当点O在△ABC的内部时,求证:四边形DGFE是平行四边形;(2)若四边形DGFE是菱形,则OA与BC应满足怎样的数量关系?(直接写出答案,不需要说明理由)12.如图所示,在矩形ABCD中,O是AC与BD的交点,过点O的直线EF与AB,CD的延长线分别交于点E,F.(1)求证:△BOE≌△DOF;(2)当EF与AC满足什么条件时,四边形AECF是菱形?并证明你的结论.13.如图,已知△ABC,点A在BC边的上方,把△ABC绕点B逆时针方向旋转60°得△DBE,绕点C顺时针方向旋转60°得△FEC,连接AD,AF.(1)△ABD,△ACF,△BCE是什么特殊三角形?请说明理由;(2)当△ABC满足什么条件时,四边形ADEF是正方形?请说明理由;(3)当△ABC满足什么条件时,以点A,D,E,F为顶点的四边形不存在?请说明理由.14.如图,点P是正方形ABCD内一点,点P到点A,B和D的距离分别为1,2√2,√10.△ADP沿点A旋转至△ABP′,连接PP′,并延长AP与BC相交于点Q.(1)求证:△APP′是等腰直角三角形;(2)求∠BPQ的大小.15.如图,矩形ABCD中,对角线AC,BD相交于O点,点P是线段AD上一动点(不与点D 重合),PO的延长线交BC于Q点.(1)求证:四边形PBQD为平行四边形.(2)若AB=3cm,AD=4cm,P从点A出发.以1cm/s的速度向点D匀速运动.设点P的运动时间为ts,问:四边形PBQD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.三、填空题AC、BD相交于点0,∠AOB=600,AB=5,则AD的长是( ).(A)5(B)5(C)5 (D)1017.如图,E、F、G、H分别是BD、BC、AC、AD的中点,且AB=CD.下列结论:①EG⊥FH,②四边形EFGH是矩形,③HF平分∠EHG,④EG=1(BC-AD),⑤四边2形EFGH是菱形.其中正确的个数是 ( )A.1 B.2 C.3 D.418.已知一个菱形的两条对角线长分别为6cm和8cm,则这个菱形的面积为____________cm2.19.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于.20.如图,在菱形ABCD中,∠BAD=100°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF等于_______°.21.(3分)如图,在Rt△ABC中,AB=BC,∠B=90°,AC=10.四边形BDEF是△ABC的内接正方形(点D、E、F在三角形的边上).则此正方形的面积是.22.(3分)如图,在菱形ABCD中,点A在x轴上,点B的坐标为(8,2),点D的坐标为(0,2),则点C的坐标为.23.如图是一个利用四边形的不稳定性制作的菱形晾衣架.已知其中每个菱形的边长为20cm,若过点A的对角线长为20 cm,则每个菱形的面积为____________cm2.参考答案1.C【解析】1.试题分析:A.四个角相等的四边形是矩形,为真命题,故A选项不符合题意;B.对角线相等的平行四边形是矩形,为真命题,故B选项不符合题意;C.对角线垂直的平行四边形是菱形,为假命题,故C选项符合题意;D.对角线垂直的平行四边形是菱形,为真命题,故D选项不符合题意.故选C.2.D【解析】2.根据平行四边形的判定定理求解即可求得答案,注意排除法在解选择题中的应用.A.∵OA=OC,OB=OD,∴四边形ABCD是平行四边形.故能判定这个四边形是平行四边形;B.∵AD∥BC,AB∥DC,∴四边形ABCD是平行四边形.故能判定这个四边形是平行四边形;C.∵AB=DC,AD=BC,∴四边形ABCD是平行四边形.故能判定这个四边形是平行四边形;D.∵AB∥DC,AD=BC,∴四边形ABCD是平行四边形或等腰梯形.故不能判定这个四边形是平行四边形.故选D.3.D【解析】3.由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH ∥ FG ∥ BD,EF ∥ AC ∥ HG;∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD,即对角线互相垂直,故选D.4.B【解析】4.试题分析:过点A作AE⊥BC于E,如图,∵在菱形ABCD中,AB=6,∠ABD=30°,∴∠BAE=30°,∵AE⊥BC,∴AE=3√3,∴菱形ABCD的面积是6×3√3=18√3,故选B.5.B.【解析】5.试题根据作图过程,利用线段垂直平分线的性质对各选项进行判断:根据作图过程可知:PB=CP,∵D为BC的中点,∴PD垂直平分BC,∴①ED⊥BC正确.∵∠ABC=90°,∴PD∥AB.∴E为AC的中点,∴EC=EA,∵EB=EC.∴②∠A=∠EBA正确;③EB平分∠AED错误;④ED=AB正确.∴正确的有①②④.故选B.6.A【解析】6.试题解析:∵点C′是AB边的中点,AB=6,∴BC′=3,由图形折叠特性知,C′F=CF=BC-BF=9-BF,在Rt△C′BF中,BF2+BC′2=C′F2,∴BF2+9=(9-BF)2,解得,BF=4,故选A.7.(1)见解析;(2)证明见解析.【解析】7.(1)根据菱形的对称性,写出AC左右两边对应的三角形即可;(2)根据菱形的对边平行且相等可得AB=CD,AB∥CD,再根据两直线平行,内错角相等可得∠BAC=∠DCA,然后求出AF=CE,利用“边角边”证明△ABF和△CDE全等,根据全等三角形对应角相等可得∠BFA=∠DEC,然后利用内错角相等两直线平行即可证明.(1)图中有三对全等三角形:①△ABC≌△CDA,②△ABF≌△CDE,③△ADE≌△CBF;(2)∵四边形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAC=∠DC A.∵AE=CF,∴AE+EF=CF+EF,∴AF=CE.在△ABF和△CDE中,{AB=CD∠BAC=∠DCAAF=CE,1 2∴△ABF ≌△CDE (S A S),∴∠BF A =∠DEC ,∴ED ∥BF .8.证明见解析.【解析】8.根据正方形的四条边都相等可得AB=AD ,根据同角的余角相等求出∠1=∠4,然后利用“角角边”证明△ABE 和△DAF 全等,根据全等三角形对应边相等证明即可. 如图,∵四边形ABCD 是正方形,∴DA =AB ,∠1+∠2=90°,又∵BE ⊥AG ,DF ⊥AG ,∴∠1+∠3=90°,∠2+∠4=90°,∴∠2=∠3,∠1=∠4,又∵DA =AB ,∴△ADF ≌△BAE .(A S A ) .9.证明见解析.【解析】9.连接AM ,CM ,根据直角三角形斜边上的中线等于斜边的一半可得AM=12BD ,CM=12BD ,那么AM=CM ,再根据等腰三角形三线合一的性质即可证明MN ⊥AC .如图,连接AM ,CM ,∵∠BAD =∠BCD =90°,点M 是BD 的中点,∴AM =12BD ,CM =12BD ,∴AM =CM ,又∵点N 是AC 的中点,∴直线MN 是线段AC 的垂直平分线.10.(1)∠ABD =30°;(2)AE =5√32.【解析】10.(1)根据矩形性质得出∠DAB=90°,求出∠ADB=60°,代入∠ABD=180°-∠DAB-∠ADB 求出即可;(2)求出AD ,根据等腰三角形性质得出DE=EO ,求出DE ,根据勾股定理求出即可.(1)∵四边形ABCD 是矩形,∴∠DAB =90°,∵△ADO 为等边三角形,∴∠ADB =60°,∴∠ABD =180°-∠DAB -∠ADB =30°;(2)∵BD =10,∠BAD =90°,∠ABD =30°,∴AD =12BD =5,∵△ADO 为等边三角形,∴AD =AO =DO =5,∵AE ⊥DO ,∴DE =EO =12DO =2.5,在Rt △AED 中,由勾股定理得AE =√AD 2−DE 2=√52−2.52=5√32. 11.(1)根据三角形的中位线定理可证得DE ∥GF ,DE =GF ,即可证得结论;(2)解法一:点O 的位置满足两个要求:AO =BC ,且点O 不在射线CD 、射线BE 上. 解法二:点O 在以A 为圆心,BC 为半径的一个圆上,但不包括射线CD 、射线BE 与⊙A 的交点.解法三:过点A 作BC 的平行线l ,点O 在以A 为圆心,BC 为半径的一个圆上,但不包括l 与⊙A 的两个交点.【解析】11.试题(1)根据三角形的中位线定理可证得DE ∥GF ,DE =GF ,即可证得结论; (2)根据三角形的中位线定理结合菱形的判定方法分析即可.(1)∵D 、E 分别是边AB 、AC 的中点.∴DE ∥BC ,DE =BC .同理,GF ∥BC ,GF =BC . ∴DE ∥GF ,DE =GF .∴四边形DEFG 是平行四边形;(2)解法一:点O 的位置满足两个要求:AO =BC ,且点O 不在射线CD 、射线BE 上. 解法二:点O 在以A 为圆心,BC 为半径的一个圆上,但不包括射线CD 、射线BE 与⊙A 的交点.解法三:过点A 作BC 的平行线l ,点O 在以A 为圆心,BC 为半径的一个圆上,但不包括l 与⊙A 的两个交点.12.(1)证明:∵四边形ABCD 是矩形,AC 和BD 交于点O∴AB ∥CD; OB=OD∴∠OEB=∠OFD∵∠BOE=∠DOF∴△BOE ≌△DOF(2)解:当EF 与AC 垂直的时候四边形AECF 是菱形。
北师大版九年级数学上册第一章特殊平行四边形单元测试卷-(含答案及解析)
北师大版九年级数学上册单元测试卷第一章 特殊平行四边形1.下列说法正确的是A .对角线垂直的四边形是菱形B .对角线互相平分的四边形是菱形C .菱形的对角线相等且互相平分D .菱形的对角线互相垂直且平分 2.下列说法中,你认为正确的是( )A .四边形具有稳定性B .等边三角形是中心对称图形C .任意多边形的外角和是360D .矩形的对角线一定互相垂直 3.已知下列命题:①矩形是轴对称图形,且有两条对称轴;①两条对角线相等的四边形是矩形;①有两个角相等的平行四边形是矩形;①两条对角线相等且互相平分的四边形是矩形.其中正确的有( )A .4个B .3个C .2个D .1个 4.如图,下列条件中①AC BD ⊥①BAD 90∠=①AB BC =①AC BD =,能使平行四边形ABCD 是菱形的是( )A .①①B .①①C .①①D .①①① 5.已知菱形ABCD ,对角线5AC =,12BD =,则菱形的面积为( )A .60B .50C .40D .30 6.在数学活动课上,为探究四边形瓷砖是否为菱形,以下拟定的测量方案,正确的是( )A .测量一组对边是否平行且相等B .测量四个内角是否相等C .测量两条对角线是否互相垂直D .测量四条边是否相等一、单选题(共30分,每小题3分)7.如图,把长方形ABCD 沿对角线BD 折叠,下列结论:①①ABD 与△EDB 全等;①①ABF 与△EDF 全等;①AF EF =;①①BDF 是等腰三角形.其中正确的有( )A .1个B .2个C .3个D .4个 8.如图,在正方形ABCD 中,E 为对角线BD 上一点,CE 交AD 于点F ,连接AE .若①AEC=140︒,则①DFC 等于( )A .55°B .60°C .65°D .70°9.如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,,AO CO BO DO ==.添加下列条件,可以判定四边形ABCD 是矩形的是( )A .AB AD =B .AC BD =C .AC BD ⊥ D .ABO CBO ∠=∠ 10.如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是( )A .当AB BC =时,它是菱形 B .当AC BD ⊥时,它是菱形C .当90ABC ∠=︒时,它是矩形D .当AC BD =时,它是正方形二、填空题(共30分,每小题3分) 11.矩形的两条对角线的夹角为60,较短的边长为12cm ,则对角线长为________cm . 12.已知菱形的周长为20,一条对角线长为8,则菱形的面积为________.13.如图所示,已知ABCD 中,下列条件:①AC =BD ;①AB =AD ;①①1=①2;①AB ①BC 中,能说明ABCD 是矩形的有______________(填写序号)14.如图,已知菱形ABCD 的对角线AC ,BD 的长分别为6,4,则AB 长为__.15.如图,平行四边形ABCD 是对角线互相垂直的四边形,请你添加一个适当的条件________,使ABCD 成为正方形(只需添加一个即可).16.如图,在矩形ABCD 中,边AB 的长为3,点E ,F 分别在AD ,BC 上,连接BE ,DF ,EF ,BD .若四边形BEDF 是菱形,且EF =AE +FC ,则边BC 的长为____________.17.如图,将两张长为16cm ,宽为4cm 的矩形纸条交叉,使重叠部分是一个菱形,那么菱形周长的最大值与最小值的和是________.18.如图,矩形ABCD 的对角线相交于点O ,DE ①AC ,CE ①BD ,已知AB =6cm ,BC =8cm ,则四边形ODEC 的周长为______cm .19.如图,菱形ABCD 的对角线AC ,BD 相交于O 点,E ,F 分别是AB ,BC 边上的中点,连接EF ,若EF =4BD =,则菱形ABCD 的面积为________.20.如图,将平行四边形ABCD 的边DC 延长到E ,使CE CD =,连接AE 交BC 于F ,AFC n D ∠∠=,当n =______时,四边形ABEC 是矩形.三、解答题(共60分) 21.矩形ABCD 中68AB cm BC cm AE ==,,平分BAC ∠交BC 于E CF ,平分ACD ∠交AD 于F .(共8分)(1)说明四边形AECF 为平行四边形;(2)求四边形AECF 的面积.22.如图,在矩形ABCD中,对角线AC与BD交于点O,且①ADO为等边三角形,过点A 作AE①BD于点E.(共8分)(1)求①ABD的度数;(2)若BD=10,求AE的长.23.已知如图,两个长为8,宽为2的矩形纸条倾斜地重叠着.(共10分)()1求证:两矩形重叠部分为菱形;()2求菱形面积最大和最小值.24.如图,在ABC 中,5AB AC ==,6BC =,AD 为BC 边上的高,过点A 作//AE BC ,过点D 作//DE AC ,AE 与DE 交于点E ,AB 与DE 交于点F ,连结BE .(共10分)()1求证:四边形AEBD 是矩形;()2求四边形AEBD 的面积.25.如图,正方形ABCD中,E、F分别在BC、DC上,且45.∠=试说明:EAF+=.(共12分)BE DF EF26.如图,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA 上,连接CF.(共12分)()1求证:HEA CGF∠=∠;()2当AH DG=时,求证:菱形EFGH为正方形.参考答案:1.D 2.C 3.C 4.A 5.D 6.D 7.D 8.C 9.B 10.D11.24 12.24 13.①① 1415.90ABC∠=16.17.4018.20 19.20.221.(1)见解析;(2)30cm2(1)①四边形ABCD是矩形,①AD①BC(即AF①CE),AB①CD,①①BAC=①ACD,又①AE平分①BAC,CF平分①ACD,①①EAC=①FCA,①AE①CF,①四边形AECF是平行四边形;(2)过点E作EO①AC于点O,①①B=90°,AE平分①BAC,①EO=BO,①AE=AE,①Rt①ABE①Rt①AOE,①AO=AB=6,①在Rt①ABC,10,①OC=AC-AO=4(cm),设CE=x,则EO=BE=BC-CE=8-x,①在Rt①OEC中由勾股定理可得:222-+=,解得:58(x x4)x=,①EC=5,①S四边形AECF=CE·AB=5×6=30(cm2).22.(1)①ABD=30°;(2)AE(1)①四边形ABCD是矩形,①①DAB=90°,①①ADO为等边三角形,①①ADB=60°,①①ABD=180°-①DAB-①ADB=30°;(2)①BD=10,①BAD=90°,①ABD=30°,①AD=12BD=5,①①ADO为等边三角形,①AD=AO=DO=5,①AE①DO,①DE=EO=12DO=2.5,在Rt①AED中,由勾股定理得AE23.(1)详见解析;(2)菱形面积最大和最小值分别是172、4.()1根据题意得:AD//BC,AB//CD,①四边形ABCD是平行四边形.如图1,分别作CD,BC边上的高为AE,AF,①两纸条宽度相同,①AE AF=.①平行四边形ABCD的面积为AE CD BC AF⨯=⨯,①CD BC=.①平行四边形ABCD为菱形;()2如图2,此时菱形ABCD的面积最大.设AB x =,EB 8x =-,AE 2=,则由勾股定理得到:2222(8x)x +-=, 解得 17x 4=, 1717S 242=⨯=最大; 如图3,此时菱形ABCD 的面积最小.S 224=⨯=最小. 综上所述,菱形面积最大和最小值分别是172、4. 24.(1)详见解析;(2)12. ()1①AE //BC ,BE //AC ,①四边形AEDC 是平行四边形. ①AE CD =.在ABC 中,AB AC =,AD 为BC 边上的高, ①ADB 90∠=,BD CD =.①BD AE =.①四边形AEBD 是矩形.()2在Rt ADC 中,ADB 90∠=,AC 5=,1BD CD BC 32===,①AD 4=.①四边形AEBD 的面积BD AD 3412=⋅=⨯=. 25.证明见解析.①四边形ABCD 为正方形①AB=AD,①BAD=①B=①ADF=90°如图,把△ABE 逆时针旋转90°得到△ADG ,①BE =GD ,AE =AG .①ADG=①ABE=90°,①GAD=①BAE ①①ADG+①ADF=180°①G 、D 、F 在同一条直线上.①①EAF =45°,①①F AG =①GAD+①DAF=①BAE+①DAF=①BAD-①EAF=90°﹣45°=45°, ①①EAF =①F AG .在△AEF 和△AGF 中,①AE AG EAF FAG AF AF =⎧⎪∠=∠⎨⎪=⎩,①①AEF ①①AGF (SAS ),①EF =GF ,即EF =GD +DF ,①BE +DF =EF .26.(1)详见解析;(2)详见解析.(1)连接GE ,①AB//CD ,①AEG CGE ∠∠=,①GF//HE ,①HEG FGE ∠∠=,①HEA CGF ∠∠=;()2①四边形ABCD 是正方形, ①D A 90∠∠==, ①四边形EFGH 是菱形, ①HG HE =,在Rt HAE 和Rt GDH 中, AH DG HE HG =⎧⎨=⎩, ①()Rt HAE Rt GDH HL ≅, ①AHE DGH ∠∠=,又DHG DGH 90∠∠+=, ①DHG AHE 90∠∠+=, ①GHE 90∠=, ①菱形EFGH 为正方形;。
北师大版数学九年级上册第一章测试卷
第一章检测题(一)一、选择题1、下列说法中,不正确的是( ).(A )有三个角是直角的四边形是矩形;(B )对角线相等的四边形是矩形(C )对角线互相垂直的矩形是正方形;(D )对角线互相垂直的平行四边形是菱形2、用两个全等的直角三角形拼下列图形:①矩形;②菱形;③正方形;④平行四边形;⑤等腰三角形;⑥等腰梯形.其中一定能拼成的图形是( ).(A )①②③ (B )①④⑤ (C )①②⑤ (D )②⑤⑥ 3、观察下列四个平面图形,其中中心对称图形有( )(A )2个 (B )1个 (C )4个 (D )3个 图1 4、顺次连接等腰梯形四边中点所得四边形是( ) A .菱形 B .正方形 C .矩形 D .等腰梯形5、如图1,下列条件之一能使平行四边形ABCD 是菱形的为( ) ①AC BD ⊥ ②90BAD ∠= ③AB BC = ④AC BD =(A )①③ (B )②③ (C )③④ (D )①②③ 6、菱形的周长为20,两邻角的比为2∶1,则一组对边的距离为( ) A 、32B 、332C 、3 3D 、532图3 图47、如图3,矩形ABCD 沿AE 折叠,使点D 落在BC 边上的F 点处,如果∠BAF=60°,那么∠DAE 等于( ).(A )15° (B )30° (C )45° (D )60°8、如图4,在菱形ABCD 中,∠ADC=120°,则BD :AC 等于( ). (A )3:2 (B )3:3 (C )1:2 (D )3:19、如图5,四边形ABCD 是正方形,延长BC 至点E ,使CE=CA ,连结AE 交CD•于点F ,•则∠AFC 的度数是( ).(A )150° (B )125° (C )135° (D )112.5° 10、正方形具有而菱形不具有的性质是( )A 、四个角都是直角B 、两组对边分别相等C 、内角和为0360 D 、对角线平分对角图5 11、矩形的边长为10 cm 和15 cm ,其中一内角平分线分长边为两部分,这两部分的长为( ) (A )6 cm 和9 cm (B )5 cm 和10 cm (C )4 cm 和11 cm (D )7 cm 和8 cm12、菱形周长为20 cm ,它的一条对角线长6 cm ,则菱形的面积为…………………( ) (A )6 (B )12 (C )18 (D )24 二、填空题:13、已知矩形的对角线长为4cm ,一条边长为23cm ,则面积为________.14、菱形的两条对角线分别是6cm ,8cm ,则菱形的边长为_____,面积为______.15、如图7,在□ABCD 中,则对角线AC 、BD 相交于O ,图中全等的三角形共有____对.图7 图8 图916、从矩形的一个顶点作一条对角线的垂线,这条垂线分这条对角线成1:3两部分,则矩形的两条对角线夹角为 .17、如图8,矩形ABCD 中,O 是两对角线的交点AE ⊥BD ,垂足为E .若OD =2 OE , AE =3,则DE 的长为______.18、如图9,在□ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,若AE =4,AF =6,□ABCD 的周长为40,则S □ABCD 为______.三、解答题(要有必要的文字说明,规范的步骤)19、如图6,在矩形ABCD 中,E 是BC 上一点且AE=AD ,又AE DF ⊥于点F , 证明:EC=EF.A BCDA DFECDBAO20、如图所示,在矩形ABCD 中,对角线AC ,BD 交于点O ,过顶点C 作CE ∥BD ,交A•孤延长线于点E ,求证:AC=CE .21、如图1-16,在ABCD 中,点E 是CD 的中点,AE 的延长线与BC 的延长线相交于点F . (1)求证:△ADE ≌△FCE ;(2)连结AC 、DF ,则四边形ACFD 是下列选项中的( ). A .梯形 B .菱形 C .正方形 D .平行四边形 ⑶证明你在(2)中的结论22、(本小题满分10分)如图,已知平行四边形ABCD 中,对角线AC BD ,交于点O ,E 是BD 延长线上的点,且ACE △是等边三角形.(1)求证:四边形ABCD 是菱形;(2)若2AED EAD ∠=∠,求证:四边形ABCD 是正方形.23、如图,矩形ABCD 中,点P 是线段AD 上一动点,O 为BD 的中点, PO 的延长线交B于Q.(1)求证: OP=OQ ;(2)若AD=8厘米,AB=6厘米,P 从点A 出发,以1厘米/秒的速度向D 运动(不与D 重合).设点P 运动时间为t 秒,请用t 表示PD 的长;并求t 为何值时,四边形PBQD 是菱形.。
数学九年级上册第一单元测试题
北师大版数学九年级上册第一单元测试题一.选择题(共10小题)1.菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等C.对角线互相平分 D.对角线互相垂直2.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.B.C.5 D.43.菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF=,BD=2,则菱形ABCD的面积为()A.2 B.C.6 D.84.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()A.△AFD≌△DCE B.AF=AD C.AB=AF D.BE=AD﹣DF5.如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是()A.3 B.4 C.5 D.66.下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形7.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1 B.2 C.3 D.48.如图,四边形ABCD中,对角线相交于点O,E、F、G、H分别是AD、BD、BC、AC的中点,要使四边形EFGH是菱形,则四边形ABCD需满足的条件是()A.AB=AD B.AC=BD C.AD=BC D.AB=CD9.如图,在正方形ABCD中,H是BC延长线上一点,使CE=CH,连接DH,延长BE交DH于G,则下面结论错误的是()A.BE=DH B.∠H+∠BEC=90°C.BG⊥DH D.∠HDC+∠ABE=90°10.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF;⑤S△CEF=2S△ABE,其中正确结论有()A.2个 B.3个 C.4个 D.5个二.填空题(共10小题)11.如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则OE=.12.如图,菱形ABCD的对角线AC、BD相交于点O,E为AD的中点,若OE=3,则菱形ABCD的周长为.13.如图,将正方形纸片按如图折叠,AM为折痕,点B落在对角线AC上的点E 处,则∠CME=.14.如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则的值等于.15.菱形的两条对角线长分别为16和12,则它的面积为.16.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是.17.如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为.18.如图,在矩形ABCD中,AD=9cm,AB=3cm,将其折叠,使点D与点B重合,则重叠部分(△BEF)的面积为.19.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=6,AD=8,则四边形ABOM的周长为.20.矩形ABCD中,AB=5,BC=4,将矩形折叠,使得点B落在线段CD的点F处,则线段BE的长为.三.解答题(共10小题)21.如图,在▱ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.22.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD 的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.23.如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=,∠DCF=30°,求四边形AECF的面积.(结果保留根号)24.如图,菱形ABCD的对角线AC,BD相交于点O,且DE∥AC,AE∥BD.求证:四边形AODE是矩形.25.如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.求证:AE=EF.26.已知,如图,正方形ABCD中,E为BC边上一点,F为BA延长线上一点,且CE=AF.连接DE、DF.求证:DE=DF.27.如图,在正方形ABCD中,E是边AB的中点,F是边BC的中点,连结CE、DF.求证:CE=DF.28.如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连结CE,若∠E=50°,求∠BAO的大小.29.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,并且AF=CE.(1)求证:四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论.30.如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=2,AD=4,求MD的长.01月18日dxzxshuxue的初中数学组卷参考答案与试题解析一.选择题(共10小题)1.(2016•莆田)菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等C.对角线互相平分 D.对角线互相垂直【分析】由菱形的性质可得:菱形的对角线互相平分且垂直;而平行四边形的对角线互相平分;则可求得答案.【解答】解:∵菱形具有的性质:对边相等,对角相等,对角线互相平分,对角线互相垂直;平行四边形具有的性质:对边相等,对角相等,对角线互相平分;∴菱形具有而一般平行四边形不具有的性质是:对角线互相垂直.故选D.【点评】此题考查了菱形的性质以及平行四边形的性质.注意菱形的对角线互相平分且垂直.2.(2016•枣庄)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.B.C.5 D.4【分析】根据菱形性质求出AO=4,OB=3,∠AOB=90°,根据勾股定理求出AB,再根据菱形的面积公式求出即可.【解答】解:∵四边形ABCD是菱形,∴AO=OC,BO=OD,AC⊥BD,∵AC=8,DB=6,∴AO=4,OB=3,∠AOB=90°,由勾股定理得:AB==5,∵S=,菱形ABCD∴,∴DH=,故选A.【点评】本题考查了勾股定理和菱形的性质的应用,能根据菱形的性质得出S菱=是解此题的关键.形ABCD3.(2016•宁夏)菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD 边上的中点,连接EF.若EF=,BD=2,则菱形ABCD的面积为()A.2 B.C.6 D.8【分析】根据中位线定理可得对角线AC的长,再由菱形面积等于对角线乘积的一半可得答案.【解答】解:∵E,F分别是AD,CD边上的中点,EF=,∴AC=2EF=2,又∵BD=2,∴菱形ABCD的面积S=×AC×BD=×2×2=2,故选:A.【点评】本题主要考查菱形的性质与中位线定理,熟练掌握中位线定理和菱形面积公式是关键.4.(2016•荆门)如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()A.△AFD≌△DCE B.AF=AD C.AB=AF D.BE=AD﹣DF【分析】先根据已知条件判定△AFD≌△DCE(AAS),再根据矩形的对边相等,以及全等三角形的对应边相等进行判断即可.【解答】解:(A)由矩形ABCD,AF⊥DE可得∠C=∠AFD=90°,AD∥BC,∴∠ADF=∠DEC.又∵DE=AD,∴△AFD≌△DCE(AAS),故(A)正确;(B)∵∠ADF不一定等于30°,∴直角三角形ADF中,AF不一定等于AD的一半,故(B)错误;(C)由△AFD≌△DCE,可得AF=CD,由矩形ABCD,可得AB=CD,∴AB=AF,故(C)正确;(D)由△AFD≌△DCE,可得CE=DF,由矩形ABCD,可得BC=AD,又∵BE=BC﹣EC,∴BE=AD﹣DF,故(D)正确;故选B.【点评】本题主要考查了矩形和全等三角形,解决问题的关键是掌握矩形的性质:矩形的四个角都是直角,矩形的对边相等.解题时注意:在直角三角形中,若有一个锐角等于30°,则这个锐角所对的直角边等于斜边的一半.5.(2016•毕节市)如图,正方形ABCD的边长为9,将正方形折叠,使顶点D 落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是()A.3 B.4 C.5 D.6【分析】根据折叠可得DH=EH,在直角△CEH中,设CH=x,则DH=EH=9﹣x,根据BE:EC=2:1可得CE=3,可以根据勾股定理列出方程,从而解出CH的长.【解答】解:设CH=x,则DH=EH=9﹣x,∵BE:EC=2:1,BC=9,∴CE=BC=3,∴在Rt△ECH中,EH2=EC2+CH2,即(9﹣x)2=32+x2,解得:x=4,即CH=4.故选(B).【点评】本题主要考查正方形的性质以及翻折变换,折叠问题其实质是轴对称变换.在直角三角形中,利用勾股定理列出方程进行求解是解决本题的关键.6.(2016•内江)下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形【分析】A、根据矩形的定义作出判断;B、根据菱形的性质作出判断;C、根据平行四边形的判定定理作出判断;D、根据正方形的判定定理作出判断.【解答】解:A、两条对角线相等且相互平分的四边形为矩形;故本选项错误;B、对角线互相垂直的平行四边形是菱形;故本选项错误;C、对角线互相平分的四边形是平行四边形;故本选项正确;D、对角线互相垂直平分且相等的四边形是正方形;故本选项错误;故选C.【点评】本题综合考查了正方形、矩形、菱形及平行四边形的判定.解答此题时,必须理清矩形、正方形、菱形与平行四边形间的关系.7.(2016•龙岩模拟)如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1 B.2 C.3 D.4【分析】作F点关于BD的对称点F′,则PF=PF′,由两点之间线段最短可知当E、P、F′在一条直线上时,EP+FP有最小值,然后求得EF′的长度即可.【解答】解:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.∴EP+FP=EP+F′P.由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时EP+FP=EP+F′P=EF′.∵四边形ABCD为菱形,周长为12,∴AB=BC=CD=DA=3,AB∥CD,∵AF=2,AE=1,∴DF=AE=1,∴四边形AEF′D是平行四边形,∴EF′=AD=3.∴EP+FP的最小值为3.故选:C.【点评】本题主要考查的是菱形的性质、轴对称﹣﹣路径最短问题,明确当E、P、F′在一条直线上时EP+FP有最小值是解题的关键.8.(2016•蜀山区二模)如图,四边形ABCD中,对角线相交于点O,E、F、G、H分别是AD、BD、BC、AC的中点,要使四边形EFGH是菱形,则四边形ABCD 需满足的条件是()A.AB=AD B.AC=BD C.AD=BC D.AB=CD【分析】由点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,根据三角形中位线的性质,可得EF=GH=AB,EH=FG=CD,又由当EF=FG=GH=EH时,四边形EFGH是菱形,即可求得答案.【解答】解:∵点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,∴EF=GH=AB,EH=FG=CD,∵当EF=FG=GH=EH时,四边形EFGH是菱形,∴当AB=CD时,四边形EFGH是菱形.故选:D.【点评】此题考查了中点四边形的性质、菱形的判定以及三角形中位线的性质.此题难度适中,注意掌握数形结合思想的应用.9.(2016•曹县校级模拟)如图,在正方形ABCD中,H是BC延长线上一点,使CE=CH,连接DH,延长BE交DH于G,则下面结论错误的是()A.BE=DH B.∠H+∠BEC=90°C.BG⊥DH D.∠HDC+∠ABE=90°【分析】根据正方形的四条边都相等,角都是直角,先证明△BCE和△DCH全等,再根据全等三角形对应边相等,全等三角对应角相等,对各选项分析判断后利用排除法.【解答】解:在正方形ABCD中,BC=CD,∠BCD=∠DCH=90°,在△BCE和△DCH中,,∴△BCE≌△DCH(SAS),∴BE=DH,故A选项正确;∠H=∠BEC,故B选项错误;∠EBC=∠HDC,∴∠EBC+BEC=∠HDC+DEG,∵BCD=90°,∴∠EBC+BEC=90°,∴∠HDC+DEG=90°,∴BG⊥DH,故C选项正确;∵∠ABE+∠EBC=90°,∴∠HDC+∠ABE=90°,故D选项正确.故选B.【点评】本题主要利用正方形的和三角形全等的性质求解,熟练掌握性质是解题的关键.10.(2016•新华区一模)如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF;⑤S△CEF=2S△ABE,其中正确结论有()A.2个 B.3个 C.4个 D.5个【分析】通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,设EC=x,BE=y,由勾股定理就可以得出x与y的关系,表示出BE与EF,利用三角形的面积公式分别表示出S△CEF 和2S△ABE,再通过比较大小就可以得出结论.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF等边三角形,∴AE=EF=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,,Rt△ABE≌Rt△ADF(HL),∴BE=DF(故①正确).∠BAE=∠DAF,∴∠DAF+∠DAF=30°,即∠DAF=15°(故②正确),∵BC=CD,∴BC﹣BE=CD﹣DF,即CE=CF,∵AE=AF,∴AC垂直平分EF.(故③正确).设EC=x,由勾股定理,得EF=x,CG=x,AG=AEsin60°=EFsin60°=2×CGsin60°=x,∴AC=,∴AB=,∴BE=﹣x=,∴BE+DF=x﹣x≠x,(故④错误),=x2,∵S△CEFS△ABE=x2,∴2S=x2=S△CEF,(故⑤正确).△ABE综上所述,正确的有4个,故选:C.【点评】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.二.填空题(共10小题)11.(2016•内江)如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则OE=.【分析】先根据菱形的性质得AC⊥BD,OB=OD=BD=3,OA=OC=AC=4,再在Rt△OBC中利用勾股定理计算出BC=5,然后利用面积法计算OE的长.【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,OB=OD=BD=3,OA=OC=AC=4,在Rt△OBC中,∵OB=3,OC=4,∴BC==5,∵OE⊥BC,∴OE•BC=OB•OC,∴OE==.故答案为.【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.也考查了勾股定理和三角形面积公式.12.(2016•扬州)如图,菱形ABCD的对角线AC、BD相交于点O,E为AD的中点,若OE=3,则菱形ABCD的周长为24.【分析】由菱形的性质可得出AC⊥BD,AB=BC=CD=DA,再根据直角三角形斜边上的中线等于斜边的一半得出AD的长,结合菱形的周长公式即可得出结论.【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,AB=BC=CD=DA,∴△AOD为直角三角形.∵OE=3,且点E为线段AD的中点,∴AD=2OE=6.C菱形ABCD=4AD=4×6=24.故答案为:24.【点评】本题考查了菱形的性质以及直角三角形的性质,解题的关键是求出AD=6.本题属于基础题,难度不大,解决该题型题目时,根据菱形的性质找出对角线互相垂直,再通过直角三角形的性质找出菱形的一条变成是关键.13.(2016•龙岩)如图,将正方形纸片按如图折叠,AM为折痕,点B落在对角线AC上的点E处,则∠CME=45°.【分析】由正方形的性质和折叠的性质即可得出结果.【解答】解:∵四边形ABCD是正方形,∴∠B=90°,∠ACB=45°,由折叠的性质得:∠AEM=∠B=90°,∴∠CEM=90°,∴∠CME=90°﹣45°=45°;故答案为:45°.【点评】本题考查了正方形的性质、折叠的性质;熟练掌握正方形和折叠的性质是解决问题的关键.14.(2016•天津)如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则的值等于.【分析】根据辅助线的性质得到∠ABD=∠CBD=45°,四边形MNPQ和AEFG均为正方形,推出△BEF与△BMN是等腰直角三角形,于是得到FE=BE=AE=AB,BM=MN=QM,同理DQ=MQ,即可得到结论.【解答】解:在正方形ABCD中,∵∠ABD=∠CBD=45°,∵四边形MNPQ和AEFG均为正方形,∴∠BEF=∠AEF=90°,∠BMN=∠QMN=90°,∴△BEF与△BMN是等腰直角三角形,∴FE=BE=AE=AB,BM=MN=QM,同理DQ=MQ,∴MN=BD=AB,∴==,故答案为:.【点评】本题考查了正方形的性质,等腰直角三角形的性质,正方形的面积的计算,熟练掌握等腰直角三角形的性质是解题的关键.15.(2016•白云区校级二模)菱形的两条对角线长分别为16和12,则它的面积为96.【分析】由菱形的两条对角线长分别为16和12,根据菱形的面积等于对角线积的一半,即可求得答案.【解答】解:∵菱形的两条对角线长分别为16和12,∴它的面积为:×16×12=96.故答案为:96.【点评】此题考查了菱形的性质.注意菱形的面积等于对角线积的一半.16.(2016•河源校级一模)如图,矩形ABCD的对角线AC,BD相交于点O,CE ∥BD,DE∥AC.若AC=4,则四边形CODE的周长是8.【分析】先证明四边形CODE是平行四边形,再根据矩形的性质得出OC=OD,然后证明四边形CODE是菱形,即可求出周长.【解答】解:∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是矩形,∴OC=AC=2,OD=BD,AC=BD,∴OC=OD=2,∴四边形CODE是菱形,∴DE=CEOC=OD=2,∴四边形CODE的周长=2×4=8;故答案为:8.【点评】本题考查了菱形的判定与性质以及矩形的性质;证明四边形是菱形是解决问题的关键.17.(2016•临沭县校级一模)如图,在矩形ABCD中,AB=2,BC=4,对角线AC 的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为.【分析】由矩形的性质得出CD=AB=2,AD=BC=4,∠D=90°,由线段垂直平分线的性质得出CE=AE,设CE=AE=x,则DE=4﹣x,由勾股定理得出方程,解方程即可.【解答】解:∵四边形ABCD是矩形,∴CD=AB=2,AD=BC=4,∠D=90°,∵EF是AC的垂直平分线,∴CE=AE,设CE=AE=x,则DE=4﹣x,在Rt△CDE中,由勾股定理得:CD2+DE2=CE2,即22+(4﹣x)2=x2,解得:x=,∴CE=;故答案为:.【点评】本题考查了矩形的性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.18.(2016•抚顺模拟)如图,在矩形ABCD中,AD=9cm,AB=3cm,将其折叠,使点D与点B重合,则重叠部分(△BEF)的面积为7.5cm2.【分析】设DE=xcm,由翻折的性质可知DE=EB=x,则AE=(9﹣x)cm,在Rt△ABE中,由勾股定理求得ED的长;由翻折的性质可知∠DEF=∠BEF,由矩形的性质可知BC∥AD,从而得到∠BFE=∠DEF,故此可知∠BFE=∠FEB,得出FB=BE,最后根据三角形的面积公式求解即可.【解答】解:设DE=xcm.由翻折的性质可知DE=EB=x,∠DEF=∠BEF,则AE=(9﹣x)cm.在Rt△ABE中,由勾股定理得;BE2=EA2+AB2,即x2=(9﹣x)2+32.解得:x=5.∴DE=5cm.∵四边形ABCD为矩形,∴BC∥AD.∴∠BFE=∠DEF.∴∠BFE=∠FEB.∴FB=BE=5cm.∴△BEF的面积=BF•AB=×3×5=7.5(cm2);故答案为:7.5cm2.【点评】本题主要考查的是翻折的性质、勾股定理的应用,等腰三角形的判定、三角形的面积公式,证得△BEF为等腰三角形,从而得到FB的长是解题的关键.19.(2016•苏州校级二模)如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=6,AD=8,则四边形ABOM的周长为18.【分析】根据矩形的性质,直角三角形斜边中线性质,三角形中位线性质求出BO、OM、AM即可解决问题.【解答】解:∵四边形ABCD是矩形,∴AD=BC=8,AB=CD=6,∠ABC=90°,∴AC==10,∵AO=OC,∴BO=AC=5,∵AO=OC,AM=MD=4,∴OM=CD=3,∴四边形ABOM的周长为AB+OB+OM+AM=6+5+3+4=18.故答案为18.【点评】本题看成矩形的性质、三角形中位线定理、直角三角形斜边中线性质等知识,解题的关键是灵活应用中线知识解决问题,属于中考常考题型.20.(2016•天桥区三模)矩形ABCD中,AB=5,BC=4,将矩形折叠,使得点B 落在线段CD的点F处,则线段BE的长为 2.5.【分析】根据翻转前后,图形的对应边和对应角相等,可知EF=BF,AB=AE,故可求出DE的长,然后设出FC的长,则EF=4﹣FC,再根据勾股定理的知识,即可求出BF的长.【解答】解:∵四边形ABCD是矩形,∴∠B=∠D=90°,∵将矩形折叠,使得点B落在线段CD的点F处,∴AE=AB=5,AD=BC=4,EF=BF,在Rt△ADE中,由勾股定理,得DE=3.在矩形ABCD中,DC=AB=5.∴CE=DC﹣DE=2.设FC=x,则EF=4﹣x.在Rt△CEF中,x2+22=(4﹣x)2.解得x=1.5.∴BF=BC﹣CF=4﹣1.5=2.5,故答案为:2.5.【点评】本题考查了矩形的性质、勾股定理的运用以及翻转变换的知识,属于基础题,注意掌握图形翻转前后对应边和对应角相等是解题关键.三.解答题(共10小题)21.(2016•安顺)如图,在▱ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.【分析】第(1)问要证明三角形全等,由平行四边形的性质,很容易用SAS证全等.第(2)要求菱形的面积,在第(1)问的基础上很快知道△ABE为等边三角形.这样菱形的高就可求了,用面积公式可求得.【解答】(1)证明:∵在▱ABCD中,AB=CD,∴BC=AD,∠ABC=∠CDA.又∵BE=EC=BC,AF=DF=AD,∴BE=DF.∴△ABE≌△CDF.(2)解:∵四边形AECF为菱形,∴AE=EC.又∵点E是边BC的中点,∴BE=EC,即BE=AE.又BC=2AB=4,∴AB=BC=BE,∴AB=BE=AE,即△ABE为等边三角形,▱ABCD的BC边上的高为2×sin60°=,∴菱形AECF的面积为2.【点评】考查了全等三角形,四边形的知识以及逻辑推理能力.(1)用SAS证全等;(2)若四边形AECF为菱形,则AE=EC=BE=AB,所以△ABE为等边三角形.22.(2016•苏州)如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D 作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.【分析】(1)根据平行四边形的判定证明即可;(2)利用平行四边形的性质得出平行四边形的周长即可.【解答】(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB,∴DE∥AC,∴四边形ACDE是平行四边形;(2)解:∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,AD=CD=5,∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8,∴△ADE的周长为AD+AE+DE=5+5+8=18.【点评】此题考查平行四边形的性质和判定问题,关键是根据平行四边形的判定解答即可.23.(2016•贺州)如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=,∠DCF=30°,求四边形AECF的面积.(结果保留根号)【分析】(1)由过AC的中点O作EF⊥AC,根据线段垂直平分线的性质,可得AF=CF,AE=CE,OA=OC,然后由四边形ABCD是矩形,易证得△AOF≌△COE,则可得AF=CE,继而证得结论;(2)由四边形ABCD是矩形,易求得CD的长,然后利用三角函数求得CF的长,继而求得答案.【解答】(1)证明:∵O是AC的中点,且EF⊥AC,∴AF=CF,AE=CE,OA=OC,∵四边形ABCD是矩形,∴AD∥BC,∴∠AFO=∠CEO,在△AOF和△COE中,,∴△AOF≌△COE(AAS),∴AF=CE,∴AF=CF=CE=AE,∴四边形AECF是菱形;(2)解:∵四边形ABCD是矩形,∴CD=AB=,在Rt△CDF中,cos∠DCF=,∠DCF=30°,∴CF==2,∵四边形AECF是菱形,∴CE=CF=2,∴四边形AECF是的面积为:EC•AB=2.【点评】此题考查了矩形的性质、菱形的判定与性质以及三角函数等知识.注意证得△AOF≌△COE是关键.24.(2016•吉林)如图,菱形ABCD的对角线AC,BD相交于点O,且DE∥AC,AE∥BD.求证:四边形AODE是矩形.【分析】根据菱形的性质得出AC⊥BD,再根据平行四边形的判定定理得四边形AODE为平行四边形,由矩形的判定定理得出四边形AODE是矩形.【解答】证明:∵四边形ABCD为菱形,∴AC⊥BD,∴∠AOD=90°,∵DE∥AC,AE∥BD,∴四边形AODE为平行四边形,∴四边形AODE是矩形.【点评】本题考查了矩形的判定以及菱形的性质,还考查了平行四边形的判定,掌握平行四边形的判定方法是解题的关键.25.(2016•通辽)如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.求证:AE=EF.【分析】先取AB的中点H,连接EH,根据∠AEF=90°和ABCD是正方形,得出∠1=∠2,再根据E是BC的中点,H是AB的中点,得出BH=BE,AH=CE,最后根据CF是∠DCG的角平分线,得出∠AHE=∠ECF=135°,从而证出△AHE≌△ECF,即可得出AE=EF.【解答】证明:取AB的中点H,连接EH;∵∠AEF=90°,∴∠2+∠AEB=90°,∵四边形ABCD是正方形,∴∠1+∠AEB=90°,∴∠1=∠2,∵E是BC的中点,H是AB的中点,∴BH=BE,AH=CE,∴∠BHE=45°,∵CF是∠DCG的角平分线,∴∠FCG=45°,∴∠AHE=∠ECF=135°,在△AHE和△ECF中,,∴△AHE≌△ECF(ASA),∴AE=EF.【点评】此题考查了正方形的性质和全等三角形的判定与性质,解题的关键是取AB的中点H,得出AH=EC,再根据全等三角形的判定得出△AHE≌△ECF.26.(2016•无锡)已知,如图,正方形ABCD中,E为BC边上一点,F为BA延长线上一点,且CE=AF.连接DE、DF.求证:DE=DF.【分析】根据正方形的性质可得AD=CD,∠C=∠DAF=90°,然后利用“边角边”证明△DCE和△DAF全等,再根据全等三角形对应边相等证明即可.【解答】证明:∵四边形ABCD是正方形,∴AD=CD,∠DAB=∠C=90°,∴∠FAD=180°﹣∠DAB=90°.在△DCE和△DAF中,,∴△DCE≌△DAF(SAS),∴DE=DF.【点评】本题考查了正方形的性质,全等三角形的判定与性质,利用全等三角形对应边相等证明线段相等是常用的方法之一,一定要熟练掌握并灵活运用.27.(2016•乐山)如图,在正方形ABCD中,E是边AB的中点,F是边BC的中点,连结CE、DF.求证:CE=DF.【分析】欲证明CE=DF,只要证明△CEB≌△DFC即可.【解答】证明:∵ABCD是正方形,∴AB=BC=CD,∠EBC=∠FCD=90°,又∵E、F分别是AB、BC的中点,∴BE=CF,在△CEB和△DFC中,,∴△CEB≌△DFC,∴CE=DF.【点评】本题考查正方形的性质、全等三角形的判定和性质,解题的关键是熟练掌握正方形的性质以及全等三角形的判定和性质,属于基础题,中考常考题型.28.(2016•长春二模)如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连结CE,若∠E=50°,求∠BAO的大小.【分析】根据菱形的四条边都相等可得AB=BC,从而得到BC=BE,再根据等腰三角形的性质求出∠CBE,然后根据两直线平行,同位角相等可得∠BAD=∠CBE,再根据菱形的对角线平分一组对角线可得∠BAO=∠BAD,问题得解.【解答】解:菱形ABCD中,AB=BC,∵BE=AB,∴BC=BE,∴∠BCE=∠E=50°,∴∠CBE=180°﹣50°×2=80°,∵AD∥BC,∴∠BAD=∠CBE=80°,∴∠BAO=∠BAD=×80°=40°.【点评】本题考查了菱形的性质,等腰三角形的性质,平行线的性质,熟记各性质并准确识图是解题的关键.29.(2016•哈尔滨模拟)如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE 交BC于D,交AB于E,F在DE上,并且AF=CE.(1)求证:四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论.【分析】(1)ED是BC的垂直平分线,根据中垂线的性质:中垂线上的点线段两个端点的距离相等,则EB=EC,故有∠3=∠4,在直角三角形ACB中,∠2与∠4互余,∠1与∠3互余,则可得到AE=CE,从而证得△ACE和△EFA都是等腰三角形,又因为FD⊥BC,AC⊥BC,所以AC∥FE,再根据内错角相等得到AF∥CE,故四边形ACEF是平行四边形;(2)由于△ACE是等腰三角形,当∠1=60°时△ACE是等边三角形,有AC=EC,有平行四边形ACEF是菱形.【解答】解:(1)∵ED是BC的垂直平分线∴EB=EC,ED⊥BC,∴∠3=∠4,∵∠ACB=90°,∴FE∥AC,∴∠1=∠5,∵∠2与∠4互余,∠1与∠3互余∴∠1=∠2,∴AE=CE,又∵AF=CE,∴△ACE和△EFA都是等腰三角形,∴∠5=∠F,∴∠2=∠F,∴在△EFA和△ACE中∵,∴△EFA≌△ACE(AAS),∴∠AEC=∠EAF∴AF∥CE∴四边形ACEF是平行四边形;(2)当∠B=30°时,四边形ACEF是菱形.证明如下:∵∠B=30°,∠ACB=90°∴∠1=∠2=60°∴∠AEC=60°∴AC=EC∴平行四边形ACEF是菱形.【点评】本题综合利用了中垂线的性质、等边对等角和等角对等边、直角三角形的性质、平行四边形和判定和性质、菱形的判定求解,有利于学生思维能力的训练.涉及的知识点有:有一组邻边相等的平行四边形是菱形.30.(2016•会宁县一模)如图,在矩形ABCD中,对角线BD的垂直平分线MN 与AD相交于点M,与BD相交于点O,与BC相交于N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=2,AD=4,求MD的长.【分析】(1)根据矩形性质求出AD∥BC,推出∠MDO=∠NBO,∠DMO=∠BNO,证△DMO≌△BNO,推出OM=ON,得出平行四边形BMDN,推出菱形BMDN;(2)根据菱形性质求出DM=BM,在Rt△AMB中,根据勾股定理得出BM2=AM2+AB2,即可列方程求得.【解答】(1)证明:∵四边形ABCD是矩形∴AD∥BC,∠A=90°,∴∠MDO=∠NBO,∠DMO=∠BNO,∵在△DMO和△BNO中∴△DMO≌△BNO(ASA),∴OM=ON,∵OB=OD,∴四边形BMDN是平行四边形,∵MN⊥BD,∴平行四边形BMDN是菱形.(2)解:∵四边形BMDN是菱形,∴MB=MD,设MD长为x,则MB=DM=x,在Rt△AMB中,BM2=AM2+AB2即x2=(4﹣x)2+22,解得:x=,答:MD长为.【点评】本题考查了矩形性质,平行四边形的判定,菱形的判定和性质,勾股定理等知识点的应用,对角线互相平分的四边形是平行四边形,对角线互相垂直的平行四边形是菱形.。
北师大版九年级数学上册《第一章特殊平行四边形》单元测试卷(带答案)
北师大版九年级数学上册《第一章特殊平行四边形》单元测试卷(带答案)一、选择题1.菱形的周长为20cm,一条对角线长为8cm,则菱形的面积为()2cm.A.48B.24C.12D.202.菱形具有而矩形不一定具有的性质是()A.对角线相等B.对角线互相垂直C.对角相等D.对边平行3.要检验一个四边形画框是否为矩形,可行的测量方法是()A.测量四边形画框的两个角是否为90︒B.测量四边形画框的对角线是否相等且互相平分C.测量四边形画框的一组对边是否平行且相等D.测量四边形画框的四边是否相等4.如图,在矩形ABCD中,已知AE BD⊥于E,∠BDC=60°,BE=1,则AB的长为()A.3B.2C.3D35.下列条件中,能判定四边形是正方形的是()A.对角线相等的平行四边形B.对角线互相平分且垂直的四边形C.对角线互相垂直且相等的四边形D.对角线相等且互相垂直的平行四边形6.如图,将图1的正方形剪成四块,恰能拼成图2的矩形,则ba=()A 51-B 53+C 51+D 217.如图,在菱形ABCD 中 50ABC ∠=︒ ,对角线AC ,BD 交于点O ,E 为CD 的中点,连接OE ,则 AOE ∠ 的度数是( )A .110°B .112°C .115°D .120°8.如图,在四边形ABCD 中,AB =1,BC =4,CD =6,∠A =90°,∠B =∠C =120°,则AD 的长度为( )A .3B .3C .3D .3+39.如图,点E 、F 在矩形ABCD 的对角线BD 所在的直线上,BE =DF ,则四边形AECF 是( )A .平行四边形B .矩形C .菱形D .正方形10.如图,在边长为2的正方形ABCD 中,点E ,F 分别是边BC ,CD 上的动点,且BE CF =,连接BF ,DE ,则BF DE +的最小值为( )A 3B 5C .3D .512.如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD ,∠A =120°,则A .13.如图,在矩形ABCD 中,E 是BC 边上一点90AED ∠=︒,∠EAD=30°,F 是AD 边的中点2cm EF =则BE = cm .14.如图,在边长为4的正方形ABCD 中,E 是AB 边上的一点,且AE=3,点Q 为对角线AC 上的动点,则∠BEQ 周长的最小值为 .三、解答题15.如图,在矩形ABCD 中,AC ,BD 相交于点O ,AE//BD ,BE//AC .(1)求证:四边形AEBO 是菱形;(2)若2AB =,OB=3,求AD 的长及四边形AEBO 的面积.16.如图,平行四边形ABCD 中,AC=6,BD=8,点P 从点A 出发以每秒1cm 的速度沿射线AC 移动,点Q 从点C 出发以每秒1cm 的速度沿射线CA 移动.(1)经过几秒,以P ,Q ,B ,D 为顶点的四边形为矩形?(2)若BC∠AC 垂足为C ,求(1)中矩形边BQ 的长.17. 如图,在正方形ABCD 中,点E 、F 分别在边BC 、CD 上,且∠EAF =45°,分别连接EF 、BD ,BD 与AF 、AE 分别相交于点M 、N.(1)求证:EF =BE +DF .为了证明“EF =BE +DF ”,小明延长CB 至点G ,使BG =DF ,连接AG ,请画出辅助线并按小明的思路写出证明过程. (2)若正方形ABCD 的边长为6,BE =2,求DF 的长.18.已知:如图,在 Rt ABC 中 90ACB ∠=︒ , CD 是 ABC 的角平分线,DE ⊥BC ,DF ⊥AC ,垂足分別为E 、F.求证:四边形 CEDF 是正方形.四、综合题19.如图,在ABC 中,AB=AC=2,∠BAC=45°,AEF 是由ABC 绕点A 按逆时针方向旋转得到的,连接BE ,CF 相交于点D .(1)求证:BE CF =;(2)当四边形ABDF 为菱形时,求CD 的长.20.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D 作DE∠AC ,且12DE AC =,连接CE(1)求证:四边形OCED为矩形;(2)连接AE,若DB=6,AC=8,求AE的长.21.已知正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.(1)如图1,连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断∠“在旋转的过程中线段DF与BF的长始终相等.”是否正确,若正确请说明理由,若不正确请举反例说明;(2)若将正方形AEFG绕点A按顺时针方向旋转,连结DG,在旋转的过程中,你能否找到一条线段的长与线段DG的长始终相等.并以图2为例说明理由.22.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图(1),连接AF、CE.①四边形AFCE是什么特殊四边形?说明理由;②求AF的长;(2)如图(2),动点P、Q分别从A、C两点同时出发,沿∠AFB和∠CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,已知点P的速度为每秒5cm,点Q 的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.答案解析部分1.【答案】B【解析】【解答】解:∵菱形周长为20cm∴一条边的边长a=5cm又∵一条对角线长为8cm根据勾股定理可得另一条对角线长的一半22543 b-=∴另一条对角线长为6cm∴2186242m=⨯⨯=菱形的面积故答案为:B.【分析】本题考查菱形的性质、菱形的面积公式以及勾股定理,首先根据菱形的四边相等可知边长为5,又因为菱形的对角线垂直,所以结合一条已知的对角线求出另一条对角线的长度为6,两条对角线长度已知即可求出菱形的面积.2.【答案】B【解析】【解答】矩形的对角线相等,菱形的对角线不一定相等,故A不符合题意;矩形的对角线互相不垂直,菱形的对角线互相垂直,故B符合题意;因为矩形与菱形都是特殊的平行四边形,所以矩形与菱形的对角都相等,故C不符合题意;因为矩形与菱形都是特殊的平行四边形,所以矩形与菱形的对边都平行,故D不符合题意;故答案为:B.【分析】菱形和矩形具有平行四边形的一切性质,菱形特有:四条边都相等,对角线互相垂直且平分一组对角,矩形特有:四个角都是直角,对角线相等,据此逐一判断即可.3.【答案】B【解析】【解答】解:A、测量四边形画框的两个角是否为90°,不能判定为矩形,故选项A不符合题意;B、测量四边形画框的对角线是否相等且互相平分,能判定为矩形,故选项B符合题意;C、测量四边形画框的一组对边是否平行且相等,能判定为平行四边形,不能判定是否为矩形,故选项C 不符合题意;D、测量四边形画框的四边是否相等,能判断四边形是菱形,故选项D不符合题意.【分析】一组对边平行且相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;对角线相等的平行四边形是矩形;有一个角是直角的平行四边形是矩形;四边相等的四边形是菱形,据此一 一判断得出答案.4.【答案】B【解析】【解答】解:四边形ABCD 为矩形60BDC ∠=︒=60ABD ∴∠︒AE BD ⊥30BAE ∴∠=︒AB 2∴=故答案为:B .【分析】由矩形的性质求出∠ABD=90°,利用三角形内角和求出∠BAE=30°,再根据含30°角的直角三角形的性质即可求解.5.【答案】D【解析】【解答】解:A 、对角线相等的平行四边形是矩形,故此选项不符合题意;B 、对角线互相平分且垂直的四边形是菱形,故此选项不符合题意;C 、对角线相等且互相垂直的平行四边形是正方形,故C 选项不符合题意,D 选项符合题意.故答案为:D.【分析】利用对角线互相平分,垂直且相等的四边形是正方形;对角线相等且互相垂直的平行四边形 是正方形,一一判断可得答案.6.【答案】C【解析】【解答】解:依题意得()2()a b b b a b +=++整理得:22222a b ab b ab ++=+则220a b ab -+= 方程两边同时除以2a 2()10b b a a --=152b a +∴=(负值已经舍去)【分析】根据左图可以知道图形是一个正方形,边长为(a+b),右图是一个长方形,长宽分别为(b+a+b)、b,并且它们的面积相等,由此即可列出等式(a+b)2=b(b+a+b),解方程即可求出ba的值.7.【答案】C【解析】【解答】解:∵四边形ABCD是菱形∴AC∠BD,∠CDO= 12∠ADC=12∠ABC=25°∴∠DOC=90°∵点E是CD的中点∴OE=DE= 12CD∴∠DOE=∠CDO=25°∴∠AOE=∠AOD+∠DOE=90°+25°=115°故答案为:C.【分析】根据菱形的性质得出AC∠BD,∠CDO=25°,然后根据直角三角形斜边中线的性质求出OE=DE,则由等腰三角形的性质求出∠DOE=25°,最后根据角的和差关系求∠AOE的度数即可. 8.【答案】A【解析】【解答】解:延长DC、AB,DC、AB的延长线相交于点E∵∠ABC=∠BCD=120°∴∠EBC=∠ECB=60°∴∠BCE是等边三角形∵BC=4,∴EC=BE=BC=4∵AB=1,CD=6∴AE=1+4=5,DE=CD+CE=4+6=10∵∠A=90°∴22221057553DE AE-=-=故答案为:53.【分析】延长DC、AB,DC、AB的延长线相交于点E,结合已知易得∠BCE是等边三角形,由等边三角形的性质可得EC=BE=BC,由线段的构成可求出AE、DE的值,然后在直角三角形ADE中,用勾股定理可求得AD的值.9.【答案】A∴AO=CO BO=DO又BE=DF∴ BO+BE=DO+DF即EO=FO∴ 四边形AECF 是平行四边(对角线互相平分的四边形是平行四边形)故选:A【分析】根据矩形性质得到平行四边形的判定条件。
2019-2020学年北师大版九年级上册数学 第一章 特殊平行四边形 单元达标测试题(含答案)
第一章特殊平行四边形一、选择题1.已知菱形的边长为,较短的一条对角线的长为,则该菱形较长的一条对角线的长为()A. B. C. D.2.下列说法中不正确的是()A. 四边相等的四边形是菱形B. 对角线垂直的平行四边形是菱形C. 菱形的对角线互相垂直且相等D. 菱形的邻边相等3.一个菱形的边长是方程的一个根,其中一条对角线长为8,则该菱形的面积为()A. 48B. 24C. 24或40D. 48或804.如图,四边形的两条对角线相交于点,且互相平分.添加下列条件,仍不能判定四边形为菱形的是()A. B. C. D.5.对于任意的矩形,下列说法一定正确的是()A. 对角线垂直且相等B. 四边都互相垂直C. 四个角都相等D. 是轴对称图形,但不是中心对称图形6.如图,在平行四边形中,、是上两点,,连接、、、,添加一个条件,使四边形是矩形,这个条件是( )A. B. C. D.7.已知四边形的ABCD中,∠A=∠B=∠C=∠D,则这个四边形是()A. 平行四边形B. 矩形C. 菱形D. 正方形8.如图,矩形ABCD的两条对角线相交于点O,CE垂直平分DO,,则BE等于A. B. C. D. 29.正方形具有而菱形不一定具有的特征是()A. 对角线互相垂直平分B. 内角和为360°C. 对角线相等D. 对角线平分内角10.在四边形中,是对角线、的交点,能判定这个四边形为正方形的是()A. ,B. ,,C. ,,D. ,11.如图,四张大小不一的正方形纸片分别放置于矩形的四个角落,其中,①和②纸片既不重叠也无空隙.在矩形ABCD的周长己知的情况下,知道下列哪个正方形的边长,就可以求得阴影部分的周长()A. ①B. ②C. ③D. ④12.如图,在正方形ABCD中,AB=4,P是线段AD上的动点,PE⊥AC于点E,PF⊥BD于点F,则PE+PF的值为()A. 2B. 4C. 4D. 2二、填空题13.若菱形两条对角线的长分别是6cm和8cm,则其面积为________cm2.14.已知菱形的周长为40cm,两个相邻角度数比为1:2,则较短的对角线长为________,面积为________.15.如图,在菱形ABCD中,若AC=6,BD=8,则菱形ABCD的面积是________.16.如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AH⊥BC于点H,已知BO=4,S菱形ABCD=24,则AH=________.17.如图,要使平行四边形ABCD是矩形,则应添加的条件是________(添加一个条件即可).18.在矩形ABCD中,AB=2,BC=3,若点E为边CD的中点,连接AE,过点B作BF⊥AE于点F,则BF长为________.19.四边形ABCD中,AC⊥BD,顺次连接它的各边中点所得的四边形是________.20.如图,平行四边形ABCD的对角线互相垂直,要使ABCD成为正方形,还需添加的一个条件是________(只需添加一个即可)21.如图,正方形ABCD的边长为1,点E是BC边上一动点(点E不与点B、C重合),以线段DE为边长,作正方形DEFG,使得点F、G落在直线DE的下方,连接AF、BF.当△ABF为等腰三角形时,BE的长为________.22.如图,正方形ABCD,点E,F分别在AD,CD上,BG⊥EF,点G为垂足,AB=5,AE=1,CF=2,则BG=________.三、解答题23.已知:在菱形ABCD中,E,F是BD上的两点,且AE∥CF.求证:四边形AECF是菱形.24.如图,△ABC≌△ABD,点E在边AB上,并且CE∥BD,连接DE.求证:四边形BCED是菱形.25.如图,在矩形ABCD,AD=AE,DF⊥AE于点F.求证:AB=DF.26.如图,菱形ABCD的对角线AC,BD相交于点O,AC=6,BD=8,且DE∥AC,AE∥BD.求OE的长.27.如图,四边形ABCD中,AB∥DC,∠B=90°,F为DC上一点,且AB=FC,E为AD上一点,EC交AF于点G,EA=EG.求证:ED=EC.28.如图,在正方形ABCD中,点E、F在对角线BD上,且BE=EF=FD,连接AF,AE,CE,CF,请你判断四边形AECF的形状,并证明你的结论.29.如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO.(1)已知BD= ,求正方形ABCD的边长;(2)猜想线段CM与CN的数量关系并加以证明.参考答案一、选择题1. C2. C3. B4. C5. C6. A7. B8. A9. C 10. D 11. B 12.A二、填空题13. 24 14. 10cm;50 cm215. 24 16. 17. ∠ABC=90°或AC=BD.18.19.矩形20. ∠ABC=90°或AC=BD 21. 或1- 22.三、解答题23. 证明:∵四边形ABCD是菱形∴AB∥CD,AB=CD,∠ADF=∠CDF,∵AB=CD,∠ADF=∠CDF,DF=DF∴△ADF≌△CDF(SAS)∴AF=CF,∵AB∥CD,AE∥CF∴∠ABE=∠CDF,∠AEF=∠CFE∴∠AEB=∠CFD,∠ABE=∠CDF,AB=CD∴△ABE≌△CDF(AAS)∴AE=CF,且AE∥CF∴四边形AECF是平行四边形又∵AF=CF,∴四边形AECF是菱形24.证明:∵≌,∴,在和中,∴≌,∴,又∵,∴,∴,∴,∴,∴四边形BCED是菱形.25.证明:∵四边形ABCD是矩形,∴AD∥BC,∠B=90°,∴∠AEB=∠DAE.∵DF⊥AE,∴∠AFD=∠B=90°.在△ABE和△DFA中,∵∴△ABE≌△DFA,∴AB=DF26.解:∵四边形ABCD为菱形,∴AC⊥BD,OA= AC=3,OD= BD=4,∴∠AOD=90°,∴AD= = =5.∵DE∥AC,AE∥BD,∴四边形AODE为平行四边形,∴四边形AODE是矩形,∴OE=AD=527.解:证明:∵AB∥DC,FC=AB,∴四边形ABCF是平行四边形.∵∠B=90°,∴四边形ABCF是矩形.∴∠AFC=90°,∴∠D=90°﹣∠DAF,∠ECD=90°﹣∠CGF.∵EA=EG,∴∠EAG=∠EGA.∵∠EGA=∠CGF,∴∠DAF=∠CGF.∴∠D=∠ECD.∴ED=EC28.解:四边形AECF是菱形.∵在正方形ABCD中,AB=AD,∴∠ABE=∠ADF,又∵BE=DF,∴△ABE≌△ADF,∴AE=AF,同理可得,CE=CF,∵在正方形ABCD中,CD=AD,∠CDE=∠ADF,DF=DF,∴△ADF≌△CDF,∴AF=CF,∴AE=AF=CF=CE,∴四边形AECF是菱形.29.(1)解:∵四边形ABCD 是正方形,∴△ABD 是等腰直角三角形,∴2AB2=BD2,∵BD= ,∴AB=1,∴正方形ABCD的边长为1.(2)解:CN= CM.证明如下:∵CF=CA,CE是∠ACF的平分线,∴CE⊥AF,∴∠AEN=∠CBN=90°,∵∠ANE=∠CNB,∴∠BAF=∠BCN,在△ABF 和△CBN 中,∴△ABF≌△CBN(ASA),∴AF=CN,∵∠BAF=∠BCN,∠ACN=∠BCN,∴∠BAF=∠OCM,∵四边形ABCD是正方形,∴AC⊥BD,∴∠ABF=∠COM=90°,∴△ABF~△COM,∴,∴,即CN= CM.。
九年级上册数学北师大版单元测试卷(1-6章)
九年级上册数学北师大版单元测试卷(1-6章)第一章综合能力检测卷时间:90分钟满分:120分一、选择题(本大题共10小题,每题3分,共30分)1.下列命题中正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相垂直平分且相等的四边形是正方形D.一组对边相等,另一组对边平行的四边形是平行四边形2.如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置.若四边形AECF 的面积为25,DE=2,则AE的长为() A.5 B.√23 C.7 D.√29第2题图第3题图第4题图3.矩形ABCD在平面直角坐标系中的位置如图所示,其各顶点的坐标分别为A(0,0),B(2,0),C(2,1),D(0,1),固定点B 并将此矩形按顺时针方向旋转,若旋转后点C的对应点的坐标为(3,0),则旋转后点D的对应点的坐标为()A.(3,2)B.(2,3)C.(3,3)D.(2,2)4.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,BD=6,则AB的长是()A.2B.3C.4D.65.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是()A.矩形B.平行四边形C.对角线相等的四边形D.对角线互相垂直的四边形6.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于点E,F,连接PB,PD.若AE=2,PF=8,则图中阴影部分的面积为() A.10 B.12 C.16 D.18第6题图第7题图7.如图,在给定的一张平行四边形ABCD纸片上作一个菱形,甲、乙两人的作法如下:甲:连接AC,作AC的垂直平分线MN,分别交AD,AC,BC于点M,O,N,连接AN,CM,则四边形ANCM是菱形.乙:分别作∠BAD,∠ABC的平分线AE,BF,分别交BC,AD于点E,F,连接EF,则四边形ABEF是菱形.根据两人的作法可判断()A.甲正确,乙错误B.甲、乙均正确C.乙正确,甲错误D.甲、乙均错误8.如图,在菱形ABCD 中,M ,N 分别在AB ,CD 上,且AM=CN ,MN 与AC 交于点O ,连接BO ,若∠DAC=28°,则∠OBC 的度数为( )A.28°B.52°C.62°D.72°第8题图 第9题图 第10题图 9.如图,点E 在正方形ABCD 的对角线AC 上,且EC=2AE ,Rt △FEG 的两直角边EF ,EG 分别交BC ,DC 于点M ,N.若正方形ABCD 的边长为a ,则重叠部分四边形EMCN 的面积为( ) A.23a2B.14a2C.59a 2D.49a 210.如图,在正方形ABCD 中,点P 是AB 上一动点(点P 不与A ,B 重合),对角线AC ,BD 相交于点O ,过点P 分别作AC ,BD 的垂线,分别交AC ,BD 于点E ,F ,交AD ,BC 于点M ,N.给出下列结论:①△APE ≌△AME ;②PM+PN=BD ;③PE 2+PF 2=PO 2.其中正确的有( )A.0个B.1个C.2个D.3个二、填空题(本大题共6小题,每题3分,共18分)11.已知菱形的周长为20 cm ,两邻角的比为2∶1,则较短的对角线长为 cm .12.如图,在正方形ABCD 中,AC 为对角线,点E 在AB 边上,EF ⊥AC 于点F ,连接EC ,若AF=3,△EFC 的周长为12,则EC 的长为 .第12题图 第13题图 第14题图13.如图,若将四根木条钉成的矩形木框变形为平行四边形ABCD 的形状,并使其面积为矩形面积的一半(木条宽度忽略不计),则这个平行四边形的最小内角的度数为 .14.如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,E 为BC 上一点,CE=5,F 为DE 的中点.若△CEF 的周长为18,则OF 的长为 .15.如图,在矩形ABCD 中,点E ,F 分别在边AB ,BC 上,且AE=13AB.将矩形沿直线EF 折叠,点B 恰好落在AD 边上的点P 处,连接BP 交EF 于点Q.对于下列结论:①EF=2BE ;②PF=2PE ;③FQ=4EQ ;④△PBF 是等边三角形.其中正确结论的序号是 .第15题图第16题图16.如图,菱形ABCD的面积为120 cm2,正方形AECF的面积为50 cm2,则菱形的边长为cm.三、解答题(本大题共6小题,共72分)17.(10分)如图,E,F是正方形ABCD的对角线AC上的两点,且AE=CF.(1)求证:四边形BEDF是菱形;(2)若正方形的边长为4,AE=√2,求菱形BEDF的面积.18.(10分)如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论.19.(12分)已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果BE=BC,且∠CBE∶∠BCE=2∶3.求证:四边形ABCD是正方形.20.(12分)如图1,将矩形ABCD沿DE折叠,使顶点A落在DC上的点A'处.然后将矩形展平,沿EF折叠,使顶点A落在DE上的点G处,再将矩形ABCD沿CE折叠,此时顶点B恰好落在DE上的点H处,如图2所示.(1)求证:EG=CH;(2)已知AF=√2,求AD和AB的长.21.(14分)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于点E,垂足为F,连接CD,BE.(1)求证:CE=AD;(2)当D为AB的中点时,四边形BECD是什么特殊四边形?请说明你的理由;(3)若D为AB的中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.22.(14分)某数学兴趣小组在数学课外活动中,研究三角形和正方形的性质时,做了如下探究:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为;②BC,CD,CF之间的数量关系为.(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2√2,CD=1BC,请求出GE的长.4图1 图2 图3数学·九年级上册·BS第二章综合能力检测卷时间:90分钟满分:120分一、选择题(本大题共10小题,每题3分,共30分)1.下列方程一定是关于x的一元二次方程的是()=0 B.ax2+bx+c=0A.x2+1x2C.(x-1)(x+2)=1D.3x2-2xy-5y2=02.把一元二次方程2x=x2-3化为一般形式,若二次项系数为1,则一次项系数及常数项分别为()A.2,3B.-2,3C.2,-3D.-2,-33.根据关于x的一元二次方程x2+px+q=0,可列表如下:x0 0.5 1 1.1 1.2 1.3x2+px+q-15 -8.75 -2 -0.59 0.84 2.29则方程x2+px+q=0的一个根的范围是() A.1.2<x<1.3 B.1.1<x<1.2C.0.5<x<1D.0<x<0.54.若2x+1与2x-1互为倒数,则实数x为()A.±12B.±1 C.±√22D.±√25.下列方程中,没有实数根的是()A.x2-2x-5=0B.x2-2x=-5C.x2-2x=0D.x2-2x-3=06.下面是某同学在一次试验中解答的填空题,其中答对的是()A.若x2=4,则x=2B.方程x(2x-1)=2x-1的解为x=1C.若关于x的方程x2+2x+k=0有一根为2,则k=8D.若分式x 2-3x+2x-1的值为0,则x=27.某市某楼盘准备以每平方米12 000元的均价对外销售,由于国家有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格进行连续两次下调后,决定以每平方米9 720元的均价开盘销售,则平均每次下调的百分率是()A.8%B.9%C.10%D.11%8.某三角形的两边的长分别为3和6,第三边的长是方程x2-6x+8=0的一个根,则这个三角形的周长为()A.9B.11C.13D.11或139.有两个一元二次方程,M:ax2+bx+c=0;N:cx2+bx+a=0,其中a+c≠0.下列四个结论中,错误的是()A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根B.如果方程M的两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么15是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=110.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“和谐”方程;如果一元二次方程ax2+bx+c=0(a≠0)满足a-b+c=0,那么我们称这个方程为“美好”方程.若一个一元二次方程既是“和谐”方程又是“美好”方程,则下列结论正确的是() A.方程有两个相等的实数根 B.方程有一根等于0C.方程两根之和等于0D.方程两根之积等于0二、填空题(本大题共6小题,每题3分,共18分)11.已知x=a 是方程x 2-3x-5=0的根,则代数式4-2a 2+6a 的值为 . 12.已知实数m ,n 满足m-n 2=1,则代数式2m 2-2n 2+4m-1的最小值是 .13.如果关于x 的一元二次方程(k-2)x 2+2kx+k+3=0有两个不相等的实数根,那么k 的取值范围是 . 14.准备在一块长为30米,宽为24米的长方形花圃内修建四条宽度相等,且与各边垂直的小路,如图所示,四条小路围成的中间部分恰好是一个正方形,且边长是小路宽度的4倍,若四条小路所占面积为80平方米,则小路的宽度为 米.15.将4个数a ,b ,c ,d 排成2行2列,两边各加一条竖直线记成|a c b d |,定义|a c b d |=ad-bc.若|x +11−x x -1x +1|=6,则x= .16.对于实数p ,q ,我们用符号min {p ,q }表示p ,q 两数中较小的数,如min {1,2}=1,min {-√2,-√3}=-√3.若min {(x-1)2,x 2}=1,则x= .三、解答题(本大题共6小题,共72分)17.(10分)解下列方程: (1)2x 2+3x-4=0;(2)(x+1)(x-1)+2(x+3)=20.18.(11分)已知关于x 的一元二次方程x 2-2x-k-2=0有两个不相等的实数根. (1)求k 的取值范围;(2)给k 取一个负整数值,解这个方程.19.(11分)水果店张阿姨以每千克4元的价格购进某种水果若干千克,然后以每千克6元的价格出售,每天可售出150千克,通过调查发现,这种水果每千克的售价每降低0.1元,每天可多售出30千克,为保证每天至少售出360千克,张阿姨决定降价销售.(1)若将这种水果每千克的售价降低x元,则每天的销售量是千克(用含x的代数式表示);(2)销售这种水果要想每天盈利450元,张阿姨需将每千克的售价降低多少元?)=0的20.(12分)在等腰三角形ABC中,三边长分别为a,b,c,其中ɑ=4,若b,c是关于x的方程x2-(2k+1)x+4(k-12两个实数根,求△ABC的周长.21.(14分)某桶装水经营部每天的房租、人员工资等固定成本为250元,每桶水的进价是5元,规定销售单价不得高于12元,也不得低于7元,调查发现日均销售量p(桶)与销售单价x(元)的函数图象如图所示.(1)求日均销售量p(桶)与销售单价x(元)之间的函数关系式;(2)若该经营部希望日均获利1 350元,请你根据以上信息,就该桶装水的销售单价或销售量提出一个用一元二次方程解决的问题,并写出解答过程.22.(14分)如图,在△ABC 中,∠B=90°,AB=5 cm ,BC=7 cm ,点P 从点A 开始沿AB 边向点B 以1 cm/s 的速度匀速移动,点Q 从点B 开始沿BC 边向点C 以2 cm/s 的速度匀速移动. (1)如果P ,Q 分别从A ,B 同时出发,那么几秒后,△PBQ 的面积等于4 cm 2?(2)如果P ,Q 分别从A ,B 同时出发,那么几秒后,PQ 的长度等于2√10 cm ? (3)在(1)中,△PBQ 的面积能否等于7 cm 2?说明理由.数学·九年级上册·BS第三章 综合能力检测卷时间:60分钟满分:100分一、选择题(本大题共8小题,每题3分,共24分)1.小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是( )A.16B.13C.12D.232.小红、小明在玩“剪刀、石头、布”游戏,小红给自己一个规定:一直不出“石头”.小红、小明获胜的概率分别是P 1,P 2,则下列结论正确的是 ( )A.P 1=P 2B.P 1>P 2C.P 1<P 2D.P 1≤P 23.一个不透明的口袋里装有除颜色外都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一个球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1 000次,其中有200次摸到白球,因此小亮估计口袋中的红球有( )A.60个B.50个C.40个 D .30个4.掷一枚质地均匀的正方体骰子,向上一面的点数大于2且小于5的概率为P1,抛两枚质地均匀的硬币,正面均朝上的概率为P2,则下列正确的是()A.P1 <P2B.P1 >P2C.P1 =P2D.不能确定5.如图,用①,②,③表示三张背面完全相同的纸牌,正面分别写有3个不同的条件,小明将这三张纸片背面朝上洗匀后,先随机抽出一张(不放回),再随机抽出一张.抽得的条件能判断四边形ABCD为平行四边形的概率是()A.12 B.13C.23D.346.由两个可以自由转动的转盘,每个转盘被等分成如图所示的几个扇形.游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色,那么下列说法正确的是()A.两个转盘转出蓝色的概率一样大B.如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性变小了C.先转动A转盘再转动B转盘和同时转动两个转盘,游戏者配成紫色的概率不同D.游戏者配成紫色的概率为167.甲、乙两人玩猜数字游戏,游戏规则:有四个数字0,1,2,3,先由甲任意选一个数字,记为m,再由乙猜甲刚才所选的数字,记为n.若m,n满足|m-n|≤1,则称甲、乙两人“心有灵犀”.则甲、乙两人“心有灵犀”的概率为()A.14 B.38C.12D.588.我们把十位上的数字比个位、百位上的数字都要小的三位数定义为“凹数”.如“859”就是一个“凹数”.如果十位上的数字为2,那么从1,3,4,5中任选两个数字,能与2组成“凹数”的概率是()A.14B.310C.12D.34二、填空题(本大题共6小题,每题3分,共18分)9.一次测验中有2道题是选择题,每题均有4个选项且只有1个选项是正确的,若从这2道题中每题都随机选择其中一个选项作为答案,则这2道选择题答案全对的概率为.10.某班学生分组做抛掷同一型号的一枚图钉的试验,大量重复试验的结果统计如下表:(钉尖朝上频率精确到0.001)累计试验次数100 200 300 400 500钉尖朝上的次数55 109 161 211 265钉尖朝上的频率0.550 0.545 0.537 0.528 0.530根据表格中的信息,估计掷一枚这样的图钉落地后钉尖朝上的概率为.(结果精确到0.01)11.某鱼塘里养了200条鲤鱼、若干条草鱼和150条罗非鱼,该鱼塘主人通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5附近.若该鱼塘主人随机在鱼塘捕捞一条鱼,则估计捞到鲤鱼的概率为.12.在如图所示的电路中,随机闭合开关S1,S2,S3中的两个,能让灯泡L1发光的概率是.13.从-2,-1,1,2这四个数中,任取两个不同的数作为一次函数y=kx+b的系数k,b,则一次函数y=kx+b的图象不经过第四象限的概率是.14.如图,创新广场上铺设了一种新颖的石子图案,它由五个过同一点且半径不同的圆组成,其中阴影部分铺黑色石子,其余部分铺白色石子.小鹏在规定地点随机向图案内投掷小球,每个小球都能落在图案内,经过多次试验,发现落在一、三、五环(阴影)内的概率分别是0.04,0.2,0.36.如果最大圆的半径是1 m,那么铺黑色石子区域的总面积为m2.(π≈3.14,结果精确到0.01)三、解答题(本大题共6小题,共58分)15.(8分)某购物广场设计了一种促销活动:在一个不透明的盒子里放有4个相同的小球,球上分别标有“0元” “10元” “20元”和“30元”.顾客每消费满200元,就可以在盒子里摸出两个球,可根据两个球所标金额的和返还同样金额的购物券.某顾客恰好消费了200元,请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.16.(9分)如图1是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字1,2,3,4,图2是一个正六边形棋盘,现通过掷骰子的方式玩跳棋游戏,游戏规则:将这枚骰子掷出后,看骰子底面上的数字是几,图2中点A处的一枚棋子开始沿着顺时针方向连续跳动几个顶点,第二次跳动从第一次跳动的终点处开始,按第一次的方法跳动.图1图2(1)随机掷一次骰子,则棋子跳动到点C处的概率是;(2)随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点C处的概率.17.(9分)从一副52张(没有大小王)的扑克牌中,每次抽出1张,然后放回洗匀再抽,在试验中得到下列表中部分数据:试验次数4080120160200240280320360400出现方块的次数1118404963688091100出现方块的频率0.2750.2250.2500.2500.2450.2630.2430.2530.250(1)将数据表补充完整;(2)从表中可以估计出现方块的概率是.(3)从这副扑克牌中取出两组牌,分别是方块1,2,3和红桃1,2,3,将它们背面朝上分别重新洗牌后,从两组牌中各摸出一张,若摸出的两张牌的牌面数字之和等于3,则甲方赢;若摸出的两张牌的牌面数字之和等于4,则乙方赢.你认为这个游戏对双方是公平的吗?若不是,有利于谁?请你用概率知识(列表或画树状图)分析说明.18.(10分)2017年9月,我国中小学生迎来了新版“教育部统编义务教育语文教科书”,本次“统编本”教材最引人关注的变化之一是强调对传统文化经典著作的阅读.某校对A《三国演义》、B《红楼梦》、C《西游记》、D《水浒传》四大名著开展“最受欢迎的传统文化经典著作”调查,随机调查了若干名学生(每名学生必选且只能选这四大名著中的一部)并将得到的信息绘制了如图所示的两幅不完整的统计图:(1)本次一共调查了名学生;(2)请将条形统计图补充完整;(3)某班语文老师想从这四大名著中随机选取两部作为学生暑期必读书籍,请用画树状图或列表的方法求恰好选中A《三国演义》和B《红楼梦》的概率.19.(10分)在不透明的袋子中有四张标着数字1,2,3,4的卡片(除数字外,其他均相同),小明、小华两人按照各自的规则玩抽卡片游戏.小明画出树状图如图所示:小华列出表格如下:第一次1234第二次1(1,1)(1,2)(1,3)(1,4)2(2,1)(2,2)①(2,4)3(3,1)(3,2)(3,3)(3,4)4(4,1)(4,2)(4,3)(4,4)回答下列问题:(1)根据小明画出的树状图分析,他的游戏规则是随机抽出一张卡片后(填“放回”或“不放回”),再随机抽出一张卡片;(2)根据小华的游戏规则,表格中①表示的有序数对为;(3)规定两次抽到的数字之和为奇数的获胜,你认为小明和小华谁获胜的可能性大?为什么?20.(12分)某校九年级共有6个班,需从中选出两个班参加一项重大活动,九(1)班是先进班集体必须参加,再从另外5个班中选出一个班.九(4)班同学建议用如下方法选班:从装有编号为1,2,3的三个白球的A袋中摸出一个球,再从装有编号也为1,2,3的三个红球的B袋中摸出一个球(两袋中球的大小、形状与质地完全一样),摸出的两个球编号之和是几就由几班参加.(1)请用列表或画树状图的方法,求选到九(4)班的概率;(2)这一建议公平吗?请说明理由.数学·九年级上册·BS第四章综合能力检测卷时间:90分钟满分:120分一、选择题(本大题共10小题,每题3分,共30分)1.已知x y =52,则x -yy的值为 ( )A.32B.2C.-32D.-22.如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ,直线DF 分别交l 1,l 2,l 3于点D ,E ,F ,AC 与DF 相交于点H ,且AH=2,HB=1,BC=5,则DEEF 的值为( )A.12B.2C.25D .35第2题图 第3题图 第4题图3.如图,为估算某河的宽度(河两岸平行),在河对岸选定一个目标点A ,在近岸取点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,点E 在BC 上,并且点A ,E ,D 在同一条直线上,若测得BE=20 m ,CE=10 m ,CD=20 m ,则河的宽度AB 等于 ( ) A.60 m B.40 m C.30 m D.20 m4.如图,以点O 为位似中心,将△ABC 放大得到△DEF.若AD=OA ,则△ABC 与△DEF 的面积之比为 ( ) A.1∶2 B.1∶4 C.1∶5 D .1∶65.如图,四边形ABCD 是平行四边形,点E 在BA 的延长线上,点F 在BC 的延长线上,连接EF ,分别交AD ,CD 于点G ,H ,连接AC ,则下列结论错误的是 ( )A .EA BE =EG EF B .EG GH =AG GD C .AB AE =BCCFD .FH EH =CFAD6.△ABC 如图所示,则下列四个选项中的三角形与△ABC 相似的是(网格均由边长为1的小正方形组成)( )A B C D7.如图,在△ABC 中,∠A=78°,AB=4,AC=6.将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是 ( )A B C D8.如果五边形ABCDE∽五边形PQGMN,且周长之比为3∶2,那么五边形ABCDE和五边形PQGMN的面积之比是() A.2∶3 B.3∶2 C.6∶4 D.9∶4第8题图第9题图第10题图CD,连接AE,AF,EF.给出下列结9.如图所示,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=14论:①∠BAE=30°,②△ABE∽△AEF,③AE⊥EF,④△ADF∽△ECF.其中正确的个数为()A.1B.2C.3D.410.如图所示,在△ABC中,AB=AC=18,BC=12,正方形DEFG的顶点E,F在△ABC内,顶点D,G分别在AB,AC上,AD=AG,DG=6,则点F到BC的距离为()A.1B.2C.12√2-6D.6√2-6二、填空题(本大题共8小题,每题4分,共32分)11.若一个三角形的三边之比为3∶5∶7,与它相似的三角形的最长边的长为21,则最短边的长为.12.如图,在平面直角坐标系中,已知A(1,0),D(3,0),△ABC与△DEF位似,原点O是位似中心,若AB=2,则DE=.第12题图第13题图第14题图13.如图,已知有两堵墙AB,CD,AB墙高2米,两墙之间的距离BC为 8米,小明将一架木梯放在距B点3米的E 处靠向墙AB时,木梯有很多露出墙外.将木梯绕点E旋转90°靠向墙CD时,木梯刚好达到墙的顶端,则墙CD 的高为米.14.如图,已知点C是线段AB的黄金分割点,且BC>AC.若S1表示以BC为边的正方形BCED的面积,S2表示长为AG、宽为AC的矩形ACFG的面积,其中AG=AB.则S1与S2的大小关系为.15.在△ABC中,∠B=25°,AD是BC边上的高,且AD2=BD·DC,则∠BCA的度数为.16.如图,已知AB∥EF∥CD,若AB=6 cm,CD=9 cm,则EF=.第16题图第17题图第18题图17.如图,在矩形ABCD中,AD=2,AB=5,P为CD边上的动点,当△ADP与△BCP相似时,DP=.18.如图,正三角形ABC的边长为2,以BC边上的高AB1为边作正三角形AB1C1,△ABC与△AB1C1公共部分的面积记为S1,再以正三角形AB1C1边B1C1上的高AB2为边作正三角形AB2C2,△AB1C1与△AB2C2公共部分的面积记为S2……以此类推,则S n=.(用含n的式子表示,n为正整数)三、解答题(本大题共5小题,共58分)19.(10分)如图,在四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,连接CE,DE,AC与DE相交于点F.(1)求证:△ADF∽△CEF;的值.(2)若AD=4,AB=6,求ACAF20.(10分)如图,在6×6的正方形网格中,每个小正方形的边长都为1.(顶点都在网格线交点处的三角形叫做格点三角形)(1)在图1中,请判断△ABC与△DEF是否相似,并说明理由;(2)在图2中,以O为位似中心,再画一个格点三角形,使它与△ABC的相似比为2∶1;(3)在图3中,请画出所有与△ABC相似,且有一条公共边和一个公共角的格点三角形.图1图2图321.(12分)如图,在△ABC中,BA=BC=20 cm,AC=30 cm,点P从点A出发,沿着AB边以4 cm/s的速度向点B运动;同时点Q从点C出发,沿CA边以3 cm/s的速度向点A运动,当点P到达点B时停止运动,Q点随之停止运动.设运动的时间为x s.(1)当x为何值时,PQ∥BC?(2)△APQ与△CQB能否相似?若能,求出AP的长;若不能,请说明理由.22.(12分)雯雯和笑笑想利用皮尺和所学的几何知识测量学校操场上旗杆的高度,他们的测量方案如下:当雯雯站在旗杆正前方地面上的点D处时,笑笑在地面上找到一点G,使得点G、雯雯的头顶C及旗杆的顶部A三点在同一直线上,并测得DG=2.8 m;然后雯雯向前移动1.5 m到达点F处,笑笑同样在地面上找到一点H,使得点H、雯雯的头顶E及旗杆的顶部A三点在同一直线上,并测得GH=1.7 m.已知图中的所有点均在同一平面内,且点B,D,F,G,H均在同一直线上,AB⊥BH,CD⊥BH,EF⊥BH,雯雯的身高CD=EF=1.6 m.请你根据以上测量数据,求该校旗杆的高度AB.23.(14分)如图1所示,在等边三角形ABC中,线段AD为其内角平分线,过点D的直线B1C1⊥AC于点C1,交AB的延长线于点B1.(1)请你探究:ACAB =CDDB,AC1AB1=DC1DB1是否都成立?(2)请你继续探究:若△ABC为任意三角形,线段AD为其内角平分线,ACAB =CDDB一定成立吗?并证明你的判断.(3)如图2所示,在Rt△ABC中,∠ACB=90°,AC=8,AB=403,E为AB上一点且AE=5,CE交内角平分线AD于点F.试求DFFA的值.图1图2数学·九年级上册·BS第五章综合能力检测卷时间:60分钟满分:100分一、选择题(本大题共10小题,每题3分,共30分)1.下列几何体中,主视图是矩形的是()2.一个立体图形的三视图如图所示,则该立体图形是()A.圆锥B.圆柱C.长方体D.球3.下列图中是太阳光下形成的影子的是()4.如图,位似图形由三角板与其在灯光照射下的中心投影组成,已知灯到三角板的距离与灯到墙的距离的比为2∶5,且三角板的一边长为8 cm,则投影三角形的对应边长为()A.20 cmB.10 cmC.8 cmD.3.2cm5.如图是一根空心方管,在研究物体的三种视图时,小明画出的该空心方管的主视图与俯视图分别是()A.(1)(3)B.(1)(4)C.(2)(3)D.(2)(4)第5题图第6题图6.如图1为五角大楼的示意图,图2是它的俯视图,小红站在地面上观察这个大楼,若想看到大楼的两个侧面,则小红应站的区域是()A.A区域B.B区域C.C区域D.三区域都可以7.如图是某几何体的三种视图,则该几何体可以是()8.如图是由6个大小相同的小立方块组成的几何体,将小立方块①移走以后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图改变C.俯视图改变,左视图改变D.主视图改变,左视图不变第8题图第9题图第10题图9.如图,该直三棱柱的底面是一个直角三角形,且AD=2 cm,DE=4 cm,EF=3 cm,则下列说法正确的是()A.直三棱柱的体积为12 cm3B.直三棱柱的表面积为24 cm2C.直三棱柱的主视图的面积为11 cm2D.直三棱柱的左视图的面积为8 cm210.已知某几何体的三种视图如图所示,其中左视图是一个等边三角形,则该几何体的体积等于() (参考公式:棱锥的体积V=1Sh,其中S为棱锥的底面积,h为底面对应的高)3A.12√3B.16√3C.20√3D.32√3二、填空题(本大题共6小题,每题3分,共18分)11.如图是一个球吊在空中,当发光的手电筒由远及近时,落在竖直墙面上的球的影子会.(填“逐渐变大”“逐渐变小”)第11题图第12题图第13题图12.一张桌子上摆放了若干个碟子,从三个方向看,三种视图如图所示,则这张桌子上共有碟子个.13.如图,在A时测得某树的影长为4米,在B时测得该树的影长为9米,若两次日照的光线互相垂直,则该树的高度为米.14.如图是一个由若干个相同的小立方块搭成的几何体的主视图与左视图,那么下列图形中可以作为该几何体的俯视图的序号是.15.如图是一个正六棱柱的主视图和左视图,则图中的a的值为.16.圆桌面(桌面中间有一个直径为0.4 m的圆洞)正上方的灯泡(看作一个点)发出的光线照射到平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为1.2 m,桌面离地面1 m,若灯泡离地面3 m,则地面圆环形阴影的面积是m2.三、解答题(本大题共 5小题,共52分)17.(8分)如图所示为一直三棱柱的主视图和左视图.。
2020-2021学年北师大版九年级上册第1章《特殊的平行四边形》单元测试卷 (解析版)
北师大版2020年九年级上册第1章《特殊的平行四边形》单元测试卷满分:120分姓名:___________班级:___________考号:___________题号一二三总分得分一.选择题(共10小题,满分30分,每小题3分)1.菱形具有而一般矩形不具有的性质是()A.对边相等B.对角线相等C.对角线互相平分D.对角线互相垂直2.要判断一个四边形门框是否为矩形,在下面四个拟定方案中,正确的方案是()A.测量对角线是否相互平分B.测量两组对边是否分别相等C.测量对角线是否互相垂直D.测量其中三个角是否是直角3.已知平行四边形ABCD的对角线相交于点O,补充下列四个条件,能使平行四边形ABCD 成为菱形的是()A.AB=BD B.AC=BD C.∠DAB=90°D.∠AOB=90°4.四边形ABCD是菱形,对角线AC,BD相交于点O,且∠ACD=30°,BD=2,则菱形ABCD的面积为()A.2B.4C.4D.85.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,S菱形ABCD=48,则OH的长为()A.4B.8C.D.66.E为正方形ABCD内一点,且△EBC是等边三角形,求∠AEB的度数是()A.55°B.60°C.65°D.75°7.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DE⊥AB于点E,若AC=8cm,BD=6cm,则DE=()A.5cm B.2cm C.cm D.cm8.在长方形MNPQ中,三点的坐标分别是M(0,0),N(4,0),P(4,2),则Q点的坐标为()A.(2,0)B.(0,2)C.(0,4)D.(4,0)9.如图,四边形ABCD、EFGH、NHMC都是正方形,边长分别为a,b,c;A,B,N,E,F五点在同一直线上,则c=()A.a+b B.C.D.a2+b210.矩形ABCD中,AD=3,AB=9,点E、F同时分别从点A、C出发沿AB、CD方向以每秒1个单位的速度运动,当四边形EBFD为菱形时,两点运动的时间为()A.4秒B.5秒C.6秒D.6秒二.填空题(共6小题,满分24分,每小题4分)11.矩形、菱形和正方形的对角线都具有的性质是.12.已知菱形ABCD的周长为12,则边BC=.13.如图,▱ABCD中,对角线AC,BD相交于点O,且AC⊥BD,请你添加一个适当的条件,使ABCD成为正方形.14.如图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC,DE垂直于横梁AC,AB=8m,∠ABC=60°,则DE=m.15.如图所示,在菱形OABC中,点B在x轴上,点A的坐标为(6,10),则点C的坐标为.16.如图,在Rt△CDE中,∠DCE=90°,分别以CD,DE为边在Rt△CDE外部作正方形ABCD和正方形DEFG,若S△ADG=,S正方形ABCD=6,则S正方形DEFG=.三.解答题(共8小题,满分66分)17.(7分)如图,在矩形ABCD中,AD=6,DC=8,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,DA上,AH=2,DG=2.求证:四边形EFGH为正方形.18.(7分)如图,在平行四边形ABCD中,E、F分别是AB,CD边上的点,且∠ADE=∠CBF.当BD⊥EF时,求证:四边形EBFD是菱形.19.(8分)如图,在正方形ABCD中,AE,DF相交于点O且AF=BE.(1)求证:∠BAE=∠ADF;(2)若∠BAE=30°,AF=2,求OD的长.20.(8分)如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,菱形ABCD的周长是4,求菱形ABCD的面积.21.(8分)如图,在矩形ABCD中,直线l经过对角线AC的中点O(直线l不与线段AC 重合),与AB、CD交于点E、F.(1)求证:BE=DF;(2)当直线l⊥AC时,若AD=4,AB=6,求CF的长.22.(8分)如图(1),正方形ABCD的对角线AC,BD相交于点O,E是AC上一点,连结EB,过点A作AM⊥BE,垂足为M,AM与BD相交于点F.(1)求证:OE=OF;(2)如图(2)若点E在AC的延长线上,AM⊥BE于点M,AM交DB的延长线于点F,其他条件不变,结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.23.(10分)如图,在矩形ABCD中,AB=3cm,BC=6cm.点P从点D出发向点A运动,运动到点A即停止;同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q 的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.24.(10分)已知正方形ABCD,点F是射线DC上一动点(不与C、D重合).连接AF并延长交直线BC于点E,交BD于H,连接CH.在EF上取一点G,使∠ECG=∠DAH.(1)若点F在边CD上,如图1,①求证:CH⊥CG.②求证:△GFC是等腰三角形.(2)取DF中点M,连接MG.若MG=3,正方形边长为4,则BE=.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:菱形具有的性质:四边相等,对边平行,对角相等,邻角互补,对角线互相垂直平分,每一条对角线平分一组对角;矩形具有的性质:四个角都是直角,对边平行且相等,对角线互相平分且相等.∴菱形具有而一般矩形不具有的性质是对角线互相垂直;故选:D.2.解:∵三个角是直角的四边形是矩形,∴在下面四个拟定方案中,正确的方案是D,故选:D.3.解:A、AB=BD,不能判定平行四边形ABCD是菱形,故选项A不符合题意;B、AC=BD,则平行四边形ABCD是矩形,不一定是菱形,故选项B不符合题意;C、∠DAB=90°,则平行四边形ABCD是矩形,不一定是菱形,故选项B不符合题意;D、∠AOB=90°,则AC⊥BD,∴平行四边形ABCD是菱形,故选项D符合题意;故选:D.4.解:∵四边形ABCD是菱形,∴OA=OC=AC,OB=OD=BD=1,AC⊥BD,在Rt△OCD中,∵∠ACD=30°,∴CD=2OD=2,∴OC===,∴AC=2OC=2,∴菱形ABCD的面积=AC•BD=×2×2=2.故选:A.5.解:∵四边形ABCD是菱形,∴OA=OC=6,OB=OD,AC⊥BD,∴AC=12,∵DH⊥AB,∴∠BHD=90°,∴OH=BD,∵菱形ABCD的面积=×AC×BD=×12×BD=48,∴BD=8,∴OH=BD=4;故选:A.6.解:∵E为正方形ABCD内一点,且△EDC是等边三角形,∴∠ABC=∠BAD=90°,∠EBC=60°,AB=BE=BC,∴∠ABE=∠ABC﹣∠EBC=30°,∴∠AEB=∠BAE=(180°﹣30°)=75°,故选:D.7.解:∵四边形ABCD是菱形,AC=8cm,BD=6cm,∴S菱形ABCD=AC•BD=×6×8=24,∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=4cm,OB=OD=3cm,∴在直角三角形AOB中,AB===5cm,∴DH==cm.故选:C.8.解:如图,根据图形易知Q点的坐标是(0,2).故选:B.9.解:∵四边形ABCD、EFGH、NHMC都是正方形,∴∠CNH=90°,BC=a,NE=c,HE=b.∵∠BCN+∠CNB=90°,∠CNB+∠HNE=90°,∴∠BCN=HNE.又∵∠CBN=∠HEN=90°,CN=NH=c∴△CBN≌△NEH.∴NE=CB=a.在Rt△NEH中,∵NH=,∴c=.故选:C.10.解:设t秒时四边形EBFD为菱形,此时DE=DF=FB=BE,则AE=t,DF=9﹣t,根据勾股定理得:32+t2=(9﹣t)2,解得:t=4,故选:A.二.填空题(共6小题,满分24分,每小题4分)11.解:因为矩形的对角线互相平分且相等,菱形的对角线互相平分且垂直且平分每一组对角,正方形的对角线具有矩形和菱形所有的性质,所有矩形、菱形和正方形的对角线都具有的性质是对角线互相平分.故答案为:对角线互相平分.12.解:∵菱形ABCD的周长为12,∴AB=BC=CD=AD=3;故答案为:3.13.解:∵▱ABCD的对角线AC与BD相交于点O,且AC⊥BD,∴▱ABCD是菱形,当∠BAD=90°时,▱ABCD为正方形.故答案为:∠BAD=90°.14.解:∵立柱BC、DE垂直于横梁AC,∴BC∥DE,∴AE:CE=AD:BD,∵D是AB中点,∴AD=BD,∴AE=CE,∴DE是△ABC的中位线,∴DE=BC,在Rt△ABC中,BC=AB=4,∴DE=2.故答案为:2.15.解:∵四边形OABC是菱形,∴A、C关于直线OB对称,∵A(6,10),∴C(6,﹣10),故答案为:(6,﹣10).16.解:如图所示,过G作GH⊥AD,交AD的延长线于H,则∠H=90°,又∵∠DCE=90°,∴∠H=∠DCE,∵四边形ABCD和四边形DEFG是正方形,∴∠ADC=∠CDH=∠EDG=90°,DG=DE,∴∠GDH=∠EDC,∴△DGH≌△DEC(AAS),∴GH=CE,∵S正方形ABCD=6,∴CD=,∵S△ADG=,∴AD×GH=,又∵AD=CD,∴CD×CE=,即×CE=,∴CE=2,∴Rt△CDE中,DE===,∴S正方形DEFG=DE2=10,故答案为:10.三.解答题(共8小题,满分66分)17.解:∵四边形ABCD为矩形,四边形HEFG为菱形,∴∠D=∠A=90°,HG=HE,又AH=DG=2,∴Rt△AHE≌Rt△DGH(HL),∴∠DHG=∠HEA,∵∠AHE+∠HEA=90°,∴∠AHE+∠DHG=90°,∴∠EHG=90°,∴四边形HEFG为正方形.18.证明:∵四边形ABCD是平行四边形,∴AD=CB,∠A=∠C,AB∥CD,AB=CD,在△ADE和△CBF中,,∴△ADE≌△CBF(ASA),∴AE=CF,∴AB﹣AE=CD﹣CF,即BE=DF,又∵BE∥DF,∴四边形EBFD是平行四边形,∵BD⊥EF,∴四边形EBFD是菱形.19.(1)证明:∵四边形ABCD是正方形,∴∠B=∠DAB=90°,AB=AD,又∵AF=BE,在△ABE与△DAF中,∴△ABE≌△DAF(SAS),∴∠BAE=∠ADF;(2)解:∵△ABE≌△DAF,∴∠BAE=∠ODA,∴∠DAO+∠ODA=90°,∴∠AOD=90°,∵∠BAE=30°,AF=2,∴OF=AF=1,DF=2AF=4,∴OD=DF﹣OF=3.20.(1)证明:∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE∥OD,DE∥OC,∴四边形OCED是平行四边形,又∠COD=90°,∴平行四边形OCED是矩形;(2)由(1)知,平行四边形OCED是矩形,∵四边形ABCD是菱形,∴AB=AD=CD=BC,∵菱形ABCD的周长是4,∴CD=,∴OC==2,∴AC=2OC=4,BD=2OD=2,∴菱形ABCD的面积为:AC•BD=×4×2=4.21.(1)证明:∵四边形ABCD是矩形,∴AB∥CD,AB=CD,∴∠EAO=∠FCO,∵对角线AC的中点为O,∴OA=OC,在△AEO和△CFO中,,∴△AEO≌△CFO(ASA),∴EA=FC,∴AB﹣AE=CD﹣CF,∴BE=DF;(2)解:连接AF、CE,如图所示:∵EA=FC,EA∥FC,∴四边形AFCE为平行四边形,∵EF⊥AC,∴▱AFCE为菱形,∴AF=CF,设AF=CF=x,∵四边形ABCD是矩形,∴∠D=90°,在Rt△ADF中,由勾股定理得:x2=42+(6﹣x)2,解得:x=,即CF=.22.解:(1)∵四边形ABCD是正方形.∴∠BOE=∠AOF=90°,OB=OA.又∵AM⊥BE,∴∠MEA+∠MAE=90°=∠AFO+∠MAE,∴∠MEA=∠AFO.在△BOE和△AOF中,∵,∴△BOE≌△AOF.∴OE=OF.(2)OE=OF成立.∵四边形ABCD是正方形,∴∠BOE=∠AOF=90°,OB=OA.又∵AM⊥BE,∴∠F+∠MBF=90°,∠E+∠OBE=90°,又∵∠MBF=∠OBE,∴∠F=∠E.在△BOE和△AOF中,∵,∴△BOE≌△AOF.∴OE=OF.23.解:(1)由已知可得,BQ=DP=t,AP=CQ=6﹣t 在矩形ABCD中,∠B=90°,AD∥BC,当BQ=AP时,四边形ABQP为矩形,∴t=6﹣t,得t=3故当t=3s时,四边形ABQP为矩形.(2)由(1)可知,四边形AQCP为平行四边形∴当AQ=CQ时,四边形AQCP为菱形即时,四边形AQCP为菱形,解得t=,故当t=s时,四边形AQCP为菱形.(3)当t=时,AQ=,CQ=,则周长为:4AQ=4×=15cm面积为:.24.(1)①证明:∵四边形ABCD是正方形,∴∠ADB=∠CDB=45°,DA=DC,在△DAH和△DCH中,,∴△DAH≌△DCH(SAS),∴∠DAH=∠DCH.∵∠ECG=∠DAH,∴∠ECG=∠DCH.∵∠ECG+∠FCG=∠FCE=90°,∴∠DCH+∠FCG=90°,∴CH⊥CG;②∵在Rt△ADF中,∠DF A+∠DAF=90°,由①得∠DCH+∠FCG=90°,∠DAH=∠DCH;∴∠DF A=∠FCG,又∵∠DF A=∠CFG,∴∠CFG=∠FCG,∴GF=GC,∴△GFC是等腰三角形;(2))①如图,当点F在线段CD上时,连接DE.∵∠GFC=∠GCF,∠GEC+∠GFC=90°,∠GCF+∠GCE=90°,∴∠GCE=∠GEC,∴EG=GC=FG,∵FG=GE,FM=MD,∴DE=2MG=6,在Rt△DCE中,CE===2,∴BE=BC+CE=4+2.②如图,当点F在线段DC的延长线上时,连接DE.同法可知GM是△DEC的中位线,∴DE=2GM=6,在Rt△DCE中,CE===2,∴BE=BC﹣CE=4﹣3=1.综上所述,BE的长为4+或1.。
北师大版数学九年级上册课本答案
北师大版数学九年级上册课本答案【篇一:北师版九年级数学上册第一章测试卷(含答案)】卷满分120分考试时间120分钟)一、选择题(共10小题,每小题3分,计30分)1、下列各组图形中,是全等三角形的一组是()a.底边长都为15cm的两个等腰三角形b.腰长都为15cm的两个等腰三角形d.边长为12cm的两个等边三角形2、等腰三角形的周长为13,其中一边长为3,则该等腰三角形的底边长为()a.7b.3c.7或3d.53、一个三角形如果有两边的垂直平分线的交点在第三边上,那么这个三角形是()a.等腰三角形b.等边三角形c.直角三角形d.等腰直角三角形4、用反证法证明命题“一个三角形中不能有两个角是直角”,应先假设这个三角形中()a.有两个角是直角b.有两个角是钝角c.有两个角是锐角d.一个角是钝角,一个角是直角6、如图1-2,在一次强台风中一棵大树在离地面5m处折断倒下,倒a.10mb.15mc.25md.30mcba d 图1-1图1-27、下列命题①对顶角相等②如果三角形中有一个角是钝角,那么另外两个角是锐角③若两直线平行,则内错角相等④三边都相等的三角形是等边三角形。
其中逆命题正确的有()a.①③b.②④c.①②d.③④8、如图1-3(1)在△abc中,d、e分别是ab,ac的中点,将△ade沿线段de向下折叠,得到图形1-3(2),下列关于图(2)的四个结论中,一定不成立的是()c.△dba是等腰三角形d.de∥bce c 图1-3 b c (2)(1) aa.1b.2c.3d.4be aa c图1-4图1-5二、填空题(共6小题,每小题3分,计18分)11、已知三条不同的直线a,b,c在同一平面内,下列四个命题:①如果③如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c 其中属于真命题的是(填写所有真命题的序号)12、一个三角形三边之比为2:5:3,这个三角形的形状是13、把“同角的余交相等”改写成“如果??,那么??”的形式为cd=3,则ab的长度为15、如图1-7,p是正方形abcd内一点,将△abp绕点b顺时针方向旋转能与△cbp?重合,若pb=3,则pp?的长度为a p dbd b cc n c a b ?图1-6 图1-7图1-8三、解答题(共6小题,计72分,解答应写过程)ad图1-918、(10分)已知:如图1-10,de为△abc的边ab的垂直平分线,m d cd为△abc的外角平分线,与de交于点d,dm⊥bc的延长线于点m,dn⊥ac于点n,求证:an=bm。
九上数学北师大版第一章测试卷
九上数学北师大版第一章测试卷一、选择题(每题3分,共30分)1. 下列方程中,是关于x的一元二次方程的是()A. ax^2+bx + c = 0B. x^2+(1)/(x^2)=0C. x^2-x - 2 = 0D. 3x - 2y = 52. 一元二次方程x^2-6x - 5 = 0配方后可变形为()A. (x - 3)^2=14B. (x - 3)^2=4C. (x + 3)^2=14D. (x + 3)^2=43. 方程x^2=x的解是()A. x = 1B. x = 0C. x_1=1,x_2=0D. x_1=-1,x_2=04. 关于x的一元二次方程(m - 1)x^2+5x + m^2-3m + 2 = 0的常数项为0,则m等于()A. 1B. 2C. 1或2D. 05. 若关于x的一元二次方程x^2+kx + 4k^2-3 = 0的两个实数根x_1,x_2满足x_1+x_2=x_1x_2,则k的值为()A. -1或(3)/(4)B. -1C. (3)/(4)D. 不存在。
6. 已知一元二次方程x^2-3x - 2 = 0的两个实数根为x_1,x_2,则(x_1-1)(x_2-1)的值是()A. -4B. -2C. 0D. 27. 对于一元二次方程ax^2+bx + c = 0(a≠0),下列说法:若a + c = 0,方程ax^2+bx + c = 0必有实数根;若b^2+4ac<0,则方程ax^2+bx + c = 0一定有实数根;若a - b + c = 0,则方程ax^2+bx + c = 0一定有一个根为-1;④若方程ax^2+bx + c = 0有两个实数根,则方程cx^2+bx + a = 0一定有两个实数根。
其中正确的是()A.B.C.D. ④.8. 若方程(m - 2)x^2-√(3 - m)x+(1)/(4)=0有两个实数根,则m的取值范围是()A. m≤slant(5)/(2)且m≠2B. m>(5)/(2)C. m≤slant3且m≠2D. m≤slant39. 某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是()A. (3 + x)(4 - 0.5x)=15B. (x + 3)(4 + 0.5x)=15C. (x + 4)(3 - 0.5x)=15D. (x + 1)(4 - 0.5x)=1510. 已知关于x的方程x^2+(2k + 1)x + k^2-2 = 0的两个实数根的平方和为11,则k的值为()A. -3或1B. -3C. 1D. 3二、填空题(每题3分,共15分)11. 一元二次方程(x + 1)(x - 2)=x + 1的解是______。
北师大九数学一单元测试题附标准答案
九年级(上)单元测试卷第一章证明(二)(时间90分钟满分120分)一、选择题(每小题3分,共30分)1、两个直角三角形全等地条件是()A、一锐角对应相等B、两锐角对应相等C、一条边对应相等D、两条边对应相等2、如图,由∠1=∠2,BC=DC,AC=EC,得△ABC≌△EDC地根据是()A、SASB、ASAC、AASD、SSS3、等腰三角形底边长为7,一腰上地中线把其周长分成两部分地差为3,则腰长是()A、4B、10C、4或10D、以上答案都不对4、如图,EA⊥AB,BC⊥AB,EA=AB=2BC,D为AB中点,有以下结论:(1)DE=AC;(2)DE⊥AC;(3)∠CAB=30°;(4)∠EAF=∠ADE.其中结论正确地是()A、(1),(3)B、(2),(3)C、(3),(4)D、(1),(2),(4)5、如图,△ABC中,∠ACB=90°,BA地垂直平分线交CB边于D,若AB=10,AC=5,则图中等于60°地角地个数为()A、2B、3C、4D、5(第2题图)(第4题图)(第5题图)6、设M表示直角三角形,N表示等腰三角形,P表示等边三角形,Q表示等腰直角三角形,则下列四个图中,能表示他们之间关系地是()7、如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB地周长为()A、4cmB、6cmC、8 cmD、10cm8、如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A地度数为()A、30°B、36°C、45°D、70°9、如图,已知AC平分∠PAQ,点B,B′分别在边AP,AQ上,如果添加一个条件,即可推出AB=AB′,那么该条件不可以是()A、BB′⊥ACB、BC=B′CC、∠ACB=∠ACB′D、∠ABC=∠AB′C(第7题图) (第8题图)(第9题图)(第10题图)10、如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,若BF=AC,则ABC地大小是()A、40°B、45°C、50°D、60°二、填空题(每小题3分,共15分)11、如果等腰三角形地一个底角是80°,那么顶角是度.12、如图,点F、C在线段BE上,且∠1=∠2,BC=EF,若要使△ABC≌△DEF,则还须补充一个条件.(第12题图)(第13题图)(第15题图)13、如图,点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC.若∠B=20°,则∠C=°.14、在△ABC中,AB=5cm,BC=6cm,BC边上地中线AD=4cm,则∠ADC地度数是度.15、如图,在Rt△ABC中,∠B=90°,∠A=40°,AC地垂直平分线MN与AB交于D点,则∠BCD地度数为.三、解答题:(共75分,其中16、17题每题6分;18、19题每题7分;20、21题每题8分;22题10分,23题11分,24题12分)16、已知:如图,∠A=∠D=90°,AC=BD.求证:OB=OC17、已知:如图,P、Q是△ABC边BC上两点,且BP=PQ=QC=AP=AQ,求∠BAC地度数.18、已知:如图,等腰梯形ABCD中,AD∥BC,AB=CD,点E为梯形外一点,且AE=DE.求证:BE=CE.19、已知D是Rt△ABC斜边AC地中点,DE⊥AC交BC于E,且∠EAB∶∠BAC=2∶5,求∠ACB地度数.20、已知:如图,AB=AC,CE⊥AB于E,BD⊥AC于D,求证:BD=CE.21、已知:如图,在等边三角形ABC地AC边上取中点D,BC地延长线上取一点E,使CE =CD.求证:BD=DE.22、(10分)已知:如图,在等边三角形ABC 中,D 、E 分别为BC 、AC 上地点,且AE =CD ,连结AD 、BE 交于点P ,作BQ ⊥AD ,垂足为Q .求证:BP =2PQ .23、(11分)阅读下题及其证明过程:已知:如图,D 是△ABC 中BC 边上一点,EB=EC ,∠ABE=∠ACE ,求证:∠BAE=∠CAE.证明:在△AEB 和△AEC 中,⎪⎩⎪⎨⎧=∠=∠=AE AE ACE ABE EC EB∴△AEB ≌△AEC(第一步)∴∠BAE=∠CAE(第二步)问:上面证明过程是否正确?若正确,请写出每一步推理根据;若不正确,请指出错在哪一步?并写出你认为正确地推理过程.24、(12分)如图1,点C 为线段AB 上一点,△ACM , △CBN 是等边三角形,直线AN ,MC 交于点E,直线BM 、CN 交与F 点.(1)求证:AN=BM ;(2)求证: △CEF 为等边三角形;(3)将△ACM 绕点C 按逆时针方向旋转900,其他条件不变,在图2中补出符合要求地图形,并判断第(1)、(2)两小题地结论是否仍然成立(不要求证明)汇智教育九年级第一单元证明(二)测试卷答案一.选择题1.D 2.A 3.C 4.D 5.C 6.A 7.B 8.B 9.B 10.B 二 填空题11.2012.∠B=∠E 或∠A=∠D 或 AC=FD13.2014.9015.100三.解答题16:在⎪⎩⎪⎨⎧==∠=∠=BD AC 90D A BC BC 0DCB Rt ABC t ∆≅∆∴RDBC ACB ∠=∠∴OC OB =17:在中Q AB ∆BQ 21PQ BP AP === 090BAQ =∠∴ 又AQ PQ AP == QCA QAC 260AQP 0∠=∠==∠∴030QAC =∠∴0120BAC =∠∴18:中梯形ABCD CD AB =CDA B AD ∠=∠∴又EDA EA D DE A E ∠=∠∴=EDC B AE ∠=∠∴在中和ACE ABE ∆∆⎪⎩⎪⎨⎧=∠=∠=DE AE CDE BAE DC ABCDE B AE ∆≅∆∴CE B E =∴19:解:设3x EAC 2x EAB =∠=∠则CD AD AC ED =⊥且EC EA =∴x 3ECA EAD =∠=∠0090C BAC 90ABC =∠+∠∴=∠即090x 3x 5=+05.12x =则05.37x 3==∠ACB20::解 E AB CE 于点⊥090ADB AEC DAC BD =∠=∠∴⊥于点中和在AEC ABD ∆∆⎪⎩⎪⎨⎧∠=∠∠=∠=AEC ADB A A AC ABCEBD AEC ABD =∴∆≅∆∴ 21:证明:是等边三角形ABC ∆ 的中点是AC DDEBD 30E CECD 60ACB 30DBA 0=∴=∠∴==∠=∠∴22:证明:AC AB = CD AE =060ACD BAE =∠=∠ B AE ACD ∆≅∆∴B AE CAD ∠=∠∴060BPD =∠∴030PBD =∠2PQBP BP 21PQ ==∴原式得证 23:错误 由边边角得不出三角形全等正确地过程为 :EC B E = ECB EB C ∠=∠∴ECA EBA ∠=∠ 又ACB AB C ∠=∠∴AC AB =CAEBAE AEC AEB CE BE ACBABC AC AB ∠=∠∴∆≅∆∴⎪⎩⎪⎨⎧=∠=∠=24:(1) 易证CAN CMB ∆≅∆ 则 B M AN =(2)证明:CAN CMB ∆≅∆由060FCB MCN MBCANC =∠=∠∴∠=∠∴CN B C =是等边三角形又ECF 60ECF CFCE FCBECN CFCE FCBECN 0∆∴=∠=∴∆≅∆∴=∴∆≅∆版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.TIrRG 。
北师大版初三上学期数学第二单元测试卷
北师大版初三上学期数学第二单元测试卷初中时期关于学生们来说也是十分重要的一个时期,对每个学生来说尤为重要,下文为大伙儿预备了初三上学期数学第二单元测试题,供大伙儿参考。
1 两个数的差等于4,积等于45,求这两个数2.解下列方程X(X-14)=0 X平方=X+56X(5X+4)=5X+4 4X平方-45=31X-3X平方+22X-24=O (X+1)平方-3(X+1)= -12(3X+2)(X+3)=X+143.解下列方程2(X+3)平方-X(X+1)+2=0 X平方-2根号5X+2=0(X+1)平方-3(X+1)+2=04.(1) 当X为何值时,代数式X平方-13X+12的值等于0?(2) 当X为何值时,代数式X平方-13X+12的值等于42?(3)当X为何值时,代数式X平方-13X+12的值与代数式-4X平方+18的值相等?5 某公司前年缴税40万元,今年缴税18.4万元,该公式缴税的年平均增长率为多少?6.(差不多有答案了)7.一块正方形草地的长和宽分别为20M个15M,在它四周外围绕着宽度相等的小路。
已知小路面积为246平方。
求小路的宽度8.某剧场共有1161个座位,已知每行的座位数都相同,且每行的座位数比总行数少16.求每行的座位数答案1)设小数是a,则大数是(a+4)a(a+4)=45a2+4a-45=0a2+4a+4=49(a+2)2=72a+2=7或a+2=-7解得a=5,a=-9因此这两个数是5,9或-5,-92)①x2-14x=0x2=14xx1=14÷1=14x2=0x2-x-56=0(x-8)(x+7)=0x=8,x=-7x(5x+4)=5x+4x(5x+4)-(5x+4)=0(5x+4)(x-1)=0x1=-4/5 x2=14x平方—45=31x4x2-31x-45=0(4x+5)(x-9)=0因此x=-5/4或93x的平方-22x+24=0(3x-4)(x-6)=0x1=4/3,x2=6x的平方+2x+1-3X-3+12=0x的平方-x+(1/2)的平方-(1/2)的平方+10=0 (x-1/2)的平方=-10+1/4平方无负数,X无解3x+2)(x+3)=x+143x^2+11x+6-x-14=03x^2+10x-8=0(3x-2)(x+4)=0因此x=2/3 或x=-43就略过了吧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级(上)数学单元测试卷
第一章 证明(二)
一、选择题(每小题3分,共30分)
1、如图,△ABC ≌△AEF ,AB =AE ,∠B =∠E ,则对于结论①AC =AF .②∠FAB =∠EAB ,③EF =BC ,④∠EAB =∠FAC ,其中正确结论的个数是( )
A.1个
B.2个
C.3个
D.4个
2、已知等腰三角形的一个角为75°,则其顶角为( )
A.36°
B.45°
C.60°
D.72°
3、如图,以点A 和点B 为两个顶点作位置不同的等腰直角三角形,一共可以作出( )
A.2个
B.4个
C.6个
D.8个
4、等腰直角三角形的斜边长为a ,则其斜边上的高为( ) A.
a 23 B.a 2 C.2
a D.a 42 5、如图,△ABC 中,AB=BD=AC ,AD=CD ,则∠ADB 的度数是( )
A.36°
B.45°
C.60°
D.72°
(第1题图) (第3题图) (第5题图) (第6题图)
6、如图,△ABC 中,AB=AC ,∠A=36°,CD 、BE 是△ABC 的角平分线,CD 、BE 相交于点O ,则图中等腰三角形有( )
A.6个
B.7个
C.8个
D.9个
7、已知MN 是线段AB 的垂直平分线,C 、D 是MN 上任意两点,则∠CAD 与∠CBD 的大小关系是( )
A.∠CAD>∠CBD
B.∠CAD=∠CBD
C.∠CAD<∠CBD
D.与C 、D 无关
8、如图,在Rt △ABC 中,∠C=90°,BD 是∠ABC 的平分线,交AC 于点D ,若CD=n ,AB=m ,则△ABD 的面积是( )
A.mn
B.21mn
C.2mn
D.3
1mn 9、如图,已知AC 平分∠PAQ ,点B ,B ′分别在边AP ,AQ 上,如果添加一个条件,即可推出AB=AB ′,那么该条件可以是( )
A 、B
B ′⊥A
C B 、BC=B ′C C 、∠ACB=∠ACB ′
D 、∠ABC=∠AB ′C
10、如图,FD ⊥AO 于D ,FE ⊥BO 于E ,下列条件:①OF 是∠AOB 的平分线;②DF=EF ;③DO=EO ;④∠OFD=∠OFE 。
其中能够证明△DOF ≌△EOF 的条件的个数有( )
A.1个
B.2个
C.3个
D.4个
(第8题图) (第9题图) (第10题图)
二、填空题(每小题3分,共24分)
11、已知等腰三角形的两边长分别为3cm、6cm,则该等腰三角形的周长为cm.
12、如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最
cm.
大的正方形的边长为7cm,则正方形A、B、C、D的面积的和是2
13、如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,若BF=AC,则∠ABC的度数是.
14、一轮船以每小时20海里的速度沿正东方向航行。
上午8时,该船在A处测得某灯塔位于它的北偏东30°的B处(如图),上午9时行到C处,测得灯塔恰好在它的正北方向,此时它与灯塔的距离是海里(结果保留根号).
15、若等腰三角形的腰长为4,腰上的高为2,则此等腰三角形的顶角为.
16、在△ABC中,AB=AC,∠A=50°,AB的垂直平分线DE交AC于点D,垂足为E,则∠DBC的度数是.
17、△ABC中,∠C=90°,AD平分∠BAC,交BC于点D。
若DC=7,则D到AB的距离是.
18、在Rt△ABC中,∠A<∠B,CM是斜边AB上的中线,将△ACM沿直线CM折叠,点A落在点D处,如果CD恰好与AB垂直,那么∠A等于______度.
(第12题图) (第13题图) (第14题图) (第18题图)
三、(每小题6分,共12分)
19、如图,已知方格纸中每个小方格都是相同的正方形,∠AOB画在方格纸上,请在小方格的顶点上标出点P,使点P落在∠AOB的平分线上.
(要求:标出至少两个满足条件的点).
20、一张长为5,宽为1的矩形纸片,通过剪切可以拼成一个与原矩形等面积的正方形,方
法如下:
仿上用图示的方法,把如图所示的纸片,经过适当的剪切后,再拼成一个等面积的正方形.
21、如图,AD⊥CD,AB=10,BC=20,∠A=∠C=30°,求AD、CD的长.
22、如图,△ABC中,点D在AC上,E在AB上,且AB=AC,BC=BD,AD=DE=BE.
求∠A的度数.
23、如图,在Rt△ABC中,∠C=90°,沿过B点的一直线BE折叠这个三角形,使点C与AB边上的一点D重合。
当∠A满足什么条件时,点D恰好为AB的中点?写出一个你认为
适当的条件,并利用此条件证明D为AB的中点.
24、阅读下面的题目及分析过程,并按要求进行证明.
已知:如图,E 是BC 的中点,点A 在DE 上,
且∠BAE=∠CDE .
求证:AB=CD
分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证AB=CD ,必须添加适当的辅助线,构造全等三角形或等腰三角形. 现给出如下三种添加辅助线的方法,请任意选择其中一种,对原题进行证明.
25、过等腰三角形ABC 的顶点A 作BC 边的上的高AD ,已知AD=
2
1BC ,求∠BAC 的度数.。