单服务台排队模型

合集下载

MATLAB模拟银行单服务台排队模型

MATLAB模拟银行单服务台排队模型

MATLAB模拟银行单服务台排队模型银行单服务台排队模型是一种常见的排队模型,主要用于描述在银行等排队服务场所中,只有一个服务员的情况下,客户如何排队等待服务的情况。

1.模型假设在进行银行单服务台排队模型的建模过程中,我们需要进行一些假设,以简化问题的复杂性。

这些假设包括:-客户到达时间服从泊松分布:客户到达时间间隔服从泊松分布,即客户到达服从一个固定的时间间隔。

-服务时间服从指数分布:每个客户的服务时间是独立同分布的,服从指数分布。

-服务台只有一个:我们假设只有一个服务台,客户按照到达的顺序排队等待服务。

-客户不能提前离开:我们不考虑客户在等待期间可能会放弃等待而提前离开的情况。

2.模型参数在建立银行单服务台排队模型时,我们需要定义一些模型参数。

这些参数包括:-平均到达率λ:客户的平均到达率,表示单位时间内到达的客户数量的期望值。

-平均服务率μ:服务员的平均服务率,表示单位时间内服务的客户数量的期望值。

-服务台利用率ρ:服务台的利用率,表示服务台的平均使用率。

-平均等待时间W:客户平均等待服务的时间。

-平均队列长度L:客户平均排队等待的队列长度。

3.模拟过程为了模拟银行单服务台排队模型,我们使用MATLAB编程进行模拟。

以下是一个简单的模拟过程:-生成客户到达时间间隔:使用泊松分布生成客户到达时间间隔。

-生成客户服务时间:使用指数分布生成客户的服务时间。

-计算客户到达时间和服务完成时间:根据客户的到达时间间隔和服务时间,计算客户的到达时间和服务完成时间。

-计算客户的等待时间:根据客户的到达时间和服务完成时间,计算客户的等待时间。

-统计模拟结果:统计客户的等待时间、队列长度等模拟结果。

4.结果分析通过对模拟结果的分析,我们可以得到一些关键的结果,包括:-平均等待时间:通过计算客户的平均等待时间,可以评估服务台的效率和客户的等待体验。

-平均队列长度:通过计算客户的平均排队等待的队列长度,可以评估服务台的负载情况。

mm1n排队论模型参数

mm1n排队论模型参数

mm1n排队论模型参数
M/M/1 排队论模型是一种简单的排队系统模型,用于分析单一服务台、顾客到达服从泊松分布、服务时间服从指数分布的系统。

在M/M/1 模型中,有三个主要参数:
1. 到达率(λ):表示单位时间内到达系统的顾客数的期望值,服从参数为λ的泊松分布。

到达率决定了系统中的顾客数量变化速率。

2. 服务率(μ):表示单位时间内一个顾客被服务完成的期望值,服从参数为μ的指数分布。

服务率决定了系统中顾客等待服务的速度。

3. 顾客到达和服务时间是独立的:这个条件表明顾客的到达和服务的完成之间没有影响,使得模型更具有现实意义。

通过平衡方程法,可以对M/M/1 模型进行稳态分析,计算出以下几个重要性质:
1. 队长(Ls):表示系统中的顾客数(n)的期望值。

2. 排队长(Lq):表示系统中排队等待服务的顾客数(n)的期望值。

3. 逗留时间(Ws):指一个顾客在系统中的全部停留时间,为期望值。

4. 等待时间(Wq):指顾客在系统中等待服务的時間,为期望值。

了解这些参数后,可以对M/M/1 模型进行评估和优化,以提高系统的效率和服务质量。

M/M/1 模型虽然简单,但在实际应用中具有广泛的价值,如电话交换系统、计算机网络、银行窗口等。

掌握M/M/1 模型的基本原理和分析方法对于学习排队论和实际应用具有重要意义。

第3章 排队模型分析法-3-

第3章 排队模型分析法-3-

/(k-1)
求解平稳分布
平衡方程 由正则性条件:
p1 p0 p0 2 p p p 2 2 1 2! 0 k ρ p pk-1 p0 k k k!
ρk 1 pk p0 e ρ p0 k 0 k 0 k! p0 e ρ ρk ρ pk e k! k 0,1,2,
顾客源中单个顾客的到达率为
当系统中有k个顾客的时候,顾客源中有 (m-k)个顾客,到达率为(m-k)
顾客源中的顾客数m-k (m-k)
系统内的顾客数k
0km
最大顾客数m
M/M/1/m/m的状态流图
m 0 1 (m-1) 2 (m-2) 2 m-1 m



列出状态转移平衡方程:
排队越长,进入可能性越小(令 αk=

1 k 1
);


顾客所需的服务时间序列{n,n1}独立、服从 参数为(>0)的负指数分布; 系统中只有一个服务台; 容量为无穷大,而且到达过程与服务过程彼此 独立。
2.系统状态分析
仍用N(t)表示在时刻t系统中的顾客数,令
pij(t)=P{N(t+t)=j|N(t)=i},i,j=0,1,2,… 则pij(t)的推导有
Wq(t)=P{Wq≤t}
e (t ) 1 , t0 e 1 k 1 (k 1)! j 0 j!
k 1 j
t
k 1
e 1 平均等待时间为: Wq (e 1)
5.逗留时间
类似地,顾客的逗留时间的分布函数为
W(t ) P{W t} P{Wq 0, t} P{0 W t, Wq 0}

排队论之简单排队系统

排队论之简单排队系统

1.//1/M M ∞排队系统//1/M M ∞排队系统是单服务台等待制排队模型,可描述为:假设顾客以Poisson 过程(具有速率λ)到达单服务员服务台,即相继到达时间间隔为独立的指数型随机变量,具有均值1λ,若服务员空闲,则直接接受服务,否则,顾客排队等待,服务完毕则该顾客离开系统,下一个排队中的顾客(若有)接受服务。

相继服务时间假定是独立的指数型随机变量,具有均值μ。

两个M 指的是相继到达的间隔时间和服务时间服从负指数分布,1指的是系统中只有一个服务台,∞指的是容量为无穷大,而且到达过程与服务过程是彼此独立的。

为分析之,我们首先确定极限概率0,1,2,n p n •••=,,为此,假定有无穷多房间,标号为 0,1,2,•••,并假设我们指导某人进入房间n (当有n 个顾客在系统中),则其状态转移框图如图所示。

图 //1/M M ∞排队系统状态转移速率框图由此,我们有状态 离开速率=进入速率0 01p p λμ=,1n n ≥ ()11n n n p p p λμλμ-++=+解方程组,容易得到00,1,2,ii p p i λμ•••⎛⎫== ⎪⎝⎭,再根据0011()1n n n n p p p λμλμ∞∞=====-∑∑得到:01p λμ=-, ()(1),1nn p n λλμμ=-≥ 令/ρλμ=,则ρ称为系统的交通强度(traffic intensity )。

值得注意的是这里要求1ρ<,因为若1ρ>,则0n p =,且系统中的人数随着时间的推移逐渐增多直至无穷,因此对大多数单服务排队系统,我们都假定1ρ<。

于是,在统计平衡的条件下(1ρ<),平均队长为,1,1j j L jp λρρμλρ∞====<--∑(5-52)由于a λλ=,根据式(5-2)、(5-3)以及上式,可得: 平均逗留时间为:1,1LW ρλμλ==<- (5-53) 平均等待时间为:1[],1()(1)Q W W E S W λρρμμμλμρ=-=-==<-- (5-54)平均等待队长为:22,1()1Q Q L W λρλρμμλρ===<-- (5-55)另外,根据队长分布易知,01ρρ=-也是系统空闲的概率,而ρ正是系统繁忙的概率。

实验单服务台单队列排队系统仿真

实验单服务台单队列排队系统仿真

实验单服务台单队列排队系统仿真简介实验单服务台是指在实验室或研究机构等地,为科学实验、研究项目提供相关服务的地方。

对于一个实验室来说,合理的排队系统可以提高实验员的工作效率,并且能够更好地管理实验项目。

本文将介绍一种基于单队列的排队系统仿真方法,通过模拟实验单的排队过程,评估实验室排队系统的性能,为实验室提供有效的管理建议。

目标本次排队系统仿真的目标是评估实验室中的排队系统性能,包括等待时间、队列长度等指标,以及不同服务台数量下的性能表现。

通过仿真实验,可以找出最优的服务台数量,从而提高实验室的工作效率,减少实验员的等待时间,提供更好的服务。

方法实验单生成在排队系统仿真中,需要生成一批实验单用于模拟实验员的需求。

实验单的生成可以根据实验室的实际情况和需求来设计,可以包括实验名称、实验员姓名、实验日期等信息。

生成一批实验单后,即可进行排队模拟实验。

单队列排队模型本文使用单队列排队模型来模拟实验室的排队系统。

模型中有一个服务台,实验员依次排队等待被服务。

当服务台空闲时,队列中的第一个实验员将被服务,其余实验员依次推进队列。

在模拟过程中,需要记录实验员进入队列的时间和离开队列的时间,以计算等待时间、队列长度等性能指标。

仿真实验仿真实验的过程可以分为以下几个步骤:1.生成实验单:根据实验室的实际情况,生成一批实验单。

2.初始化队列和服务台:将生成的实验单放入队列中,并初始化服务台的状态。

3.开始仿真:根据队列中实验员的情况,模拟实验员进入队列、离开队列以及服务台的状态变化。

记录实验员的等待时间,计算队列长度等性能指标。

4.评估实验结果:根据实验的性能指标,评估排队系统的表现,并分析不同服务台数量下的性能差异。

5.提出改进建议:根据实验结果,提出优化排队系统的建议,如增加服务台数量、调整队列管理策略等。

结果与分析通过对排队系统的仿真实验,可以得到一些重要的结果和分析:1.等待时间分布:通过模拟实验员的等待时间,可以得到等待时间的分布情况,从而评估实验室排队系统的性能。

14.3单服务台指数分布排队系统

14.3单服务台指数分布排队系统

二、M/M/1等待制排队系统
1、系统的意义:顾客按泊松流输入、平均 到达率为λ,服务时间服从负指数分布、平 均服务率为μ,1个服务台,系统容量和顾客 源均为无限。当顾客来到系统时,若服务台 忙,则顾客排队等待服务,排队规则为先到 先服务的排队系统。
2、系统的状态转移速度图:
λ 0 μ 1 μ λ 2 μ λ …… μ λ
p2
2
p0 2 p0
继续打开,计算整理得:
pn n p0
,1≤n≤N
N n 0
( 2)
代入
n 0
N
pn 1

n p0 1
于是
1 N N 1 n 1 p0 [ ] 1 n 0 N 1 1
n 0
代入
N
pn 1
n ( ) p0 1 n 0
N
P0为系统空闲的概率,因此系统不空的概率 即服务台忙的概率(系统满的概率 或系统的 损失概率 ) P忙=1-P0 ( 5) ②平均队长(系统中顾客数的期望值)LS和 平均队列长Lq:
(N 1 )N1 Ls nPn - N1 N1 (6) - - n 0
sprintf('系统空闲的概率为%3f',p0) sprintf('顾客被拒绝的概率为%3f',p(end)) sprintf('系统的状态概率为 \n%3f\n%3f\n%3f\n%3f\n%3f',p) sprintf('顾客平均有效到达率为%3f',lambda_e) sprintf('系统平均顾客数为%3f',L_s) sprintf('系统平均顾客数为%3f',L_ss) sprintf('平均等待队长为%3f',L_q) sprintf('顾客平均逗留时间为%3f',W_s) sprintf('顾客平均等待时间为%3f',W_q) sprintf('系统忙期为%3f',T_b) end

第十五章排队系统分析单服务台模型 30页PPT文档

第十五章排队系统分析单服务台模型 30页PPT文档
运筹学
顾客到达就能理发的概率 相当于理发店内没有顾客
P01 1 N111 (33//44)80.2778
等待顾客数的期望值
Ls1 (N 1 1 )N N 111 33 /4 /418 (3 (3 //44 )8 )82.11
LqLs(1P 0)2.1 1(10.27)7 18 .39 运筹学
Little公式(相互关系)
Ls Ws
Ws
Wq
1

Lq Wq

Ls
Lq


运筹学
例15-2:某医院手术室每小时就诊病人数和手术时间的 记录如下:
到达的病人数
n 0 1 2 3 4 5 6 以上 合计
出现次数
un 10 28 29 16 10
6 1 100
完成手术时间
r 0.0~0.2 0.2~0.4 0.4~0.6 0.6~0.8 0.8~1.0 1.0~1.2 1.2 以上
平衡方程:
pn 1 p0
n
P nP 1 0 P P n 11 0()P n0
n 0 n 1
求解:令: ,且当 1时
P P0 n 1 (1)n n1
运筹学
关于 的几点说明:
(1) (2)
合计
出现次数
vr 38 25 17 9 6 5 0 100 运筹学
解:2.1,2.5每小时病人平均到达率
到完达成的手病术人时数间
nr 0.0~00.2 0.2~10.4 0.4~20.6 0.6~30.8
出现次数
vur n 3180 2258 1279 19 6
nun 2.1(人/小时)
其中
Cn

单服务台排队系统仿真

单服务台排队系统仿真

单服务台排队系统仿真单服务台排队系统是指在一个服务台只有一个服务员的情况下,客户需要按顺序等待服务的系统。

本文将介绍一个针对单服务台排队系统的仿真模型。

在设计仿真模型之前,我们需要确定一些重要的参数。

首先是服务时间,即每个客户接受服务所需要的时间。

服务时间可以通过实际观察数据或者估算得出。

其次是到达间隔时间,即每个客户到达的时间间隔。

到达间隔时间可以通过实际观察数据或者使用随机数生成器进行模拟。

首先,我们需要创建一个事件队列来模拟客户的到达和离开。

事件队列是一个按照发生时间顺序排序的队列,每个事件都包含两个属性:时间和类型。

接下来,我们创建一个时钟来记录仿真进行的时间。

初始时,时钟指向第一个到达事件的时间。

然后,我们从事件队列中取出第一个事件,并更新时钟指向该事件的时间。

如果当前事件类型是到达事件,我们需要进行如下操作:首先,模拟下一个客户到达的时间,并将该事件添加到事件队列中。

然后,判断当前是否有客户正在接受服务。

如果没有,我们将当前事件类型设置为离开事件,并模拟该客户的服务时间和离开时间,并将该离开事件添加到事件队列中。

如果有客户正在接受服务,我们将当前事件类型设置为到达事件。

如果当前事件类型是离开事件,我们需要进行如下操作:首先,更新服务台的空闲状态。

然后,判断是否还有等待服务的客户。

如果有,我们将当前事件类型设置为离开事件,并模拟下一个客户的服务时间和离开时间,并将该离开事件添加到事件队列中。

如果没有等待服务的客户,我们将当前事件类型设置为到达事件。

重复上述步骤,直到事件队列中没有事件为止。

最后,我们可以根据仿真的结果,比如客户的等待时间、服务时间和系统繁忙率等指标,来评估和优化该排队系统的性能。

通过以上的模型,我们可以对单服务台排队系统进行仿真,并评估其性能。

我们可以通过改变服务时间、到达间隔时间等参数,来探究不同情况下系统的表现和优化方案。

同时,我们还可以根据仿真结果,对系统进行调整和改进,以提高客户的满意度和服务效率。

MMs排队模型答案解析

MMs排队模型答案解析

§3 M/M/s 排队模型一、单服务台模型(即M/M/1/∞/∞ 或 M/M/1) 到达间隔: 负指数(参数为λ:到达率)分布; 服务时间: 负指数(参数为μ:服务率)分布; 服务台数: 1; 系统容量: 无限;排队长度(客源): 无限; 服务规则: FCFS. 1. 队长的分布设{}n p P N n == 0,1,2,...n =为系统平稳后队长N 的概率分布, 则由(1) 12011......n n n n n C λλλμμμ---=, 1,2,...n =(累积服务率)(2) 011(1)nn p C ∞==+∑ (无客的概率)(3) 0n n p C p =, 1,2,...n = (有n 客的概率)及n λλ=,0,1,2,...n =和n μμ=,1,2,...n =, 并记λρμ=(服务强度, 一般1ρ<) 可得nn n C λρμ⎛⎫== ⎪⎝⎭, 1,2,...n =故有 0nn p p ρ=, 1,2,...n =其中 011(1)nn p C ∞==+∑11(1)n n ρ∞==+∑110111n n ρρρ--∞=⎛⎫⎛⎫===- ⎪ ⎪-⎝⎭⎝⎭∑.因此 (1)nn p ρρ=-,0,1,2,...n =.无客的概率: 01p ρ=-,至少有一客的概率ρ 服务台处于忙的概率=繁忙程度(即服务强度)=服务机构的利用率 如单位时间,2λ=,5μ=,则,即40%在忙.2. 几个主要指标(1) 系统中平均顾客数=平均队长*- (2) 系统中等待的平均顾客数=平均排队长.可以证明(见第二版P328的注释)在M/M/1中, 顾客在系统中逗留时间服从参数为的负指数分布, 即密度分布函数:()()(),0.tf t et μλμλ--=-≥分布函数: ()()()1,0.tF t P T t e t μλ--=≤=-≥于是得(3) 在系统中顾客平均逗留时间1[]W E T μλ==-; (4) 在队列中顾客平均等待时间因为 逗留时间=等待时间q T +服务时间V , 即q T T V =+故1()()q q W E T E V W μ=+=+, 从而得1q W W W ρρμμλ=-==-另外还可得到(时间与空间关系):L W λ=和q q L W λ=这两个常称为Little 公式.各公式可记忆如下:由λ和μ→服务效率λρμ=, 从逗留时间1W μλ=-→等待时间q W W ρ= 队长L W λ=→排队队长q L L ρ=或q q L W λ=还可导出关系1q W W μ=+和1q L L λμ=+3. 服务机构的忙期B 和闲期I 分析(1) 因为忙期=至少一客的概率ρ, 闲期=无客的概率1ρ- 忙期时间长度/闲期时间长度=1ρρ- (2) 因为忙闲交替,次数平均→平均忙期时间长度/平均闲期时间长度=1ρρ-→1BIρρ=-.(3) 又由分布无记忆性和到达与服务相互独立性→任闲时刻起,下一客到达间隔仍为λ负指数分布→平均闲期=下一客到达间隔1λ→1Iλ=→平均忙期=111B Wρρλμλ=⋅==--即顾客平均逗留时间, 实际意义是明显的.例1一个铁路列车编组站, 设待编列车到达时间间隔负指数分布, 平均到达率2列/h; 编组时间服从负指数分布, 平均20min 可编一组. 已知编组站上共有2股道, 当均被占用时, 不能接车, 再来的列车只能停在站外或前方站. 求(1) 在平稳状态下系统中列车的平均数;(2) 每一列车的平均停留时间;(3) 等待编组的列车的平均数.如果列车因站中的2股道均被占用而停在站外或前方站时, 每列车的费用为a 元/h, 求每天由于列车在站外等待而造成的损失.解 这里 2λ=,3μ=,213λρμ==< (1) 列车的平均数21L ρρ==-(小时)(2) 列车的平均逗留时间212LW λ===(小时) (3) 等待编组的列车平均数 24233q L L ρ=-=-=(列) (4) 等待编组时间 23q W W ρ==(小时) (5) 记列车平均延误(2道满,不能进站)时间为0W ,则0012{2}(1)W W P N W p p p =⋅>=⋅---3320.2963ρ⎛⎫=== ⎪⎝⎭(小时) 故每天列车由于等待而支出的平均费用 0242420.29614.2E W a a a λ==⨯⨯⨯=(元).例2 某修理店只有一个修理工, 来修理的顾客到达过程为Poisson 流, 平均4人/h; 修理时间服从负指数分布, 平均需要6 min. 试求:(2) 店内恰有3个顾客的概率;(3) 店内至少有1个顾客的概率;(4) 在店内的平均顾客数;(5) 每位顾客在店内的平均逗留时间;(6) 等待服务的平均顾客数;(7) 每位顾客平均等待服务时间;(8) 顾客在店内等待时间超过10min 的概率. 解这里 4λ=,1/0.110μ==,215λρμ==<0112/50.6p ρ=-=-=(2) 店内恰有3个顾客的概率33332(1)10.03855p ρρ⎛⎫⎛⎫=-=-= ⎪ ⎪⎝⎭⎝⎭(3) 店内至少有1个顾客的概率0{1}12/50.4P N p ρ≥=-===(4) 在店内的平均顾客数2/50.67112/5L ρρ===--(人) (5) 每位顾客在店内的平均逗留时间 0.6710(min)4LW λ==≈ (6) 等待服务的平均顾客数 0.40.670.268q L L ρ==⨯=(人)(7) 每位顾客平均等待服务时间0.2684(min)4qq L W λ==≈ (8) 顾客在店内等待时间超过10min 的概率.11101615{10}0.3679P T ee ⎛⎫-- ⎪-⎝⎭>===.二、多服务台模型(即M/M/s/∞/∞ 或 M/M/s) 到达间隔: 负指数(参数为λ:到达率)分布;单台服务时间: 负指数(参数为μ:服务率)分布; 服务台数: s; 12s μμμμ====L系统容量: 无限;排队长度(客源): 无限; 服务规则: FCFS.数据分析设{}n p P N n == 0,1,2,...n =为系统平稳后队长N 的概率分布, 则,0,1,2,...n n λλ==和系统的服务率服务台队列⋅⋅⋅⋅⋅⋅u u u u u r u u u u u rμ1μ2sμs 个,1,2,3,...,,,1,...n n n ss n s s μμμ=⎧=⎨=+⎩记s ss ρλρμ==, 则当1s ρ<时, 不至越排越长, 称s ρ为系统的服务强度或服务机构的平均利用率. 由前面的(1),(2)和(3)公式得(/),1,2,3,...,!(/)(/),!!nn s n s nn s n s n C n ss s s s λμλμλλμμ--⎧=⎪⎪=⎨⎛⎫⎪=≥ ⎪⎪⎝⎭⎩故,1,2,3,...,!,!nn nn sp n s n p p n ss s ρρ-⎧=⎪⎪=⎨⎪≥⎪⎩ 其中1100!!(1)n s s n s p n s ρρρ--=⎡⎤=+⎢⎥-⎣⎦∑.当n s ≥时, 顾客要等待. 记这个等待的概率为0(,)!(1)sn n ss c s p p s ρρρ∞===-∑称为Erlang 等待公式. (1) 平均排队长011()()!sn sq n sn s n s p L n s p n s s ρρ∞∞-=+=+=-=-∑∑0021d !d !(1)s s n s ss n s s p p s s ρρρρρρρ∞=⎛⎫== ⎪-⎝⎭∑ 或(,)1s q sc s L ρρρ=-.(2) 正在接受服务的顾客的平均数1s n n n n ss np s p -∞===+∑∑1000!!(1)n ss n sn p s p n s ρρρ-==+-∑11101(1)!(1)!(1)n s s n s p n s ρρρρρ---=⎡⎤=+=⎢⎥---⎣⎦∑s 与s 无关. 奇!(3) 平均队长L =平均排队长+平均接受服务的顾客数q L ρ=+.对多台服务系统, 仍有Little 公式:LW λ=, 1qq L W W λμ==-例3 考虑一个医院医院急诊的管理问题. 根据统计资料, 急论据病人相继到达的时间间隔服从负指数分布, 平均每0.5h 来一个; 医生处理一个病人的时间也服从负指数分布, 平均需要20min. 该急诊室已有一个医生, 管理人员现考虑是否需要再增加一个医生.解 这是一个M/M/s/∞模型, 有2λ=,3μ=,23λρμ==, 1,2s = 由前面的公式, 结果列表如下指标模型s=1 s=2 空闲的概率p00.333 05有1个病人的概率p1有2个病人的概率p20.2220.1480.3330.111平均病人数L平均等待病人数L q 21.3330.750.083病人平均逗留时间W 病人平均等待时间W q 10.6670.3750.042病人需要等待的概率P{T q>0} 0.667(=1-p0) 0.167(=1-p0 -p1)等待时间超过0.5小时的概率P{T q>0.5} 等待时间超过1小时的概率P{T q>1} 0.4040.2450.0220.003如果是一个医生值班, 则病人等待时间明显长. 结论是两个医生较合适.例4 某售票处有三个窗口,顾客的到达服从泊松过程,平均到达率每分钟0.9λ=人/min. 服务(售票)时间服从负指数分布, 平均服务率0.4μ=人/min. 现设顾客到达后排成一队,依次向空闲的窗口购票,这是M/M/s 模型, 其中2.2533,2.25,134s s s λλρμμ=====< 由公式可得:(1) 整个售票处空闲概率1100!!(1)n ss n s P n s ρρρ--=⎡⎤=+⎢⎥-⎣⎦∑ 0012310.07482.25 2.25 2.25 2.2510!1!2!3!1 2.25/3p ==+++-(2) 平均排队长02!(1)s sq s p L s ρρρ=-320.0748 2.253/4 1.703!(1/4)q L ⨯⋅==(人)平均队长:/ 1.7 2.25 3.95q L L λμ=+=+=(人)(3) 平均等待时间1.701.890.9qq L W λ===(min) 平均逗留时间1/ 1.891/0.4 4.39q W W μ=+=+=(分钟)(4) 顾客到达后必须等(即系统中顾客数已有3)的概率30 2.250.0748(3,2.25)0.57!(1)3!1/4s s p c s ρρ⋅⋅===-⋅.在上例中, 若顾客到达后在每个窗口前各排一队,且中途不换队, 则M/M/3/∞ 3个M/M/1/∞ 如下图所示(b).10.4μ=窗口0.3λ=(b)0.4μ=窗口20.4μ=窗口310.4μ=窗口0.9λ=0.4μ=窗口20.4μ=窗口3(a)0.9λ=0.3λ=0.3λ=每个队的平均到达率为1230.9/30.3λλλ====(人/分钟)结果比较如下指标模型M/M/3 M/M/1服务台空闲的概率P00.0748 0.25(每个子系统) 顾客必须等待的概率P(n≥3)=0.57 0.75平均排队长Lq 1.70 2.25(每个子系统) 平均队长L 3.95 9.00(整个系统) 平均逗留时间W 4.39(分钟) 10(分钟)平均等待时间Wq 1.89(分钟) 7.5(分钟)单队比三队优越.百度知道编组站是铁路网上集中办理大量货物列车到达、解体、编组出发、直通和其它列车作业,并为此设有比较完善的调车作业的车站。

服务台单队列排队系统仿真

服务台单队列排队系统仿真

服务台单队列排队系统仿真1. 引言排队是我们日常生活中常见的现象之一。

每当我们去银行、超市、餐厅等地方,总会看到人们在服务台前排长队等待接受服务。

而排队系统的效率直接影响到我们的等待时间和满意度。

为了改善排队系统的效率,许多地方引入了服务台单队列排队系统。

这种系统中,所有顾客都将排在同一个队伍中,然后按照先后顺序依次接受服务。

这种系统相比于多个队列排队系统,能够有效减少空闲时间和服务延迟。

为了对服务台单队列排队系统进行评估和优化,我们可以使用仿真技术来模拟系统的运行情况,并对其进行分析。

2. 仿真模型设计在服务台单队列排队系统的仿真模型中,我们需要考虑到以下几个方面的因素:2.1 顾客到达规律在实际排队系统中,顾客的到达时间往往是随机的,我们可以使用随机数生成器来模拟此过程。

通过设定到达时间的概率分布函数,我们可以生成一系列随机数来模拟顾客的到达间隔。

2.2 服务时间每个顾客在服务台的服务时间也是随机的。

同样地,我们可以使用随机数生成器来模拟服务时间。

通过设定服务时间的概率分布函数,我们可以生成一系列随机数来模拟顾客在服务台的停留时间。

2.3 服务台数量为了简化仿真模型,我们假设只有一个服务台。

在实际情况中,可以根据实际需求增加服务台数量,以提高系统的整体效率。

2.4 排队规则在服务台单队列排队系统中,顾客按照先后顺序依次接受服务。

当一个顾客结束服务后,下一个顾客将开始接受服务。

为了模拟这个过程,我们可以使用队列数据结构来管理顾客的排队顺序。

3. 仿真过程在进行仿真过程时,我们可以按照以下步骤进行操作:3.1 初始化仿真参数根据实际情况,我们可以设定好仿真的时间段、顾客到达规律和服务时间的概率分布函数等参数。

3.2 创建顾客队列根据顾客到达规律,我们可以按照一定的间隔时间将顾客加入到队列中。

3.3 顾客进入服务台当顾客队列不为空时,服务台将接受当前队列中的第一个顾客,并开始对其进行服务。

3.4 更新服务时间和队列在服务过程中,服务单位时间递减,直到达到零时,服务结束,当前顾客离开服务台,下一个顾客开始接受服务。

排队论大学课件8-单服务窗排队模型

排队论大学课件8-单服务窗排队模型

书57页
18
4 可变服务率的M/M/1排队模型
服务率会因为系统中的顾客数不同而变化 举例1(有2种服务率的情况)
等待制排队系统,服务率大于到达率时系统才能 进入统计平衡状态
0 1 1 2

n-1
n 1

n+1 2

2

1
1
1
2
2
2
顾客数小于等于n时,采用服务率1


0

1

2

m-1

m
可约、状态有限,因此是个遍历链,必 定存在唯一的平稳分布
11
3.3 M/M/1/m的平稳分布
平衡方程
正则条件: 1
p1 p0 p0 2 p2 p1 p 0 ... m pm p m 1 p 0

k-1 +k-2

k

k+1 +k

+k-1
26
7 单服务窗闭合式排队模型 M/M/1/m/m
顾客到达排队系统间隔时间服从负指数分布 顾客接受服务的时间服从负指数分布,参数为 假定顾客源中单个顾客的到达率为
顾客源中的顾客数m-c (m-c)
系统内的顾客数c
0cm
k 0

k 1
(1 )(

1
)

1


2. 顾客在系统内平均逗留时间
Ws Ls


1
(1 )

1

5
2.4 M/M/1的目标参量

单服务台排队模型

单服务台排队模型

n
n
Pk 95% (1 ) k 1 n1 95%
k 0
k 0
n1 5%
解得 n 15.4 16
即至少为病人准备15个座位(正在取药的人除外)。
26
例8-3 某医院欲购一台X光机,现有四种可供选择的 机型。已知就诊者按泊松分布到达,到达率每小时4 人。四种机型的服务时间均服从指数分布,其不同机 型的固定费用C1,操作费C2,服务率µ见表。若每位 就诊者在系统中逗留所造成的损失费为每小时15元, 试确定选购哪一类机型可使综合费(固定费+操作费+ 逗留损失费)最低。
过程服从泊松分布,即顾客到达间隔时间服从负 指数分布; (2)排队规则――单队,且队长没有限制,先到先服 务; (3)服务机构――单服务台,服务时间的长短是随机 的,服从相同的负指数分布 。
17
排队系统的状态n随时间变化的过程称为生灭过程, 设平均到达率为λ,平均服务率为μ,负指数分布排队系统 (M/M/1/∞/∞)的生灭过程可用下面的状态转移图表 示:
40
解:3个M/M/1系统,
0.3人/ 分钟, 0.4人/ 分钟,
(3)每个系统的平均等待队长
Lq
2 ( )
0.09 0.4(0.4 0.3)
9 4
2.25
(4)每个系统的平均队长
L 0.3 (3 人) 0.4 0.3
41
解:3个M/M/1系统,
0.3人/ 分钟, 0.4人/ 分钟,
30
31
1、状态概率
C-1
P0= k=0
k1!
k

11
C!1-
C 1
C
Pn=
n1!
n
1 C! C n-C

排队模型2

排队模型2
(b)三个单队单服务台系统
单队多服务台和多种单队单服务系统旳比较:
模型
指标
• 服务台空闲旳 概率P0
• 顾客必须等待 旳概率
平均队长Lq
• 系统中顾客旳 平均数L
(1)单队多服务台模型
0.0748 P(n≥3)=0.57
1.70 3.95 4.39 (分钟) 1.89(分钟)
(2)单队单服务台模型
M
1
( M 1) M M M1 (1 M1 )(1 )
1
1
(M 1
1) M 1 M 1
1 L M/2
对 (M 1) M1 旳讨论: 1 M1
因为 1, M 0, 所以
( M 1) M1
L
1
1 M1
①其值恒不小于零, 即在队长受限制旳条件下, 系统中旳平均顾客数一定不不小于队长不受限制时旳平均顾客
M S 10, 6, 0.5,
S 6 12 0.5
P0
(12)0 0!
(12)1 1!
(12)2 2!
(12)3 3!
(12)10 10!
1
0.0018
P10
(S )M
M!
P0
(12)10 10!
0.0018
0.3019
P0
(12)0 0!
(12)1 1!
(12)2 2!
( N n)!
N! n
( N n)!
[M/M/1]:[∞ /N/FCFS]系统
P0 N
1
N! n
n0 ( N n)!
可求得系统旳各项指标为
L N (1 P0 )
W N 1
(1 P0 )
不要求不大于1
Pn

两类单服务台排队的近似逼近的开题报告

两类单服务台排队的近似逼近的开题报告

两类单服务台排队的近似逼近的开题报告一、背景介绍单服务台排队模型是经典的排队理论模型之一,具有广泛的实际应用。

在实际生产和服务中,如银行取款、加油站加油、餐厅点餐等都可以采用单服务台排队模型进行分析。

近年来,对单服务台排队模型进行近似逼近研究的越来越受到人们的关注。

其中一种研究方法是利用随机游动模型对单服务台排队模型进行近似逼近。

另一种研究方法是利用马尔科夫模型对单服务台排队模型进行近似逼近。

二、研究目的本文旨在研究两类单服务台排队的近似逼近方法,分别采用随机游动模型和马尔科夫模型进行分析,在分析这两种方法的基础上,分析它们的适用范围和优缺点。

同时,通过对实例的分析,比较两种逼近方法的实际效果,并探讨未来的研究方向。

三、研究方法本文采用文献资料法和实例分析法,从已有的研究成果中收集、整理、归纳和分析相关的理论知识和方法,同时对两种近似逼近方法进行实例分析,比较它们的实际效果和适用范围。

四、研究内容1.单服务台排队模型的基本原理和模型建立方法2.随机游动模型近似逼近单服务台排队模型的原理和方法3.马尔科夫模型近似逼近单服务台排队模型的原理和方法4.两种逼近方法的适用范围和优缺点比较5.实例分析及两种逼近方法的比较6.未来研究方向五、预期成果通过本文的研究,可以深入了解单服务台排队模型的基本原理和建立方法,掌握随机游动模型和马尔科夫模型这两种逼近方法的原理和实现方法,了解它们的适用范围和优缺点。

通过实例分析比较两种逼近方法,可以更加深入地理解它们在实际问题中的应用,为实际问题的解决提供更加灵活、可靠的方法。

同时,本文还可以为进一步深入研究单服务台排队模型提供一些启示和建议。

CH12 第三节 单服务台负指数分布排队系统

CH12 第三节 单服务台负指数分布排队系统

1 ≤ n ≤ m −1
解这个方程组得:
1 P0 = m λ m! ( )i ∑ (m − i)! µ i =0 λ m! ( ) n P0 , Pn = (m − n)! µ
U {(t , t + ∆t )内至少有一个顾客到达}I {(t , t + ∆t )内至少有一个顾客离去} I {N (t + ∆t ) = n} = AU B UC U D
由输入是强度为 λ 的泊松流有:
P([t , t + ∆t )内到达1个顾客) = λ∆t + o(t )
由服务时间是参数为 µ 的负指数分布有:
第三节 单服务台负指数分布排队系统
模型( 3.1 标准的 M / M / 1 模型( M
/ M /1 / ∞ / ∞

标准的 M / M /1 模型是指适合下列条件的排队系统: (1) 输入过程:顾客源是无限的,顾客的到达是强度为 λ 的泊松流; (2) 排队规则:单队,队长无限制,先到先服务; (3) 服务机构:单个服务台,各顾客的服务时间是相互独立的,服从 相同的负指数分布,参数为 µ ; (4) 顾客到达的时间间隔与服务时间是相互独立的。
λ P0 = µP1 λ Pn −1 + µPn +1 − ( λ + µ ) Pn = 0, n ≥ 1 (12 − 17 ) (12 − 18 )
λ
0
λ
1 …… n-1
λ
n n+1
µ
µ
µ
当ρ =
λ < 1 时,解上方程组可得 µ
P0 = 1 − ρ Pn = (1 − ρ ) ρ n ,
表 12-8 到达的病人数 n 出现次数 f n

§3 MMs排队模型

§3 MMs排队模型

§3 M/M/s 排队模型一、单服务台模型(即M/M/1/∞/∞ 或 M/M/1) 到达间隔: 负指数(参数为λ:到达率)分布; 服务时间: 负指数(参数为μ:服务率)分布; 服务台数: 1; 系统容量: 无限;排队长度(客源): 无限; 服务规则: FCFS. 1. 队长的分布设{}n p P N n == 0,1,2,...n =为系统平稳后队长N 的概率分布, 则由(1) 12011......n n n n n C λλλμμμ---=, 1,2,...n =(累积服务率)(2) 011(1)nn p C ∞==+∑ (无客的概率)(3) 0n n p C p =, 1,2,...n = (有n 客的概率)及n λλ=,0,1,2,...n =和n μμ=,1,2,...n =, 并记λρμ=(服务强度, 一般1ρ<) 可得nn n C λρμ⎛⎫== ⎪⎝⎭, 1,2,...n =故有 0nn p p ρ=, 1,2,...n =其中 011(1)nn p C ∞==+∑11(1)n n ρ∞==+∑110111n n ρρρ--∞=⎛⎫⎛⎫===- ⎪ ⎪-⎝⎭⎝⎭∑. 因此 (1)nn p ρρ=-,0,1,2,...n =.无客的概率: 01p ρ=-,至少有一客的概率ρ 服务台处于忙的概率=繁忙程度(即服务强度)=服务机构的利用率 如单位时间,2λ=,5μ=,则,即40%在忙.2. 几个主要指标(1) 系统中平均顾客数=平均队长(2) 系统中等待的平均顾客数=平均排队长.可以证明(见第二版P328的注释)在M/M/1中, 顾客在系统中逗留时间服从参数为的负指数分布, 即密度分布函数:()()(),0.tf t et μλμλ--=-≥分布函数: ()()()1,0.tF t P T t e t μλ--=≤=-≥于是得(3) 在系统中顾客平均逗留时间1[]W E T μλ==-; (4) 在队列中顾客平均等待时间因为 逗留时间=等待时间q T +服务时间V , 即q T T V =+故1()()q q W E T E V W μ=+=+, 从而得1q W W W ρρμμλ=-==-另外还可得到(时间与空间关系):L W λ=和q q L W λ=这两个常称为Little 公式. 各公式可记忆如下:由λ和μ→服务效率λρμ=, 从逗留时间1W μλ=-→等待时间q W W ρ= 队长L W λ=→排队队长q L L ρ=或q q L W λ=还可导出关系1q W W μ=+和1q L L λμ=+3. 服务机构的忙期B和闲期I分析(1) 因为忙期=至少一客的概率ρ, 闲期=无客的概率1ρ-→忙期时间长度/闲期时间长度=1ρρ-(2) 因为忙闲交替,次数平均→平均忙期时间长度/平均闲期时间长度=1ρρ-→1BIρρ=-.(3) 又由分布无记忆性和到达与服务相互独立性→任闲时刻起,下一客到达间隔仍为λ负指数分布→平均闲期=下一客到达间隔1λ→1Iλ=→平均忙期=111B Wρρλμλ=⋅==--即顾客平均逗留时间, 实际意义是明显的.例1一个铁路列车编组站, 设待编列车到达时间间隔负指数分布, 平均到达率2列/h; 编组时间服从负指数分布, 平均20min 可编一组. 已知编组站上共有2股道, 当均被占用时, 不能接车, 再来的列车只能停在站外或前方站. 求(1) 在平稳状态下系统中列车的平均数;(2) 每一列车的平均停留时间;(3) 等待编组的列车的平均数.如果列车因站中的2股道均被占用而停在站外或前方站时, 每列车的费用为a元/h, 求每天由于列车在站外等待而造成的损失.解 这里 2λ=,3μ=,213λρμ==< (1) 列车的平均数21L ρρ==-(小时)(2) 列车的平均逗留时间212LW λ===(小时) (3) 等待编组的列车平均数24233q L L ρ=-=-=(列) (4) 等待编组时间 23q W W ρ==(小时) (5) 记列车平均延误(2道满,不能进站)时间为0W ,则 0012{2}(1)W W P N W p p p =⋅>=⋅---3320.2963ρ⎛⎫=== ⎪⎝⎭(小时)故每天列车由于等待而支出的平均费用 0242420.29614.2E W a a a λ==⨯⨯⨯=(元).例2 某修理店只有一个修理工, 来修理的顾客到达过程为Poisson 流, 平均4人/h; 修理时间服从负指数分布, 平均需要6 min. 试求:(1) 修理店空闲的概率;(2) 店内恰有3个顾客的概率;(3) 店内至少有1个顾客的概率;(4) 在店内的平均顾客数;(5) 每位顾客在店内的平均逗留时间;(6) 等待服务的平均顾客数;(7) 每位顾客平均等待服务时间;(8) 顾客在店内等待时间超过10min 的概率. 解这里 4λ=,1/0.110μ==,215λρμ==< (1) 修理店空闲的概率0112/50.6p ρ=-=-=(2) 店内恰有3个顾客的概率33332(1)10.03855p ρρ⎛⎫⎛⎫=-=-= ⎪ ⎪⎝⎭⎝⎭(3) 店内至少有1个顾客的概率0{1}12/50.4P N p ρ≥=-===(4) 在店内的平均顾客数2/50.67112/5L ρρ===--(人) (5) 每位顾客在店内的平均逗留时间0.6710(min)4LW λ==≈ (6) 等待服务的平均顾客数0.40.670.268q L L ρ==⨯=(人)(7) 每位顾客平均等待服务时间0.2684(min)4qq L W λ==≈ (8) 顾客在店内等待时间超过10min 的概率. 11101615{10}0.3679P T e e ⎛⎫-- ⎪-⎝⎭>===.二、多服务台模型(即M/M/s/∞/∞ 或 M/M/s) 到达间隔: 负指数(参数为λ:到达率)分布;单台服务时间: 负指数(参数为μ:服务率)分布; 服务台数: s; 12s μμμμ====L 系统容量: 无限;排队长度(客源): 无限;服务规则: FCFS.数据分析 服务台队列⋅⋅⋅⋅⋅⋅u u u u u r u u u u u r μ1μ2sμs 个设{}n p P N n == 0,1,2,...n =为系统平稳后队长N 的概率分布, 则,0,1,2,...n n λλ==和系统的服务率,1,2,3,...,,,1,...n n n s s n s s μμμ=⎧=⎨=+⎩记s s s ρλρμ==, 则当1s ρ<时, 不至越排越长,称s ρ为系统的服务强度或服务机构的平均利用率. 由前面的(1),(2)和(3)公式得(/),1,2,3,...,!(/)(/),!!nn s n s n n s n s n C n s s s s s λμλμλλμμ--⎧=⎪⎪=⎨⎛⎫⎪=≥ ⎪⎪⎝⎭⎩ 故,1,2,3,...,!,!nn nn sp n s n p p n ss s ρρ-⎧=⎪⎪=⎨⎪≥⎪⎩ 其中1100!!(1)n s s n s p n s ρρρ--=⎡⎤=+⎢⎥-⎣⎦∑.当n s ≥时, 顾客要等待. 记这个等待的概率为0(,)!(1)sn n ss c s p p s ρρρ∞===-∑称为Erlang 等待公式. (1) 平均排队长011()()!sn sq n sn s n s p L n s p n s s ρρ∞∞-=+=+=-=-∑∑0021d !d !(1)s s n s s s n s s p p s s ρρρρρρρ∞=⎛⎫== ⎪-⎝⎭∑ 或(,)1s q sc s L ρρρ=-.(2) 正在接受服务的顾客的平均数10s n n n n ss np s p -∞===+∑∑1000!!(1)n ss n s n p s p n s ρρρ-==+-∑11101(1)!(1)!(1)n s s n s p n s ρρρρρ---=⎡⎤=+=⎢⎥---⎣⎦∑s 与s 无关. 奇!(3) 平均队长L =平均排队长+平均接受服务的顾客数q L ρ=+.对多台服务系统, 仍有Little 公式:LW λ=, 1qq L W W λμ==-例3 考虑一个医院医院急诊的管理问题. 根据统计资料, 急论据病人相继到达的时间间隔服从负指数分布, 平均每0.5h 来一个; 医生处理一个病人的时间也服从负指数分布, 平均需要20min. 该急诊室已有一个医生, 管理人员现考虑是否需要再增加一个医生.解 这是一个M/M/s/∞模型, 有2λ=,3μ=,23λρμ==, 1,2s = 由前面的公式, 结果列表如下指标 模型 s=1 s=2 空闲的概率p 0 0.333 05 有1个病人的概率p 1 有2个病人的概率p 2 0.222 0.148 0.333 0.111 平均病人数L 平均等待病人数L q 2 1.333 0.75 0.083 病人平均逗留时间W 病人平均等待时间W q 1 0.667 0.375 0.042病人需要等待的概率P{T q >0}0.667(=1-p 0)0.167(=1-p 0 -p 1)等待时间超过0.5小时的概率P{T q>0.5} 等待时间超过1小时的概率P{T q>1} 0.4040.2450.0220.003如果是一个医生值班, 则病人等待时间明显长.结论是两个医生较合适.例4某售票处有三个窗口,顾客的到达服从泊松过程,平均到达率每分钟0.9λ=人/min. 服务(售票)时间服从负指数分布, 平均服务率0.4μ=人/min. 现设顾客到达后排成一队,依次向空闲的窗口购票,这是M/M/s模型, 其中2.2533,2.25,134s s s λλρμμ=====< 由公式可得:(1) 整个售票处空闲概率1100!!(1)n ss n s P n s ρρρ--=⎡⎤=+⎢⎥-⎣⎦∑ 0012310.07482.25 2.25 2.25 2.2510!1!2!3!1 2.25/3p ==+++-(2) 平均排队长02!(1)s sq s p L s ρρρ=-320.0748 2.253/4 1.703!(1/4)q L ⨯⋅==(人) 平均队长:/ 1.7 2.25 3.95q L L λμ=+=+=(人)(3) 平均等待时间1.701.890.9qq L W λ===(min) 平均逗留时间1/ 1.891/0.4 4.39q W W μ=+=+=(分钟)(4) 顾客到达后必须等(即系统中顾客数已有3)的概率30 2.250.0748(3,2.25)0.57!(1)3!1/4s s p c s ρρ⋅⋅===-⋅.在上例中, 若顾客到达后在每个窗口前各排一队,且中途不换队, 则M/M/3/∞ 3个M/M/1/∞ 如下图所示(b).10.4μ=窗口0.3λ=0.4μ=窗口20.4μ=窗口310.4μ=窗口0.9λ=0.4μ=窗口20.4μ=窗口30.9λ=0.3λ=0.3λ=每个队的平均到达率为1230.9/30.3λλλ====(人/分钟)结果比较如下指标模型M/M/3 M/M/1服务台空闲的概率P00.0748 0.25(每个子系统) 顾客必须等待的概率P(n≥3)=0.57 0.75平均排队长Lq 1.70 2.25(每个子系统) 平均队长L 3.95 9.00(整个系统) 平均逗留时间W 4.39(分钟) 10(分钟)平均等待时间Wq 1.89(分钟) 7.5(分钟)单队比三队优越.百度知道编组站是铁路网上集中办理大量货物列车到达、解体、编组出发、直通和其它列车作业,并为此设有比较完善的调车作业的车站。

具有工作休假的单服务台排队模型的开题报告

具有工作休假的单服务台排队模型的开题报告

具有工作休假的单服务台排队模型的开题报告
一、研究背景
随着社会经济的不断发展,人们对生活质量的要求也越来越高。

因此,人们经常需要到服务台办理各种业务,如取号、缴费、打印等。

在繁忙的节假日或工作日高峰期,人们需要排队等候,这极大地浪费了人们的时间和精力。

如何提高服务台的效率,减少等待时间,成为了很多服务机构需要解决的问题。

队列理论,是解决排队问题的一种数学方法,可以有效地帮助服务机构进行排队管理。

因此,对于单服务台排队模型的研究非常重要。

二、研究内容及目的
本研究拟以具有工作休假的单服务台排队模型为研究对象,通过对队列理论中的等待时间、服务时间、到达率等指标的研究和分析,设计出一种适合该模型的排队策略,以优化服务台的效率,减少排队等待时间,提高服务质量。

三、研究方法
本研究将采用数学模型的方法,通过理论分析和实验模拟的方式,对具有工作休假的单服务台排队模型进行研究,探讨如何根据实际情况设计出最佳的排队策略,达
到优化服务效率的目的。

四、预计结果
本研究将对具有工作休假的单服务台排队模型进行研究,探讨在该模型下采用何种排队策略可以最大限度地提高服务效率。

通过对等待时间、服务时间、到达率等指
标的分析和实验模拟,预计可以得出相应的排队策略,以优化服务效率,减少排队等
待时间,提高服务质量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、计算公式
到达数(n) 出现次数 f n
Pn

n n!
e
理论频数 100 Pn
( fn 100Pn ) 2 1012.24
0.4099
1
28
0.2571
25.71
0.2039
2
29
0.2700
27.00
0.1481
3
16
0.1890
18.90
0.4449
4
10
0.0992
i1
Ti
k 1 a 611 4
Q
2 0.05(4)
9.488
而 2
1.3026
2 0.05(4)
9.488
P 0.05
卡方分布下的检验水准及其临界值
接受假设,即患者到达数的经验分布适合λ=2.1的 泊松分布。
第八章 排队论
第二节 单服务台M/M/1排队模型
4
5
6
≧7
28
29
16
10
6
1
0
x nfn 2.(1 人 / 小时)
100
1、原理 判断样本观察频数(A)与理论(期望)频数(T )
之差是否由抽样误差所引起。
类别或组段 观察频数
理论频数
1
A1
T1
2
A2
T2



k
Ak
Tk
问题:试判断这份样本,是否来自该理论分布?
注意:理论频数Ti不宜过小(如不小于5),否则需要合并组段!
(3)普通性 在充分短的时间区间Δt内,到达两个或两
个以上顾客的概率极小,可以忽略不计,即

lim
t 0
n2
Pn
(t

t
)

0
在长为 t 的时间内到达n个顾客的概率为:
Pn
(t)

(t)n
n!
et
(t 0)
n 0,1, 2,L
其中λ表示单位时间平均到达的顾客数,即为到达率。
A — 顾客到达间隔时间概率分布; B — 服务时间的概率分布; C — 服务台数; m — 顾客源总数 N — 系统内顾客的容量
排队系统的常见分布
1、泊松分布 设N(Δt)表示在时间区间[t,t+Δt)内到达的顾客 数,是随机变量。当N(Δt)满足下列三个条件时,我们 说顾客的到达符合泊松分布。这三个条件是: (1)平稳性 在时间区间[t,t+Δt)内到达的顾客数 N(Δt),只与区间长度Δt有关而与时间起点t无关。 (2)无后效性 在时间区间[t,t+Δt)内到达的顾客 数N(Δt),与t以前到达的顾客数独立。
Lq

2 (
)
Wq

Lq

例8-2 设某医院药房只有一名药剂员,取药的患者按 泊松分布到达,平均每小时20人,药剂员配药时间服 从指数分布,平均每人为2.5分钟。试分析该药房排 队系统的状态概率和运行指标。
解:这是一个M/M/1/∞/∞系统,单列,FCFS规则 根据题意已知,
9.92
0.0006
5 ≥6
6
0.0416
1 7
0.0207
4.16 2.076.23
0.0952

100
1.0000
100
1.3026
2 k ( Ai Ti )2 ,
i1
Ti
k 1 a a为参数的个数
2、计算公式
2 k (Ai Ti )2 1.3026
n=2: P1 P3 ( )P2



P0

P3

(

)
2 2
P0
P3

(

)3
P0
类似可得
Pn

( )n
P0
令uuuuuuuuuuuur Pn

()n P0
由概率性质可知, Pn 1 n0

n0
Pn


( )n P0
M/M/1/∞/∞ 模型
1、模型条件 (1)输入过程――顾客源是无限的,单个到来,到
达过程服从泊松分布,即顾客到达间隔时间服从 负指数分布; (2)排队规则――单队,且队长没有限制,先到先 服务; (3)服务机构――单服务台,服务时间的长短是随 机的,服从相同的负指数分布 。
排队系统的状态n随时间变化的过程称为生灭过程, 设平均到达率为λ,平均服务率为μ,负指数分布排队系统 (M/M/1/∞/∞)的生灭过程可用下面的状态转移图表示:
当t=1时,
Pn

n
n!
e
n 0,1, 2,L
表示单位时间内到达n个顾客的概率。
容易计算Poisson分布的总体均数与总体方差相等, 均为λ。
2、负指数分布 当顾客到达符合泊松分布时,顾客相继到达的间隔时间 T必服从负指数分布。
fT (t) et (t 0)
顾客服务时间常用概率分布也是负指数分布
λ
λ
λ
λ
0
1
...
n-1
μμ
μ
μ
λ
λ
n
n+1
μ
μ
状态0: P1 P0

P1


P0
状态n: Pn1 Pn1 ( )Pn
n 1, 2,3,L
n=1: P0 P2 ( )P1

P0

P2

(

)

P0

P2

(
)2
P0
复习:
排队系统
顾客 源
顾客
队列
服务机构 服务完离开
排队规则
服务规则
排队系统的三个基本组成部分.
• 输入过程 (有限、无限;单个、成批;确定型、
随机型。
相继到达时间间隔
顾客到达
•排队规则 等待制、损失制、混合制 •服务机构 1、机构形式:单列、多列、服务台的数量 2、服务方式: 单个、成批 3、服务时间:确定型、随机型
f (t) et (t 0)
其中μ表示单位时间内完成服务的顾客数,也称平均服 务率。
例8-1 某医院外科手术室任意抽查了100个工作小时, 每小时患者到达数n的出现次数如表,问每小时患者的 到达数是否服从泊松分布。
到达 数n
0
出现 次数fn
10
患者在单位时间内到达数的频数分布
1
2
3
n0
1

P0 ( )n
n0
1
P0
1
1
P0 1
其中P0是空闲概率,
Pn

(1
)n
为利用率(服务台处于繁忙的概率)
对于M/M/1/∞/∞模型有如下公式:
P0 1
L 1 WL

Pn n (1 )


31

顾客
排队系统运行情况的分析,就是在给定输入 与服务条件下,通过求解系统状态为n(有n个顾客) 的概率Pn,再进行计算其主要的运行指标:
①系统中顾客数(队长)L; ②排队等待的顾客数(排队长)Lq; ③顾客在系统中全部时间(逗留时间)W; ④顾客排队等待时间Wq。
排队模型的符号定义为: A/B/C/m/N
相关文档
最新文档