湖北省襄阳老河口市2020-2021学年八年级上学期期中考试数学试题
湖北省襄阳市 八年级(上)期中数学试卷-(含答案)
八年级(上)期中数学试卷一、选择题(本大题共12小题,共24.0分)1.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A. 5B. 6C. 11D. 162.在△ABC中,∠A=55°,∠B比∠C大25°,则∠B等于()A. B. C. D.3.一个多边形的每个内角均为150°,则这个多边形是()A. 九边形B. 十边形C. 十二边形D. 十五边形4.如图三角形的顶点落在折叠后的四边形内部,则∠γ与∠α+∠β之间的关系是()A.B.C.D.5.如图,已知AB∥CD,AD∥CB,则△ABC≌△CDA的依据是()A. SASB. ASAC. AASD. SSS6.如图,∠B=∠D=90°,∠A=∠E,点B,F,C,D在同一条直线上,再增加一个条件,不能判定△ABC≌△EDF的是()A. B. C. D.7.如图,点P在∠AOB的平分线上,PC⊥OA于点C,PC=1,点Q是射线OB上的一个动点,线段PQ长度的最小值为a,下列说法正确的是( )A. B.C. D. 以上都有可能8.观察下列图形,是轴对称图形的是()A. B. C. D.9.下列条件中,不能判定直线MN是线段AB(M,N不在AB上)的垂直平分线的是()A. ,B. ,⊥C. ,D. ,MN平分AB10.如图,等腰△ABC中,AB=AC,∠A=50°,CD⊥AB于D,则∠DCB等于()A.B.C.D.11.如图,平面上有△ACD和△BCE中,其中AD与BE相交于P点,若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A. B. C. D.12.△ABC中,①若AB=BC=CA,则△ABC是等边三角形;②属于轴对称图形,且有一个角为60°的三角形是等边三角形;③有三条对称轴的三角形是等边三角形;④有两个角是60°的三角形是等边三角形.上述结论中正确的有()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共10小题,共20.0分)13.一等腰三角形的周长为20,其中一边长为5,则它的腰长等于______ .14.△ABC≌△DEF,AB=2,BC=4,若△DEF的周长为偶数,则DF= ______ .15.在平面直角坐标系中,点A的坐标是(-2,3),作点A关于x轴的对称点,得到点A′,再作点A′关于y轴的对称点,得到点A″,则点A″的坐标是______.16.已知,在△ABC中,AD是BC边上的高线,且∠ABC=25°,∠ACD=55°,则∠BAC=______ .17.如图,带箭头的两条直线互相平行,其中一条直线经过正五边形的一个顶点,若∠1=45°,则∠2=__________.18.如图,在平面直角坐标系中,以点O为圆心,适当的长为半径画弧,交x轴于点A,交y轴于点B,再分别以点A,B为圆心,大于AB的长为半径画弧,两弧在第四象限交于点P.若点P的坐标为(2a,a-9),则a的值为__________.19.点O在△ABC内,且OA=OB=OC,若∠BAC=60°,则∠BOC的度数是______ .20.在△ABC中,AC=BC=m,AB=n,∠ACB=120°,则△ABC的面积是______ (用含m,n的式子表示).21.如图,在Rt△ABC中,∠ACB=90°,BC=3cm,CD⊥AB,在AC上取一点E使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,则AE= ______ .22.如图,在平面直角坐标系中,∠AOB=90°,OA=OB,若点A的坐标为(-1,4),则点B的坐标为______.三、解答题(本大题共9小题,共56.0分)23.如图,在△ABC中,∠C=∠ABC=∠A,BD是边AC上的高.求∠DBC的度数.24.如图,点B、E、C、F在同一条直线上,∠A=∠D,∠B=∠DEF,BE=CF.求证:AC=DF.25.如图,在∠ABC的内部有一点P,点P到M,N两点的距离相等且到∠ABC两边的距离也相等.请用尺规作图作出点P,不写作法,保留痕迹.26.在平面直角坐标系中,△ABC的顶点坐标分别为A(-5,1),B(-1,1),C(-4,3).(1)若△A1B1C1与△ABC关于y轴对称,点A,B,C的对应点分别为A1,B1,C1,请画出△A1B1C1并写出A1,B1,C1的坐标;(2)若点P为平面内不与C 重合的一点,△PAB与△ABC全等,请写出点P的坐标.27.如图,在△ABC中,AB=AC,D为BC上一点,且AB=BD,AD=DC,求∠C的度数.28.如图,锐角三角形ABC的两条高BE、CD相交于点O,且OB=OC求证:点O在∠BAC的平分线上.29.如图,△ABC是等边三角形,BD是中线,过点D作DE⊥AB于E交BC边延长线于F,AE=1.求BF的长.30.如图,∠A=∠B,CE∥DA,CE交AB于E.(1)求证:△CEB是等腰三角形;(2)若AB∥CD,求证:AD=BC.31.如图,在△ABC中,∠ACB=90°,AC=BC,△ABC的高CD与角平分线AE相交点F,过点C作CH⊥AE于G,交AB于H.(1)求∠BCH的度数;(2)求证:CE=BH.答案和解析1.【答案】C【解析】解:设此三角形第三边的长为x,则10-4<x<10+4,即6<x<14,四个选项中只有11符合条件.故选:C.设此三角形第三边的长为x,根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.本题考查的是三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.2.【答案】B【解析】解:设∠C=x°,则∠B=x°+25°.根据三角形的内角和定理得x+x+25=180-55,x=50.则x+25=75.故选B.根据三角形内角和定理计算.用一个未知数表示其中的未知角,然后根据三角形的内角和定理列方程求解.3.【答案】C【解析】解:∵多边形的每个内角都等于150°,∴多边形的每个外角都等于180°-150°=30°,∴边数n=360°÷30°=12,故选C先求出多边形的外角度数,然后即可求出边数.本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.4.【答案】B【解析】解:如图,∠1+∠2=180°-∠γ,∵三角形的顶点落在折叠后的四边形内部,∴∠α+2∠1+∠β+2∠2=180°×2,即∠α+∠β+2(∠1+∠2)=360°,∴∠α+∠β+360°-2∠γ=360°,∴2∠γ=∠α+∠β.故选B.根据三角形的内角和定理表示出∠1+∠2,再根据折叠前后的两个图形能够完全重合,然后利用平角等于180°列式进行计算即可得解.本题考查了三角形的内角和定理,翻折变换,利用整体思想根据平角等于180°列出算式是解题的关键.5.【答案】B【解析】解:∵AB∥DC,AD∥BC,∴∠BAC=∠DCA,∠DAC=∠BCA,而AC=CA,∴△ABC≌△CDA(ASA).故选B.先根据平行线的性质得∠BAC=∠DCA,∠DAC=∠BCA,再加上公共边,则可利用“ASA”判断△ABC≌△CDA.本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.6.【答案】C【解析】解:∵∠B=∠D=90°,∠A=∠E,∴当AB=ED时,可用ASA判定,当AC=EF时,可用AAS判定,当BF=DC时,可得BC=DF,可用AAS来判定,当AC∥EF时,无法得到边相等,故不能判定,故选C.由条件可知已知两角相等,故只需要再添加一组边相等即可,分别利用全等三角形的判定方法逐项判断即可.本题主要考查全等三角形的判定方法,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.7.【答案】B【解析】解:当PQ⊥OB时,PQ的值最小,∵OP平分∠AOB,PC⊥OA,∴PC=PQ,∵PC=1,∴PQ的最小值为1.故选B.根据垂线段最短可得PQ⊥OB时,PQ最短,再根据角平分线上的点到角的两边的距离相等可得此时PC=PQ,从而得解.本题考查了角平分线上的点到角的两边的距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.8.【答案】A【解析】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选A.根据轴对称图形的概念求解.本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.9.【答案】C【解析】解:∵MA=MB,NA=NB,∴直线MN是线段AB的垂直平分线;∵MA=MB,MN⊥AB,∴直线MN是线段AB的垂直平分线;当MA=NA,MB=NB时,直线MN不一定是线段AB的垂直平分线;∵MA=MB,MN平分AB,∴直线MN是线段AB的垂直平分线,故选:C.根据线段垂直平分线的判定定理进行判断即可.本题考查的是线段的垂直平分线的判定,掌握线段垂直平分线的判定定理是解题的关键.10.【答案】B【解析】解:∵AB=AC,∠A=50°,∴∠B=∠C=(180°-40°)÷2=65°,又∵CD⊥AB,∴∠BDC=90°,∴∠DCB=90°-65°=25°.根据等腰三角形的性质,求出∠B=65°,由垂直的定义,即得∠DCB的度数.本题考查了等腰三角形的性质和直角三角形的两个锐角互余的性质.11.【答案】C【解析】解:在△ACD和△BCE中∴△ACD≌△BCE(SSS),∴∠ACD=∠BCE,∠A=∠B,∴∠BCA+∠ACE=∠ACE+∠ECD,∴∠ACB=∠ECD=(∠BCD-∠ACE)=×(155°-55°)=50°,∵∠B+∠ACB=∠A+∠APB,∴∠APB=∠ACB=50°,∴∠BPD=180°-50°=130°,故选C.由条件可证明△ACD≌△BCE,可求得∠ACB,再利用三角形内角和可求得∠APB=∠ACB,则可求得∠BPD.本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.12.【答案】D【解析】解:①三边相等的三角形是等边三角形,正确;②属于轴对称图形,且有一个角为60°的三角形是等边三角形,正确;③有三条对称轴的三角形是等边三角形,正确;④有两个角是60°的三角形是等边三角形,正确;则正确的有4个.根据等边三角形的判定、轴对称图形的性质分别对每一项进行判断即可.此题考查了等边三角形的判定,用到的知识点是等边三角形的判定、轴对称图形,关键是灵活应用判定方法,对每一项做出判断.13.【答案】7.5【解析】解:∵等腰三角形的周长为20,∴当腰长=5时,底边=10,∵5+5=10,不能构成三角形,∴当底边=5时,腰长=7.5,故答案为7.5.当腰长=5时,底边=20-5-5=10,不能构成三角形,当底边=5时,腰长==7.5cm,根据三角形的三边关系,即可推出腰长.本题主要考查等腰三角形的性质,三角形的三边关系,关键在于分析讨论6cm为腰长还是底边长.14.【答案】4【解析】解:∵△ABC≌△DEF,AB=2,BC=4,∴DE=AB=2,EF=BC=4,∴4-2<DF<4+2,∴2<DF<6,∵DE=2,EF=4,△DEF的周长为偶数,∴DF=4,故答案为4;根据全等三角形的性质得出DE=AB=2,EF=BC=4,根据三角形三边关系定理求出2<DF<6,即可得出答案.本题考查了全等三角形的性质和三角形的三边关系定理的应用,注意:全等三角形的对应角相等,对应边相等.15.【答案】(2,-3)【解析】解:∵点A的坐标是(-2,3),∴点A关于x轴的对称点A′(-2,-3),∴点A′关于y轴的对称点A″(2,-3),故答案为:(2,-3).根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.此题主要考查了关于x、y轴对称的点的坐标,关键是掌握点的坐标的变化规律.16.【答案】30°或100°【解析】解:如图,当AD在△ABC的内部时,∠BAC=180°-∠B-∠C=180°-25°-55°=100°;如图,当AD在△ABC的外部时,∠BAC=∠ACD-∠B=55°-25°=30°.故答案为:30°或100°.根据AD的不同位置,分两种情况进行讨论:AD在△ABC的内部,AD在△ABC的外部,分别求得∠BAC的度数即可.本题主要考查了三角形内角和定理,解决问题的关键是分情况讨论,解题时注意:三角形的内角和等于180°.17.【答案】27°【解析】解:正五边形的每一个内角的度数为:180°-=108°,即∠EAD=108°,∵l∥BC,∴∠CAD=∠1=45°,∴∠2=180°-∠EAD-∠CAD=180°-108°-45°=27°,故答案为:27°.先求正五边形的每一个内角的度数为108°,因为带箭头的两条直线互相平行,所以∠CAD=∠1=45°,根据平角的定义求出∠2的度数为27°.本题考查了正多边形的内角与外角及平行线的性质,正多边形的外角和为360°,利用外角和可以求每一个外角的度数,利用外角求内角比较简便,多边形的内角和为:(n-2)•180°.18.【答案】3【解析】解:∴由作图可知点P在第二象限的角平分线上,∴2a=-(a-9),解得a=3.故答案为:3.根据作图可知点P在第二象限的角平分线上,据此可得出结论.本题考查的是作图-基本作图,熟知角平分线的作法是解答此题的关键.19.【答案】120°【解析】解:∵OA=OB=OC,∴点O是△ABC外接圆的圆心,∴∠BOC=2∠BAC=120°;故答案为:120°.根据圆周角定理得到∠BOC=2∠BAC,计算即可.本题考查的是圆周角定理的应用,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.20.【答案】mn【解析】解:作CD⊥AB于D,∵AC=BC,∠ACB=120°,∴∠A=∠B=30°,∴CD=AC=m,∴△ABC的面积=×AB×CD=mn,故答案为:mn.作CD⊥AB于D,根据直角三角形的性质求出CD,根据三角形的面积公式计算即可.本题考查的是直角三角形的性质、等腰三角形的性质,掌握直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.21.【答案】2cm【解析】解:∵EF⊥AC,∴∠FEC=90°,∵CD⊥AB,∴∠ADF=90°,∴∠A=∠F,在△ACB和△FEC中,∴△ACB≌△FEC(AAS),∴AC=EF=5cm,而EC=BC=3cm,∴AE=5cm-3cm=2cm.故答案为2cm.根据垂直的定义得到∠FEC=90°,∠ADF=90°,再根据等角的余角相等得到∠A=∠F,则可根据“AAS”可判断△ACB≌△FEC,所以AC=EF=5cm,然后利用AE=AC-EC进行计算即可.本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.22.【答案】(-4,-1)【解析】解:分别过点A和点B作AC⊥y轴,BD⊥y轴,∴∠ACO=∠BDO=90°,∴∠AOC+∠CAO=90°∵∠AOB=90°,∴∠AOC+∠BOD=90°,∴∠CAO=∠BOD,在△ACO和△BDO中,∴△ACO≌△BDO(AAS),∴OD=AC,BD=OC,∵点A的坐标为(-1,4),∴OD=AC=1,BD=OC=4,∴点B的坐标为(-4,-1),故答案为:(-4,-1).分别过点A和点B作AC⊥y轴,BD⊥y轴,利用已知条件和等腰直角三角形的性质可证明△ACO≌△BDO,则OD和BD的长可求出,进而得到点B的坐标.本题考查了等腰直角三角形,用到的知识点是等腰直角三角形的性质,全等三角形的判定,能够正确作出辅助线,构造出全等三角形是解题的关键.23.【答案】解:设∠A=x,则∠C=∠ABC=x,∵BD是边AC上的高∴∠ADB=∠CDB=90°∴∠ABD=90°-∠A=90°-x∠CBD=90°-∠C=90°-x∴90°-x+90°-x=x解得x=45°∴∠CBD=90°-∠C=90°-x=22.5°【解析】先设∠A=x,根据三角形内角和定理列出方程,求得x的值,最后根据直角三角形求得∠CBD的度数.本题主要考查了三角形内角和定理,解决问题的关键是掌握:三角形内角和是180°.解题时注意方程思想的运用.24.【答案】证明:∵BE=CF(已知),∴BE+EC=EC+CF,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS),∴AC=DF(全等三角形对应边相等).【解析】根据BE=CF,求出BC=EF,根据AAS推出△ABC≌△DEF,根据全等三角形的性质推出即可.本题考查了全等三角形的性质和判定的应用,解此题的关键是推出△ABC≌△DEF,注意:全等三角形的对应边相等.25.【答案】解:如图所示:,点P即为所求.【解析】首先连接MN作中垂线,再作∠ABC的角平分线,两线的交点就是P的位置.此题主要考查了复杂作图,关键是掌握到角的两边的距离相等的点在角平分线上,到线段两端点的距离相等的点,在线段垂直平分线上.26.【答案】解:(1)如图所示:△A1B1C1,即为所求,A1(5,1),B1(1,1),C1(4,3);(2)P点坐标为:(-2,3),(-2,-1),(-4,-1).【解析】(1)直接利用关于y轴对称点的性质得出A1,B1,C1的位置进而得出答案;(2)直接利用全等三角形的性质得出符合题意的答案.此题主要考查了轴对称变换以及全等三角形的性质,正确得出对应点位置是解题关键.27.【答案】解:设∠C=x.∵AB=AC,∴∠B=∠C=x,∵AD=DC,∴∠DAC=∠C=x,∴∠BDA=∠DAC+∠C=2x,∵AB=BD∴∠BAD=∠BDA=2x,在△ABD中,∠B+∠BAD+∠BDA=x+2x+2x=180°,解得x=36°∴∠C=36°.【解析】设∠C=x,根据等腰三角形的性质,用x表示∠B、∠BAD、∠BDA,再根据三角形内角和定理列出方程即可解决问题.本题考查等腰三角形的性质,解题的关键是灵活运用等腰三角形的性质解决问题,学会利用参数,构建方程解决问题,属于中考常考题型.28.【答案】证明:∵BE、CD是△ABC的两条高,∴OD⊥AB,OE⊥AC,∠BDO=∠CEO=90°,在△BDO和△CEO中,∴△BDO≌△CEO(AAS),∴OD=OE,又∵OD⊥AB,OE⊥AC,∴点O在∠BAC的平分线上.【解析】先根据条件可以得出△BOD≌△COE,由全等三角形的性质得到OD=OE,又OD⊥AB,OE⊥AC,利用角平分线的定义可得结论.此题主要考查角平分线的定义和全等三角形的判定和性质,证得OD=OE是解答此题的关键.29.【答案】解:∵△ABC是等边三角形,BD是中线∴∠A=∠ACB=60°,AC=BC,AD=CD=AC∵DE⊥AB于E∴∠ADE=90°-∠A=30°∴CD=AD=2AE=2∴∠CDF=∠ADE=30°∴∠F=∠ACB-∠CDF=30°∴∠CDF=∠F∴DC=CF∴BF=BCCF=2AD+AD=6【解析】根据等边三角形的性质和中线的性质解答即可.此题考查等边三角形的性质,关键是根据等边三角形的三线合一性质解答.30.【答案】证明:(1)∵CE∥DA,∴∠A=∠CEB,∵∠A=∠B,∴∠CEB=∠B,∴CE=CB,∴△CEB是等腰三角形.(2)连接DE.∵CE∥DA,AB∥CD,∴∠ADE=∠CED,∠AED=∠CDE,在△ADE和△CED中,,∴△ADE≌△CED(ASA),∴AD=CE,∵CE=CB,∴AD=CB.【解析】(1)只要证明∠CEB=∠B即可.(2)只要证明△ADE≌△CED,得AD=CE,即可证明.本题考查全等三角形的判定和性质.等腰三角形的性质等知识,解题的关键是熟练应用全等三角形的判定和性质解决问题,属于中考常考题型.31.【答案】解:(1)∵∠ACB=90°,AC=BC,∴∠CAB=∠B=45°,∵AE是△ABC的角平分线,∴∠CAE=∠CAB=22.5°,∴∠AEC=90°-∠CAE=67.5°,∵CH⊥AE于G,∴∠CGE=90°,∴∠BCH=90°-∠AEC=90°-67.5°=22.5°;(2)证明:∵∠ACB=90°,AC=BC,CD是△ABC的高,∴∠ACD=∠ACB=45°,∴∠CFE=∠CAE+∠ACD=22.5°+45°=67.5°,∴∠CFE=∠AEC,∴CF=CE,在△ACF和△CBH中,∵ ,∴△ACF≌△CBH(ASA),∴CF=BH,∴CE=BH.【解析】(1)根据等腰直角三角形得:∠CAB=∠B=45°,由角平分线得:∠CAE=22.5°,从而计算出∠AEC的度数,并在直角△CGE中根据两锐角互余求出∠BCH的度数;(2)先证明△CFE是等腰三角形,得:CE=CF,再证明△ACF≌△CBH,得CF=BH,所以CE=BH.本题考查了全等三角形的性质和判定及等腰直角三角形的性质,同时做好本题还要熟练掌握等腰三角形的等边对等角和等角对等边;从而得出边和角的关系,使问题得以解决.第21页,共21页。
湖北省襄阳市老河口市2023-2024学年八年级上学期期中考试数学试题(含解析)
老河口市2023年秋季期中学业质量检测八 年 级 数 学(本试卷共4页,满分120分)★祝考试顺利★注意事项:1、答卷前,考生务必将自己的学校,班级,姓名,考试号填写在试题卷和答题卡上.2、选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效.3、非选择题(主观题)用0.5毫米的黑色墨水签字笔或黑色墨水钢笔直接答在答题卡上每题对应的答题区域内,答在试题卷上无效.4、考试结束后,请将本试题卷和答题卡一并上交.一.选择题(本大题共10个小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是符合题目要求的,请将其序号填涂在答题卡上相应位置.)1.以下列长度的线段为边,能构成三角形的是(▲)A .1,2,3B .1,2,4C .2,3,4D .2,3,62.安装空调一般会采用如图的方法固定,其根据的几何原理是(▲)A .两点之间线段最短B .三角形的稳定性C .两点确定一条直线D .垂线段最短3.在△ABC 中,∠A =40°,∠C =90°,则∠B 的度数为(▲)A .40°B .50°C .60°D .70°4.正六边形的内角和是(▲)A .360°B .540°C .720°D .180°5.如图, AD 与BC 相交于点O ,OA =OC ,OB =OD ,不添加辅助线,能判定△AOB ≌△COD 的依据是(▲)A .ASA B .AASC .SSSD .SAS6.如图,已知∠C =∠D =90°,添加下列条件后不能使△ABC ≌△BAD的是(▲)A .∠DAC =∠CBD B .∠ABD =∠BACC .AC =BD D .AD =BC7.如图,三条公路把A ,B ,C 三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,使集贸市场到三条公路的距离相等,则这个集贸市场应建在(▲)A .在AC ,BC 两边上的高的交点处B .在AC ,BC 两边垂直平分线的交点处第2题图第5题图OD CBA D CBA第6题图CBA第7题图C .在AC ,BC 两边中线的交点处D .在∠A ,∠B 两个角平分线的交点处8.剪纸文化是中国最古老的民间艺术之一,下列剪纸图案中,不是轴对称图形的是(▲)A .B .C .D .9.已知等腰三角形的两边长分别为2和4,则它周长是(▲)A .6 B .8 C .10D .8或1010.如图,在等边△ABC 中,BO 平分∠ABC ,CO 平分∠ACB ,OM ∥AB ,ON ∥AC ,若△ABC 的周长是18,则△OMN 的周长是(▲)A .3 B .6C .9D .12二.填空题:(本大题共8个小题,每小题3分,共24分.把答案填在答题卡的对应位置的横线上.)11.如图,在△ABC 中,AD 是角平分线,若∠B =30°,∠C =70°,则∠CAD的度数是 ▲ .12.已知BD 是△ABC 的中线,若△ABD 与△BCD 的周长分别为21,12,AB =14,则BC = ▲ .13.若一个多边形的每个外角都等于30°,则这个多边形的边数是 ▲ .14.如图,若AB =AD ,CB =CD ,∠B =30°,∠CAD =40°,则∠DCF 的度数是 ▲ .15.平面直角坐标系中,点(-2,3)关于x 轴的对称点的坐标是▲ .16.如图,在△ABC 中,∠ACB =90°,AD 平分∠BAC 交BC 于点D ,若BC =10,点D 到AB的距离为4,则DB 的长为 ▲ .17.如图,在△ABC 中,AB =AC ,∠A =36°,以B 为圆心,BC 长为半径作弧,交AC 于点D ,连接BD ,则∠ABD 的度数是 ▲ .18.如图,在△ABC 中,∠ACB =90°,∠B =30°,将△ABC 折叠,使点A 落在BC上的点F 处,折痕为DE ,点P 为折痕DE 上一动点,若DF ⊥BC ,AD =2,则PC +PF 的最小值为 ▲ .NMOCBA第10题图D CBA第11题图FDCB A第14题图DCB A第16题图DCB A第17题图第18题图三.解答题(本大题共9个小题,共66分.解答应写出文字说明,证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内.)19.(本题6分)如图,在△ABC 中,CD 是角平分线,CE 是高,若∠A =30°,∠B =50°,求∠DCE 的度数.20.(本题6分)如图,AB =CD ,DE =BF ,AE =CF ,求证:∠B =∠D .21.(本题6分)如图,∠A =50°,BD ⊥AC,CE ⊥AB,求∠BPC 的度数.22.(本题6分)如图,A ,D ,E 三点在同一直线上,AB =AC ,∠BAC =∠D =∠E ,求证:AD =CE .23.(本题6分)如图,在△ABC 中,∠B =∠C ,点D 为BC 中点,点P 在AD 上,PE ⊥AB 于点E, PF ⊥AC 于点F.求证:PE =PF .第19题图ED CBA FE DCBA第20题图第21题图P EDCBA第22题图EDCBA PF E DCBA第23题图24.(本题7分)如图,在△ABC中,∠C=90°,点D在边AB上,BD=BC.(1)作∠B的平分线,交AC于点E(尺规作图,保留痕迹,不写作法);(2)在(1)的条件下,连接CD,DE.求证:BE垂直平分CD.25.(本题7分)如图,在△ABC中,AD⊥BC于点D,且AD平分∠BAC,CE⊥AB于点E,交AD于点F.(1)求证:AB=AC;(2)若AF=BC,EF=m,FC=n,求AC的长(用含m,n的式子表示).26.(本题10分)如图,在△ABC中,AD是高,点F在AD上,BF的延长线交AC于点E,∠ABC=2∠CAD,点G为BF的中点.(1)求证:△ABC为等腰三角形;(2)若AD=BD,BF=AC.①求证:∠CAD=∠CBE;②求∠EDG的度数.27.(本题12分)如图,△ACD和△BCE都是等边三角形,A,C,B在同一直线上.(1)求证:△ACE≌△DCB;(2)求∠BFE的度数;(3)若CF=1,EF=2,求BF的长.第24题图FED CBA第25题图第26题图GFED CBA第27题图N MFEDC BA2023年秋季期中考试八年级参考答案及评分标准一.选择题题号12345678910答案CBBCDADACB二.填空题11. 40° ;12. 5 ;13. 12 ;14. 70°;15.(-2,-3);16. 6 ;17. 36° ;18. 3 .三.解答题19.解:∵CE 是△ABC 的高,∴∠AEC =∠BEC =90°.………………1分 ∵∠A =30°,∠B =50°,∴∠ACB =180°-∠A -∠B =100°.………………3分 ∠BCE =90°-∠B =40°.…………………4分∵CD 是△ABC 的角平分线,∴∠BCD =∠ACB =50°.………………………5分∴∠DCE =∠BCD -∠BCE =10°.…………………6分20.证明:∵AE =CF ,∴AE +EF =EF +CF ,即AF =CE .…………2分在△ABF 和△CDE 中∴△ABF ≌△CDE .……………………………4分∴∠B =∠D .…………………………6分21.解:∵ BD ⊥AC ,CE ⊥AB , ∴∠AEC =∠BDC =90°.………………………2分∴∠C =90°-∠A =40°.…………………4分∴∠BPC =∠BDC +∠C =130°.………………6分22.解:∵∠BAE =∠BAC +∠CAE ,∠BAC =∠D ,∠BAE =∠B +∠D .………………………1分∴∠B =∠CAE .……………………………2分21⎪⎩⎪⎨⎧===,,,BF DE CE AF CD AB 第19题图ED CBA FE DCBA第20题图第21题图P EDCBA第22题图EDCBA在△ABD 和△CAE 中∴△ABD ≌Rt △CAE .………………4分∴AD =CE .………………………………6分23.证明:∵∠B =∠C ,∴AB =AC .………………………………………2分∵点D 为BC 中点,∴∠BAD =∠CAD .………………………………4分∵PE ⊥AB 于点E , PF ⊥AC 于点F .∴PE =PF .…………………………6分24.解:(1)如图BE 即为所求作的图形.……………3分(2)证明:在△BCE 和△BDE 中∴△BCE ≌△BDE .…………………5分∴DE =CE .∴B ,E 两点都在CD 的垂直平分线上.……………6分∴BE 垂直平分CD .……………………………………7分25.解:(1)证明:∵AD 是△ABC 的高,∴∠ADB =∠ADC =90°.…………………………1分在△ABD 和△ACD 中∴△ABD ≌△ACD .………………………3分∴AB =AC .……………………………4分(2)∵CE ⊥AB 于点E ,∴∠AEC =∠BEC =90°.∴∠EAF +∠AFE =∠EAF +∠B .∴∠AFE =∠B .………………………………5分在△AEF 和△CEB 中⎪⎩⎪⎨⎧=∠=∠∠=∠,,,AC AB CAE B E D ⎪⎩⎪⎨⎧=∠=∠=,,,BE BE DBE CBE BD BC ⎪⎩⎪⎨⎧∠=∠=∠=∠,,,ADC ADB AD AD CAD BAD P F E DCBA第23题图EDC BA 第24题图F E DCBA第25题图∴△AEF ≌△CEB .∴AE =EC ,EF =BE .…………………………………………………………6分∴AB =AE +BE =EC +EF =CF +EF +EF =2m +n .∴AC =AB =2m +n .…………………………………………………………7分26.解:(1)证明:∵AD 是△ABC 的高,∴∠ADB =∠ADC =90°.……………………………………………………1分∴∠C =90°-∠CAD ,∠BAD =90°-∠ABC .…………………………2分∵∠ABC =2∠CAD ,∴∠BAD =90°-2∠CAD .∴∠BAC =∠BAD +∠CAD =90°-∠CAD .∴∠BAC =∠C .…………………………………3分∴AB =BC .∴△ABC 为等腰三角形.………………………4分(2)①在Rt △BDF 和Rt △ADC 中∴Rt △BDF ≌Rt △ADC .……………………………6分∴∠DBF =∠DAC ,即∠CAD =∠CBE .…………7分②∵∠CAD =∠CBE ,∠ABC =2∠CAD ,∠ABC =∠CBE +∠ABE ,∴∠CBE =∠ABE .∵AB =BC ,∴AE =AC .………………………8分∵点G 为BF 的中点,BF =AC ,∴AG =AE . 在△BDG 和△ADE 中∴△BDG ≌△ADE .∴∠BDG =∠ADE . ………………………………………………………9分∴∠EDG =∠ADE +∠ADG =∠BDG +∠ADG =∠ADB =90°. ……10分⎪⎩⎪⎨⎧=∠=∠∠=∠,,,BC AF B AFE BEC AEF ⎩⎨⎧==,,AC BF AD BD 21⎪⎩⎪⎨⎧=∠=∠=,,,AE BG DAE DBG AD BD 第26题图G F ED CBA27.解:(1)证明:∵△ACD 和△BCE 都是等边三角形,∴DC =AC ,CB =CE =BE ,∠ACD =∠BCE =∠BEC =60°.…………2分∴∠ACD +∠DCE =∠BCE +∠DCE .∴∠ACE =∠DCB .…………………………3分在△ACE 和△DCB 中∴△ACE ≌△DCB .…………………………4分(2)证明:∵△ACE ≌△DCB ,∴∠AEC =∠DBC .…………………………………………………………5分∵∠AEC +∠EMF +∠BFE =180°,∠DBC +∠BMC +∠BCE =180°,……7分∠EMF =∠BMC∴∠BFE =∠BCE =60°.……………………………………………………8分(3)在BF 上截取FP =EF .…………………………………………………9分∵FP =EF ,∠BFE =60°,∴△PEF 是等边三角形.……………………………………………………10分∴PE =PF =EF ,∠PEF =60°.∴∠FEC +∠CEP =∠CEP +∠PEB =60°.∴∠FEC =∠PEB .在△FEC 和△PEB 中∴△FEC ≌△PEB .…………………………………………………………11分∴FC =PB .∴BF =PB +PF =EF +CF =3.………………………………………………12分⎪⎩⎪⎨⎧=∠=∠=,,,CB CE DCB ACE DC AC ⎪⎩⎪⎨⎧=∠=∠=,,,BE CE PEB FEC PE FE PN MF ED C BA第27题图。
2020-2021学年第一学期八年级数学期中考试卷(及答案)共五套
2020-2021学年第一学期期中考试试卷八年级数学一、选择题(本大题共10小题,每小题2分,共20分)1.下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的A .B .C .D .2.在平面直角坐标系中,点P (1,﹣2)的位置在A .第一象限B .第二象限C .第三象限D .第四象限3.等腰三角形两边长分别为2和4,则这个等腰三角形的周长为A .6B .8C .10D .8或104.今年10月环太湖中长跑中参赛选手达到21780人,这个数精确到千位表示约为( ) A .2.2×104B .22000C .2.1×104D .225.如图,在数轴上表示实数7+1的点可能是A .PB .QC .RD .S6.如图是跷跷板的示意图,支柱OC 与地面垂直,点O 是AB 的中点,AB 绕着点O 上下转动.当A 端落地时,∠OAC =20°,跷跷板上下可转动的最大角度(即∠A ′OA )是 A .80° B .60° C .40° D .20°7.如图,将一个三角形纸片ABC 沿过点B 的直线折叠,使点C 落在AB 边上的点E 处,折痕为BD ,则下列结论一定正确的是 A .AD =BDB .AE =ACC .ED +EB =DBD .AE +CB =AB8.由下列条件不能判定△ABC 为直角三角形的是A .a =,b =,c =B .∠A +∠B =∠C C .∠A :∠B :∠C =1:3:2D .(b +c )(b ﹣c )=a 29.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC =6,DE =3,则△BCE 的面积等于A .6B .8C .9D .1810.如图,在四边形ABCD 中,AB =AC =BD ,AC 与BD 相交于H ,且AC ⊥BD .①ABPQ RS(第5题)ABCA 'B 'O(第6题)(第7题)∥CD ;②△ABD ≌△BAC ;③AB 2+CD 2=AD 2+CB 2;④∠ACB +∠BDA =135°.其中真命题的个数是A .1B .2C .3D .4二、填空题(本大题共8小题,每空2分,共16分) 11.81的算术平方根是 ▲ .12.在平面直角坐标系中,点P (-1,2)关于x 轴的对称点的坐标为 ▲ . 13.如图,在R t △ABC 中,CD 是斜边AB 上的中线,若AB =20,则CD = ▲ . 14.如图,△ABC 是边长为6的等边三角形,D 是BC 上一点,BD =2,DE ⊥BC 交AB 于点E ,则线段AE = ▲ .15.如图,三个正方形中,其中两个正方形的面积分别是100,36,则字母A 所代表的正方形的边长是 ▲ .16.如图,在△ABC 中,AB =AC ,∠B =66°,D ,E 分别为AB ,BC 上一点,AF ∥DE ,若∠BDE =30°,则∠F AC 的度数为 ▲ .17.如图,数轴上点A 、点B 表示的数分别中1和5,若点A 是线段BC 的中点,则点C 所表示的数是 ▲ .18.已知:如图,ΔABC 中,∠A =45°,AB =6,AC =24,点D 、E 、F 分别是三边AB 、BC 、CA 上的点,则ΔDEF 周长的最小值是 ▲ .AB CD E(第14题)AB CD(第13题)(第15题)ABCDH(第10题)(第9题)A BCF DE(第16题)(第17题)(第18题)FEDCBA三、解答题(本大题共9题,共64分) 19.(8分)(1)计算:()234272-+-; (2)已知:4x 2=20,求x 的值.20.(4分)如图,四边形ABCD 中,AB =BC ,AD =CD ,求证:∠A =∠C .CDBA21.(6分)如图,在△ABC 中,AD ⊥BC ,AB =10,BD =8,∠ACD =45°. (1)求线段AD 的长;(2)求△ABC 的周长.22.(6分)已知点A (1,2a -1),点B (-a ,a -3) . ①若点A 在第一、三象限角平分线上,求a 值.②若点B 到x 轴的距离是到y 轴距离的2倍,求点B 所在的象限.23.(8分)如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB ,在图③中已画出点A .按下列要求画图:(1)在图①中,以格点为顶点,AB 为一边画一个等腰三角形ABC ; (2)在图②中,以格点为顶点,AB 为一边画一个正方形;(3)在图③中,以点A 为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形,这个正方形的面积= .24.(8分)如图,在△ABC 中,AB =AC ,点D 、E 、F 分别在BC 、AB 、AC 边上,且BE =CF ,BD =CE .(1)求证:△DEF 是等腰三角形;(2)当∠A =40°时,求∠DEF 的度数.25.(8分)如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足P A=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值.26.(8分)如图,在Rt△ABC中,∠ACB=90°,AD、BE、CF分别是三边上的中线.(1)若AC=1,BC=.求证:AD2+CF2=BE2;(2)是否存在这样的Rt△ABC,使得它三边上的中线AD、BE、CF的长恰好是一组勾股数?请说明理由.(提示:满足关系a2+b2=c2的3个正整数a、b、c称为勾股数.)27.(8分)定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图1,在△ABC中,AB=AC,点D在AC边上,且AD=BD=BC,求∠A的大小;(2)在图1中过点C作一条线段CE,使BD,CE是△ABC的三等分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(3)在△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC 边上,且AD=BD,DE=CE,请直接写出∠C所有可能的值.2020~2021学年度第一学期期中考试八年级数学试题一、选择题(共10小题,每小题3分,共30分) 1.下列图形中不是轴对称图形的是( )2.在平面直角坐标系中,点P (-3,2)在( ) A .第一象限B .第二象限C .第三象限D .第四象限 3.三角形中最大的内角不能小于( ) A .30°B .45°C .60°D .90°4.下列关于两个三角形全等的说法: ① 三个角对应相等的两个三角形全等 ② 三条边对应相等的两个三角形全等③ 有两边和它们的夹角对应相等的两个三角形全等 ④ 有两边和其中一边上的高对应相等的两个三角形全等 正确的说法个数是( ) A .1个 B .2个 C .3个 D .4个 5.在平面直角坐标系中,点P (2,-3)关于x 轴的对称点是( )A .(-2,3)B .(2,3)C .(-2,-3)D .(-3,2) 6.如图所示,∠A =28°,∠BFC =92°,∠B =∠C ,则∠BDC 的度数是( )A .85°B .75°C .64°D .60°7.如图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别是D 、E ,AD 、CE 交于点H .已知EH =EB =3,AE =5,则CH 的长是( ) A .1B .2C .53D .358.如图所示的正方形网格中,网格线的交点称为格点,已知A 、B 是两格点,如果C 也是图中的格点,且使得△ABC 为等腰三角形,则点C 的个数是( ) A .6个B .7个C .8个D .9个9.如图,AB =2,BC =AE =6,CE =CF =7,BF =8,四边形ABDE 与△CDF 面积的比值是( ) A .21B .32C .43 D .110.如图,在△ABC 中,BC 的垂直平分线DF 交△ABC 的外角平分线AD 于点D ,DE ⊥AB 于点E ,且AB >AC ,则( ) A .BC =AC +AEB .BE =AC +AEC .BC =AC +AD D .BE =AC +AD二、填空题(本大题共6个小题,每小题3分,共18分)11.若一个多边形的内角和是外角和的2倍,则它的边数是___________12.设△ABC 的三边长分别为a 、b 、c ,其中a 、b 满足|a +b -6|+(a -b +4)2=0,则第三边长c 的取值范围是_____________13.点M (-5,3)关于直线x =1的对称点的坐标是___________14.如图所示,在△FED 中,AD =FC ,∠A =∠F .如果用“SAS ”证明△ABC ≌△FED ,只需添加条件_____________即可15.在△ABC 中,高AD 、BE 所在的直线相交于点G ,若BG =AC ,则∠ABC 的度数是_____16.如图,在Rt △ABC 中,∠C =90°,BC =6,AC =8,一条线段PQ =AB =10,P 、Q 两点分别在AC 和过点A 且垂直于AC 的射线AX 上运动,如果以A 、P 、Q 为顶点的三角形与△ABC 全等,则AP =____________三、解答题(共8小题,共72分)17.(本题8分)解方程组:(1) ⎩⎨⎧=-=-32373y x y x(2) ⎩⎨⎧=-=+5342y x y x18.(本题8分)如图所示,在△ABC 中:(1) 画出BC 边上的高AD 和中线AE(2) 若∠B =30°,∠ACB =130°,求∠BAD 和∠CAD 的度数19.(本题8分)如图,点B 、E 、C 、F 在同一直线上,且AB =DE ,AC =DF ,BE =CF ,请将下面说明△ABC ≌△DEF 的过程和理由补充完整解:∵BE =CF (_____________)∴BE +EC =CF +EC即BC =EF在△ABC 和△DEF 中⎪⎩⎪⎨⎧===__________________BC DF AB )()(∴△ABC ≌△DEF (__________)20.(本题8分)如图所示,D是边AB的中点,△BCD的周长比△ACD的周长大3 cm,BC=8 cm,求边AC的长21.(本题8分)已知,如图所示,CE⊥AB与E,BF⊥AC与F,且BD=CD,求证:(1) △BDE≌△CDF(2) 点D在∠BAC的角平分线上22.(本题10分)如图,设△ABC和△CDE都是等边三角形,并且∠EBD=90°,求证:(1) △ACE≌△BCD(2) 求∠AEB的度数23.(本题10分)如图1,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F(1) 直接写出∠AFC的度数(2) 请你判断并写出FE与FD之间的数量关系(3) 如图2,在△ABC中,如果∠ACB不是直角,而(1)中的其它条件不变,试判断线段AE、CD 与AC之间的数量关系并说明理由24.(本题12分)如图1,直线AB分别与x轴、y轴交于A、B两点,OC平分∠AOB交AB于点C,点D为线段AB上一点,过点D作DE∥OC交y轴于点E.已知AO=m,BO=n,且m、n 满足(n-6)2+|n-2m|=0(1) 求A、B两点的坐标(2) 若点D为AB中点,求OE的长(3) 如图2,若点P(x,-2x+6)为直线AB在x轴下方的一点,点E是y轴的正半轴上一动点,以E为直角顶点作等腰直角△PEF,使点F在第一象限,且F点的横、纵坐标始终相等,求点P 的坐标2020-2021学年八年级(上)期中数学模拟试卷一.选择题(共12小题,满分36分,每小题3分)1.下面的图形中,是轴对称图形的是()A.B.C.D.2.下列因式分解结果正确的是()A.x2+3x+2=x(x+3)+2 B.4x2﹣9=(4x+3)(4x﹣3)C.x2﹣5x+6=(x﹣2)(x﹣3)D.a2﹣2a+1=(a+1)23.利用尺规进行作图,根据下列条件作三角形,画出的三角形不唯一的是()A.已知三条边B.已知两边和夹角C.已知两角和夹边D.已知三个角4.用尺规作图法作已知角∠AOB的平分线的步骤如下:①以点O为圆心,任意长为半径作弧,交OB于点D,交OA于点E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB的内部相交于点C;③作射线OC.则射线OC为∠AOB的平分线.由上述作法可得△OCD≌△OCE的依据是()A.SAS B.ASA C.AAS D.SSS5.已知一个三角形有两边相等,且周长为25,若量得一边为5,则另两边长分别为()A.10,10 B.5,10 C.12.5,12.5 D.5,156.若关于x的二次三项式x2+kx+b因式分解为(x﹣1)(x﹣3),则k+b的值为()A.﹣1 B.1 C.﹣3 D.37.如图,已知AB∥CF,E为DF的中点,若AB=8cm,CF=5cm,则BD为()A.2cm B.3cm C.4cm D.1cm8.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A.30°B.35°C.45°D.60°9.当x=1时,代数式x3+x+m的值是7,则当x=﹣1时,这个代数式的值是()A.7 B.3 C.1 D.﹣710.如图,△BDC′是将矩形纸片ABCD沿BD折叠得到的,BC′与AD交于点E,则图中共有全等三角形()A.2对B.3对C.4对D.5对11.已知AD∥BC,AB⊥AD,点E,点F分别在射线AD,射线BC上.若点E与点B关于AC 对称,点E与点F关于BD对称,AC与BD相交于点G,则()A.1+AB/AD=B.2BC=5CFC.∠AEB+22°=∠DEF D.4AB/BD =12.如图,Rt△ABC中,AD是∠BAC的平分线,DE⊥AB,垂足为E,若AB=10cm,AC=6cm,则BE的长度为()A.10cm B.6cm C.4cm D.2cm二.填空题(共6小题,满分18分,每小题3分)13.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为.14.如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于点E,∠B=70°,∠FAE=19°,则∠C= 度.15.已知:在△ABC中,AH⊥BC,垂足为点H,若AB+BH=CH,∠ABH=70°,则∠BAC= °.16.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=2,则EF= .17.矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于.18.我们将1×2×3×…×n记作n!(读作n的阶乘),如2!=1×2,3!=1×2×3,4!=1×2×3×4,若设S=1×1!+2×2!+3×3!+…+2016×2016!,则S除以2017的余数是.三.解答题(共7小题)19.因式分解:(1)9a2﹣4(2)ax2+2a2x+a320.如图,△ABC三个顶点的坐标分别为A(4,5)、B(1,0)、C(4,0).(1)画出△ABC关于y轴的对称图形△A1B1C1,并写出A1点的坐标;(2)在y轴上求作一点P,使△PAB的周长最小,并求出点P的坐标及△PAB的周长最小值.21.如图,已知:A、F、C、D在同一条直线上,BC=EF,AB=DE,AF=CD.求证:BC∥EF.22.若m2﹣2m n+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+()=0,即()2+()2=0.根据非负数的性质,∴m=n=阅读上述解答过程,解答下面的问题,设等腰三角形ABC的三边长a、b、c,且满足a2+b2﹣4a﹣6b+13=0,求△ABC的周长.23.如图,BC⊥CD,∠1=∠2=∠3,∠4=60°,∠5=∠6.(1)CO是△BCD的高吗?为什么?(2)求∠5、∠7的度数.24.如图,△ABC中,AB=AC,∠BAC=90°,点D是直线AB上的一动点(不和A、B重合),BE⊥CD于E,交直线AC于F.(1)点D在边AB上时,证明:AB=FA+BD;(2)点D在AB的延长线或反向延长线上时,(1)中的结论是否成立?若不成立,请画出图形并直接写出正确结论.25.如图,某学校(A点)与公路(直线L)的距离AB为300米,又与公路车站(D点)的距离AD为500米,现要在公路上建一个小商店(C点),使CA=CD,求商店与车站之间的距离CD的长.参考答案一.选择题1. D.2. C.3. D.4. D.5. A.6. A.7. B.8. B.9. B.10. C.11. A.12. C.二.填空题13. 4.14. 24.15. 75°或35°16. 4.17..18. 2016.三.解答题19.解:(1)9a2﹣4=(3a+2)(3a﹣2)(2)ax2+2a2x+a3=a(x+a)220.解:(1)如图所示,由图可知 A1(﹣4,5);(2)如图所示,点P即为所求点.设直线AB1的解析式为y=kx+b(k≠0),∵A(4,5),B1(﹣1,0),∴,解得,∴直线AB1的解析式为y=x+1,∴点P坐标(0,1),∴△PAB的周长最小值=AB1+AB=+=5+.21.证明:如图,∵AF=CD,∴AF+CF=CD+CF,即AC=DF.∴在△ABC与△DEF中,,∴△ABC≌△DEF(SSS),∴∠BCA=∠EFD,∴BC∥EF.22.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0,即(m﹣n)2+(n﹣4)2=0.根据非负数的性质,∴m=n=4,故答案为:n2﹣8n+16;m﹣n;n﹣4;4;已知等式变形得:(a﹣2)2+(b﹣3)2=0,所以a=2,b=3,第一种情况2,2,3,周长=7;第二种情况3,3,2,周长=8.23.解:(1)CO是△BCD的高.理由如下:∵BC⊥CD,∴∠DCB=90°,∴∠1=∠2=∠3=45°,∴△DCB是等腰直角三角形,∴CO是∠DCB的角平分线,∴CO⊥BD(等腰三角形三线合一);(2)∵在△ACD中,∠1=∠3=45°,∠4=60°,∴∠5=30°,又∵∠5=∠6,∴∠6=30°,∴在直角△AOB中,∠7=180°﹣90°﹣30°=60°.24.(本题满分8分)(1)证明:如图1,∵BE⊥CD,即∠BEC=90°,∠BAC=90°,∴∠F+∠FBA=90°,∠F+∠FCE=90°.∴∠FBA=∠FCE.……………………………………………………………(1分)∵∠FAB=180°﹣∠DAC=90°,∴∠FAB=∠DAC.∵AB=AC,∴△FAB≌△DAC.………………………………………………(2分)∴FA=DA.………………………………………………∴AB=AD+BD=FA+BD.………………………………………(4分)(2)如图2,当D在AB延长线上时,AF=AB+BD,…………(6分)理由是:同理得:△FAB≌△DAC,∴AF=AD=AB+BD;如图3,当D在AB反向延长线上时,BD=AB+AF,…………………(8分)理由是:同理得:△FAB≌△DAC,∴AF=AD,∴BD=AB+AD=AB+AF.25.解:∵AB⊥l于B,AB=300m,AD=500m.∴BD==400m.设CD=x米,则CB=(400﹣x)米,x2=(400﹣x)2+3002,x2=160000+x2﹣800x+3002,800x=250000,x=312.5m.答:商店与车站之间的距离为312.5米.2020-2021学年八年级(上)期中数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cmC.5cm,5cm,10cm D.6cm,7cm,14cm2.下列四个图案中,不是轴对称图案的是()A.B.C.D.3.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)4.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CADC.BE=DC D.AD=DE5.下列计算正确的是()A.a2+a2=2a4B.2a2×a3=2a6C.3a﹣2a=1 D.(a2)3=a6[来6.只用一种正六边形地砖密铺地板,则能围绕在正六边形的一个顶点处的正六边形地砖有()A.3块B.4块C.5块D.6块7.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC ≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE8.到三角形三个顶点的距离相等的点是三角形()的交点.A.三个内角平分线B.三边垂直平分线C.三条中线D.三条高9.如图,四边形ABCD中,F是CD上一点,E是BF上一点,连接AE、AC、DE.若AB=AC,AD=AE,∠BAC=∠DAE=70°,AE平分∠BAC,则下列结论中:①△ABE≌△ACD:②BE=EF;③∠BFD=110°;④AC垂直平分DE,正确的个数有()A.1个B.2个C.3个D.4个10.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6 个B.7 个C.8 个D.9个二.填空题(共6小题,满分18分,每小题3分)11.计算(2m2n2)2•3m2n3的结果是.12.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是.13.等腰三角形的一个外角是80°,则其底角是度.14.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是.15.如图,在Rt△ABC中,斜边AB的垂直平分线交边AB于点E,交边BC于点D,如果∠B=28°,那么∠CAD= 度.16.在等边三角形ABC中,AD是BC边上的高,E为AC的中点P为AD上一动点,若AD=12,则PC+PE的最小值为.三.解答题(共9小题,满分72分)17.(6分)计算:(1)(12a3﹣6a2+3a)÷3a;(2)(x﹣y)(x2+xy+y2).18.(6分)如图,∠A=50°,OB、OC为角平分线,求∠BOC.19.(8分)如图,方格图中每个小正方形的边长为1,点A,B,C都是格点.(1)画出△ABC关于直线BM对称的△A1B1C1;(2)写出AA1的长度.20.(8分)计算:(1)﹣(a2b)3+2a2b•(﹣3a2b)2(2)(a+2b﹣c)(a﹣2b+c)(3)已知6x﹣5y=10,求[(﹣2x+y)(﹣2x﹣y)﹣(2x﹣3y)2]÷4y的值.21.(8分)如图,点D,C在BF上,AB∥EF,∠A=∠E,BD=CF.求证:AB=EF.22.(8分)已知一个等腰三角形的三边长分别为2x﹣1、x+1、3x﹣2,求这个等腰三角形的周长.(1)完成部分解题过程,在以下解答过程的空白处填上适当的内容.解:①当2x﹣1=x+1时,解x= ,此时构成三角形(填“能”或“不能”).②当2x﹣1=3x﹣2时,解x= ,此时构成三角形(填“能”或“不能”).(2)请你根据(1)中两种情况的分类讨论,完成第三种情况的分析,若能构成等腰三角形,求出这个三角形的周长.24.(10分)已知,△ABC是等边三角形,过点C作CD∥AB,且CD=AB,连接BD交AC于点O(1)如图1,求证:AC垂直平分BD;(2)点M在BC的延长线上,点N在AC上,且MD=NM,连接BN.①如图2,点N在线段CO上,求∠NMD的度数;②如图3,点N在线段AO上,求证:NA=MC.25.(10分)已知△ABC是等边三角形,点D,E,F分别是边AB,BC,AC的中点,点M是射线EC上的一个动点,作等边△DMN,使△DMN与△ABC在BC边同侧,连接NF.(1)如图1,当点M与点C重合时,直接写出线段FN与线段EM的数量关系;(2)当点M在线段EC上(点M与点E,C不重合)时,在图2中依题意补全图形,并判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)连接DF,直线DM与直线AC相交于点G,若△DNF的面积是△GMC面积的9倍,AB=8,请直接写出线段CM的长.参考答案与试题解析一.选择题1.【解答】解:A、∵5+4=9,9=9,∴该三边不能组成三角形,故此选项错误;B、8+8=16, 16>15,∴该三边能组成三角形,故此选项正确;C、5+5=10,10=10,∴该三边不能组成三角形,故此选项错误;D、6+7=13,13<14,∴该三边不能组成三角形,故此选项错误;故选:B.2.【解答】解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.3.【解答】解:点M(1,2)关于y轴对称点的坐标为(﹣1,2).故选:A.4.【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选:D.5.【解答】解:A、应为a2+a2=2a2,故本选项错误;B、应为2a2×a3=2a5,故本选项错误;C、应为3a﹣2a=a,故本选项错误;D、(a2)3=a6,正确.故选:D.6.【解答】解:因为正六边形的内角为120°,所以360°÷120°=3,即每一个顶点周围的正六边形的个数为3.故选:A.7.【解答】解:A、添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故A选项正确.B、添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故B选项错误.C、添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项错误.D、添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故D选项错误.故选:A.8.【解答】解:到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点.故选:B.9.【解答】解:∵AB=AC,∠BAC=∠DAE,AE=AD,∴ABE≌△ACD,故①正确.∵ABE≌△ACD,∴∠AEB=∠ADC.∵∠AEB+∠AEF=180°,∴∠AEF+∠ADC=180°,∴∠BFD=180°﹣∠EAD=180°﹣70°=110°,故③正确.∵AE平分∠BAC,∴∠EAC=35°.又∵∠DAE=70°,∴AC平分∠EAD.又∵AE=AD,∴AC⊥EF,AC平分EF.∴AC是EF的垂直平分线,故④正确.由已知条件无法证明BE=EF,故②错误.故选:C.10.【解答】解:如图,分情况讨论:①AB为等腰△ABC的底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:C.二.填空题(共6小题,满分18分,每小题3分)11.【解答】解:原式=4m4n4•3m2n3=12m6n7,故答案是:12m6n7.12.【解答】解:设多边形的边数为n,根据题意,得(n﹣2)•180=3×360,解得n=8.则这个多边形的边数是八.13.【解答】解:与80°角相邻的内角度数为100°;当100°角是底角时,100°+100°>180°,不符合三角形内角和定理,此种情况不成立;当100°角是顶角时,底角的度数=80°÷2=40°;故此等腰三角形的底角为40°.故填40.14.【解答】解:过O作OE⊥AB于E,OF⊥AC于F,连接OA,∵OB,OC分别平分∠ABC和∠ACB,OD⊥BC,∴OE=OD,OD=OF,即OE=OF=OD=4,∴△ABC的面积是:S△AOB+S△AOC+S△OBC=×AB×OE+×AC×OF+×BC×OD=×4×(AB+AC+BC)=×4×21=42,故答案为:42.15.【解答】解:在Rt△ABC中,∠B=28°,∴∠CAB=90°﹣28°=62°,∵DE垂直平分AB,∴AD=BD,∴∠DAB=∠B=28°,∴∠CAD=∠CAB﹣∠DAB=62°﹣28°=34°.故答案为:34.16.【解答】解:如图,连接BE,与AD交于点P,此时PE+PC最小,∵△ABC是等边三角形,AD⊥BC,∴PC=PB,∴PE+PC=PB+PE=BE,即BE就是PE+PC的最小值,∵AD=12,点E是边AC的中点,∴AD=BE=12,∴PE+PC的最小值是12.故答案为12,三.解答题(共9小题,满分72分)17.【解答】解:(1)(12a3﹣6a2+3a)÷3a;=12a3÷3a﹣6a2÷3a+3a÷3a=4a2﹣2a+1;(2)(x﹣y)(x2+xy+y2).=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3.18.【解答】解:∵OB、OC为角平分线,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∵∠ABC+∠ACB=180°﹣∠A,∠OBC+∠OCB=180°﹣∠BOC,∴2∠OBC+2∠OCB=180°﹣∠A,∴180°﹣∠A=2(180°﹣∠BOC),∴∠BOC=90°+∠A=90°+×50°=115°.19.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)由图可知,点A与点A1之间10个格子,所以AA1的长度为10.20.【解答】解:(1)原式=﹣a6b3+2a2b•9a4b2=﹣a6b3+18a6b3=17a6b3(2)原式=[a+(2b﹣c)][a﹣(2b﹣c)]=a2﹣(2b﹣c)2=a2﹣(4b2﹣4bc+c2)=a2﹣4b2+4bc﹣c2(3)当6x﹣5y=10时,∴3x﹣2.5y=5原式=[4x2﹣y2﹣(4x2﹣12xy+9y2)]÷4y=(12xy﹣10y2)÷4y=3x﹣2.5y=522.【解答】解:(1)①当2x﹣1=x+1时,解x=2,此时3,3,4,能构成三角形.②当2x﹣1=3x﹣2时,解x=1,此时1,2,1不能构成三角形.故答案为2,能,1,不能;(2)③当x+1=3x﹣2,解得x=,此时2,,能构成三角形.23.【解答】解:接OA,OB后,可证∠OAP=∠OBP=90°,其依据是直径所对圆周角为直角;由此可证明直线PA,PB都是⊙O的切线,其依据是经过半径外端且垂直于这条半径的直线是圆的切线,证明过程如下:由作图可知OP为⊙C的直径,∴∠OAP=∠OBP=90°,即OA⊥PA、OB⊥PB,∵OA、OB是⊙O的半径,∴OP是⊙O的切线.故答案为:直径所对圆周角为直角,经过半径外端且垂直于这条半径的直线是圆的切线.2020-2021学年八年级(上)期中数学模拟试卷一.选择题(共6小题,满分18分,每小题3分)1.如果三角形的三个内角的度数比是2:3:4,则它是()A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形2.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cmC.5cm,5cm,10cm D.6cm,7cm,14cm3.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙4.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE 5.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2) C.(1,﹣2)D.(2,﹣1)6.如右图是三条两两相交的笔直公路,某物流公司现要修建一个货物中转站,使它到三条公路的距离相等,这个货物中转站可选的位置有()A.3个B.4个C.5个D.6个二.填空题(共8小题,满分24分,每小题3分)7.如图,点E在△ABC边BC的延长线上,CD平分∠ACE,若∠A=70°,∠DCA=65°,则∠B的度数是.8.(3分)如图,在△ABC中,∠B=40°,∠C=28°,点D在BA的延长线上,则∠CAD的大小为.9.若一个多边形的内角和比外角和大360°,则这个多边形的边数为.10.如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为度.11.在△ABC中,∠C=∠A=∠B,则∠A= 度.12.如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是(填上你认为适当的一个条件即可).13.已知点P(3,1)关于y轴的对称点Q的坐标是(a+b,﹣1﹣b),则ab的值为.14.在△ABC中,BC=9,AB的垂直平分线交BC与点M,AC的垂直平分线交BC于点N,则△AMN的周长= .三.解答题(共4小题,满分24分,每小题6分)15.(6分)等腰三角形一腰上的中线,分别将该三角形周长分成30cm 和33cm,试求该等腰三角形的底边长.16.(6分)如图,点F是△ABC的边BC延长线上一点.DF⊥AB,∠A=30°,∠F=40°,求∠ACF的度数.17.(6分)如图,已知AB=AD,AC=AE,∠1=∠2,求证:BC=DE.18.(6分)如图所示,已知在△ABC中,AB=AC,D为线段BC上一点,E为线段AC上一点,且AD=AE.(1)若∠ABC=60°,∠ADE=70°,求∠BAD与∠CDE的度数;(2)设∠BAD=α,∠CDE=β,试写出α、β之间的关系并加以证明.四.解答题(共3小题,满分21分,每小题7分)19.(7分)已知:如图,△ABC中,D是BC延长线上一点,E是CA 延长线上一点,F是AB上一点,连接EF.求证:∠ACD>∠E.20.(7分)一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的边数.21.(7分)如图,在△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠C=40°,求∠BAD的度数;(2)若AC=5,DC=4,求△ABC的周长.五.解答题(共2小题,满分16分,每小题8分)22.(8分)如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有(请写序号,少选、错选均不得分).23.(8分)已知:如图1所示,等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN经过点A,BD⊥MN于点D,CE⊥MN于点E.(1)试判断线段DE、BD、CE之间的数量关系,并说明理由;(2)当直线MN运动到如图2所示位置时,其余条件不变,判断线段DE、BD、CE之间的数量关系.六.解答题(共2小题,满分17分)24.(8分)如图1,P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连接PQ交AC于点D.(1)求证:PD=DQ;(2)如图2,过P作PE⊥AC于E,若AB=2,求DE的长.25.(9分)如图,△ABC中,∠ACB=90°,AC=BC,将△ABC绕点C 逆时针旋转角α.(0°<α<90°)得到△A1B1C1,连接BB1.设CB1交AB于D,A1B1分别交AB、AC于E、F.(1)在图中不再添加其它任何线段的情况下,请你找出一对全等的三角形,并加以说明(△ABC与△A1B1C1全等除外);(2)当△BB1D是等腰三角形时,求α.参考答案一.选择题1. A.2. B.3. B.4. D.5. A.6. B.二.填空题7.60°.8.68°.9. 6.10.37.11. 60.12.【解答】解:∵∠1=∠2,∴∠AEB=∠AEC,又 AE公共,∴当∠B=∠C时,△ABE≌△ACE(AAS);或BE=CE时,△ABE≌△ACE(SAS);或∠BAE=∠CAE时,△ABE≌△ACE(ASA).13. 214. 9三.解答题16.解:在△DFB中,∵DF⊥AB,∴∠FDB=90°,∵∠F=40°,∠FDB+∠F+∠B=180°,∴∠B=50°.在△ABC中,∵∠A=30°,∠B=50°,∴∠ACF=∠A+∠B=30°+50°=80°.18.解:(1)∵AB=AC,∴∠B=∠C=60°,∴∠BAC=60°,∵AD=AE,∴∠ADE=∠AED=70°,∴∠DAE=40°,∴∠BAD=∠BAC﹣∠DAE=20°,∵∠AED=∠CDE+∠C,∴∠CDE=70°﹣60°=10°.(2)结论:α=2β,理由是:设∠BAC=x°,∠DAE=y°,则α=x°﹣y°,∵∠ACB=∠ABC,∴∠ACB=,∵∠ADE=∠AED,∴∠AED=,∴β=∠AED﹣∠ACB=﹣==,∴α=2β;19.证明:∵∠ACD是△ABC的一个外角,∴∠ACD>∠BAC,∵∠BAC是△AEF的一个外角,∴∠BAC>∠E,∴∠ACD>∠E.20.解:根据题意,得(n﹣2)•180=1620,解得:n=11.则这个多边形的边数是11,内角和度数是1620度.21.(1)解:∵EF垂直平分AC,∴AE=CE,∴∠C=∠EAC=40°,∵AD⊥BC,BD=DE,∴AB=AE,∴∠B=∠BEA=2∠C=80°,∴∠BAD=90°﹣80°=10°;(2)由(1)知:AE=EC=AB,∵BD=DE,∴AB+BD=DE+AE=DE+CE=DC,∴C△ABC=AB+BC+AC=2DC+AC=2×4+5=13..25.解:(1)全等的三角形有:△CBD≌△CA1F或△AEF≌△B1ED或△ACD≌△B1CF;证明:∵∠ACB1+∠A1CF=∠ACB1+∠BCD=90°∴∠A1CF=∠BCD∵A1C=BC∴∠A1=∠CBD=45°∴△CBD≌△CA1F;∴CF=CD,∵CA=CB1,∴AF=B1D,∵∠A=∠EB1D,∠AEF=∠B1ED,∴△AEF≌△B1ED,∵AC=B1C,∠ACD=∠B1CF,∠A=∠CB1F,∴△ACD≌△≌△B1CF.(2)在△CBB1中。
2020-2021学年度第一学期八年级期中数学试卷及答案共三套
2020-2021学年八年级(上)期中数学试卷一、选择题:本大题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有一项是符合要求1.中国文字博大精深,而且有许多是轴对称图形,在这四个文字中,不是轴对称图形的是()A.B.C.D.2.下列长度的三条线段能组成三角形的是()A.2,3,4B.3,6,11C.4,6,10D.5,8,143.等腰三角形一个角的度数为50°,则顶角的度数为()A.50°B.80°C.65°D.50°或80°4.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A.带①去B.带②去C.带③去D.带①②去5.如果n边形的内角和是它外角和的3倍,则n等于()A.6B.7C.8D.96.如图,AB∥DF,AC⊥CE于C,BC与DF交于点E,若∠A=20°,则∠CEF等于()A.110°B.100°C.80°D.70°7.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°8.如图,AD为∠BAC的平分线,添加下列条件后,不能证明△ABD≌△ACD的是()A.∠B=∠C B.∠BDA=∠CDA C.BD=CD D.AB=AC9.点P(1,﹣2)关于x轴对称的点的坐标为()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)10.下列语句中,正确的是()A.等腰三角形底边上的中线就是底边上的垂直平分线B.等腰三角形的对称轴是底边上的高C.一条线段可看作是以它的垂直平分线为对称轴的轴对称图形D.等腰三角形的对称轴就是顶角平分线11.如图,已知△ABC≌△A′BC′,AA′∥BC,∠ABC=70°,则∠CBC′的度数是()A.40°B.35°C.55°D.20°12.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为()A.4cm B.6cm C.8cm D.10cm二、填空题:本大题共6小题,每小题3分,共18分13.如图,已知AB=AC,EB=EC,AE的延长线交BC于D,则图中全等的三角形共有对.14.等腰三角形的周长为20cm,一边长为6cm,则底边长为cm.15.一个八边形的所有内角都相等,它的每一个外角等于度.16.已知△ABC的三边长a、b、c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是.17.如图,DE是AB的垂直平分线,AB=8,△ABC的周长是18,则△ADC的周长是.18.如图,已知钝角三角形ABC的面积为20,最长边AB=10,BD平分∠ABC,点M、N 分别是BD、BC上的动点,则CM+MN的最小值为.三、解答题:本大题共7小题,其中19~20题每题8分,21~25题每题10分,共66分19.(8分)请在边长为1的小正方形虚线网格中画出:(画出符合条件的一个图形即可)(1)一个所有顶点均在格点上的等腰三角形;(2)一个所有顶点均在格点上且边长均为无理数的等腰三角形;20.(8分)已知:如图,AB=CD,AD=BC.求证:AB∥CD.21.(10分)如图,已知OC=OE,OD=OB,试说明△ADE≌△ABC.22.(10分)如图,在△ABC中,AB=AC,AD为∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别是E,F,求证:BE=CF.23.(10分)如图,等腰直角△ABC中,CA=CB,点E为△ABC外一点,CE=CA,且CD 平分∠ACB交AE于D,且∠CDE=60°.(1)求证:△CBE为等边三角形;(2)若AD=5,DE=7,求CD的长.24.(10分)如图,在等边△ABC中,D、E分别在边BC、AC上,且DE∥AB,过点E 作EF⊥DE交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2cm,求DF的长.25.(10分)如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有一项是符合要求1.中国文字博大精深,而且有许多是轴对称图形,在这四个文字中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各个汉字进行判断即可得解.【解答】解:A、“大”是轴对称图形,故本选项不合题意;B、“美”是轴对称图形,故本选项不合题意;C、“中”是轴对称图形,故本选项不合题意;D、“国”是轴对称图形,故本选项符合题意.故选:D.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列长度的三条线段能组成三角形的是()A.2,3,4B.3,6,11C.4,6,10D.5,8,14【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:A、2+3>4,能组成三角形;B、3+6<11,不能组成三角形;C、4+6=10,不能组成三角形;D、5+8<14,不能够组成三角形.故选:A.【点评】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.等腰三角形一个角的度数为50°,则顶角的度数为()A.50°B.80°C.65°D.50°或80°【分析】等腰三角形一内角为50°,没说明是顶角还是底角,所以有两种情况.【解答】解:(1)当50°角为顶角,顶角度数为50°;(2)当50°为底角时,顶角=180°﹣2×50°=80°.故选:D.【点评】本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.4.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A.带①去B.带②去C.带③去D.带①②去【分析】根据三角形全等的判定方法ASA,即可求解.【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故选:C.【点评】此题主要考查了全等三角形的应用,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.5.如果n边形的内角和是它外角和的3倍,则n等于()A.6B.7C.8D.9【分析】根据多边形内角和公式180°(n﹣2)和外角和为360°可得方程180(n﹣2)=360×3,再解方程即可.【解答】解:由题意得:180(n﹣2)=360×3,解得:n=8,故选:C.【点评】此题主要考查了多边形内角和与外角和,要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.6.如图,AB∥DF,AC⊥CE于C,BC与DF交于点E,若∠A=20°,则∠CEF等于()A.110°B.100°C.80°D.70°【分析】如图,由AC⊥BC于C得到△ABC是直角三角形,然后可以求出∠ABC=180°﹣∠A﹣∠C=180°﹣20°﹣90°=70°,而∠ABC=∠1=70°,由于AB∥DF可以推出∠1+∠CEF=180°,由此可以求出∠CEF.【解答】解:∵AC⊥BC于C,∴△ABC是直角三角形,∴∠ABC=180°﹣∠A﹣∠C=180°﹣20°﹣90°=70°,∴∠ABC=∠1=70°,∵AB∥DF,∴∠1+∠CEF=180°,即∠CEF=180°﹣∠1=180°﹣70°=110°.故选:A.【点评】本题比较简单,考查的是平行线的性质及直角三角形的性质.7.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°【分析】由△ABC中,∠ACB=90°,∠A=22°,可求得∠B的度数,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,由三角形外角的性质,可求得∠ADE的度数,继而求得答案.【解答】解:△ABC中,∠ACB=90°,∠A=22°,∴∠B=90°﹣∠A=68°,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,∴∠ADE=∠CED﹣∠A=46°,∴∠BDC==67°.故选:C.【点评】此题考查了折叠的性质、三角形内角和定理以及三角形外角的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.8.如图,AD为∠BAC的平分线,添加下列条件后,不能证明△ABD≌△ACD的是()A.∠B=∠C B.∠BDA=∠CDA C.BD=CD D.AB=AC【分析】根据“AAS”对A进行判断;根据“ASA”对B进行判断;根据“SSA”对C进行判断;根据“SAS”对D进行判断.【解答】解:A、由,可得到△ABD≌△ACD,所以A选项不正确;B、由,可得到△ABD≌△ACD,所以B选项不正确;C、由BD=CD,AD=AD,∠BAD=∠CAD,不能得到△ABD≌△ACD,所以C选项正确.D、由,可得到△ABD≌△ACD,所以D选项不正确;故选:C.【点评】本题考查了全等三角形的判定:判定三角形全等的方法有“SSS”、“AAS”、“SAS”、“ASA”.9.点P(1,﹣2)关于x轴对称的点的坐标为()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)【分析】根据平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),即横坐标不变,纵坐标变成相反数,即可得出答案.【解答】解:根据关于x轴的对称点横坐标不变,纵坐标变成相反数,∴点P(1,﹣2)关于x轴对称点的坐标为(1,2),故选:A.【点评】本题主要考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系,难度较小.10.下列语句中,正确的是()A.等腰三角形底边上的中线就是底边上的垂直平分线B.等腰三角形的对称轴是底边上的高C.一条线段可看作是以它的垂直平分线为对称轴的轴对称图形D.等腰三角形的对称轴就是顶角平分线【分析】在三角形中,高、中线对应的都是一条线段,而角平分线对应的是一条射线.垂直平分线对应的是直线、对称轴对应的同样为一条直线,根据各种线之间的对应关系即可得出答案.【解答】解:A、三角形中,中线是连接一个顶点和它所对边的中点的连线段,而线段的垂直平分线是直线,故A错误;B、三角形的高对应的是线段,而对称轴对应的是直线,故B错误;C、线段是轴对称图形,对称轴为垂直平分线,故C正确;D、角平分线对应的是射线,而对称轴对应的是直线,故D错误.故选:C.【点评】本题考查了三角形的基本性质,在三角形中,高、中线对应的都是一条线段,而角平分线对应的是一条射线.这些都属于基本的概念问题,要能够吃透概念、定义.11.如图,已知△ABC≌△A′BC′,AA′∥BC,∠ABC=70°,则∠CBC′的度数是()A.40°B.35°C.55°D.20°【分析】根据平行线的性质得到∠BAA′=∠ABC=70°,根据全等三角形的性质、等腰三角形的性质计算即可.【解答】解:∵AA′∥BC,∴∠BAA′=∠ABC=70°,∵△ABC≌△A′BC′,∴BA=BA′,∠A′BC′=∠ABC=70°,∴∠BAA′=∠BA′A=70°,∴∠A′BA=40°,∴∠ABC′=30°,∴∠CBC′=40°,故选:A.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.12.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为()A.4cm B.6cm C.8cm D.10cm【分析】先利用AAS判定△ACD≌△AED得出AC=AE,CD=DE;再对构成△DEB的几条边进行变换,可得到其周长等于AB的长.【解答】解:∵AD平分∠CAB交BC于点D∴∠CAD=∠EAD∵DE⊥AB∴∠AED=∠C=90∵AD=AD∴△ACD≌△AED.(AAS)∴AC=AE,CD=DE∵∠C=90°,AC=BC∴∠B=45°∴DE=BE∵AC=BC,AB=6cm,∴2BC2=AB2,即BC===3,∴BE=AB﹣AE=AB﹣AC=6﹣3,∴BC+BE=3+6﹣3=6cm,∵△DEB的周长=DE+DB+BE=BC+BE=6(cm).另法:证明三角形全等后,∴AC=AE,CD=DE.∵AC=BC,∴BC=AE.∴△DEB的周长=DB+DE+EB=DB+CD+EB=CB+BE=AE+BE=6cm.故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、AAS、SAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二、填空题:本大题共6小题,每小题3分,共18分13.如图,已知AB=AC,EB=EC,AE的延长线交BC于D,则图中全等的三角形共有3对.【分析】在线段AD的两旁猜想所有全等三角形,再利用全等三角形的判断方法进行判定,三对全等三角形是△ABE≌△ACE,△EBD≌△ECD,△ABD≌△ACD.【解答】解:①△ABE≌△ACE∵AB=AC,EB=EC,AE=AE∴△ABE≌△ACE;②△EBD≌△ECD∵△ABE≌△ACE∴∠ABE=∠ACE,∠AEB=∠AEC∴∠EBD=∠ECD,∠BED=∠CED∵EB=EC∴△EBD≌△ECD;③△ABD≌△ACD∵△ABE≌△ACE,△EBD≌△ECD∴∠BAD=∠CAD∵∠ABC=∠ABE+∠BED,∠ACB=∠ACE+∠CED∴∠ABC=∠ACB∵AB=AC∴△ABD≌△ACD∴图中全等的三角形共有3对.【点评】本题考查学生观察,猜想全等三角形的能力,同时,也要求会运用全等三角形的几种判断方法进行判断.14.等腰三角形的周长为20cm,一边长为6cm,则底边长为6或8cm.【分析】分6cm是底边与腰长两种情况讨论求解.【解答】解:①6cm是底边时,腰长=(20﹣6)=7cm,此时三角形的三边分别为7cm、7cm、6cm,能组成三角形,②6cm是腰长时,底边=20﹣6×2=8cm,此时三角形的三边分别为6cm、6cm、8cm,能组成三角形,综上所述,底边长为6或8cm.故答案为:6或8.【点评】本题考查了等腰三角形的性质,难点在于要分情况讨论.15.一个八边形的所有内角都相等,它的每一个外角等于45度.【分析】根据多边形的外角和为360°即可解决问题;【解答】解:∵一个八边形的所有内角都相等,∴这个八边形的所有外角都相等,∴这个八边形的所有外角==45°,故答案为45;【点评】本题考查多边形内角与外角,解题的关键是熟练掌握基本知识,属于中考常考题型.16.已知△ABC的三边长a、b、c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是2(b﹣c).【分析】先根据三角形三边关系判断出a+b﹣c与b﹣a﹣c的符号,再把要求的式子进行化简,即可得出答案.【解答】解:∵△ABC的三边长分别是a、b、c,∴a+b>c,b﹣a<c,∴a+b﹣c>0,b﹣a﹣c<0,∴|a+b﹣c|﹣|b﹣a﹣c|=a+b﹣c﹣(﹣b+a+c)=a+b﹣c+b﹣a﹣c=2(b﹣c);故答案为:2(b﹣c)【点评】此题考查了三角形三边关系,用到的知识点是三角形的三边关系、绝对值、整式的加减,关键是根据三角形的三边关系判断出a+b﹣c与,b﹣a﹣c的符号.17.如图,DE是AB的垂直平分线,AB=8,△ABC的周长是18,则△ADC的周长是10.【分析】依据线段垂直平分线的性质可得到AD=BD,则△ADC的周长=BC+AC.【解答】解:∵DE是AB的垂直平分线,∴AD=BD.∴△ADC的周长=AD+DC+AC=BD+DC+AC=BC+AC=18﹣8=10.故答案为:10.【点评】本题主要考查的是线段垂直平分线的性质,熟练掌握相关知识是解题的关键.18.如图,已知钝角三角形ABC的面积为20,最长边AB=10,BD平分∠ABC,点M、N 分别是BD、BC上的动点,则CM+MN的最小值为4.【分析】过点C作CE⊥AB于点E,交BD于点M,过点M作MN⊥BC于N,则CE即为CM+MN的最小值,再根据三角形的面积公式求出CE的长,即为CM+MN的最小值.【解答】解:过点C作CE⊥AB于点E,交BD于点M,过点M作MN⊥BC于N,∵BD平分∠ABC,ME⊥AB于点E,MN⊥BC于N,∴MN=ME,∴CE=CM+ME=CM+MN的最小值.∵三角形ABC的面积为15,AB=10,∴×10•CE=20,∴CE=4.即CM+MN的最小值为4.故答案为4.【点评】本题考查了轴对称﹣最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目三、解答题:本大题共7小题,其中19~20题每题8分,21~25题每题10分,共66分19.(8分)请在边长为1的小正方形虚线网格中画出:(画出符合条件的一个图形即可)(1)一个所有顶点均在格点上的等腰三角形;(2)一个所有顶点均在格点上且边长均为无理数的等腰三角形;【分析】(1)根据等腰三角形两条边相等的性质作图,根据每个正方形的边长和高来计算画出题目中所要求的图形.(2)根据等腰三角形两条边相等的性质作图,根据每个正方形的边长和高来计算画出题目中所要求的图形.【解答】解:(1)如图所示:如三角形的三边长分别为1、1、或2、2、2或3、3、3或、、2或、、2或、、2等(2)如图所示:如三角形的三边长分别为、、或2、、等.【点评】本题考查了在小正三角形网格中,勾股定理的灵活应用.考查学生对有理数,无理数定义的理解,作出符合题目要求的图形.20.(8分)已知:如图,AB=CD,AD=BC.求证:AB∥CD.【分析】根据全等三角形对应角相等得出∠ABD=∠CDA,进一步得出AB∥CD.【解答】证明:在△ABD与△CDB中,,∴△ABD≌△CDB,∴∠ABD=∠CDA,∴AB∥CD.【点评】本题主要考查了三角形全等的判定和性质;根据全等三角形对应角相等得出∠ABD=∠CDA是解决问题的关键.21.(10分)如图,已知OC=OE,OD=OB,试说明△ADE≌△ABC.【分析】由OC=OE,OD=OB,可得到BC=DE,再利用SAS得到△COD≌△BOE,得到∠D=∠B,再利用AAS得到△ADE≌△ABC.【解答】解:在△COD和△BOE中,,∴△COD≌△BOE,∴∠D=∠B,∵OC=OE,OD=OB,∴DE=BC在△ADE和△ABC中,,∴△ADE≌△ABC.【点评】本题考查了三角形的全等的判定,三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.22.(10分)如图,在△ABC中,AB=AC,AD为∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别是E,F,求证:BE=CF.【分析】欲证明BE=CF,只要证明Rt△BDE≌Rt△CDF即可;【解答】证明:∵AB=AC,AD为∠BAC的平分线∴BD=CD,∵DE⊥AB,DF⊥AC∴DE=DF,在Rt△BDE和Rt△CDF中,∴Rt△BDE≌Rt△CDF,∴BE=CF.【点评】本题考查全等三角形的判定和性质、角平分线的性质、等腰三角形的性质等知识,解题的关键是证明Rt△BDE≌Rt△CDF.23.(10分)如图,等腰直角△ABC中,CA=CB,点E为△ABC外一点,CE=CA,且CD 平分∠ACB交AE于D,且∠CDE=60°.(1)求证:△CBE为等边三角形;(2)若AD=5,DE=7,求CD的长.【分析】(1)首先利用等腰三角形的性质得出,∠CAE=∠CEA,再利用外角的性质得出∠BCE的度数,进而利用等边三角形的判定得出答案;(2)首先在AE上截取EM=AD,进而得出△ACD≌△ECM,进而得出△MCD为等边三角形,即可得出答案.【解答】(1)证明:∵CA=CB,CE=CA,∴BC=CE,∠CAE=∠CEA,∵CD平分∠ACB交AE于D,且∠CDE=60°,∴∠ACD=∠DCB=45°,∠DAC+∠ACD=∠EDC=60°,∴∠DAC=∠CEA=15°,∴∠ACE=150°,∴∠BCE=60°,∴△CBE为等边三角形;(2)解:在AE上截取EM=AD,连接CM.在△ACD和△ECM中,,∴△ACD≌△ECM(SAS),∴CD=CM,∵∠CDE=60°,∴△MCD为等边三角形,∴CD=DM=7﹣5=2.【点评】此题主要考查了全等三角形的判定与性质以及等边三角形的性质与判定和三角形外角的性质等知识,正确作出辅助线是解题关键.24.(10分)如图,在等边△ABC中,D、E分别在边BC、AC上,且DE∥AB,过点E 作EF⊥DE交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2cm,求DF的长.【分析】(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.【点评】本题考查了等边三角形的判定与性质,以及直角三角形的性质,30度的锐角所对的直角边等于斜边的一半.25.(10分)如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.【分析】(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可求出△ADE≌△FCE,根据全等三角形的性质即可解答.(2)根据线段垂直平分线的性质判断出AB=BF即可.【解答】证明:(1)∵AD∥BC(已知),∴∠ADC=∠ECF(两直线平行,内错角相等),∵E是CD的中点(已知),∴DE=EC(中点的定义).∵在△ADE与△FCE中,,∴△ADE≌△FCE(ASA),∴FC=AD(全等三角形的性质).(2)∵△ADE≌△FCE,∴AE=EF,AD=CF(全等三角形的对应边相等),∴BE是线段AF的垂直平分线,∴AB=BF=BC+CF,∵AD=CF(已证),∴AB=BC+AD(等量代换).【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.2020-2021学年八年级(上)期中数学试卷一、选择题:本大题共13小题,每小题3分,共39分,每小题给出的四个选项中,只有一项是正确的,把答案前的字母写在括号内).1.4的平方根是()A.2B.﹣2C.±D.±22.下列各点中,在第二象限的点是()A.(2,3)B.(2,﹣3)C.(﹣2,﹣3)D.(﹣2,3)3.在下列各数;0;3π;;;1.1010010001…,无理数的个数是()A.5B.4C.3D.24.如图,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4B.∠D=∠DCEC.∠1=∠2D.∠D+∠ACD=180°5.若y轴上的点P到x轴的距离为3,则点P的坐标是()A.(3,0)B.(0,3)C.(3,0)或(﹣3,0)D.(0,3)或(0,﹣3)6.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.|﹣2|与27.如图,OA⊥OB,OC⊥OD,O是垂足,∠AOD=120°,那么∠COB的度数为()A.80°B.70°C.60°D.50°8.算术平方根等于它相反数的数是()A.0B.1C.0或1D.0或±19.已知=0.1738,=1.738,则a的值为()A.0.528B.0.0528C.0.00528D.0.00052810.如图:∠1和∠2是同位角的是()A.②③B.①②③C.①②④D.①④11.点A(3,﹣5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为()A.(1,﹣8)B.(1,﹣2)C.(﹣7,﹣1)D.(0,﹣1)12.在下列各式中,正确的是()A.B.C.D.13.如图,用同样大小的黑色棋子按如图所示的规律摆放:则第7个图案中黑色棋子有()A.13个B.16个C.19个D.22个二、填空题:(本大题共10小题,每小题3分,共30分).14.的相反数是.15.的算术平方根是.16.把“对顶角相等”改写成“如果…那么…”的形式是:.17.3(填>,<或=)18.在平面直角坐标系中,点P(a,a+1)在x轴上,那么点P的坐标是.19.若一个正数的平方根是2a﹣1和﹣a+2,则这个正数是.20.如图所示,直线a∥b,直线c与直线a,b分别相交于点A、点B,AM⊥b,垂足为点M,若∠1=58°,则∠2=.21.已知x、y为实数,且+(y+2)2=0,则y x=.22.已知AB∥x轴,A点的坐标为(﹣3,2),并且AB=4,则B点的坐标为.23.若∠α的两边与∠β的两边互相平行,当∠α=40°时,∠β=.三、解答题:24.(12分)计算或解方程(1)|﹣|+2(2)4(2﹣x)2=9(3)﹣+|1﹣|+(﹣1)201825.(9分)如图(1)写出三角形ABC的各个顶点的坐标;(2)试求出三角形ABC的面积;(3)将三角形ABC先向右平移3个单位长度,再向上平移2个单位长度,得到△A1B1C1,请在该网格中画出平移后的图形.26.(7分)如图,直线AB与CD相交于点0,∠AOD=20°,∠DOF:∠FOB=1:7,射线OE 平分∠BOF.(1)求∠EOB的度数;(2)射线OE与直线CD有什么位置关系?请说明理由.27.(6分)如图,已知AD ∥BC ,∠1=∠2,求证:∠3+∠4=180°.28.(7分)已知实数a 、b 在数轴上对应点的位置如图:(1)比较a ﹣b 与a +b 的大小;(2)化简|b ﹣a |+|a +b |.29.(10分)如图,直线AB 交x 轴于点A (3,0),交y 轴于点B (0,2)(1)求三角形AOB 的面积;(2)在x 轴负半轴上找一点Q ,使得S △QOB =S △AOB ,求Q 点坐标.(3)在y 轴上任一点P (0,m ),请用含m 的式子表示三角形APB 的面积.参考答案与试题解析一、选择题:本大题共13小题,每小题3分,共39分,每小题给出的四个选项中,只有一项是正确的,把答案前的字母写在括号内).1.4的平方根是()A.2B.﹣2C.±D.±2【分析】直接利用平方根的定义分析得出答案.【解答】解:4的平方根是:±=±2.故选:D.【点评】此题主要考查了平方根的定义,正确掌握相关定义是解题关键.2.下列各点中,在第二象限的点是()A.(2,3)B.(2,﹣3)C.(﹣2,﹣3)D.(﹣2,3)【分析】点在第二象限的条件是:横坐标是负数,纵坐标是正数,以此进行判断即可.【解答】解:因为第二象限的点的坐标是(﹣,+),符合此条件的只有(﹣2,3).故选:D.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.在下列各数;0;3π;;;1.1010010001…,无理数的个数是()A.5B.4C.3D.2【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:是无理数;0不是无理数;3π是无理数;=3不是无理数;不是无理数;1.1010010001…是无理数,故选:C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.如图,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4B.∠D=∠DCEC.∠1=∠2D.∠D+∠ACD=180°【分析】由平行线的判定定理可证得,选项A,B,D能证得AC∥BD,只有选项C能证得AB∥CD.注意掌握排除法在选择题中的应用.【解答】解:A、∵∠3=∠4,∴AC∥BD.本选项不能判断AB∥CD,故A错误;B、∵∠D=∠DCE,∴AC∥BD.本选项不能判断AB∥CD,故B错误;C、∵∠1=∠2,∴AB∥CD.本选项能判断AB∥CD,故C正确;D、∵∠D+∠ACD=180°,∴AC∥BD.故本选项不能判断AB∥CD,故D错误.故选:C.【点评】此题考查了平行线的判定.注意掌握数形结合思想的应用.5.若y轴上的点P到x轴的距离为3,则点P的坐标是()A.(3,0)B.(0,3)C.(3,0)或(﹣3,0)D.(0,3)或(0,﹣3)【分析】由点在y轴上首先确定点P的横坐标为0,再根据点P到x轴的距离为3,确定P点的纵坐标,要注意考虑两种情况,可能在原点的上方,也可能在原点的下方.【解答】解:∵y轴上的点P,∴P点的横坐标为0,又∵点P到x轴的距离为3,∴P点的纵坐标为±3,所以点P的坐标为(0,3)或(0,﹣3).故选:D.【点评】此题考查了由点到坐标轴的距离确定点的坐标,特别对于点在坐标轴上的特殊情况,点到坐标轴的距离要分两种情况考虑点的坐标.6.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.|﹣2|与2【分析】直接利用实数的相关性质化简各数,进而判断即可.【解答】解:A、﹣2与=2,是互为相反数,故此选项正确;B、﹣2与=﹣2,两数相等,故此选项错误;C、﹣2与,不是互为相反数,故此选项错误;D、|﹣2|与2,两数相等,故此选项错误;故选:A.【点评】此题主要考查了实数的性质以及互为相反数的定义,正确化简各数是解题关键.7.如图,OA⊥OB,OC⊥OD,O是垂足,∠AOD=120°,那么∠COB的度数为()A.80°B.70°C.60°D.50°【分析】求出∠BOD的度数,根据∠DOC的度数求出即可.【解答】解:∵∠AOD=120°,∠AOB=90°,∴∠BOD=120°﹣90°=30°,∵∠DOC=90°,∴∠BOC=∠DOC﹣∠DOB=90°﹣30°=60°,故选:C.【点评】本题考查了角的有关计算的应用,关键是能求出各个角的度数.8.算术平方根等于它相反数的数是()A.0B.1C.0或1D.0或±1【分析】由于算术平方根只能是非负数,而算术平方根等于它相反数,由此得到它是非正数,由此即可得到结果.【解答】解:∵算术平方根只能是非负数,而算术平方根等于它相反数,∴算术平方根等于它相反数的数是非正数,∴算术平方根等于它相反数的数是0.故选:A.【点评】此题主要考查了非负数的性质,其中利用了两个非负数:一个数的算术平方根是非负数;有算术平方根的只能是非负数.9.已知=0.1738,=1.738,则a的值为()A.0.528B.0.0528C.0.00528D.0.000528【分析】利用立方根定义计算即可求出值.【解答】解:∵=0.1738,=1.738,∴a=0.00528,故选:C.【点评】此题考查了立方根,熟练掌握立方根定义是解本题的关键.10.如图:∠1和∠2是同位角的是()A.②③B.①②③C.①②④D.①④【分析】同位角的概念,在截线的同侧,并且在被截线的同一方的两个角是同位角,所以①②④符合要求.【解答】解:图①、②、④中,∠1与∠2在截线的同侧,并且在被截线的同一方,是同位角;图③中,∠1与∠2的两条边都不在同一条直线上,不是同位角.故选:CD.【点评】本题考查了同位角的概念;判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.11.点A(3,﹣5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为()A.(1,﹣8)B.(1,﹣2)C.(﹣7,﹣1)D.(0,﹣1)【分析】根据向上平移,纵坐标加,向左平移,横坐标减进行计算即可.【解答】解:根据题意,∵点A(3,﹣5)向上平移4个单位,再向左平移3个单位,∴﹣5+4=﹣1,3﹣3=0,∴点B的坐标为(0,﹣1).故选:D.【点评】本题考查了点的坐标平移,根据上加下减,右加左减,上下平移是纵坐标变化,左右平移是横坐标变化,熟记平移规律是解题的关键.12.在下列各式中,正确的是()A.B.C.D.【分析】运用立方根、平方根的知识,计算左边,根据左边是不是等于右边做出判断【解答】解:=≠2018,故选项A错误;==﹣0.4,故选项B正确;==2018≠±2018,故选项C错误;+=2018+2018=4036≠0,故选项D错误.故选:B.【点评】本题主要考查了实数运算、平方根和立方根,掌握实数的平方根、立方根的意义是解题关键.13.如图,用同样大小的黑色棋子按如图所示的规律摆放:则第7个图案中黑色棋子有()。
2020年~2021年八年级第一学期期中考试数学试卷及答案
2020年~2021年八年级第一学期期中考试数学试卷一 选择题(共12个小题,每小题3分,共36分)1.自新冠肺炎疫情发生以来,各地积极普及科学防控知识,下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图形的是( )2.点A(-1,-2)关于x 轴对称的点的坐标是( ) A.(1,2) B.(1,-2) C.(-1,2) D.(-1,-2)3.如图1,墙上钉着三根木条a ,b ,c ,量得∠1=70°,∠2=100°,那么木条a ,b 所在直线所夹的锐角是( )A.5°B.10°C.30°D.70°4.已知三角形的三边长分别为3,x,5,若x 为正整数,则这样的三角形个数为( ) A.2 B.3 C.5 D.75.如图2,已知AB=AD ,那么添加下列一个条件后,仍无法判定△ABC≌△ADC 的是 ( )A.CB=CDB.∠BAC=∠DACC.∠BCA=∠DCAD.∠B=∠D=90°6.如图3,在△ABC 中,∠A=30°,∠ABC=50°,若△EDC≌△ABC,且点A ,C ,D 在同一条直线上,则∠BCE 的度数为( ) A .20° B.30° C.40° D.50°7.若正多边形的内角和是1260°,则该正多边形的一个外角为( ) A.30° B.40° C.45° D.60°8.如图4,△ABC 与△A 'B'C'关于MN 对称,P 为MN 上任一点(A ,P ,A'不共线),下列结论中不正确的是( )A.AP=A'PB.MN 垂直平分线段AA'C.△ABC 与△A 'B'C'面积相等D.直线AB ,A'B'的交点不一定在直线MN 上9.如图5,点O 在△ABC 内,且到三边的距离相等,若∠BOC=110°,则∠A 的度数为( )A.40°B.45°C.50°D.55°10.如图6,在△ABC 中,AB=AC ,AB 的垂直平分线交AB 于点D ,交BC 的延长线于点E ,交AC 于点F ,若AB+BC=6,则△BCF 的周长为( ) A.4.5 B.5 C.5.5 D.611.如图7,△ABC 的两条中线AM ,BN 相交于点O ,已知△ABO 的面积为4,△BOM 的面积为2,则四边形MCNO 的面积为( ) A.4 B.3 C.4.5 D.3.512.如图8,AB∥CD,AD∥B C ,AC 与BD 相交于点O ,AE⊥BD,CF⊥BD,垂足分别是E ,F ,则图中的全等三角形共有( ) A.5对 B.6对 C.7对 D.8对二 填空题(共5个小题,每小题3分,共15分)13.如图9,P 是∠AOB 的平分线OC 上一点,PD⊥OB,垂足为D ,若PD=2,则点P 到边OA 的距离是 .14.在△ABC 中,将∠B,∠C 按如图10所示方式折叠,点B ,C 均落于边BC 上点G 处,线段MN ,EF 为折痕.若∠A=82°,则∠MGE= .15.如图11,CE⊥AB,DF⊥AB,垂足分别为E ,F ,CE=DF ,AC=BD ,AB=10,EF=4,则BF= .16.如图12,过正六边形 ABCDEF 的顶点B 作一条射线与其内角∠BAF 的平分线相交于点P ,且∠APB=40°,则∠CBP 的度数为 .17.如图13,在△ABC 中,∠B=55°,∠C=30°,分别以点A 和点C 为圆心,大于21AC 的长为半径画弧,两弧相三 解答题(共7个小题,共69分)18.(8分)如图,在平面直角坐标系中,已知四边形ABCD 是轴对称图形,点A 的坐标为(-3,3).(1)画出四边形ABCD 的对称轴;(2)画出四边形ABCD 关于y 轴对称的四边形A 1B 1C 1D 1,并写出点A 1,C 1的坐标19.(9分)如图,在△ABC 中,DE 是边AC ,BC 上的点,AE 和BD 交于点F ,已知∠CAE=20°,∠C=40°,∠CBD=30°,(1)求∠AFB 的度数;(2)若∠BAF=2∠ABF,求∠BAF 的度数.20.(9分)如图,小明用五根宽度相同的木条拼成了一个五边形,已知AE∥CD,∠A=21∠C,∠B=120°.(1)∠D+∠E= 度;(2)求∠A 的度数;(3)要使这个五边形木架保持现在的稳定状态,小明至少还需钉上 根相同宽度的木条.21.(10分)如图,要测量河流AB 的长,可以在AB 线外任取一点D ,在AB 的延长线上任取一点E ,连接ED 和BD ,并且延长BD 到点G ,使DG=BD ;延长ED 到点F ,使FD=ED ;连接FG 并延长到点H ,使点H ,D ,A 在同一直线上,这样测量出线段HG 的长就是河流AB 的长,请说明这样做的理由.22.(10分)如图,在△ABC 中,(1)下列操作,作∠ABC 的平分线的正确顺序是 (填序号);①分别以点M ,N 为圆心,大于21MN 的长为半径作圆弧,在∠ABC 内,两弧交于点P ;②以点B 为圆心,适当长为半径作圆弧,交AB 于点M ,交BC 于点N ;③画射线BP ,交AC 于点D.(2)能说明∠ABD=∠CBD 的依据是 (填序号);①SS S ;②ASA;③AAS;④角平分线上的点到角两边的距离相等.(3)若AB=18,BC=12,S △ABC =120,过点D 作DE⊥AB 于点E ,求DE 的长.23.(11分)如图,在△ABC 中,边AB ,AC 的垂直平分线分别交BC 于点D ,E ,交AB ,AC 于点M ,N.(1)若BC=10,求△ADE 的周长;(2)设直线DM ,EN 交于点O ,连接OB ,OC.①试判断点O 是否在BC 的垂直平分线上,并说明理由;②若∠BAC=100°,则∠BOC 的度数为 .24.(12分)如图①,在△ABC 中,∠ACB=90°,AC=BC=10,直线DE 经过点C ,过点A ,B 分别作AD⊥DE,BE⊥DE,垂足分别为点D 和E ,AD=8,BE=6.(1)①求证:△ADC≌△CEB,②求DE 的长;(2)点M 以3个单位长度/秒的速度从点C 出发沿着边CA 向终点A 运动,点N 以8个单位长度/秒的速度从点B 出发沿着边BC 和CA 向终点A 运动,如图②所示,点M ,N 同时出发,运动时间为t 秒(t>0),当点N 到达终点时,两点同时停止运动.过点M 作MP⊥DE 于点P ,过点N 作NQ⊥DE 于点Q.①当点N 在线段CA 上时,线段CN 的长度为 ;②当△PCM 与△QCN 全等时,求t 的值.2020年~2021年八年级第一学期期中考试数学试卷参考答案1.D2.C3.B4.C5.C6.A7.B8.D9.A 10.D 11.A 12.C 13.2 14.82° 15.3 16.40° 17.65°18.解:(1)如图;(2)如图,A1(3,3),C1(3,-1).19.解:(1)∵∠AEB=∠C+∠CAE=40°+20°=60°,∴∠AFB=∠CBD+∠AEB=30°+60°=90°;(2)∵∠BAF=2∠ABF ,∠AFB=90°,∴3∠ABF=90°,∴∠ABF=30°,∴∠BAF=60°.20.解:(1)180;(2)这个五边形的内角和为(5-2)×180°=540°.设∠A=x °,则∠C=2x °.∵∠A+∠B+∠C+∠D+∠E=540°,∴x+120+2x+180=540,∴x=80,∴∠A=80°;(3)2.21.解:∵BD=DG ,∠BDE=∠GDF ,ED=DF ,∴△BED ≌△GFD (SAS ),∴BE=FG ,∠E=∠F.又∵ED=DF ,∠ADE=∠HDF ,∴△AED ≌△HFD (ASA ),∴AE=FH ,∴AB=HG. 即测量出线段HG 的长就是河流AB 的长.22.解:(1)②①③;(2)①;(3)过点D 作DF ⊥BC 于点F. ∵∠ABD=∠CBD ,DE ⊥AB ,DF ⊥BC ,∴DE=DF ,∴S △ABC =S △ABD +S △CBD =21×AB ×DE+21×BC ×DF=120,∴21×18×DE+21×12×DE=120,解得DE=8. 23.解:(1)∵DM ,EN 分别是AB ,AC 的垂直平分线,∴AD=BD ,AE=CE ,∴AD+DE+AE=BD+DE+CE=BC=10,即△ADE 的周长是10;(2)①点O 在BC 的垂直平分线上;理由:连接OA.∵DM ,EN 分别是AB ,AC 的垂直平分线,∴OA=OB ,OA=OC ,∴OB=OC ,∴点O 在BC 的垂直平分线上;②160°.(提示:∵OM ⊥AB ,∴∠AMO=∠BMO=90°.又∵OA=OB ,OM=OM ,∴△AOM ≌△BOM ,∴∠OAM=∠OBM.同理可得∠OAN=∠OCN. ∴∠BOC=360°-2∠BAC=160°)24.解:(1)①证明:∵AD ⊥DE ,BE ⊥DE ,∴∠ADC=∠CEB=90°. ∵∠ACB=90°,∴∠DAC+∠DCA=∠DCA+∠ECB=90°,∴∠DAC=∠ECB.又∵AC=BC ,∴△ADC ≌△CEB (AAS );②由①得△ADC ≌△CEB ,∴AD=CE=8,CD=BE=6,∴DE=CD+CE=6+8=14;(2)①8t-10;②分两种情况:当点N 在线段BC 上时,△PCM ≌△QNC ,∴CM=CN ,∴3t=10-8t ,解得t=1110;当点N 在线段CA 上时,△PCM ≌△QCN ,点M 与N 重合,CM=CN ,则3t=8t-10,解得t=2.综上所述,当△PCM 与△QCN 全等时,t 的值为1110或2.。
2020年襄阳市八年级数学上期中试卷带答案
2020年襄阳市八年级数学上期中试卷带答案一、选择题1.下列四个图形中,既是轴对称图形又是中心对称图形的有( )A .4个B .3个C .2个D .1个2.要使分式13a +有意义,则a 的取值应满足( ) A .3a =- B .3a ≠- C .3a >- D .3a ≠ 3.如图,ABC V 是等腰直角三角形,BC 是斜边,将ABP V 绕点A 逆时针旋转后,能与ACP 'V 重合,如果3AP =,那么PP '的长等于( )A .32B .23C .42D .33 4.如图,已知△ABC 中,∠ABC=45°,F 是高AD 和BE 的交点,CD=4,则线段DF 的长度为( )A .22B .4C .32D .425.一个正多边形的每个外角都等于36°,那么它是( )A .正六边形B .正八边形C .正十边形D .正十二边形6.下列运算正确的是( )A .(-x 3)2=x 6B .a 2•a 3=a 6C .2a •3b =5abD .a 6÷a 2=a 3 7.如图,在等腰∆ABC 中,AB=AC ,∠BAC=50°,∠BAC 的平分线与AB 的垂直平分线交于点O 、点C 沿EF 折叠后与点O 重合,则∠CEF 的度数是( )A .60°B .55°C .50°D .45°8.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是( )A .1B .2C .8D .119.如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处,若∠2=40°,则图中∠1的度数为( )A .115°B .120°C .130°D .140° 10.若x ﹣m 与x+3的乘积中不含x 的一次项,则m 的值为( ) A .3B .1C .0D .﹣3 11.若二次三项式2249x mxy y ++是一个完全平方式,则m 的可能值是( )A .6±B .12C .6D .12±12.如图,△ABC 中,∠B =60°,AB =AC ,BC =3,则△ABC 的周长为( )A .9B .8C .6D .12二、填空题13.如图,点D 为等边△ABC 内部一点,且∠ABD=∠BCD ,则∠BDC 的度数为_______.14.如图,一束平行太阳光线照射到正五边形上,则∠1= ______.15.使1 2x +有意义的x 取值范围是_____;若分式3 3x x --的值为零,则x =_____;分式2211 x x x x -+,的最简公分母是_____. 16.已知11 5x y +=,则232 2x xy y x xy y-+=++_____. 17.关于x 的方程25211a x x-+=---的解为正数,则a 的取值范围为________. 18.清明节期间,初二某班同学租一辆面包车前去故宫游览,面包车的租金为600元,出发时又增加了5名同学,且租金不变,这样每个同学比原来少分摊了10元车费,若设实际参加游览的同学,一共有x 人则可列分式方程________.19.若关于x 的分式方程111x x m +--=2有增根,则m =_____. 20.计算:0113()22-⨯+-=______. 三、解答题21.先化简,再求值:222284()24a a a a a a+-+÷--,其中a 满足方程2410a a ++=. 22.如图,某校准备在校内一块四边形ABCD 草坪内栽上一颗银杏树,要求银杏树的位置点P 到边AB ,BC 的距离相等,并且点P 到点A ,D 的距离也相等,请用尺规作图作出银杏树的位置点P (不写作法,保留作图痕迹).23.“已知a m =4,a m+n =20,求a n 的值.”这个问题,我们可以这样思考:逆向运用同底数幂的乘法公式,可得: a m+n =a m a n ,所以20=4a n , 所以a n =5.请利用这样的思考方法解决下列问题:已知a m =3,a n =5,求下列代数的值:(1)a 2m+n ; (2)a m-3n .24.将下列多项式分解因式:(1)22()2()a b a b c c ++++.(2)24()a a b b -+.(3)22344xy x y y --.(4)()2224116a a +-.25.我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等.(1)文学书和科普书的单价各多少钱?(2)今年文学书和科普书的单价和去年相比保持不变,该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题分析:A选项既是轴对称图形,也是中心对称图形;B选项中该图形是轴对称图形不是中心对称图形;C选项中既是中心对称图形又是轴对称图形;D选项中是中心对称图形又是轴对称图形.故选B.考点: 1.轴对称图形;2.中心对称图形.2.B解析:B【解析】【分析】直接利用分式有意义,则分母不为零,进而得出答案.【详解】解:要使分式13a+有意义,则a+3≠0,解得:a≠-3.故选:B.【点睛】此题主要考查了分式有意义的条件,正确把握分式有意义的条件是解题关键.3.A解析:A【解析】【分析】【详解】解:如图:根据旋转的旋转可知:∠PAP′=∠BAC=90°,AP=AP′=3,根据勾股定理得:'=PP A.4.B解析:B【解析】【分析】求出AD=BD,根据∠FBD+∠C=90°,∠CAD+∠C=90°,推出∠FBD=∠CAD,根据ASA证△FBD≌△CAD,推出CD=DF即可.【详解】解:∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEB=∠ADC=90°,∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,∵∠AFE=∠BFD,∴∠EAF=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABC,∴AD=BD,在△ADC和△BDF中CAD DBF AD BDFDB ADC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADC≌△BDF,∴DF=CD=4,故选:B.【点睛】此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件.5.C解析:C【解析】试题分析:利用多边形的外角和360°,除以外角的度数,即可求得边数.360÷36=10.故选C.考点:多边形内角与外角.6.A解析:A【解析】【分析】A.利用积的乘方与幂的乘方运算法则计算得到结果,即可做出判断;B.利用同底数幂的乘法法则计算得到结果,即可做出判断;C.利用单项式乘单项式法则计算得到结果,即可做出判断;D.利用同底数幂的除法法则计算得到结果,即可做出判断.【详解】A.(﹣x3)2=x6,本选项正确;B.a2•a3=a5,本选项错误;C.2a•3b=6ab,本选项错误;D.a6÷a2=a4,本选项错误.故选A.【点睛】本题考查了同底数幂的除法,同底数幂的乘法,单项式乘单项式以及积的乘方与幂的乘方,熟练掌握运算法则是解答本题的关键.7.C解析:C【解析】【分析】连接OB,OC,先求出∠BAO=25°,进而求出∠OBC=40°,求出∠COE=∠OCB=40°,最后根据等腰三角形的性质,问题即可解决.【详解】如图,连接OB,∵∠BAC=50°,AO为∠BAC的平分线,∴∠BAO=12∠BAC=12×50°=25°.又∵AB=AC,∴∠ABC=∠ACB=65°.∵DO是AB的垂直平分线,∴OA=OB,∴∠ABO=∠BAO=25°,∴∠OBC=∠ABC−∠ABO=65°−25°=40°.∵AO为∠BAC的平分线,AB=AC,∴直线AO 垂直平分BC,∴OB=OC,∴∠OCB=∠OBC=40°,∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE.∴∠COE=∠OCB=40°;在△OCE中,∠OEC=180°−∠COE−∠OCB=180°−40°−40°=100°∴∠CEF=12∠CEO=50°.故选:C.【点睛】本题考查了等腰三角形的性质的运用、垂直平分线性质的运用、折叠的性质,解答时运用等腰三角形的性质和垂直平分线的性质是解答的关键.8.C解析:C【解析】【分析】根据三角形两边之和大于第三边,两边之差小于第三边可确定出第三边的范围,据此根据选项即可判断.【详解】设第三边长为x,则有7-3<x<7+3,即4<x<10,观察只有C选项符合,故选C.【点睛】本题考查了三角形三边的关系,熟练掌握三角形三边之间的关系是解题的关键.9.A解析:A【解析】解:∵把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A ′处,点B 落在点B ′处,∴∠BFE =∠EFB ',∠B '=∠B =90°.∵∠2=40°,∴∠CFB '=50°,∴∠1+∠EFB '﹣∠CFB '=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A .10.A解析:A【解析】【分析】直接利用多项式乘以多项式运算法则计算,再根据条件可得3﹣m =0,再解得出答案.【详解】解:(x ﹣m )(x+3)=x 2+3x ﹣mx ﹣3m =x 2+(3﹣m )x ﹣3m ,∵乘积中不含x 的一次项,∴3﹣m =0,解得:m =3,故选:A .【点睛】此题考查了多项式乘以多项式,正确掌握相关运算法则是解题关键.11.D解析:D【解析】【分析】根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m 的值.【详解】∵2222=(2)223(3)49x xy x m x y y y ±⨯⨯+++,∴12mxy xy =±,解得m=±12. 故选:D .【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要. 12.A解析:A【解析】【分析】根据∠B=60°,AB=AC,即可判定△ABC为等边三角形,由BC=3,即可求出△ABC的周长.【详解】在△ABC中,∵∠B=60°,AB=AC,∴∠B=∠C=60°,∴∠A=180°﹣60°﹣60°=60°,∴△ABC为等边三角形,∵BC=3,∴△ABC的周长为:3BC=9,故选A.【点睛】本题考查了等边三角形的判定与性质,属于基础题,关键是根据已知条件判定三角形为等边三角形.二、填空题13.120°【解析】【分析】先根据△ABC是等边三角形得到∠ABC=∠ABD+∠CBD=60°再根据∠ABD=∠BCD得到∠BCD+∠CBD=60°再利用三角形的内角和定理即可求出答案【详解】解:∵△A解析:120°【解析】【分析】先根据△ABC是等边三角形得到∠ABC=∠ABD+∠CBD=60°,再根据∠ABD=∠BCD得到∠BCD+∠CBD=60°,再利用三角形的内角和定理即可求出答案.【详解】解:∵△ABC是等边三角形,∴∠ABC=∠ABD+∠CBD=60°(等边三角形的内角都是60°),又∵∠ABD=∠BCD,∴∠ABD+∠CBD =∠BCD+∠CBD=60°(等量替换),∴∠BDC=180°-∠BCD-∠CBD=180°-60°=120°,故答案为:120°.【点睛】本题主要考查了等边三角形的性质、三角形内角和定理、等量替换原则,熟练掌握各个知识点是解题的关键.14.30°【解析】【分析】【详解】解:∵AB//CD∴∠BAC+∠ACD=180°即∠1+∠EAC+∠ACD=180°∵五边形是正五边形∴∠EAC=108°∵∠ACD=42°∴∠1=180°-42°-1解析:30°.【解析】【分析】【详解】解:∵AB//CD ,∴∠BAC+∠ACD=180°,即∠1+∠EAC+∠ACD=180°,∵五边形是正五边形,∴∠EAC=108°,∵∠ACD=42°,∴∠1=180°-42°-108°=30°故答案为:30°.15.【解析】【分析】(1)令分母不为0即可;(2)令分子为0且分母不为0可得;(3)先对两个分式分母进行因式分解然后观察得出最简公分母【详解】(1)要使有意义则x+2≠0解得:x=2(2)分式的值为零则解析:x -2≠ x -3= 3x -x【解析】【分析】(1)令分母不为0即可;(2)令分子为0,且分母不为0可得;(3)先对两个分式分母进行因式分解,然后观察得出最简公分母.【详解】(1)要使12x +有意义 则x+2≠0解得:x=2(2)分式33x x --的值为零 则3=0x -,且x -3≠0解得:x=-3(3)∵221111 =(1)(1)x x x x x x x x =--++, ∴两个分式的最简公分母为:x(x-1)(x+1)=3x -x故答案分别为:x=2;x=-3;3x -x【点睛】本题考查分式有意义的条件、分式为0的条件以及最简公分母的求解,注意分式有意义的条件和为0的情况是有所区别的.16.1【解析】【分析】先根据可得出x+y 与xy 的关系式然后在式子中将xy 用x+y 来表示化简后可得结果【详解】∵∴则xy=故答案为:1【点睛】本题考查分式的化简求值解题关键是将xy 转化为x+y 的形式解析:1【解析】【分析】 先根据11 5x y +=可得出x+y 与xy 的关系式,然后在式子232 2x xy y x xy y-+++中,将xy 用x+y 来表示,化简后可得结果.【详解】 ∵11 5x y += ∴ 5x y xy +=,则xy=()15x y + 372()2()23255 1272()()55x x y y x y x xy y x xy y x x y y x y -+++-+===++++++ 故答案为:1【点睛】本题考查分式的化简求值,解题关键是将xy 转化为x+y 的形式.17.且【解析】【分析】方程两边乘最简公分母可以把分式方程转化为整式方程求解它的解为含有a 的式子解为正数且最简公分母不为零得到关于a 的一元一次不等式解之即可【详解】方程两边同乘(x −1)得:2−(5-a)解析:5a <且3a ≠【解析】【分析】方程两边乘最简公分母,可以把分式方程转化为整式方程求解,它的解为含有a 的式子,解为正数且最简公分母不为零,得到关于a 的一元一次不等式,解之即可.【详解】方程两边同乘(x−1)得:2−(5-a)=-2(x−1)解得:x=52a - ∵x>0且x−1≠0, ∴5025102a a -⎧>⎪⎪⎨-⎪-≠⎪⎩ 解得:a<5且a≠3故答案为:a<5且a≠3【点睛】本题考查了分式方程解的定义,求出使分式方程中令等号左右两边相等且分母不等于零的未知数的值,这个值叫分式方程的解,考查了一元一次不等式组的解法,求解每个不等式,再求两个不等式解集的公共部分即可.18.【解析】【分析】关键描述语是:每个同学比原来少分摊了10元车费;等量关系为:原有的同学每人分担的车费-实际每人分担的车费=20;据此列出分式方程即可【详解】解:设实际参加游览的同学一共有人由题意得:解析:60060010 5x x-= -【解析】【分析】关键描述语是:“每个同学比原来少分摊了10元车费”;等量关系为:原有的同学每人分担的车费-实际每人分担的车费=20;据此列出分式方程即可.【详解】解:设实际参加游览的同学一共有x人,由题意得:600600105x x-=-,故答案为:600600105x x-=-.【点睛】本题考查了由实际问题抽象出分式方程,找到关键描述语,找到相应的等量关系是解决问题的关键.19.1【解析】【分析】有增根是化为整式方程后产生的使原分式方程分母为0的根在本题中可确定增根是1然后代入化成整式方程的方程中求得m的值【详解】解:去分母得:m﹣1=2x﹣2由分式方程有增根得到x﹣1=0解析:1【解析】【分析】有增根是化为整式方程后,产生的使原分式方程分母为0的根.在本题中,可确定增根是1,然后代入化成整式方程的方程中,求得m的值.【详解】解:去分母得:m﹣1=2x﹣2,由分式方程有增根,得到x﹣1=0,即x=1,把x=1代入得:m﹣1=0,解得:m=1,故答案为:1【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行求解:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.20.4【解析】【分析】原式第一项利用零指数幂法则化简第二项利用负整数指数幂法则计算最后一项利用绝对值的代数意义化简计算即可得到结果【详解】原式=1×2+2=2+2=4故答案为:4【点睛】本题考查了零指数解析:4【解析】【分析】原式第一项利用零指数幂法则化简,第二项利用负整数指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.【详解】原式=1×2+2=2+2=4. 故答案为:4.【点睛】本题考查了零指数幂和负整数指数幂运算,熟练掌握运算法则是解答本题的关键.三、解答题21.211443a a =++. 【解析】 试题分析:把原式括号里的第二项提取﹣1,然后把原式的各项分子分母都分解因式,找出括号里两项分母的最简公分母,利用分式的基本性质对括号里两项进行通分,然后利用同分母分式的减法运算法则:分母不变,只把分子相减,计算出结果,然后利用分式的除法法则:除以一个数等于乘以这个数的倒数,变形为乘法运算,约分后即可把原式化为最简分式,把a 满足的方程变形后,代入原式化简后的式子中即可求出值.试题解析:原式=28[](2)(2)(2)(2)(2)a a a a a a a a +-⨯--++- =2(2)8(2)(2)(2)(2)a a a a a a a a +-⨯-++- =2(2)(2)(2)(2)(2)a a a a a a a -⨯-++- =2211(2)44a a a =+++ ∵2410a a ++=,∴241a a +=-,∴原式=11143=-+. 考点:分式的化简求值.22.见解析【解析】分析:首先作出∠ABC 的角平分线进而作出线段AD 的垂直平分线,即可得出其交点P 的位置.详解:如图所示:P 点即为所求.点睛:本题主要考查了应用设计与作图,正确掌握角平分线以及线段垂直平分线的性质是解题的关键.23.(1)45;(2)3125. 【解析】试题分析:(1)逆用“同底数幂的乘法”和“幂的乘方”的运算法把2m n a +化成2()m n a a ⋅结合已知条件即可求值了;(2)逆用“同底数幂的除法”和“幂的乘方”的运算法则把3m n a -化成3m n a a ÷结合已知条件即可求值了.试题解析:(1)∵35m n a a ==,,∴222()3545m n m n a a a +=⋅=⨯=;(2)∵35m n a a ==,, ∴333()3125125m n m n a a a -=÷=÷=. 24.(1)2()a b c ++;(2)()22a b -;(3)()22y x y --;(4)()()222121a a +-.【解析】【分析】 (1)利用完全平方公式进行因式分解;(2)先展开,再利用完全平方公式进行因式分解;(3)先提取公因式-y ,再利用完全平方公式进行因式分解;(4)先利用平方差公式进行分解,再利用完全平方公式继续分解.【详解】解:(1)原式2()a b c =++;(2)原式()222424a ab b a b =-+=-;(3)原式()()222442y x xy y y x y =--+=--; (4)原式()()()()22224144142121a aa a a a =+++-=+-. 【点睛】 此题主要考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 25.(1)文学书和科普书的单价分别是8元和12元.(2)至多还能购进466本科普书.【解析】【详解】(1)设文学书的单价为每本x 元,则科普书的单价为每本(x+4)元,依题意得: 8000120004x x =+ , 解得:x=8,经检验x=8是方程的解,并且符合题意.∴x+4=12.∴购进的文学书和科普书的单价分别是8元和12元.②设购进文学书550本后至多还能购进y 本科普书.依题意得550×8+12y≤10000, 解得24663y ≤, ∵y 为整数, ∴y 的最大值为466∴至多还能购进466本科普书.。
2020-2021学年度第一学期八年级期中数学试卷及答案共三套
2020-2021学年八年级(上)期中数学试卷一、选择题:本大题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有一项是符合要求1.中国文字博大精深,而且有许多是轴对称图形,在这四个文字中,不是轴对称图形的是()A.B.C.D.2.下列长度的三条线段能组成三角形的是()A.2,3,4B.3,6,11C.4,6,10D.5,8,143.等腰三角形一个角的度数为50°,则顶角的度数为()A.50°B.80°C.65°D.50°或80°4.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A.带①去B.带②去C.带③去D.带①②去5.如果n边形的内角和是它外角和的3倍,则n等于()A.6B.7C.8D.96.如图,AB∥DF,AC⊥CE于C,BC与DF交于点E,若∠A=20°,则∠CEF等于()A.110°B.100°C.80°D.70°7.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°8.如图,AD为∠BAC的平分线,添加下列条件后,不能证明△ABD≌△ACD的是()A.∠B=∠C B.∠BDA=∠CDA C.BD=CD D.AB=AC9.点P(1,﹣2)关于x轴对称的点的坐标为()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)10.下列语句中,正确的是()A.等腰三角形底边上的中线就是底边上的垂直平分线B.等腰三角形的对称轴是底边上的高C.一条线段可看作是以它的垂直平分线为对称轴的轴对称图形D.等腰三角形的对称轴就是顶角平分线11.如图,已知△ABC≌△A′BC′,AA′∥BC,∠ABC=70°,则∠CBC′的度数是()A.40°B.35°C.55°D.20°12.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为()A.4cm B.6cm C.8cm D.10cm二、填空题:本大题共6小题,每小题3分,共18分13.如图,已知AB=AC,EB=EC,AE的延长线交BC于D,则图中全等的三角形共有对.14.等腰三角形的周长为20cm,一边长为6cm,则底边长为cm.15.一个八边形的所有内角都相等,它的每一个外角等于度.16.已知△ABC的三边长a、b、c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是.17.如图,DE是AB的垂直平分线,AB=8,△ABC的周长是18,则△ADC的周长是.18.如图,已知钝角三角形ABC的面积为20,最长边AB=10,BD平分∠ABC,点M、N 分别是BD、BC上的动点,则CM+MN的最小值为.三、解答题:本大题共7小题,其中19~20题每题8分,21~25题每题10分,共66分19.(8分)请在边长为1的小正方形虚线网格中画出:(画出符合条件的一个图形即可)(1)一个所有顶点均在格点上的等腰三角形;(2)一个所有顶点均在格点上且边长均为无理数的等腰三角形;20.(8分)已知:如图,AB=CD,AD=BC.求证:AB∥CD.21.(10分)如图,已知OC=OE,OD=OB,试说明△ADE≌△ABC.22.(10分)如图,在△ABC中,AB=AC,AD为∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别是E,F,求证:BE=CF.23.(10分)如图,等腰直角△ABC中,CA=CB,点E为△ABC外一点,CE=CA,且CD 平分∠ACB交AE于D,且∠CDE=60°.(1)求证:△CBE为等边三角形;(2)若AD=5,DE=7,求CD的长.24.(10分)如图,在等边△ABC中,D、E分别在边BC、AC上,且DE∥AB,过点E 作EF⊥DE交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2cm,求DF的长.25.(10分)如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有一项是符合要求1.中国文字博大精深,而且有许多是轴对称图形,在这四个文字中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各个汉字进行判断即可得解.【解答】解:A、“大”是轴对称图形,故本选项不合题意;B、“美”是轴对称图形,故本选项不合题意;C、“中”是轴对称图形,故本选项不合题意;D、“国”是轴对称图形,故本选项符合题意.故选:D.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列长度的三条线段能组成三角形的是()A.2,3,4B.3,6,11C.4,6,10D.5,8,14【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:A、2+3>4,能组成三角形;B、3+6<11,不能组成三角形;C、4+6=10,不能组成三角形;D、5+8<14,不能够组成三角形.故选:A.【点评】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.等腰三角形一个角的度数为50°,则顶角的度数为()A.50°B.80°C.65°D.50°或80°【分析】等腰三角形一内角为50°,没说明是顶角还是底角,所以有两种情况.【解答】解:(1)当50°角为顶角,顶角度数为50°;(2)当50°为底角时,顶角=180°﹣2×50°=80°.故选:D.【点评】本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.4.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A.带①去B.带②去C.带③去D.带①②去【分析】根据三角形全等的判定方法ASA,即可求解.【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故选:C.【点评】此题主要考查了全等三角形的应用,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.5.如果n边形的内角和是它外角和的3倍,则n等于()A.6B.7C.8D.9【分析】根据多边形内角和公式180°(n﹣2)和外角和为360°可得方程180(n﹣2)=360×3,再解方程即可.【解答】解:由题意得:180(n﹣2)=360×3,解得:n=8,故选:C.【点评】此题主要考查了多边形内角和与外角和,要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.6.如图,AB∥DF,AC⊥CE于C,BC与DF交于点E,若∠A=20°,则∠CEF等于()A.110°B.100°C.80°D.70°【分析】如图,由AC⊥BC于C得到△ABC是直角三角形,然后可以求出∠ABC=180°﹣∠A﹣∠C=180°﹣20°﹣90°=70°,而∠ABC=∠1=70°,由于AB∥DF可以推出∠1+∠CEF=180°,由此可以求出∠CEF.【解答】解:∵AC⊥BC于C,∴△ABC是直角三角形,∴∠ABC=180°﹣∠A﹣∠C=180°﹣20°﹣90°=70°,∴∠ABC=∠1=70°,∵AB∥DF,∴∠1+∠CEF=180°,即∠CEF=180°﹣∠1=180°﹣70°=110°.故选:A.【点评】本题比较简单,考查的是平行线的性质及直角三角形的性质.7.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°【分析】由△ABC中,∠ACB=90°,∠A=22°,可求得∠B的度数,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,由三角形外角的性质,可求得∠ADE的度数,继而求得答案.【解答】解:△ABC中,∠ACB=90°,∠A=22°,∴∠B=90°﹣∠A=68°,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,∴∠ADE=∠CED﹣∠A=46°,∴∠BDC==67°.故选:C.【点评】此题考查了折叠的性质、三角形内角和定理以及三角形外角的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.8.如图,AD为∠BAC的平分线,添加下列条件后,不能证明△ABD≌△ACD的是()A.∠B=∠C B.∠BDA=∠CDA C.BD=CD D.AB=AC【分析】根据“AAS”对A进行判断;根据“ASA”对B进行判断;根据“SSA”对C进行判断;根据“SAS”对D进行判断.【解答】解:A、由,可得到△ABD≌△ACD,所以A选项不正确;B、由,可得到△ABD≌△ACD,所以B选项不正确;C、由BD=CD,AD=AD,∠BAD=∠CAD,不能得到△ABD≌△ACD,所以C选项正确.D、由,可得到△ABD≌△ACD,所以D选项不正确;故选:C.【点评】本题考查了全等三角形的判定:判定三角形全等的方法有“SSS”、“AAS”、“SAS”、“ASA”.9.点P(1,﹣2)关于x轴对称的点的坐标为()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)【分析】根据平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),即横坐标不变,纵坐标变成相反数,即可得出答案.【解答】解:根据关于x轴的对称点横坐标不变,纵坐标变成相反数,∴点P(1,﹣2)关于x轴对称点的坐标为(1,2),故选:A.【点评】本题主要考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系,难度较小.10.下列语句中,正确的是()A.等腰三角形底边上的中线就是底边上的垂直平分线B.等腰三角形的对称轴是底边上的高C.一条线段可看作是以它的垂直平分线为对称轴的轴对称图形D.等腰三角形的对称轴就是顶角平分线【分析】在三角形中,高、中线对应的都是一条线段,而角平分线对应的是一条射线.垂直平分线对应的是直线、对称轴对应的同样为一条直线,根据各种线之间的对应关系即可得出答案.【解答】解:A、三角形中,中线是连接一个顶点和它所对边的中点的连线段,而线段的垂直平分线是直线,故A错误;B、三角形的高对应的是线段,而对称轴对应的是直线,故B错误;C、线段是轴对称图形,对称轴为垂直平分线,故C正确;D、角平分线对应的是射线,而对称轴对应的是直线,故D错误.故选:C.【点评】本题考查了三角形的基本性质,在三角形中,高、中线对应的都是一条线段,而角平分线对应的是一条射线.这些都属于基本的概念问题,要能够吃透概念、定义.11.如图,已知△ABC≌△A′BC′,AA′∥BC,∠ABC=70°,则∠CBC′的度数是()A.40°B.35°C.55°D.20°【分析】根据平行线的性质得到∠BAA′=∠ABC=70°,根据全等三角形的性质、等腰三角形的性质计算即可.【解答】解:∵AA′∥BC,∴∠BAA′=∠ABC=70°,∵△ABC≌△A′BC′,∴BA=BA′,∠A′BC′=∠ABC=70°,∴∠BAA′=∠BA′A=70°,∴∠A′BA=40°,∴∠ABC′=30°,∴∠CBC′=40°,故选:A.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.12.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为()A.4cm B.6cm C.8cm D.10cm【分析】先利用AAS判定△ACD≌△AED得出AC=AE,CD=DE;再对构成△DEB的几条边进行变换,可得到其周长等于AB的长.【解答】解:∵AD平分∠CAB交BC于点D∴∠CAD=∠EAD∵DE⊥AB∴∠AED=∠C=90∵AD=AD∴△ACD≌△AED.(AAS)∴AC=AE,CD=DE∵∠C=90°,AC=BC∴∠B=45°∴DE=BE∵AC=BC,AB=6cm,∴2BC2=AB2,即BC===3,∴BE=AB﹣AE=AB﹣AC=6﹣3,∴BC+BE=3+6﹣3=6cm,∵△DEB的周长=DE+DB+BE=BC+BE=6(cm).另法:证明三角形全等后,∴AC=AE,CD=DE.∵AC=BC,∴BC=AE.∴△DEB的周长=DB+DE+EB=DB+CD+EB=CB+BE=AE+BE=6cm.故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、AAS、SAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二、填空题:本大题共6小题,每小题3分,共18分13.如图,已知AB=AC,EB=EC,AE的延长线交BC于D,则图中全等的三角形共有3对.【分析】在线段AD的两旁猜想所有全等三角形,再利用全等三角形的判断方法进行判定,三对全等三角形是△ABE≌△ACE,△EBD≌△ECD,△ABD≌△ACD.【解答】解:①△ABE≌△ACE∵AB=AC,EB=EC,AE=AE∴△ABE≌△ACE;②△EBD≌△ECD∵△ABE≌△ACE∴∠ABE=∠ACE,∠AEB=∠AEC∴∠EBD=∠ECD,∠BED=∠CED∵EB=EC∴△EBD≌△ECD;③△ABD≌△ACD∵△ABE≌△ACE,△EBD≌△ECD∴∠BAD=∠CAD∵∠ABC=∠ABE+∠BED,∠ACB=∠ACE+∠CED∴∠ABC=∠ACB∵AB=AC∴△ABD≌△ACD∴图中全等的三角形共有3对.【点评】本题考查学生观察,猜想全等三角形的能力,同时,也要求会运用全等三角形的几种判断方法进行判断.14.等腰三角形的周长为20cm,一边长为6cm,则底边长为6或8cm.【分析】分6cm是底边与腰长两种情况讨论求解.【解答】解:①6cm是底边时,腰长=(20﹣6)=7cm,此时三角形的三边分别为7cm、7cm、6cm,能组成三角形,②6cm是腰长时,底边=20﹣6×2=8cm,此时三角形的三边分别为6cm、6cm、8cm,能组成三角形,综上所述,底边长为6或8cm.故答案为:6或8.【点评】本题考查了等腰三角形的性质,难点在于要分情况讨论.15.一个八边形的所有内角都相等,它的每一个外角等于45度.【分析】根据多边形的外角和为360°即可解决问题;【解答】解:∵一个八边形的所有内角都相等,∴这个八边形的所有外角都相等,∴这个八边形的所有外角==45°,故答案为45;【点评】本题考查多边形内角与外角,解题的关键是熟练掌握基本知识,属于中考常考题型.16.已知△ABC的三边长a、b、c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是2(b﹣c).【分析】先根据三角形三边关系判断出a+b﹣c与b﹣a﹣c的符号,再把要求的式子进行化简,即可得出答案.【解答】解:∵△ABC的三边长分别是a、b、c,∴a+b>c,b﹣a<c,∴a+b﹣c>0,b﹣a﹣c<0,∴|a+b﹣c|﹣|b﹣a﹣c|=a+b﹣c﹣(﹣b+a+c)=a+b﹣c+b﹣a﹣c=2(b﹣c);故答案为:2(b﹣c)【点评】此题考查了三角形三边关系,用到的知识点是三角形的三边关系、绝对值、整式的加减,关键是根据三角形的三边关系判断出a+b﹣c与,b﹣a﹣c的符号.17.如图,DE是AB的垂直平分线,AB=8,△ABC的周长是18,则△ADC的周长是10.【分析】依据线段垂直平分线的性质可得到AD=BD,则△ADC的周长=BC+AC.【解答】解:∵DE是AB的垂直平分线,∴AD=BD.∴△ADC的周长=AD+DC+AC=BD+DC+AC=BC+AC=18﹣8=10.故答案为:10.【点评】本题主要考查的是线段垂直平分线的性质,熟练掌握相关知识是解题的关键.18.如图,已知钝角三角形ABC的面积为20,最长边AB=10,BD平分∠ABC,点M、N 分别是BD、BC上的动点,则CM+MN的最小值为4.【分析】过点C作CE⊥AB于点E,交BD于点M,过点M作MN⊥BC于N,则CE即为CM+MN的最小值,再根据三角形的面积公式求出CE的长,即为CM+MN的最小值.【解答】解:过点C作CE⊥AB于点E,交BD于点M,过点M作MN⊥BC于N,∵BD平分∠ABC,ME⊥AB于点E,MN⊥BC于N,∴MN=ME,∴CE=CM+ME=CM+MN的最小值.∵三角形ABC的面积为15,AB=10,∴×10•CE=20,∴CE=4.即CM+MN的最小值为4.故答案为4.【点评】本题考查了轴对称﹣最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目三、解答题:本大题共7小题,其中19~20题每题8分,21~25题每题10分,共66分19.(8分)请在边长为1的小正方形虚线网格中画出:(画出符合条件的一个图形即可)(1)一个所有顶点均在格点上的等腰三角形;(2)一个所有顶点均在格点上且边长均为无理数的等腰三角形;【分析】(1)根据等腰三角形两条边相等的性质作图,根据每个正方形的边长和高来计算画出题目中所要求的图形.(2)根据等腰三角形两条边相等的性质作图,根据每个正方形的边长和高来计算画出题目中所要求的图形.【解答】解:(1)如图所示:如三角形的三边长分别为1、1、或2、2、2或3、3、3或、、2或、、2或、、2等(2)如图所示:如三角形的三边长分别为、、或2、、等.【点评】本题考查了在小正三角形网格中,勾股定理的灵活应用.考查学生对有理数,无理数定义的理解,作出符合题目要求的图形.20.(8分)已知:如图,AB=CD,AD=BC.求证:AB∥CD.【分析】根据全等三角形对应角相等得出∠ABD=∠CDA,进一步得出AB∥CD.【解答】证明:在△ABD与△CDB中,,∴△ABD≌△CDB,∴∠ABD=∠CDA,∴AB∥CD.【点评】本题主要考查了三角形全等的判定和性质;根据全等三角形对应角相等得出∠ABD=∠CDA是解决问题的关键.21.(10分)如图,已知OC=OE,OD=OB,试说明△ADE≌△ABC.【分析】由OC=OE,OD=OB,可得到BC=DE,再利用SAS得到△COD≌△BOE,得到∠D=∠B,再利用AAS得到△ADE≌△ABC.【解答】解:在△COD和△BOE中,,∴△COD≌△BOE,∴∠D=∠B,∵OC=OE,OD=OB,∴DE=BC在△ADE和△ABC中,,∴△ADE≌△ABC.【点评】本题考查了三角形的全等的判定,三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.22.(10分)如图,在△ABC中,AB=AC,AD为∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别是E,F,求证:BE=CF.【分析】欲证明BE=CF,只要证明Rt△BDE≌Rt△CDF即可;【解答】证明:∵AB=AC,AD为∠BAC的平分线∴BD=CD,∵DE⊥AB,DF⊥AC∴DE=DF,在Rt△BDE和Rt△CDF中,∴Rt△BDE≌Rt△CDF,∴BE=CF.【点评】本题考查全等三角形的判定和性质、角平分线的性质、等腰三角形的性质等知识,解题的关键是证明Rt△BDE≌Rt△CDF.23.(10分)如图,等腰直角△ABC中,CA=CB,点E为△ABC外一点,CE=CA,且CD 平分∠ACB交AE于D,且∠CDE=60°.(1)求证:△CBE为等边三角形;(2)若AD=5,DE=7,求CD的长.【分析】(1)首先利用等腰三角形的性质得出,∠CAE=∠CEA,再利用外角的性质得出∠BCE的度数,进而利用等边三角形的判定得出答案;(2)首先在AE上截取EM=AD,进而得出△ACD≌△ECM,进而得出△MCD为等边三角形,即可得出答案.【解答】(1)证明:∵CA=CB,CE=CA,∴BC=CE,∠CAE=∠CEA,∵CD平分∠ACB交AE于D,且∠CDE=60°,∴∠ACD=∠DCB=45°,∠DAC+∠ACD=∠EDC=60°,∴∠DAC=∠CEA=15°,∴∠ACE=150°,∴∠BCE=60°,∴△CBE为等边三角形;(2)解:在AE上截取EM=AD,连接CM.在△ACD和△ECM中,,∴△ACD≌△ECM(SAS),∴CD=CM,∵∠CDE=60°,∴△MCD为等边三角形,∴CD=DM=7﹣5=2.【点评】此题主要考查了全等三角形的判定与性质以及等边三角形的性质与判定和三角形外角的性质等知识,正确作出辅助线是解题关键.24.(10分)如图,在等边△ABC中,D、E分别在边BC、AC上,且DE∥AB,过点E 作EF⊥DE交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2cm,求DF的长.【分析】(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.【点评】本题考查了等边三角形的判定与性质,以及直角三角形的性质,30度的锐角所对的直角边等于斜边的一半.25.(10分)如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.【分析】(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可求出△ADE≌△FCE,根据全等三角形的性质即可解答.(2)根据线段垂直平分线的性质判断出AB=BF即可.【解答】证明:(1)∵AD∥BC(已知),∴∠ADC=∠ECF(两直线平行,内错角相等),∵E是CD的中点(已知),∴DE=EC(中点的定义).∵在△ADE与△FCE中,,∴△ADE≌△FCE(ASA),∴FC=AD(全等三角形的性质).(2)∵△ADE≌△FCE,∴AE=EF,AD=CF(全等三角形的对应边相等),∴BE是线段AF的垂直平分线,∴AB=BF=BC+CF,∵AD=CF(已证),∴AB=BC+AD(等量代换).【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.2020-2021学年八年级(上)期中数学试卷一、选择题:本大题共13小题,每小题3分,共39分,每小题给出的四个选项中,只有一项是正确的,把答案前的字母写在括号内).1.4的平方根是()A.2B.﹣2C.±D.±22.下列各点中,在第二象限的点是()A.(2,3)B.(2,﹣3)C.(﹣2,﹣3)D.(﹣2,3)3.在下列各数;0;3π;;;1.1010010001…,无理数的个数是()A.5B.4C.3D.24.如图,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4B.∠D=∠DCEC.∠1=∠2D.∠D+∠ACD=180°5.若y轴上的点P到x轴的距离为3,则点P的坐标是()A.(3,0)B.(0,3)C.(3,0)或(﹣3,0)D.(0,3)或(0,﹣3)6.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.|﹣2|与27.如图,OA⊥OB,OC⊥OD,O是垂足,∠AOD=120°,那么∠COB的度数为()A.80°B.70°C.60°D.50°8.算术平方根等于它相反数的数是()A.0B.1C.0或1D.0或±19.已知=0.1738,=1.738,则a的值为()A.0.528B.0.0528C.0.00528D.0.00052810.如图:∠1和∠2是同位角的是()A.②③B.①②③C.①②④D.①④11.点A(3,﹣5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为()A.(1,﹣8)B.(1,﹣2)C.(﹣7,﹣1)D.(0,﹣1)12.在下列各式中,正确的是()A.B.C.D.13.如图,用同样大小的黑色棋子按如图所示的规律摆放:则第7个图案中黑色棋子有()A.13个B.16个C.19个D.22个二、填空题:(本大题共10小题,每小题3分,共30分).14.的相反数是.15.的算术平方根是.16.把“对顶角相等”改写成“如果…那么…”的形式是:.17.3(填>,<或=)18.在平面直角坐标系中,点P(a,a+1)在x轴上,那么点P的坐标是.19.若一个正数的平方根是2a﹣1和﹣a+2,则这个正数是.20.如图所示,直线a∥b,直线c与直线a,b分别相交于点A、点B,AM⊥b,垂足为点M,若∠1=58°,则∠2=.21.已知x、y为实数,且+(y+2)2=0,则y x=.22.已知AB∥x轴,A点的坐标为(﹣3,2),并且AB=4,则B点的坐标为.23.若∠α的两边与∠β的两边互相平行,当∠α=40°时,∠β=.三、解答题:24.(12分)计算或解方程(1)|﹣|+2(2)4(2﹣x)2=9(3)﹣+|1﹣|+(﹣1)201825.(9分)如图(1)写出三角形ABC的各个顶点的坐标;(2)试求出三角形ABC的面积;(3)将三角形ABC先向右平移3个单位长度,再向上平移2个单位长度,得到△A1B1C1,请在该网格中画出平移后的图形.26.(7分)如图,直线AB与CD相交于点0,∠AOD=20°,∠DOF:∠FOB=1:7,射线OE 平分∠BOF.(1)求∠EOB的度数;(2)射线OE与直线CD有什么位置关系?请说明理由.27.(6分)如图,已知AD ∥BC ,∠1=∠2,求证:∠3+∠4=180°.28.(7分)已知实数a 、b 在数轴上对应点的位置如图:(1)比较a ﹣b 与a +b 的大小;(2)化简|b ﹣a |+|a +b |.29.(10分)如图,直线AB 交x 轴于点A (3,0),交y 轴于点B (0,2)(1)求三角形AOB 的面积;(2)在x 轴负半轴上找一点Q ,使得S △QOB =S △AOB ,求Q 点坐标.(3)在y 轴上任一点P (0,m ),请用含m 的式子表示三角形APB 的面积.参考答案与试题解析一、选择题:本大题共13小题,每小题3分,共39分,每小题给出的四个选项中,只有一项是正确的,把答案前的字母写在括号内).1.4的平方根是()A.2B.﹣2C.±D.±2【分析】直接利用平方根的定义分析得出答案.【解答】解:4的平方根是:±=±2.故选:D.【点评】此题主要考查了平方根的定义,正确掌握相关定义是解题关键.2.下列各点中,在第二象限的点是()A.(2,3)B.(2,﹣3)C.(﹣2,﹣3)D.(﹣2,3)【分析】点在第二象限的条件是:横坐标是负数,纵坐标是正数,以此进行判断即可.【解答】解:因为第二象限的点的坐标是(﹣,+),符合此条件的只有(﹣2,3).故选:D.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.在下列各数;0;3π;;;1.1010010001…,无理数的个数是()A.5B.4C.3D.2【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:是无理数;0不是无理数;3π是无理数;=3不是无理数;不是无理数;1.1010010001…是无理数,故选:C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.如图,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4B.∠D=∠DCEC.∠1=∠2D.∠D+∠ACD=180°【分析】由平行线的判定定理可证得,选项A,B,D能证得AC∥BD,只有选项C能证得AB∥CD.注意掌握排除法在选择题中的应用.【解答】解:A、∵∠3=∠4,∴AC∥BD.本选项不能判断AB∥CD,故A错误;B、∵∠D=∠DCE,∴AC∥BD.本选项不能判断AB∥CD,故B错误;C、∵∠1=∠2,∴AB∥CD.本选项能判断AB∥CD,故C正确;D、∵∠D+∠ACD=180°,∴AC∥BD.故本选项不能判断AB∥CD,故D错误.故选:C.【点评】此题考查了平行线的判定.注意掌握数形结合思想的应用.5.若y轴上的点P到x轴的距离为3,则点P的坐标是()A.(3,0)B.(0,3)C.(3,0)或(﹣3,0)D.(0,3)或(0,﹣3)【分析】由点在y轴上首先确定点P的横坐标为0,再根据点P到x轴的距离为3,确定P点的纵坐标,要注意考虑两种情况,可能在原点的上方,也可能在原点的下方.【解答】解:∵y轴上的点P,∴P点的横坐标为0,又∵点P到x轴的距离为3,∴P点的纵坐标为±3,所以点P的坐标为(0,3)或(0,﹣3).故选:D.【点评】此题考查了由点到坐标轴的距离确定点的坐标,特别对于点在坐标轴上的特殊情况,点到坐标轴的距离要分两种情况考虑点的坐标.6.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.|﹣2|与2【分析】直接利用实数的相关性质化简各数,进而判断即可.【解答】解:A、﹣2与=2,是互为相反数,故此选项正确;B、﹣2与=﹣2,两数相等,故此选项错误;C、﹣2与,不是互为相反数,故此选项错误;D、|﹣2|与2,两数相等,故此选项错误;故选:A.【点评】此题主要考查了实数的性质以及互为相反数的定义,正确化简各数是解题关键.7.如图,OA⊥OB,OC⊥OD,O是垂足,∠AOD=120°,那么∠COB的度数为()A.80°B.70°C.60°D.50°【分析】求出∠BOD的度数,根据∠DOC的度数求出即可.【解答】解:∵∠AOD=120°,∠AOB=90°,∴∠BOD=120°﹣90°=30°,∵∠DOC=90°,∴∠BOC=∠DOC﹣∠DOB=90°﹣30°=60°,故选:C.【点评】本题考查了角的有关计算的应用,关键是能求出各个角的度数.8.算术平方根等于它相反数的数是()A.0B.1C.0或1D.0或±1【分析】由于算术平方根只能是非负数,而算术平方根等于它相反数,由此得到它是非正数,由此即可得到结果.【解答】解:∵算术平方根只能是非负数,而算术平方根等于它相反数,∴算术平方根等于它相反数的数是非正数,∴算术平方根等于它相反数的数是0.故选:A.【点评】此题主要考查了非负数的性质,其中利用了两个非负数:一个数的算术平方根是非负数;有算术平方根的只能是非负数.9.已知=0.1738,=1.738,则a的值为()A.0.528B.0.0528C.0.00528D.0.000528【分析】利用立方根定义计算即可求出值.【解答】解:∵=0.1738,=1.738,∴a=0.00528,故选:C.【点评】此题考查了立方根,熟练掌握立方根定义是解本题的关键.10.如图:∠1和∠2是同位角的是()A.②③B.①②③C.①②④D.①④【分析】同位角的概念,在截线的同侧,并且在被截线的同一方的两个角是同位角,所以①②④符合要求.【解答】解:图①、②、④中,∠1与∠2在截线的同侧,并且在被截线的同一方,是同位角;图③中,∠1与∠2的两条边都不在同一条直线上,不是同位角.故选:CD.【点评】本题考查了同位角的概念;判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.11.点A(3,﹣5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为()A.(1,﹣8)B.(1,﹣2)C.(﹣7,﹣1)D.(0,﹣1)【分析】根据向上平移,纵坐标加,向左平移,横坐标减进行计算即可.【解答】解:根据题意,∵点A(3,﹣5)向上平移4个单位,再向左平移3个单位,∴﹣5+4=﹣1,3﹣3=0,∴点B的坐标为(0,﹣1).故选:D.【点评】本题考查了点的坐标平移,根据上加下减,右加左减,上下平移是纵坐标变化,左右平移是横坐标变化,熟记平移规律是解题的关键.12.在下列各式中,正确的是()A.B.C.D.【分析】运用立方根、平方根的知识,计算左边,根据左边是不是等于右边做出判断【解答】解:=≠2018,故选项A错误;==﹣0.4,故选项B正确;==2018≠±2018,故选项C错误;+=2018+2018=4036≠0,故选项D错误.故选:B.【点评】本题主要考查了实数运算、平方根和立方根,掌握实数的平方根、立方根的意义是解题关键.13.如图,用同样大小的黑色棋子按如图所示的规律摆放:则第7个图案中黑色棋子有()。
2020-2021学年度第一学期期中考试八年级数学试卷及答案
1、算术平方根和立方根都等于本身的数是 , 81的算数平方根是2、已知01a <<,化简21a a --=3、要使式子1x 2-+3x 1- 有意义的X 取值范围是4、菱形有一个内角是120度,有一条对角线长为6 cm ,此菱形的边长是5、一个多边形内角和是540°,那么从一个顶点引出的对角线的条数是6、 如图,GMN ABC ∆∆经过平移后到的位置,BC 上一点D 也同时平移到点H 的位置,若,cm 8AB =_______DAC ,_______GM ,25HGN 0=∠==∠则。
7、如图矩形ABCD 的对角线AC 、BD 相交于点0,过点0的直线交AB 、CD 于E 、F ,AB=6,BC=10,则图中阴影部分的面积为8、如图P 是正方形ABCD 内一点,将△ABP 绕点B 顺时针方向旋转900 能与△CBP ′重合,若PB=3,则PP ′=ˊ(7题图)(8题图) 二、精心选一选 ,慧眼识金。
(每题3分,共24分)9、在下列各数中是无理数的有( ) -0.333…, 4, 5, π-, 3.1415, 2.010010001…(相邻两个1之间0的个数逐渐增加)A 1个B 2个C 3个D 4题号 9 10 11 12 13 14 15 16 答案个10、下列说法正确的是( )A.064.0-的立方根是0.4B.9-的平方根是3±C. 16的立方根是316D. 0.01的立方根是0.000001 11、. 如图:Rt △ABC 中,∠ACB=900,CD 是高,AC=4cm ,BC=3cm ,则CD=( )A. 5cmB.512cmC. 125cmD.34cm12、在菱形ABCD 中,==∠AC :BC ,120ADC 0则( )A 、2:3 B 、3:3 C 、2:1 D 、1:313、以下列各组数为边长,能组成直角三角形的是( )A.8、15、7B. 8、10、6C. 5、8、10D. 8、39、3814、下列四个图形中,不能通过基本图形平移得到的是( )15、如图,以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A 处,则点A 表示的数是( )A 、211 B 、1.4 C 、3D 、2(15题图)16、如图正方形ABCD 的顶点C 在直线a 上,且点B 、D 到a 的距离分别是1、2则这个正方形的边长为 ( ) (16题图)C B DA(11题)图 DCB A -11 A 2A 、1B 、2C 、4D 、5 三、用心做一作,马到成功!(17题20分,18题6分,共26分) 17、计算:(每题5分,共20分)(1)200420032323)()(+- (2)()()131381672-++-(3)40)52(2-+. (4)2101.036813-+- 18、(6分)规律探求,观察522-=58=524⨯=252,即522-=252;1033-=1027=1039⨯=3103,即1033-=3103 (1)猜想2655-等于什么,并通过计算验证你的猜想; (2)写出符合这一规律的一般等式。
湖北省老河口市八年级数学上学期期中调研测试题(扫描版) 新人教版
湖北省老河口市2017-2018学年八年级数学上学期期中调研测试题2017年秋季期中测试八年级数学参考答案及评分标准一、选择题13.80;14.∠BAD =∠CAD 或BD =CD 或∠B =∠C ;15.三角形的稳定性;16.36°;17.40;18.7;19.80;20.2;21.7;22.8. 三、解答题23.解:∵AD ,BE 是△ABC 的高,∴∠ADC =∠AEB =90°.……………………1分 ∵∠C =60°,∴∠DAC =90°-∠C =30°.……………………………3分 ∴∠AFB =∠DAC +∠AEB =30°+90°=120°. ………………………5分 24.解:作图每个3分,痕迹要明显,要有结论. 25.证明:∵∠DCA =∠ECB ,∴∠DCA +∠DCB =∠ECB +∠DCB ,即∠ACB =∠DCE .………………2分 在△DEC 和△ABC 中⎪⎩⎪⎨⎧=∠=∠=,,,CA CD ACB DCE CB CE ∴△DEC ≌△ABC .……………………………………………………………5分 ∴DE =AB .……………………………………………………………………6分26.证法一:∵ AB =AC ,∴∠B =∠C .……………………………………………2分在△ABD 和△ACE 中⎪⎩⎪⎨⎧=∠=∠=,,,CE BD C B AC AB ∴△ABD ≌△ACE .……………………………………………………………5分 ∴AD =AE .……………………………………………………………………6分证法二:作AM ⊥BC 于点M .………………………………………………………1分 ∵AB =AC ,∴BM =CM .……………………………………………………3分 ∵BD =CE ,∴BM -BD =CM -CE ,即DM =EM .………………………4分∵AM ⊥BC 于点M ,DM =EM ,∴AD =AE .………………………………6分 27.证明:∵∠DAB +∠B +∠BCD +∠D =(4-2)×180°=360°,…………1分 ∠B =∠D =90°,∴∠DAB +∠BCD =360°-∠B -∠D =180°,∠BFC +∠BCF =90°.…………………………………………………3分 ∵AE ,CF 分别平分∠DAB 与∠DCB , ∴DAB EAB ∠=∠21,BCD BCF ∠=∠21. ∴︒=∠+∠=∠+∠90)(21BCD DAB BCF EAB ………………………4分 ∴∠EAB =∠BFC .…………………………………………………………5分 ∴AE ∥CF .…………………………………………………………………6分 28.解:∵AB =AC ,∴∠B =∠C .…………………………………………………1分 ∵∠BAC =120°,∠BAC +∠B +∠C =180°,∴∠B =∠C =30°.…………………………………………………………2分∵AD ⊥AC ,∴∠DAC =90°.∴DC =2AD ,∠BAD =∠BAC -∠DAC =30°.…………………………4分 ∴∠BAD =∠B .∴BD =AD =1.…………………………………………5分 ∴BC =BD +DC =3BD =3. ………………………………………………6分 29.解:∵DE 垂直平分AC ,∴AE =CE ,∠ADE =90°.………………………1分∴∠A =∠ACE .∵AB =AC ,BC =EC ,∴∠ACB =∠B =∠BEC .………………………2分 设∠A =x ,则∠BEC =∠A +∠ACE =2x .………………………………3分 ∴∠ACB =∠B =∠BEC =2x .∴∠A +∠B +∠ACB =x +2x +2x =180°.解得x =36°. ……………………………………………………………5分 ∴∠BED =∠A +∠ADE =36°+90°=126°.………………………6分30.证明:(1)∵AD 是∠BAC 的平分线,∠C =90°,DE ⊥AB , ∴CD =ED ,∠AED =∠BED =∠C =90°.……………………………1分在Rt △CDF 和Rt △EDB 中,11 ⎩⎨⎧==,,DE CD BD DF∴Rt △CDF ≌Rt △EDB .……………………………………………………3分 ∴CF =EB . …………………………………………………………………4分(2)在Rt △ACD 和Rt △AED 中,⎩⎨⎧==,,EDCD AD AD∴Rt △ACD ≌Rt △AED .……………………………………………………5分 ∴AC =AE .∴AF +CF =AB -BE . ………………………………………………………6分 ∵CF =EB .∴AB =AF +2EB . ……………………………………………7分31.证明:(1)∵∠ACB =90°,AC =B C ,CD 是中线,∴∠ACE +∠BCE =90°,∠A =∠ABC =∠BCG =45°. ………………1分 ∵CE ⊥BF ,垂足为H ,∴∠BHC =90°.∴∠CBG +∠BCE =90°.∴∠ACE =∠CBG . …………………………2分在△ACE 和△CBG 中⎪⎩⎪⎨⎧∠=∠=∠=∠,,,CBG ACE CB AC BCG A∴△ACE ≌△CBG .…………………………………………………………3分∴AE =CG .…………………………………………………………………4分(2)当AE =CF 时,BF 为△ABC 的角平分线.…………………………5分 理由如下:∵AE =CF ,AE =CG .∴CF =CG .∴∠CFG =∠CGF . ………………………………………………………6分 ∵∠CFG =∠A +∠ABF ,∠CGF =∠BCG +∠CBF ,…………………7分 ∠A =∠BCG ,∴∠ABF =∠CBF .即BF 为△ABC 的角平分线.………………………8分。
【全国省级联考】湖北省2020-2021学年八年级上学期期中检测数学试卷
14.如图是一枚“八一”建军节纪念章,其外轮廓是一个正五边形,则图中∠1的大小为______°.
15.如图,在△ABC中,∠A=90°,AB=AC,∠ABC的平分线BD交AC于点D,CE⊥BD,交BD的延长线于点E,若BD=8,则CE=_________.
A.2对B.3对C.4对D.5对
5.如果n边形每一个内角等于与它相邻外角的2倍,则n的值是( )
A.4B.5C.6D.7
6.已知:如图,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD与△ACD的面积之比为( )
A.3:2B.9:4C.2:3D.4:9
7.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E,若BC=3,则DE的长为( )
详解:①11是腰长时,
三角形的三边分别为11、11、5,能组成三角形,
周长=11+11+5=27;
②11是底边时,
三角形的三边分别为11、5、5,
∵5+5=10
故选C.
点睛:本题考查了等腰三角形两腰长相等的性质,要分情况讨论并利用三角形的三边关系判断是否能组成三角形.
20.如图,在△ABC中,∠A=40°,∠B=72°,CD是AB边上的高,CE是∠ACB的平分线,DF⊥CE于F,求∠CDF的度数.
21.如图,在Rt△ABC中,∠ABC=90°,AB=BC,D是AC上一点,AE⊥BD,交BD的延长线于E,CF⊥BD于F.
(1)求证:CF=BE;
(2)若BD=2AE,求证:∠EAD=∠ABE.
A.30°B.45°C.60°D.90°
襄阳市八年级上学期数学期中考试试卷
襄阳市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2020八下·鄞州期中) 下列图形既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分)在实数-,0.21,,,,0.202020中,无理数的个数为()A . 1B . 2C . 3D . 43. (2分) (2019八上·慈溪期末) 下列各组数据作为三角形的三边长,能构成直角三角形的是()A . 2,3,4B . 5,6,8C . 2,,3D . ,2,34. (2分)如图,AB=CD , BC=AD ,则下列结论不一定正确的是().A . AB∥DCB . ∠B=∠DC . ∠A=∠CD . AB=BC5. (2分) (2019八上·杭州期末) 如图,△ABC≌△ADE,∠C=40°,则∠E的度数为()A . 80°B . 75°C . 40°D . 70°6. (2分)(2013·台州) 已知△A1B1C1 ,△A2B2C2的周长相等,现有两个判断:①若A1B1=A2B2 , A1C1=A2C2 ,则△A1B1C1≌△A2B2C2;②若∠A1=∠A2 ,∠B1=∠B2 ,则△A1B1C1≌△A2B2C2 ,对于上述的两个判断,下列说法正确的是()A . ①正确,②错误B . ①错误,②正确C . ①,②都错误D . ①,②都正确7. (2分) (2020九下·中卫月考) 如图,矩形的两条对角线相交于点,则的长是()A .B .C .D .8. (2分)小林同学一不小心将厨房里的一块三角形玻璃摔成了如图所示的三部分,他想到玻璃店配一块完全相同的玻璃,那么他应该选择带哪个部分去玻璃店才能最快配得需要的玻璃()A .B .C .D . 选择哪块都行二、填空题 (共8题;共8分)9. (1分)若x2=16,则x= ________若x3=﹣8,则x= ________的平方根是________10. (1分) (2018七上·鄞州期中) 正数的两个平方根分别是和,则正数 =________.11. (1分) (2018八上·合浦期中) 已知△ADF≌△CBE,∠A=20°,∠B=120°,则∠CEB=________.12. (1分) (2018八上·姜堰期中) 一个直角三角形斜边上的中线和高线的长分别是5cm和4.8cm,这个三角形的面积为________cm2 .13. (1分)(2019·南昌模拟) 如图,在Rt△ABC中,∠ACB=90°,AC=BC ,以AB为直径作⊙O ,在上取一点D ,使 =2 ,则∠CBD=________.14. (1分) (2019八上·东台期中) 已知,如图:∠ABC=∠DEF,AB=DE,要说明△ABC≌△DEF,若以“ASA”为依据,还要添加的条件为________.15. (1分)(2020·峨眉山模拟) 如图,扇形中,,,C是的中点,⊥ 交于点D,以为半径的交于点E,则图中阴影部分的面积是________.16. (1分)(2017·宿迁) 如图,正方形ABCD的边长为3,点E在边AB上,且BE=1,若点P在对角线BD 上移动,则PA+PE的最小值是________.三、解答题 (共10题;共72分)17. (10分) (2019八下·仁寿期中)(1)计算:(2)18. (5分)(2018·柳州) 如图,和相交于点,,.求证:.19. (5分) (2019八上·恩施期中) 如图,已知△ABC,∠C=90°,AC<BC,D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连结AD,若∠B=33°,则∠CAD=________°.20. (2分) (2020八上·邛崃期末) 如图,已知△ABC中BC边上的垂直平分线DE与∠BAC得平分线交于点E,EF⊥AB交AB的延长线于点F,EG⊥AC交于点G.求证:(1) BF=CG;(2) AF= (AB+AC).21. (2分) (2017九上·云梦期中) 如图,△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕点C逆时针旋转得到△A1B1C,旋转角α(0°<α<90°),连接BB1 ,设CB1交AB于D,AlB1分别交AB,AC于E,F.(1)求证:△BCD≌△A1CF;(2)若旋转角α为30°,①请你判断△BB1D的形状;②求CD的长.22. (10分) (2019八下·西乡塘期末) 如图,在矩形ABCD中AD=12,AB=9,E为AD的中点,G是DC上一点,连接BE,BG,GE,并延长GE交BA的延长线于点F,GC=5(1)求BG的长度;(2)求证:是直角三角形(3)求证:23. (10分) (2020八下·延平月考) 如图,四边形ABCD是矩形,对角线AC的垂直平分线EF交AC于O ,分别交BC、AD于点E、F .(1)求证:四边形AECF是菱形;(2)若AB=4,BC=8,求EC的长.24. (5分) (2019八上·宝丰月考) 如图,小巷左石两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7米,梯子顶端到地面的距离AC为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A′D为1.5米,求小巷有多宽.25. (12分)在平面直角坐标系中,已知点A(﹣3,1),B(﹣1,0),C(﹣2,﹣1),请在图中画出△ABC,并画出与△ABC关于y轴对称的图形△A1B1C1 ,并写出点A对应点A1的坐标.26. (11分) (2019八下·广安期中) 已知E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD的中点时,有:①AF=DE;②AF⊥DE成立.试探究下列问题:(1)如图1,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)(2)如图2,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;(3)如图3,在(2)的基础上,连接AE和BF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共8题;共8分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共10题;共72分)17-1、17-2、18-1、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、24-1、25-1、26-1、26-2、26-3、。
湖北省襄阳市八年级上学期数学期中考试试卷
湖北省襄阳市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列图形中,不是轴对称图形的是()A . 线段B . 平行四边形C . 等边三角形D . 角2. (2分)(2018·武进模拟) 下列运算正确的是()A .B .C .D .3. (2分)下列等式中,从左到右的变形是因式分解的是()A . (x+1)(x﹣2)=x2﹣x﹣2B . 4a2b3=4a2•b3C . x2﹣2x+1=(x﹣1)2D .4. (2分)下列各组条件中,不能判断△ABC≌△DEF的是()A . ∠A=∠D,AB=DE,∠B=∠EB . AB=DE,∠A=∠D,BC=EFC . AB=DE,BC=EF,AC=DFD . ∠B=∠E=90°,AB=DE,AC=DF5. (2分)(2014·茂名) 下列运算正确的是()A . a3+a3=a6B . a3•a3=a9C . (a+b)2=a2+b2D . (a+b)(a﹣b)=a2﹣b26. (2分)(2017·张家界) 下列运算正确的有()A . 5ab﹣ab=4B . (a2)3=a6C . (a﹣b)2=a2﹣b2D . =±37. (2分)(2018·东营) 下列运算正确的是()A . ﹣(x﹣y)2=﹣x2﹣2xy﹣y2B . a2+a2=a4C . a2•a3=a6D . (xy2)2=x2y48. (2分) (2016八上·抚顺期中) 已知:点P、Q是△ABC的边BC上的两个点,且BP=PQ=QC=AP=AQ,∠BAC 的度数是()A . 100°B . 120°C . 130°D . 150°9. (2分)在△ABC中,∠C=90°,AC=BC,则sin A的值等于()A .B .C .D . 110. (2分) (2017七上·沂水期末) 如图,张亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A . 经过一点有无数条直线B . 经过两点,有且仅有一条直线C . 两点间距离的定义D . 两点之间,线段最短二、填空题 (共8题;共9分)11. (1分) (2018八上·柳州期末) 计算:a2·a3= ________12. (1分) (2018八上·彝良期末) 分解因式:9a(x-y)+3b(x-y)=________.13. (1分)点P(5,-6)关于y轴对称的点的坐标是________.14. (2分) (2020八上·临颍期末) 计算: ________; ________15. (1分)如果△ABC中,∠A+∠B=∠C﹣10°,则△ABC是________三角形.16. (1分) (2019八上·嘉荫期末) 如图,△ABC的周长为12,OB、OC分别平分∠ABC和∠ACB,过点O作OD⊥BC于点D,OD=3,则△ABC的面积为________.17. (1分)在边长为1cm的正△ABC中,P0为BC边上一点,作P0P1⊥CA于点 P1 ,作P1P2⊥AB于点P2 ,作P2P3⊥BC于点P3 .如果点P3恰与点P0重合,则△P1P2P3的面积是________cm2 .18. (1分) (2017八下·东台开学考) 如图,△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC,交DE 于点F,若BC=6,则DF的长是________三、解答题 (共8题;共69分)19. (10分)计算:(1)(a2+3)(a﹣2)﹣a(a2﹣2a﹣2);(2)(2m+n)(2m﹣n)+(m+n)2﹣2(2m2﹣mn).20. (20分)分解因式:(1) a2b2﹣2ab+1(2) 9(a+b)2﹣25(a﹣b)2.(3) a2﹣2a+1﹣b2(4) x2+y2+m2﹣2xy+2my﹣2mx.21. (5分) (2019八上·北京期中) 已知3x-y-2 = 0 ,求代数式5(3x-y)2-9x +3 y-13的值.22. (5分) (2018八上·江海期末) 已知:如图,M是AB的中点,∠1=∠2,MC=MD.求证:∠A=∠B.23. (15分) (2018八上·梁子湖期末) 如图在平面直角坐标系中,各顶点的坐标分别为:,,(1)在图中作使和关于x轴对称;(2)写出点的坐标;(3)求的面积.24. (5分)如图,已知AB∥CD,AC∥BD,CE平分∠ACD.(1)求证:△ACE是等腰三角形;(2)求证:∠BEC>∠BDC.25. (3分) (2017七下·义乌期中) 我国南宋时期杰出的数学家杨辉是钱塘人,如图是他在《详解九章算术》中记载的“杨辉三角”.此图揭示了(a+b)n(n为非负整数)的展开式的项数及各项系数的有关规律.(1)请仔细观察,填出(a+b)4的展开式中所缺的系数.(a+b)4=a4+4a3b+________a2b2+________ab3+b4(2)此规律还可以解决实际问题:假如今天是星期三,再过7天还是星期三,那么再过814天是星期________.26. (6分) (2019七上·南浔期中) 平移和翻折是初中数学两种重要的图形变化.(1)平移运动①把笔尖放在数轴的原点处,先向负方向移动个单位长度,再向正方向移动个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果是(________)A. B.C. D.②一机器人从原点O开始,第1次向左跳1个单位,紧接着第2次向右跳2个单位,第3次向左跳3个单位,第4次向右跳4个单位,……,依次规律跳,当它跳2019次时,落在数轴上的点表示的数是________.(2)翻折变换①若折叠纸条,表示-1的点与表示3的点重合,则表示2019的点与表示________的点重合;②若数轴上A、B两点之间的距离为2019(A在B的左侧,且折痕与①折痕相同),且A、B两点经折叠后重合,则A点表示________B点表示________.③若数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为________.(用含有a,b的式子表示)参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共69分)19-1、19-2、20-1、20-2、20-3、20-4、21-1、22-1、23-1、23-2、23-3、24-1、25-1、25-2、26-1、26-2、。
湖北省襄阳市老河口市2022-2023学年八年级上学期期中学业质量检测数学试题
湖北省襄阳市老河口市2022-2023学年八年级上学期期中学业质量检测数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.一个三角形的两边长分别是1和3,则第三边的长可能是()A .1B .2C .3D .72.如图,AB ∥CD ,∠1=30°,∠2=40°,则∠3的度数为()A .50°B .60°C .70°D .80°3.桥梁的斜拉钢索是三角形的结构,主要是为了()A .节省材料,节约成本B .保持对称C .利用三角形的稳定性D .美观漂亮4.如果多边形的每一个内角都是150°,那么这个多边形的边数是()A .8B .10C .12D .165.如图,ABC ≌ADE V ,BC 的延长线交DE 于点F ,3011010B AED DAC ∠=︒∠=︒∠=︒,,,则DFB ∠=()A .55︒B .50︒C .65︒D .60︒6.点M (1,2)关于y 轴对称的点的坐标为()A .(-1,2)B .(1,-2)C .(2,-1)D .(-1,-2)7.如图,已知AB DE ∥,CD BF =,如果要说明ABC EDF ≌△△,那么还可以补充的条件是()A .AC EF=B .AB ED =C .B E ∠=∠D .B D∠=∠8.钢架雪车是2022年北京冬奥会的比赛项目之一.下面这些钢架雪车运动标志是轴对称图形的是()A .B .C .D .9.如图,在四边形ABCD 中,∠A=90°,AD=3,BC=5,对角线BD 平分∠ABC ,则△BCD 的面积为()A .7.5B .8C .15D .无法确定10.如图,△ABC 的周长为19,点D ,E 在边BC 上,∠ABC 的平分线垂直于AE ,垂足为点N ,∠ACB 的平分线垂直于AD ,垂足为M ,若BC =7,则DE 的长是()A .6B .4C .2D .5二、填空题11.如图,在ABC 中,=90C ∠︒,=20A ∠︒,BD 为ABC ∠的平分线,则BDC ∠=_________.12.等腰三角形的两边长分别为12,6,这个三角形的周长为_________.13.正五边形的每一个内角都等于___.14.如图,在△ABC 中,已知∠1=∠2,BE =CD ,AB =5,AE =2,则CE =_____.15.如图,是一个33⨯的正方形网格,则∠1+∠2+∠3+∠4=________.16.如图,在ABC 中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,DE AB ⊥,垂足为E ,若4BC =, 1.6DE =,则BD 的长为______.17.如图,点D ,E 是BC 的三等分点,ADE V 是等边三角形,那么BAC ∠的度数为_________.18.如图,30AOB ∠=︒,OC 为AOB ∠内部一条射线,点P 为射线OC 上一点,10OP =,点M ,N 分别为OA OB ,边上动点,则MNP 周长的最小值为_________.三、解答题19.如图,在ABC 中,AD 是BAC ∠的角平分线,BE 是边AC 上的高,AD BE ,相交于点O ,如果70AOE ∠=︒,求ABE ∠的度数.20.已知:如图,点B ,E ,C ,F 在同一直线上,AB DE ∥,且AB DE =,BE CF =,求证:AC DF =.21.如图,50A ∠=︒,20B ∠=︒,30D ∠=︒,求BCD ∠的度数.22.如图,AE BD ⊥,CD BD ⊥,AB BC =,BE CD =.求ABC ∠的度数.23.如图,在ABC 中,ABC ∠与ACB ∠的平分线相交于点O ,AO 的延长线交BC 于点D ,OB OC =.求证:BD CD =.24.如图,在ABC 中,,120,AB AC BAC =∠=︒(1)作AC 的垂直平分线,垂足为点D ,交BC 于点E (尺规作图,保留痕迹,不写作法);(2)在(1)的条件下,求证:2BE CE =.25.如图,AD 为 ABC 的高,AD =BD ,E 为AC 上一点,BE 交AD 于F ,且FD =CD .(1)求证: BFD ≌ ACD ;(2)判断BE 与AC 的位置关系,并说明理由.26.如图,在ABC ∆中,60A ∠=︒,点D 为AB 边上一点,点E 为AC 边的延长线上一点,BD CE =,DE 交BC 于点F ,点F 为DE 的中点,点G 在BC 上,DG AC ∥.(1)求证:DG CE =;(2)求证:ABC ∆为等边三角形;(3)若ED AB ⊥,2BD =,求AB 的长.27.如图,ABC 中,AC BC =,90ACB ∠=︒,D 为ABC 外一点,AD BD ⊥,BD 交AC 于点E ,F 为BD 上一点,BCF ACD ∠=∠,过点F 作FG CF ⊥交CB 于点G .(1)求证:DAC FBC ∠=∠;(2)求证:CDF 是等腰直角三角形;(3)若AD CD =,求ABD ∠的度数.。
2022-2023学年湖北省襄阳市老河口市八年级上学期期中考试学业质量检测数学试卷带讲解
则3-1<x<3+1,
2<x<4,
四个选项中只有选项C符合.
故选:C.
【点睛】本题考查了三角形的三边关系,已知三角形的两边长,则第三边的范围为大于两边差且小于两边和.
2.如图,AB∥CD,∠1=30°,∠2=40°,则∠3的度数为( )
A.50°B.60°C.70°D.80°
【分析】先证 , ,再由全等三角形的性质,可得 ,最后用等量代换求得
【详解】解:∵ , ,
∴ ,
在 和 中
∵ ,
∴ ,
∴ ,
∵ ,
∴ ,
∴ .
【点睛】本题主要考查了三角形全等的判定,全等三角形的性质,灵活运用以上知识是解题的关键.
23.如图,在 中, 与 的平分线相交于点O,AO的延长线交 于点D, .求证: . 【答案】见解析
故选A.
考点:角平分线的性质;全等三角形的判定与性质.
10.如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为点N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则DE的长是()
A.6B.4C.2D.5
【答案】D
【解析】
【分析】由 的平分线垂直于 ,垂足为点N,可证 ,同理可得, ,再根据 , 结合已知条件△ABC的周长为19,BC=7,通过等量代换,求得DE的长.
,
不能组成三角形,
②6是底边时,三角形的三边分别为12、12、6,
能组成三角形,
周长 .
综上所述,这个等腰三角形的周长为30.
故答案为:30.
【点睛】本题考查了等腰三角形的性质,三角形的三边关系,难点在于要分情况讨论并利用三角形三边关系判断是否能组成三角形.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[首发]湖北省襄阳老河口市2020-2021学年八年级上学期期中考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.等腰三角形的两边长分别为5cm,4cm,则它的周长是()A.14cm B.13cm C.16cm或9cm D.13cm或14cm 2.一个多边形的每一个内角都等于140°,那么从这个多边形的一个顶点出发的对角线的条数是()A.6条B.7条C.8条D.9条3.如图,在 Rt∆ACB 中,∠ACB=90°, ∠A=25°, D 是 AB 上一点.将Rt∆ABC沿CD折叠,使B点落在C边上的B’处,则∠CDB’等于()A.40°B.60°C.70°D.80°4.如图所示,三角形纸片被正方形纸板遮住了一部分,小明根据所学知识画出了一个与该三角形完全重合的三角形,那么这两个三角形完全重合的依据是()A.SSS B.SAS C.AAS D.ASA5.点P在∠AOB的平分线上,点P到OA边的距离等于5,点Q是OB边上的任意一点,则下列选项正确的是( )A.PQ≤5B.PQ<5 C.PQ≥5D.PQ>56.△ABC是一个任意三角形,用直尺和圆规作出∠A,∠B的平分线,如果两条平分线交于点O,那么下列选项中不正确的是()A.点O一定在△ABC的内部B.点O到△ABC的三边距离一定相等C.∠C的平分线一定经过点O D.点O到△ABC三顶点的距离一定相等7.如图,点D,E分别在AB,AC上,AB=AC,∠B=∠C,若AD=2,BD=3,则CE的长为()A.2 B.3 C.5 D.无法确定8.点A(3,4)关于x轴对称的点的坐标为()A.(-3,4)B.(4,3)C.(-3,-4)D.(3,-4)9.已知∠AOB=30°,点P在∠AOB的内部,点P1和点P关于OA对称,点P2和点P 关于OB对称,则P1、O、P2三点构成的三角形是()A.直角三角形B.钝角三角形C.等腰直角三角形D.等边三角形10.如图,在△ABC中,BD平分∠ABC,BC的垂直平分线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=20°,则∠ACF的度数为()A.60°B.50°C.40°D.20°11.如图,在△P AB中,P A=PB,M,N,K分别在P A,PB,AB上,且AM=BK,BN=AK,若∠MKN=40°,则∠P的度数为()A.140°B.90°C.100°D.110°二、填空题12.若一个三角形的3个内角度数之比为4:3:2,则这个三角形的最大内角为____°.13.如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是____.(填上一个条件即可)14.超重机的底座、输电线路的支架、自行车的斜支架等,都是采用三角形结构,这样做的数学道理是利用了______________.15.如图,过正五边形ABCDE 的顶点A 作直线l ∥BE ,则∠1的度数为____________.16.等腰三角形的一外角为80°,则它的底角为________度.17.如图,在ABC 中,3,4,,AB AC AB AC EF ==⊥垂直平分BC ,点P 为直线EF 上一动点,则ABP △周长的最小值是________.18.如图,在△ABC 中,D 在边AC 上,如果AB=BD=DC ,且∠C=40°,那么∠A=__°.19.如图,在△ABC 中,∠C =90°,∠B =30°,AD 平分∠CAB ,交BC 于点D ,若CD =1,则BD =________.20.如图,Rt △ABC 中,∠BAC =90°,AB =AC ,分别过点B 、C 作过点A 的直线的垂线BD 、CE ,垂足分别为D 、E ,若BD =3,CE =2,则DE =_____.21.如图,△ABC是等边三角形,点D,E分别是BC,AC边上的点,且CD=AE,AD,BE 交于点F,延长AD至点P,使PF=BF,连接BP,CP,若BP=5,CP=3,则AP的长为_______.三、解答题22.如图,在△ABC中,∠C=60°,△ABC的高AD,BE相交于点F.求∠AFB的度数.23.如图,请按下列要求用尺规作图,不写作法,但要保留痕迹:(1)作出△ABC的角平分线CD;(2)作出△ABC的高AE.24.如图CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.25.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.26.如图,在四边形ABCD中,∠B=∠D=90°,∠DAB与∠DCB 的平分线分别交DC,AB于E,F.求证:AE∥CF.27.如图18,在△ABC中,AB=AC,∠BAC=120°,AD⊥AC交BC于点D,若AD=1,求BC的长.28.如图19,在△ABC中,AB=AC,AC的垂直平分线交AB于E,D为垂足,连接EC.若BC=EC,求∠BED的度数.29.如图:在△ABC中,∠C=90° AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;求证:(1)CF=EB ;(2)AB=AC+CF.30.如图,在△ABC中,CD是中线,∠ACB=90°,AC=BC,点E,F分别为AB,AC 上的动点(均不与端点重合),且CE⊥BF,垂足为H,BF与CD相交于G.(1)求证:AE=CG;(2)当线段AE,CF之间满足什么数量关系时,BF为△ABC的角平分线?请说明理由.参考答案1.D【详解】解:当5cm 为腰时,周长为5+5+4=14cm ;当4cm 为腰时,周长为5+4+4=13cm ;故选D .2.A【解析】设这个多边形的边数为n ,则由题意可得:180(2)140n n ,解得9n =,∴从此多边形的一个顶点出发可引对角线的条数为:9-3=6(条).故选A.点睛:(1)n 边形的内角和为:180(2)n -;(2)从n 边形的一个顶点可引(3)n -条对角线.3.C【解析】【分析】先根据三角形内角和定理求出∠ABC 的度数,再由翻折变换的性质得出△BCD ≌△B ′CD ,据此可得出结论.【详解】解:∵在Rt △ACB 中,∠ACB=90°,∠A=25°,∴∠ABC=90°-25°=65°.∵△B ′CD 由△BCD 翻折而成,∴∠BCD=∠B ′CD=12×90°=45°,∠CB ′D=∠CBD=65°, ∴∠CDB ′=180°-45°-65°=70°.故选C .【点睛】本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键.4.D【分析】图中三角形没被污染的部分有两角及夹边,根据全等三角形的判定方法解答即可.【详解】解:由图可知,三角形两角及夹边还存在,∴根据可以根据三角形两角及夹边作出图形,所以,依据是ASA.故选:D.【点睛】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.5.C【解析】【分析】根据角平分线上的点到角的两边距离相等可得点P到OB的距离为5,再根据垂线段最短解答.【详解】解:∵点P在∠AOB的平分线上,点P到OA边的距离等于5,∴点P到OB边的距离为5,∵点Q是OB边上的任意一点,∴PQ≥5.故选C.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.6.D【解析】由三角形的三条角平分线在三角形内相交于一点可知:A、C正确;而由角平分线的性质可证得点O到△ABC的三边距离相等,所以B正确;而三角形三条角平分线的交点到三个顶点的距离不一定相等,所以D错误.故选D.7.B【解析】∵在△ABE和△ACD中,A A AB ACB C∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABE≌△ACD,∴AC=AB=AD+BD=5,AE=AD=2,∴CE=AC-AE=5-2=3.故选B.8.D【解析】∵关于x轴对称的两个点的横坐标相等,而纵坐标互为相反数,∴点A(3,4)关于x轴的对称点的坐标为(3,-4).故选D.点睛:(1)关于x轴对称的两个点,横坐标相等,纵坐标互为相反数;(2)关于y轴对称的两个点纵坐标相等,横坐标互为相反数;(3)关于原点对称的两个点横坐标、纵坐标分别对应互为相反数.9.D【解析】【分析】根据轴对称的性质可知:OP1=OP2=OP,∠P1OP2=60°,即可判断△P1OP2是等边三角形.【详解】如图,根据轴对称的性质可知,OP1=OP2=OP,∠P1OP2=60°,∴△P1OP2是等边三角形.故选D.【点睛】主要考查了等边三角形的判定和轴对称的性质.轴对称的性质:(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等,对应角相等.10.A【解析】∵BD平分∠ABC,∠ABD=20°,∴∠DBC=∠ABD=20°,∠ABC=2∠ABD=40°,∴∠ACB=180°-∠A-∠ABC=180°-60°-40°=80°.∵EF垂直平分BC,∴BF=CF,∴∠FCB=∠FBC=20°,∴∠ACF=∠ACB-∠FCB=80°-20°=60°.故选A.11.C【解析】∵∠MKN=40°,∴∠MKA+∠NKB=180°-∠MKN=140°.∵PA=PB,∴∠A=∠B.∵在△MKA和△KNB中,AM BKA B AK BN=⎧⎪∠=∠⎨⎪=⎩,∴△MKA≌△KNB,∴∠NKB=∠KMA,∴∠KMA+∠MKA=140°,∴∠A=180°-140°=40°,∴∠B=40°,∴∠P=180°-40°-40°=100°. 故选C.12.80【分析】根据三角形的内角和是180°,再根据三角形的三个内角之比为4:3:2即可求出这个三角形的最大内角.【详解】这个三角形的最大内角为:180°×4432++=80°.13.∠B=∠C或BE=CE或∠BAE=∠CAE (答案不唯一,任写一个即可)【分析】根据题意,易得∠AEB=∠AEC,又AE公共,所以根据全等三角形的判定方法容易寻找添加条件.【详解】∵∠1=∠2,∴∠AEB=∠AEC,又AE公共,∴当∠B=∠C时,△ABE≌△ACE(AAS);或BE=CE时,△ABE≌△ACE(SAS);或∠BAE=∠CAE时,△ABE≌△ACE(ASA).【点睛】此题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.14.三角形的稳定性【分析】根据三角形的三边一旦确定,则形状大小完全确定,即三角形的稳定性作答.【详解】起重机的底座、输电线路的支架、自行车的斜支架等,都是采用三角形结构,这样做的数学道理是利用了三角形的稳定性.故答案为三角形的稳定性.15.36°∵多边形ABCDE 是正五边形,∴∠BAE=0180(52)5⨯-=108°, ∴∠1=∠2=12(180°-∠BAE ), 即2∠1=180°-108°,∴∠1=36°.16.40【解析】∵等腰三角形的一个外角为80°, ∴与这个外角相邻的内角度数为180°-80°=100°,∴这个100°的角只能是等腰三角形的顶角,∴这个等腰三角形的底角为:12(180°-100°)=40°. 点睛:(1)三角形的一个外角与相邻的内角是互补的数量关系;(2)等腰三角形中顶角可以是锐角、直角和钝角中的任意一种,但底角只能是锐角,不能是直角或钝角.17.7【分析】根据题意知点B 关于直线EF 的对称点为点C ,故当点P 与点D 重合时,AP+BP 的最小值,求出AC 长度即可得到结论.【详解】解:∵EF 垂直平分BC ,∴B ,C 关于直线EF 对称.设AC 交EF 于点D ,∴当P 和D 重合时,AP BP +的值最小,最小值等于AC 的长,∴ABP △周长的最小值是437+=.【点睛】本题考查了勾股定理,轴对称-最短路线问题的应用,解题的关键是找出P 的位置. 18.80【解析】∵AB=BD=DC ,∴∠A=∠BDA ,∠DBC=∠C=40°,又∵∠BDA=∠DBC+∠C ,∴∠A=∠DBC+∠C=40°+40°=80°.19.2【解析】试题分析:根据角平分线性质求出∠BAD 的度数,根据含30度角的直角三角形性质求出AD 即可得BD .∵∠C=90°,∠B=30°,∴∠CAB=60°,AD 平分∠CAB ,∴∠BAD=30°,∴BD=AD=2CD=2, 考点:含30度角的直角三角形;角平分线的性质20.5【解析】在△ABD 和△CAE 中,D E BAD ACE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩则△ABD ≌△CAE (AAS ),则AD=CE=2,AE=BD=3,则DE=AD+AE=5.【点睛】运用AAS 证明两三角形全等是能解决该问题的前提条件,根据全等三角形的对应边相等,从而得解.21.8【解析】∵△ABC 是等边三角形,∴AB=AC ,∠BAE=∠ACD=60°,又∵AE=CD ,∴△ABE≌△CAD,∴∠ABE=∠CAD,∴∠BFP=∠ABE+∠BAF=∠CAD+∠BAF=∠BAC=60°,又∵PF=BF,∴△BFP是等边三角形,∴PF=BP=5,∠FBP=∠ABC=60°,∴∠ABF=∠CBP,又∵AB=BC,∴△ABF≌△CBP,∴AF=CP=3,∴AP=AF+PF=3+5=8.22.120°.【解析】试题分析:由AD、BE是△ABC的高易得∠CEF=∠CDF=90°,结合∠C=60°,由四边形内角和为360°可得∠EFD=120°,最后由对顶角相等可得∠AFB=120°.试题解析:∵AD,BE是△ABC的高,∴∠ADC=∠AEB=90°.∵∠C=60°,四边形EFDC的内角和为360°,∴∠DFE=360°-∠C-∠ADC-∠AEB=120°.∴∠AFB=∠DFE=120°.23.作图见解析.【解析】试题分析:按尺规作图的要求画出相应的图形,并保留作图痕迹即可.试题解析:(1)作△ABC的角平分线CD如下图:(2)作△ABC的高AE如下图:24.见解析【分析】全等三角形的判定和性质.求出∠DCE=∠ACB,根据SAS证△DCE≌△ACB,根据全等三角形的性质即可推出答案.【详解】证明:∵∠DCA=∠ECB∴∠DCA+∠ACE=∠BCE+∠ACE∴∠DCE=∠ACB.∵在△DCE和△ACB中DC=AC,∠DCE=∠ACB,CE=CB,∴△DCE≌△ACB(SAS)∴DE=AB.25.利用等腰三角形的性质得到∠B=∠C,然后证明△ABD≌△ACE即可证得结论.【解析】分析:证明:∵AB=AC,∴∠B=∠C.在△ABD 与△ACE 中,∵AB AC{B C BD EC=∠=∠=,∴△ABD ≌△ACE (SAS ).∴AD=AE .26.证明见解析.【解析】试题分析:由四边形内角和为360°及∠B=∠D=90°,易得∠DAB +∠BCD=180°,∠BFC +∠BCF =90°,再由AE ,CF 分别平分∠DAB 与∠DCB 可得∠EAB+∠BFC=90°,从而可得∠EAB=∠BFC ,就可证得AE ∥CF. 试题解析:∵∠DAB +∠B +∠BCD +∠D =360°,∠B =∠D =90°,∴∠DAB +∠BCD =360°-∠B -∠D =180°,∠BFC +∠BCF =90°.∵AE ,CF 分别平分∠DAB 与∠DCB , ∴12EAB DAB ∠=∠,12BCF BCD ∠=∠. ∴()1902EAB BCF DAB BCD ∠+∠=∠+∠=︒ ∴∠EAB =∠BFC .∴AE ∥CF .27.3【解析】试题分析:由AB=AC ,∠BAC=120°,易得∠B=∠C=30°;由AD ⊥AC 可得∠DAC=90°,由此可得DC=2AD=2,∠BAD=∠BAC-∠DAC=30°,由此可证得BD=AD=1,就可得BC=DC+BD=3. 试题解析:∵AB =AC ,∴∠B =∠C=12(180°-∠BAC )=12(180°-120°)=30°. ∵AD ⊥AC ,∴∠DAC=90°.∴DC=2AD=2,∠BAD=∠BAC-∠DAC=30°.∴∠BAD=∠B.∴BD=AD=1.∴BC=BD+DC=3.28.126°.【解析】试题分析:由DE垂直平分AC可得AE=CE=BC,由此可得∠A=∠ECA,∠CEB=∠ABC;由AB=AC 可得∠ABC=∠ACB,又因为∠CEB=∠A+∠ECA=2∠A,所以∠ABC=∠ACB=2∠A,再由三角形内角和为180°,在△ABC中可解得∠A的度数,最后由∠BED=∠A+∠EDC可求得∠BED的度数.试题解析:∵DE垂直平分AC,∴AE=CE,∠ADE=90°.∴∠A=∠ACE.∵AB=AC,BC=EC,∴∠ACB=∠B=∠BEC.设∠A=x,则∠BEC=∠A+∠ACE=2x.∴∠ACB=∠B=∠BEC=2x.∴∠A+∠B+∠ACB=x+2x+2x=180°.解得x=36°.∴∠BED=∠A+∠ADE=36°+90°=126°.29.(1)证明见解析;(2)证明见解析【分析】(1)根据角平分线的性质“角的平分线上的点到角的两边的距离相等”,可得点D到AB的距离=点D到AC的距离即CD=DE.再根据Rt△CDF≌Rt△EBD,得CF=EB;(2)利用角平分线性质证明∴△ADC≌△ADE,AC=AE,再将线段AC进行转化.【详解】解:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC ,在Rt △DCF 和Rt △DEB 中,BD DF DC DE ⎧⎨⎩=,=∴Rt △CDF ≌Rt △EBD (HL ),∴CF=EB ;(2)在△ADC 与△ADE 中,CD DE AD AD ⎧⎨⎩=,=∴△ADC ≌△ADE (HL ),∴AC=AE ,∴AB=AE+BE=AC+CF .【点睛】本题主要考查平分线的性质,全等三角形的性质与判定,由已知能够注意到点D 到AB 的距离=点D 到AC 的距离,即CD=DE ,是解题关键.30.(1)证明见解析;(2)当AE =CF 时,BF 为△ABC 的角平分线.理由见解析.【分析】(1)由等腰直角三角形的性质可证得∠A=∠BCG=45°,再由∠ACE+∠BCE=90°,∠CBG+∠BCE=90°,得到∠ACE=∠CBG ,这样结合AC=BC ,由“ASA ”可证△ACE ≌△CBG 就可得到结论了;(2)当AE=CF 时,BF 是△ABC 的角平分线;由AE=CF ,AE=CG ,可得CF=CG ,这样∠CFG=∠CGF ,进一步就可证得∠CBF=∠DBF ,从而可得BF 平分∠ABC.【详解】解:(1)∵∠ACB =90°,AC =BC ,CD 是中线, ∴∠ACE +∠BCE =90°,∠A =∠ABC =∠BCG =45°. ∵CE ⊥BF ,垂足为H ,∴∠BHC =90°. ∴∠CBG +∠BCE =90°. ∴∠ACE =∠CBG .在△ACE和△CBG中:,,,A BCGAC CBACE CBG∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ACE≌△CBG.∴AE=CG.(2)当AE=CF时,BF为△ABC的角平分线.理由如下:∵AE=CF,AE=CG.∴CF=CG.∴∠CFG=∠CGF.∵∠CFG=∠A+∠ABF,∠CGF=∠BCG+∠CBF,∠A=∠BCG,∴∠ABF=∠CBF.即BF为△ABC的角平分线.【点睛】本题考查全等三角形的性质和判定,等腰三角形的性质,角平分线的有关证明.在解本题第2小问时,采用逆向分析很容易找到解题思路:要使BF是△ABC的角平分线,就需使∠CBF=∠ABF,而由题意可知∠CBF和∠ABF分别与∠CFB和∠BGD互为余角,而∠BGD=∠CGF,因此只需∠CGF=∠CFB即可,即只需CF=CG即可,而由(1)可知CG=AE,所以只需AE=CF即可,这样就找到了所需的条件.。