2014 新课标 平面向量与复数-平面向量讲义

合集下载

高中数学讲义 第四章 平面向量与复数(超级详细)

高中数学讲义 第四章 平面向量与复数(超级详细)

高中数学复习讲义第四章平面向量与复数【知识图解】Ⅰ.平面向量知识结构表Ⅱ.复数的知识结构表【方法点拨】由于向量融形、数于一体,具有几何形式与代数形式的“双重身份”,使它成为了中学数学知识的一个重要交汇点,成为联系众多知识内容的媒介。

所以,向量成为了“在知识网络交汇处设计试题”的很好载体。

从高考新课程卷来看,对向量的考查力度在逐年加大,除了直接考查平面向量外,将向量与解析几何、向量与三角等内容相结合,在知识交汇点处命题,既是当今高考的热点,又是重点。

复习巩固相关的平面向量知识,既要注重回顾和梳理基础知识,又要注意平面向量与其他知识的综合运用,渗透用向量解决问题的思想方法,从而提高分析问题与综合运用知识解决问题的能力,站在新的高度来认识和理解向量。

1.向量是具有大小和和方向的量,具有“数”和“形”的特点,向量是数形结合的桥梁,在处理向量问题时注意用数形结合思想的应用.2.平面向量基本定理是处理向量问题的基础,也是平面向量坐标表示的基础,它表明同一平面内任意向量都可以表示为其他两个不共线向量的线性组合.3.向量的坐标表示实际上是向量的代数形式,引入坐标表示,可以把几何问题转化为代数问题解决.4.要了解向量的工具作用,熟悉利用向量只是解决平面几何及解析几何中的简单问题的方法.第1课 向量的概念及基本运算【考点导读】1. 理解平面向量和向量相等的含义,理解向量的几何表示.2. 掌握向量的加法、减法、数乘的运算,并理解其几何意义.3. 了解平面向量基本定理及其意义. 【基础练习】1.出下列命题:①若=a b ,则=a b ;②若A 、B 、C 、D 是不共线的四点,则DC AB =是四边形为平行四边形的充要条件;③若,==a b b c ,则=a c ;④=a b 的充要条件是=a b 且//a b ;⑤若//a b ,//b c ,则//a c 。

其中,正确命题材的序号是②③2. 化简AC -u u u r BD +u u u r CD -u u u r AB u u u r得03.在四边形ABCD 中,=a +2b ,BC =-4a -b ,CD =-5a -3b ,其中a 、b 不共线,则四边形ABCD 为梯形4.如图,设点P 、Q 是线段AB 的三等分点,若OA u u u r =a ,OB u u u r =b ,则OP u u u r =2133+a b ,OQ u u u r =1233+a b (用a 、b 表示)【范例导析】例1 .已知任意四边形ABCD 的边AD 和BC 的中点分别为E 、F , 求证:2AB DC EF +=u u u r u u u r u u u r.分析:构造三角形,利用向量的三角形法则证明. 证明:如图,连接EB 和EC ,由EA AB EB +=u u u r u u u r u u u r 和EF FB EB +=u u u r u u u r u u u r 可得,EA AB EF FB +=+u u u r u u u r u u u r u u u r(1)由ED DC EC +=u u u r u u u r u u u r 和EF FC EC +=u u u r u u u r u u u r 可得,ED DC EF FC +=+u u u r u u u r u u u r u u u r(2) (1)+(2)得, 2EA ED AB DC EF FB FC +++=++u u u r u u u r u u u r u u u r u u u r u u u r u u u r(3) ∵E 、F 分别为AD 和BC 的中点,∴0EA ED +=u u u r u u u r r ,0FB FC +=u u u r u u u r r,代入(3)式得,2AB DC EF +=u u u r u u u r u u u r点拨:运用向量加减法解决几何问题时,需要发现或构造三角形或平行四边形.例1例2.已知,OA OB u u u r u u u r不共线,OP aOA bOB =+u u u r u u u r u u u r ,求证:A,P ,B 三点共线的充要条件是1a b +=分析:证明三点共线可以通过向量共线来证明.解:先证必要性:若A,P ,B 三点共线,则存在实数λ,使得AP AB λ=u u u r u u u r ,即()OP OA OB OA λ-=-u u u r u u u r u u u r u u u r,∴()1,OP OA OB λλ=-+u u u r u u u r u u u r ∵OP aOA bOB =+u u ur u u u r u u u r ,∴1,a b λλ=-=,∴ 1.a b +=再证充分性:若 1.a b +=则AP OP OA =-u u u r u u u r u u u r =()()1a OA bOB b OB OA -+=-u u u r u u u r u u u r u u u r=bAB u u u r ,∴AP u u u r 与AB u u u r共线,∴A,P,B 三点共线.点拨:向量共线定理是向量知识中的一个基本定理,通常可以证明三点共线、直线平行等问题. 【反馈练习】1.已知向量a 和b 反向,则下列等式成立的是(C )A. |a |-|b |=|a -b |B. |a |-|b |=|a +b |C.|a |+|b |=|a -b |D. |a |+|b |=|a +b |2.设四边形ABCD 中,有1,2DC AB AD BC ==u u u r u u u r u u u r u u u r则这个四边形是(C )A.平行四边形B.矩形C.等腰梯形D.菱形 3.设A 、B 、C 、D 、O 是平面上的任意五点,试化简:①AB BC CD ++u u u r u u u r u u u r , ②DB AC BD ++u u u r u u u r u u u r , ③OA OC OB CO --+-u u u r u u u r u u u r u u u r 。

平面向量复数讲平面向量的概念及线性运算课件

平面向量复数讲平面向量的概念及线性运算课件
力学问题。
向量可以表示电磁场和引力场等 物理场,有助于解决物理中的场
论问题。
向量可以用于建立物理模型和方 程,有助于解决复杂的物理问题

向量在解析几何中的应用
向量可以表示点的坐标和方向,有助于解决解析几何中的点和直线的问 题。
向量可以表示平面图形和平面方程,有助于解决解析几何中的曲线和曲 面的问题。
03
CATALOGUE
平面向量的应用
向量在几何中的应用
向量可以表示物体的位置和方向,有助于解决几何中的角度、距离和面积等问题。 向量可以表示平面图形中的线段和角,可以用来证明几何定理和解决几何问题。
向量可以用于建立坐标系和方程,有助于解决复杂的几何问题。
向量在物理中的应用
向量可以表示物体的运动和力, 有助于解决物理中的运动学和动
详细描述
平面向量的加法与减法是最基本的线性运算,它们可 以通过几何图形中的平行四边形法则来实现。具体来 说,对于两个向量$\overset{\longrightarrow}{a}$ 和$\overset{\longrightarrow}{b}$,它们的和向量 $\overset{\longrightarrow}{c}$可以由 $\overset{\longrightarrow}{c} = \overset{\longrightarrow}{a} + \overset{\longrightarrow}{b}$表示,其几何意义是 平行四边形的对角线。同样地,差向量 $\overset{\longrightarrow}{d}$可以由 $\overset{\longrightarrow}{d} = \overset{\longrightarrow}{a} -
向量的数量积
• 总结词:数量积是两个向量的点乘,可以理解为投影乘积。 • 详细描述:数量积是两个向量的点乘,即它们在同一直线上的投影乘积

高考数学一轮总复习教学课件第五章 平面向量、复数第1节 平面向量的概念及线性运算

高考数学一轮总复习教学课件第五章 平面向量、复数第1节 平面向量的概念及线性运算



②利用结论“若=λ+μ(λ,μ为实数),则 A,B,C 三点共线的
充要条件是λ+μ=1”来证明三点共线,但应注意此结论成立的前提条


件是“,不共线”.
[针对训练]



(1)已知向量 a,b 且=a+2b,=-5a+6b,=7a-2b,则一定共线的三
点是(
A.A,B,D
相等,与起点(终点)无关.
(3)两向量可以相等,也可以不相等,但两向量不能比较大小.向量
的模长均为实数,所以模长可以比较大小.


(4)非零向量a与 || 的关系: ||是与a同方向的单位向量.
[针对训练] 给出下列命题:


①若A,B,C,D是不共线的四点,且 = ,则四边形ABCD为平行
(1)|a|与|b|是否相等和a,b的方向无关.( √
(2)若a∥b,b∥c,则a∥c.(

×
)
)

(3)向量与向量是共线向量,则 A,B,C,D 四点在一条直线上.
(
)
×
(4)当两个非零向量a,b共线时,一定有b=λa,反之成立.( √
)
2.在平行四边形ABCD中,点E是DC的中点,点F是BC的一个三等分点
k(2a-b),则有(1-2k)a+(k+λ)b=0,因为a,b是两个不共线向量,故a
- = ,
与b均不为零向量,所以
+ = ,


解得 k=,λ=-.
提升·关键能力
类分考点,落实四翼
考点一
平面向量的基本概念
[例1] (1)下列命题正确的是(

核按钮(新课标)高考数学一轮复习第五章平面向量与复数5.1平面向量的概念及线性运算课件理

核按钮(新课标)高考数学一轮复习第五章平面向量与复数5.1平面向量的概念及线性运算课件理
第十五页,共33页。
解:①不正确.两个向量的长度相等,但它们的方向不一定相同. ②正确.∵A→B=D→C,∴|A→B|=|D→C|且A→B∥D→C,又∵A,B,C,D 是不共线的四点,∴四边形 ABCD 为平行四边形;反之,若四边形 ABCD 为平行四边形,则A→B∥D→C且|A→B|=|D→C|,可得A→B=D→C.故“A→B= D→C”是“四边形 ABCD 为平行四边形”的充要条件. ③正确.∵a=b,∴a,b 的长度相等且方向相同;又 b=c,∴b, c 的长度相等且方向相同,∴a,c 的长度相等且方向相同,故 a=c. ④不正确.由 a=b 可得|a|=|b|且 a∥b;由|a|=|b|且 a∥b 可得 a =b 或 a=-b,故“|a|=|b|且 a∥b”不是“a=b”的充要条件,而是 必要不充分条件. 综上所述,正确命题的序号是②③.故填②③.
第十七页,共33页。
下列命题中,正确的是________.(填序号) ①有向线段就是向量,向量就是有向线段; ②向量 a 与向量 b 平行,则 a 与 b 的方向相同或相反; ③向量A→B与向量C→D共线,则 A,B,C,D 四点共线; ④如果 a∥b,b∥c,那么 a∥c; ⑤两个向量不能比较大小,但它们的模能比较大小.
第五页,共33页。
2.向量的加法和减法
(1)向量的加法
①三角形法则:以第一个向量 a 的终点 A 为起点作第二个向量 b,
则以第一个向量 a 的起点 O 为________以第二个向量 b 的终点 B 为 ________的向量O→B就是 a 与 b 的________(如图 1).
推广:A→1A2+A→2A3+…+An→-1An=____________.
第二十二页,共33页。
(1)( 2015·福建模拟 ) 在 △ABC

【高考数学】第六章 平面向量、复数全章课件PPT教师用书

【高考数学】第六章 平面向量、复数全章课件PPT教师用书

8
知识衍化体验
考点聚焦突破
@《创新设计》
解析 (2)若b=0,则a与c不一定平行. (3)共线向量所在的直线可以重合,也可以平行,则A,B,C,D四点不一定在一条直 线上. 答案 (1)√ (2)× (3)× (4)√ (5)√
9
知识衍化体验
考点聚焦突破
@《创新设计》
2.给出下列命题:①零向量的长度为零,方向是任意的;②若 a,b 都是单位向量,则 a
答案
-16
2 3
15
知识衍化体验
考点聚焦突破
@《创新设计》
考点一 平面向量的概念 【例 1】 下列命题中,不正确的是________(填序号).
a-b=a+(-b)
知识衍化体验
考点聚焦突破
@《创新设计》
求实数λ与 数
向量a的积 乘
的运算
(1)|λa|=__|_λ|_|a_|__; (2)当λ>0时,λa的方向与a的方向___相__同___; 当λ<0时,λa的方向与a的方向___相__反_____; 当λ=0时,λa=__0___
λ(μa)=__λ_μ_a__; (λ+μ)a=_λ_a_+__μ_a_; λ(a+b)=__λ_a_+__λ_b_
答案
1 2
12
知识衍化体验
考点聚焦突破
@《创新设计》
5.(必修 4P92A12 改编)已知▱ABCD 的对角线 AC 和 BD 相交于 O,且O→A=a,O→B=b,则D→C =______,B→C=________(用 a,b 表示).
解析 如图,D→C=A→B=O→B-O→A=b-a,B→C=O→C-O→B=-O→A-O→B=-a-b. 答案 b-a -a-b
0的相反向量为0

第06讲-平面向量与复数(解析版)

第06讲-平面向量与复数(解析版)

第06讲-平面向量与复数(解析版)第06讲-平面向量与复数(解析版)平面向量与复数是数学中的两个重要概念,它们在解析几何和复数运算中起着重要的作用。

平面向量用来描述平面上的位移和方向,而复数则是由实部和虚部构成的数,可以表示平面上的点与向量。

平面向量的定义与性质平面向量可以理解为带有方向的位移量,它由两个点确定,可以用向量箭头表示。

一个平面向量可以表示为AB(向量上面带有箭头),其中A和B为向量的起点和终点,也可以使用向量的分量形式表示为向量的横坐标和纵坐标。

平面向量有一些重要的性质,首先,向量的大小用向量的模表示,表示为|AB|,即向量的长度。

其次,向量可以进行加法和乘法运算,向量的加法是指向量与向量相加的运算,向量的乘法是指向量与标量相乘的运算。

向量的加法满足交换律和结合律,即A + B = B + A,(A + B) + C = A + (B + C)。

向量的乘法也满足一些性质,标量与向量相乘,可以改变向量的大小和方向,但是不改变其方向。

平面向量可以表示为有向线段,即从起点指向终点的线段。

向量的方向可以用角度来表示,称为向量的方向角。

向量的方向角可以通过三角函数来计算,其中正弦和余弦分别表示向量的纵坐标和横坐标与向量模的比值。

复数的定义与性质复数是由实部和虚部构成的数,可以表示为a + bi的形式,其中a 为实部,b为虚部,i为虚数单位,满足i^2 = -1。

复数在解析几何和电路等领域有广泛应用。

复数有一些重要的性质,首先,复数可以进行加法和乘法运算。

复数的加法满足交换律和结合律,即a + bi + c + di = (a + c) + (b + d)i。

复数的乘法满足交换律、结合律和分配律,即(a + bi)(c + di) = ac + adi + bci + bdi^2。

复数可以表示为平面上的点,其中实部对应点的横坐标,虚部对应点的纵坐标。

复数的大小用模表示,表示为|a + bi|,即复数的距离原点的距离。

第06讲-平面向量与复数(解析版)

第06讲-平面向量与复数(解析版)

第06讲-平面向量与复数一、高考热点牢记概念公式,避免卡壳1.复数z =a +b i(a ,b ∈R )概念(1)分类:当b =0时,z ∈R ;当b ≠0时,z 为虚数;当a =0,b ≠0时,z 为纯虚数.(2)z 的共轭复数z -=a -b i.(3)z 的模|z |=a 2+b 2.2.复数的四则运算法则(a +b i)±(c +d i)=(a ±c )+(b ±d )i ;(a +b i)(c +d i)=(ac -bd )+(bc +ad )i ;(a +b i)÷(c +d i)=ac +bdc 2+d 2+bc -adc 2+d 2i(a ,b ,c ,d ∈R ,c +d i ≠0).3.平面向量的有关运算(1)两个非零向量平行(共线)的充要条件:a ∥b ⇔a =λb .两个非零向量垂直的充要条件:a ⊥b ⇔a ·b =0⇔|a +b |=|a -b |.(2)若a =(x ,y ),则|a |=a ·a =x 2+y 2.(3)若A (x 1,y 1),B (x 2,y 2),则|AB →|=(x 2-x 1)2+(y 2-y 1)2.(4)若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21·x 22+y 22.活用结论规律,快速抢分1.复数的几个常用结论(1)(1±i)2=±2i ;(2)1+i 1-i =i ,1-i1+i =-i ;(3)i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i.2.复数加减法可按向量的三角形、平行四边形法则进行运算.3.z ·z -=|z |2=|z -|2.4.三点共线的判定三个点A ,B ,C 共线⇔AB→,AC →共线; 向量P A →,PB →,PC →中三终点A ,B ,C 共线⇔存在实数α,β使得P A →=αPB→+βPC →,且α+β=1. 5.向量的几个常用结论(1)在△ABC 中,P A →+PB →+PC →=0⇔P 为△ABC 的重心.(2)在△ABC 中,P A →·PB →=PB →·PC →=PC →·P A →⇔P 为△ABC 的垂心.(3)在△ABC 中,向量λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|(λ≠0)所在直线过△ABC 的内心.(4)在△ABC 中,|P A →|=|PB →|=|PC →|⇔P 为△ABC 的外心.二、真题再现1.设3i12i z -=+,则z =A .2BCD .1【答案】C【解析】【分析】先由复数的除法运算(分母实数化),求得z ,再求z .【详解】因为312iz i -=+,所以(3)(12)17(12)(12)55i i z i i i --==-+-,所以z ==C .【点睛】本题主要考查复数的乘法运算,复数模的计算.本题也可以运用复数模的运算性质直接求解.2.设z=i(2+i),则z =A .1+2iB .–1+2iC .1–2iD .–1–2i【答案】D【解析】【分析】本题根据复数的乘法运算法则先求得z ,然后根据共轭复数的概念,写出z .【详解】2i(2i)2i i 12i z =+=+=-+, 所以12z i =--,选D .【点睛】本题主要考查复数的运算及共轭复数,容易题,注重了基础知识、基本计算能力的考查.理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.3.设z=-3+2i ,则在复平面内z 对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】【分析】先求出共轭复数再判断结果.【详解】由32,z i =-+得32,z i =--则32,z i =--对应点(-3,-2)位于第三象限.故选C .【点睛】本题考点为共轭复数,为基础题目.4.若(1i)2i z +=,则z =( )A .1i --B .1+i -C .1i -D .1+i【答案】D【解析】【分析】根据复数运算法则求解即可.【详解】()(2i2i 1i 1i 1i 1i 1i )()z -===+++-.故选D .【点睛】本题考查复数的商的运算,渗透了数学运算素养.采取运算法则法,利用方程思想解题.5.已知非零向量a b r r ,满足2a b r r =,且ba b ⊥r r r (–),则a r 与b r 的夹角为 A .π6 B .π3 C .2π3 D .5π6【答案】B【解析】【分析】本题主要考查利用平面向量数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养.先由()a b b -⊥r r r 得出向量,a b r r 的数量积与其模的关系,再利用向量夹角公式即可计算出向量夹角.【详解】因为()a b b -⊥r r r ,所以2()a b b a b b -⋅=⋅-r r r r r r =0,所以2a b b ⋅=r r r ,所以cos θ=22||122||a b b b a b ⋅==⋅r r r r r r ,所以a r 与b r 的夹角为3π,故选B . 【点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为[0,]π. 6.已知向量()()2332a b ==r r ,,,,则|–|a b =r rAB .2C .D .50【答案】A【解析】【分析】 本题先计算a b -r r ,再根据模的概念求出||a b -r r .【详解】由已知,(2,3)(3,2)(1,1)a b -=-=-r r ,所以||a b -==r r故选A【点睛】本题主要考查平面向量模长的计算,容易题,注重了基础知识、基本计算能力的考查.由于对平面向量的坐标运算存在理解错误,从而导致计算有误;也有可能在计算模的过程中出错.7.已知AB u u u v =(2,3),AC u u u v =(3,t),BC u u u v =1,则AB BC ⋅u u u v u u u v =A .-3B .-2C .2D .3【答案】C【解析】【分析】根据向量三角形法则求出t ,再求出向量的数量积.【详解】由(1,3)BC AC AB t =-=-u u u r u u u r u u u r,1BC ==u u u r ,得3t =,则(1,0)BC =u u u r ,(2,3)(1,0)21302AB BC ==⨯+⨯=u u u r u u u r g g .故选C .【点睛】本题考点为平面向量的数量积,侧重基础知识和基本技能,难度不大.8.已知向量(2,2),(8,6)a b ==-v v ,则cos ,a b =v v ___________.【答案】10-【解析】【分析】根据向量夹角公式可求出结果.【详解】2826cos ,10a b a b a b ⨯-+⨯<>===-r rr r g r r g .【点睛】本题考查了向量夹角的运算,牢记平面向量的夹角公式是破解问题的关键.9.已知向量a v =(-4,3),b v =(6,m ),且a b ⊥v v ,则m=__________.【答案】8.【分析】利用a b ⊥r r 转化得到0a b •=r r 加以计算,得到m .【详解】向量4,36,a b m a b =-=⊥r r r r (),(),,则•046308a b m m =-⨯+==r r,,.【点睛】本题考查平面向量的坐标运算、平面向量的数量积、平面向量的垂直以及转化与化归思想的应用.属于容易题. 10.已知,a b r r 为单位向量,且a b ⋅r r =0,若2c a =r r ,则cos ,a c <>=r r ___________. 【答案】23. 【解析】【分析】根据2||c v 结合向量夹角公式求出||c v,进一步求出结果.【详解】因为2c a =v v ,0a b ⋅=v v ,所以22a c a b vv v v ⋅=⋅2=,222||4||5||9c a b b =-⋅+=v v v v ,所以||3c =r ,所以cos ,a c <>=r r 22133a c a c ⋅==⨯⋅v v v v . 【点睛】本题主要考查平面向量的数量积、向量的夹角.渗透了数学运算、直观想象素养.使用转化思想得出答案.三、名校精选1.复数421i z i -=+的虚部为( ) A .1- B .3- C .1 D .2【解析】【分析】利用复数的商的运算进行化简,然后由虚部的概念可得答案.【详解】()()()()42142426131112i i i iz i i i i -----====-++-,则复数z 的虚部为-3,故选B【点睛】本题考查复数的商的运算及有关概念,需要注意a+bi 的虚部为b ,不要误写为bi.2.设i 是虚数单位,若复数1z i =+,则2z z +=( )A .1+iB .1i -C .1i --D .1i -+【答案】A【解析】【分析】由1z i =+可求出1z i =-,22(1)2z i i =+=代入原式计算即可.【详解】Q 复数1z i =+,∴1z i =-,22(1)2z i i =+=,则2121z z i i i +=-+=+.故选A .【点睛】本题主要考查复数的基本运算,难度容易.3.在复平面内,复数z 满足(1)4z i -=,则复数z 在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【解析】【分析】对条件中的式子进行计算化简,得到复数z ,从而得到其在复平面对应的点的坐标,得到答案.【详解】由(1)4z i -=,得4221z i i ==+-所以z 在复平面对应的点为()2,2,所以对应的点在第一象限.故选A 项.【点睛】本题考查复数的计算,复平面的相关概念,属于简单题.4.已知i 是虚数单位,若32i az i +=+是纯虚数,则实数a =( )A .1B .12 C .12- D .2-【答案】B【解析】【分析】利用复数的乘法和除法运算,化简z ,再令实部为0,即得解.【详解】 由于3()(2)(21)(2)22(2)(2)5i a a i a i i a aiz i i i i +-----+====+++- 若为纯虚数,则12102a a -=∴=故选:B【点睛】本题考查了复数的基本概念和四则运算,考查了学生概念理解,数学运算的能力,属于基础题.5.设i 为虚数单位,复数z 满足(1)2z i i -=,则||(z = )A .1BC .2D .【答案】B【解析】【分析】利用复数代数形式的乘除运算,再由复数的模的计算公式求解即可.【详解】由(1)2z i i -=,得22(1)2211(1)(1)2i i i i z i i i i +-====-+--+, ||2z ∴=,故选B .【点睛】本题主要考查复数代数形式的乘除运算以及复数的模的计算.6.如图,在ABC ∆中,12AN AC P =u u u v u u u v ,是BN 的中点,若14AP mAB AC =+u u u v u u u v u u u v ,则实数m 的值是( )A .14 B .1 C .12 D .32 【答案】C【解析】【分析】以,AB AC u u u v u u u v 作为基底表示出AP u u u v ,利用平面向量基本定理,即可求出.【详解】∵P N ,分别是BN AC ,的中点,∴()111222AP AB BP AB BN AB AN AB AB =+=+=+-=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u v 111224AN AB AC +=+u u u r u u u r u u u r.又14AP mAB AC =+u u u r u u u r u uu r,∴12m =.故选C.【点睛】本题主要考查平面向量基本定理以及向量的线性运算,意在考查学生的逻辑推理能力.7.已知向量a r ,b r 满足||1a =r ,||2b =r ,()23a b +=r r ,则||a b -=r r ( )A 3B 7C .3D .7【答案】B【解析】【分析】由()222()2()a b a a b b +=+⋅+r r r r r r ,求解a b ⋅r r ,再根据22||()2()a b a a b b -=-⋅+r r r r r r .【详解】由于()222()2()3a b a a b b +=+⋅+=r r r r r r1a b ⋅∴-=r r||a b ∴-===r r 故选:B【点睛】本题考查了向量数量积在模长求解中的应用,考查了学生转化划归,数学运算的能力,属于中档题. 8.已知平面向量()()2,1,2,4a b ==v v ,则向量a v 与b v 的夹角的余弦值为( )A .35B .45C .35- D .45- 【答案】B【解析】【分析】 由向量的模的坐标计算公式求出,a b r r ,利用数量积的坐标表示求出a b ⋅r r ,再根据向量的夹角公式即可求出.【详解】由()()2,1,2,4a b ==r r ,得a b ==r r 设向量a r 与b r 的夹角为θ,则84105cos θ===. 故选:B .【点睛】本题主要考查向量的夹角公式,向量的模的坐标计算公式,以及数量积的坐标表示的应用,意在考查学生的数学运算能力,属于基础题.9.已知向量()()1,,,2,a k b k ==r r 若a r 与b r 方向相同,则k 等于( )A .1B .C . D【答案】D【解析】【分析】依题a r //b r ,且a r 与b r 符号相同,运用坐标运算即可得到答案.【详解】因为a r 与b r 方向相同,则存在实数λ使(0)a b λλ=>r r, 因为()()1,,,2a k b k ==r r ,所以(,2)b k λλλ=r ,所以12k kλλ=⎧⎨=⎩,解之得22k =,因为0λ>,所以0k >, 所以2k =. 故答案选:D 【点睛】本题考查共线向量的基本坐标运算,属基础题.10.如图,在ABC ∆中,3BAC π∠=,2AD DB =u u u v u u u v ,P 为CD 上一点,且满足12AP mAC AB =+u u u v u u u v u u u v ,若ABC ∆的面积为23,则AP u u u v 的最小值为( )A 2B .43 C .3 D 3【答案】D【解析】【分析】 运用平面向量基本定理,得到m 的值,结合向量模长计算方法,建立等式,计算最值,即可.【详解】()AP AC CP AC kCD AC k AD AC =+=+=+-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v 23AC k AB AC ⎛⎫=+- ⎪⎝⎭u u u v u u u v u u u v ()21132k AB k AC mAC AB =+-=+u u u v u u u v u u u v u u u v ,得到211,32k k m -==,所以14m =,结合 ABC ∆的面积为231332AC AB u u u v u u u v ⋅=得到8AC AB ⋅=u u u v u u u v ,所以AP ==≥u u u v D . 【点睛】考查了平面向量基本定理,考查了基本不等式的运用,难度偏难.11.已知向量(1,2)m =-v ,(1,)n λ=v .若m n ⊥u v v ,则2m n +v v 与m u v 的夹角为_________. 【答案】4π 【解析】【分析】根据平面向量数量积的坐标表示公式,结合m n ⊥u r r ,可以求出λ的值,再根据平面向量夹角公式求出2m n +u r r 与m u r的夹角.【详解】 因为m n ⊥u r r ,所以1011202m n λλ⋅=⇒-⨯+=⇒=u r r ,即(12)1,n =r , 因此2(1,3)m n +=u r r ,设2m n +u r r 与m u r 的夹角为θ,因此有(2)cos 22m m n m m n θ+⋅===+⋅u r r u u r r r u r ,因为[0,]θπ∈,所以4πθ=. 【点睛】本题考查了平面向量夹角公式,考查了平面向量数量积的坐标表示公式,考查了平面向量垂直的性质,考查了数学运算能力.12.已知1e r ,2e r 是夹角为120°的两个单位向量,则122a e e =+r r r 和212b e e =-r r r 的夹角的余弦值为_________.【答案】7【解析】【分析】 首先利用数量积公式求得3a b ⋅=r r,a =r b =r 利用夹角公式代入即可.【详解】设a r 与b r的夹角为θ,因为()()221221122243a b e e e e e e ⋅=+⋅-=-+=u u r u u r r r u r u u r u u r u r ,a ===rb ==r ,所以cos a b a b θ⋅===r r .故答案为:. 【点睛】 本题考查单位向量的概念,向量数量积的计算公式及运算,向量的数乘运算.较易.13.已知a v 、b v 为单位向量,,3a b π=v v ,则2a b +=v v____________. 【解析】【分析】利用平面向量数量积的运算律和定义计算2a b +=r r .【详解】 由于a r 、b r 为单位向量,,3a b π<>=r r ,则1a b ==r r ,且1cos ,2a b a b a b ⋅=⋅<>=r r r r r r , 因此,2a b +====r r ,【点睛】本题考查利用平面向量的数量积计算向量的模,在计算向量的模时,一般将向量的模进行平方,结合平面向量数量积的运算律和定义来进行计算,考查计算能力,属于中等题.s 14.已知向量()4,2a =v ,(),1b λ=v ,若2a b +v v 与a b -v v 的夹角是锐角,则实数λ的取值范围为______.【答案】()(12,1+U【解析】【分析】先求出2a b +r r 与a b -r r 的坐标,再根据2a b +r r 与a b -rr 夹角是锐角,则它们的数量积为正值,且它们不共线,求出实数λ的取值范围,.【详解】Q 向量(4,2)a =r ,(,1)b λ=r ,∴2(42,4)a b λ+=+r r ,(4,1)a b λ-=-r r ,若2a b +r r 与a b -r r 的夹角是锐角,则2a b +r r 与a b -r r 不共线,且它们乘积为正值, 即42441λλ+≠-,且()()2(42,4)(4,1)a b a b λλ+⋅-=+⋅-r r r r 220420λλ=+->,求得11λ<<2λ≠.【点睛】本题主要考查利用向量的数量积解决向量夹角有关的问题,以及数量积的坐标表示,向量平行的条件等.条件的等价转化是解题的关键.15.在等腰ABC ∆中,已知底边2BC =,点D 为边AC 的中点,点E 为边AB 上一点且满足2EB AE =,若12BD AC ⋅=-u u u r u u u r ,则EC AB ⋅=u u u r u u u r _____. 【答案】43【解析】【分析】根据已知条件求出BA BC ⋅u u u r u u u r 和BA u u u r 的值,然后以BC uuu r 、BA u u u r 为基底表示向量EC uuu r ,利用平面向量数量积的运算律可计算出EC AB ⋅u u u r u u u r 的值.【详解】D Q 为AC 的中点,()()111222BD BA AD BA AC BA BC BA BA BC ∴=+=+=+-=+u u u r u u u r u u u r u u u u u u u r u u u r u u u u r u u r u u u r r u ur , AC BC BA =-u u u r u u u r u u u r ,()()()22111222BD AC BC BA BC BA BC BA ∴⋅=+⋅-=-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r , 即2221BA -=-u u u r,可得BA =u u u r , ()22222AC BC BA BC BA BC BA =-=-⋅+u u u r u u u r u u u r u u u r u u u r u u u r u u u r Q ,2122BA BC BC ∴⋅==u u u r u u u r u u u r , ()22224523333EC AB BC BE AB BA BC BA BA BC BA ⎛⎫∴⋅=-⋅=-⋅=-⋅=⨯-= ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r . 故答案为:43.【点睛】本题考查了向量的线性运算、数量积运算,解题的关键就是选择合适的基底来表示向量,考查计算能力,属于中档题.。

平面向量与复数全集(学生版)

平面向量与复数全集(学生版)

1第一节平面向量的线性运算及共线定理知识梳理一向量的有关概念名称内容向量既有大小又有方向的量叫做向量向量的模向量的大小叫做向量的长度(或称模)零向量长度为0的向量叫做零向量,其方向是任意的,零向量记作0单位向量长度等于1个单位的向量平行(共线)向量方向相同或相反的非零向量;平行向量又叫共线向量.规定:0与任一向量平行.相等向量长度相等且方向相同的向量相反向量长度相等且方向相反的向量平面向量有个重要特点,即可以自由平移,平移过程中不改变方向和大小,因此平行向量又叫共线向量.向量可以平移,但在几何中,具体的点、线、面相对位置固定,这是向量与几何的一个重要区别.二向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则平行四边形法则交换律:a +b =b +a 结合律:(a+b )+c =a +(b +c )减法向量a 加上向量b 的相反向量叫做a 与b 的差,即a +(-b )=a -b三角形法则a -b =a +(-b )数乘实数λ与向量a 的积是一个向量记作λa(1)模:|λa |=|λ||a |;(2)方向:当λ>0时,λa 与a 的方向相同;当λ<0时,λa 与a 的方向相反;当λ=0时,λa =0设λ,μ是实数.(1)λ(μa )=(λμ)a (2)(λ+μ)a =λa +μa (3)λ(a +b )=λa +λb .三平面向量共线定理向量共线定理:向量a (a ≠0)与b 共线,当且仅当存在唯一一个实数λ,使b =λa .若A ,B ,C 三点共线,则存在实数λ,使得AB =λAC (或BC =λAB等).推论:若OA =λOB +μOC(λ,μ为常数),则A ,B ,C 三点共线的充要条件是λ+μ=1.2题型探究一向量的基本概念与线性运算一向量的基本概念1(多选题)(2021·临沂模拟)下列命题中的真命题是( )A.若|a|=|b|,则a=bB.若A,B,C,D是不共线的四点,则“AB=DC”是“四边形ABCD为平行四边形”的充要条件C.若a=b,b=c,则a=cD.a=b的充要条件是|a|=|b|且a∥b2设a,b都是非零向量,下列四个条件,使用a|a |=b|b|成立的充要条件是( )A.a=bB.a=2bC.a∥b且|a|=|b|D.a∥b且方向相同1(2022·湖北宜昌)已知a,b是两个非零向量,且|a+b|=|a|+|b|,则下列说法正确的是( )A.a+b=0B.a=bC.a与b共线反向D.存在正实数λ,使a=λb2(2022·全国·高三专题练习)给出如下命题:①向量AB的长度与向量BA的长度相等;②向量a与b平行,则a与b的方向相同或相反;③两个有共同起点而且相等的向量,其终点必相同;④两个公共终点的向量,一定是共线向量;⑤向量AB与向量CD是共线向量,则点A,B,C,D必在同一条直线上.其中正确的命题个数是()A.1B.2C.3D.4名师点拨(1)相等向量具有传递性,非零向量的平行也具有传递性.(2)共线向量即为平行向量,它们均与起点无关.(3)平行向量就是共线向量,二者是等价的;但相等向量不仅模相等,而且方向要相同,所以相等向量一定是平行向量,而平行向量未必是相等向量.(4)非零向量a与a|a |的关系是:a|a |是a方向上的单位向量.3二零向量的特殊性1下列命题正确的是( )A.向量a ,b 共线的充要条件是有且仅有一个实数λ,使b =λa B.在△ABC 中,AB +BC +CA=0C.不等式||a |-|b ||≤|a +b |≤|a |+|b |中两个等号不可能同时成立D.若向量a ,b 不共线,则向量a +b 与向量a -b 必不共线名师点拨在向量的有关概念中,定义长度为0的向量叫做零向量,其方向是任意的,并且规定:0 与任一向量平行.由于零向量的特殊性,在两个向量共线或平行问题上,如果不考虑零向量,那么往往会得到错误的判断或结论.在向量的运算中,很多学生也往往忽视0与0的区别,导致结论错误.1下列叙述正确的是( )A.若非零向量a 与b 的方向相同或相反,则a +b 与a ,b 其中之一的方向相同B.|a |+|b |=|a +b |⇔a 与b 的方向相同C.AB +BA =0D.若λ≠0,λa =λb ,则a =b 三向量的线性运算1如图,在梯形ABCD 中,BC =2AD ,DE =EC ,设BA =a ,BC =b ,则BE=( )A.12a +14b B.13a +56b C.23a +23b D.12a +34b 2如图,AB 是圆O 的一条直径,C ,D 是半圆弧的两个三等分点,则AB=( )A.AC -AD B.2AC -2ADC.AD -ACD.2AD -2AC41(滨州2020)已知在平行四边形ABCD中,点M、N分别是BC、CD的中点,如果AB=a ,AD=b,那么向量MN=()A.12a -12bB.-12a +12bC.a +12bD.-12a -12b2如图,在平行四边形ABCD中,对角线AC与BD交于点O,且EO=2AE,则EB=()A.16AB-56ADB.16AB+56ADC.56AB-16ADD.56AB+16AD四根据向量线性运算求参数1(2021·济南模拟)如图,在平行四边形ABCD中,F是BC的中点,CE=-2DE,若EF=xAB+yAD,则x+y=( )A.1B.6C.16D.132在△ABC中,AB=2,BC=3,∠ABC=60°,AD为BC边上的高,O为AD的中点,若AO=λAB+μBC,其中λ,μ∈R,则λ+μ等于( )A.1B.12C.13D.231(济宁2020)在平行四边形ABCD中,DE=3CE,若AE交BD于点M.且AM=λAB+μAD,则λμ=()A.23B.32C.34D.4352在△ABC 中,P 是BC 上一点,若BP =2PC ,AP =λAB +μAC,则2λ+μ=.名师点拨平面向量线性运算法则的选取原则(1)首先确定所选取基底的两个基向量,它们的公共起点是哪个点.(2)当所求的向量的起点和基底的公共起点相同时,用加法或数乘运算.(3)当所求的向量的起点和基底的公共起点不同时,用减法或数乘运算.(4)当所求向量是一整个线段的一部分时,用数乘运算.(5)与三角形综合,求参数的值.求出向量的和或差,与已知条件中的式子比较,求得参数.(6)与平行四边形综合,研究向量的关系.画出图形,找出图中的相等向量、共线向量,将所求向量转化到同一个平行四边形或三角形中求解.二共线向量定理及其应用一共线定理的基本应用1(2022·河南·平顶山市)已知向量e 1 ,e 2 不共线,且向量λe 1 +3e 2 与2e 1 -5e 2 平行,则实数λ=()A.-35B.-65C.-103D.-42已知向量e 1,e 2不共线,如果AB =e 1+2e 2,BC =-5e 1+6e 2,CD=7e 1-2e 2,则共线的三个点是.名师点拨平面向量共线的判定方法(1)向量b 与非零向量a 共线的充要条件是存在唯一实数λ,使b =λa .要注意通常只有非零向量才能表示与之共线的其他向量,要注意待定系数法和方程思想的运用.(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.61设两个非零向量a与b不共线.(1)若AB=a+b,BC=2a+8b,CD=3(a-b),求证:A,B,D三点共线;(2)试确定实数k,使ka+b和a+kb共线.3引申上例中,若ka +b与a+kb反向,则k=;若ka+b与a+kb同向,则k=.2(2022·济南模拟)已知向量a,b不共线,且c=λa+b,d=a+(2λ-1)b,若c与d共线反向,则实数λ的值为( )A.1B.-12C.1或-12D.-1或-123已知向量a,b,c中任意两个都不共线,并且a+b与c共线,b+c与a共线,那么a+b+c等于( ) A.a B.bC.cD.0二向量共线定理的综合应用1(2022·全国·高三专题练习)在平行四边形ABCD中,E,F分别是BC,CD的中点,DE交AF于点G,则AG=()A.25AB-45BCB.25AB+45BCC.-25AB+45BCD.-25AB-BC72(2022·青海·海东市)已知在△ABC 中,AD =-3BD ,CD =λCE ,AE =μAB +23AC,则μ=()A.14 B.12C.34D.11(2022·河南郑州)在△ABC 中,D 是BC 上一点,BD =2DC ,M 是线段AD 上一点,BM =tBA+14BC,则t =()A.12B.23C.34D.582如图,△ABC 中,点M 是BC 的中点,点N 满足AN =23AB,AM 与CN 交于点D ,AD =λAM ,则λ等于()A.23B.34C.45D.568跟踪测验基础巩固1P是△ABC所在平面上一点,满足P A+PB+PC=2AB,△ABC的面积是S1,△P AB的面积是S2,则( )A.S1=4S2B.S1=3S2C.S1=2S2 D.S1=S22如图,在平行四边形ABCD中,E,F分别为线段AD,CD的中点,AF∩CE=G,则()A.AF=AD+12ABB.EF=12(AD+AB)C.AG=23AD-13ABD.BG=3GD3(多选题)设点M是△ABC所在平面内一点,则下列说法正确的是( )A.若AM=12AB+12AC,则点M是边BC的中点B.若AM=2AB-AC,则点M在边BC的延长线上C.若AM=-BM-CM,则点M是△ABC的重心D.若AM=xAB+yAC,且x+y=12,则△MBC的面积是△ABC面积的124(2022·全国·高三专题练习)若点G是△ABC的重心,点M、N分别在AB、AC上,且满足AG=xAM+yAN,其中x+y=1.若AM=35AB,则△AMN与△ABC的面积之比为.5设a,b是平面内两个向量,“|a|=|a+b|”是“|b|=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6已知向量a和b不共线,向量AB=a+mb,BC=5a+3b,CD=-3a+3b,若A,B,D三点共线,则m等于()A.3B.2C.1D.-27在边长为1的正方形ABCD中,设AB=a,AD=b,AC=c,则|a-b+c|等于()A.1B.2C.3D.48如图,BC,DE是半径为1的圆O的两条直径,BF=2FO,且FC=λFD+μFE,则λ+μ等于()A.1B.2C.3D.499已知△ABO 中,OA =OB =1,∠AOB =π3,若OC 与线段AB 交于点P ,且满足OC =λOA+μOB ,|OC|=3,则λ+μ的最大值为()A.23B.1C.3D.210(2022·广西玉林高中模拟)设D ,E ,F 分别为△ABC 三边BC ,CA ,AB 的中点,则DA +2EB+3FC=( D )A.12ADB.32ADC.12ACD.32AC能力提升11已知平面上不共线的四点O ,A ,B ,C ,若OA -4OB +3OC =0,则|AB||CA |等于()A.13B.34C.12D.4312已知M 为△ABC 的重心,D 为BC 的中点,则下列等式成立的是()A.|MA |=|MB |=|MC |B.MA +MB +MC =0C.BM =23BA +13BDD.S △MBC =13S △ABC13设P ,Q 为△ABC 内的两点,且AP =25AB+15AC ,AQ =14AB +23AC ,则△ABP 的面积与△ABQ 的面积之比为()A.45B.85C.43D.31014(2023·丽江模拟)在△ABC 中,点D 在线段AC 上,且满足|AD |=13|AC|,点Q 为线段BD 上任意一点,若实数x ,y 满足AQ =xAB +yAC ,则1x+1y的最小值为.15(多选)设点M 是△ABC 所在平面内一点,则下列说法正确的是()A.若BM =13BC ,则AM =13AC +23ABB.若AM =2AC -3AB ,则点M ,B ,C 三点共线C.若点M 是△ABC 的重心,则MA +MB +MC=0D.若AM =xAB +yAC 且x +y =13,则△MBC的面积是△ABC 面积的2316如图,已知正六边形ABCDEF ,M ,N 分别是对角线AC ,CE 上的点,使得AM AC=CN CE =r ,当r =时,B ,M ,N 三点共线.17(2022·全国·高三专题练习)直角三角形ABC中,P 是斜边BC 上一点,且满足BP =2PC,点M 、N 在过点P 的直线上,若AM=mAB ,AN =nAC ,m >0,n >0 ,则下列结论错误的是()A.1m+2n 为常数B.m +n 的最小值为169C.m +2n 的最小值为3D.m 、n 的值可以为m =12,n =21018如图,在△ABC 中,AQ =QC ,AR =13AB,BQ 与CR 相交于点I ,AI 的延长线与边BC 交于点P .(1)用AB 和AC 分别表示BQ 和CR ;(2)如果AI =AB +λBQ =AC +μCR,求实数λ和μ的值;(3)确定点P 在边BC 上的位置.第五章平面向量复数第二节平面向量基本定理及坐标表示知识梳理一平面向量基本定理如果e1,e 2是同一平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a =λ1e 1+λ2e 2.若e1,e 2不共线,我们把{e 1,e 2}叫做表示这一平面内所有向量的一个基底.二平面向量的坐标表示在直角坐标系内,分别取与x 轴,y 轴正方向相同的两个单位向量i ,j 作为基底,对任一向量a ,有唯一一对实数x ,y ,使得:a =x i +y j ,那么(x ,y )叫做向量a 的直角坐标,记作a=(x ,y ),显然i =(1,0),j =(0,1),0 =(0,0).三平面向量的坐标运算1向量加法、减法、数乘向量及向量的模设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.2向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB =(x 2-x 1,y 2-y 1),|AB|=(x 2-x 1)2+(y 2-y 1)2.四向量共线的坐标表示若a =(x1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2-x 2y 1=0.五常用结论1向已知P 为线段AB 的中点,若A (x 1,y 1),B (x 2,y 2),则点P 的坐标为x 1+x 22,y 1+y 22;2已知△ABC 的顶点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则△ABC 的重心G 的坐标为x 1+x 2+x 33,y 1+y 2+y 33 .第二节基本定理及坐标表示题型探究一平面向量基本定理一识别一组基底1下列各组向量中,可以作为基底的是()A.e 1=(0,0),e 2=(1,2)B.e 1=(2,-3),e 2=12,-34C.e 1=(3,5),e 2=(6,10)D.e 1=(-1,2),e 2=(5,7)二基本定理的应用1在△ABC 中,点D ,E 分别在边BC ,AC 上,且BD =2DC ,CE =3EA ,若AB =a ,AC=b ,则DE 等于( )A.13a +512bB.13a -1312bC.-13a -512bD.-13a +1312b 2已知在△ABC 中,点O 满足OA +OB +OC=0,点P 是线段OC 上异于端点的任意一点,且OP =mOA+nOB ,则m +n 的取值范围是.名师点拨应用平面向量基本定理的关键(1)基底必须是两个不共线的向量.(2)选定基底后,通过构造平行四边形(或三角形)利用向量的加、减、数乘以及向量平行的充要条件,把相关向量用这一组基底表示出来.(3)注意几何性质在向量运算中的作用,用基底表示未知向量,常借助图形的几何性质,如平行、相似等.易错提醒:在基底未给出的情况下,合理地选取基底会给解题带来方便.1如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,且AE =2EO ,则ED等于()A.13AD -23AB B.23AD +13AB C.23AD -13AB D.13AD +23AB第五章平面向量复数2(2023·天津模拟)已知在△ABC 中,AB =a ,AC=b ,D ,F 分别为BC ,AC 的中点,P 为AD 与BF 的交点,若BP=xa +yb ,则x +y =.3(多选)下列命题中正确的是()A.若p =xa +yb ,则p 与a ,b 共面B.若p 与a ,b 共面,则存在实数x ,y 使得p =xa +ybC.若MP =xMA +yMB ,则P ,M ,A ,B 共面D.若P ,M ,A ,B 共面,则存在实数x ,y 使得MP =xMA +yMB二平面向量的坐标运算一坐标的基本运算1(1)已知A (-2,4),B (3,-1),C (-3,-4).设AB =a ,BC =b ,CA=c ,且CM =3c ,CN =-2b .①求3a +b -3c ;②求满足a =mb +nc 的实数m ,n ;③求M ,N 的坐标及向量MN的坐标.(2)设向量a ,b 满足|a |=25,b =(2,1),且a 与b 的方向相反,则a 的坐标为.2(2015·新课标全国Ⅰ卷)已知点A (0,1),B (3,2),向量AC=(-4,-3),则向量BC =()A.(-7,-4)B.(7,4)C.(-1,4)D.(1,4)名师点拨平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解的,若已知有向线段两端点的坐标,则应先求向量的坐标.(2)解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)来进行求解,并注意方程思想的应用.第二节基本定理及坐标表示1如图,在直角梯形ABCD 中,AB ∥DC ,AD ⊥DC ,AD =DC =2AB ,E 为AD 的中点,若CA =λCE+μDB(λ,μ∈R ),则λ+μ的值为()A.65B.85C.2D.832已知向量a ,b ,c 在正方形网格中的位置如图所示,用基底a ,b 表示c ,则()A.c =2a -3bB.c =-2a -3bC.c =-3a +2bD.c =3a -2b二向量共线的坐标表示1(2022·海南文昌)已知a =(1,3),b =(-2,k ),且(a +2b )∥(3a -b ),则实数k =.2(2018·全国卷Ⅲ)已知向量a =(1,2),b =(2,-2),c =(1,λ).若c ∥(2a +b ),则λ=.三利用向量共线求解综合问题1(角度1)已知向量OA=(k ,12),OB =(4,5),OC =(-k ,10),且A ,B ,C 三点共线,则k =.2在△ABC 中,若AD=2DB ,CD =13CA +λCB ,则λ=( )A.-13B.-23C.13D.23名师点拨利用两向量共线解题的技巧(1)一般地,在求一个与已知向量a 共线的向量时,可设所求向量为λa (λ∈R ),然后结合其它条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量.(2)如果已知两个向量共线,求某些参数的值,那么利用“若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是:x 1y 2-x 2y 1=0”比较简捷.第五章平面向量复数1如图△ABC 中,AE =EB ,CF =2FA ,BF 交CE 于G ,AG =xAE +yAF,则x +y =( )A.25 B.35C.45D.752(2022·山东曲阜模拟)如图,在△ABC 中,AN =13NC ,P 是BN 上的一点,若AP =mAB +29AC,则实数m 的值为()A.13B.19C.1D.3跟踪测验基础巩固1(2022·巴中模拟)向量AB =(2,3),AC=(4,7),则BC等于()A.(-2,-4) B.(2,4)C.(6,10) D.(-6,-10)2设向量a =(2,4)与向量b =(x ,6)共线,则实数x =()A.2 B.3 C.4 D.63(2022·陕西汉中月考)已知向a ,b 满足a -b =(1,-5),a +2b =(-2,1),则b =()A.(1,2)B.(1,-2)C.(-1,2)D.(-1,-2)4(2022·山西晋中)若向量a =(1,1),b =(-1,1),c =(4,2),则c =()A.3a +b B.3a -b C.-a +3b D.a +3b5(多选)下列向量组中,能作为表示它们所在平面内所有向量的一组基底的是()A.a =(1,2),b =(0,0)B.a =(1,-2),b =(3,5)C.a =(3,2),b =(9,6)D.a =-34,12,b =(-3,-2)6向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R ),则λμ=()第二节基本定理及坐标表示A.2B.4C.12 D.147(多选)已知M (3,-2),N (-5,-1),且|MP|=12|MN|,则P 点的坐标为()A.(-8,1) B.-1,-32C.1,32D.7,-528已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为.9(2021·广西贺州联考)已知向量AB=(m ,n ),BD =(2,1),AD=(3,8),则mn =.10设向量a =(3,2),b =(-1,3),向量λa -2b 与a +b 平行,则实数λ=.11(2022·江西南昌模拟)已知向量a =(m ,n ),b =(1,-2),若|a |=25,a =λb (λ<0),则m -n =.12已知a =(1,0),b =(2,1).(1)当k 为何值时,ka -b 与a +2b 共线;(2)若AB =2a +3b ,BC=a +mb 且A ,B ,C 三点共线,求m 的值.13已知向量a =(sin θ,cos θ-2sin θ),b =(1,2).(1)若a ∥b ,求tan θ的值;(2)若|a |=|b |,0<θ<π,求θ的值.能力提升14如果e 1,e 2是平面内一组不共线的向量,那么下列四组向量中,不能作为平面内所有向量的一个基底的是()A.e 1与e 1+e 2B.e 1-2e 2与e 1+2e 2C.e 1+e 2与e 1-e 2D.e 1-2e 2与-e 1+2e 215已知点P 是△ABC 所在平面内一点,且P A+PB +PC=0,则()A.P A =-13BA +23BCB.P A =23BA +13BCC.P A =-13BA -23BCD.P A =23BA -13BC第五章平面向量复数16(2023·南京模拟)设平面向量a =(1,2),b =(-2,y ),若a ∥b ,则|3a +b |等于()A.5B.6C.17D.2617(2021·豫南九校联考)如图,A ,B 分别是射线OM ,ON 上的点,给出下列向量:若这些向量均以O 为起点,则终点落在阴影区域内(包括边界)的向量有()A.OA+2OB B.12OA +13OBC.34OA +OB D.34OA -15OB18如图,在正方形ABCD 中,P ,Q 分别是边BC ,CD 的中点,AP =x AC +y BQ,则x 等于()A.1113B.65C.56D.3219在平行四边形ABCD 中,M ,N 分别是AD ,CD 的中点,BM =a ,BN =b ,则BD 等于()A.34a +23b B.23a +23b C.23a +34b D.34a +34b 20如图,扇形的半径为1,且OA⊥OB ,点C 在弧AB 上运动,若OC =xOA+yOB ,则2x +y 的最小值是.第三节平面向量的数量积运算第三节平面向量的数量积运算知识梳理一平面向量的夹角两个非零向量a 与b ,过O 点作OA=a ,OB =b ,则∠AOB 叫做向量a 与b 的夹角;两个向量夹角的范围是[0,π],规定零向量0 与任意向量的夹角为0;a 与b 的夹角为π2时,则a 与b 垂直,记作a ⊥b .二平面向量的数量积1定义:已知两个非零向量a 与b ,它们的夹角为θ,则数量|a ||b |cos θ叫做a 与b的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos θ,规定零向量与任一向量的数量积为0,即0 ·a =0.2几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积.注意:该“投影”为老教材中的概念,但可以帮助我们理解数量积的几何意义.三平面向量数量积的性质及其坐标表示1设向量a =(x 1,y 1),b =(x 2,y 2),θ为向量a ,b 的夹角.①数量积:a ·b =|a ||b |cos θ=x 1x 2+y 1y 2.②模:|a |=a ·a =x 21+y 21.③设A (x 1,y 1),B (x 2,y 2),则A ,B 两点间的距离|AB |=|AB|=(x 1-x 2)2+(y 1-y 2)2.④夹角:cos θ=a ·b|a ||b |=x 1x 2+y 1y 2x 21+y 21·x 22+y 22.⑤已知两非零向量a 与b ,a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0;a ∥b ⇔a ·b =±|a ||b |.(或|a ·b |=|a |·|b |).⑥|a ·b |≤|a ||b |(当且仅当a ∥b 时等号成立)⇔|x 1x 2+y 1y 2|≤x 21+y 21·x 22+y 22.2平面向量数量积的运算律①a ·b =b ·a (交换律);②λa ·b =λ(a ·b )=a ·(λb )(结合律);③(a +b )·c =a ·c +b ·c (分配律).3平面向量数量积运算的常用公式①(a +b )·(a -b )=a 2-b 2;②(a ±b )2=a 2±2a ·b +b 2.第五章平面向量复数四平面向量数量积的注意事项1两个向量的数量积是一个实数.∴0 ·a =0而0·a =0.2数量积不满足结合律(a ·b )·c ≠a ·(b ·c ).3a ·b 中的“·”不能省略.a ·a =a 2=|a |2.4向量a 与b 的夹角为锐角⇔a ·b >0且a 与b 不共线;a 与b 的夹角为钝角⇔a ·b <0,且a 与b 不共线.当a 、b 为非零向量时a 、b 同向⇔a ·b =|a ||b |;a 、b反向⇔a ·b =-|a ||b |.5a 在b 方向上的投影|a |·cos θ=a ·b|b |.(老教材中概念)五投影向量(新教材中概念)设a ,b 是两个非零向量,它们的夹角是θ,AB =a ,CD =b ,过AB 的起点A 和终点B ,分别作CD所在直线的垂线,垂足分别为A 1,B 1,得到A 1B 1,我们称上述变换为向量a 向向量b 投影,A 1B 1 叫做向量a 在向量b 上的投影向量(记为|a |cos θb |b |).设e 是与b 方向相同的单位向量,则投影向量记为|a |cos θe .MONM 1abθ(1)MO NM 1abθ(2)MONM 1abθ(3)如图,在平面内取一点O ,作OM =a ,ON=b .记a 与b 的夹角是θ,过点M 作直线ON 的垂线,垂足为M 1,则OM 1 就是向量a 在向量b 上的投影向量.即OM 1 =|a|cos θb|b |,又因为θcos =a ·b|a ||b |,所以OM 1 =|a |cos θb |b |=|a|⋅a ·b |a ||b |⋅b |b |=a ·b |b |⋅b |b |=a ·b ⋅b |b|2ABC DA 1B 1ab第三节平面向量的数量积运算题型探究一投影向量1(2023·广西·模拟预测)向量a=23,2 在向量b =1,3 上的投影向量为()A.32B.34,34C.3,3D.342(2023上·广东广州·白云中学校考)已知向量a =0,-2 ,b =1,t ,若向量b 在向量a上的投影向量为-12a,则a ⋅b =()A.-2B.-52C.2D.1123在等边△ABC 中,AD=2AB +3AC ,则向量AD 在向量BC 上的投影向量为()A.13BCB.12BCC.-13BCD.-12BC4已知向量a =1,3 ,b =-2,m ,若向量a在向量b 方向上的投影为-3,则m 的值为()A.3B.-3C.-233D.2331(2024·全国·模拟预测)已知向量a =1,3 ,b =-2,m ,若向量a 在向量b 上的投影向量为-34b,则实数m 的值为()A.3 B.-3C.-233D.2332已知a =1,2 ,若b =1,且a ,b =π6,则b 在a 方向上投影向量的坐标为.第五章平面向量复数3已知a ,b 为平面向量,b =2.若a 在b 方向上的投影向量为b2,则a -b ⋅b=.4(2023上·贵州贵阳·高三校考)如果平面向量a =1,-1 ,b =-6,2 ,则向量a +b 在a 上的投影向量的坐标为.5向量AB =2,1 在向量AC =0,12 上的投影向量为λAC ,则AB +λAC =()A.23B.22C.8D.12二平面向量数量积的运算1已知向量e 1,e 2,|e 1|=1,e 2=(1,3),e 1,e 2的夹角为60°,则(e 1+e 2)·e 2=()A.355B.255C.5D.52已知点A ,B ,C 满足|AB |=3,|BC |=4,|CA |=5,则AB ·BC +BC ·CA +CA ·AB的值是.反思感悟向量数量积的四种计算方法(1)当已知向量的模和夹角θ时,可利用定义法求解,即a ·b =|a ||b |cos θ.(2)当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2.(3)转化法:当模和夹角都没给出时,即用已知模或夹角的向量作基底来表示所求数量积的向量求解.(4)建系用坐标法:结合图形特征适当建立坐标系,求出向量的坐标,进而求其数量积(如本例(2)).1(2021·贵阳市第一学期监测考试)在△ABC 中,|AB +AC |=|AB -AC |,AB =2,AC =1,E ,F 为BC 的三等分点,则AE ·AF=()A.109 B.259C.269D.89第三节平面向量的数量积运算三向量的模、夹角一向量的模1若平面向量a 、b 的夹角为60°,且a =(1,-3),|b |=3,则|2a -b |的值为()A.13B.37C.13D.12(2022·黄冈调研)已知平面向量m ,n 的夹角为π6,且|m |=3,|n |=2,在△ABC 中,AB =2m +2n ,AC =2m -6n ,D 为BC 的中点,则|AD |=.3(2021·全国甲)若向量a ,b 满足|a |=3,|a -b |=5,a ·b =1,则|b |=.反思感悟平面向量的模的解题方法(1)若向量a 是以坐标(x ,y )形式出现的,求向量a 的模可直接利用|a |=x 2+y 2.(2)若向量a ,b 是非坐标形式出现的,求向量a 的模可应用公式|a |2=a 2=a ·a ,或|a ±b |2=(a ±b )2=a 2±2a ·b +b 2,先求向量模的平方,再通过向量数量积的运算求解.即“模的问题平方求解.”二向量的夹角1(2021·八省联考)已知单位向量a ,b 满足a ·b =0,若向量c =7a +2b ,则sin <a ,c >=()A.73B.23C.79D.292(2020·全国Ⅲ理)已知向量a ,b 满足|a |=5,|b |=6,a ·b =-6,则cos 〈a ,a +b 〉=()A.-3135B.-1935C.1735D.19353(2019·全国卷Ⅰ,5分)已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为()A.π6B.π3C.2π3D.5π6第五章平面向量复数反思感悟求两向量夹角的方法及注意事项(1)一般是利用夹角公式:cos θ=a ·b|a ||b |.(2)注意:数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明两向量的夹角为直角,数量积小于0且两向量不共线时两向量的夹角为钝角.三平面向量的垂直1(2020·全国Ⅲ)已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是()A.a +2bB.2a +bC.a -2bD.2a -b2(2022·安徽宣城调研)已知在△ABC 中,∠A =120°,且AB =3,AC =4,若AP =λAB +AC ,且AP⊥BC,则实数λ的值为()A.2215B.103C.6D.1273(2021·全国乙,14,5分)已知向量a =(1,3),b =(3,4),若(a -λb )⊥b ,则λ=.反思感悟平面向量垂直问题的解题思路解决向量垂直问题一般利用向量垂直的充要条件a ·b =0求解.1(2020·全国Ⅱ)已知单位向量a ,b 的夹角为45°,ka -b 与a 垂直,则k =.2(2021·山西康杰中学期中)已知向量a 、b 满足|b |=2|a |=2,a 与b 的夹角为120°,则|a -2b |=()A.13B.21C.13D.213(2021·江西七校联考)已知向量a =(1,3),b =(3,m ),且b 在a 上的投影为-3,则向量a 与b 的夹角为.第三节平面向量的数量积运算四数量积的综合应用一有关数量积的最值(范围)问题1(2017·全国卷Ⅱ)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则P A ·(PB +PC)的最小值是()A.-2B.-32C.-43D.-12(2020·新高考Ⅰ)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP ·AB的取值范围是()A.(-2,6)B.(-6,2)C.(-2,4)D.(-4,6)反思感悟平面向量中有关最值(范围)问题的两种求解思路一是“形化”,即利用平面向量的几何意义先将问题转化为平面几何中的最值或取值范围问题,然后根据平面图形的特征直接进行判断;二是“数化”,即利用平面向量的坐标运算,先把问题转化为代数中的函数最值与值域、不等式的解集、方程有解等问题,然后利用函数、不等式、方程的有关知识来解决.1已知向量a ,b ,c 满足|a |=|b |=a ·b =2,(a -c )·(b -2c )=0,则|b -c |的最小值为()A.7-32B.3-12C.32D.722已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是()A.1B.2C.2D.22二用已知向量表示未知向量1(2023·六安模拟)在等边△ABC 中,AB =6,BC =3BD ,AM =2AD ,则MC ·MB=.第五章平面向量复数2已知正方形ABCD 的对角线AC =2,点P 在另一条对角线BD 上,则AP ·AC的值为()A.-2B.2C.1D.43如图,在梯形ABCD 中,AB ∥CD ,CD =2,∠BAD =π4,若AB ·AC =2AB ·AD ,则AD ·AC=.1已知△ABC 满足AB =1,AC =2,O 为∠BAC 的平分线与边BC 的垂直平分线的交点,AO=354,则AB ⋅AC =()A.32B.35C.65D.4552正三角形△ABC 中,AB =2,P 为BC 上的靠近B 的四等分点,D 为BC 的中点,则AP ⋅BD=()A.-12B.14C.34D.323如图,平行四边形ABCD 中,AB =4,AD =2且∠BAD =60°,M 为边CD 的中点,AD在AB 上投影向量是AD,则AD ⋅AM =.第三节平面向量的数量积运算跟踪测验基础巩固1已知a ,b 为单位向量,其夹角为60°,则(2a -b )·b =()A.-1B.0C.1D.22若向量a 与b 的夹角为60°,a =(2,0),|a +2b |=23,则|b |=()A.3 B.1 C.4 D.33已知向量a =(k ,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =()A.-92B.0C.3D.1524(2022·青岛调研)如图所示,直角梯形ABCD 中,AB ∥CD ,AB ⊥AD ,AB =AD =4,CD =8.若CE =-7DE ,3BF =FC ,则AF ·BE =()A.11 B.10 C.-10 D.-115(2021·甘肃兰州模拟)已知非零单位向量a ,b 满足|a +b |=|a -b |,则a 与b -a 的夹角为()A.π6 B.π3 C.π4 D.3π46已知向量a =(-2,-1),b =(λ,1),若a 与b 的夹角为钝角,则λ的取值范围可以是()A.-12,+∞ B.(2,+∞)C.-12,2 ∪(2,+∞) D.-12,0 ∪0,+∞ 7(多选)已知两个不等的平面向量a ,b 满足a=1,λ ,b=λ-1,2 ,其中λ是常数,则下列说法正确的是( )A.若a ⎳b,则λ=-1或λ=2B.若a ⊥b ,则a -b 在a +b 上的投影向量的坐标是-15,-75 C.当a +2b 取得最小值时,a =295D.若a ,b 的夹角为锐角,则λ的范围为13,+∞ 8(多选)(2021·武汉调研)如图,点A ,B 在圆C 上,则AB ·AC 的值()A.与圆C 的半径有关 B.与圆C 的半径无关C.与弦AB 的长度有关 D.与点A ,B 的位置有关9(2019·全国卷Ⅲ)已知向量a =(2,2),b =(-8,6),则cos a ,b=.10已知向量a =(3,4),b =(x ,1),若(a -b )⊥a ,则实数x 等于.11(2021·新高考Ⅱ)已知向量a +b +c =0,|a |=1,|b |=|c |=2,a ·b +b ·c +c ·a =12已知b 在a上的投影向量的坐标为(4,-3),a=4,则a ⋅(a-2b )=.第五章平面向量复数13已知|a |=4,|b |=3,(2a -3b )·(2a +b)=61.(1)求a 与b 的夹角θ;(2)求|a +b |;(3)若AB =a ,BC =b ,求△ABC 的面积.14已知空间三点A 2,0,-2 ,B 1,-1,-2 ,C 3,0,-4 .(1)求向量AB 与AC夹角θ的余弦值;(2)求向量AB 在向量AC 上的投影向量a.能力提升15若向量a ,b 满足|a |=10,b =(-2,1),a ·b =5,则a 与b 的夹角为()A.90° B.60° C.45° D.30°16(2022·新乡质检)已知向量a =(0,2),b =(23,x ),且a 与b 的夹角为π3,则x =()A.-2 B.2 C.1 D.-117在△ABC 中,AP =PB ,且|CP|=23,|CA |=8,∠ACB =2π3,则CP ·CA =()A.24 B.12C.243 D.12318如图所示,在等腰直角三角形AOB 中,OA =OB =1,AB =4AC ,则OC ·(OB -OA)=.19(2020·天津,15)如图,在四边形ABCD 中,∠B =60°,AB =3,BC =6,且AD=λBC ,AD ·AB =-32,则实数λ的值为;若M ,N 是线段BC 上的动点,且|MN |=1,则DM ·DN的最小值为.20在△ABC 中,AB =3AC =9,AC ·AB=AC 2,点P 是△ABC 所在平面内一点,则当P A 2+PB 2+PC 2取得最小值时,求P A ·BC的值.第四节平面向量的综合应用第四节平面向量的综合应用知识梳理一平面向量在几何中的应用1用向量解决常见平面几何问题的技巧:问题类型所用知识公式表示线平行、点共线等问题共线向量定理a ∥b ⇔a =λb ⇔x 1y 2-x 2y 1=0,其中a =(x 1,y 1),b =(x 2,y 2),b ≠0垂直问题数量积的运算性质a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0,其中a =(x 1,y 1),b =(x 2,y 2),且a ,b 为非零向量夹角问题数量积的定义cos θ=a ·b|a ||b |(θ为向量a ,b 的夹角),其中a ,b 为非零向量长度问题数量积的定义|a |=a 2=x 2+y 2,其中a =(x ,y ),a 为非零向量2向量方法解决平面几何问题的步骤:平面几何问题设向量向量问题运算解决向量问题还原解决几何问题.二平面向量在解析几何中的应用向量在解析几何中的应用,是以解析几何中的坐标为背景的一种向量描述.它主要强调向量的坐标问题,进而利用直线和圆锥曲线的位置关系的相关知识来解答,坐标的运算是考查的主体.三平面向量与其他知识的交汇平面向量作为一种工具,常与函数(三角函数)、解析几何结合,常通过向量的线性运算与数量积,向量的共线与垂直求解相关问题.四三角形的“四心”1三角形的重心G (三角形三条中线的交点)2三角形的外心O (三角形三条垂直平分线的交点)3三角形的内心I (三角形三条角平分线的交点)4三角形的垂心H (三角形三条高线的交点)第五章平面向量复数题型探究一平面向量与平面几何名师点拨平面几何问题的向量解法(1)坐标法:把几何图形放在适当的坐标系中,就赋予了有关点与向量具体的坐标,这样就能进行相应的代数运算和向量运算,从而使问题得到解决.(2)基向量法:适当选取一组基底,沟通向量之间的联系,利用向量共线构造关于设定未知量的方程来求解.一判断三角形的形状名师点拨三角形形状的判断在△ABC 中,①若|AB |=|AC|,则△ABC 为等腰三角形;②若AB ·AC=0,则△ABC 为直角三角形;③若AB ·AC<0,则△ABC 为钝角三角形;④若AB ·AC >0,BA ·BC >0,且CA ·CB >0,则△ABC 为锐角三角形;⑤若|AB +AC |=|AB -AC|,则△ABC 为直角三角形;⑥若(AB +AC )·BC=0,则△ABC 为等腰三角形.1若P 为△ABC 所在平面内一点,且|P A -PB |=|P A +PB -2PC|,且△ABC 的形状为()A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形2(2022·驻马店质检)若O 为△ABC 所在平面内任一点,且满足(OB -OC )·(OB +OC -2OA)=0,则△ABC 的形状为()A.正三角形B.直角三角形C.等腰三角形D.等腰直角三角形引申若条件改为“|OB -OC |=|OB +OC -2OA|”,则选()引申若条件改为“AB 2=AB ·AC +BA ·BC +CA ·CB”,则选()。

平面向量与复数

平面向量与复数

平面向量与复数平面向量是数学中的重要概念,它与复数之间存在着紧密的联系和相互转化的关系。

本文将介绍平面向量和复数的基本概念,并探讨它们之间的关联。

一、平面向量的基本概念1. 平面向量的定义:平面向量是具有大小和方向的有向线段,通常用有序数对表示。

设有平面上两个点A和B,用→AB表示从点A指向点B的有向线段,这条有向线段便是平面向量。

2. 平面向量的表示:平面向量的表示通常有三种方式,即坐标表示、模长与方向角表示、分解成单位向量表示。

a. 坐标表示:如果平面向量→AB的起点坐标为A(x₁, y₁),终点坐标为B(x₂, y₂),则向量的坐标表示为(x₂-x₁, y₂-y₁)。

b. 模长与方向角表示:平面向量→AB的模长记作|→AB|,方向角表示为θ,这样,向量的模长与方向角表示为(|→AB|,θ)。

c. 分解成单位向量表示:平面向量→AB可以表示为它在两个单位向量上的投影和,即→AB = |→AB|cosθ·→i + |→AB|sinθ·→j,其中→i和→j分别为横轴和纵轴上单位长度的向量。

二、复数的基本概念1. 复数的定义:复数是由实数和虚数构成的数,记作a+bi,其中a为实部,b为虚部,i为虚数单位,满足i²=-1。

2. 复数的表示:复数可以用代数形式和三角形式表示。

代数形式为a+bi,三角形式为r(cosθ+isinθ),其中r为模长,θ为辐角。

3. 复数的运算:复数的运算包括加法、减法、乘法和除法。

具体的运算规则与实数的运算类似,只是需要注意虚数单位i的运算规律。

三、平面向量与复数的关系1. 平面向量的表示与复数的表示:平面向量可以通过复数的模长与方向角表示。

设平面向量→AB的表示为(|→AB|,θ),则可以将→AB对应的复数记作z=|→AB|cosθ+|→AB|sinθ·i。

2. 复数的运算与平面向量的运算:复数的加法、减法和乘法可以直接对应到平面向量的加法、减法和数量乘法上,这是因为复数运算与平面向量的运算都遵循平行四边形法则和数量乘法的分配律。

平面向量与复数的关系

平面向量与复数的关系

平面向量与复数的关系平面向量和复数在数学中都有重要的地位,它们之间存在着密切的联系和相互转化。

本文将探讨平面向量和复数之间的关系,并展示它们在几何、代数和应用方面的应用。

一、平面向量的表示与复数形式的转化在平面几何中,平面向量通常采用箭头表示法,即用有向线段表示向量,线段的方向代表向量的方向,线段的长度代表向量的大小。

而复数则可以用实数部分和虚数部分组成,形式上通常表示为 a + bi,其中 a 为实数部分,b 为虚数部分。

平面向量与复数之间的联系可以通过向量的坐标表示和复数的实部与虚部的对应来实现。

假设平面向量 A 的坐标表示为 (x, y),则可以将其转化为复数的形式 A = x + yi。

反之,已知一个复数 w = a + bi,则可以将其转化为平面向量的表示形式 (a, b)。

二、平面向量的运算与复数的运算平面向量有加法和数量乘法两种运算,而复数也有加法和乘法两种运算。

这使得平面向量的运算与复数的运算之间出现了明显的相似性,并且可以通过复数的运算规则来推导和解决平面向量的运算问题。

1. 平面向量的加法与复数的加法平面向量的加法满足平行四边形法则,即将两个向量的起点连接起来,形成一个平行四边形,向量的和就是对角线的向量。

复数的加法也可以用几何方式解释,即将两个复数在复平面上表示为向量,将它们的起点连接起来,所得线段为它们的和。

2. 平面向量的数量乘法与复数的乘法平面向量的数量乘法是将向量的长度与一个实数相乘,结果是一个新的向量,方向与原向量相同或相反。

复数的乘法也可以用几何方式解释,即将两个复数在复平面上表示为向量,将它们的长度相乘,同时将它们的辐角相加,所得结果即为它们的乘积。

三、平面向量与复数的几何应用平面向量和复数在几何学中都有广泛的应用,它们可以用于解决平面上的几何问题,如平移、旋转和缩放等。

1. 平面向量的应用平面向量可以表示位移,因此可以用于平移和旋转问题。

例如,对于平面上的一个点 A,设向量 OA 表示 A 的位置向量,若将 A 沿向量u 平移,则新位置点 B 的位置向量 OB = OA + u。

高考数学考点知识专题讲解6---平面向量与复数

高考数学考点知识专题讲解6---平面向量与复数

2
uuur uuur OA+OB
= 2 (a + b)
uuuur uuur uuuur ∴ MN=ON-OM
=
1
a

1
b
33
3
26
第6题
第 2 讲 向量的数量积
【考点导读】 1. 理解平面向量数量积的含义及几何意义.
4 / 15
质 律 2. 掌握平面向量数量积的性 及运算 . 达 3. 掌握平面向量数量积的坐标表 式. 长 4. 能用平面向量数量积处理有关垂直、角度、 度的问题.
的 角 为 12 ,
⊥ 取值 围 (1)求证: (a − b) c ;(2)若| ka + b + c |> 1 (k ∈ R) ,求 k 的 范 .
: , 分析 问题(1)通过证明 (a − b) ⋅ c = 0 证明 (a − b) ⊥ c 问题(2)可以利用| ka + b + c |2 = (ka + b + c )2
即 (2)∵ | ka + b + c |> 1, | ka + b + c |2 > 1
就也 是 k2a2 + b2 + c2 + 2ka ⋅ b + 2ka ⋅ c + 2b ⋅ c > 1
∵ a ⋅ b = b ⋅ c = a ⋅ c = − 1 ,∴ k 2 − 2k > 0 2
. 所以 k < 0 或 k > 2
AD
的中点,则
OE
=
1
a
+
ቤተ መጻሕፍቲ ባይዱ
1
b
+

(完整版)平面向量全部讲义

(完整版)平面向量全部讲义

第一节平面向量的概念及其线性运算1.向量的有关概念(1)向量:既有大小,又有方向的量叫向量;向量的大小叫做向量的模.(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.例1.若向量a与b不相等,则a与b一定()A.有不相等的模B.不共线C.不可能都是零向量D.不可能都是单位向量例2..给出下列命题:①若|a|=|b|,则a=b;②若A,B,C,D是不共线的四点,则AB=DC等价于四边形ABCD为平行四边形;③若a=b,b=c,则a=c;④a=b等价于|a|=|b|且a∥b;⑤若a∥b,b∥c,则a∥c.其中正确命题的序号是()A.②③B.①②C.③④D.④⑤CA2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则平行四边形法则(1)交换律:a+b=b+a;(2)结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算叫做a与b的差三角形法则a-b=a+(-b)数乘求实数λ与向量a的积的运算(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;λ(μa)=(λμ)a;(λ+μ)a=λa+μa;λ(a+b)=λa+λb例3:化简AC→-BD→+CD→-AB→得() A.AB→B.DA→C.BC→D.0例4:(1)如图,在正六边形ABCDEF中,BA+CD+EF=()A.0B.BE C.AD D.CF(2)设D,E分别是△ABC的边AB,BC上的点,AD=12AB,BE=23BC.若DE=λ1AB+λ2AC(λ1,λ2为实数),则λ1+λ2的值为________.巩固练习:1.将4(3a+2b)-2(b-2a)化简成最简式为______________.2.若|OA→+OB→|=|OA→-OB→|,则非零向量OA→,OB→的关系是() A.平行B.重合C.垂直D.不确定3.若菱形ABCD的边长为2,则|AB-CB+CD|=________4.D是△ABC的边AB上的中点,则向量CD等于()A.-BC+12BA B.-BC-12BA C.BC-12BA D.BC+12BA5.若A,B,C,D是平面内任意四点,给出下列式子:①AB+CD=BC+DA;②AC+BD=BC+AD;③AC-BD=DC+AB.其中正确的有()A.0个B.1个C.2个D.3个6.如图,在△ABC中,D,E为边AB的两个三等分点,CA→=3a,CB→=2b,求CD→,CE→.DD12巩固练习1。

2014届高考数学总复习(考点引领+技巧点拨)第四章 平面向量与复数第2课时 平面向量的基本定理及坐标表示

2014届高考数学总复习(考点引领+技巧点拨)第四章 平面向量与复数第2课时 平面向量的基本定理及坐标表示

《最高考系列 高考总复习》2014届高考数学总复习(考点引领+技巧点拨)第四章 平面向量与复数第2课时 平面向量的基本定理及坐标表示1. (必修4P 75习题2.3第3题改编)若向量a =(2,3),b =(x ,-9),且a∥b ,则实数x =________.答案:-6解析:a∥b ,所以2×(-9)-3x =0,解得x =-6.2. (必修4P 75习题2.3第2题改编)若向量BA →=(2,3),CA →=(4,7),则BC →=________. 答案:(-2,-4)解析:BC →=BA →+AC →=BA →-CA →=(-2,-4).3. (必修4P 74例5改编)已知向量a =(1,2),b =(2,0),若向量λa +b 与向量c =(1,-2)共线,则实数λ=________.答案:-1解析:λa +b =(λ+2,2λ),∵ 向量λa +b 与向量c =(1,-2)共线,∴ (λ+2)×(-2)=2λ×1,解得λ=-1.4. (必修4P 75习题2.3第5题改编)已知四边形ABCD 的三个顶点A(0,2),B(-1,-2),C(3,1),且BC →=2AD →,则顶点D 的坐标为________.答案:⎝ ⎛⎭⎪⎫2,72 解析:设D(x ,y),则由BC →=2AD →,得(4,3)=2(x ,y -2),得⎩⎪⎨⎪⎧2x =4,2(y -2)=3,解得⎩⎪⎨⎪⎧x =2,y =72.5. 已知e 1与e 2是两个不共线向量,AB →=3e 1+2e 2,CB →=2e 1-5e 2,CD →=λe 1-e 2.若三点A 、B 、D 共线,则λ=________.答案:8解析:∵ A、B 、D 共线,∴ AB →与BD →共线,∴ 存在实数μ,使AB →=μBD →.∵ BD →=CD →-CB →=(λ-2)e 1+4e 2,∴ 3e 1+2e 2=μ(λ-2)e 1+4μe 2,∴ ⎩⎪⎨⎪⎧μ(λ-2)=3,4μ=2,∴ ⎩⎪⎨⎪⎧μ=12,λ=8.1. 平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1、λ2,使得a =λ1e 1+λ2e 2.我们把不共线的向量e 1、e 2叫做表示这个平面内所有向量的一组基底.如果作为基底的两个基向量互相垂直,则称其为正交基底,把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.2. 平面向量的直角坐标运算(1) 已知点A(x 1,y 1),B(x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=(x 2-x 1)2+(y 2-y 1)2.(2) 已知a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1).a ∥b x 1y 2-x 2y 1=0.[备课札记]题型1 向量的坐标运算例1 已知A(-2,4)、B(3,-1)、C(-3,-4)且CM →=3CA →,CN →=2CB →,求点M 、N 及MN →的坐标.解:∵ A(-2,4)、B(3,-1)、C(-3,-4),∴ CA →=(1,8),CB →=(6,3),∴ CM →=3CA →=(3,24),CN →=2CB →=(12,6).设M(x ,y),则有CM →=(x +3,y +4),∴ ⎩⎪⎨⎪⎧x +3=3,y +4=24,∴ ⎩⎪⎨⎪⎧x =0,y =20,∴ M 点的坐标为(0,20).同理可求得N 点的坐标为(9,2),因此MN →=(9,-18).故所求点M 、N 的坐标分别为(0,20)、(9,2),MN →的坐标为(9,-18).备选变式(教师专享)在平行四边形ABCD 中,AC 为一条对角线,若AB →=(2,4),AC →=(1,3),则BD →=________. 答案:(-3,-5)解析:由题意,得BD →=AD →-AB →=BC →-AB →=(AC →-AB →)-AB →=AC →-2AB →=(1,3)-2(2,4)=(-3,-5).题型2 向量共线的条件例2 已知向量a =(2,-1),b =(-1,m),c =(-1,2),若(a +b )∥c ,求m 的值. 解:a +b =(1,m -1),c =(-1,2).∵ (a +b )∥c ,∴ 1-1=m -12,∴ m =-1.变式训练已知向量a =(6,2),b =(-3,k),若a ∥b ,求实数k 的值. 解:(解法1)∵ a ∥b ,∴ 存在实数λ,使b =λa ,∴ (-3,k)=(6λ,2λ),∴ ⎩⎪⎨⎪⎧6λ=-3,2λ=k ,∴ k =-1.(解法2)∵ a ∥b ,∴ -36=k2,∴ k =-1.题型3 平面向量基本定理例3 如图,已知△ABC 的面积为14,D 、E 分别为边AB 、BC 上的点,且AD∶DB=BE∶EC =2∶1,AE 与CD 交于P.设存在λ和μ使AP →=λAE →,PD →=μCD →,AB →=a ,BC →=b .(1) 求λ及μ; (2) 用a 、b 表示BP →; (3) 求△PAC 的面积.解:(1) 由于AB →=a ,BC →=b ,则AE →=a +23b ,DC →=13a +b .AP →=λAE →=λ⎝ ⎛⎭⎪⎫a +23b ,DP →=μDC →=μ⎝ ⎛⎭⎪⎫13a +b ,AP →=AD →+DP →=23AB →+DP →,即23a +μ(13a +b )=λ⎝ ⎛⎭⎪⎫a +23b . ⎩⎪⎨⎪⎧λ=23+13μ,μ=23λ,解得λ=67,μ=47. (2) BP →=BA →+AP →=-a +67⎝ ⎛⎭⎪⎫a +23b =-17a +47b .(3) 设△ABC、△PAB、△PBC 的高分别为h 、h 1、h 2, h 1∶h =|PD →|∶|CD →|=μ=47,S △PAB =47S △ABC =8.h 2∶h =|PE →|∶|AE →|=1-λ=17,S △PBC =17S △ABC =2,∴ S △PAC =4.备选变式(教师专享)如图所示,在△ABC 中,H 为BC 上异于B 、C 的任一点,M 为AH 的中点,若AM →=λAB →+μAC →,则λ+μ=________.答案:12解析:由B 、H 、C 三点共线,可令AH →=xAB →+(1-x)AC →,又M 是AH 的中点,所以AM →=12AH→=12xAB →+12(1-x)AC →. 又AM →=λAB →+μAC →,所以λ+μ=12x +12(1-x)=12.1. 在△ABC 中,已知a 、b 、c 分别为内角A 、B 、C 所对的边,S 为△ABC 的面积.若向量p =(4,a 2+b 2-c 2),q =(1,S)满足p∥q ,则C =________.答案:π4解析:由p =(4,a 2+b 2-c 2),q =(1,S)且p ∥q ,得4S =a 2+b 2-c 2,即2abcosC =4S =2absinC ,所以tanC =1.又0<C <π,所以C =π4.2. 在△ABC 中,a 、b 、c 分别是∠A、∠B、∠C 所对的边,且3aBC →+4bCA →+5cAB →=0,则a∶b∶c=________.答案:20∶15∶12解析:∵ 3a BC →+4bCA →+5cAB →=0,∴ 3a(BA →+AC →)+4bCA →+5cAB →=0,∴ (3a -5c)BA →+(3a -4b)AC →=0.∵ 在△ABC 中,∴ BA →、AC →不共线,∴ ⎩⎪⎨⎪⎧3a =5c ,3a =4b ,解得⎩⎪⎨⎪⎧c =35a ,b =34a.∴ a ∶b ∶c =a∶34a ∶35a =20∶15∶12.3. (2013·北京文)向量a 、b 、c 在正方形网格中的位置如图所示.若c =λa +μb (λ、μ∈R ),则λμ=________.答案:4解析:以向量a 、b 的交点为原点作直角坐标系,则a =(-1,1),b =(6,2),c =(-1,-3),根据c =λa +μb =λ(-1,1)+μ(6,2) ⎩⎪⎨⎪⎧-λ+6μ=-1,λ+2μ=-3, ⎩⎪⎨⎪⎧λ=-2,μ=-12,则λμ=4. 4. 在△ABC 中,过中线AD 中点E 任作一条直线分别交边AB 、AC 于M 、N 两点,设AM →=xAB →,AN →=yAC →(xy≠0),则4x +y 的最小值是________.答案:94解析:因为D 是BC 的中点,E 是AD 的中点,所以AE →=12AD →=14(AB →+AC →).又AB →=1x AM →,AC→=1y AN →,所以AE →=14x AM →+14yAN →. 因为M 、E 、N 三点共线,所以14x +14y=1,所以4x +y =(4x +y)⎝ ⎛⎭⎪⎫14x +14y =14⎝⎛⎭⎪⎫5+4x y +y x≥14⎝ ⎛⎭⎪⎫5+24x y ·y x =94.1. 如图,两块斜边长相等的直角三角板拼在一起.若AD →=xAB →+yAC →,则x =________,y =________.答案:1+32 32解析:(解法1)以AB 所在直线为x 轴,以A 为原点建立平面直角坐标系(如图).令AB =2,则AB →=(2,0),AC →=(0,2),过D 作DF⊥AB 交AB 的延长线为F ,由已知得DF =BF =3,则AD →=(2+3,3).∵AD →=xAB →+yAC →,∴(2+3,3)=(2x ,2y).即有⎩⎪⎨⎪⎧x =1+32,y =32.(解法2)过D 点作DF⊥AB 交AB 的延长线为F.由已知可求得BF =DF =32AB ,AD →=AF →+FD →=⎝⎛⎭⎪⎫1+32AB →+32AC →,所以x =1+32,y =32. 2. 已知点A(2,3),B(5,4),C(7,10),若AP →=AB →+λ·AC →(λ∈R ),试问:(1) λ为何值时,点P 在第一、三象限角平分线上; (2) λ为何值时,点P 在第三象限.解:设点P 的坐标为(x ,y),则AP →=(x ,y)-(2,3)=(x -2,y -3),AB →+λAC →=(5,4)-(2,3)+λ[(7,10)-(2,3)]=(3+5λ,1+7λ).由AP →=AB →+λAC →,得⎩⎪⎨⎪⎧x -2=3+5λ,y -3=1+7λ ⎩⎪⎨⎪⎧x =5+5λ,y =4+7λ,∴ 点P 坐标为(5+5λ,4+7λ). (1) 若点P 在第一、三象限角平分线上,则5+5λ=4+7λ,∴ λ=12.(2) 若点P 在第三象限内,则5+5λ<0且4+7λ<0, ∴ λ<-1.3. 如图,△ABC 中,在AC 上取一点N ,使得AN =13AC ,在AB 上取一点M ,使得AM =13AB ,在BN 的延长线上取点P ,使得NP =12BN ,在CM 的延长线上取点Q ,使得MQ →=λCM →时,AP →=QA →,试确定λ的值.解:∵AP →=NP →-NA →=12(BN →-CN →)=12(BN →+NC →)=12BC →, QA →=MA →-MQ →=12BM →+λMC →,又∵AP →=QA →,∴12BM →+λMC →=12BC →,即λMC →=12MC →,∴λ=12.4. 如图,△ABC 中,D 为BC 的中点,G 为AD 的中点,过点G 任作一直线MN 分别交AB 、AC 于M 、N 两点.若AM →=xAB →,AN →=yAC →,求1x +1y的值.解:设AB →=a ,AC →=b ,则AM →=x a ,AN →=y b ,AG →=12AD →=14(AB →+AC →)=14(a +b ).∴MG →=AG →-AM →=14(a +b )-x a =⎝ ⎛⎭⎪⎫14-x a +14b ,MN →=AN →-AM →=y b -x a =-x a +y b .∵MG →与MN →共线,∴存在实数λ,使MG →=λMN →.∴⎝ ⎛⎭⎪⎫14-x a +14b =λ(-x a +y b )=-λx a +λy b . ∵a 与b 不共线,∴⎩⎪⎨⎪⎧14-x =-λx ,14=λy ,消去λ,得1x +1y=4.1. 应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算,共线向量定理的应用起着至关重要的作用.当基底确定后,任一向量的表示都是唯一的.2. 利用向量的坐标运算解题,主要就是根据相等的向量坐标相同这一原则,通过列方程(组)进行求解;在将向量用坐标表示时,要看准向量的起点和终点坐标,也就是要注意向量的方向,不要写错坐标.3. 向量共线问题中,一般是根据其中的一些关系求解参数值,如果向量是用坐标表示的,就可以使用两个向量共线的充要条件的坐标表示列出方程,根据方程求解其中的参数值.请使用课时训练(B)第2课时(见活页).[备课札记]。

第六章 平面向量和复数第一节平面向量的概念及加、减、数乘

第六章 平面向量和复数第一节平面向量的概念及加、减、数乘

b

B
D
3.写出图中与向量
D
a A
F
答案
C
AE 相等的向量,相反的
答案
向量, 共线向量.
A
E
B
4.已知向量 a, b, c, 求作向量 a b,b c, c a. 答 案
5.已知向量 a,b, c, d, 作 a b c d. 6.化简 :
答案 答案
(1) 2 3a b 3 a 2b a; (2) a 3b 4c 3 2a b c .
我们规定, 如果向量a和b的模相等并且方向也相同,则称 它们是相等的,记作a = b.非零向量a和b方向相同或方向相反, 则称a和b平行,记作a//b.和向量a方向相反,长度相等的向量 叫做a的相反向量,记作 - a.模为1个长度单位的向量叫做单位 向量.长度为零的向量叫做零向量.记作0为0.零向量的方向不 确定, 视情况而定.和向量a方向相同且长度为1的向量称为a 的单位向量,记作a0 .
二、平面向量的加法与减法
在力学中我们知道, 作用在点O的两个不共线的力OA,OB的合 力是以OA,OB为邻边的平等四边形OACB的对角线向量OC(图6-3).
定义2 已知平面上的两个向量a和b,以平面上任一点 O 为
始点作向量OA=a, OB b,以OA,OB为邻边作平行四边形 OACB,
它的对角线向量OC,称为两向量 a 与 b 的和,记为 a + b = OC
母 a,b,c表示向量,在书写时,则用 a,b, c 或 AB,CD 表示向量.
B
A
AB
图6-1 向量AB
a 图6 2 向量a
在实际问题当中,有许多向量与其起点无关,而一切向量 的共性是它们有大小和方向,在数学中,我们只研究与起点无 关的向量.这样的向量称之为自由向量.这样,平面内任意点 都可以作出向量的起点.将起点放在坐标原点O处,终点在点 M 的向量OM 称为点M 的向径和径矢.显然,向量和平面上的点 是一一对应的.

高考数学总复习(考点引领+技巧点拨)第四章 平面向量与复数第1课时 平面向量的概念与线性运算.pdf

高考数学总复习(考点引领+技巧点拨)第四章 平面向量与复数第1课时 平面向量的概念与线性运算.pdf

《最高考系列 高考总复习》2014届高考数学总复习(考点引领+技巧点拨)第四章 平面向量与复数第1课时 平面向量的概念与线性运算 考情分析考点新知① 了解向量的实际背景;理解平面向量的基本概念和几何表示;理解向量相等的含义. 掌握向量加、减法和数乘运算理解其几何意义;理解向量共线定理. 了解向量的线性运算性质及其几何意义. 掌握向量加、减法、数乘的运算以及两个向. 1. (必修4练习第1题改编)ABCD中为DC边的中点且=a=b则=________. 答案:b-解析:=++=-a+b+=b-(必修4例4改编)在△ABC中=c=b.若点D满足=2则=________.(用b、c表示)答案:+解析:因为=2所以-=2(-)即3=+2=c+2b故=+(必修4练习第6题改编设四边形ABCD中有=且|=则这个四边形是________.答案:等腰梯形解析:=∥,且|=|,∴ ABCD为梯形.又|=|,∴ 四边形ABCD的形状为等腰梯形.(必修4练习第2题改编)a、b是两个不共线向量=2a+pb=a+b=a-2b.若A、B、D三点共线则实数p=________.答案:-1解析:∵ =+=2a-b又A、B、D三点共线存在实数λ使=λ即=-1. 1. 向量的有关概念(1) 向量:既有大小又有方向的量叫做向量向量的大小叫做向量的长度(或模)记作|. (2) 零向量:长度为0的向量叫做零向量其方向是任意的.(3) 单位向量:长度等于1个单位长度的向量叫做单位向量.4) 平行向量:方向相同或相反的非零向量叫做平行向量.平行向量又称为共线向量任一组平行向量都可以移到同一直线上.规定:0与任一向量平行.(5) 相等向量:长度相等且方向相同的向量叫做相等向量.(6) 相反向量:与向量a长度相等且方向相反的向量叫做a的相反向量.规定零向量的相反向量仍是零向量.向量加法与减法运算(1) 向量的加法定义:求两个向量和的运算叫做向量的加法.法则:三角形法则;平行四边形法则.运算律:a+b=b+a;(a+b)+c=a+b+c).(2) 向量的减法定义:求两个向量差的运算叫做向量的减法.法则:三角形法则.向量的数乘运算及其几何意义(1) 实数λ与向量a的积是一个向量记作λa它的长度与方向规定如下:=|λ||a|;当λ>0时与a的方向相同;当λ<0时与a的方向相反;当λ=0时=0.(2) 运算律:设λ、μ∈R则:①λ(μa)=(λμ)a;(λ+μ)a=λa+μa;③ λ(a+b)=λa+λb.向量共线定理向量b与a(a≠0)共线的充要条件是有且只有一个实数λ使得b=λa.[备课札记] 题型1 平面向量的基本概念 给出下列六个命题:两个向量相等则它们的起点相同终点相同;若|a|=|b|则a=b;若=则A、B、C、D四点构成平行四边形;在中一定有=;若m=n=p则m=p;若a∥bb∥c,则a∥c.其中错误的命题有________(填序号)答案:①②③⑥解析:两向量起点相同终点相同则两向量相等;但两相等向量不一定有相同的起点和终点故①不正确;|a|=|b|由于a与b方a、b不一定相等故②不正确;=可能有A、B、C、D在一条直线上的情况所以③不正确;零向量与任一向量平行故a∥b时若b=0则a与c不一定平行故⑥不正确. 设a为单位向量若a为平面内的某个向量则a=|a|·a;②若a与a平行则a=|a|·a;③若a与a平行且|a|=1则a=a上述命题中假命题个数是________.答案:3解析:向量是既有大小又有方向的量与|a|a模相同但方向不一定相同故①是假命题;若a与a平行则a与a方向有两种情况:一是同向二是反向反向时a=-|a|a故②、③也是假命题填3.题型2 向量的线性表示例2 平行四边形OADB的对角线交点为C===a=b用a、b表示、、 解:=a-b==-=+=+=a+b=+=+==+=-=- 在△ABC中、F分别为AC、AB的中点与CF相交于G点设=a=b试用a表示 解:=+=+λ=+(+)=+(-)=(1-λ)+=(1-λ)a+又=+=+m=+(+)=(1-m)+=+(1-m)b解得λ=m==+. 题型3 共线向量例3 设两个非零向量a与b不共线.(1) 若=a+b=2a+8b=3(a-b).求证:A、B、D三点共线;(2) 试确定实数k使ka+b和a+kb共线.(1) 证明:∵=a+b=2a+8b=3(a-b)=+=2a+8b+3(a-b)=5(a+b)=5,共线.又它们有公共点B、B、D三点共线.(2) 解:∵ ka+b与a+kb共线存在实数ka+b=λ(a+kb)即(k-λ)a=(λk-1)b.又a、b是两不共线的非零向量-λ=λk-1=0.-1=0.∴ k=±1. 已知a、b是不共线的向量=λa+b=a+μb(λ、μ∈R)当A、B、C三点共线时λ、μ满足的条件为________答案:λμ=1解析:由=λa+b=a+μb(λ、μ∈R)及A、B、C三点共线得=t所以λa+b=t(a+μb)=ta+tμb即可得所以λμ=1.题型4 向量共线的应用例4 如图所示设O是△ABC内部一点且+=-2则△AOB与△AOC的面积之比为________. 答案: 解析:如图所示设M是AC的中点则+=2又+=-2=-即O是BM的中点=S==. 如图中在AC上取一点N使AN=;在AB上取一点M使得AM=;在BN的延长线上取点P使得NP=;在CM的延长线上取点Q使得=时=试确定λ的值. 解:∵=-=(-)=(+)==-=+λ又∵=+λ=即λ== 1. 如图在四边形ABCD中和BD相交于点O设=a=b若=2则=________.(用向量a和b表示) 答案:+解析:因为=+=+=a+又=2所以===+(2013·四川)如图在平行四边形ABCD中对角线AC与BD交于点O+=λ则λ=________. 答案:2解析:+==2则λ=2.(2013·江苏)设D、E分别是△ABC的边AB、BC上的点AB,BE=若=λ+λ(λ1、λ为实数)则λ+λ=________.答案:解析:=+=+=+(-)=-+=λ+λ,故λ=-=则λ+λ=已知点P在△ABC所在的平面内若2+3+=3则△PAB与△PBC的面积的比值为__________.答案:解析:由2+3+4=3得+4=3+,∴ 2+4=,即4=5===1. 在平行四边形ABCD中对角线AC与BD交于点O+=λ则λ=________答案:2 解析:ABCD为平行四边形对角线AC与BD交于点O所以+=又O为AC的中点所以=2所以+=2因为+=λ所以λ=2. 已知平面内O四点其中A三点共线且=x+y则x+y=________答案:1解析:∵ A三点共线=λ即-=λ-λ=(1-λ)+λ即x=1-λ=λ+y=1.设D分别是△ABC的边AB上的点==若=λ+λ(λ1,λ2为实数)则+=________答案:解析:易知DE=+=+(-)=-+所以λ+λ=已知点G是△ABO的重心是AB边的中点.(1) 求++;(2) 若PQ过△ABO的重心G且=a=b=ma=nb求证:+=3.(1) 解:因为+=2又2=-所以++=-+=(2) 证明:因为=(a+b)且G是△ABO的重心所以==(a+b由P、G、Q三点共线得,所以有且只有一个实数λ使=λ又=-=(a+b)-ma=+=-=nb-(a+b)=-+所以+=. 又a、b不共线所以消去λ整理得3mn=m+n故+=3. 1. 解决与平面向量的概念有关的命题真假的判定问题其关键在于透彻理解平面向量的概念还应注意零向量的特殊性以及两个向量相等必须满足:①模相等;②方向相同.在进行向量线性运算时要尽可平行向量定理的条件和结论是充要条件关系既可以证明向量共线也可以由向量共线求参数.利用两向量共线证明三点共线要强调有一个公共点. [备课札记]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量一.向量概念1.向量定义:既有大小又有方向的量叫做向量。

2.向量的表示方法:(1)用有向线段表示;(2)用字母表示:a说明:(1)具有方向的线段叫有向线段。

有向线段的三要素:起点、方向和长度;(2)向量AB 的长度(或称模):线段AB 的长度叫向量AB 的长度,记作||AB. 3.单位向量、零向量、平行向量、相等向量、共线向量的定义:(1)单位向量:长度为1的向量叫单位向量,即||1AB =;(2)零向量:长度为零的向量叫零向量,记作0;(3)平行向量:方向相同或相反的非零向量叫平行向量,记作:////a b c;(4)相等向量:长度相等,方向相同的向量叫相等向量。

即:a b =; (5)共线向量:平行向量都可移到同一直线上。

平行向量也叫共线向量。

说明:(1)规定:零向量与任一向量平行,记作0//a;(2)零向量与零向量相等,记作00=;(3)任意二个非零相等向量可用同一条有向线段表示,与有向线段的起点无关。

【典例分析】例1 如图1,设O 是正六边形ABCDEF 的中心,分别 写出图中与向量OA ,OB ,OC相等的向量。

例2 如图2,梯形ABCD 中,E ,F 分别是腰AB 、DC的三等分点,且||AD 2=,||5BC = ,求||EF .例3 在直角坐标系xoy 中,已知||5OA =,OA 与x 轴正方向所成的角为30 ,与y 轴正方向所成的角为120,试作出OA .A C EF OB D (图1)AE B DF C(图2)例4.已知O 点是正六边形ABCDEF 的中心,则下列向量组中含有相等向量的是( )(A )OB 、CD 、FE 、CB (B )AB 、CD 、FA 、DE(C )FE 、AB 、CB 、OF (D )AF 、AB 、OC 、OD二.向量的加法1.向量的加法:求两个向量和的运算叫做向量的加法。

表示:AB BC AC +=.规定:零向量与任一向量a ,都有00a a a +=+=.说明:①共线向量的加法: a b a b +②不共线向量的加法:如图(1),已知向量a ,b ,求作向量a b +.作法:在平面内任取一点O (如图(2)),作OA a = ,AB b = ,则OB a b =+. (1) (2) 2.向量加法的法则:(1)三角形法则:根据向量加法定义得到的求向量和的方法,称为向量加法的三角形法则。

表示:AB BC AC +=.(2)平行四边形法则:以同一点A 为起点的两个已知向量a ,b为邻边作ABCD,则以A为起点的对角线AC 就是a 与b的和,这种求向量和的方法称为向量加法的平行四边形法则。

3.向量的运算律:交换律:a b b a +=+.结合律:()()a b c a b c ++=++.说明:多个向量的加法运算可按照任意的次序与任意的组合进行:例如:()()()()a b c d b d a c +++=+++ ;[()]()a b c d e d a c b e ++++=++++.【典例分析】例 1 如图,一艘船从A 点出发以23/km h 的速度向垂直于对岸的方向行驶,同时河水的流速为2/km h ,求船实际航行速度的大小与方向(用与流速间的夹角表示)。

A B Cb aO B A ba A B C D ba CD A CEF ODB例2 已知矩形ABCD 中,宽为2,长为23,AB a = ,BC b =,AC c = , 试作出向量a b c ++,并求出其模的大小。

例3 一架飞机向北飞行200千米后,改变航向向东飞行200千米,则飞行的路程为 ;两次位移的和的方向为 , 大小为 千米.三.向量的减法1.相反向量:与a 长度相等,方向相反的向量,叫做a 的相反向量,记作a -。

说明:(1)规定:零向量的相反向量是零向量。

(2)性质:()a a --= ;()()0a a a a +-=-+=.2.向量的减法:求两个向量差的运算,叫做向量的减法。

表示()a b a b -=+-.3.向量减法的法则: 已知如图有a ,b ,求作a b - .(1)三角形法则:在平面内任取一点O ,作OA a = ,OB b = ,则BA a b =-.说明:a b -可以表示为从b 的终点指向a 的终点的向量(a ,b 有共同起点).(2)平行四边形:在平面内任取一点O ,作OA a = ,BO b =- ,则BA BO OA a b =+=- .思考:若//a b ,怎样作出a b -? C D AE B abb aBA a b - O CB b -O A a四.向量的数乘1.实数与向量的积的定义:一般地,实数λ与向量a 的积是一个向量,记作a λ,它的长度与方向规定如下:(1)||||||a a λλ=;(2)当0λ>时,a λ 的方向与a的方向相同;当0λ<时,a λ 的方向与a的方向相反;当0λ= 时,0a λ=. 2.实数与向量的积的运算律:(1)()()a a λμλμ=(结合律);(2)()a a a λμλμ+=+(第一分配律);(3)a b λλλ+ (a+b )=(第二分配律).例1 计算:(1)(3)4a -⨯ ; (2)3()2()a b a b a +--- ; (3)(23)(32)a b c a b c +---+.3.向量共线的充要条件:定理:(向量共线的充要条件)向量b 与非零向量a共线的充要条件是有且只有一个实数λ,使得b a λ= .例2 如图,已知3AD AB = ,3DE BC = .试判断AC 与AE是否共线.例3 判断下列各题中的向量是否共线:(1)21245a e e =- ,12110b e e =- ;(2)12a e e =+ ,1222b e e =-,且1e ,2e 共线.例4 设12,e e是两个不共线的向量,已知122AB e ke =+ ,123CB e e =+ ,122CD e e =- , 若A ,B ,D 三点共线,求k 的值。

A B CDE4.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数1λ,2λ,使1122a e e λλ=+.其中我们把不共线的向量1e ,2e 叫做表示这一平面所有向量的一组基底。

注:①1e ,2e均非零向量;②1e ,2e不唯一(事先给定); ③1λ,2λ唯一;④20λ=时,a 与1e 共线;10λ=时,a 与2e 共线;120λλ==时,0a =.【典例分析】例5 已知向量1e ,2e (如图),求作向量12235e e -+.例6如图 的两条对角线相交于点M ,且A B a = ,AD b = ,用a 、b 表示MA 、MB 、MC和MD .例7 如图,OA 、OB 不共线,()AP t AB t R =∈,用OA 、OB 表示OP .例8已知在四边形ABCD 中,2AB a b =+ ,4BC a b =-- ,53CD a b =--, 求证:ABCD 是梯形。

2e 1e Db C B aA M OBP AACB D五.平面向量基本定理1.向量的坐标表示的定义:分别选取与x 轴、y 轴方向相同的单位向量i ,j 作为基底,对于任一向量a ,a xi y j =+,(,x y R ∈),实数对(,)x y 叫向量a 的坐标,记作(,)a x y =.其中x 叫向量a 在x 轴上的坐标,y 叫向量a在y 轴上的坐标。

说明:(1)对于a ,有且仅有一对实数(,)x y 与之对应; (2)相等的向量的坐标也相同; (3)(1,0)i = ,(0,1)j = ,0(0,0)= ; (4)从原点引出的向量OA 的坐标(,)x y 就是点A 的坐标。

例1 如图,用基底i ,j 分别表示向量a 、b 、c 、d, 并求出它们的坐标。

2.平面向量的坐标运算:问题:已知11(,)a x y = ,22(,)b x y =,求a b + ,a b - . 解:11221212()()()()a b x i y j x i y j x x i y y j +=+++=+++ 即()1212,a b x x y y +=++ .同理:1212(,)a b x x y y -=--.结论:两个向量和与差的坐标分别等于这两个向量相应坐标的和与差。

3.向量的坐标计算公式:归纳:(1)一个向量的坐标等于表示它的有向线段的终点坐标减去始点坐标; (2)两个向量相等的充要条件是这二个向量的坐标相等。

4.实数与向量的积的坐标:已知(,)a x y = 和实数λ,求()(,)a xi y j xi y j x y λλλλλλ=+=+=结论:实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标。

yx O (,)A x yji aO x y a A 1A 2Ab c d O x 22(,)B x y11(,)A x y y归纳:(1)设点11(,)A x y ,22(,)B x y ,则2121(,)AB x x y y =--;(2)11(,)a x y = ,22(,)b x y = ,则1212(,)a b x x y y +=++,1212(,)a b x x y y -=-- ,11(,)a x y λλλ=; (3).向量a 与非零向量b 平行的充要条件是:(,0)a b R b λλ=∈≠ .例 2 已知(2,1)a =,(3,4)b =-,求a b + ,a b - ,34a b + 的坐标.解:a b + =(2,1)(3,4)(1,5)+-=-;a b -(2,1)(3,4)(5,3)=--=-;34a b + 3(2,1)4(3,4)(6,19)=+-=-.例2已知 ABCD 的三个顶点,,A B C 的坐标分别为(2,1)-、(1,3)-、(3,4),求顶点D 的坐标。

例3已知(1,2)a =- ,(3,1)b =- ,(11,7)c =- ,且c xa yb =+,求x ,y .六.平面向量的坐标运算1.向量平行的坐标表示:设11(,)a x y = ,22(,)b x y =,(0b ≠ ),且//a b , 则(,0)a b R b λλ=∈≠,∴112222(,)(,)(,)x y x y x y λλλ==.∴1212x x y y λλ=⎧⎨=⎩,∴12210x y x y -=. 归纳:向量平行(共线)的充要条件的两种表达形式: ①//a b (0)b ≠⇔ (,0)a b R b λλ=∈≠ ; ②//a b (0)b ≠ 且设11(,)a x y = ,22(,)b x y =⇔12210x y x y -=(1212,,,x x y y R ∈)【典例分析】例1 已知(4,2)a = ,(6,)b y =,且//a b ,求y .例2 已知(1,1)A --,(1,3)B ,(2,5)C ,求证A 、B 、C 三点共线.例3 已知(2,3)a = ,(1,2)b =-,若ka b - 与a kb - 平行,求k .例4已知点(1,1)A --,(1,3)B ,(1,5)C ,(2,7)D ,向量AB 与CD平行吗?直线AB 与直线CD 平行吗?七.向量的数量积1.向量的夹角:已知两个向量a 和b (如图),作OA a = ,OB b =,则AOB θ∠=(0180θ≤≤)叫做向量a 与b 的夹角。

相关文档
最新文档