有机氟化学1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有机氟化学
氟元素: “化学元素中举足轻重的小个子”
尖端材料:在军用尖端材料中,含氟材料占近一半(由于其独特优异的稳定性和其它物理特性); 医药农药:最近报道,全球新注册的医药中10%含有氟元素;新注册的农药中,40%含有氟元素。
有机氟化学起源
有机含氟材料(包括有机含氟化合物、调聚物、聚合物)的起源可以上溯到19世纪后期。1886年法国化学家Moissan 首次分离出了单质氟,随后经过了19世纪30年代的氟利昂的发现,40年代曼哈顿计划氟材料的大量使用,才在50年代以后逐渐发展成为既有浓厚学术性又有极强应用性的一门学科。经过了100多年的曲折发展道路,有机氟材料领域不断得到提高,深刻影响了全球经济发展和社会进步。
原子
电负性
Pauling 原子半径 (Å) Bondi 原子半径 键能 (CH 3-X) 键长
CH 3-X H 2.1 1.20 1.20 99 1.09 F 4.0 1.35 1.47 116 1.39 Cl 3.0 1.80 1.75 81 1.77 Br
2.8 1.95 1.85 68 1.93 O (OH)
3.5 1.40 1.52 86 1.43 S (SH)
2.5
1.85
1.80
65
1.82
氟化学发展中的里程碑
1886年Moissan分离得到单质氟;
1892年Swarts发现了三氟化锑作用下的氯/氟卤素交换反应;
1928年Midgley发明了“氟利昂”;
1938年Plunkett发现了聚四氟乙烯,标志着含氟聚合物的诞生;
1947年Fowler发现了三氟化钴作用下的全氟化方法;
1949年Simons发现了电化学氟化方法;
1954年Fried对有机含氟物质在医学上的应用的研究;
1962年George Olah利用含氟物质首次发现稳定的碳正离子存在;
1962年Bartlett发现了惰性气体的氟化(XePtF6);
1974年Molina和Rowland对某些氟利昂破坏臭氧层的研究;
1979年Margraves发现了直接氟化;
2003年O’Hagan分离出了第一个氟化酶。
BIOCHEMICAL FLUORINE The biosynthetic pathway to fluoroacetate and 4-fluorothreonine in the bacterium S. cattleya involves a fluorinase-catalyzed C–F bond formation in the first step shown here. The intermediate metabolites shown have been identified, but in some cases (indicated by dashed arrows) the enzymes involved remain to be isolated.
Fluorine Chemistry's Uncharted Territory
(1)Coordination or metathesis polymerization methods, such as
Ziegler-Natta-type reactions carried out on ethylene and propylene,
have been unsuccessful With fluoroolefins, Smart said. These
fluorinated monomers typically are too unreactive because they
have highly electron-deficient double bonds. If they do react,
metal fluoride elimination is a problem. These circumstances have
limited commercial polymerizations to free-radical processes. It’s
also difficult to tailor high-molecular-weight block copolymer
structures with fluoroolefins, he added.
(2) Fluoroolefin polymerization is still based largely on developments from
the 1950s, he pointed out, while there have been myriad changes for hydrocarbon polymerizations, particularly in catalyst design and living polymerization capabilities. That means there are many opportunitie s for fluoropolymers, and there are “little pieces of evidence” in the chemical literature to suggest that organometallic chemistry involving late-transition metals with the right type of ligands could make a difference. “This is an encouraging area for chemists to think about,” he said.
(3) Smart also mentioned efforts to replace fully fluorinated alkane surfactants, such as perfluorooctyl carboxylates and sulfonates that are used in polymerization processes. These compounds and their precursors are under scrutiny as persistent molecules that accumulate in the environment. “I think in the next few years we will see a lot of work to find replacements,” Smart said. “It’s possible, with the right
design, that some of these materials can be lightly fluorinated and still express the surface activity of the