2018年高考物理重要考点专题专练卷:电磁感应规律(应用)
2018届高考物理二轮复习电磁感应的应用专题卷
1.3电磁感应定律的应用一、选择题1.某学校操场上有如图所示的运动器械:两根长金属链条将一根金属棒ab悬挂在固定的金属架上。
静止时ab水平且沿东西方向。
已知当地的地磁场方向自南向北斜向下跟竖直方向成45°,现让ab随链条荡起来,最大偏角45°,则下列说法正确的是( )A.当ab棒自南向北经过最低点时,ab中感应电流的方向是自西向东B.当链条与竖直方向成45°时,回路中感应电流最大C.当ab棒自南向北经过最低点时,安培力的方向与水平向南的方向成45°斜向下D.在ab棒运动过程中,不断有磁场能转化为电场能答案 C解析当ab棒自南向北经过最低点时,由右手定则知电流方向自东向西,故A错误;当链条偏南与竖直方向成45°时,ab运动方向(沿圆轨迹的切线方向)与磁场方向平行,此时感应电流为零,最小,故B错误;当ab棒自南向北经过最低点时,由左手定则知安培力的方向与水平向南的方向成45°斜向下,故C正确;在ab棒运动过程中,不断有机械能转化为电场能,故D错误。
2.[2017·江西赣中模拟]如图所示,等离子气流(由高温、高压的等电荷量的正、负离子组成)由左方连续不断地以速度v0垂直射入P1和P2两极板间的匀强磁场中。
两平行长直导线ab和cd的相互作用情况为:0~1 s内排斥,1~3 s内吸引,3~4 s内排斥。
线圈A内有外加磁场,规定向左为线圈A内磁感应强度B的正方向,则线圈A内磁感应强度B随时间t变化的图象有可能是下图中的( )答案 C解析 等离子气流由左方连续不断地以速度v 0射入P 1和P 2两极板间的匀强磁场中,正电荷向上偏,负电荷向下偏,上极板带正电,下极板带负电,电流方向由a 到b,0~1 s 内互相排斥,则cd 的电流由d 到c,1~3 s 内互相吸引,则cd 的电流由c 到d ,根据楞次定律知C 正确,A 、B 、D 错误。
3.如图,直角三角形金属框abc 放置在匀强磁场中,磁感应强度大小为B ,方向平行于ab 边向上。
2018届高考物理二轮复习 电磁感应定律的应用 专题卷
电磁感应定律的综合应用考点整合考点一电磁感应中的图像问题电磁感应中常涉及、、和随时间t 变化的图像,即B-t图像、Φ-t图像、E-t图像和I-t图像等。
对于切割磁感线产生感应电动势和感应电流的情况还常涉及感应电动势E和感应电流I随线圈位移x变化的图像,即E-x 图像和I-x图像。
这些图像问题大体上可分为两类:由给定的电磁感应过程选出或画出正确的图像,或由给定的有关图像分析电磁感应过程,求解相应的物理量。
不管是何种类型,电磁感应中的图像问题常需利用、和等规律分析解决。
[例1]、如图所示,平行于y轴的导体棒以速度v向右匀速直线运动,经过半径为R、磁感应强度为B的圆形匀强磁场区域,导体棒中的感应电动势e与导体棒位置x关系的图像是()解析:在x=R左侧,设导体棒与圆的交点和圆心的连线与x轴正方向成θ角,则导体棒切割有效长度L=2R sinθ,电动势与有效长度成正比,故在x=R左侧,电动势与x的关系为正弦图像关系,由对称性可知在x=R右侧与左侧的图像对称。
答案:A。
[规律总结]处理图象问题,可从以下六个方面入手分析:一要看坐标轴表示什么物理量;二要看具体的图线,它反映了物理量的状态或变化;三要看斜率,斜率是纵坐标与横坐标的比值,往往有较丰富的物理意义;四要看图象在坐标轴上的截距,它反映的是一个物理量为零时另一物理量的状态;五要看面积,如果纵轴表示的物理量与横轴表示的物理量的乘积,与某个的物理量的定义相符合,则面积有意义,否则没有意义;六要看(多个图象)交点.考点二、电磁感应与电路的综合关于电磁感应电路的分析思路其步骤可归纳为“一源、二感、三电”,具体操作为:对于电磁感应电路的一般分析思路是:先电后力,具体方法如下:①先做“源”的分析:分离出电路中由电磁感应所产生的,并求出电源的和电源的。
在电磁感应中要明确切割磁感线的导体或磁通量发生变化的回路相当于,其他部分为。
接着用右手定则或楞次定律确定感应电流的。
在电源(导体)内部,电流由(低电势)流向电源的(高电势),在外部由正极流向负极。
【高考物理】2018最新版本高考物理电磁感应专题复习学案及答案-专题拔高特训
电磁感应规律的综合应用(附参考答案)【命题趋向】电磁感应综合问题往往涉及力学知识(如牛顿运动定律、功、动能定理、能量守恒定律等)、电学知识(如电磁感应定律、楞次定律、直流电路知识、磁场知识等)等多个知识点,突出考查考生理解能力、分析综合能力,尤其从实际问题中抽象概括构建物理模型的创新能力。
在备考中应给予高度重视。
【考点透视】电磁感应是电磁学的重点,是高中物理中难度较大、综合性最强的部分。
这一章是高考必考内容之一。
如感应电流产生的条件、方向的判定、自感现象、电磁感应的图象问题,年年都有考题,且多为计算题,分值高,难度大,而感应电动势的计算、法拉第电磁感应定律,因与力学、电路、磁场、能量、动量等密切联系,涉及知识面广,综合性强,能力要求高,灵活运用相关知识综合解决实际问题,成为高考的重点。
因此,本专题是复习中应强化训练的重要内容。
【例题解析】一、电磁感应与电路题型特点:闭合电路中磁通量发生变化或有部分导体在做切割磁感线运动,在回路中将产生感应电动势,回路中将有感应电流。
从而讨论相关电流、电压、电功等问题。
其中包含电磁感应与力学问题、电磁感应与能量问题。
解题基本思路:1.产生感应电动势的导体相当于一个电源,感应电动势等效于电源电动势,产生感应电动势的导体的电阻等效于电源的内阻.2.电源内部电流的方向是从负极流向正极,即从低电势流向高电势.3.产生感应电动势的导体跟用电器连接,可以对用电器供电,由闭合电路欧姆定律求解各种问题.4.解决电磁感应中的电路问题,必须按题意画出等效电路,其余问题为电路分析和闭合电路欧姆定律的应用.例1.如图所示,两个电阻的阻值分别为R和2R,其余电阻不计,电容器的电容量为C,匀强磁场的磁感应强度为B,方向垂直纸面向里,金属棒a b、cd 的长度均为l ,当棒a b以速度v向左切割磁感应线运动时,当棒cd以速度2v向右切割磁感应线运动时,电容C的电量为多大?哪一个极板带正电?解:画出等效电路如图所示:棒a b产生的感应电动势为:E1=Bl V棒a b产生的感应电动势为:E2=2Bl V电容器C充电后断路,U ef = - Bl v /3,U cd= E2=2Bl VU C= U ce=7 BL V /3Q=C U C=7 C Bl V /3右板带正电。
2018年高考物理(课标Ⅱ专用)复习专题测试(必考)专题十一 电磁感应 (共162张PPT)
答案 AB
如图所示,将铜圆盘等效为无数个长方形线圈的组合,则每个线圈绕OO'轴转动时,
均有感应电流产生,这些感应电流产生的磁场对小磁针有作用力,从而使小磁针转动起来,可
见A、B均正确。由于圆盘面积不变,与磁针间的距离不变,故穿过整个圆盘的磁通量没有变化,
C错误。圆盘中的自由电子随圆盘一起运动形成的电流的磁场,由安培定则可判断在中心方向 竖直向下,其他位置关于中心对称,此磁场不会导致磁针转动,D错误。
L t
0.1 0.2
E = 0.01 选项B正确;由E=BLv,得B= T=0.2 T,选项A错误;由右手定则可确定磁感应强度方向
E =0.2×0.1× 0.01N=0.04 N,选项D错 垂直于纸面向外,选项C正确;导线框所受安培力F=BLI=BL R 0.005
误。 储备知识 根据图像和导线框匀速运动,获取信息,结合安培力、导体切割磁感线产生感应电动 势可以确定选项。
A.PQRS中沿顺时针方向,T中沿逆时针方向 B.PQRS中沿顺时针方向,T中沿顺时针方向
C.PQRS中沿逆时针方向,T中沿逆时针方向
D.PQRS中沿逆时针方向,T中沿顺时针方向
答案 D
金属杆PQ向右运动,穿过PQRS的磁通量增加,由楞次定律可知,PQRS中产生逆时针
方向的电流。这时因为PQRS中感应电流的作用,依据楞次定律可知,T中产生顺时针方向的感应
解题关键 ①将圆盘看成由无数根辐条构成,每根辐条都在切割磁感线产生感应电动势。 ②整个回路中的电源可以看成由无数个电源并联而成,整个回路中的电源的内阻为零。
4.(2015课标Ⅰ,19,6分,0.290)(多选)1824年,法国科学家阿拉果完成了著名的“圆盘实验”。实 验中将一铜圆盘水平放置,在其中心正上方用柔软细线悬挂一枚可以自由旋转的磁针,如图所
2018年高考物理复习卷:电磁感应
电磁感应复习卷一、选择题(第1~8小题为单选题, 第9~12小题为多选题)1. 如图所示, 水平放置的光滑金属长导轨MM′和NN′之间接有电阻R, 导轨左、右两区域分别存在方向相反且与导轨平面垂直的匀强磁场, 设左、右区域磁场的磁感应强度大小分别为B1和B2, 虚线为两区域的分界线。
一根阻值也为R的金属棒ab放在导轨上并与其垂直, 导轨电阻不计。
若金属棒ab在外力F的作用下从左边的磁场区域距离磁场边界x处匀速运动到右边的磁场区域距离磁场边界x处, 下列说法中正确的是A. 当金属棒通过磁场边界时, 通过电阻R的电流反向B. 当金属棒通过磁场边界时, 金属棒受到的安培力反向C. 金属棒在题设的运动过程中, 通过电阻R的电荷量等于零D.金属棒在题设的运动过程中, 回路中产生的热量等于Fx【答案】AC2. 如图所示, 等腰三角形内分布有垂直于纸面向外的匀强磁场, 它的底边在x轴上且长为2L, 高为L, 纸面内一边长为L的正方形导线框沿x轴正方向做匀速直线运动穿过匀强磁场区域, 在t=0时刻恰好位于如图所示的位置, 以顺时针方向为导线框中电流的正方向, 下面四幅图中能够正确表示导线框中的电流–位移(I–x)关系的是A. /B. /C. /D. /【答案】B3. 如图所示, 质量为m=0.5 kg、电阻为r=1 Ω的轻杆ab可以无摩擦地沿着水平固定导轨滑行, 导轨足够长, 两导轨间宽度为L=1 m, 导轨电阻不计, 电阻R1=1.5 Ω, R2=3 Ω, 整个装置处在竖直向下的匀强磁场中, 磁感应强度为B=1 T。
杆从x轴原点O以水平速度v0=6 m/s开始滑行, 直到停止下来。
下列说法不正确的是A. a点电势高于b点电势B. 在杆的整个运动过程中, 电流对电阻R1做的功为9 JC. 整个运动过程中, 杆的位移为6 mD.在杆的整个运动过程中, 通过电阻R1的电荷量为2 C【答案】B4. 如图所示, 质量m=0.5 kg、长L=1 m的通电导体棒在安培力作用下静止在倾角为37°的光滑绝缘框架上, 磁场方向垂直于框架向下(磁场范围足够大), 右侧回路电源电动势E=8 V, 内电阻r=1 Ω, 额定功率为8 W、额定电压为4 V的电动机正常工作, (g=10 m/s2)则A. 回路总电流为2 AB. 电动机的额定电流为4 AC. 流经导体棒的电流为4 AD. 磁感应强度的大小为1.5 T【答案】D5. 用一段横截面半径为R、电阻率为ρ、密度为d的均匀导体材料做成一个半径为R(R<<R)的圆环。
2018年高考物理热点题型和提分秘籍 专题9.1 电磁感应
1.知道电磁感应现象产生的条件。
2.理解磁通量及磁通量变化的含义,并能计算。
3.掌握楞次定律和右手定则的应用,并能判断感应电流的方向及相关导体的运动方向。
热点题型一电磁感应现象的判断例1、(多选)(线圈在长直导线电流的磁场中,做如图所示的运动:A向右平动,B向下平动,C绕轴转动(ad边向外转动角度θ≤90°),D向上平动(D线圈有个缺口),判断线圈中有感应电流的是()【答案】BC【解析】A中线圈向右平动,穿过线圈的磁通量没有变化,故A线圈中没有感应电流;B 中线圈向下【提分秘籍】1.磁通量的计算(1)公式Φ=BS。
此式的适用条件是:匀强磁场,磁感线与平面垂直。
如图所示。
(2)在匀强磁场B中,若磁感线与平面不垂直,公式Φ=BS中的S应为平面在垂直于磁感线方向上的投影面积;公式Φ=B·S cosθ中的S cosθ即为面积S在垂直于磁感线方向的投影,我们称之为“有效面积”。
(3)磁通量有正负之分,其正负是这样规定的:任何一个面都有正、反两面,若规定磁感线从正面穿入为正磁通量,则磁感线从反面穿入时磁通量为负值。
若磁感线沿相反的方向穿过同一平面,且正向磁感线条数为Φ1,反向磁感线条数为Φ2,则磁通量等于穿过该平面的磁感线的净条数(磁通量的代数和),即Φ=Φ1-Φ2。
(4)如右图所示,若闭合电路abcd和ABCD所在平面均与匀强磁场B垂直,面积分别为S1和S2,且S1>S2,但磁场区域恰好只有ABCD那么大,穿过S1和S2的磁通量是相同的,因此,Φ=BS中的S应是指闭合回路中包含磁场的那部分有效面积。
(5)磁通量与线圈的匝数无关,也就是磁通量大小不受线圈匝数的影响。
同理,磁通量的变化量ΔΦ=Φ2-Φ1也不受线圈匝数的影响。
所以,直接用公式求Φ、ΔΦ时,不必去考虑线圈匝数n。
2.磁通量的变化ΔΦ=Φ2-Φ1,其数值等于初、末态穿过某个平面磁通量的差值。
分析磁通量变化的方法有:方法一:据磁通量的定义Φ=B·S(S为回路在垂直于磁场的平面内的投影面积)。
2018届高考物理电磁感应专题卷含答案解析(全国通用)
2018年高考物理二轮复习讲练测专题06 电磁感应一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,1~8题只有一项符合题目要求;9~12题有多项符合题目要求。
全部选对的得5分,选对但不全的得3分,有选错的得0分。
)1.一个闭合线圈中没有产生感应电流,因此可以得出. ()A. 此时该处一定没有磁场B. 此时该处一定没有磁场的变化C. 闭合线圈的面积一定没有变化D. 穿过线圈平面的磁通量一定没有变化【答案】D点睛:解答本题主要是抓住感应电流产生的条件:闭合线圈的磁通量发生变化,而磁通量的变化可以是由磁场变化引起,也可以是线圈的面积变化,或位置变化引起的.2.如图,由某种粗细均匀的总电阻为3R的金属条制成的矩形线框abcd,固定在水平面内且处于方向竖直向下的匀强磁场B中.一接入电路电阻为R的导体棒PQ,在水平拉力作用下沿ab、dc以速度v匀速滑动,滑动过程PQ始终与ab垂直,且与线框接触良好,不计摩擦.在PQ从靠近ad处向bc滑动的过程中()A. PQ中电流一直增大B. PQ中电流一直减小C. 线框消耗的电功率先增大后减小D. 线框消耗的电功率先减小后增大【答案】C【解析】A、B项,设导体棒的长度为L,磁感应强度为B,导体棒的速度v保持不变,根据法拉第电磁感应定律,感应的电动势E BLv =不变,设线框左边的电阻为r ,则左右两边线框的电阻为R 并 , 111+3R r R r =-并 流过PQ 的电流()23=33E RE I R R r R r R=+-+并 ,可以看出当PQ 从靠近ad 向bc 靠近过程中, r 从零增大到3R ,从而可以判断电流先减小后增大,故A 、B 项错误。
C ,D 项,电源的内阻为R ,PQ 从靠近ad 向bc 靠近过程中,外电路的并联等效电阻从零增大到0.75R 又减小到零,外电路的电阻等于电源内阻的时候消耗的功率最大,所以外电路的功率应该先增大后减小,故C 正确D 项错误。
考点10 电磁感应规律及其应用-2018年高考物理二轮核心考点(原卷版)
2018届高考二轮复习之核心考点系列之物理考点总动员【二轮精品】考点10 电磁感应规律及其应用【命题意图】考查法拉第电磁感应定律的应用,涉及图象问题,意在考查考生分析问题,通过图象获取有用信息的能力和应用数学知识解决问题的能力。
电磁感应中的电路、法拉第电磁感应定律、能量转换及电量的计算等知识点,意在考查考生对电磁感应电路的分析以及对电磁感应中功能关系的正确理解和应用。
【专题定位】高考对本部分内容的要求较高,常在选择题中考查电磁感应中的图象问题、变压器和交流电的描述问题,在计算题中作为压轴题,以导体棒运动为背景,综合应用电路的相关知识、牛顿运动定律和能量守恒定律解决导体棒类问题.本专题考查的重点有以下几个方面:①楞次定律的理解和应用;②感应电流的图象问题;③电磁感应过程中的动态分析问题;④综合应用电路知识和能量观点解决电磁感应问题【考试方向】电磁感应中常涉及B—t图象、Φ—t图象、E—t图象、I—t图象、F—t图象和v—t图象,还涉及E—x图象、I—x图象等,这类问题既要用到电磁感应的知识,又要结合数学知识求解,对考生运用数学知识解决物理问题的能力要求较高。
主要以选择题的形式单独命题,有时也会以信息给予的方式命制计算题。
电磁感应与能量的综合,涉及到的考点有:法拉第电磁感应定律、楞次定律、闭合电路欧姆定律、功和功率、焦耳定律、能量守恒定律、功能关系、动能定理等,主要以选择题和计算题的形式考查。
【应考策略】对本专题的复习应注意“抓住两个定律,运用两种观点,分析三种电路”.两个定律是指楞次定律和法拉第电磁感应定律;两种观点是指动力学观点和能量观点;三种电路是指直流电路、交流电路和感应电路.【得分要点】1、电磁感应中涉及的图线大体上可分为两大类:由给定的电磁感应过程选出或画出正确的图像,或由给定的有关图像分析电磁感应过程,求解相应的物理量。
对图象问题,首先要看两坐标轴代表的物理量,然后再从图线的形状、点、斜率、截距、图线与横轴所围的面积的意义等方面挖掘解题所需的信息。
2018年高考物理二轮专题训练试题:电磁感应练习50题
50题电磁感应练习(含答案)1、如图所示,两平行金属导轨间的距离L=0.40m,金属导轨所在的平面与水平面夹角θ=37º,在导轨所在平面内,分布着磁感应强度B=0.50T、方向垂直于导轨所在平面的匀强磁场。
金属导轨的一端接有电动势E=4.5V、内阻r=0.50Ω的直流电源。
现把一个质量m=0.04kg的导体棒ab放在金属导轨上,导体棒静止。
导体棒与金属导轨垂直、且接触良好,导体棒与金属导轨接触的两点间的电阻R0=2.5Ω,金属导轨的其它电阻不计,g取10m/s2。
已知sin37º=0.60,cos37º=0.80,试求:(1)通过导体棒的电流;(2)导体棒受到的安培力大小、方向;(3)导体棒受到的摩擦力的大小。
答案(1)(3分)(2),平行斜面向上(3分)(3),(4分)2、如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为L=0.2m,长为2d,d=0.5m,上半段d导轨光滑,下半段d导轨的动摩擦因素为μ=,导轨平面与水平面的夹角为θ=30°.匀强磁场的磁感应强度大小为B=5T,方向与导轨平面垂直.质量为m=0.2kg的导体棒从导轨的顶端由静止释放,在粗糙的下半段一直做匀速运动,导体棒始终与导轨垂直,接在两导轨间的电阻为R=3Ω,导体棒的电阻为r=1Ω,其他部分的电阻均不计,重力加速度取g=10m/s2,求:(1)导体棒到达轨道底端时的速度大小;(2)导体棒进入粗糙轨道前,通过电阻R上的电量q;(3)整个运动过程中,电阻R产生的焦耳热Q.答案分析:(1)研究导体棒在粗糙轨道上匀速运动过程,受力平衡,根据平衡条件即可求解速度大小.(2)进入粗糙导轨前,由法拉第电磁感应定律、欧姆定律和电量公式结合求解电量.(3)导体棒在滑动时摩擦生热为Q f=2μmgdcosθ,再根据能量守恒定律求解电阻产生的焦耳热Q.解答:解:(1)导体棒在粗糙轨道上受力平衡:由mgsin θ=μmgcos θ+BIL得:I=0.5A由BLv=I(R+r)代入数据得:v=2m/s(2)进入粗糙导轨前,导体棒中的平均电动势为:==导体棒中的平均电流为:==所以,通过导体棒的电量为:q=△t==0.125C(3)由能量守恒定律得:2mgdsin θ=Q电+μmgdcos θ+mv2得回路中产生的焦耳热为:Q电=0.35J所以,电阻R上产生的焦耳热为:Q=Q电=0.2625J答:(1)导体棒到达轨道底端时的速度大小是2m/s;(2)导体棒进入粗糙轨道前,通过电阻R上的电量q是0.35C;(3)整个运动过程中,电阻R产生的焦耳热Q是0.2625J.点评:本题实质是力学的共点力平衡与电磁感应的综合,都要求正确分析受力情况,运用平衡条件列方程,关键要正确推导出安培力与速度的关系式,分析出能量是怎样转化的.如图甲所示,足够长的光滑平行金属导轨MN、PQ竖直放置,其宽度L=1 m,一匀强磁场垂直穿过导轨平面,导轨的上端M与P之间连接一阻值为R=0.40 Ω的电阻,质量为m=0.01 kg、电阻为r=0.30 Ω的金属棒ab紧贴在导轨上.现使金属棒ab由静止开始下滑,下滑过程中ab始终保持水平,且与导轨接触良好,其下滑距离x与时间t的关系如图乙所示,图象中的OA段为曲线,AB段为直线,导轨电阻不计,g取10 m/s2(忽略ab棒运动过程中对原磁场的影响)。
2018年高考物理二轮复习 第1部分 专题11 电磁感应规律及其应用
专题十一电磁感应规律及其应用考点1| 电磁感应规律及其应用难度:中档题题型:选择题、计算题五年8考(多选)(2017·全国甲卷T20)法拉第圆盘发电机的示意图如图1所示.铜圆盘安装在竖直的铜轴上,两铜片P、Q分别与圆盘的边缘和铜轴接触.圆盘处于方向竖直向上的匀强磁场B中.圆盘旋转时,关于流过电阻R的电流,下列说法正确的是()图1A.若圆盘转动的角速度恒定,则电流大小恒定B.若从上向下看,圆盘顺时针转动,则电流沿a到b的方向流动C.若圆盘转动方向不变,角速度大小发生变化,则电流方向可能发生变化D.若圆盘转动的角速度变为原来的2倍,则电流在R上的热功率也变为原来的2倍【解题关键】 解此题注意两点:(1)切割类可用右手定则判断感应电流的方向.(2)转动切割感应电动势大小可用E =12Bl 2ω计算.AB [由右手定则知,圆盘按如题图所示的方向转动时,感应电流沿a 到b的方向流动,选项B 正确;由感应电动势E =12Bl 2ω知,角速度恒定,则感应电动势恒定,电流大小恒定,选项A 正确;角速度大小变化,感应电动势大小变化,但感应电流方向不变,选项C 错误;若ω变为原来的2倍,则感应电动势变为原来的2倍,电流变为原来的2倍,由P =I 2R 知,电流在R 上的热功率变为原来的4倍,选项D 错误.](2017·全国卷ⅡT 15)如图2所示,直角三角形金属框abc 放置在匀强磁场中,磁感应强度大小为B ,方向平行于ab 边向上.当金属框绕ab 边以角速度ω逆时针转动时,a 、b 、c 三点的电势分别为U a 、U b 、U c .已知bc 边的长度为l .下列判断正确的是( )图2A .U a >U c ,金属框中无电流B .U b >U c ,金属框中电流方向沿a -b -c -aC .U bc =-12Bl 2ω,金属框中无电流D .U bc =12Bl 2ω,金属框中电流方向沿a -c -b -a【解题关键】 解题时要抓住磁场方向和金属框的放置方式,结合转动切割计算电动势并用右手定则判电势高低.C [金属框abc 平面与磁场平行,转动过程中磁通量始终为零,所以无感应电流产生,选项B 、D 错误.转动过程中bc 边和ac 边均切割磁感线,产生感应电动势,由右手定则判断U a <U c ,U b <U c ,选项A 错误.由转动切割产生感应电动势的公式得U bc=-12Bl2ω,选项C正确.](2017·全国卷ⅡT25)半径分别为r和2r的同心圆形导轨固定在同一水平面内,一长为r、质量为m且质量分布均匀的直导体棒AB置于圆导轨上面,BA的延长线通过圆导轨中心O,装置的俯视图如图3所示.整个装置位于一匀强磁场中,磁感应强度的大小为B,方向竖直向下.在内圆导轨的C点和外圆导轨的D点之间接有一阻值为R的电阻(图中未画出).直导体棒在水平外力作用下以角速度ω绕O逆时针匀速转动,在转动过程中始终与导轨保持良好接触.设导体棒与导轨之间的动摩擦因数为μ,导体棒和导轨的电阻均可忽略.重力加速度大小为g.求:图3(1)通过电阻R的感应电流的方向和大小;(2)外力的功率.【解题关键】守恒定律解题.(1)根据右手定则,得导体棒AB上的电流方向为B→A,故电阻R上的电流方向为C→D.设导体棒AB中点的速度为v,则v=v A+v B2而v A=ωr,v B=2ωr根据法拉第电磁感应定律,导体棒AB上产生的感应电动势E=Br v根据闭合电路欧姆定律得I=ER,联立以上各式解得通过电阻R的感应电流的大小为I=3Bωr2 2R.(2)根据能量守恒定律,外力的功率P等于安培力与摩擦力的功率之和,即P =BIr v+f v,而f=μmg解得P=9B2ω2r44R+3μmgωr2.【答案】(1)方向为C→D大小为3Bωr22R(2)9B2ω2r44R+3μmgωr21.高考考查特点高考在本考点的考查主要集中在导体棒切割磁感线为背景的电动势的计算及方向的判断.掌握法拉第电磁感应定律和楞次定律、右手定则是突破考点的方法.2.解题的常见误区及提醒(1)对感应电流产生的条件理解不准确,认为只要切割就有感应电流.(2)不能正确理解楞次定律造成电流方向判断错误.(3)左手定则和右手定则混淆出现电流方向的判断错误.(4)不理解转动切割电动势大小计算方法.●考向1法拉第电磁感应定律的应用1.如图4所示,一正方形线圈的匝数为n,边长为a,线圈平面与匀强磁场垂直,且一半处在磁场中.在Δt时间内,磁感应强度的方向不变,大小由B均匀地增大到2B.在此过程中,线圈中产生的感应电动势为()【导学号:37162066】图4A.Ba22Δt B.nBa22Δt C.nBa2Δt D.2nBa2ΔtB[由法拉第电磁感应定律知线圈中产生的感应电动势E=n ΔΦΔt=nΔBΔt·S=n 2B-BΔt·a22,得E=nBa22Δt,选项B正确.]●考向2楞次定律的应用2.(2017·河南重点中学联考)如图5甲所示,绝缘的水平桌面上放置一金属圆环,在圆环的正上方放置一个螺线管,在螺线管中通入如图乙所示的电流,电流从螺线管a端流入为正,以下说法正确的是()图5A.从上往下看,0~1 s内圆环中的感应电流沿顺时针方向B.0~1 s内圆环面积有扩张的趋势C.3 s末圆环对桌面的压力小于圆环的重力D.1~2 s内和2~3 s内圆环中的感应电流方向相反A[由图乙知,0~1 s内螺线管中电流逐渐增大,穿过圆环向上的磁通量增大,由楞次定律知圆环中感应电流的磁场向下,圆环面积有缩小的趋势,从上往下看,0~1 s内圆环中的感应电流沿顺时针方向,选项A正确、B错误;同理可得1~2 s内和2~3 s内圆环中的感应电流方向相同,选项D错误;3 s末电流的变化率为0,螺线管中磁感应强度的变化率为0,在圆环中不产生感应电流,圆环对桌面的压力等于圆环的重力,选项C错误.]●考向3电磁阻尼3. (多选)(高考改编)在[例1](2017·全国甲卷T20)中,去掉电路和磁场,让圆盘逆时针转动,现施加一垂直穿过圆盘的有界匀强磁场,圆盘开始减速.在圆盘减速过程中,以下说法正确的是()图6A.处于磁场中的圆盘部分,靠近圆心处电势高B.所加磁场越强越易使圆盘停止转动C.若所加磁场反向,圆盘将加速转动D.若所加磁场穿过整个圆盘,圆盘将匀速转动ABD[根据右手定则,处于磁场中的圆盘部分,感应电流从靠近圆盘边缘处流向靠近圆心处,故靠近圆心处电势高,A正确;安培力F=B2l2v中R,磁场越强,安培力越大,B正确;磁场反向时,安培力仍是阻力,C错误;若所加磁场穿过整个圆盘,则磁通量不再变化,没有感应电流,安培力为零,故圆盘不受阻力作用,将匀速转动,D正确.](1)感应电流方向的判断方法一是利用右手定则,即根据导体在磁场中做切割磁感线运动的情况进行判断;二是利用楞次定律,即根据穿过回路的磁通量的变化情况进行判断.(2)楞次定律中“阻碍”的主要表现形式①阻碍原磁通量的变化——“增反减同”;②阻碍相对运动——“来拒去留”;③使线圈面积有扩大或缩小的趋势——“增缩减扩”;④阻碍原电流的变化(自感现象)——“增反减同”.(3)求感应电动势的两种方法①E=n ΔΦΔt,用来计算感应电动势的平均值.②E=BL v,主要用来计算感应电动势的瞬时值.考点2| 电磁感应中的图象问题难度:中档题题型:选择题五年58考(2017·全国卷ⅠT18)如图7(a),线圈ab、cd绕在同一软铁芯上,在ab线圈中通以变化的电流,用示波器测得线圈cd间电压如图(b)所示.已知线圈内部的磁场与流经线圈的电流成正比,则下列描述线圈ab中电流随时间变化关系的图中,可能正确的是()图7【解题关键】C间段内线圈ab中的磁场是均匀变化的,则线圈ab中的电流是均匀变化的,故选项A、B、D错误,选项C正确.](2017·全国卷IT17)如图8所示,在水平面(纸面)内有三根相同的均匀金属棒ab、ac和MN,其中ab、ac在a点接触,构成“V”字型导轨.空间存在垂直于纸面的均匀磁场.用力使MN向右匀速运动,从图示位置开始计时,运动中MN始终与∠bac的平分线垂直且和导轨保持良好接触.下列关于回路中电流i与时间t的关系图线,可能正确的是()图8【解题关键】 解此题抓住两点:(1)导体棒切割时的有效长度.(2)回路中电阻的变化特点.A [设图示位置时a 距棒的距离为l 0,导体棒匀速切割磁感线的速度为v ,单位长度金属棒的电阻为R 0,导轨夹角为θ,运动时间t 时,切割磁感线的导体棒长度l =2(l 0+v t )tan θ2,有效电路中导体棒长度l 总=l +2(l 0+v t )cos θ2,导体棒切割磁感线产生的感应电动势e =Bl v =2B v (l 0+v t )tan θ2,电路中总电阻R =R 0l 总=R 0⎣⎢⎢⎡⎦⎥⎥⎤2(l 0+v t )tan θ2+2(l 0+v t )cos θ2,所以i =e R =2B v (l 0+v t )tan θ2R 0⎣⎢⎢⎡⎦⎥⎥⎤2(l 0+v t )tan θ2+2(l 0+v t )cos θ2=B v ·tan θ2R 0⎣⎢⎢⎡⎦⎥⎥⎤tan θ2+1cos θ2, 即i 为恒定值与t 无关,选项A 正确.]1.高考考查特点本考点的命题主要涉及i -t 图、E -t 图、B -t 图、Φ-t 图,还有v -t 图、F -t 图等.突破本考点的关键是灵活应用楞次定律、法拉第电磁感应定律判断电流方向及计算电动势的大小.2.解题的常见误区及提醒(1)不能正确的将磁场变化和电流变化相互转换.(2)不能正确判断感应电流是正方向还是负方向.(3)不理解图象斜率、曲直的意义.(4)多阶段过程中不能将各阶段的运动和图象变化相对应.●考向1图象的确定4. (多选)如图9所示,在坐标系xOy中,有边长为L的正方形金属线框abcd,其一条对角线ac和y轴重合、顶点a位于坐标原点O处.在y轴右侧区域内有一垂直纸面向里的匀强磁场,磁场的上边界与线框的ab边刚好完全重合,左边界与y轴重合,右边界与y轴平行.t=0时刻,线框以恒定的速度v沿垂直于磁场上边界的方向穿过磁场区域.取沿a→b→c→d→a方向为感应电流的正方向,则在线框穿过磁场区域的过程中,感应电流i和a、b间的电势差U ab随时间t变化的图线是下图中的()图9AD[在ab边通过磁场的过程中,利用楞次定律或右手定则可判断出电流方向为逆时针方向,即沿正方向,且电流在减小,U ab=-i(R bc+R cd+R da).在cd边通过磁场的过程中,可判断出电流为顺时针方向,即沿负方向,且电流逐渐减小,U ab=-iR ab,A、D正确.]5.(2017·湖北黄冈质检)如图10所示,虚线P、Q、R间存在着磁感应强度大小相等,方向相反的匀强磁场,磁场方向均垂直于纸面,磁场宽度均为L.一等腰直角三角形导线框abc,ab边与bc边长度均为L,bc边与虚线边界垂直.现让线框沿bc方向匀速穿过磁场区域,从c点经过虚线P开始计时,以逆时针方向为导线框中感应电流i的正方向,则下列四个图象中能正确表示i-t图象的是()【导学号:37162067】图10A[由右手定则可知导线框从左侧进入磁场时,电流方向为逆时针方向,即沿正方向,且逐渐增大,导线框刚好完全进入P、Q之间的瞬间,电流由正向最大值变为零,然后电流方向变为顺时针且逐渐增加,当导线框刚好完全进入Q、R之间的瞬间,电流由负向最大值变为零,然后电流方向为逆时针且逐渐增大.故A正确.]●考向2图象的转换6.(高考改编)在[例4](2017·全国卷ⅠT18)中,若将(a)图改为如图11甲所示,且通入如图乙所示的磁场),已知螺线管(电阻不计)的匝数n=6,截面积S=10 cm2,线圈与R=12 Ω的电阻连接,水平向右且均匀分布的磁场穿过螺线管,磁场与线圈平面垂直,磁感应强度大小B随时间t变化的关系如图乙所示,规定感应电流i从a经过R到b的方向为正方向.忽略线圈的自感影响,下列i-t关系图中正确的是()图11B [由题意可知,在0~2 s 时间内,磁感应强度变化率的大小为ΔB 1Δt 1=3×10-3T/s ,根据法拉第电磁感应定律可得电动势的大小为E 1=n ΔB 1Δt 1S =1.8×10-5 V ,根据闭合电路欧姆定律,可得感应电流i 1=E 1R =1.5×10-6 A ,根据楞次定律,可知感应电流方向为a →R →b ,为正方向;同理可计算在2~5 s 时间内,i 2=E 2R =1×10-6 A ,根据楞次定律,可知感应电流方向为b →R →a ,为负方向;根据磁感应强度变化的周期性,可得感应电流变化的周期性,故B 正确,A 、C 、D 错误.]●考向3 图象的应用7.(多选)如图12甲所示,水平面上的平行导轨MN 、PQ 上放着两根垂直导轨的光滑导体棒ab 、cd ,两棒间用绝缘丝线连接;已知平行导轨MN 、PQ 间距为L 1,导体棒ab 、cd 间距为L 2,导轨电阻可忽略,每根导体棒在导轨之间的电阻为R .开始时匀强磁场垂直纸面向里,磁感应强度B 随时间t 的变化如图乙所示.则以下说法正确的是( )图12A .在t 0时刻回路中产生的感应电动势E =0B .在0~t 0时间内导体棒中的电流为L 1L 2B 02Rt 0C .在t 0/2时刻绝缘丝线所受拉力为L 21L 2B 204Rt 0D .在0~2t 0时间内回路中电流方向是abdcaBC [由图乙可知,|ΔB Δt |=B 0t 0,回路面积S =L 1L 2,在t 0时刻回路中产生的感应电动势E =|ΔB Δt |S =L 1L 2B 0t 0,选项A 错误;0~t 0时间内回路中产生的感应电流大小为I =E 2R =L 1L 2B 02Rt 0,选项B 正确;在t 0/2时刻,由左手定则,导体棒ab 所受安培力方向向左,导体棒cd 所受安培力方向向右,磁场磁感应强度为B 0/2,安培力大小为F =12B 0·IL 1=L 21L 2B 204Rt 0,则在t 0/2时刻绝缘丝线所受拉力为L 21L 2B 24Rt 0,选项C 正确;在0~t 0时间内磁感应强度减小,在t 0~2t 0时间内磁感应强度反向增大,根据楞次定律,回路内产生的感应电流方向为顺时针方向,即电流方向是acdba ,选项D 错误.]解决电磁感应图象问题的一般步骤(1)明确图象的种类,即是B -t 图还是Φ-t 图,或者E -t 图、I -t 图等. (2)分析电磁感应的具体过程.(3)用右手定则或楞次定律确定方向对应关系.(4)结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等规律写出函数关系式.(5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等. (6)画图象或判断图象.考点3| 电磁感应中电路和能量问题难度:较大题型:选择题、计算题五年3考(2017·全国甲卷T24)如图13所示,水平面(纸面)内间距为l的平行金属导轨间接一电阻,质量为m、长度为l的金属杆置于导轨上.t=0时,金属杆在水平向右、大小为F的恒定拉力作用下由静止开始运动.t0时刻,金属杆进入磁感应强度大小为B、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g.求:图13(1)金属杆在磁场中运动时产生的电动势的大小;(2)电阻的阻值.【解题关键】ma=F-μmg①设金属杆到达磁场左边界时的速度为v,由运动学公式有v=at0 ②当金属杆以速度v在磁场中运动时,由法拉第电磁感应定律,杆中的电动势为E=Bl v ③联立①②③式可得E =Blt 0⎝ ⎛⎭⎪⎫F m -μg .④(2)设金属杆在磁场区域中匀速运动时,金属杆中的电流为I ,根据欧姆定律 I =ER⑤式中R 为电阻的阻值.金属杆所受的安培力为 f =BlI⑥ 因金属杆做匀速运动,由牛顿运动定律得 F -μmg -f =0 ⑦ 联立④⑤⑥⑦式得 R =B 2l 2t 0m .⑧ 【答案】 (1)Blt 0⎝ ⎛⎭⎪⎫F m -μg (2)B 2l 2t 0m(2017·全国丙卷T 25)如图14所示,两条相距l 的光滑平行金属导轨位于同一水平面(纸面)内,其左端接一阻值为R 的电阻;一与导轨垂直的金属棒置于两导轨上;在电阻、导轨和金属棒中间有一面积为S 的区域,区域中存在垂直于纸面向里的均匀磁场,磁感应强度大小B 1随时间t 的变化关系为B 1=kt ,式中k 为常量;在金属棒右侧还有一匀强磁场区域,区域左边界MN (虚线)与导轨垂直,磁场的磁感应强度大小为B 0,方向也垂直于纸面向里.某时刻,金属棒在一外加水平恒力的作用下从静止开始向右运动,在t 0时刻恰好以速度v 0越过MN ,此后向右做匀速运动.金属棒与导轨始终相互垂直并接触良好,它们的电阻均忽略不计.求:图14(1)在t =0到t =t 0时间间隔内,流过电阻的电荷量的绝对值;(2)在时刻t (t >t 0)穿过回路的总磁通量和金属棒所受外加水平恒力的大小.【解题关键】Φ=ktS①设在从t时刻到t+Δt的时间间隔内,回路磁通量的变化量为ΔΦ,流过电阻R的电荷量为Δq.由法拉第电磁感应定律有ε=-ΔΦΔt②由欧姆定律有i=εR③由电流的定义有i=ΔqΔt④联立①②③④式得|Δq|=kSRΔt ⑤由⑤式得,在t=0到t=t0的时间间隔内,流过电阻R的电荷量q的绝对值为|q|=kt0SR. ⑥(2)当t>t0时,金属棒已越过MN.由于金属棒在MN右侧做匀速运动,有f=F ⑦式中,f是外加水平恒力,F是匀强磁场施加的安培力.设此时回路中的电流为I,F的大小为F=B0Il ⑧此时金属棒与MN之间的距离为s=v0(t-t0) ⑨匀强磁场穿过回路的磁通量为Φ′=B0ls ⑩回路的总磁通量为Φt=Φ+Φ′⑪式中,Φ仍如①式所示.由①⑨⑩⑪式得,在时刻t(t>t0)穿过回路的总磁通量为Φt=B0l v0(t-t0)+kSt ⑫在t 到t +Δt 的时间间隔内,总磁通量的改变ΔΦt 为 ΔΦt =(B 0l v 0+kS )Δt⑬由法拉第电磁感应定律得,回路感应电动势的大小为 E t =⎪⎪⎪⎪⎪⎪ΔΦt Δt⑭ 由欧姆定律有I =E t R ⑮ 联立⑦⑧⑬⑭⑮式得 f =(B 0l v 0+kS )B 0lR .【答案】 (1)kt 0S R (2)B 0l v 0(t -t 0)+kSt (B 0l v 0+kS )B 0lR1.高考考查特点本考点多以导体棒切割磁感线为背景,结合牛顿第二定律对导体棒进行运动分析和受力分析;结合图象,应用法拉第电磁感应定律、闭合电路欧姆定律、电功率、动能定理等规律进行电路、功能关系的计算.2.解题的常见误区及提醒 (1)分析电源时电势高低易出错.(2)涉及力和运动的分析时出现漏力(多力)的现象. (3)功能分析时,力做功及电热的计算易漏(多算)电阻生热.●考向1 电磁感应中的电路问题8.(多选)如图15所示,水平放置的粗糙U 形框架上接一个阻值为R 0的电阻,放在垂直纸面向里、磁感应强度大小为B 的匀强磁场中.一个半径为L 、质量为m 的半圆形硬导体AC 在水平向右的恒定拉力F 作用下,由静止开始运动距离d 后速度达到v ,半圆形硬导体AC 的电阻为r ,其余电阻不计.下列说法正确的是( )【导学号:37162068】图15A .A 点的电势高于C 点的电势B .此时AC 两端电压为U AC =B πL v R 0R 0+rC .此过程中电路产生的电热为Q =Fd -12m v 2 D .此过程中通过电阻R 0的电荷量为q =2BLdR 0+rAD [根据右手定则可知,A 点相当于电源的正极,电势高,A 正确;AC 产生的感应电动势为E =2BL v ,AC 两端的电压为U AC =ER 0R 0+r =2BL v R 0R 0+r,B 错误;由功能关系得Fd =12m v 2+Q +Q f ,C 错误;此过程中平均感应电流为I =2BLd (R 0+r )Δt ,通过电阻R 0的电荷量为q =I Δt =2BLdR 0+r,D 正确.]●考向2 电磁感应的动力学问题9.如图16所示,竖直平面内有一宽L =1 m 、足够长的光滑矩形金属导轨,电阻不计.在导轨的上、下边分别接有电阻R 1=3 Ω和R 2=6 Ω.在MN 上方及CD 下方有垂直纸面向里的匀强磁场Ⅰ和Ⅱ,磁感应强度大小均为B =1 T .现有质量m =0.2 kg 、电阻r =1 Ω的导体棒ab ,在金属导轨上从MN 上方某处由静止下落,下落过程中导体棒始终保持水平,与金属导轨接触良好.当导体棒ab 下落到快要接近MN 时的速度大小为v 1=3 m/s.不计空气阻力,g 取10 m/s 2.图16(1)求导体棒ab 快要接近MN 时的加速度大小;(2)若导体棒ab 进入磁场Ⅱ后,棒中的电流大小始终保持不变,求磁场Ⅰ和Ⅱ之间的距离h;(3)若将磁场Ⅱ的CD边界略微下移,使导体棒ab刚进入磁场Ⅱ时速度大小变为v2=9 m/s,要使棒在外力F作用下做a=3 m/s2的匀加速直线运动,求所加外力F随时间t变化的关系式.【解析】(1)以导体棒为研究对象,棒在磁场Ⅰ中切割磁感线运动,棒中产生感应电动势E,棒在重力和安培力作用下做加速运动.由牛顿第二定律得:mg-BIL=ma1 ①又E=BL v1 ②R外=R1R2R1+R2③I=ER外+r④由以上四式可得:a1=5 m/s2.(2)导体棒进入磁场Ⅱ后,安培力等于重力,导体棒做匀速运动,导体棒中电流大小始终保持不变.mg=BI′L ⑤I′=E′R外+r⑥E′=BL v′⑦联立③⑤⑥⑦式解得:v′=6 m/s导体棒从MN到CD做加速度为g的匀加速直线运动,v′2-v21=2gh 解得:h=1.35 m.(3)导体棒进入磁场Ⅱ后经过时间t的速度大小v=v2+at ⑧由牛顿第二定律得:F+mg-F安=ma ⑨又F安=B2L2vR外+r⑩由③⑧⑨⑩解得:F=(t+1.6)N.【答案】(1)5 m/s2(2)1.35 m(3)F=(t+1.6)N ●考向3电磁感应的能量问题10.(高考改编)在[例6](2017·全国甲卷,T24)中改为如下情景).如图17所示,水平放置的平行光滑导轨间有两个区域有垂直于导轨平面的匀强磁场,虚线M、N间有垂直于纸面向里的匀强磁场,磁感应强度大小为B1=8B,虚线P、Q 间有垂直于纸面向外的匀强磁场,虚线M、N和P、Q间距均为d,N、P间距为15d,一质量为m、长为L的导体棒垂直于导轨放置在导轨上,位于M左侧,距M也为d,导轨间距为L,导轨左端接有一阻值为R的定值电阻,现给导体棒一个向右的水平恒力,导体棒运动以后能匀速地通过两个磁场,不计导体棒和导轨的电阻,求:图17(1)P、Q间磁场的磁感应强度B2的大小;(2)通过定值电阻的电荷量;(3)定值电阻上产生的焦耳热.【导学号:37162069】【解析】(1)导体棒在磁场外时,在恒力F的作用下做匀加速运动,设进入M、N间磁场时速度为v1,则根据动能定理有Fd=12m v21导体棒在M、N间磁场中匀速运动,有F=(8B)2L2v1R设导体棒进入P、Q间磁场时的速度为v2,则由动能定理有F·16d=12m v22导体棒在P、Q间磁场中匀速运动,有F=B22L2v2 R得B2=4B.(2)设导体棒通过磁场过程中通过定值电阻的电荷量为qq=IΔt=ERΔt=ΔΦR由于通过两个磁场过程中导体棒扫过的区域的磁通量的变化量为ΔΦ=(B1-B2)Ldq=ΔΦR=(8-4)BLdR=4BLdR.(3)定值电阻中产生的焦耳热等于导体棒克服安培力做的功,由于导体棒在磁场中做匀速运动,因此导体棒在磁场中受到的安培力大小等于F,则定值电阻中产生的焦耳热为Q=2Fd.【答案】(1)4B(2)4BLdR(3)2Fd用动力学观点、能量观点解答电磁感应问题的一般步骤热点模型解读| 电磁感应中的“杆+导轨”模型金属导轨,导轨间距为L ,长为3d ,导轨平面与水平面的夹角为θ,在导轨的中部刷有一段长为d 的薄绝缘涂层.匀强磁场的磁感应强度大小为B ,方向与导轨平面垂直.质量为m 的导体棒从导轨的顶端由静止释放,在滑上涂层之前已经做匀速运动,并一直匀速滑到导轨底端.导体棒始终与导轨垂直,且仅与涂层间有摩擦,接在两导轨间的电阻为R ,其他部分的电阻均不计,重力加速度为g .求:图18(1)导体棒与涂层间的动摩擦因数μ; (2)导体棒匀速运动的速度大小v ; (3)整个运动过程中,电阻产生的焦耳热Q . 【解题指导】 (1)在绝缘涂层上 受力平衡mg sin θ=μmg cos θ 解得μ=tan θ. (2)在光滑导轨上感应电动势E =BL v 感应电流I =ER 安培力F 安=BIL 受力平衡F 安=mg sin θ 解得v =mgR sin θB 2L 2.(3)摩擦生热Q 摩=μmgd cos θ由能量守恒定律得3mgd sin θ=Q +Q 摩+12m v 2 解得Q =2mgd sin θ-m 3g 2R 2sin 2θ2B 4L 4. 【答案】 (1)tan θ (2)mgR sin θB 2L 2 (3)2mgd sin θ-m 3g 2R 2sin 2θ2B 4L 4[拓展应用] (2017·湖北八校联考)如图19所示,两根平行的光滑金属导轨MN 、PQ 放在水平面上,左端向上弯曲,导轨间距为L ,电阻不计,水平段导轨所处空间存在方向竖直向上的匀强磁场,磁感应强度为B .导体棒a 与b 的质量均为m ,电阻值分别为R a =R ,R b =2R .b 棒放置在水平导轨上足够远处,a 棒在弧形导轨上距水平面h 高度处由静止释放.运动过程中导体棒与导轨接触良好且始终与导轨垂直,重力加速度为g .图19(1)求a 棒刚进入磁场时受到的安培力的大小和方向; (2)求最终稳定时两棒的速度大小;(3)从a 棒开始下落到最终稳定的过程中,求b 棒上产生的内能. 【解析】 (1)设a 棒刚进入磁场时的速度为v ,从开始下落到进入磁场 根据机械能守恒定律有mgh =12m v 2a 棒切割磁感线产生感应电动势E =BL v 根据闭合电路欧姆定律有I =ER +2Ra 棒受到的安培力F =BIL联立以上各式解得F =B 2L 22gh3R ,方向水平向左.(2)设两棒最后稳定时的速度为v ′,从a 棒开始下落到两棒速度达到稳定 根据动量守恒定律有m v =2m v ′ 解得v ′=122gh .(3)设a 棒产生的内能为E a ,b 棒产生的内能为E b 根据能量守恒定律得12m v 2=12×2m v ′2+E a +E b 两棒串联内能与电阻成正比E b =2E a 解得E b =13mgh . 【答案】 见解析。
专题09 电磁感应现象及电磁感应规律的应用热点难点突
专题09 电磁感应现象及电磁感应规律的应用(热点难点突破)2018年高考物理考纲解读与热点难点突破1.如图1所示,两根足够长的光滑金属导轨水平平行放置,间距为l=1 m,c、d间,d、e间,c、f间分别接着阻值R=10 Ω的电阻。
一阻值R=10 Ω的导体棒ab以速度v=4 m/s匀速向左运动,导体棒与导轨接触良好;导轨所在平面存在磁感应强度大小B=0.5 T、方向竖直向下的匀强磁场。
下列说法中正确的是( )图1A.导体棒ab中电流的流向为由b到aB.c、d两端的电压为2 VC.d、e两端的电压为1 VD.f、e两端的电压为1 V2.边长为a的正三角形金属框架的左边竖直且与磁场右边界平行,该框架完全处于垂直框架平面向里的匀强磁场中。
现把框架匀速水平向右拉出磁场,如图2所示,则下列图象与这一过程相符合的是( )图23.如图4所示是法拉第制作的世界上第一台发电机的模型原理图。
把一个半径为r 的铜盘放在磁感应强度大小为B 的匀强磁场中,使磁感线水平向右垂直穿过铜盘,铜盘安装在水平的铜轴上,两块铜片C 、D 分别与转动轴和铜盘的边缘接触,G 为灵敏电流表。
现使铜盘按照图示方向以角速度ω匀速转动,则下列说法中正确的是( )图4A .C 点电势一定高于D 点电势B .圆盘中产生的感应电动势大小为12B ωr 2C .电流表中的电流方向为由a 到bD .若铜盘不转动,使所加磁场磁感应强度均匀增大,在铜盘中可以产生涡旋电流解析 把铜盘看作由中心指向边缘的无数条铜棒组合而成,当铜盘开始转动时,每根铜棒都在切割磁感线,相当于电源,由右手定则知,盘边缘为电源正极,中心为电源负极,C 点电势低于D 点电势,选项A 错误;此电源对外电路供电,电流由b 经电流表再从a 流向铜盘,选项C 错误;铜棒转动切割磁感线,相当于电源,回路中感应电动势为E =Brv =Br ω12r =12B ωr 2,选项B 正确;若铜盘不转动,使所加磁场磁感应强度均匀增大,在铜盘中产生感生环形电场,使铜盘中的自由电荷在电场力的作用下定向移动,形成环形电流,选项D 正确。
2018届高考物理第一轮总复习全程训练 课练31 电磁感应
课练31 电磁感应规律的综合应用1.如图,一载流长直导线和一矩形线框固定在同一平面内,线框在长直导线右侧,且其长边与长直导线平行.已知在t=0到t=t1的时间间隔内,长直导线中电流i发生某种变化,而线框中的感应电流总是沿顺时针方向,线框受到的安培力的合力先水平向左,后水平向右.设电流i的正方向与图中箭头所示方向相同,则i随时间t变化的图线可能是( )2.如图所示,半径为R的圆形导线环对心、匀速穿过半径也为R的圆形匀强磁场区域,规定逆时针方向的感应电流为正.下列描述导线环中感应电流i随时间t的变化关系图中,最符合实际的是( )3.如图所示,xOy平面内有一半径为R的圆形区域,区域内有磁感应强度大小为B的匀强磁场,左半圆磁场方向垂直于xOy平面向里,右半圆磁场方向垂直于xOy平面向外.一平行于y 轴的长导体棒ab以速度v沿x轴正方向做匀速运动,则导体棒两端的电势差U ba与导体棒位置x关系的图象是( )4.(多选)如图所示,竖直平面内的虚线上方是一匀强磁场B,从虚线下方竖直上抛一正方形线圈,线圈越过虚线进入磁场,最后又落回原处,运动过程中线圈平面保持在竖直平面内,不计空气阻力,则( )A.上升过程克服磁场力做的功大于下降过程克服磁场力做的功B.上升过程克服磁场力做的功等于下降过程克服磁场力做的功C.上升过程克服重力做功的平均功率大于下降过程中重力的平均功率D.上升过程克服重力做功的平均功率等于下降过程中重力的平均功率5.(多选)在伦敦奥运会上,100 m赛跑跑道两侧设有跟踪仪,其原理如图甲所示,水平面上两根足够长的金属导轨平行固定放置,间距为L=0.5 m,一端通过导线与阻值为R=0.5 Ω的电阻连接,导轨上放一质量为m=0.5 kg的金属杆,金属杆与导轨的电阻忽略不计,匀强磁场方向竖直向下.用与导轨平行的拉力F作用在金属杆上,使杆运动.当改变拉力的大小时,相对应的速度v也会变化,从而使跟踪仪始终与运动员保持一致.已知v和F的关系如图乙.(重力加速度g取10 m/s2则( )A.金属杆受到的拉力与速度成正比B.该磁场的磁感应强度为1 TC.图线在横轴的截距表示金属杆所受安培力的大小D.导轨与金属杆之间的动摩擦因数为μ=0.46.(多选)如图甲所示,abcd是位于竖直平面内的正方形闭合金属线框,金属线框的质量为m,电阻为R.在金属线框的下方有一匀强磁场区域,MN和PQ是匀强磁场区域的水平边界,并与线框的bc边平行,磁场方向垂直于线框平面向里.现使金属线框从MN上方某一高度处由静止开始下落,如图乙是金属线框由开始下落到bc刚好运动到匀强磁场PQ边界的v—t图象,图中数据均为已知量.重力加速度为g,不计空气阻力.下列说法正确的是( )v12-t1时间内所产生的热量为v1(t2t1)水平放置的两根平行长直金属导轨的间距为电阻,整个装置处在方向竖直向上、磁感应强度大小为B的匀强磁场中.一质量为垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因.杆运动速度的最大值为-μB2 BdLR+r的金属杆ab以一定的初速度30°角,两导轨上端用一电阻直斜面向上,导轨的电阻不计,金属杆向上滑行到某一高度之后又返回到底端时的速度大小的两根平行金属导轨弯成“B的匀强磁场中.质量均为如图所示,固定在水平面上的光滑平行金属导轨,间距为电阻,空间存在方向竖直向上、磁感应强度为B的匀强磁场.质量为与固定弹簧相连,放在导轨上.初始时刻,弹簧恰处于自然长度.给导体棒水平向右的初固定在竖直平面内,导轨间距为是一水平放置的导体杆,其质量为整个装置放在磁感应强度大小为B的匀强磁场中,的光滑平行金属导轨水平放置于磁感应强度为导轨左端接一定值电阻R.质量为m全国·课标Ⅰ)如图,两条平行导轨所在平面与水平地面的夹角为导轨处于匀强磁场中,磁感应强度大小为m的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导如图所示,两根间距为l的光滑平行金属导轨与水平面夹角为图中虚线下方区域内存在磁感应强度为B的匀强磁场,磁场方向垂直于斜面向上.两金属杆,垂直于导轨放置.开始时金属杆ababcd,ab、cd边平行、间距为的匀强磁场,一单位长度电阻为r的金属杆的方向匀速滑动,金属杆滑动过程中与导轨接触良好,导轨框电阻不计,如图所示,两光滑平行金属导轨间距为导轨上,且与导轨接触良好,整个装置处在垂直于纸面向里的匀强磁场中,磁感应强度为外,导轨和导线的电阻均不计.现给导线vπvt如图所示,一足够长的光滑平行金属轨道,轨道平面与水平面成相连,处于方向垂直轨道平面向上的匀强磁场中.质量为m、电阻为时刻是线框全部进入磁场瞬间,t4时刻是线框全部离开磁场瞬间边进入磁场起一直到ad边离开磁场为止,感应电流所做的功为mgRL2如图所示,两端与定值电阻相连的光滑平行金属导轨倾斜放置,其中,匀强磁场垂直穿过导轨平面,磁感应强度为垂直导轨放置,与导轨接触良好.释放后,导体棒ab沿导轨向下滑动,某时刻流过有一种自行车,它有能向自行车车头灯泡供电的小型发电机,其原理示意图如图甲所示:图中N、S是一对固定的磁极,磁极间有一固定在绝缘转轴上的矩形线圈,转轴的一端有一个与自行车后轮边缘接触的摩擦轮.如图乙所示,当车轮转动时,(1)t=2 s时回路的电动势E;(2)0~2 s时间内流过回路的电荷量q和导体棒的位移x;(3)导体棒滑动过程中水平外力F的瞬时功率P(单位:W)与横坐标x(单位:m)的关系式.12.(2017·湖南益阳调研)如图所示,两条足够长的平行金属导轨倾斜放置(导轨电阻不计),倾角为30°,导轨间距为0.5 m,匀强磁场垂直导轨平面向下,B=0.2 T,两根材料相同的金属棒a、b与导轨构成闭合回路,a、b金属棒的质量分别为3 kg、2 kg,两金属棒的电阻均为R=1 Ω,刚开始两根金属棒都恰好静止,假设最大静摩擦力近似等于滑动摩擦力.现对a棒施加一平行导轨向上的恒力F=60 N,经过足够长的时间后,两金属棒都达到了稳定状态.求:(1)金属棒与导轨间的动摩擦因数;(2)当两金属棒都达到稳定状态时,b棒所受的安培力大小.(3)设当a金属棒从开始受力到向上运动5 m时,b金属棒向上运动了2 m,且此时a的速度为4 m/s,b的速度为1 m/s,则求此过程中回路中产生的电热及通过a金属棒的电荷量.开始时导线环进入磁场切割磁感线,根据右手定则可知,电流方向为逆时针方向,即为正方向,当开始出磁场时,回路中磁通量减小,产生的感应电流方向为顺时针方向,即为负轴正方向运动的长度为x0(x-R-x02=2 -x20,感应电动势E端电势高于端电势,由于右侧磁场方向变化,端电势,再结合圆的特点可知选项v1t2-t1才产生热量,此过程中安培力与重力大小相等,因此所产生的热量为PQ之间的距离为=F-mg R+rB2d2,A项正确;在杆从开始运动到达到最大mθm+g⑫⑫式及题设可知,金属棒做初速度为零的匀加速运动.mθm+gt⑬答案:(1)Q=(2)v=mθm+gt由右手定则可知,金属杆ab进入磁场时产生的感应电流的方向为由Bd x a-x b=0.15 C 2R3(2)24 N3。
2018年高考物理真题专题汇编专题12电磁感应
)
线框中感应
A.
B. C.
D. 【来源】 2018 年普通高等学校招生全国统一考试物理(全国
II 卷)
【答案】 D 第一过程从①移动②的过程中
左边导体棒切割产生的电流方向是顺时针,右边切割磁感线产生的电流方向也是顺时针,两根棒切割产生
电动势方向相同所以
,则电流为
,电流恒定且方向为顺时针,
再从②移动到③的过程中左右两根棒切割磁感线产生的电流大小相等,方向相反,所以回路中电流表现为
零,
然后从③到④的过程中,左边切割产生的电流方向逆时针,而右边切割产生的电流方向也是逆时针,所以
电流的大小为
,方向是ห้องสมุดไป่ตู้时针
点睛:根据线圈的运动利用楞次定律找到电流的方向,并计算电流的大小从而找到符合题意的图像。
2.如图, 导体轨道 OPQS 固定, 其中 PQS 是半圆弧, Q 为半圆弧的中心, O 为圆心。 轨道的电阻忽略不计。
电荷量相等,则 等于(
)
A.
B.
C. D. 2 【来源】 2018 年全国普通高等学校招生统一考试物理(新课标 【答案】 B 【解析】本题考查电磁感应及其相关的知识点。
I 卷)
过程 I 回路中磁通量变化 △Φ1= BπR2,设 OM 的电阻为 R,流过 OM 的电荷量 Q1=△Φ1/R。过程 II 回路中磁
OM 是有一定电阻。可绕 O 转动的金属杆。 M 端位于 PQS 上, OM 与轨道接触良好。空间存在半圆所在平
面垂直的匀强磁场,磁感应强度的大小为
B,现使 OQ 位置以恒定的角速度逆时针转到 OS 位置并固定(过
程Ⅰ);再使磁感应强度的大小以一定的变化率从
B 增加到 B'(过程Ⅱ)。在过程Ⅰ、Ⅱ中,流过 OM 的
精选推荐2018版高考物理二轮复习第一部分专题十电磁感应规律及其应用限时集训
专题限时集训(十) 电磁感应规律及其应用(对应学生用书第135页)(建议用时:40分钟)一、选择题(本题共8小题,每小题6分.在每小题给出的四个选项中,第1~5题只有一项符合题目要求,第6~8题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分.)1.如图1023,在方向垂直于纸面向里的匀强磁场中有一U形金属导轨,导轨平面与磁场垂直.金属杆PQ置于导轨上并与导轨形成闭合回路PQRS,一圆环形金属框T位于回路围成的区域内,线框与导轨共面.现让金属杆PQ突然向右运动,在运动开始的瞬间,关于感应电流的方向,下列说法正确的是( )【导学号:17214173】图1023A.PQRS中沿顺时针方向,T中沿逆时针方向B.PQRS中沿顺时针方向,T中沿顺时针方向C.PQRS中沿逆时针方向,T中沿逆时针方向D.PQRS中沿逆时针方向,T中沿顺时针方向D [PQ向右运动,导体切割磁感线,根据右手定则,可知电流由Q流向P,即逆时针方向,根据楞次定律可知,通过T的磁场减弱,则T的感应电流产生的磁场应指向纸面里面,则感应电流方向为顺时针.]2.如图1024所示,将一铝管竖立在水平桌面上,把一块直径比铝管内径小一些的圆柱形的强磁铁从铝管上端由静止释放,强磁铁在铝管中始终与管壁不接触.则强磁铁在下落过程中( )图1024A.若增加强磁铁的磁性,可使其到达铝管底部的速度变小B.铝管对水平桌面的压力一定逐渐变大C.强磁铁落到铝管底部的动能等于减少的重力势能D.强磁铁先加速后减速下落A [磁铁通过铝管时,导致铝管的磁通量发生变化,从而产生感应电流,感应电流阻碍磁铁相对于铝管的运动;结合法拉第电磁感应定律可知,磁铁的磁场越强、磁铁运动的速度越快,则感应电流越大,感应电流对磁铁的阻碍作用也越大,所以若增加强磁铁的磁性,可使其到达铝管底部的速度变小,故A正确.磁铁在整个下落过程中,由楞次定律“来拒去留”可知,铝管对桌面的压力大于铝管的重力;同时,结合法拉第电磁感应定律可知,磁铁运动的速度越快,则感应电流越大,感应电流对磁铁的阻碍作用也越大,所以磁铁将向下做加速度逐渐减小的加速运动.磁铁可能一直向下做加速运动,也可能磁铁先向下做加速运动,最后做匀速直线运动,不可能出现减速运动;若磁铁先向下做加速运动,最后做匀速直线运动,则铝管对水平桌面的压力先逐渐变大,最后保持不变,故B错误,D错误.磁铁在整个下落过程中,除重力做功外,还有产生感应电流对应的安培力做功,导致减小的重力势能,部分转化为动能外,还有部分产生内能,动能的增加量小于重力势能的减少量,故C错误.]3.(2017·咸阳二模)如图1025所示,一呈半正弦形状的闭合线框abc,ac=l,匀速穿过边界宽度也为l的相邻磁感应强度大小相同的匀强磁场区域,整个过程线框中感应电流图象为(取顺时针方向为正方向)( )图1025B [线框从左边磁场进入右边磁场的过程中,两边都切割磁感线,磁通量变化得更快,感应电动势更大,感应电流方向沿逆时针,为负,选项B正确.]4.在如图1026甲所示的电路中,电阻R1=R2=2R,圆形金属线圈半径为r1,线圈导线的电阻为R,半径为r2(r2<r1)的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B随时间t变化的关系图线如图乙所示,图线与横、纵轴的交点坐标分别为t0和B0,其余导线的电阻不计,闭合S,至t1时刻,电路中的电流已稳定,下列说法正确的是( )【导学号:17214174】图1026①电容器上极板带正电 ②电容器下极板带正电 ③线圈两端的电压为B 0πr 21t 0④线圈两端的电压为4B 0πr 225t 0A .①③B .①④C .②③D .②④ D [由楞次定律知圆形金属线圈内的感应电流方向为顺时针,金属线圈相当于电源,电源内部的电流从负极流向正极,则电容器的下极板带正电,上极板带负电,①错②对.由法拉第电磁感应定律知感应电动势为E =ΔΦΔt =ΔB Δt S =B 0t 0×πr 22,由闭合电路欧姆定律得感应电流为I =E R +R 1+R 2,所以线圈两端的电压U =I (R 1+R 2)=4B 0πr 225t 0,③错④对,故应选 D .]5.(2017·河北邯郸一模)如图1027所示,一足够长的光滑平行金属轨道,轨道平面与水平面成θ角,上端与一电阻R 相连,处于方向垂直轨道平面向上的匀强磁场中.质量为m 、电阻为r 的金属杆ab ,从高为h 处由静止释放,下滑一段时间后,金属杆开始以速度v 匀速运动直到轨道的底端.金属杆始终保持与轨道垂直且接触良好,轨道的电阻及空气阻力均可忽略不计,重力加速度为g .则( )图1027A .金属杆加速运动过程中的平均速度为v /2B .金属杆加速运动过程中克服安培力做功的功率大于匀速运动过程中克服安培力做功的功率C .当金属杆的速度为v /2时,它的加速度大小为g sin θ2D .整个运动过程中电阻R 产生的焦耳热为mgh -12mv 2 C [对金属杆分析知,金属杆ab 在运动过程中受到重力、轨道支持力和安培力作用,先做加速度减小的加速运动,后做匀速运动,因金属杆加速运动过程不是匀加速,故其平均速度不等于v 2,A 错误.当安培力等于重力沿斜面的分力,即mg sin θ=B 2l 2v R 时,杆ab 开始匀速运动,此时v 最大,F 安最大,故匀速运动时克服安培力做功的功率大,B 错误;当金属杆速度为v 2时,F 安′=B 2l 2·v 2R =12mg sin θ,所以F 合=mg sin θ-F 安′=12mg sin θ=ma ,得a =g sin θ2,C 正确;由能量守恒可得mgh -12mv 2=Q ab +Q R ,即mgh -12mv 2应等于电阻R 和金属杆上产生的总焦耳热,D 错误.] 6.如图1028所示,粗细均匀的矩形金属导体方框abcd 固定于匀强磁场中,磁场方向垂直线圈所在平面,磁感应强度B 随时间t 变化的规律如图所示.以垂直于线圈所在平面向里为磁感应强度B 的正方向,则下列关于ab 边的热功率P 、ab 边受到的安培力F (以向右为正方向)随时间t 变化的图象中正确的是( )图1028AD [根据法拉第电磁感应定律:E =n ΔΦΔt =n ΔB ΔtS 可知,产生的感应电动势大小不变,所以感应电流大小也不变,ab 边热功率P =I 2R ,恒定不变,A 正确,B 错误;根据安培力公式F =BIL ,因为电流大小、ab 边长度不变,安培力与磁感应强度成正比,根据左手定则判定方向,可知C 错误,D 正确.]7.如图1029所示是法拉第制作的世界上第一台发电机的模型原理图.把一个半径为r 的铜盘放在磁感应强度大小为B 的匀强磁场中,使磁感线水平向右垂直穿过铜盘,铜盘安装在水平的铜轴上,两块铜片C 、D 分别与转动轴和铜盘的边缘接触,G 为灵敏电流表.现使铜盘按照图示方向以角速度ω匀速转动,则下列说法中正确的是( )图1029A .C 点电势一定高于D 点电势B .圆盘中产生的感应电动势大小为12B ωr 2C .电流表中的电流方向为由a 到bD .若铜盘不转动,使所加磁场磁感应强度均匀增大,在铜盘中可以产生涡旋电流 BD [把铜盘看作由中心指向边缘的无数条铜棒组合而成,当铜盘转动时,每根铜棒都在切割磁感线,相当于电源,由右手定则知,盘边缘为电源正极,中心为电源负极,C 点电势低于D 点电势,选项A 错误;此电源对外电路供电,电流由b 经电流表再从a 流向铜盘,选项C 错误;铜棒转动切割磁感线,相当于电源,回路中感应电动势为E =Brv=Br ω12r =12B ωr 2,选项B 正确;若铜盘不转动,使所加磁场磁感应强度均匀增大,在铜盘中产生感生环形电场,使铜盘中的自由电荷在电场力的作用下定向移动,形成环形电流,选项D 正确.]8.(2017·贵州三校联考)如图1030所示,竖直光滑导轨上端接入一定值电阻R ,C 1和C 2是半径都为a 的两圆形磁场区域,其区域内的磁场方向都垂直于导轨平面向外,区域C 1中磁场的磁感应强度随时间按B 1=b +kt (k >0)变化,C 2中磁场的磁感应强度恒为B 2,一质量为m 、电阻为r 、长度为L 的金属杆AB 穿过区域C 2的圆心垂直地跨放在两导轨上,且与导轨接触良好,并恰能保持静止.则( )图1030A .通过金属杆的电流大小为mgB 2LB .通过金属杆的电流方向为从B 到AC .定值电阻的阻值为R =2πkB 2a 3mg-r D .整个电路的热功率P =πkamg 2B 2BCD [根据题述金属杆恰能保持静止,由平衡条件可得:mg =B 2I ·2a ,通过金属杆的电流大小为I =mg 2aB 2,选项A 错误.由楞次定律可知,通过金属杆的电流方向为从B 到A ,选项B 正确.根据区域C 1中磁场的磁感应强度随时间按B 1=b +kt (k >0)变化,可知ΔB 1Δt =k ,C 1中磁场变化产生的感应电动势E =ΔB 1Δtπa 2=k πa 2,由闭合电路欧姆定律,E =I (r +R ),联立解得定值电阻的阻值为R =2πkB 2a 3mg-r ,选项C 正确.整个电路的热功率P =EI =k πa 2·mg 2aB 2=πkamg 2B 2,选项D 正确.] 二、计算题(共2小题,32分)9.(14分)(2016·全国甲卷T 24)如图1031所示,水平面(纸面)内间距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上.t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.t 0时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求:图1031(1)金属杆在磁场中运动时产生的电动势的大小;(2)电阻的阻值.【解析】 (1)设金属杆进入磁场前的加速度大小为a ,由牛顿第二定律得ma =F -μmg ①设金属杆到达磁场左边界时的速度为v ,由运动学公式有v =at 0②当金属杆以速度v 在磁场中运动时,由法拉第电磁感应定律,杆中的电动势为E =Blv ③联立①②③式可得E =Blt 0⎝ ⎛⎭⎪⎫F m -μg .④(2)设金属杆在磁场区域中匀速运动时,金属杆中的电流为I ,根据欧姆定律I =E R⑤ 式中R 为电阻的阻值.金属杆所受的安培力为f =BlI ⑥因金属杆做匀速运动,由牛顿运动定律得F -μmg -f =0⑦联立④⑤⑥⑦式得R =B 2l 2t 0m.⑧ 【答案】 (1)Blt 0⎝ ⎛⎭⎪⎫F m -μg (2)B 2l 2t 0m 10.(18分)如图1032甲所示,两根平行光滑金属导轨相距L =1 m ,导轨平面与水平面的夹角θ=30°,导轨的下端PQ 间接有R =8 Ω的电阻.相距x =6 m 的MN 和PQ 间存在磁感应强度大小为B 、方向垂直于导轨平面向上的匀强磁场.磁感应强度B 随时间t 的变化情况如图乙所示.将阻值r =2 Ω的导体棒ab 垂直放在导轨上,使导体棒从t =0时由静止释放,t =1 s 时导体棒恰好运动到MN ,开始匀速下滑.g 取10 m/s 2.求:甲 乙图1032(1)0~1 s 内回路中的感应电动势;(2)导体棒ab 的质量;(3)0~2 s 时间内导体棒所产生的热量.【导学号:17214175】【解析】 (1)0~1 s 内,磁场均匀变化,由法拉第电磁感应定律有:E 1=ΔΦΔt =ΔB ΔtS 由图象得ΔB Δt=2 T/s ,且S =Lx =6 m2 代入解得:E 1=12 V .(2)导体棒从静止开始做匀加速运动,加速度 a =g sin θ=10×0.5 m/s 2=5 m/s 2 t =1 s 末进入磁场区域的速度为 v =at 1=5×1 m/s=5 m/s导体棒切割磁感线产生的电动势 E 2=BLv =2×1×5 V=10 V根据导体棒进入磁场区域做匀速运动,可知导体受到的合力为零,有:mg sin θ=F 安=BIL根据闭合电路欧姆定律有:I =E 2R +r联立以上各式得:m =0.4 kg .(3)在0~1 s 内回路中产生的感应电动势为 E 1=12 V根据闭合电路欧姆定律可得I 1=E 1R +r =128+2 A =1.2 A 1 s ~2 s 内,导体棒切割磁感线产生的电动势为 E 2=10 V根据闭合电路欧姆定律可得 I 2=E 2R +r =108+2A =1 A 0~2 s 时间内导体棒所产生的热量 Q =I 21rt 1+I 22r (t 2-t 1)代入数据解得 Q =4.88 J .【答案】 (1)12 V (2)0.4 kg (3)4.88 J。
2018年高考模拟理综物理选编法拉第电磁感应定律及其应用-解析版
2018年高考模拟理综物理选编法拉第电磁感应定律及其应用-解析版1 / 14乐陵一中法拉第电磁感应定律及其应用一、单选题(本大题共5小题,共30分)1. 如图所示,垂直纸面向里的匀强磁场的区域宽度为2a ,磁感应强度的大小为 一边长为a 、电阻为4R 的正方形均匀导线框CDEF 从图示位置开始沿x 轴正向以速度v匀速穿过磁场区域,在图中给出的线框E 、F 两端的电压 与线框移动距离x 的关系的图象正确的是A.B.C.D.【答案】D【解析】解:由楞次定律判断可知,在线框穿过磁场的过程中,E 的电势始终高于F 电势,则 为正值;EF 和CD 边切割磁感线时产生的感应电动势为 . 在 内,EF 切割磁感线,EF 的电压是路端电压,则 ;在 内,线框完全在磁场中运动,穿过线框的磁通量没有变化,不产生感应电流,则 ;在 内,E 、F 两端的电压等于路端电压的 ,则 故D 正确. 故选:D由楞次定律判断感应电流方向,确定出EF 两端电势的高低 由 求出感应电动势,由欧姆定律求出电势差.本题由楞次定律判断电势的高低,确定电势差的正负 分析 与感应电动势关系是关键,要区分外电压和内电压.2. 如图所示 两平行光滑金属导轨MN 、PQ 竖直放置,导轨间距为L ,MP 间接有一电阻 导轨平面内ABCD 区域有垂直于纸面向里的匀强磁场,磁感应强度大小为B ,AB 、CD 水平,两者间高度为h,现有一电阻也为R,质量为m的水平导体棒沿着导轨平面从AB边以速向上进入磁场,当导体棒动到CD边时速度恰好为零,运动中导体棒始终与导轨接触,空气阻力和导轨电阻均不计,则A. 导体棒刚进入磁场时,电阻R两端的电压为B. 导体棒刚进入磁场时,电阻R上电流方向为从P流向MC. 导体棒通过磁场区域过程中电阻R上产生的热量D. 导体棒通过磁场区域的时间【答案】D【解析】解:A、导体棒刚进入磁场时,AB棒产生的感应电动势为则电阻R 两端的电压为故A正确.B、导体棒刚进入磁场时,由楞次定律知,电阻R上电流方向为从M流向故B错误.C、导体棒通过磁场区域过程中,根据能量守恒得,回路中产生的总热量为总,R上产生的热量为总故C错误.D、设导体棒AB速度为v时加速度大小为a,则牛顿第二定律得:即得两边求和得:;所以导体棒通过磁场区域的时间,故D正确.故选:D.导体棒进入磁场时切割磁感线产生感应电动势,R两端的电压是外电压,根据法拉第电磁感应定律和欧姆定律求解R两端的电压由楞次定律判断感应电流的方向根据能量守恒定律求电阻R上产生的热量根据牛顿第二定律和加速度的定义式,运用积分法求解时间.本题掌握法拉第电磁感应定律、欧姆定律和楞次定律是基础,关键要能运用积分法求时间,其切入口是牛顿第二定律和加速度的定义式,运用微元法求解.3.一正方形金属线框位于有界匀强磁场区域内,线框平面与磁场垂直,线框的右边紧贴着磁场边界,如图甲所示时刻对线框施加一水平向右的外力F,让线框从静止开始做匀加速直线运动穿过磁场外力F随时间t变化的图线如图乙所示已知线框质量、电阻以下说法不正确的是A. 做匀加速直线运动的加速度为B. 匀强磁场的磁感应强度为2018年高考模拟理综物理选编法拉第电磁感应定律及其应用-解析版3 / 14C. 线框穿过磁场过程中,通过线框的电荷量为D. 线框穿过磁场的过程中,线框上产生的焦耳热为【答案】D【解析】解:A 、 时刻,线框的速度为零,线框没有感应电流,不受安培力,加速度为线框的边长为线框刚出磁场时的速度为此时线框所受的安培力为 , ,则得, 根据牛顿第二定律得 ,即: ,已知: , , , , , ,解得: ,由 , , ,则得通过线框的电量 . ,故ABC 正确.D 、线框的位移为 ,若 保持不变,则F 做功为 ,而实际中F 的大小逐渐增大,最大为3N ,所以F 做功应小于 由于线框加速运动,根据能量守恒得线框上产生的焦耳热小于 ,故D 错误.本题选错误的,故选:D .当 时线框的速度为零,没有感应电流,线框不受安培力,根据牛顿第二定律求出加速度a .由运动学公式求出线框刚出磁场时的速度,得到安培力表达式,由牛顿第二定律即可求出B ;根据法拉第电磁感应定律、欧姆定律结合求解电量 线框通过磁场的过程,由焦耳定律求解热量.本题的突破口是根据牛顿第二定律求出加速度,根据运动学公式求出线框的边长和速度,问题就变得简单清晰了,再根据法拉第电磁感应定律、欧姆定律、安培力公式等等电磁感应常用的规律解题.4. 如图,足够长的光滑导轨倾斜放置,其下端连接一个电阻为R 的灯泡,匀强磁场垂直于导轨所在平面向上,已知导轨、导线与垂直导轨的导体棒ab 总电阻为r ,则导体棒ab在下滑过程中A. 感应电流从a 流向bB. 导体棒ab 受到的安培力方向平行斜面向下,大小保持恒定C. 机械能一直减小D. 克服安培力做的功等于灯泡消耗的电能【答案】C【解析】解:A 、导体棒ab 下滑过程中,由右手定则判断感应电流I 在导体棒ab 中从b 到a ,由左手定则判断导体棒ab 受沿斜面向上的安培力 安,由分析知,导体棒ab 开始速度增大,感应电动势增大,感应电流增大,安培力增大,如果导轨足够长,当时达到最大速度,之后做匀速直线运动,速度不再增大,安培力不变,安故AB错误C、由于下滑过程导体棒ab切割磁感线产生感应电动势,回路中有灯泡电阻消耗电能,机械能不断转化为内能,所以导体棒的机械能不断减少,故C正确;D、安培力做负功实现机械能转化为电能,安培力做功量度了电能的产生,根据功能关系有克服安培力做的功等于整个回路消耗的电能,包括灯泡和导体棒消耗的电能故D错误;故选:C.根据右手定则判断感应电流的方向,再根据左手定则判断安培力的方向,通过速度的变化,得出电动势的变化,电流的变化,从而得出安培力的变化根据能量守恒判断机械能的变化,根据克服安培力做功与产生的电能关系判断安培力做功与灯泡消耗电能的关系.解决这类导体棒切割磁感线产生感应电流问题的关键时分析导体棒受力,进一步确定其运动性质,并明确判断过程中的能量转化及功能关系如安培力做负功量度了电能的产生,克服安培力做什么功,就有多少电能产生.5.一个半径为r、质量为m、电阻为R的金属圆环,用一根长为L的绝缘细绳悬挂于O点,离O点下方处有一宽度为,垂直纸面向里的匀强磁场区域,如图所示现使圆环从与悬点O等高位置A处由静止释放细绳张直,忽略空气阻力,摆动过程中金属环所在平面始终垂直磁场,则在达到稳定摆动的整个过程中金属环产生的热量是A. mgLB.C.D.【答案】C【解析】解:当环在磁场下方摆动,不再进入磁场时,摆动稳定,金属环中产的焦耳热等于环减少的机械能,由能量守恒定律得:,故C正确;故选C.金属环穿过磁场的过程中,产生感应电流,金属环中产生焦耳热,环的机械能减少,当金属环在磁场下方,不再进入磁场时,环的机械能不变,环稳定摆动,由能量守恒定律可以求出产生的焦耳热.环穿过磁场时机械能转化为加热热,环减少的机械能就等于环中产生的焦耳热.二、多选题(本大题共4小题,共24分)6.如图所示,足够长的U形光滑金属导轨平面与水平面成角,其中MN与PQ平行且间距为L,导轨平面与磁感应强度为B的匀强磁场垂直,导轨电阻不计金属棒ab由静止开始沿导轨下滑,并与两导轨始终保持垂直且接触良好,ab棒接入电路的电阻为R,当流过ab棒某一横截面的电荷量为q时,棒的速度大小为,则金属棒ab在这一过程中2018年高考模拟理综物理选编法拉第电磁感应定律及其应用-解析版5 / 14 A. 加速度为 B. 下滑的位移为C. 产生的焦耳热为D. 受到的最大安培力为【答案】BCD【解析】解:A 、金属棒ab 开始做加速运动,速度增大,感应电动势增大,所以感应电流也增大,导致金属棒受到的安培力增大,所以加速度减小,即金属板做加速度逐渐减小的变加速运动,根据牛顿第二定律,有:;其中 ;故 ,故A 错误;B 、由电量计算公式可得,下滑的位移大小为 ,故B 正确;C 、根据能量守恒定律:产生的焦耳热 ,故C 正确;D 、金属棒ab 受到的最大安培力大小为 ,故D 正确.故选:BCD金属棒ab 由静止开始沿导轨下滑,做加速度逐渐减小的变加速运动 由牛顿第二定律,法拉第电磁感应定律、能量守恒定律等研究处理电磁感应综合题中,常常用到这个经验公式:感应电量 和 安,注意电阻和匝数,在计算题中,不能直接作为公式用,要推导.7. 如图所示,在匀强磁场区域的上方有一半径为R 的导体圆环,将圆环由静止释放,圆环刚进入磁场的瞬间和完全进入磁场的瞬间速度相等 已知圆环的电阻为r ,匀强进场的磁感应强度为B ,重力加速度为g ,则A. 圆环进入磁场的过程中,圆环中的电流为逆时针B. 圆环进入磁场的过程可能做匀速直线运动C. 圆环进入磁场的过程中,通过导体某个横截面的电荷量为D. 圆环进入磁场的过程中,电阻产生的热量为2mgR【答案】AD【解析】解:A、圆环进入磁场的过程中,垂直纸面向里的磁通量增加,根据楞次定律,圆环中感应电流的磁通量应垂直纸面向外,由右手定则判断感应电流为逆时针方向,故A正确B、由于圆环刚进入磁场的瞬间和完全进入磁场的瞬间速度相等,该过程感应电流不同,安培力不同,故线圈不可能匀速,故B错误;C、根据,得,故C错误D、由于圆环刚进入磁场的瞬间和完全进入磁场的瞬间速度相等,根据动能定理得:,所以故D正确.故选:AD分析清楚圆环穿过磁场的过程,根据楞次定律判断感应电流的方向;根据线圆环进入与离开磁场的速度判断线框的运动性质;根据求电荷量根据动能定理求出线框的ab边刚进人磁场到ab边刚离开磁场这段过程中克服安培力做的功,即可知道线框从进入到全部穿过磁场的过程中克服安培力做的功解决本题的关键是恰当地选择研究过程,根据动能定理求出克服安培力所做的功,以及根据动力学分析出线框的运动情况,知道线框何时速度最小8.如图所示,为三个有界匀强磁场,磁感应强度大小均为B,方向分别垂直纸面向外、向里和向外,磁场宽度均为L,在磁场区域的左侧边界处,有一边长为L的正方形导体线框,总电阻为R,且线框平面与磁场方向垂直,现用外力F使线框以速度v匀速穿过磁场区域,以初始位置为计时起点,规定电流沿逆时针方向时的电动势E为正,磁感线垂直纸面向里时的磁通量为正值,外力F向右为正则以下能反映线框中的磁通量、感应电动势E、外力F和电功率P随时间变化规律图象的是A. B.C. D.【答案】ABD【解析】解:A、当线框进入磁场时,位移在内,磁通量开始均匀增加,当全部进入左侧磁场时达最大,且为负值;位移在内,向里的磁通量增加,总磁通量均匀减小;当位移为时,磁通量最小,为零,位移在到2L时,磁通量向里,为正值,且均匀增大位移在时,磁通量均匀减小至零在内,磁通量均匀2018年高考模拟理综物理选编法拉第电磁感应定律及其应用-解析版7 / 14增大,且方向向外,为负值 在 内,磁通量均匀减小至零,且为负值 故A 正确; B 、当线圈进入第一个磁场时,由 可知,E 保持不变,由右手定则知,感应电动势沿顺时针方向,为负值;线框开始进入第二个磁场时,左右两边同时切割磁感线,感应电动势为2BLv ,感应电动势沿逆时针方向,为正值;线框开始进入第三个磁场时,左右两边同时切割磁感线,感应电动势为2BLv ,感应电动势沿顺时针方向,为负值;完全在第三个磁场中运动时,左边切割磁感线,感应电动势为BLv ,感应电动势沿逆时针方向,为正值;故B 正确;C 、因安培力总是与运动方向相反,故拉力应一直向右,故C 错误;D 、由由 R 可得,电功率与 成正比,与 成正比,结合B 选项图像可知,D 正确;故选:ABD .由线圈的运动可得出线圈中磁通量的变化;由则由法拉第电磁感应定律及 可得出电动势的变化;由欧姆定律可求得电路中的电流,则可求得安培力的变化;由 可求得电功率的变化.在解答图象问题时要灵活解法,常常先运用排除法,再根据物理规律得到解析式等进行解答.9. 在如图所示的两平行虚线之间存在着垂直纸面向里、宽度为d 、磁感应强度为B 的匀强磁场,正方形线框abcd 的边长 、质量为m 、电阻为R ,将线框从距离磁场的上边界为h 高处由静止释放后,线框的ab 边刚进入磁场时的速度为 ,ab 边刚离开磁场时的速度也为 ,在线框开始进入到ab 边刚离开磁场的过程中A. 感应电流所做的功为mgdB. 感应电流所做的功为2mgdC. 线框的最小动能为D. 线框的最小动能为【答案】AC【解析】解:A 、B 、分析从ab 边刚进入磁场到ab 边刚穿出磁场的过程:动能变化为0,线框的重力势能减小转化为线框产生的热量,则 ;ab 边刚进入磁场速度为 ,穿出磁场时的速度也为 ,所以从ab 边刚穿出磁场到cd 边刚离开磁场的过程,线框产生的热量与从ab 边刚进入磁场到ab 边刚穿出磁场的过程产生的热量相等,所以线框从ab 边进入磁场到ab 边离开磁场的过程,产生的热量为: ,则感应电流做功为: 故B 错误,A 正确.C 、D 、线框完全进入磁场后,到ab 边刚出磁场,没有感应电流,线框不受安培力,做匀加速运动,ab 边进入磁场时速度为 ,cd 边刚穿出磁场时速度也为 ,说明线框出磁场过程一定有减速运动,dc 刚进入磁场时速度最小 设线框的最小动能为 ,全部进入磁场的瞬间动能最小.由动能定理得:从ab 边刚进入磁场到线框完全进入磁场时,则有:,又 解得: ,故C 正确,D 错误.故选:AC从ab 边刚进入磁场到ab 边刚穿出磁场的整个过程中,线框的动能不变,重力势能减小转化为内能,根据能量守恒定律求解线圈产生的热量,即可得到感应电流做功 线框完全进入磁场后,到ab 边刚出磁场,没有感应电流,线框不受安培力,做匀加速运动,ab 边进入磁场时速度为 ,ab 边刚穿出磁场时速度也为,说明线框出磁场过程一定有减速运动,dc刚进入磁场时速度最小,根据动能定理求解最小动能.本题关键要认真分析题设的条件,抓住ab边进入磁场时速度和ab边刚穿出磁场时速度相同是分析的突破口,来分析线框的运动情况,正确把握能量如何转化的,要注意进入和穿出产生的焦耳热相等.三、填空题(本大题共1小题,共5分)10.穿过单匝闭合线圈的磁通量随时间变化的图象如图所示,由图知~线圈中感应电动势大小为______V,~线圈中感应电动势大小为______ V,~线圈中感应电动势大小为______【答案】1;0;2【解析】解:根据法拉第电磁感应定律,~线圈中产生的感应电动势大小为:根据法拉第电磁感应定律,~线圈中产生的感应电动势大小为:根据法拉第电磁感应定律,~线圈中产生的感应电动势大小为:故答案为:1,0,2.根据法拉第电磁感应定律公式列式求解各个时间段的感应电动势大小.本题关键是记住法拉第电磁感应定律,根据其公式列式求解即可,基础题.四、实验题探究题(本大题共2小题,共25分)11.如图所示,两平行光滑不计电阻的金属导轨竖直放置,导轨上端接一阻值为R的定值电阻,两导轨之间的距离为矩形区域abdc内存在磁感应强度大小为B、方向垂直纸面向里的匀强磁场,ab、cd之间的距离为在cd下方有一导体棒MN,导体棒MN与导轨垂直,与cd之间的距离为H,导体棒的质量为m,电阻为给导体棒一竖直向上的恒力,导体棒在恒力F作用下由静止开始竖直向上运动,进入磁场区域后做减速运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁感应规律(应用)
1. 物理实验中,常用一种叫做“冲击电流计”的仪器测定通过电路的电荷量。
如图所示,探测线圈与冲击电流计G 串联后可用来测定磁场的磁感应强度。
已知线圈的匝数为n,面积为S,线圈与冲击电流计组成的回路电阻为R。
若将线圈放在被测匀强磁场中,开始时线圈平面与磁场垂直,现把探测线圈翻转180°,“冲击电流计”测出通过线圈导线的电荷量为q,由上述数据可测出被测磁场的磁感应强度为()
A.qR
S
B.
2
qR
nS
C.
qR
nS
D.
2
qR
S
【答案】 B
2. 如图所示,在光滑水平桌面上有一边长为L,电阻为R的正方形导线框;在导线框右侧有一宽度为d(d L
)的条形匀强磁场区域,磁场的边界与导线框的一边平行,磁场方向竖直向下.导线框以某一初速度向右运动.t=0时导线框的右边恰与磁场的左边界重合,随后导线框进入并通过磁场区域.下列v-t图象中,可能正确描述上述过程的是()
A. B. C. D.
【答案】 D
3. 如图所示,两根光滑的平行金属导轨竖直放置在匀强磁场中,磁场和导轨平面垂直,金属杆ab与导轨接触良好可沿导轨滑动,开始时电键S断开,当ab杆由静止下滑一段时间后闭合S,则从S闭合开始计时,ab杆的速度v 与时间t的关系不可能是()
【答案】 B
4. 如图所示,水平面内有一平行金属导轨,导轨光滑且电阻不计。
匀强磁场与导轨所在平面垂直。
阻值为R的导体棒垂直于导轨静止放置,且与导轨接触良好。
t=0时,将开关S由1掷到2。
若分别用U、F、q和v表示电容器两端的电压、导体棒所受的安培力、通过导体棒的电荷量和导体棒的速度。
则下列图象表示这些物理量随时间变化的关系中可能正确的是()
【答案】 C 5. 如图所示,相距为L 的两条足够长的光滑平行金属导轨与水平面的夹角为θ,上端接有定值电阻R ,匀强磁场垂直于导轨平面,磁感应强度为B.将质量为m 的导体棒由静止释放,当速度达到v 时开始匀速运动,此时对导体棒施加一平行于导轨向下的拉力,并保持拉力的功率恒为P ,导体棒最终以2v 的速度匀速运动.导体棒始终与导轨垂直且接触良好,不计导轨和导体棒的电阻,重力加速度为g.下列选项正确的是 ( )
A .P =mgv sinθ
B .P =3mgvsinθ
C .当导体棒速度达到2v 时加速度大小为2
g sinθ D .在速度达到2v 以后匀速运动的过程中,R 上产生的焦耳热等于拉力所做的功
【答案】 C
6. 如图,一有界区域内,存在着磁感应强度大小均为B ,方向分别垂直于光滑水平桌面向下和向上的匀强磁场,磁场宽度均为L
L 的正方形线框abcd ,在外力作用下,保持ac 垂直磁场边缘,并以沿x 轴正方向的速度水平匀速地通过磁场区域,若以逆时针方向为电流正方向,下图中能反映线框中感应电流变化规律的图是 ( )
【答案】 C
7.(多选)如图所示,光滑水平面上存在有界匀强磁场,磁感应强度为B ,质量为m 边长为a 的正方形线框ABCD 斜向穿进磁场,当AC 刚进入磁场时速度为v
,方向与磁场边界成
45°,若线框的总电阻为R ,则 (
)
A B C D
A. 线框穿进磁场过程中,框中电流的方向为DCBA
B. AC 刚进入磁场时线框中感应电流为
C. AC 刚进入磁场时线框所受安培力为
D. 此时CD 两端电压为 【答案】 CD
8. (多选)如图,两根电阻不计的足够长的光滑金属导轨MN 、PQ ,间距为L ,两导轨构成的平面与水平面成θ角。
金属棒ab 、cd 用绝缘轻绳连接,其电阻均为R ,质量分别为m 和2m 。
沿斜面向上的外力F 作用在cd 上使两棒静止,整个装置处在垂直于导轨平面、磁感应强度大小为B 的匀强磁场中,重力加速度大小为g 。
将轻绳烧断后,保持F 不变,金属棒始终与导轨垂直且接触良好。
则 ( )
A. 轻绳烧断瞬间,cd 的加速度大小1sin 2a g θ=
B. 轻绳烧断后,cd 做匀加速运动
C. 轻绳烧断后,任意时刻两棒运动的速度大小之比:1:2ab cd v v =
D. 棒ab 的最大速度224sin 3abm mgR v B L
θ=
【答案】 AD
9. (多选)如图甲所示,一个边长为L 的正方形线框固定在匀强磁场(图中未画出)中,磁场方向垂直于导线框所在平面,规定向里为磁感应强度的正方向,向右为导线框ab 边所受安培力F 的正方向,线框中电流i 沿abcd 方
向时为正,已知在0~4s 时间内磁场的磁感应强度的变化规律如图所示,则下列图像所表示的关系正确的是 ( )
A. A
B. B
C. C
D. D
【答案】 AD
10. 如图甲,有两根相互平行、间距为L 的粗糙金属导轨,它们的电阻忽略不计在MP 之间接阻值为R 的定值电阻,导轨平面与水平面的夹角为θ。
在efhg 矩形区域内有垂直斜面向下、宽度为d 的匀强磁场(磁场未画出),磁感应强度B 随时间t 变化的规律如图乙。
在t = 0 时刻,一质量为m 、电阻为r 的金属棒垂直于导轨放置,从ab 位置由静止开始沿导轨下滑,t = t 0 时刻进人磁场,此后磁感应强度为B 0 并保持不变。
棒从ab 到ef 的运动过程中,电阻R 上的电流大小不变。
求:
(1)0~t 0时间内流过电阻R 的电流I 大小和方向;
(2)金属棒与导轨间的动摩擦因数μ;学-+科*/网
(3)金属棒从ab 到ef 的运动过程中,电阻R 上产生的焦耳热Q 。
【答案】 (1)00
()B Ld E I R r R r t ==++,方向是M→P ;(2)2200tan cos ()B L d mg R r t μθθ=-+;(3)2222
00202()()B L d R Q I R t t R r t =+=+。
11. (1)如图1所示,固定于水平面上的金属框架abcd ,处在竖直向下的匀强磁场中。
金属棒MN 沿框架以速度v 向右做匀速运动。
框架的ab 与dc 平行,bc 与ab 、dc 垂直。
MN 与bc 的长度均为l ,在运动过程中MN 始终与bc 平行,且与框架保持良好接触。
磁场的磁感应强度为B 。
a. 请根据法拉第电磁感应定律t
ΦE ∆∆=,推导金属棒MN 中的感应电动势E ; b. 在上述情景中,金属棒MN 相当于一个电源,这时的非静电力与棒中自由电子所受洛伦兹力有关。
请根据电动势的定义,推导金属棒MN 中的感应电动势E 。
(2)为进一步研究导线做切割磁感线运动产生感应电动势的过程,现构建如下情景: 如图2所示,在垂直于纸面向里的匀强磁场中,一内壁光滑长为l 的绝缘细管MN ,沿纸面以速度v 向右做匀速运动。
在管的N 端固定一个电
量为q的带正电小球(可看做质点)。
某时刻将小球释放,小球将会沿管运动。
已知磁感应强度大小为B,小球的重力可忽略。
在小球沿管从N运动到M的过程中,求小球所受各力分别对小球做的功。
【答案】(1)Blv
E=(2)洛伦兹力做功为0,管的支持力做功qvBl
=
W
F。