湘教版数学七年级下册期末复习试卷一(1)
湘教版七年级下册期末复习数学试卷
七年级数学期末复习试卷一、选择题(本题满分30分,共10小题,每小题3分) 1.下面有4个汽车标致图案,其中是轴对称图形的有( )A .1个B .2个C .3个D .4 2.已知1)2(32=+--y xa a 是一个二元一次方程,则a 的值为( )A. 2±B. -2 C . 2 D. 无法确定 3.下列各式计算结果正确的是( )A .2a a a =+ B .()2263a a = C .()1122+=+a a D .2a a a =⋅4.)()23)(23(=---b a b aA .2269b ab a --B .2296a ab b --C .2249b a -D .2294a b -5.小亮解方程组 2212.x y x y +=⎧⎨-=⎩●的解为 5x y =⎧⎨=⎩,★,由于不小心滴上了两滴墨水,刚好遮住了两个数●和★,则这两个数分别为( )A .4和-6B .-6和4C .-2和8D .8和-2 6.下面的多项式中,能因式分解的是( )A .m 2+nB .m 2-m +1C .m 2-nD .m 2-2m +1 7. ()a a m n3·的计算结果是( )A .a m n3+ B .a m n3+ C .a m n 3()+ D .a mn3 8.如图,下列条件中,不能判断直线l 1∥l 2的是( )A.∠1=∠3B.∠2=∠3C.∠4=∠5D.∠2+∠4=180°9.如图,已知AB ∥CD ,直线l 分别交AB 、 CD 于点E 、F ,EG 平分∠BEF ,若∠EFG =40°,则∠EGF 的度数是( )A .60°B .70°C .80°D .90°10.某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如下表所示: 则这20户家庭该月用电量的众数和中位数分别是( ) A .180,160 B .160,180 C .160,160 D .180,180二、 填空题(本题满分24分,共8小题,每小题3分) 11. 计算:8100×0.125100= 12. 已知t 满足方程组323x ty t=-+⎧⎨=-⎩,则x 和y 之间满足的关系为 .13.分解因式:3a 2b +6ab 2= .14.如图,两直线a 、b 被第三条直线c 所截,若∠1=50°,∠2=130°,则直线a 、b 的位置关系是 . 15.如图,直线AB 、CD 相交于点O ,OE ⊥AB ,O 为垂足,如果∠EOD = 38°,则∠AOC = °. 16.如图,AB ∥CD ,AC 与BD 相交于O 点,面积相等的两个三角形是 ((第14题图) (第15题图) (第16题图)17.期中考试,小明语、数、英三科的平均分为85分,政、史、地三科的平均分为92分,生物99分,问七科的平均分是 .18.有甲、乙、丙三种货物,若购甲3件,乙7件,丙1件,共需315元;若购甲4件,乙10件,丙1件,共需420元.问购甲、乙、丙各5件共需 元.三.解答题(本题满分40分,共 5小题, (19).(21)每题10分,其余每小题6分)19.解方程组:(1)⎩⎨⎧=+=-72332y x y x (2)()()344126x y x y x y x y⎧+--=⎪⎨+-+=⎪⎩(3)⎪⎩⎪⎨⎧=-+=+-=-+10324252z y x z y x z y x20.先化简再求值()()()()1x 3x 12x 12x 2x 2-+-+--,其中x =-1.ba21.分解因式:(1)2m ³n -8mn ³ (2)x 2-5x +622.在网格上把三角形ABC 向上平移8小格得到三角形A 1B 1C 1,再作三角形A 1B 1C 1关于直线MN 的轴对称图形得到三角形A 2B 2C 2。
湘教版七年级数学下期末复习试卷(一)(带答案)
七年级数学下册期末复习试卷(一)解析版一.选择题(共10小题)1.下面的各组图案中,不能由其中一个经平移后得到另一个的是( )A .B .C .D .2.π、227,3.1416,0. 中,无理数的个数是( ) A .1个 B .2个 C .3个 D .4个3.如图,AB ∥CD ,∠ABK 的角平分线BE 的反向延长线和∠DCK 的角平分线CF 的反向延长线交于点H ,∠K ﹣∠H=27°,则∠K=( )A .76°B .78°C .80°D .82°4.点P (x ﹣1,x +1)不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限5.把图中的一个三角形先横向平移x 格,再纵向平移y 格,就能与另一个三角形拼合成一个四边形,那么x +y ( )A .是一个确定的值B .有两个不同的值C .有三个不同的值D .有三个以上不同的值6.在3,0,﹣2 )A .3B .0C .﹣2D 7.平面直角坐标系中,将三角形各点的纵坐标都减去﹣3,横坐标保持不变,所得图形与原图形相比()A.向上平移了3个单位B.向下平移了3个单位C.向右平移了3个单位D.向左平移了3个单位8.若是方程组的解,则(a+b)•(a﹣b)的值为()A.﹣353B.353C.﹣16 D.169.某校对学生上学方式进行了一次抽样调查,如图是根据此次调查结果所绘制的一个未完成的扇形统计图,已知该校学生共有2560人,被调查的学生中骑车的有21人,则下列四种说法中,不正确的是()A.被调查的学生有60人B.被调查的学生中,步行的有27人C.估计全校骑车上学的学生有1152人D.扇形图中,乘车部分所对应的圆心角为54°10.如图,是做课间操时,小明,小刚和小红三人的相对位置,如果用(4,5)表示小明的位置,(2,4)表示小刚的位置,则小红的位置可表示为()A.(0,0) B.(0,1) C.(1,0) D.(1,2)二.填空题(共8小题)11.已知:(x2+y2+1)2﹣4=0,则x2+y2=.12.如果点A的坐标为(3,5),点B的坐标为(0,﹣4),那么A、B两点的距离等于.13.规定用符号[m]表示一个实数m的整数部分,例如:[23]=0,[3.14]=3.按此规定]的值为.14.如图,已知∠1=∠2,∠D=78°,则∠BCD=度.15.如图,将边长为2个单位的等边△ABC沿边BC向右平移1个单位得到△DEF,则四边形ABFD的周长为个单位.16.若不等式(a﹣3)x≤3﹣a的解集在数轴上表示如图所示,则a的取值范围是.17.小林每天下午5点放学时,爸爸总是从家开车按时到达学校接他回家,有一天学校提前一个小时放学,小林自己步行回家,在途中遇到开车来接他的爸爸,结果比平时早20分钟到家,则小林步行分钟遇到来接他的爸爸.18.在平面直角坐标系中,智多星做走棋的游戏,其走法是:棋子从原点出发,第1步向上走1个单位,第2步向上走2个单位,第3步向右走1个单位,第4步向上走1个单位……依此类推,第n步的走法是:当n被3除,余数为2时,则向上走2个单位;当走完第2018步时,棋子所处位置的坐标是三.解答题(共6小题)19.计算:(1)解不等式组并在数轴上把解集表示出来;(2)解方程组.20.如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′.(1)在图中画出△A′B′C′,并写出点A′、B′、C′的坐标;(2)在y轴上求点P,使得△BCP与△ABC面积相等.21.典典同学学完统计知识后,随机调查了她家所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)扇形统计图中a=,b=;并补全条形统计图;(2)若该辖区共有居民3500人,请估计年龄在0~14岁的居民的人数.(3)一天,典典知道了辖区内60岁以上的部分老人参加了市级门球比赛,比赛的老人们分成甲、乙两组,典典很想知道甲乙两组的比赛结果,王大爷告诉说,甲组与乙组的得分和为110,甲组得分不低于乙组得分的1.5倍,甲组得分最少为多少?22.填空并完成以下证明:已知:点P在直线CD上,∠BAP+∠APD=180°,∠1=∠2.求证:AB∥CD,∠E=∠F.证明:∵∠BAP+∠APD=180°,(已知)∴AB∥.()∴∠BAP=.()又∵∠1=∠2,(已知)∠3=﹣∠1,∠4=﹣∠2,∴∠3=(等式的性质)∴AE∥PF.()∴∠E=∠F.()23.某企业在“蜀南竹海”收购毛竹,直接销售,每吨可获利100元,进行粗加工,每天可加工8吨,每吨可获利800元;如果对毛竹进行精加工,每天可加工1吨,每吨可获利4000元.由于受条件限制,每天只能采用一种方式加工,要求将在一月内(30天)将这批毛竹93吨全部销售.为此企业厂长召集职工开会,让职工讨论如何加工销售更合算.甲说:将毛竹全部进行粗加工后销售;乙说:30天都进行精加工,未加工的毛竹直接销售;丙说:30天中可用几天粗加工,再用几天精加工后销售;请问厂长应采用哪位说的方案做,获利最大?24.一玩具工厂用于生产的全部劳力为450个工时,原料为400个单位.生产一个小熊要使用15个工时、20个单位的原料,售价为80元;生产一个小猫要使用10个工时、5个单位的原料,售价为45元.在劳力和原料的限制下合理安排生产小熊、小猫的个数,可以使小熊和小猫的总售价尽可能高.请用你所学过的数学知识分析,总售价是否可能达到2200元?湘教版版七年级数学下册期末复习试卷(一)简析一.选择题(共10小题)1.C.2.B.3.B.4.D.5.B.6.C.7.A.8.C.9.C.10.D.二.填空题(共8小题)11.1.1213.4.14.102.158.16.a<3.17.50.18.(672,2019)三.解答题(共6小题)19.计算:(1)解不等式组并在数轴上把解集表示出来;(2)解方程组.【分析】(1)先求出不等式组的解集,再在数轴上表示出来即可;(2)①+②得出4x=12,求出x,把x=3代入①求出y即可.【解答】解:(1)∵解不等式①得:x<1,解不等式②得:x≥﹣2,∴不等式组的解集为﹣2≤x<1,在数轴上表示为:;(2)∵①+②得:4x=12,解得:x=3.把x=3代入①得:6﹣y=7,解得:y=﹣1,∴原方程组的解是.【点评】本题考查了解二元一次方程组和解一元一次不等式组、在数轴上表示不等式组的解集,能求出不等式组的解集是解(1)的关键,能把二元一次方程组转化成一元一次方程是解(2)的关键.20.如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′.(1)在图中画出△A′B′C′,并写出点A′、B′、C′的坐标;(2)在y轴上求点P,使得△BCP与△ABC面积相等.【分析】(1)根据图形平移的性质画出△A′B′C′,并写出点A′、B′、C′的坐标即可(2)求出△ABC中BC边上的高,进而可得出结论.【解答】解:(1)如图,△A′B′C′即为所求.A′(0,4)B′(﹣1,1),C′(3,1);(2)如图,P(0,1)或(0,﹣5)).【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.21.典典同学学完统计知识后,随机调查了她家所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)扇形统计图中a=20%,b=12%;并补全条形统计图;(2)若该辖区共有居民3500人,请估计年龄在0~14岁的居民的人数.(3)一天,典典知道了辖区内60岁以上的部分老人参加了市级门球比赛,比赛的老人们分成甲、乙两组,典典很想知道甲乙两组的比赛结果,王大爷告诉说,甲组与乙组的得分和为110,甲组得分不低于乙组得分的1.5倍,甲组得分最少为多少?【分析】(1)根据“15~40”的百分比和频数可求总数,进而求出b和a的值.利用总数和百分比求出频数再补全条形图;(2)用样本估计总体即可;(3)首先设甲组得x分,则乙组得(110﹣x)分,由题意得不等关系:甲组得x分≥乙组得x分×1.5,根据不等关系列出不等式,解不等式即可.【解答】解:(1)总人数:230÷46%=500(人),100÷500×100%=20%,60÷500×100%=12%;500×22%=110(人),如图所示:(2)3500×20%=700(人);(3)设甲组得x分,则乙组得(110﹣x)分,由题意得:x≥1.5(110﹣x),解得:x≥66.答:甲组最少得66分.【点评】此题主要考查了扇形统计图与条形统计图,以及一元一次不等式的应用,正确读图,能从图中得到正确的信息是解决问题的关键.22.填空并完成以下证明:已知:点P在直线CD上,∠BAP+∠APD=180°,∠1=∠2.求证:AB∥CD,∠E=∠F.证明:∵∠BAP+∠APD=180°,(已知)∴AB∥CD.(同旁内角互补两直线平行)∴∠BAP=∠APC.(两直线平行内错角相等)又∵∠1=∠2,(已知)∠3=∠BAP﹣∠1,∠4=∠APC﹣∠2,∴∠3=∠4(等式的性质)∴AE∥PF.(内错角相等两直线平行)∴∠E=∠F.(两直线平行内错角相等)【分析】根据平行线的性质和判定即可解决问题;【解答】解:∵∠BAP+∠APD=180°,(已知)∴AB∥CD.(同旁内角互补两直线平行)∴∠BAP=∠APC.(两直线平行,内错角相等)又∵∠1=∠2,(已知)∠3=∠BAP﹣∠1,∠4=∠APC﹣∠2,∴∠3=∠4(等式的性质)∴AE∥PF.(内错角相等两直线平行)∴∠E=∠F.(两直线平行内错角相等)故答案为CD,同旁内角互补两直线平行,∠APC,两直线平行内错角相等,∠BAP,∠APC,内错角相等两直线平行,两直线平行内错角相等;【点评】本题考查平行线的性质和判定、熟练掌握平行线的判定和性质是解决问题的关键.23.某企业在“蜀南竹海”收购毛竹,直接销售,每吨可获利100元,进行粗加工,每天可加工8吨,每吨可获利800元;如果对毛竹进行精加工,每天可加工1吨,每吨可获利4000元.由于受条件限制,每天只能采用一种方式加工,要求将在一月内(30天)将这批毛竹93吨全部销售.为此企业厂长召集职工开会,让职工讨论如何加工销售更合算.甲说:将毛竹全部进行粗加工后销售;乙说:30天都进行精加工,未加工的毛竹直接销售;丙说:30天中可用几天粗加工,再用几天精加工后销售;请问厂长应采用哪位说的方案做,获利最大?【分析】(1)若将毛竹全部进行粗加工后销售,则获利为93×800元;(2)30天都进行精加工,则可加工30吨,可获利30×4000,未加工的毛竹63吨直接销售可获利63×100,因此共获利30×4000+63×100;(3)30天中可用几天粗加工,再用几天精加工后销售,则可根据“时间30天”,“共93吨”列方程组进行解答.【解答】解:(1)若将毛竹全部进行粗加工后销售,则可以获利93×800=74 400元;(2)30天都进行精加工,可加工数量为30吨,此时获利30×4000=120 000元,未加工的毛竹63吨直接销售可获利63×100=6300元,因此共获利30×4000+63×100=126300元;(3)设x天粗加工,y天精加工,则解之得所以9天粗加工数量为9×8=72吨,可获利72×800=57 600元,21天精加工数量为21吨可获利21×4000=84 000,因此共获利141 600所以(3)>(2)>(1)即第三种方案获利最大.【点评】此题关键是把实际问题抽象到解方程组中,利用方程组来解决问题.24.一玩具工厂用于生产的全部劳力为450个工时,原料为400个单位.生产一个小熊要使用15个工时、20个单位的原料,售价为80元;生产一个小猫要使用10个工时、5个单位的原料,售价为45元.在劳力和原料的限制下合理安排生产小熊、小猫的个数,可以使小熊和小猫的总售价尽可能高.请用你所学过的数学知识分析,总售价是否可能达到2200元?【分析】本题在劳力和原料两个限制条件下,设出生产小熊小猫的个数分别为x 和y,可列出关于x和y的两个不等式,由总售价为2200元还可以列出关于x 和y的一个等式,三个式子结合就可以求出x和y看符合不符合条件,求出答案.【解答】解:设小熊和小猫的个数分别为x和y,总售价为z,则z=80x+45y=5(16x+9y)①根据劳力和原材料的限制,x和y应满足15x+10y≤450,20x+5y≤400化简3x+2y≤90(1)及4x+y≤80(2)当总售价z=2200时,由①得16x+9y=440(3)(2)•9得36x+9y≤720(4)(4)﹣(3)得20x≤720﹣440=280,即x≤14(A)得(5)(3)﹣(5)得,即x≥14(B)综合(A)、(B)可得x=14,代入(3)求得y=24当x=14,y=24时,有3x+2y=90,4x+y=80满足工时和原料的约束条件,此时恰有总售价z=80×14+45×24=2200(元)答:只需安排生产小熊14个、小猫24个,就可达到总售价为2200元.【点评】本题考查理解题意能力以及对于多个量进行分析根据数据列出不等式以及等式.本题要根据劳力和原料列出不等式,根据要达到的售价可列出等式.。
七年级下册湘教版教版数学期末总复习教案及练习试卷
(图 1-2 )(一)本章知识结构图:一般情况相交线与平行线邻补角 邻补角互补 相 交两条直线对顶角相交成直角垂线第三条所截 两条直线被对顶角相等(二)例题与习题:-、对顶角和邻补角:1.如图所示,/1和/2是对顶角的图形有()平移同位角、内错角、同旁内角个 个 2. 如图1-1 ,直线AR CD EF 都经过点O, 图中有几对对顶角。
DFE.一 一 . 一 ................................................................................................. 一 ■一c图如图1-2 ,若/ AOBW / BO 久一对邻补角,OD 平分/ A OB11—1OE 在/BOCft 部,并且/ BO=- ZCOE /DO=72°。
2D3. 求/ COE 勺度数。
() O第二课时二、垂线:已知:如图,在一条公路l的两侧有A、B两个村庄.<1>现在乡政府为民服务,沿公路开通公交汽车,并在路边修建一个公共汽车站P,同时修建车站国必、B两个村庄的道路,并要求修建的道路之和最短,请你设计出车站的位置,在图中画出点P的位置,(保留作图的痕迹).并在后面的横线上用一句话说明道理. ________________ . ________________________<2>为方便机动车出行,AM计划自己出资修建一条由本村直达公路l的机动车专用道路,你能帮助AM节省资金,设计出最短的道路吗,请在图中画出你设计修建的最短道路,并在后面的横线上用一句话说明道理. _______ .三、同位角、内错角和同旁内角的判断1.如图3-1 ,按各角的位置,下列判断错误的是()(A) /1与/2是同旁内角(B) /3与/4是内错角(C) /5与/6是同旁内角(D) /5与/8是同位角2.如图3-2 , 与/ EF幽成内错角的是,与/FEB构成同旁内角的是 ______图3-1C A3囱3图4-6第三课时四、平行线的判定和性质:1 .如图 4-1 ,若/ 3=7 4,贝U //;若 AB// CD,则/ =/ 。
湘教版七年级下册期末数学试卷(含答案)
七年级下册期末数学试卷一.选择题(本大题共9小题,每小题2分,共18分)1.“认识交通标志,遵守交通规则”,下列交通标志中,是轴对称图形的是()A.B.C.D.2.下列计算正确的是()A.a•a2=a2B.(x3)2=x5C.(2a)2=4a2D.(x+1)2=x2+13.下列因式分解正确的是()A.x2﹣4=(x+4)(x﹣4)B.4a2﹣8a=a(4a﹣8)C.a+2a+2=(a﹣1)2+1D.x2﹣2x+1=(x﹣1)24.下列运算正确的是()A.(m+n)(﹣m+n)=n2﹣m2B.(a﹣b)2=a2﹣b2C.(a+m)(b+n)=ab+mn D.(x﹣1)2=x2﹣2x﹣15.下列说法错误的是()A.平移不改变图形的形状和大小B.对顶角相等C.在同一平面内,垂直于同一条直线的两条直线平行D.同位角相等6.我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定9名同学参加决赛,他们的决赛成绩各不相同,其中小辉已经知道自己的成绩,但能否进前5名,他还必须清楚这9名同学成绩的()A.众数B.平均数C.中位数D.方差7.如图.直线a∥b,直线L与a、b分别交于点A、B,过点A作AC⊥b于点C.若∠1=50°,则∠2的度数为()A.130°B.50°C.40°D.25°8.如图,下列条件中,能判定AD∥BC的是()A.∠C=∠CBE B.∠A+∠ADC=180°C.∠ABD=∠CDB D.∠A=∠CBE9.图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A.2mn B.(m+n)2C.(m﹣n)2D.m2﹣n2二、填空题(本大题共9小题,每小题2分,共18分)10.计算:(﹣2a)2﹣a2=.11.是二元一次方程2x+ay=5的一个解,则a的值为.12.若a+4b=10,2a﹣b=﹣1,则a+b=.13.如图是一次射击训练中甲、乙两人的10次射击成绩的分布情况,则射击成绩的方差较小的是(填“甲”或“乙”).14.已知多项式x2+mx+25是完全平方式,且m<0,则m的值为.15.因式分解:(x﹣3)﹣2x(x﹣3)=.16.已知直线a∥b,a与b之间的距离为5,a与b之间有一点P,点P到a的距离是2,则点P到b的距离是.17.如图,将△ABC绕着点C按顺时针方向旋转20°后,B点落在B位置,A点落在A′位置,若AC⊥BC,则∠BCA′的度数是.18.如图,将一张矩形纸片ABCD沿EF折叠,使顶点C,D分别落在点C′,D′处,C′E交AF 于点G,若∠CEF=70°,则∠GFD′=°.三、解答题(本大题共9小题,19~23每小题6分,24~26每小题6分,27小题10分,共64分)19.先化简,再求值:2x(2x﹣y)﹣(2x﹣y)2,其中x=,y=﹣1.20.解方程组.21.如图,在正方形网格中,有格点三角形ABC(顶点都是格点)和直线MN.(1)画出三角形ABC关于直线MN对称的三角形A1B1C1(2)将三角形ABC绕点A按逆时针方向旋转90°得到三角形AB2C2,在正方形网格中画出三角形AB2C2.(不要求写作法)22.推理填空:如图,∠1+∠2=180°,∠A=∠C,试说明:AE∥BC.解:因为∠1+∠2=180°,所以AB∥(同旁内角互补,两直线平行)所以∠A=∠EDC(),又因为∠A=∠C(已知)所以∠EDC=∠C(等量代换),所以AE∥BC()23.某中学有15位学生利用暑假参加社会实践活动,到某公司销售部做某种商品的销售员,销售部为帮助学生制定合理的周销售定额,统计了这15位学生某周的销售量如下:45013060504035周销售量(件)人数113532(1)求这15位学生周销售量的平均数、中位数、众数;(2)假设销售部把每位学生的周销售定额规定为80件,你认为是否合理?为什么?如果不合理,请你从表中选一个较合理的周销售量作为周销售定额,并说明理由.24.我市某中学决定到超市购买一定数量的羽毛球拍和羽毛球,已知买1副羽毛球拍和1个羽毛球要花费35元,买2副羽毛球拍和3个羽毛球要花费75元,求购买10副羽毛球拍和20个羽毛球共需多少元?25.如图,直线a∥b,直线AB与a,b分别相交于点A,B,AC⊥AB,AC交直线b于点C.(1)若∠1=60°,求∠2的度数;(2)若AC=3,AB=4,BC=5,求a与b的距离.26.先仔细阅读材料,冉尝试解决问题完全平方公式a2±2ab+b2=(a±b)2及(a±b)2的值具有非负性的特点在数学学习中有着广泛的应用,例如求多项式2x2+12x﹣4的最小值时,我们可以这样处理:解:原式=2(x2+6x﹣2)=2(x2+6x+9﹣9﹣2)=2[(x+3)2﹣11]=2(x+3)2﹣22因为无论x取什么数,都有(x+3)2的值为非负数,所以(x+3)2的最小值为0,当x=﹣3时,2(x+3)2﹣22的最小值是﹣22,所以当x=﹣3时,原多项式的最小值是﹣22.解决问题:(1)请根据上面的解题思路探求:多项式x2+4x+5的最小值是多少,并写出此时x的值;(2)请根据上面的解题思路探求:多项式﹣3x2﹣6x+12的最大值是多少,并写出此时x的值.27.如图,MN∥OP,点A为直线MN上一定点,B为直线OP上的动点,在直线MN与OP之间且在线段AB的右方作点D,使得AD⊥BD.设∠DAB=α(α为锐角).(1)求∠NAD与∠PBD的和;(提示过点D作EF∥MN)(2)当点B在直线OP上运动时,试说明∠OBD﹣∠NAD=90°;(3)当点B在直线OP上运动的过程中,若AD平分∠NAB,AB也恰好平分∠OBD,请求出此时α的值参考答案与试题解析一.选择题(本大题共9小题,每小题2分,共18分)1.解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误;故选:B.2.解:A、a•a2=a3,故此选项错误;B、(x3)2=x6,故此选项错误;C、(2a)2=4a2,正确;D、(x+1)2=x2+2x+1,故此选项错误.故选:C.3.解:A、原式=(x+2)(x﹣2),不符合题意;B、原式=4a(a﹣2),不符合题意;C、原式不能分解,不符合题意;D、原式=(x﹣1)2,符合题意,故选:D.4.解:∵(m+n)(﹣m+n)=n2﹣m2,故选项A正确,∵(a﹣b)2=a2﹣2ab+b2,故选项B错误,∵(a+m)(b+n)=ab+an+bm+mn,故选项C错误,∵(x﹣1)2=x2﹣2x+1,故选项D错误,故选:A.5.解:A、平移不改变图形的形状和大小,正确;B、对顶角相等,正确;C、在同一平面内,垂直于同一条直线的两条直线平行,正确;D、两直线平行,同位角相等,错误;故选:D.6.解:由于总共有9个人,且他们的分数互不相同,第5名的成绩是中位数,要判断是否进入前5名,故应知道自已的成绩和中位数.故选:C.7.解:∵AC⊥b,∴∠ACB=90°,∵∠1=50°,∴∠ABC=40°,∵a∥b,∴∠ABC=∠2=40°.故选:C.8.解:A、∵∠C=∠CBE,∴AB∥CD,故本选项错误;B、∵∠A+∠ADC=180°,∴AB∥CD,故本选项错误;C、∵∠ABD=∠CDB,∴AB∥CD,故本选项错误;D、∵∠A=∠CBE,∴AD∥BC,故本选项正确.故选:D.9.解:由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)2,又∵原矩形的面积为4mn,∴中间空的部分的面积=(m+n)2﹣4mn=(m﹣n)2.故选:C.二、填空题(本大题共9小题,每小题2分,共18分)10.解:(﹣2a)2﹣a2=4a2﹣a2=3a2,故答案为:3a2.11.解:将代入二元一次方程2x+ay=5,得2+3a=5,解得a=1,故答案为:1.12.解:∵a+4b=10①,2a﹣b=﹣1②,①+②可得:3a+3b=9,即:a+b=3.故答案为:3.13.解:由图中知,甲的成绩为7,8,8,9,8,9,9,8,7,7,乙的成绩为6,8,8,9,8,10,9,8,6,7,=(7+8+8+9+8+9+9+8+7+7)÷10=8,=(6+8+8+9+8+10+9+8+6+7)÷10=7.9,甲的方差S甲2=[3×(7﹣8)2+4×(8﹣8)2+3×(9﹣8)2]÷10=0.6,乙的方差S乙2=[2×(6﹣7.9)2+4×(8﹣7.9)2+2×(9﹣7.9)2+(10﹣7.9)2+(7﹣7.9)2]÷10=1.49,则S2甲<S2乙,即射击成绩的方差较小的是甲.故答案为:甲.14.解:∵x2+mx+25是一个完全平方式,∴x2+mx+25=(x+5)2或x2+mx+25=(k﹣5)2,∴m=±10.∵m<0,∴m的值为﹣10.故答案是:﹣10.15.解:(x﹣3)﹣2x(x﹣3)=(x﹣3)(1﹣2x).故答案为:(x﹣3)(1﹣2x).16.解:∵直线a∥b,a与b之间的距离为5,a与b之间有一点P,点P到a的距离是2,∴点P到b的距离是5﹣2=3,故答案为:3.17.解:∵AC⊥BC,∴∠ACB=90°,∵∠ACB=∠A′CB′=90°,∴∠BCB′=∠ACA′=20°,∴∠BCA′=90°+20°=110°,故答案为110°.18.解:矩形纸片ABCD中,AD∥BC,∵∠CEF=70°,∴∠EFG=∠CEF=70°,∴∠EFD=180°﹣70°=110°,根据折叠的性质,∠EFD′=∠EFD=110°,∴∠GFD′=∠EFD′﹣∠EFG,=110°﹣70°,=40°.故答案为:40.三、解答题(本大题共9小题,19~23每小题6分,24~26每小题6分,27小题10分,共64分)19.解:2x(2x﹣y)﹣(2x﹣y)2=4x2﹣2xy﹣4x2+4xy﹣y2=2xy﹣y2,当x=,y=﹣1时,原式=2××(﹣1)﹣(﹣1)2=﹣2.20.解:①×2+②得:7x=14,即x=2,将x=2代入①得:y=﹣1,则方程组的解为.21.解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△AB2C2即为所求.22.解:因为∠1+∠2=180°,所以AB∥DC(同旁内角互补,两直线平行)所以∠A=∠EDC(两直线平行,同位角相等),又因为∠A=∠C(已知)所以∠EDC=∠C(等量代换),所以AE∥BC(内错角相等,两直线平行)故答案为:DC,两直线平行,同位角相等;内错角相等,两直线平行.23.解:(1)这15位学生周销售量的平均数=(450×1+130×1+60×3+50×5+40×3+35×2)÷15=80,中位数为50,众数为50;(2)不合理.因为15人中有13人销售量达不到80,周销售额定为50较合适,因为50是众数也是中位数.24.解:设购买1副羽毛球拍需要x元,购买1个羽毛球需要y元,根据题意得:,解得:,∴10x+20y=10×30+20×5=400.答:购买10副羽毛球拍和20个羽毛球共需400元.25.解:(1)∵直线a∥b,∴∠3=∠1=60°,又∵AC⊥AB,∴∠2=90°﹣∠3=30°;(2)如图,过A作AD⊥BC于D,则AD的长即为a与b之间的距离.∵AC⊥AB,∴×AB×AC=×BC×AD,∴AD==,∴a与b的距离为.26.解:(1)x2+4x+5=x2+4x+4+1=(x+2)2+1,当x=﹣2时,多项式x2+4x+5的最小值是1;(2)﹣3x2﹣6x+12=﹣3(x2+2x+1)+3+12=﹣3(x+1)2+15,当x=﹣1时,多项式﹣3x2﹣6x+12的最大值是15.27.解:(1)如图,过点D作EF∥MN,则∠NAD=∠ADE.∵MN∥OP,EF∥MN,∴EF∥OP.∴∠PBD=∠BDE,∴∠NAD+∠PBD=∠ADE+∠BDE=∠ADB.∵AD⊥BD,∴∠ADB=90°,∴∠NAD+∠PBD=90°.(2)由(1)得:∠NAD+∠PBD=90°,则∠NAD=90°﹣∠PBD.∵∠OBD+∠PBD=180°,∴∠OBD=180°﹣∠PBD,∴∠OBD﹣∠NAD=(180°﹣∠PBD)﹣(90°﹣∠PBD)=90°.(3)若AD平分∠NAB,AB也恰好平分∠OBD,则有∠NAD=∠BAD=α,∠NAB=2∠BAD =2α,∠OBD=2∠OBA.∵OP∥MN,∴∠OBA=∠NAB=2α,∴∠OBD=4α.由(2)知:∠OBD﹣∠NAD=90°,则4α﹣α=90°,解得:α=30°.1、只要朝着一个方向努力,一切都会变得得心应手。
湘教版七年级下册数学期末试题(带答案)
湘教版七年级下册数学期末试题(带答案)湘教版七年级下册数学期末试题第一部分:选择题1. 将7千米改写为分米。
A. 700分米B. 7,000分米C. 70,000分米D. 700,000分米2. 已知两个数的和为24,差为12,求这两个数的乘积。
A. 144B. 288C. 400D. 5763. 下列哪个是一个素数?A. 1B. 2C. 4D. 94. 计算:(3⁵)÷(3²) = ?A. 9B. 27C. 81D. 2435. 用适当的符号填空:-1.5 __ -1.2A. >B. <C. =D. ≠第二部分:填空题1. 一个数乘以7的积等于35,这个数是_______。
2. 15:4=______:83. 20+37-19=_______4. 2的平方等于_______5. 24÷(6-2)=_______第三部分:解答题1. 画一个等边三角形,写出它的三个特征。
2. 一个数字减去4,再乘以3的结果等于18,这个数字是多少?3. 一支铅笔卖5元,小明买了4支铅笔,付了20元,还找了多少钱?4. 一块矩形的长和宽比为3:2,它的长是12厘米,求它的宽。
5. 简述什么是最小公倍数和最大公约数,以及它们的计算方法。
第四部分:应用题小明用126元买了一本武侠小说和一本科普读物,已知武侠小说的价格是科普读物的2倍,并且他买书后还剩下36元。
求小明买的两本书的价格各是多少?解答:第一部分:选择题1. B2. A3. B4. C5. B第二部分:填空题1. 52. 303. 384. 45. 8第三部分:解答题1. 等边三角形的特征是三条边相等,三个角都是60度。
2. 设数字为x,根据题意可以列方程:(x-4)×3=18,解得x=10。
3. 付款:4支铅笔×5元/支 = 20元;找零:20元-20元 = 0元。
4. 设矩形的宽为x,则有3/2x=12,解得x=8,所以宽为8厘米。
湘教版数学七年级下册期末试题(含答案)
七年级下册期末数学试卷一.选择题(本大题共9小题,每小题2分,共18分)1.“认识交通标志,遵守交通规则”,下列交通标志中,是轴对称图形的是()A.B.C.D.2.下列计算正确的是()A.a•a2=a2B.(x3)2=x5C.(2a)2=4a2D.(x+1)2=x2+13.下列因式分解正确的是()A.x2﹣4=(x+4)(x﹣4)B.4a2﹣8a=a(4a﹣8)C.a+2a+2=(a﹣1)2+1D.x2﹣2x+1=(x﹣1)24.下列运算正确的是()A.(m+n)(﹣m+n)=n2﹣m2B.(a﹣b)2=a2﹣b2C.(a+m)(b+n)=ab+mn D.(x﹣1)2=x2﹣2x﹣15.下列说法错误的是()A.平移不改变图形的形状和大小B.对顶角相等C.在同一平面内,垂直于同一条直线的两条直线平行D.同位角相等6.我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定9名同学参加决赛,他们的决赛成绩各不相同,其中小辉已经知道自己的成绩,但能否进前5名,他还必须清楚这9名同学成绩的()A.众数B.平均数C.中位数D.方差7.如图.直线a∥b,直线L与a、b分别交于点A、B,过点A作AC⊥b于点C.若∠1=50°,则∠2的度数为()A.130°B.50°C.40°D.25°8.如图,下列条件中,能判定AD∥BC的是()A.∠C=∠CBE B.∠A+∠ADC=180°C.∠ABD=∠CDB D.∠A=∠CBE9.图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A.2mn B.(m+n)2C.(m﹣n)2D.m2﹣n2二、填空题(本大题共9小题,每小题2分,共18分)10.计算:(﹣2a)2﹣a2=.11.是二元一次方程2x+ay=5的一个解,则a的值为.12.若a+4b=10,2a﹣b=﹣1,则a+b=.13.如图是一次射击训练中甲、乙两人的10次射击成绩的分布情况,则射击成绩的方差较小的是(填“甲”或“乙”).14.已知多项式x2+mx+25是完全平方式,且m<0,则m的值为.15.因式分解:(x﹣3)﹣2x(x﹣3)=.16.已知直线a∥b,a与b之间的距离为5,a与b之间有一点P,点P到a的距离是2,则点P到b的距离是.17.如图,将△ABC绕着点C按顺时针方向旋转20°后,B点落在B位置,A点落在A′位置,若AC⊥BC,则∠BCA′的度数是.18.如图,将一张矩形纸片ABCD沿EF折叠,使顶点C,D分别落在点C′,D′处,C′E交AF 于点G,若∠CEF=70°,则∠GFD′=°.三、解答题(本大题共9小题,19~23每小题6分,24~26每小题6分,27小题10分,共64分)19.先化简,再求值:2x(2x﹣y)﹣(2x﹣y)2,其中x=,y=﹣1.20.解方程组.21.如图,在正方形网格中,有格点三角形ABC(顶点都是格点)和直线MN.(1)画出三角形ABC关于直线MN对称的三角形A1B1C1(2)将三角形ABC绕点A按逆时针方向旋转90°得到三角形AB2C2,在正方形网格中画出三角形AB2C2.(不要求写作法)22.推理填空:如图,∠1+∠2=180°,∠A=∠C,试说明:AE∥BC.解:因为∠1+∠2=180°,所以AB∥(同旁内角互补,两直线平行)所以∠A=∠EDC(),又因为∠A=∠C(已知)所以∠EDC=∠C(等量代换),所以AE∥BC()23.某中学有15位学生利用暑假参加社会实践活动,到某公司销售部做某种商品的销售员,销售部为帮助学生制定合理的周销售定额,统计了这15位学生某周的销售量如下:45013060504035周销售量(件)人数113532(1)求这15位学生周销售量的平均数、中位数、众数;(2)假设销售部把每位学生的周销售定额规定为80件,你认为是否合理?为什么?如果不合理,请你从表中选一个较合理的周销售量作为周销售定额,并说明理由.24.我市某中学决定到超市购买一定数量的羽毛球拍和羽毛球,已知买1副羽毛球拍和1个羽毛球要花费35元,买2副羽毛球拍和3个羽毛球要花费75元,求购买10副羽毛球拍和20个羽毛球共需多少元?25.如图,直线a∥b,直线AB与a,b分别相交于点A,B,AC⊥AB,AC交直线b于点C.(1)若∠1=60°,求∠2的度数;(2)若AC=3,AB=4,BC=5,求a与b的距离.26.先仔细阅读材料,冉尝试解决问题完全平方公式a2±2ab+b2=(a±b)2及(a±b)2的值具有非负性的特点在数学学习中有着广泛的应用,例如求多项式2x2+12x﹣4的最小值时,我们可以这样处理:解:原式=2(x2+6x﹣2)=2(x2+6x+9﹣9﹣2)=2[(x+3)2﹣11]=2(x+3)2﹣22因为无论x取什么数,都有(x+3)2的值为非负数,所以(x+3)2的最小值为0,当x=﹣3时,2(x+3)2﹣22的最小值是﹣22,所以当x=﹣3时,原多项式的最小值是﹣22.解决问题:(1)请根据上面的解题思路探求:多项式x2+4x+5的最小值是多少,并写出此时x的值;(2)请根据上面的解题思路探求:多项式﹣3x2﹣6x+12的最大值是多少,并写出此时x的值.27.如图,MN∥OP,点A为直线MN上一定点,B为直线OP上的动点,在直线MN与OP之间且在线段AB的右方作点D,使得AD⊥BD.设∠DAB=α(α为锐角).(1)求∠NAD与∠PBD的和;(提示过点D作EF∥MN)(2)当点B在直线OP上运动时,试说明∠OBD﹣∠NAD=90°;(3)当点B在直线OP上运动的过程中,若AD平分∠NAB,AB也恰好平分∠OBD,请求出此时α的值参考答案与试题解析一.选择题(本大题共9小题,每小题2分,共18分)1.解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误;故选:B.2.解:A、a•a2=a3,故此选项错误;B、(x3)2=x6,故此选项错误;C、(2a)2=4a2,正确;D、(x+1)2=x2+2x+1,故此选项错误.故选:C.3.解:A、原式=(x+2)(x﹣2),不符合题意;B、原式=4a(a﹣2),不符合题意;C、原式不能分解,不符合题意;D、原式=(x﹣1)2,符合题意,故选:D.4.解:∵(m+n)(﹣m+n)=n2﹣m2,故选项A正确,∵(a﹣b)2=a2﹣2ab+b2,故选项B错误,∵(a+m)(b+n)=ab+an+bm+mn,故选项C错误,∵(x﹣1)2=x2﹣2x+1,故选项D错误,故选:A.5.解:A、平移不改变图形的形状和大小,正确;B、对顶角相等,正确;C、在同一平面内,垂直于同一条直线的两条直线平行,正确;D、两直线平行,同位角相等,错误;故选:D.6.解:由于总共有9个人,且他们的分数互不相同,第5名的成绩是中位数,要判断是否进入前5名,故应知道自已的成绩和中位数.故选:C.7.解:∵AC⊥b,∴∠ACB=90°,∵∠1=50°,∴∠ABC=40°,∵a∥b,∴∠ABC=∠2=40°.故选:C.8.解:A、∵∠C=∠CBE,∴AB∥CD,故本选项错误;B、∵∠A+∠ADC=180°,∴AB∥CD,故本选项错误;C、∵∠ABD=∠CDB,∴AB∥CD,故本选项错误;D、∵∠A=∠CBE,∴AD∥BC,故本选项正确.故选:D.9.解:由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)2,又∵原矩形的面积为4mn,∴中间空的部分的面积=(m+n)2﹣4mn=(m﹣n)2.故选:C.二、填空题(本大题共9小题,每小题2分,共18分)10.解:(﹣2a)2﹣a2=4a2﹣a2=3a2,故答案为:3a2.11.解:将代入二元一次方程2x+ay=5,得2+3a=5,解得a=1,故答案为:1.12.解:∵a+4b=10①,2a﹣b=﹣1②,①+②可得:3a+3b=9,即:a+b=3.故答案为:3.13.解:由图中知,甲的成绩为7,8,8,9,8,9,9,8,7,7,乙的成绩为6,8,8,9,8,10,9,8,6,7,=(7+8+8+9+8+9+9+8+7+7)÷10=8,=(6+8+8+9+8+10+9+8+6+7)÷10=7.9,甲的方差S甲2=[3×(7﹣8)2+4×(8﹣8)2+3×(9﹣8)2]÷10=0.6,乙的方差S乙2=[2×(6﹣7.9)2+4×(8﹣7.9)2+2×(9﹣7.9)2+(10﹣7.9)2+(7﹣7.9)2]÷10=1.49,则S2甲<S2乙,即射击成绩的方差较小的是甲.故答案为:甲.14.解:∵x2+mx+25是一个完全平方式,∴x2+mx+25=(x+5)2或x2+mx+25=(k﹣5)2,∴m=±10.∵m<0,∴m的值为﹣10.故答案是:﹣10.15.解:(x﹣3)﹣2x(x﹣3)=(x﹣3)(1﹣2x).故答案为:(x﹣3)(1﹣2x).16.解:∵直线a∥b,a与b之间的距离为5,a与b之间有一点P,点P到a的距离是2,∴点P到b的距离是5﹣2=3,故答案为:3.17.解:∵AC⊥BC,∴∠ACB=90°,∵∠ACB=∠A′CB′=90°,∴∠BCB′=∠ACA′=20°,∴∠BCA′=90°+20°=110°,故答案为110°.18.解:矩形纸片ABCD中,AD∥BC,∵∠CEF=70°,∴∠EFG=∠CEF=70°,∴∠EFD=180°﹣70°=110°,根据折叠的性质,∠EFD′=∠EFD=110°,∴∠GFD′=∠EFD′﹣∠EFG,=110°﹣70°,=40°.故答案为:40.三、解答题(本大题共9小题,19~23每小题6分,24~26每小题6分,27小题10分,共64分)19.解:2x(2x﹣y)﹣(2x﹣y)2=4x2﹣2xy﹣4x2+4xy﹣y2=2xy﹣y2,当x=,y=﹣1时,原式=2××(﹣1)﹣(﹣1)2=﹣2.20.解:①×2+②得:7x=14,即x=2,将x=2代入①得:y=﹣1,则方程组的解为.21.解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△AB2C2即为所求.22.解:因为∠1+∠2=180°,所以AB∥DC(同旁内角互补,两直线平行)所以∠A=∠EDC(两直线平行,同位角相等),又因为∠A=∠C(已知)所以∠EDC=∠C(等量代换),所以AE∥BC(内错角相等,两直线平行)故答案为:DC,两直线平行,同位角相等;内错角相等,两直线平行.23.解:(1)这15位学生周销售量的平均数=(450×1+130×1+60×3+50×5+40×3+35×2)÷15=80,中位数为50,众数为50;(2)不合理.因为15人中有13人销售量达不到80,周销售额定为50较合适,因为50是众数也是中位数.24.解:设购买1副羽毛球拍需要x元,购买1个羽毛球需要y元,根据题意得:,解得:,∴10x+20y=10×30+20×5=400.答:购买10副羽毛球拍和20个羽毛球共需400元.25.解:(1)∵直线a∥b,∴∠3=∠1=60°,又∵AC⊥AB,∴∠2=90°﹣∠3=30°;(2)如图,过A作AD⊥BC于D,则AD的长即为a与b之间的距离.∵AC⊥AB,∴×AB×AC=×BC×AD,∴AD==,∴a与b的距离为.26.解:(1)x2+4x+5=x2+4x+4+1=(x+2)2+1,当x=﹣2时,多项式x2+4x+5的最小值是1;(2)﹣3x2﹣6x+12=﹣3(x2+2x+1)+3+12=﹣3(x+1)2+15,当x=﹣1时,多项式﹣3x2﹣6x+12的最大值是15.27.解:(1)如图,过点D作EF∥MN,则∠NAD=∠ADE.∵MN∥OP,EF∥MN,∴EF∥OP.∴∠PBD=∠BDE,∴∠NAD+∠PBD=∠ADE+∠BDE=∠ADB.∵AD⊥BD,∴∠ADB=90°,∴∠NAD+∠PBD=90°.(2)由(1)得:∠NAD+∠PBD=90°,则∠NAD=90°﹣∠PBD.∵∠OBD+∠PBD=180°,∴∠OBD=180°﹣∠PBD,∴∠OBD﹣∠NAD=(180°﹣∠PBD)﹣(90°﹣∠PBD)=90°.(3)若AD平分∠NAB,AB也恰好平分∠OBD,则有∠NAD=∠BAD=α,∠NAB=2∠BAD =2α,∠OBD=2∠OBA.∵OP∥MN,∴∠OBA=∠NAB=2α,∴∠OBD=4α.由(2)知:∠OBD﹣∠NAD=90°,则4α﹣α=90°,解得:α=30°.1、老吾老以及人之老,幼吾幼以及人之幼。
新湘教版七年级下册数学期末复习试题一
七年级下册数学期末复习试题一一选择题(每题3分、共30分)1.已知一个二元一次方程组的解是,则这个方程组是( )(A )(B )(C )(D )4、下列各式中,与相等的是 A .B .C .D .5、方程532=-y x ,3=xy ,33=+yx ,023=+-z y x ,62=+y x 中一次方程的有( )个。
A、1 B、2 C、3 D、4 6、方程是二元一次方程,则m 的取值范围是( )A 、B 、C 、D 、7、下列计算错误的是( )A.(x+1)(x+4)=x 2+5x+4 B.(m-2)(m+3)=m 2+m-6 C.(y+4)(y-5)=y 2+9y-20 D.(x-3)(x-6)=x 2-9x+18 8、(-2x 3y 4)3的值是( )A.-6x 6y 7B.-8x 27y 64C.-8x 9y 12D.-6xy 109、把下列各题的计算结果写成10的幂的形式,正确的是( )班级 姓名 考号 --------------------------------------------------密--------------------------------封--------------------------线------------------------------------------------- 密 封 线 内 不 要 答 题A .100×103=106;B .1000×10100=103000;C .1002n×1000=104n+3; D .1005×10=10005=101510、 y x y x n n 123)6(-∙-的计算结果是( )A .21318y x n -;B .31236y x n --;C .y x n 13108--;D .313108y x n -二填空题(每题3分、共24分)1、在二元一次方程8512-=-y x 中,用含x 的代数式表示y ,则y = ;用含y 的代数式表示x ,则x = 。
湘教版七年级下册数学期末考试试卷含答案
湘教版七年级下册数学期末考试试题一、单选题1.下列各图标中,是轴对称图形的个数有( )A .1个B .2个C .3个D .4个2.以{x =1x =−1为解的二元一次方程组是( ) A .{x +x =0x −x =2B .{x +x =0x −x =−2C .{x +x =0x −x =1D .{x +x =0x −x =−1 3.若x 2−x 2=3,则(x +x )2⋅(x −x )2的值是( )A .3B .6C .9D .184.如图,AB ∥CD ,AE 平分∠xxx 交CD 于点E ,若∠x =40°,则∠xxx 的度数是( )A .40°B .70°C .110°D .130°5.如图,直线a 、b 被直线c 所截,下列条件能使a ∥b 的是( )A .∠1=∠3B .∠1=∠6C .∠2=∠6D .∠5=∠76.把x 2y ﹣2y 2x+y 3分解因式正确的是A .y (x 2﹣2xy+y 2)B .x 2y ﹣y 2(2x ﹣y )C .y (x ﹣y )2D .y (x+y )2 7.有一组数据:3,5,5,6,7,这组数据的众数为( )A .3B .5C .6D .78.有大小两种圆珠笔,3枝大圆珠笔和2枝小圆珠笔的售价14元,2枝大圆珠笔和3枝小圆珠笔的售价11元.设大圆珠笔为x 元/枝,小圆珠笔为y 元/枝,根据题意,列方程组正确的是( )A .{3x −2x =112x +3x =14B .{3x +2x =112x +3x =14C .{14x +11x =32x +3x =11D .{3x +2x =142x +3x =119.已知a 2+2a=1,则代数式2a 2+4a ﹣1的值为( ).A .0B .1C .﹣1D .﹣210.为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5m 长的彩绳截成2m 或1m 的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法( ) A .4B .3C .2D .1二、填空题11.计算(−2x 3y 2)3⋅4xy 2=________________________.12.因式分解:6(x ﹣3)+x (3﹣x )= . 13.已知21x y =⎧⎨=⎩是二元一次方程组7{1ax by ax by +=-=的解,则a b -= . 14.如图,将ABC ∆向右平移5cm 得到DEF ∆,如果ABC ∆的周长是16cm ,那么五边形ABEFD 的周长是________cm.15.如图,已知a∥b ,小亮把三角板的直角顶点放在直线b 上.若∥1=35°,则∥2的度数为_____.16.已知直线a b c ∥∥,a 与b 的距离是2cm ,b 与c 的距离是3cm ,则a 与c 的距离是________cm.17.某校七年级(1)班50名同学中,13岁的有25人,14岁的有23人,15岁的有2人,则这个班同学年龄的中位数是________岁.18.已知3m a =,2n a =,则2m n a +=________.三、解答题19.先化简,再求值:2(2)(2)(2)x x x +---,其中14x =20.如图是网格中由五个小正方形组成的图形,根据下列要求画图(涂上阴影). (1)图①中,添加一块小正方形,使之成为轴对称图形,且有两条对称轴;(2)图②中,添加一块小正方形,使之成为轴对称图形,且只有一条对称轴(画出一个即可).21.给出三个多项式:a2+3ab﹣2b2,b2﹣3ab,ab+6b2,任请选择两个多项式进行加法运算,并把结果分解因式.22.如图①是大众汽车的图标,图②是该图标抽象的几何图形,且AC∥BD,∥A=∥B,试猜想AE与BF的位置关系,并说明理由.23.某班在甲、乙两名同学中选拔一人参加学校数学竞赛,在相同的测试条件下,两人5次测试成绩(单位:分)如下:回答下列问题: (1)请分别求出甲、乙两同学测试成绩的平均数;(2)经计算知26S =甲,226S =乙,你认为选拔谁参加比赛更合适,说明理由.24.某同学在计算3(4+1)(24+1)时,把3写成(4﹣1)后,发现可以连续运用两数和乘以这两数差公式计算:3(4+1)(24+1)=(4﹣1)(4+1)(24+1)=(24﹣1)(24+1)=216﹣1=255. 请借鉴该同学的经验,计算:2481511111111122222⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭.25.某企业在“蜀南竹海”收购毛竹,直接销售,每吨可获利100元,进行粗加工,每天可加工8吨,每吨可获利800元;如果对毛竹进行精加工,每天可加工1吨,每吨可获利4000元.由于受条件限制,每天只能采用一种方式加工,要求将在一月内(30天)将这批毛竹93吨全部销售.为此企业厂长召集职工开会,让职工讨论如何加工销售更合算. 甲说:将毛竹全部进行粗加工后销售;乙说:30天都进行精加工,未加工的毛竹直接销售;丙说:30天中可用几天粗加工,再用几天精加工后销售;请问厂长应采用哪位说的方案做,获利最大?26.学习完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题.(1)小明遇到了下面的问题:如图l1∥l2,点P在l1、l2内部,探究∠A,∠APB,∠B的关系.小明过点P作l1的平行线,可得到∠APB,∠A,∠B之间的数量关系是:∠APB=________________.(2)如图2,若AC∥BD,点P在AC、BD外部,∠A,∠B,∠APB的数量关系如何?为此,小明进行了下面不完整的推理证明.请将这个证明过程补充完整,并在括号内填上依据.过点P作PE∥AC.∥∠A=∠APE(________________________________)∥AC∥BD,∥BD∥PE(________________________________)∥∠B=∠BPE,∥∠APB=∠BPE−∠APE,∥∠APB=________________.(________________)(3)随着以后的学习你还会发现平行线的许多用途.如图3,在小学中我们已知道,三角形ABC中,∠A+∠B+∠C=180°.试构造平行线说明理由.参考答案1.C【解析】【分析】根据轴对称图形的定义判断即可.【详解】解:第一、二、四个图形沿如下图所示直线折叠后,直线两旁的部分能够完全重合,是轴对称图形,而第三个图形则不可以,所以轴对称图形有3个.故选:C【点睛】本题考查了轴对称图形,判断轴对称图形的关键是看这个图形能否沿一条直线折叠后,直线两旁的部分能够完全重合.2.A【解析】【分析】将{x=1y=−1代入四个选项判断即可.【详解】解:将{x=1y=−1代入A得{1−1=01−(−1)=2,满足两个方程,故A正确.故选:A【点睛】本题考查了二元一次方程组的解,即二元一次方程组的解是构成二元一次方程组的两个方程的公共解,本题采用排除法较为简便.3.C【解析】【分析】根据平方差公式可得(a+b)⋅(a−b)的值,易知(a+b)2⋅(a−b)2的值.【详解】解:由a2−b2=3可知(a+b)⋅(a−b)=3,所以(a+b)2⋅(a−b)2=[(a+b)⋅(a−b)]2=32=9故选:C【点睛】本题考查了平方差公式,利用平方差公式对式子适当变形是解题的关键.4.B【解析】【分析】根据平行线的性质可知∠BAC,由角平分线的性质可知∠BAE,根据两直线平行内错角相等可得结论.【详解】解:∵AB∥CD∴∠C+∠BAC=180°,∠AEC=∠BAE∵∠C=40°∴∠BAC=140°∵AE平分∠CAB∴∠BAE=12∠BAC=70°∴∠AEC=70°故选:B【点睛】本题考查了平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补,熟练应用平行线的性质求角的度数是解题的关键.5.C【解析】【分析】根据平行线的判定定理判断即可.【详解】解:∠1,∠3是对顶角,不能判断a∥b,A错误;∵∠6=∠8,∠1=∠6∴∠1=∠8,∠1,∠8是同旁内角,故其相等不能判断a∥b,B错误;∵∠6=∠8,∠2=∠6∴∠2=∠8,∠2,∠8是内错角,内错角相等,两直线平行,所以a∥b,C正确;∠5,∠7是对顶角,不能判断a∥b,D错误;故选:C【点睛】本题考查了平行线的判定,熟练掌握其判定方法是解题的关键.平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.6.C【解析】【详解】分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式. 因此,先提取公因式a 后继续应用完全平方公式分解即可:()()222322x y 2y x y y x 2xy y y x y -+=-+=- 故选C7.B【解析】试题分析:根据众数是一组数据中出现次数最多的数值,5 出现了两次,其它数均只出现一次,因此众数是5.故选B考点:众数8.D【解析】【分析】根据“3枝大圆珠笔和2枝小圆珠笔的售价14元,2枝大圆珠笔和3枝小圆珠笔的售价11元”可得方程组.【详解】解:根据题意得{3x +2y =142x +3y =11故选:D本题考查了二元一次方程组的实际应用,理清题中等量关系是解题的关键.9.B【解析】试题分析:所求代数式前两项提取2,变形为2(a 2+2a )-1,将已知等式代入得:2×1-1=1,故选B .考点:代数式求值.10.B【解析】【分析】可设2米的彩绳有x 条,1米的彩绳有y 条,根据题意可列出关于x ,y 的二元一次方程,为了不造成浪费,取x ,y 的非负整数解即可.【详解】解:设2米的彩绳有x 条,1米的彩绳有y 条,根据题意得2x +y =5,其非负整数解为: {x =0y =5 ,{x =1y =3 ,{x =2y =1,故在不造成浪费的前提下有三种截法. 故选:B【点睛】本题考查了二元一次方程的应用,二元一次方程的解有无数个,但在实际问题中应选择符合题意的解.正确理解题意是解题的关键.11.−32x 10y 8【解析】先由幂的乘方法则计算乘方,再根据单项式乘单项式的计算方法计算即可.【详解】解:(−2x3y2)3⋅4xy2=−8x9y6⋅4xy2=−32x10y8故答案为:−32x10y8【点睛】本题考查了单项式乘单项式,有乘方先算乘方,单项式乘单项式即把它们的系数、相同字母的幂分别相乘,对于只在一个单项式中含有的字母,则连同它的指数作为积的一个因式. 12.(x﹣3)(6﹣x)【解析】试题分析:原式变形后,提取公因式即可得到结果.解:原式=6(x﹣3)﹣x(x﹣3)=(x﹣3)(6﹣x),故答案为(x﹣3)(6﹣x)点评:此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.13.-1【解析】把21xy=⎧⎨=⎩代入二元一次方程组71ax byax by+=⎧⎨-=⎩得2721a ba b+⎧⎨-⎩=①=②①+②得:4a=8,解得:a=2,把a=2代入①得:b=3,∥a -b=2-3=-1;故答案为-1.14.26【解析】【分析】根据平移的性质对应线段相等可知AB+EF+DF 的值,由对应点所连线段相等且等于平移距离可知AD 、BE 的长,易知周长.【详解】解:由平移可得:5,,,AD BE cm DE AB DF AC EF BC =====,所以16ABC AB DF EF AB AC BC C cm ∆++=++==,五边形ABEFD 的周长为165526AB DF EF AD BE cm ++++=++=.故答案为:26【点睛】本题考查了平移的性质,平移前后的两个图形,对应线段平行且相等,对应角相等,对应点所连接的线段平行且相等,利用平移线段的性质可求线段的长度,利用角的性质可求平移图形中角的度数,灵活应用平移的性质是解题的关键.15.55°.【解析】【分析】∥1和∥3互余,即可求出∥3的度数,根据平行线的性质:两直线平行,同位角相等可求∥2的度数【详解】如图所示:因为∥∥∥∥∥∥∥∥∥∥∥b ∥∥∥∥1=35°,所以∥3=90°-35°=55°,因为a ∥b ,所以∥2=∥3=55°故填55°【点睛】本题主要考查平行线的基本性质,熟练掌握基础知识是解题关键16.1或5【解析】【分析】直线c 可能在直线b 的上方或下方,分情况讨论,根据平行线间的距离即可求解【详解】解:如图,若直线c 在直线b 的上方,因为直线a b c ∥∥,所以a 与c 的距离321=-=.如图,若直线c 在直线b 的下方,因为直线a b c ∥∥,所以a 与c 的距离325=+=.故答案为:1或5【点睛】本题考查了平行线间的距离,平行线间的距离处处相等,正确理解平行线间距离的含义是解题的关键.17.13.5【解析】【分析】将年龄按从小到大顺序排列,取最中间两个数的平均值即可.【详解】解:由题意可知处于最中间位置的年龄为13岁和14岁,所以这个班同学年龄的中位数是131413.52+=岁.故答案为:13.5【点睛】本题考查了中位数,将一列数据按从小到大的顺序排列,处于最中间位置的数(处于最中间位置的有两个数则取其平均数)即为中位数,正确理解中位数的定义是求中位数的关键18.12【解析】【分析】根据同底数幂乘法的逆运算可知22m n m n a a a +=⋅,由幂的乘方的逆运算可知22()m n m n a a a a ⋅=⋅,再将3m a =,2n a =代入求解.【详解】解:2222()3212m n m n m n a a a a a +=⋅=⋅=⨯=.故答案为:12【点睛】本题考查了幂的运算,同底数幂的乘法逆运算m n m n a a a +=⋅,幂的乘方的逆运算 ()()mn m n n m a a a ==,灵活利用幂的逆运算将所求式转化为已知式是解题的关键. 19.原式48x =-;-7【解析】【分析】根据平方差公式和完全平方差公式先化简原式再代入求值即可.【详解】解:2(2)(2)(2)x x x +---()22444x x x =---+22444x x x =--+-48x =- 把14x =代入上式,得:1484874x -=⨯-=- 【点睛】 本题考查了乘法公式,平方差公式22()()a b a b a b +-=-,完全平方公式222()2a b a ab b ±=±+,灵活应用乘法公式进行整式的化简是解题的关键.20.见解析.【解析】【分析】(1)所添加的正方形要使图形有两条对称轴,故可添加在第二排第二列的位置;(2)要求只有一条对称轴,故可添加在第三排第五列的位置.【详解】解:(1)如图即为所求(2)如图即为所求【点睛】本题考查了轴对称图形,熟练掌握轴对称图形的含义是画轴对称图形的前提.21.(a+b )(a ﹣b )【解析】试题分析:根据平方差公式,可得答案.试题解析:(a2+3ab﹣2b2)+(b2﹣3ab)=a2+3ab﹣2b2+b2﹣3ab=a2﹣b2=(a+b)(a﹣b).22.AE∥BF,理由见解析.【解析】【分析】根据两直线平行同位角相等,可判断∥B∥∥DOE,再根据∥A∥∥B,即可得到∥DOE∥∥A,进而得出AC∥BD∥【详解】AC∥BD,理由:∥AE∥BF,∥∥B=∥DOE.∥∥A=∥B,∥∥DOE=∥A,∥AC∥BD.【点睛】本题考查了平行线的判定与性质,解答本题的关键是掌握:两直线平行同位角相等;同位角相等两直线平行∥23.(1)83,83;(2)选拔甲参加比赛更合适,理由见解析.【解析】【分析】(1)求出甲乙两人各自的总成绩再除以测试次数即可;(2)方差越小数据越稳定,结合两人的平均分及方差可判断谁更合适.【详解】解:(1)甲的平均分为1(7986828583)835++++= 乙的平均分为:1(8879908177)835++++=(2)选拔甲参加比赛更合适,因为甲、乙两人的平均分相同.说明两人水平差不多,而22S S <甲乙,说明甲比乙发挥稳定,所以选拔甲参加比赛更合适 【点睛】本题主要考查了平均数和方差,平均数常用来反映数据的总体趋势,方差用来反映数据的稳定性,方差越小越稳定,熟练掌握平均数的定义及方差的含义是解题的关键.24.2.【解析】试题分析:原式变形后,利用平方差公式计算即可得到结果.试题解析:原式=24815111111211111222222⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+++++ ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=1615112122⎛⎫-+ ⎪⎝⎭=2. 考点:平方差公式.25.(1)74400元;(2)126300元;(3)第三种方案获利最大分析:(1)、若将毛竹全部进行粗加工后销售,则获利为93×800元;(2)、30天都进行精加工,则可加工30吨,可获利30×4000,未加工的毛竹63吨直接销售可获利63×100,因此共获利30×4000+63×100;(3)、30天中可用几天粗加工,再用几天精加工后销售,则可根据“时间30天”,“共93吨”列方程组进行解答.详解:(1)若将毛竹全部进行粗加工后销售,则可以获利93×800=74 400元;(2)30天都进行精加工,可加工数量为30吨,此时获利30×4000=120 000元,未加工的毛竹63吨直接销售可获利63×100=6300元,因此共获利30×4000+63×100=126300元;(3)设x天粗加工,y天精加工,则,解之得所以9天粗加工数量为9×8=72吨,可获利72×800=57600元,21天精加工数量为21吨可获利21×4000=84000,因此共获利141600,所以(3)>(2)>(1),即第三种方案获利最大.点睛:此题关键是把实际问题抽象到解方程组中,利用方程组来解决问题,属于基础题型.得出等量关系是解题的关键.26.(1)∠APB=∠A+∠B;(2)见解析;(3)见解析【解析】【分析】(1)由两直线平行内错角相等可得∠APB,∠A,∠B之间的数量关系;(2)过点P作PE∥AC,易知BD∥PE,根据两直线平行内错角相等可得∠A=∠APE,∠B=∠BPE等量代换可得结论;(3)过点A作直线DE∥BC,由两直线平行内错角相等可得∠DAB=∠B,∠EAC=∠C,由平角的定义知∠DAB+∠BAC+∠EAC=180°,等量代换即可.1解:(1)如图,过点P作PE∥AC.∥∠A=∠APE∥AC∥BD∥BD∥PE∥∠B=∠BPE∥∠APB=∠BPE+∠APE,∥∠APB=∠A+∠B所以∠APB,∠A,∠B之间的数量关系是:∠APB=∠A+∠B(2)过点P作PE∥AC.∥∠A=∠APE(两直线平行,内错角相等)∥AC∥BD,∥BD∥PE(如果两条直线都和第三条直线平行,那么这两条件直线也平行)∥∠B=∠BPE,∥∠APB=∠BPE−∠APE,∥∠APB=∠B−∠A.(等量代换)(3)过点A作直线DE∥BC,∥DE∥BC.∥∠DAB=∠B,∠EAC=∠C(两直线平行,内错角相等)∥∠DAB+∠BAC+∠EAC=180°,∥∠BAC+∠B+∠C=180°(等量代换)【点睛】本题考查了平行线的判定和性质,通过构造平行线将角进行拆分或合并是解题的关键.1。
2018年湘教版七年级数学下期末复习试卷(一)(有答案)
重庆市江津区2017—2018学年湘教版版七年级数学下册期末复习试卷(一)解析版一.选择题(共10小题)1.下面的各组图案中,不能由其中一个经平移后得到另一个的是( )A .B .C .D .2.π、227,3.1416,0. 中,无理数的个数是( ) A .1个 B .2个 C .3个 D .4个3.如图,AB ∥CD ,∠ABK 的角平分线BE 的反向延长线和∠DCK 的角平分线CF 的反向延长线交于点H ,∠K ﹣∠H=27°,则∠K=( )A .76°B .78°C .80°D .82°4.点P (x ﹣1,x +1)不可能在( ) A .第一象限B .第二象限C .第三象限D .第四象限5.把图中的一个三角形先横向平移x 格,再纵向平移y 格,就能与另一个三角形拼合成一个四边形,那么x +y ( )A .是一个确定的值B .有两个不同的值C .有三个不同的值D .有三个以上不同的值6.在3,0,﹣2 )A .3B .0C .﹣2D 7.平面直角坐标系中,将三角形各点的纵坐标都减去﹣3,横坐标保持不变,所得图形与原图形相比( )A .向上平移了3个单位B .向下平移了3个单位C .向右平移了3个单位D .向左平移了3个单位8.若是方程组的解,则(a +b )•(a ﹣b )的值为( ) A .﹣353B .353C .﹣16D .169.某校对学生上学方式进行了一次抽样调查,如图是根据此次调查结果所绘制的一个未完成的扇形统计图,已知该校学生共有2560人,被调查的学生中骑车的有21人,则下列四种说法中,不正确的是( )A .被调查的学生有60人B .被调查的学生中,步行的有27人C .估计全校骑车上学的学生有1152人D .扇形图中,乘车部分所对应的圆心角为54°10.如图,是做课间操时,小明,小刚和小红三人的相对位置,如果用(4,5)表示小明的位置,(2,4)表示小刚的位置,则小红的位置可表示为( )A .(0,0)B .(0,1)C .(1,0)D .(1,2) 二.填空题(共8小题)11.已知:(x 2+y 2+1)2﹣4=0,则x 2+y 2= .12.如果点A 的坐标为(3,5),点B 的坐标为(0,﹣4),那么A 、B 两点的距离等于 .13.规定用符号[m ]表示一个实数m 的整数部分,例如:[23]=0,[3.14]=3.按此规定]的值为 .14.如图,已知∠1=∠2,∠D=78°,则∠BCD= 度.15.如图,将边长为2个单位的等边△ABC沿边BC向右平移1个单位得到△DEF,则四边形ABFD的周长为个单位.16.若不等式(a﹣3)x≤3﹣a的解集在数轴上表示如图所示,则a的取值范围是.17.小林每天下午5点放学时,爸爸总是从家开车按时到达学校接他回家,有一天学校提前一个小时放学,小林自己步行回家,在途中遇到开车来接他的爸爸,结果比平时早20分钟到家,则小林步行分钟遇到来接他的爸爸.18.在平面直角坐标系中,智多星做走棋的游戏,其走法是:棋子从原点出发,第1步向上走1个单位,第2步向上走2个单位,第3步向右走1个单位,第4步向上走1个单位……依此类推,第n步的走法是:当n被3除,余数为2时,则向上走2个单位;当走完第2018步时,棋子所处位置的坐标是三.解答题(共6小题)19.计算:(1)解不等式组并在数轴上把解集表示出来;(2)解方程组.20.如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′.(1)在图中画出△A′B′C′,并写出点A′、B′、C′的坐标;(2)在y轴上求点P,使得△BCP与△ABC面积相等.21.典典同学学完统计知识后,随机调查了她家所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)扇形统计图中a=,b=;并补全条形统计图;(2)若该辖区共有居民3500人,请估计年龄在0~14岁的居民的人数.(3)一天,典典知道了辖区内60岁以上的部分老人参加了市级门球比赛,比赛的老人们分成甲、乙两组,典典很想知道甲乙两组的比赛结果,王大爷告诉说,甲组与乙组的得分和为110,甲组得分不低于乙组得分的1.5倍,甲组得分最少为多少?22.填空并完成以下证明:已知:点P在直线CD上,∠BAP+∠APD=180°,∠1=∠2.求证:AB∥CD,∠E=∠F.证明:∵∠BAP+∠APD=180°,(已知)∴AB∥.()∴∠BAP=.()又∵∠1=∠2,(已知)∠3=﹣∠1,∠4=﹣∠2,∴∠3=(等式的性质)∴AE∥PF.()∴∠E=∠F.()23.某企业在“蜀南竹海”收购毛竹,直接销售,每吨可获利100元,进行粗加工,每天可加工8吨,每吨可获利800元;如果对毛竹进行精加工,每天可加工1吨,每吨可获利4000元.由于受条件限制,每天只能采用一种方式加工,要求将在一月内(30天)将这批毛竹93吨全部销售.为此企业厂长召集职工开会,让职工讨论如何加工销售更合算.甲说:将毛竹全部进行粗加工后销售;乙说:30天都进行精加工,未加工的毛竹直接销售;丙说:30天中可用几天粗加工,再用几天精加工后销售;请问厂长应采用哪位说的方案做,获利最大?24.一玩具工厂用于生产的全部劳力为450个工时,原料为400个单位.生产一个小熊要使用15个工时、20个单位的原料,售价为80元;生产一个小猫要使用10个工时、5个单位的原料,售价为45元.在劳力和原料的限制下合理安排生产小熊、小猫的个数,可以使小熊和小猫的总售价尽可能高.请用你所学过的数学知识分析,总售价是否可能达到2200元?重庆市江津区2017—2018学年湘教版版七年级数学下册期末复习试卷(一)简析一.选择题(共10小题)1.C.2.B.3.B.4.D.5.B.6.C.7.A.8.C.9.C.10.D.二.填空题(共8小题)11.1.12.13.4.14.102.158.16.a<3.17.50.18.(672,2019)三.解答题(共6小题)19.计算:(1)解不等式组并在数轴上把解集表示出来;(2)解方程组.【分析】(1)先求出不等式组的解集,再在数轴上表示出来即可;(2)①+②得出4x=12,求出x,把x=3代入①求出y即可.【解答】解:(1)∵解不等式①得:x<1,解不等式②得:x≥﹣2,∴不等式组的解集为﹣2≤x<1,在数轴上表示为:;(2)∵①+②得:4x=12,解得:x=3.把x=3代入①得:6﹣y=7,解得:y=﹣1,∴原方程组的解是.【点评】本题考查了解二元一次方程组和解一元一次不等式组、在数轴上表示不等式组的解集,能求出不等式组的解集是解(1)的关键,能把二元一次方程组转化成一元一次方程是解(2)的关键.20.如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′.(1)在图中画出△A′B′C′,并写出点A′、B′、C′的坐标;(2)在y轴上求点P,使得△BCP与△ABC面积相等.【分析】(1)根据图形平移的性质画出△A′B′C′,并写出点A′、B′、C′的坐标即可(2)求出△ABC中BC边上的高,进而可得出结论.【解答】解:(1)如图,△A′B′C′即为所求.A′(0,4)B′(﹣1,1),C′(3,1);(2)如图,P(0,1)或(0,﹣5)).【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.21.典典同学学完统计知识后,随机调查了她家所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)扇形统计图中a=20%,b=12%;并补全条形统计图;(2)若该辖区共有居民3500人,请估计年龄在0~14岁的居民的人数.(3)一天,典典知道了辖区内60岁以上的部分老人参加了市级门球比赛,比赛的老人们分成甲、乙两组,典典很想知道甲乙两组的比赛结果,王大爷告诉说,甲组与乙组的得分和为110,甲组得分不低于乙组得分的1.5倍,甲组得分最少为多少?【分析】(1)根据“15~40”的百分比和频数可求总数,进而求出b和a的值.利用总数和百分比求出频数再补全条形图;(2)用样本估计总体即可;(3)首先设甲组得x分,则乙组得(110﹣x)分,由题意得不等关系:甲组得x分≥乙组得x 分×1.5,根据不等关系列出不等式,解不等式即可.【解答】解:(1)总人数:230÷46%=500(人),100÷500×100%=20%,60÷500×100%=12%;500×22%=110(人),如图所示:(2)3500×20%=700(人);(3)设甲组得x分,则乙组得(110﹣x)分,由题意得:x≥1.5(110﹣x),解得:x≥66.答:甲组最少得66分.【点评】此题主要考查了扇形统计图与条形统计图,以及一元一次不等式的应用,正确读图,能从图中得到正确的信息是解决问题的关键.22.填空并完成以下证明:已知:点P在直线CD上,∠BAP+∠APD=180°,∠1=∠2.求证:AB∥CD,∠E=∠F.证明:∵∠BAP+∠APD=180°,(已知)∴AB∥CD.(同旁内角互补两直线平行)∴∠BAP=∠APC.(两直线平行内错角相等)又∵∠1=∠2,(已知)∠3=∠BAP﹣∠1,∠4=∠APC﹣∠2,∴∠3=∠4(等式的性质)∴AE∥PF.(内错角相等两直线平行)∴∠E=∠F.(两直线平行内错角相等)【分析】根据平行线的性质和判定即可解决问题;【解答】解:∵∠BAP+∠APD=180°,(已知)∴AB∥CD.(同旁内角互补两直线平行)∴∠BAP=∠APC.(两直线平行,内错角相等)又∵∠1=∠2,(已知)∠3=∠BAP﹣∠1,∠4=∠APC﹣∠2,∴∠3=∠4(等式的性质)∴AE∥PF.(内错角相等两直线平行)∴∠E=∠F.(两直线平行内错角相等)故答案为CD,同旁内角互补两直线平行,∠APC,两直线平行内错角相等,∠BAP,∠APC,内错角相等两直线平行,两直线平行内错角相等;【点评】本题考查平行线的性质和判定、熟练掌握平行线的判定和性质是解决问题的关键.23.某企业在“蜀南竹海”收购毛竹,直接销售,每吨可获利100元,进行粗加工,每天可加工8吨,每吨可获利800元;如果对毛竹进行精加工,每天可加工1吨,每吨可获利4000元.由于受条件限制,每天只能采用一种方式加工,要求将在一月内(30天)将这批毛竹93吨全部销售.为此企业厂长召集职工开会,让职工讨论如何加工销售更合算.甲说:将毛竹全部进行粗加工后销售;乙说:30天都进行精加工,未加工的毛竹直接销售;丙说:30天中可用几天粗加工,再用几天精加工后销售;请问厂长应采用哪位说的方案做,获利最大?【分析】(1)若将毛竹全部进行粗加工后销售,则获利为93×800元;(2)30天都进行精加工,则可加工30吨,可获利30×4000,未加工的毛竹63吨直接销售可获利63×100,因此共获利30×4000+63×100;(3)30天中可用几天粗加工,再用几天精加工后销售,则可根据“时间30天”,“共93吨”列方程组进行解答.【解答】解:(1)若将毛竹全部进行粗加工后销售,则可以获利93×800=74 400元;(2)30天都进行精加工,可加工数量为30吨,此时获利30×4000=120 000元,未加工的毛竹63吨直接销售可获利63×100=6300元,因此共获利30×4000+63×100=126300元;(3)设x天粗加工,y天精加工,则解之得所以9天粗加工数量为9×8=72吨,可获利72×800=57 600元,21天精加工数量为21吨可获利21×4000=84 000,因此共获利141 600所以(3)>(2)>(1)即第三种方案获利最大.【点评】此题关键是把实际问题抽象到解方程组中,利用方程组来解决问题.24.一玩具工厂用于生产的全部劳力为450个工时,原料为400个单位.生产一个小熊要使用15个工时、20个单位的原料,售价为80元;生产一个小猫要使用10个工时、5个单位的原料,售价为45元.在劳力和原料的限制下合理安排生产小熊、小猫的个数,可以使小熊和小猫的总售价尽可能高.请用你所学过的数学知识分析,总售价是否可能达到2200元?【分析】本题在劳力和原料两个限制条件下,设出生产小熊小猫的个数分别为x和y,可列出关于x和y的两个不等式,由总售价为2200元还可以列出关于x和y的一个等式,三个式子结合就可以求出x和y看符合不符合条件,求出答案.【解答】解:设小熊和小猫的个数分别为x和y,总售价为z,则z=80x+45y=5(16x+9y)①根据劳力和原材料的限制,x和y应满足15x+10y≤450,20x+5y≤400化简3x+2y≤90(1)及4x+y≤80(2)当总售价z=2200时,由①得16x+9y=440(3)(2)•9得36x+9y≤720(4)(4)﹣(3)得20x≤720﹣440=280,即x≤14(A)得(5)(3)﹣(5)得,即x≥14(B)综合(A)、(B)可得x=14,代入(3)求得y=24当x=14,y=24时,有3x+2y=90,4x+y=80满足工时和原料的约束条件,此时恰有总售价z=80×14+45×24=2200(元)答:只需安排生产小熊14个、小猫24个,就可达到总售价为2200元.【点评】本题考查理解题意能力以及对于多个量进行分析根据数据列出不等式以及等式.本题要根据劳力和原料列出不等式,根据要达到的售价可列出等式.。
【湘教版】七年级数学下期末试卷(带答案)(1)
一、选择题1.学完《概率初步》这一章后,老师让同学结合实例说一说自己的认识,请你判断以下四位同学说法正确的是( )A .小智说,做3次掷图钉试验,发现2次钉尖朝上,因此钉尖朝上的概率是23B .小慧说,某彩票的中奖概率是5%,那么如果买100张彩票一定会有5张中奖C .小通说,射击运动员射击一次只有两种结果:中靶与不中靶,所以它们发生的概率都是12D .小达做了20次抛掷均匀硬币的试验,其中有5次正面朝上,15次正面朝下,他认为再做一次,正面朝上的概率是二分之一2.不透明的袋子中装有形状、大小、质地完全相同的5个球,其中2个黑球、3个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( )A .摸出的是3个白球B .摸出的是3个黑球C .摸出的是2个白球、1个黑球D .摸出的是2个黑球、1个白球3.下列事件中,是必然事件的是( )A .明天太阳从西边出来B .打开电视,正在播放《云南新闻》C .昆明是云南的省会D .小明跑完800米所用的时间恰好为1分钟4.下列命题正确的是( )A .全等三角形的对应边相等B .面积相等的两个三角形全等C .两个全等三角形一定成轴对称D .所有等腰三角形都只有一条对称轴 5.点Р在AOB ∠的角平分线上,点Р到OA 边的距离等于5,点Q 是OB 边上的任意一点,则下列选项正确的是( )A .5PQ >B .5PO ≥C . 5PQ <D .5PO ≤ 6.自新冠肺炎疫情发生以来,全国人民共同抗疫,各地积极普及科学防控知识.下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图形的是( ) A .B.C.D.7.如图,∠ACD是△ABC的一个外角,过点D作直线,分别交AC和AB于点E,H.则下列结论中错误的是()A.∠HEC>∠BB.∠B+∠ACB=180°-∠AC.∠B+∠ACB<180°D.∠B>∠ACD8.下列四个图形中,线段BE表示△ABC的高的是()A.B.C.D.9.如图,△ACB≌△A′C B′,∠ACB=70°,∠ACB′=100°,则∠BCA′度数是()A .40°B .35C .30°D .45°10.打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y (升)与时间x (分钟)之间满足某种函数关系,其函数图象大致为( )A .B .C .D .11.如果∠l 与∠2互补,∠2为锐角,则下列表示∠2余角的式子是( )A .90°-∠1B .∠1 - 90°C .∠1 + 90°D .180°-∠1 12.下列计算正确的是( ) A .()222x y x y +=+B .()32626m m =C .()2224x x -=-D .()()2111x x x +-=-二、填空题13.如图,A 、B 是边长1的小正方形组成的网格上的两个格点,在格点上任意放置点C (除去A 、B 两点),以A 、B 、C 三点为顶点能画出三角形的概率是_____.14.已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是_________.15.如图,点D 、E 分别在纸片的边AB 、AC 上.将沿着DE 折叠压平,使点A与点P 重合.若,则_____°.16.如图,顶点O 重合的AOB ∠与COD ∠,且90AOB COD ∠=∠=︒,若4AOD BOC ∠=∠,OE 为BOC ∠的平分线,则DOE ∠的度数为_____________.17.如图所示为一张三角形纸片,已知6cm AC =,8cm BC =,现将ABC 折叠,使点B 与点A 重合,折痕为DE ,则ACD △的周长为________cm .18.某市家庭电话月租费为25元,市内通话费平均每次为0.2元.若莹莹家上个月共打出市内电话a 次,那么上个月莹莹家应付话费y 与a 之间的关系为__;若莹莹家上个月共打出市内电话100次,那么莹莹家应付话费__元.19.如图,直线AB ∥CD ,OA ⊥OB ,若∠1=142°,则∠2=____________度.20.计算:()()13x x -+=________.三、解答题21.一个不透明的布袋里装有10个球,其中2个红球,3个白球,5个黄球,它们除颜色外其余都相同.(1)求摸出1个球是白球的概率;(2)摸到哪种颜色的球的概率最大?并说明理由;22.如图,方格图中每个小正方形的边长为1,点A ,B ,C 都是格点.(1)画出△ABC 关于直线MN 的对称图形△A ′B ′C ′;(2)直接写出线段BB ′的长度;(3)直接写出△ABC 的面积.23.如图,BC ⊥AD 于C ,EF ⊥AD 于F ,AB ∥DE ,分别交BC 于B ,交EF 于E ,且BC =EF .求证:AF =CD .24.某天,小明来到体育馆看球赛,进场时,发现门票还在家里,此时离比赛开始还有25min ,于是立即步行回家取票同时,他父亲从家里出发骑自行车以他3倍的速度给他送票,两人在途中相遇,相遇后小明立即坐父亲的自行车赶回体育馆.如图中线段AB 、OB 分别表示父子俩送票、取票过程中离体育馆的路程()s m 与所用时间(min)t 之间的图像,结合图像解答下列问题(假设骑自行车和步行的速度始终保持不变):(1)图中O 点表示________;A 点表示________;B 点表示________.(2)从图中可知,小明家离体育馆________m ,父子俩在出发后________min 相遇. (3)你能求出父亲与小明相遇时距离体育馆还有多远?(4)小明能否在比赛开始之前赶回体育馆?25.在一张地图上有、、A B C 三地,但地图被墨迹污染,C 地具体位置看不清楚,但知道C 地在A 地的北偏东30°方向,在B 地南偏东45°方向.(1)根据以上条件,在地图上画出C 地的位置;(2)直接写出ACB ∠的度数.26.(知识生成)我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式,例如图1可以得到()2222a b a ab b +=++,基于此,请解答下列问题:(1)根据图2,写出一个代数恒等式:_________.(2)利用(1)中得到的结论,解决下面的问题:若10a b c ++=,35ab ac bc ++=,则222a b c ++=__________.(3)小明同学用图3中x 张边长为a 的正方形,y 张边长为b 的正方形,z 张宽、长分别为a 、b 的长方形纸片拼出一个面积为()()33++a b a b 长方形,则x y z ++=_________.(知识迁移)(4)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图4表示的是一个边长为x 的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图4中图形的变化关系,写出一个代数恒等式:_________.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】试验次数足够大时,频率才可以表示概率,A选项试验次数过少,所以错误;5%是每张均有%的可能中奖,而不是100张彩票一定会有5张中奖,偷换概念;概率题一定要考虑样本空间,然后确定样本,C中还有脱靶的可能,所以错误;抛掷一枚均匀硬币,结果只有两种正面朝上和正面朝下,且每次发生的可能是相等的,每做一次,正面朝上的概率都是二分之一.【详解】小智说,做3次掷图钉试验,发现2次钉尖朝上,但是试验次数少,因此不能确定钉尖朝上的概率,所以A错误;小慧说,某彩票的中奖概率是5%,那么如果买100张彩票不一定会有5张中奖,所以B 错误;小通说,射击运动员射击一次只有两种结果:中靶与不中靶,所以它们发生的概率都是1 2不正确,中靶与不中靶不是等可能事件,一般情况下,还有脱靶的可能,所以C错误;小达做了20次抛掷均匀硬币的试验,其中有5次正面朝上,15次正面朝下,他认为再做一次,正面朝上的概率是二分之一,所以D正确.故选:D.【点睛】本题考察了频率和概率的区别,等可能时间概率的计算;在初中课程中认为当试验次数足够大时,频率可以表示概率;等可能事件中,n件事发生的概率都是相等的,因此每件事发生的概率是1n.2.B解析:B 【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、有可能三个都是白球,是随机事件,故A不符合题意;B、不可能3个都是黑球,是不可能事件,故B符合题意;C、有可能摸出的是2个白球、1个黑球,是随机事件,故C不符合题意;D、有可能是摸出的是2个黑球、1个白球,是随机事件,故D不符合题意;故选:B.【点睛】考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.C解析:C【分析】根据必然事件、随机事件、不可能事件的定义逐项判断即可得.【详解】A、“明天太阳从西边出来”是不可能事件,此项不符题意;B、“打开电视,正在播放《云南新闻》”是随机事件,此项不符题意;C、“昆明是云南的省会”是必然事件,此项符合题意;D、“小明跑完800米所用的时间恰好为1分钟”是随机事件,此项不符题意;故选:C.【点睛】本题考查了必然事件、随机事件、不可能事件,掌握理解各定义是解题关键.4.A解析:A【分析】分别利用全等三角形的性质以及等腰三角形的性质判断得出即可.【详解】解:A、全等三角形的对应边相等,是真命题;B、面积相等的两个三角形不一定全等,原命题是假命题;C、两个全等三角形不一定成轴对称,原命题是假命题;D、所有等腰三角形不一定都只有一条对称轴,如等边三角形有三条对称轴,原命题是假命题;故选:A.【点睛】本题主要考查了命题与定理,熟练掌握几何性质与判定是解题的关键.5.B解析:B【分析】根据角平分线上的点到角的两边距离相等可得点P到OB的距离为5,再根据垂线段最短解答.【详解】∵点P在∠AOB的平分线上,点P到OA边的距离等于5,∴点P到OB的距离为5,∵点Q是OB边上的任意一点,∴PQ≥5.故选:B.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.6.D解析:D【分析】根据轴对称图形的概念判断即可.【详解】解:A、不是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、是轴对称图形;故选:D.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.7.D解析:D【分析】三角形的一个外角大于任何一个和它不相邻的一个内角,根据以上定理逐个判断即可.【详解】解:A、∵∠HEC>∠AHD,∠AHD>∠B,∴∠HEC>∠B,故本选项不符合题意;B、∵∠B+∠ACB+∠A=180°,∴∠B+∠ACB=180°-∠A,故本选项不符合题意;C、∵∠B+∠ACB+∠A=180°,∴∠B+∠ACB<180°,故本选项不符合题意;D、∠B<∠ACD,故本选项符合题意;故选:D.【点睛】本题考查了三角形内角和定理和三角形的外角性质的应用,能灵活运用定理进行推理是解题的关键.8.C解析:C【分析】根据三角形高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC的高,再结合图形进行判断.【详解】解:线段BE是△ABC的高的图是选项C.故选:C.【点睛】本题考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.熟记定义是解题的关键.9.A解析:A【分析】根据已知ACB≌A′CB′,得到∠A′CB′=∠ACB=70︒,再通过∠ACB′=100︒,继而利用角的和差求得∠BCB′=30︒,进而利用∠BCA′=∠A′CB′-∠BCB′得到结论.【详解】解:∵ACB≌A′CB′,∴∠A′CB′=∠ACB=70︒,∵∠ACB′=100︒,∴∠BCB′=∠ACB′-∠ACB=30︒,∴∠BCA′=∠A′CB′-∠BCB′=40︒,故选:A.【点睛】本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.10.D解析:D【详解】解:因为进水时水量增加,函数图象的走势向上,所以可以排除B,清洗时水量大致不变,函数图象与x轴平行,排水时水量减少,函数图象的走势向下,排除A,对于C、D,因为题目中明确说明了一开始时洗衣机内无水.故选D.11.B解析:B【分析】首先根据补角的定义可得∠2=180°-∠1,再根据余角定义可得∠2余角的式子是90°-∠2,再进行等量代换即可.【详解】解:∵∠1与∠2互补,∴∠1+∠2=180°,∴∠2=180°-∠1,∴∠2余角的式子是,90°-∠2=90°-(180°-∠1)=∠1-90°,故选:B .【点睛】本题主要考查了补角和余角,关键是掌握余角和补角的定义.12.D解析:D【分析】根据完全平方公式,平方差公式和积的乘方公式分别判断即可.【详解】A. ()2222x y x xy y +=++,故原选项错误;B.()32628m m =,故原选项错误;C.()22244x x x -=-+,故原选项错误;D. ()()2111x x x +-=-,故选项正确. 故选:D .【点睛】本题考查完全平方公式,平方差公式和积的乘方公式.熟记公式是解题关键.二、填空题13.3134【解析】【分析】在5×5的网格中共有36个格点除去AB 两点有34个格点再找到以ABC 三点为顶点画出三角形的格点数即可利用概率公式求解【详解】在5×5的网格中共有36个格点除去AB 两点有34个 解析:【解析】【分析】在5×5的网格中共有36个格点,除去A 、B 两点有34个格点,再找到以A 、B 、C 三点为顶点画出三角形的格点数,即可利用概率公式求解.【详解】在5×5的网格中共有36个格点,除去A. B 两点有34个格点,而以A. B. C 三点为顶点画出三角形的格点有31个,故以A. B. C 三点为顶点能画出三角形的概率是31÷34=. 故答案为:.本题考查的知识点是概率公式,解题的关键是熟练的掌握概率公式.14.【解析】试题分析:先求出棕色所占的百分比再根据概率公式列式计算即可得解棕色所占的百分比为:1﹣20﹣15﹣30﹣15=1﹣80=20所以P (绿色或棕色)=30+20=50=考点:(1)概率公式;(2 解析:12【解析】试题分析:先求出棕色所占的百分比,再根据概率公式列式计算即可得解.棕色所占的百分比为:1﹣20%﹣15%﹣30%﹣15%=1﹣80%=20%, 所以,P (绿色或棕色)=30%+20%=50%=.考点:(1)、概率公式;(2)、扇形统计图15.136°【解析】【分析】根据三角形的内角和等于180°求出∠ADE+∠AED 再根据翻折变换的性质可得∠PDE=∠ADE ∠PED=∠AED 然后利用平角等于180°列式计算即可得解【详解】解:∵∠A=6解析:【解析】【分析】根据三角形的内角和等于180°,求出∠ADE+∠AED ,再根据翻折变换的性质可得∠PDE=∠ADE ,∠PED=∠AED ,然后利用平角等于180°列式计算即可得解.【详解】解:∵∠A=68°,∴∠ADE+∠AED=180°-68°=112°,∵△ABC 沿着DE 折叠压平,A 与P 重合,∴∠PDE=∠ADE ,∠PED=∠AED ,∴∠1+∠2=180°-(∠PED+∠AED )+180°-(∠PDE+∠ADE )=360°-2×112°=136°. 故答案为:136°.【点睛】本题考查了三角形的内角和定理,翻折变换的性质,平角的意义,渗透整体思想的利用,掌握三角形的内角和180°是解决问题的关键. 16.【分析】由题意先得到结合求出的度数然后求出即可【详解】解:根据题意∵∴∵∴∵为的平分线∴∴故答案为:72【点睛】本题考查了角平分线的定义余角的性质以及几何图形中求角的度数解题的关键是掌握题意正确理解 解析:72︒【分析】由题意,先得到180AOD BOC ∠+∠=︒,结合4AOD BOC ∠=∠,求出BOC ∠的度数,然后求出DOE ∠即可.解:根据题意,∵90AOB COD ∠=∠=︒,∴9090180AOD BOC AOB COD ∠+∠=∠+∠=︒+︒=︒,∵4AOD BOC ∠=∠,∴36BOC ∠=︒,∵OE 为BOC ∠的平分线,∴18BOE COE ∠=∠=︒,∴901872DOE COD COE ∠=∠-∠=︒-︒=︒.故答案为:72︒.【点睛】本题考查了角平分线的定义,余角的性质,以及几何图形中求角的度数,解题的关键是掌握题意,正确理解图形中角的关系,从而进行计算.17.14【分析】根据折叠的性质得到AD=BD 即可求出答案【详解】由折叠得:AD=BD ∵∴的周长=AC+AD+CD=AC+BC=6cm+8cm=14cm 故答案为:14【点睛】此题考查折叠的性质:折叠前后对解析:14【分析】根据折叠的性质得到AD=BD ,即可求出答案.【详解】由折叠得:AD=BD ,∵6cm AC =,8cm BC =,∴ACD △的周长=AC+AD+CD=AC+BC=6cm+8cm=14cm ,故答案为:14.【点睛】此题考查折叠的性质:折叠前后对应的线段相等,熟记性质是解题的关键.18.y=25+02a45【分析】根据题意莹莹家的电话费用是月租费+通话费即y=25+02a 若上个月共打出电话100次根据所求函数关系式计算即可【详解】∵应付话费=月租费+通话费∴y=25+02a ;将a=解析:y=25+0.2a 45【分析】根据题意,莹莹家的电话费用是月租费+通话费,即y=25+0.2a ,若上个月共打出电话100次,根据所求函数关系式计算即可.【详解】∵应付话费=月租费+通话费,∴y=25+0.2a ;将a=100代入上式,则话费=25+0.2×100=45(元).本题考查了根据实际问题列一次函数关系式,解题的关键是根据题意,找出等量关系,然后列出含有x、y的式子,最后整理变形为一次函数的一般形式.19.52【分析】根据平行线的性质可得∠OED=∠2再根据∠O=90°∠1=∠OED+∠O=142°即可求得答案【详解】∵AB∥CD∴∠OED=∠2∵OA⊥OB∴∠O=90°∵∠1=∠OED+∠O=142解析:52【分析】根据平行线的性质可得∠OED=∠2,再根据∠O=90°,∠1=∠OED+∠O=142°,即可求得答案.【详解】∵AB∥CD,∴∠OED=∠2,∵OA⊥OB,∴∠O=90°,∵∠1=∠OED+∠O=142°,∴∠2=∠1﹣∠O=142°﹣90°=52°,故答案为52.【点睛】本题考查了平行线的性质,垂直的定义,三角形外角的性质,熟练掌握相关知识是解题的关键.20.【分析】根据多项式乘以多项式法则进行计算即可得到答案【详解】=故答案为:【点睛】此题考查多项式乘以多项式法则:用一个多项式的每一项乘以另一个多项式中的每一项再将结果合并同类项熟记乘法法则是解题的关键解析:223+-x x【分析】根据多项式乘以多项式法则进行计算即可得到答案.【详解】()()-+=233x x13+--=223x x x+-,x x故答案为:223+-.x x【点睛】此题考查多项式乘以多项式法则:用一个多项式的每一项乘以另一个多项式中的每一项,再将结果合并同类项,熟记乘法法则是解题的关键.三、解答题21.(1)摸出1个球是白球的概率310;(2)袋子中黄色球的个数最多.【解析】【分析】(1)用白色球的个数除以球的总个数即可得;(2)那种球的数量最多,摸到那种球的概率就大.【详解】(1)∵袋子中共有10个球,其中白球有3个,∴摸出1个球是白球的概率310;(2)摸到黄色球的概率最大,因为袋子中黄色球的个数最多.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=m n22.(1)见解析;(2)6;(3)17 2【分析】(1)由轴对称的性质,首先连接对称点,然后连接线段即可;(2)由作出的图,查格子数目直接可求BB';(3)利用割补法△ABC的面积=长方形面积-三个直角三角形面积.【详解】(1)如图:(2)由图可求BB'=6;(3)11117 454141532222S=⨯-⨯⨯-⨯⨯-⨯⨯=.【点睛】本题考查了轴对称图形的做法,轴对称图形的性质,和割补法求组合图形的面积,将求△ABC的面积转化为求长方形面积-三个直角三角形面积,是解决本题的关键.23.证明见解析.【分析】由BC⊥AD,EF⊥AD得∠EFD=∠BCA=90°,由AB∥DE,得∠D=∠A,又BC=EF,从而△ABC≌△DEF,则AC=FD, AF=CD.【详解】证明:∵BC⊥AD,EF⊥AD,∴∠EFD=∠BCA=90°∵AB∥DE,∴∠D=∠A∵BC=EF,∴△ABC≌△DEF,∴AC=FD,∴AF=CD.【点睛】本题考查了全等三角形的判定和性质,熟练掌握全等三角形的判定方法是解题的关键.24.(1)体育馆,小明家,小明与他父亲相遇的地方;(2)3600,15;(3)父亲与小明相遇时距离体育馆还有900m;(4)小明能在比赛开始之前赶回体育馆.【分析】(1)观察图象得到图中线段AB、OB分别表示父、子送票、取票过程,于是得到O点表示体育馆,A点表示小明家;B点表示小明与他父亲相遇的地方;(2)观察图象得到小明家离体育馆有3600米,小明到相遇地点时用了15分钟,则得到父子俩在出发后15分钟相遇;(3)设小明的速度为x米/分,则他父亲的速度为3x米/分,利用父子俩在出发后15分钟相遇得到15×x+3x×15=3600,解得x=60米/分,则父亲与小明相遇时距离体育馆还有15x=900米;(4)由(3)得到从B点到O点的速度为3x=180米/秒,则从B点到O点的所需时间=900180=5(分),得到小明取票回到体育馆用了15+5=20分钟,小于25分钟,可判断小明能在比赛开始之前赶回体育馆.【详解】解:(1)∵图中线段AB、OB分别表示父、子送票、取票过程,∴O点表示体育馆,A点表示小明家;B点表示小明与他父亲相遇的地方;(2)∵O点与A点相距3600米,∴小明家离体育馆有3600米,∵从点O点到点B用了15分钟,∴父子俩在出发后15分钟相遇;(3)设小明的速度为x米/分,则他父亲的速度为3x米/分,根据题意得15×x+3x×15=3600,解得x=60米/分,∴15x=15×60=900(米)即父亲与小明相遇时距离体育馆还有900米;(4)∵从B点到O点的速度为3x=180米/秒,∴从B点到O点的所需时间=900=5(分),180而小明从体育馆到点B用了15分钟,∴小明从点O到点B,再从点B到点O需15分+5分=20分,∵小明从体育馆出发取票时,离比赛开始还有25分钟,∴小明能在比赛开始之前赶回体育馆.故答案为:体育馆,小明家,小明与他父亲相遇的地方;3600,15;900;小明能在比赛开始之前赶回体育馆.【点睛】本题考查了函数图象:函数图象反映两个变量之间的变化情况,结合图象信息,读懂题目意思,从复杂的信息中分离出数学问题即相遇问题是解决本题的关键.25.(1)见详解;(2)105°.【分析】(1)过点A、B作正北方向,再据方位角的含义画射线BX和AY,两射线之交点即是C 地;(2)记过点A的正北方向线与射线BX之交点为D,先求得∠CDA的度数,最后由三角形内角和为180°计算得∠ACB的度数.【详解】(1)如下图,第一步过B作m的平行线BS,以B为顶点作射线BX,使∠SBX=45°;第二步过A作m的平行线AN交BX于点D,以A为顶点作射线AY,使∠NAY=30°;则射线BX与射线AY的交点就是C地.(2)如上图,由C地在B地南偏东45°方向得∠SBX=45°∵SB∥m,AN∥m∴SB∥AN∴∠ADC=∠SBX=45°由C 地在A 地的北偏东30°方向得∠NAY=30°,∴∠ACB=180°-∠ADC-∠NAY=180°-45°-30°=105°.【点睛】此题考查方位角、平行线等知识,其中理解方位角正确画出图形是关键.26.(1)()2222222a b c a b c ab ac bc ++=+++++;(2)30;(3)16;(4)()()311x x x x x -=+-.【分析】(1)依据正方形的面积=(a+b+c )2;正方形的面积=a 2+b 2+c 2+2ab+2ac+2bc ,可得等式; (2)依据a 2+b 2+c 2=(a+b+c )2-2ab-2ac-2bc ,进行计算即可;(3)依据所拼图形的面积为:xa 2+yb 2+zab ,而(3a+b )(a+3b )=3a 2+9ab+ab+3b 2=3a 2+3b 2+10ab ,即可得到x ,y ,z 的值;(4)根据原几何体的体积=新几何体的体积,列式可得结论.【详解】(1)由图2得:正方形的面积=(a+b+c )2;正方形的面积=a 2+b 2+c 2+2ab+2ac+2bc , ∴(a+b+c )2=a 2+b 2+c 2+2ab+2ac+2bc ,故答案为:(a+b+c )2=a 2+b 2+c 2+2ab+2ac+2bc ;(2)∵(a+b+c )2=a 2+b 2+c 2+2ab+2ac+2bc ,∵a+b+c=10,ab+ac+bc=35,∴102=a 2+b 2+c 2+2×35,∴a 2+b 2+c 2=100-70=30,故答案为:30;(3)由题意得:(3a+b )(a+3b )=xa 2+yb 2+zab ,∴3a 2+10ab+3b 2=xa 2+yb 2+zab ,∴x=3,y=3,z=10,∴x+y+z=16,故答案为:16;(4)∵原几何体的体积=x 3-1×1•x=x 3-x ,新几何体的体积= x (x+1)(x-1),∴x 3-x= x (x+1)(x-1).故答案为:x 3-x=x (x+1)(x-1).【点睛】本题主要考查了整式的混合运算,利用直接法和间接法分别求得几何图形的体积或面积,然后根据它们的体积或面积相等列出等式是解题的关键.。
【湘教版】七年级数学下期末试题附答案(1)
一、选择题1.疫情其间,阳光小区在进行如何避免“新型冠状病毒”感染的宣传活动中,将以下几种注意事项写在条幅上进行张贴,内容分别是:①注意防寒保暖、室内通风和个人卫生;②加强体育锻炼;③保持清淡饮食;④避免到人群密集场所活动;⑤用肥皂和清水或含有酒精的洗手液洗手;⑥出门戴口罩.小雨从以上6张宣传标语中随机抽取一张进行张贴,恰好抽到③或④的概率是( ) A .16B .14C .13D .122.某校开设了文艺、体育、科技和学术四类社团,要求每位学生从中任选一类社团参加.现统计出八年级(1)班40名学生参加社团的情况,如下图:如果从该班随机选出一名学生,那么该生是体育类社团成员的可能性大小是( )A .15B .25C .14D .3203.已知一组数据:10,8,6,10,8,13,11,12,10,10,7,9,8,12,9,11,12,9,10,11,则频率为0.2的范围是( ) A .6~7B .10~11C .8~9D .12~134.如图,将长方形ABCD 沿线段EF 折叠到''EB C F 的位置,若'105EFC ∠=︒,'DFC ∠的度数为( )A .20︒B .30C .40︒D .50︒5.下列四个图标中,是轴对称图形的是( ) A .B .C .D .6.下列大学的校徽图案是轴对称图形的是( )A .B .C .D .7.已知三角形两边的长分别是3和5,则此三角形第三边的长不可能是( ). A .3 B .5C .7D .118.能把一个三角形的面积平均分成两个面积相等的三角形,这条线一定是这个三角形的一条( ) A .角平分线 B .高C .中线D .一条边的垂直平分线9.如图,AE ∥DF ,AE =DF .添加下列的一个选项后.仍然不能证明△ACE ≌△DBF 的是( )A .AB =CD B .EC =BF C .∠E =∠FD .EC ∥BF10.已知圆柱的高为3 cm ,当圆柱的底面半径r(cm)由小变大时,圆柱的体积V(cm 3)随之变化,则V 与r 的关系式是 ( ) A .V=πr 2B .V=9πr 2C .V=13πr 2 D .V=3πr 211.已知//DE FG ,三角尺ABC 按如图所示摆放,90C ∠=︒,若137∠=︒,则2∠的度数为( )A .57°B .53°C .51°D .37°12.如图,两个正方形边长分别为a ,b ,如果a+b =10,ab =18,则阴影部分的面积为( )A .21B .22C .23D .24二、填空题13.2020年11月24日中国探月工程嫦娥五号在我国文昌航天发射场发射成功,目前已完成两次轨道修正,两次近月制动,11月30日完成轨返组合体与着上组合体受控分离, 12月1日择机实施动力下降,软着陆于月球正面预选区域.关于嫦娥奔月,中国古代有很多流传至今的美丽神话,相传很久很久以前,嫦娥在月宫养了5只兔子,她们分别叫大白,二白,三白,小白和小黑,由于一次疫情影响,其中一只兔子生病了,嫦娥让她的好友章离子带去看医生,章离子去领兔子时恰好嫦娥不在月宫,章离子就随机带了一只兔子去看医生,请问章离子所带的兔子恰好是生病的兔子的概率是______.14.在一个箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里摸出1个球,则摸到红球的概率是______.15.如图,将一张长方形纸片沿EF 折叠后,点D ,C 分别落在D′,C′的位置上,ED′的延长线与BC 的交点为G ,若∠EFG=50°,则∠2-∠1=_____.16.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD △与ABC 全等,点D 的坐标是______.17.如图,OA ⊥OB ,∠BOC =30°,OD 平分∠AOC ,则∠BOD =_____度.18.在全民健身环城越野赛中,甲、乙两名选手的行程y (千米)随时间x (时)变化的图象如图所示.有下列说法:①甲先到达终点;②起跑后1小时内,甲始终在乙的前面;③起跑1小时,甲、乙两人跑的路程相等;④乙起跑1.5小时,跑的路程为13千米;⑤两人都跑了20千米.以上说法正确的有____________(填序号).19.如图,已知直线12l l ,130∠=︒,则23∠+∠=_________.20.计算:2221111112310⎛⎫⎛⎫⎛⎫-⨯-⨯⋯⋯⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭________ 三、解答题21.将分别标有数字2,3,5的三张颜色、质地、大小完全一样的卡片背面朝上放在桌面上. (1)随机抽取一张,求抽到奇数的概率;(2)随机抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数?并画树状图或列表求出抽取到的两位数恰好是35的概率. 22.如图,在直角坐标系中,()1,5A -,()3,0B -,()4,3C -.(1)在图中作出ABC 关于y 轴对称的图形111A B C △,并写出点1B 的坐标. (2)在y 轴上找一点P ,使PA PB +最小(不要求写做法,请保留作图痕迹).23.已知△ABC 和△ADE 均为等腰三角形,且∠BAC =∠DAE ,AB =AC ,AD =AE . (1)如图1,点E 在BC 上,求证:BC =BD+BE ;(2)如图2,点E 在CB 的延长线上,(1)的结论是否成立?若成立,给出证明;若不成立,写出成立的式子并证明.(3)如图3,点E 在BC 的延长线上,直接写出线段BC 、CD 、CE 三者之间的关系.24.下表是某公共电话亭打长途电话的几次收费记录: 时间(分) 1 2 3 4 5 6 7 电话费(元)0.61.21.82.43.03.64.2(1) 上表反映了哪两个变量间的关系?哪个是自变量?哪个是因变量?(2) 如果用 x 表示时间,y 表示电话费,那么随 x 的变化,y 的变化趋势是什么? (3) 丽丽打了 5 分钟电话,那么电话费需付多少元? (4) 你能写出 y 与 x 之间的关系式吗?25.已知A ∠与B 互为余角,且A ∠的补角比B 的3倍少50︒,假设A x ∠=︒,求A ∠,B 的度数.26.化简:()()()2222x y y x x y -+--.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】小雨同学从6张宣传标语中随机抽取一张,③或④有两种情况,直接利用概率公式求解即可求得答案. 【详解】解:∵一共有6张宣传标语,∴小雨同学从6张宣传标语中随机抽取一张进行张贴,恰好抽到③或④的概率是: P(抽到③或④)=21=63故选:C . 【点睛】本题考查随机事件概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=nm.2.B解析:B【解析】【分析】根据条形统计图可得,选体育的学生总人数的比值,从而可以解答本题.【详解】由条形统计图可得,选体育的学生的可能性是:162=8+16+10+65,故选B.【点睛】本题考查可能性大小,解题的关键是明确题意,找出所求问题需要的条件.3.D解析:D【分析】分别计算出各组的频数,再除以20即可求得各组的频率,看谁的频率等于0.2.【详解】A中,其频率=2÷20=0.1;B中,其频率=6÷20=0.3;C中,其频率=8÷20=0.4;D中,其频率=4÷20=0.2.故选D.【点睛】首先数出数据的总数,然后数出各个小组内的数据个数,即频数.根据频率=频数÷总数进行计算.4.B解析:B【分析】由轴对称的性质可求出∠EFC的度数,可由式子∠EFC+∠EFC'-180°直接求出∠DFC'的度数.【详解】解:由翻折知∠EFC=∠EFC'=105°,∴∠EFC+∠EFC'=210°,∴∠DFC'=∠EFC+∠EFC'-180°=210°-180°=30°.故选:B.【点睛】本题考查了翻折变化(轴对称)的性质及角的计算,解题关键是熟练掌握并能够灵活运用轴对称变换的性质等.5.B解析:B【解析】【分析】直接根据轴对称图形的概念分别解答得出答案.【详解】A、不是轴对称图形,不合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不合题意.故选:B.【点睛】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.B解析:B【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7.D解析:D【分析】根据三角形的三边关系解答.【详解】设三角形的第三边为x,则5-3<x<5+3,2<x<8,故选:D.【点睛】此题考查三角形三边关系:三角形任意两边的和都大于第三边,熟记关系是解题的关键.8.C解析:C【分析】根据中线的性质即可求解.【详解】解:三角形的一条中线将三角形的面积平均分成两个面积相等的三角形,故选:C【点睛】本题主要考查的是中线的性质,正确的掌握中线的性质是解题的关键.9.B解析:B【分析】结合题目条件,依据三角形全等的判定定理逐一判断即可.【详解】∵AE∥DF,∴∠A=∠D,A、根据SAS,可以推出△ACE≌△DBF,本选项不符合题意.B、SSA不能判定三角形全等,本选项符合题意.C、根据ASA,可以推出△ACE≌△DBF,本选项不符合题意.D、根据AAS,可以推出△ACE≌△DBF,本选项不符合题意.故选:B.【点睛】本题考查了三角形全等的判定,熟记三角形全等的判定定理是解题的关键.10.D解析:D【分析】圆柱的底面积是一个圆,根据体积=底面积×高即可列出关系式.【详解】∵圆柱的底面积是一个圆,∴底面积S=πr2,根据圆柱体积=底面积×高可得:V=3πr2.故选D.【点睛】本题主要考查了函数关系式的知识点,熟悉圆柱的体积公式,即圆柱的体积=底面积×高,难度不大,注意基础概念的掌握.11.B解析:B 【分析】作GH ∥FG ,推出GH ∥FG ∥DE ,得到∠1=∠3,∠2=∠4,由90C ∠=︒, 137∠=︒,即可求解. 【详解】 作GH ∥FG ,∵DE ∥FG , ∴GH ∥FG ∥DE , ∴∠1=∠3,∠2=∠4, ∵90C ∠=︒, 137∠=︒, ∴∠3+∠4=90︒,即37︒+∠2=90︒, ∴∠2=53︒, 故选:B . 【点睛】本题考查了平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键.12.C解析:C 【分析】表示出空白三角形的面积,用总面积减去两个空白三角形的面积即可,再将得到的等式变形后,利用整体代入求值即可. 【详解】解:如图,大正方形的边长是a,三角形①的两条直角边长都为a ,三角形②的一条直角边为a -b ,另一条直角边为b , 因此S 大正方形=a 2,S △②=12(a ﹣b )b =12ab ﹣12b 2,S △①=12a 2, ∴S 阴影部分=S 大正方形﹣S △①﹣S △②, =12a 2﹣12ab+12b 2, =12[(a+b )2﹣3ab],=12(100﹣54)=23,故选:C.【点睛】考查完全平方公式的意义,适当的变形是解决问题的关键.二、填空题13.【分析】根据等可能事件概率的性质计算即可得到答案【详解】∵嫦娥在月宫养了5只兔子她们分别叫大白二白三白小白和小黑又∵其中一只兔子生病了∴随机带了一只兔子恰好是生病的兔子的概率是故答案为:【点睛】本题解析:1 5【分析】根据等可能事件概率的性质计算,即可得到答案.【详解】∵嫦娥在月宫养了5只兔子,她们分别叫大白,二白,三白,小白和小黑又∵其中一只兔子生病了∴随机带了一只兔子,恰好是生病的兔子的概率是1 5故答案为:15.【点睛】本题考查了概率的知识;解题的关键是熟练掌握等可能事件概率的性质,从而完成求解.14.【解析】试题解析:.【解析】试题∵一个不透明的箱子里有1个白球,2个红球,共有3个球,∴从箱子中随机摸出一个球是红球的概率是.考点:概率.15.20°【分析】根据AD∥BC折叠可知∠EFG=∠DEF=∠D′EF=50°进而知∠1度数再根据两直线平行同旁内角互补可得∠2度数可得答案【详解】解:∵AD ∥BC ∴∠DEF=∠EFG ∵∠EFG=50°解析:20°【分析】根据AD ∥BC 、折叠可知,∠EFG=∠DEF=∠D′EF=50°,进而知∠1度数,再根据两直线平行,同旁内角互补可得∠2度数,可得答案.【详解】解:∵AD ∥BC ,∴∠DEF=∠EFG ,∵∠EFG=50°,∴∠DEF=50°;又∵∠DEF=∠D′EF ,∴∠D′EF=50°;∴∠1=180°-50°-50°=80°;又∵AD ∥BC ,∴∠1+∠2=180°,即∠2=180°-∠1=180°-80°=100°,∴∠2-∠1=20°.故答案为:20°.【点睛】本题主要考查翻折问题及平行线的性质,结合题干熟悉翻折过程中相等的量及平行线的性质是关键.16.或【分析】分情况:当△ABC ≌△ABD 时△ABC ≌△BAD 时利用全等三角形的性质解答即可【详解】分两种情况:当△ABC ≌△ABD 时AB=ABAD=ACBD=BC ∵点AB 在y 轴上∴△ABC 与△ABD 关解析:()4,3-或()4,2-【分析】分情况:当△ABC ≌△ABD 时,△ABC ≌△BAD 时,利用全等三角形的性质解答即可.【详解】分两种情况:当△ABC ≌△ABD 时,AB=AB ,AD=AC ,BD=BC ,∵点A 、B 在y 轴上,∴△ABC 与△ABD 关于y 轴对称,∵C (4,3),∴D (-4,3);当△ABC ≌△BAD 时,AB=BA ,AD=BC ,BD=AC ,作DE ⊥AB ,CF ⊥AB ,∴DE=CF=4,∠AED=∠BFC=90︒,∴△ADE ≌△BCF ,∴AE=BF=4-3=1,∴OE=OA+AE=1+1=2,∴D (-4,2),故答案为:()4,3-或()4,2-.【点睛】此题考查全等三角形的判定及性质,确定直角坐标系中点的坐标,轴对称的性质,熟记全等三角形的性质是解题的关键.17.30【分析】本题首先利用垂直性质以及角分线性质求证2∠BOD 与∠BOC 的关系继而将已知代入求解∠BOD 【详解】∵OA ⊥OB ∴∠AOB =90°即∠AOD+BOD =90°;∵OD 平分∠AOC ∴∠AOD =解析:30【分析】本题首先利用垂直性质以及角分线性质求证2∠BOD 与∠BOC 的关系,继而将已知代入求解∠BOD .【详解】∵OA ⊥OB ,∴∠AOB =90°,即∠AOD+BOD =90°;∵OD 平分∠AOC ,∴∠AOD =∠DOC ,即∠BOD+∠BOC+BOD =90°,即2∠BOD+∠BOC =90°∵∠BOC =30°,∴∠BOD =30°.故答案为:30.【点睛】本题考查垂直以及角分线的性质,解题关键在于角的互换,其次注意计算仔细即可. 18.①③④⑤【解析】从图象上来看甲先到达终点所以①正确;甲乙的起跑点是一样的在起跑后到1小时之间乙的图形都比甲的图形高说明起跑后1小时内乙在甲的前面所以②错误;通过图象观察一小时时该点的纵坐标是10所以解析:①③④⑤【解析】从图象上来看,甲先到达终点,所以①正确;甲乙的起跑点是一样的,在起跑后到1小时之间,乙的图形都比甲的图形高,说明起跑后1小时内,乙在甲的前面,所以②错误;通过图象观察,一小时时该点的纵坐标是10,所以第1小时两人都跑了10千米,所以③正确;观察图形,当时间为2小时时候,乙已经到达终点,而此时甲还没到达,所以甲比乙先到达终点是错误的,所以③错误;观察图形,从0.5到时1.5这段时间内的乙的速度是一样的,0.5到1时,乙跑了10-7=3千米,所以1.5小时时,乙跑的路为10+3=13千米,所以④正确;观察图象可知,两人都跑了20千米,所以⑤正确,综上所述,正确的有①③④⑤,故答案为①③④⑤.【点睛】本题考查了函数图象,解答本题的关键是会观察函数图象,得出有用的信息,从而来判断正确还是错误.19.【分析】过∠2的顶点作AB ∥可由得出AB ∥根据平行线的性质即可解答【详解】如图;过∠2的顶点作AB ∥∴∠DAB=又∵∴AB ∥∴∠BAC+∠3=180°∴∠2+∠3=∠DAB+∠BAC+∠3=故答案为 解析:210︒.【分析】过∠2的顶点作AB ∥1l ,可由12l l 得出AB ∥2l ,根据平行线的性质即可解答. 【详解】如图; 过∠2的顶点作AB ∥1l∴∠DAB=130∠=︒又∵12l l∴AB ∥2l∴∠BAC+∠3=180°∴∠2+∠3=∠DAB+∠BAC+∠3=210︒故答案为210︒【点睛】本题考查的是平行线的性质及平行公理的推论,掌握平行线的性质定理及平行公理的推论是解答关键.20.【分析】运用平方差公式进行计算即可【详解】解:====故答案为:【点睛】此题主要考查了有理数的混合运算以及平方差公式的应用熟练掌握运算法则以及平方差公式是解答此题的关键 解析:1120 【分析】 运用平方差公式进行计算即可. 【详解】 解:2221111112310⎛⎫⎛⎫⎛⎫-⨯-⨯⋯⋯⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ =1111111+1111122331010⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⨯-⨯+⨯-⨯⨯+⨯- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ =132491122331010⨯⨯⨯⨯⨯⨯ =111210⨯ =1120. 故答案为:1120. 【点睛】此题主要考查了有理数的混合运算以及平方差公式的应用,熟练掌握运算法则以及平方差公式是解答此题的关键.三、解答题21.(1)P (抽到奇数)=23;(2)P (恰好抽到为35)=16【解析】试题分析:(1)先求出这组数中奇数的个数,再利用概率公式解答即可; (2)根据题意列举出能组成的数的个数及35的个数,再利用概率公式解答.试题(1)根据题意可得:有三张卡片,奇数只有“3和5”一张,故抽到奇数的概率P=;(2)根据题意可得:随机抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,共能组成6个不同的两位数:32,52,23,53,25,35.其中恰好为35的概率为.考点:概率公式22.(1)图形见解析,()13,0B ;(3)见解析【分析】(1)利用关于y 轴对称的点的坐标特征写出A 1、B 1、C 1的坐标,然后描点即可; (2)找到B 点关于y 轴的对称点B 1,再连接AB 1,与y 轴交点即为所求.【详解】解:(1)A(-1,5),B(-3,0),C(-4,3),关于y 轴对称的点的坐标特征是纵坐标不变,横坐标互为相反数,点A 1、B 1、C 1的坐标为A 1(1,5),B 1(3,0),C 1(4,3),描出A 1,B 1,C 1,顺次连结A 1B 1,B 1C 1,C 1A 1,由题意可知111A B C △即为所求,()13,0B ;(2)由题意作图如下,连结BA 1交y 轴于点P ,A 、A 1关于y 轴对称,AP=A 1P ,由两点距离知BA 1≤BP+A 1P=BP+AP ,点P 即为所求使得PA PB +最小.【点睛】本题考查了作图−对称性变换:在画一个图形的轴对称图形时,先从确定一些特殊的对称点开始的,一般的方法是:由已知点出发向所给直线作垂线,并确定垂足;直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;连接这些对称点,就得到原图形的轴对称图形,也考查了对称性的应用.23.(1)见解析;(2)(1)的结论不成立,成立的结论是BC =BD ﹣BE ,证明见解析;(3)BC=CD-CE【分析】(1)证得∠DAB=∠EAC ,证明△DAB ≌△EAC (SAS ),由全等三角形的性质得出BD=CE ,则可得出结论;(2)证明△DAB ≌△EAC (SAS ),得出BD=CE ,则成立的结论是BC=BD-BE ;(3)证明△DAC≌△EAB(SAS),得出BE=CD,则成立的结论是BC=BD-BE.【详解】解:(1)证明:∵∠BAC=DAE,∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,即∠DAB=∠EAC,又∵AB=AC,AD=AE,∴△DAB≌△EAC(SAS),∴BD=CE,∴BC=BE+CE=BD+BE;(2)解:(1)的结论不成立,成立的结论是BC=BD﹣BE证明:∵∠BAC=∠DAE,∴∠BAC+∠EAB=∠DAE+∠EAB,即∠DAB=∠EAC,又∵AB=AC,AD=AE,∴△DAB≌△EAC(SAS),∴BD=CE,∴BC=CE﹣BE=BD﹣BE(3)∵∠BAC=∠DAE,∴∠BAC+∠EAC=∠DAE+∠EAC,即∠BAE=∠DAC,又∵AB=AC,AD=AE,∴△BAE≌△CAD(SAS),∴BE=CD,∴BC=CD﹣CE【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题的关键.24.(1)反映的是电话费和时间两个变量之间的关系,时间是自变量,电话费是因变量.(2)每增加 1 分钟,电话费增加 0.6 元.(3)电话费需付 3 元.(4) y = 0.6x.【解析】试题分析:(1)观察、分析所给记录可知,上表反映的是“电话费”和“打电话时间”两个变量之间的关系,其中“时间”是自变量,“电话费”是因变量;(2)由表中的数据可知,电话费y随通话时间x的增大而增大,x每增加1分钟,y增加0.6元;(3)由表中信息可知,通话5分钟需付电话费3元;(4)由表中信息可知,y=0.6x.试题(1)表中反映的是:“电话费”和“打电话时间”两个变量之间的关系,其中“时间”是自变量,“电话费”是因变量;(2)若用 x 表示时间,y 表示电话费,则由表中信息可知:电话费y 随通话时间x 的增大而增大,x 每增加1分钟,y 增加0.6元;(3)由表中信息可知,当x=5时,y=3,即通话5分钟需付费3元;(4)由表中信息可得:y=0.6x.25.∠A 的度数为20º,∠B 的度数为70º.【分析】根据题意可知∠B=90-x ,列方程即可.【详解】解:A x ∠=︒,则∠B=(90-x )º,根据题意列方程得,180-x=3(90-x )-50,解得,x=20,90-x=70.答:∠A 的度数为20º,∠B 的度数为70º.【点睛】本题考查了余角和补角的意义和一元一次方程的应用,解题关键是理解余角和补角的意义并能根据题意列出方程.26.284y xy .【分析】原式根据平方差公式和完全平方公式将括号展开,然后再合并同类项即可得到答案.【详解】解:()()()2222x y y x x y -+-- 2222444x y x y xy =---+284y xy =-+.【点睛】此题主要考查了整式的四则运算,熟练掌握平方差公式和完全平方公式是解答此题的关键.。
【最新精选】湘教版七年级数学下期末复习试卷(有答案)
湘教版版七年级数学下册期末复习试卷一.选择题(共9小题)1.下列各方程组中,不是二元一次方程组的是()A.B. C.x﹣y=x+y﹣6=0 D.2.下列运算正确的是()A.a+a2=a3B.(a2)3=a6C.(x﹣y)2=x2﹣y2 D.a2a3=a63.下列由左到右的变形,属于因式分解的是()A.(x+2)(x﹣2)=x2﹣4 B.x2﹣4=(x+2)(x﹣2)C.x2﹣4+3x=(x+2)(x﹣2)+3x D.x2+4x﹣2=x(x+4)﹣24.如图,在△ABC中,∠ACB=15°,△ABC绕点C逆时针旋转90°后与△DEC重合,则∠ACE的读数是()A.105°B.90°C.15°D.120°5.如图,在3×4的正方形网格中已有2个正方形涂黑,再选择一个正方形涂黑,使得3个涂黑的正方形组成轴对称图形,选择的位置共有()A.7处B.4处C.3处D.2处6.在一次射击练习中,甲,乙两人前5次射击的成绩分别为(单位:环)甲:10 8 10 10 7;乙:7 10 9 9 10则这次练习中,甲,乙两人方差的大小关系是()A.S2甲>S2乙B.S2甲<S2乙C.S2甲=S2乙D.无法确定7.如图,下列判断中错误的是()A.因为∠BAD+∠ADC=180°,所以AB∥CDB.因为AB∥CD,所以∠BAC=∠ACDC.因为∠ABD=∠CDB,所以AD∥BCD.因为AD∥BC,所以∠BCA=∠DAC8.方程组的解中x与y的值相等,则k等于()A.2 B.1 C.3 D.49.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°二.填空题(共9小题)10.若a m=2,a n=3,则a3m+2n= .11.若x2﹣16x+m2是一个完全平方式,则m= ;若m﹣1m=9,则m2+21m= .12.六名同学在“爱心捐助”活动中,捐款数额为8,10,9,10,4,6(单位:元),这组数据的中位数是.13.如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=35°,则∠2的度数为.14.已知x2+x﹣1=0,则x3+x2﹣x+3的值为.15.农业技术员在一块平行四边形的实验田里种植四种不同的农作物,现需将该实验田划成四个平行四边形地块(如图),已知其中三块田的面积分别是14m2,10m2,36m2,则第四块田的面积为m2.16.在△ABC中,AB=AC=8,作AB边的垂直平分线交AB边于点D,交直线AC于点E,若DE=3,则线段CE的长为.17.如图,将△ABC沿着直线DE折叠,使点C与点A重合,已知AB=7,BC=9,则△BAD 的周长为.18.若(2x﹣3y+5)2+|x+y﹣2|=0,则x= ,y= .三.解答题(共7小题)19.因式分解(1)﹣2a3+12a2﹣18a(2)9a2(x﹣y)+4b2(y﹣x)20.先化简,再求值:a(a﹣3b)+(a+b)2﹣a(a﹣b),其中a=1,b=﹣1 221.已知方程组:将(1)×2﹣(2)能消x,将(2)+(1)能消y,则m,n的值为多少?22.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.23.已知小红的成绩如下表:(1)小红的这三次文化测试成绩的平均分是分;(2)用(1)中的平均分加上综合素质成绩就是小红的总成绩.用同样的方法计算出小红所在班级全部同学的总成绩并绘制出了如图所示的频数分布直方图.那么小红所在班级共有名同学;(3)学校将根据总成绩由高到低保送小红所在班级前15名同学进入高中学习,请问小红能被保送吗?说明理由.24.探究:如图①,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=40°,求∠DEF的度数.请将下面的解答过程补充完整,并填空(理由或数学式)解:∵DE∥BC,∴∠DEF= .()∵EF∥AB,∴=∠ABC.()∴∠DEF=∠ABC.(等量代换)∵∠ABC=40°,∴∠DEF= °.应用:如图②,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB 的延长线上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=60°,则∠DEF= °.25.某中学将组织七年级学生春游一天,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)两同学向公司经理了解租车的价格,公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了5辆45座和2辆60座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗”甲、乙两同学想了一下,都说知道了价格.聪明的你知道45座和60座的客车每辆每天的租金各是多少元吗?(2)公司经理问:“你们准备怎样租车”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在﹣旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗”?如果是你,你该如何设计租车方案,并说明理由.参考答案一.选择题(共9小题)1. D.2. B.3. B.4. A.5. A.6. A.7. C.8. B.9. B.二.填空题(共9小题)10.72 .11.±8 ;83 .12.8.5..13.55°.14. 3 .15.m2.16.3或13 .17.16 .18.15,95.三.解答题(共7小题)19.因式分解(1)﹣2a3+12a2﹣18a(2)9a2(x﹣y)+4b2(y﹣x)【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式变形后,提取公因式,再利用平方差公式分解即可.【解答】解:(1)原式=﹣2a(a2﹣6a+9)=﹣2a(a﹣3)2;(2)原式=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.20.先化简,再求值:a(a﹣3b)+(a+b)2﹣a(a﹣b),其中a=1,b=﹣1 2【分析】先利用单项式乘多项式法则和完全平方公式去括号,再合并同类项即可化简原式,把a、b的值代入计算可得.【解答】解:原式=a2﹣3ab+a2+2ab+b2﹣a2+ab=a2+b2,当a=1、b=﹣12时,原式=12+(﹣12)2=1+1 4=54.【点评】此题考查了整式的混合运算﹣化简求值,涉及的知识有:单项式乘多项式,完全平方公式以及合并同类项法则,熟练掌握公式及法则是解本题的关键.21.已知方程组:将(1)×2﹣(2)能消x,将(2)+(1)能消y,则m,n的值为多少?【分析】仔细审题,发现题中有两个等量关系:由(1)×2﹣(2)能消x,可知等量关系①:方程(1)中未知数x的系数的2倍减去方程(2)中未知数x的系数等于0;由(2)+(1)能消y,可知等量关系②:方程(1)中未知数y的系数加上方程(2)中未知数y的系数等于0,根据这两个等量关系列出关于m,n的二元一次方程组,解方程组即可求出m,n的值.【解答】解:由题意可得,解得.故答案为:m=54,n=﹣34.【点评】本题主要考查二元一次方程组的解法及其应用,难度中等.关键是透彻理解加减消元法的实质,从而将已知条件转化为一个关于m,n的二元一次方程组.22.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.【分析】先由BE⊥FD,得∠1和∠D互余,再由已知,∠C=∠1,∠2和∠D互余,所以得∠C=∠2,从而证得AB∥CD.【解答】证明:∵BE⊥FD,∴∠EGD=90°,∴∠1+∠D=90°,又∠2和∠D互余,即∠2+∠D=90°,∴∠1=∠2,又已知∠C=∠1,∴∠C=∠2,∴AB∥CD.【点评】此题考查的知识点是平行线的判定,关键是由BE⊥FD及三角形内角和定理得出∠1和∠D互余.23.已知小红的成绩如下表:(1)小红的这三次文化测试成绩的平均分是590 分;(2)用(1)中的平均分加上综合素质成绩就是小红的总成绩.用同样的方法计算出小红所在班级全部同学的总成绩并绘制出了如图所示的频数分布直方图.那么小红所在班级共有41 名同学;(3)学校将根据总成绩由高到低保送小红所在班级前15名同学进入高中学习,请问小红能被保送吗?说明理由.【分析】(1)根据平均数公式计算小红的这三次文化测试成绩的平均分;(2)由数据总数=频数计算班级总人数;(3)计算600分以上人数,即可知道小红能否被保送.【解答】解:(1)由题意可知:小红的这三次文化测试成绩的平均分是=590;(2)由频数直方图可以看出:小红所在班级共有8+7+10+11+3+2=41人;(3)小红的总成绩为590+12=602分,600分以上的学生共有10+3+2=15人=15人,所以小红能被保送.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.24.探究:如图①,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=40°,求∠DEF的度数.请将下面的解答过程补充完整,并填空(理由或数学式)解:∵DE∥BC,∴∠DEF= ∠EFC .(两直线平行,内错角相等)∵EF∥AB,∴∠EFC =∠ABC.(两直线平行,同位角相等)∴∠DEF=∠ABC.(等量代换)∵∠ABC=40°,∴∠DEF= 40 °.应用:如图②,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB 的延长线上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=60°,则∠DEF= 120 °.【分析】(1)依据两直线平行,内错角相等;两直线平行,同位角相,即可得到∠DEF=40°.(2)依据两直线平行,内同位角相;两直线平行,同旁内角互补,即可得到∠DEF=180°﹣60°=120°.【解答】解:(1)∵DE∥BC,∴∠DEF=∠EFC.(两直线平行,内错角相等)∵EF∥AB,∴∠EFC=∠ABC.(两直线平行,同位角相等)∴∠DEF=∠ABC.(等量代换)∵∠ABC=40°,∴∠DEF=40°.故答案为:∠EFC,两直线平行,内错角相等,∠EFC,两直线平行,同位角相等,40;(2)∵DE∥BC,∴∠ABC=∠EADE=60°.(两直线平行,内同位角相等)∵EF∥AB,∴∠ADE+∠DEF=180°.(两直线平行,同旁内角互补)∴∠DEF=180°﹣60°=120°.故答案为:120.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内同位角相;两直线平行,同旁内角互补.25.某中学将组织七年级学生春游一天,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)两同学向公司经理了解租车的价格,公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了5辆45座和2辆60座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗”甲、乙两同学想了一下,都说知道了价格.聪明的你知道45座和60座的客车每辆每天的租金各是多少元吗?(2)公司经理问:“你们准备怎样租车”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在﹣旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗”?如果是你,你该如何设计租车方案,并说明理由.【分析】根据题意可知,本题中的相等关系是“60座的客车每辆每天的租金比45座的贵100元”和“5辆45座和2辆60座的客车,一天的租金为1600元”,列方程组求解即可.【解答】解:(1)设45座客车每天租金x元,60座客车每天租金y元,则100 521600 x yx y+=⎧⎨+=⎩解得200300 xy=⎧⎨=⎩故45座客车每天租金200元,60座客车每天租金300元;(2)设学生的总数是a人,则302 4560a a+=+解得:a=240所以租45座客车4辆、60座客车1辆,费用1100元,比较经济.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.本题还需注意“60座的客车每辆每天的租金比45座的贵100元”和“5辆45座和2辆60座的客车,一天的租金为1600元”的关系.。
2022-2023学年湘教新版七年级下册数学期末复习试卷(含解析)
2022-2023学年湘教新版七年级下册数学期末复习试卷一.选择题(共10小题,满分40分,每小题4分)1.下列四个图案都由左、右两部分组成,其中能从左边图形经过一次平移或一次旋转或一次轴对称而形成右边图形的有( )A.4个B.3个C.2个D.1个2.如图,直线AB和CD相交于点O,若∠AOD=134°,则∠AOC的度数为( )A.134°B.144°C.46°D.32°3.下列计算错误的是( )A.x2+x2=2x2B.(x﹣y)2=x2﹣y2C.(x2y)3=x6y3D.(﹣x)2x3=x54.若多项式x2+mx﹣6分解因式后含有因式(x﹣2),则m的值为( )A.﹣1B.1C.±1D.35.某校开展了以“爱我家乡”为主题的艺术活动,从九年级5个班收集到的艺术作品数量(单位:件)分别为48,50,47,44,50,则这组数据的中位数是( )A.44B.47C.48D.506.已知方程组的解满足x+y=2,则k的值为( )A.4B.﹣4C.2D.﹣27.四位同学各有一组跳远成绩的数据,他们的平均成绩一样,王老师想从这四位同学中选一位波动性不大的运动员参加市运动会跳远比赛,则王老师应考虑四组数据的( )A.平均数B.方差C.众数D.中位数8.下列条件不能够证明a∥b的是( )A.∠2+∠3=180°B.∠1=∠4C.∠2+∠4=180°D.∠2=∠3 9.“今有鸡兔同笼,上有24头,下有74足,问鸡兔各几何?”设鸡有x只,兔有y只,则下列方程组中正确的是( )A.B.C.D.10.如图,折叠矩形纸片ABCD的一边AD,使点D落在BC边上的点F处,若AB=8,BC =10,则△CEF的周长为( )A.12B.16C.18D.24二.填空题(共8小题,满分32分,每小题4分)11.已知方程x﹣2y=3,用含x表示y的式子是y= ,用含y表示x的式子是x= .12.分解因式:2(x2﹣)﹣x4= .13.一组数据8,6,x,4,2的平均数是5,则这组数据的方差是 .14.已知直线a∥b∥c,直线a与直线b的距离是5cm,直线b与直线c的距离是3cm,则直线a与直线c之间的距离是 .15.如图,将△ABC绕点A逆时针旋转65°得△ADE,若∠E=70°,AD⊥BC,则∠BAC = .16.如图,AB∥CD,AD⊥BE于点D,∠1=25°,则∠A的度数为 °.17.一个正方形的边长增加2cm,它的面积就增加16cm2,这个正方形原来的边长是 .18.化简a(a﹣2b)+2(a+b)(a﹣b)+(a+b)2= ,当a=﹣,b=1时,原式= .三.解答题(共8小题,满分78分)19.(8分)解方程组:.20.(6分)先化简,再求值:3x2y﹣[xy(3x﹣1)﹣(2y+x)(y﹣x)],其中x=3,y=﹣2.21.(8分)如图,已知∠1+∠2=180°,∠3=108°.求∠4的度数.22.(10分)在下面的正方形网格中按要求作图.(1)在图①中将△ABC平移,使点A与点C重合,得到△CPQ;(2)在图②中将△ABC绕点C逆时针旋转90°,得到△MNC;(3)在图③中作△FGH,使其与△ABC关于线段DE对称.23.(10分)2013年我省松原地震后,某中学开展了“我为灾区献爱心”捐款活动,八年级一班的团支部对全班50人捐款数额进行了统计,并绘制了下面统计图.(1)把统计图补充完整;(2)直接写出这组数据的众数和中位数;(3)该校共有学生1600人,请你根据八年级一班的捐款情况,估计该中学的捐款总数.24.(10分)如图,已知AE平分∠BAC交BC于点E,AF平分∠CAD交BC的延长线于点F,∠B=64°,∠EAF=58°.(1)试判断AD与BC是否平行(请在下面的解答中,填上适当的理由或数学式);解:∵AE平分∠BAC,AF平分∠CAD(已知),∴∠BAC=2∠1,∠CAD= (角平分线定义).又∵∠EAF=∠1+∠2=58°,∴∠BAD=∠BAC+∠CAD=2(∠1+∠2)= °(等式的性质).又∵∠B=64°(已知),∴∠BAD+∠B= °.∴AD∥BC( ).(2)若AE⊥BC,求∠ACB的度数.25.(13分)某厂工人小王某月工作的部分信息如下:信息一:工作时间:每天上午8:00~12:00,下午14:00~18:00,每月25天;信息二:生产甲、乙两种产品、生产产品件数与所用时间之间的关系见下表:生产甲产品件数/件生产乙产品件数/件所用总时间/min10103503020850信息三:按件计酬,每生产一件甲产品可得1.50元,每生产一件乙产品可得2.80元;信息四:由于甲产品的劳动强度较大,企业规定,若每月生产甲产品超过500件,则甲产品每件奖励1.8元,且每月至少生产甲产品300件.根据以上信息,回答下列问题:(1)小王每生产一件甲种产品和一件乙种产品分别需要多少分钟?(2)若小王某月获得收入1500元,则该月小王生产甲、乙两种产品各多少件?26.(13分)如图,AC∥EF,∠1+∠3=180°.(1)判定∠FAB与∠4的大小关系,并说明理由;(2)若AC平分∠FAB,EF⊥BE于点E,∠4=72°,求∠BCD的度数.参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.解:第一个图,左边的图,可以通过一次旋转(绕点O顺时针旋转180)得到右边的图.第二个图,左边的图,可以通过一次轴对称(对称轴是直线m)得到右边的图.第三个图,左边的图,可以通过一次平移(平移的距离是AB的长)得到右边的图.第四个图,不可能通过一次平移或旋一次旋转或一次轴对称变换得到.故选:B.2.解:∠AOD+∠AOC=180°,∴∠AOC=180°﹣134°=46°,故选:C.3.解:A.根据合并同类项,该选项计算正确,不符合题意;B.根据完全平方公式,(x﹣y)2=x2﹣2xy+y2,该选项计算错误,符合题意;C.根据积的乘方,该选项计算正确,不符合题意;D.根据同底数幂的乘法,该选项计算正确,不符合题意.故选:B.4.解:设x2+mx﹣6=(x﹣2)(x+a)=x2+(a﹣2)x﹣2a,可得m=a﹣2,2a=6,解得:a=3,m=1,故选:B.5.解:将这五个数据从小到大排列后处在第3位的数是48,因此中位数是48;故选:C.6.解:,①×2﹣②×3得:y=4﹣k,②×5﹣①×3得:x=2k﹣6,代入x+y=2中得:2k﹣6+4﹣k=2,解得:k=4,故选:A.7.解:因为方差是反映数据的波动幅度的大小的,所以王老师想从这四位同学中选一位波动性不大的运动员参加市运动会跳远比赛,应考虑四组数据的方差,故选:B.8.解:A、∠2+∠3=180°,不能判定a∥b,故此选项正确;B、由∠1=∠4可得∠2=∠3,能判定a∥b,故此选项错误;C、∠2+∠4=180°,可得∠2=∠3,能判定a∥b,故此选项错误;D、∠2=∠3能判定a∥b,故此选项错误;故选:A.9.解:设鸡为x只,兔为y只,由题意得,.故选:C.10.解:∵四边形ABCD为矩形,∴AD=BC=10,AB=CD=8,∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,∴AF=AD=10,EF=DE,在Rt△ABF中,∵BF==6,∴CF=BC﹣BF=10﹣6=4,∴△CEF的周长为:CE+EF+CF=CE+DE+CF=CD+CF=8+4=12.故选:A.二.填空题(共8小题,满分32分,每小题4分)11.解:由x﹣2y=3可得2y=x﹣3,故y=;由x﹣2y=3可得x=2y+3.故答案为:;2y+3.12.解:原式=2x2﹣1﹣x4=﹣(x4﹣2x2+1)=﹣(x2﹣1)2=﹣(x+1)2(x﹣1)2,故答案为:﹣(x+1)2(x﹣1)213.解:由题意得:x=25﹣(2+4+6+8)=5,∴数据的方差S2=[(2﹣5)2+(4﹣5)2+(5﹣5)2+(6﹣5)2+(8﹣5)2]=4,故答案为:4.14.解:有两种情况,如图:(1)直线a与c的距离是3厘米+5厘米=8厘米;(2)直线a与c的距离是5厘米﹣3厘米=2厘米;故答案为:8厘米或2厘米.15.解:∵将△ABC绕点A逆时针旋转65°得△ADE,∴∠BAD=65°,∠E=∠ACB=70°,∵AD⊥BC,∴∠DAC=20°,∴∠BAC=∠BAD+∠DAC=85°.故答案为:85°.16.解:∵AB∥CD,∠1=25°,∴∠B=∠1=25°,∵AD⊥BE于点D,∴∠ADB=90°,∴在△ADB中,∠A=90°﹣∠B=65°.故答案为:65.17.解:设这个正方形原来的边长为xcm,则(x+2)2﹣x2=16,解得:x=3.答:这个正方形原来的边长为3cm.故答案为:3cm.18.解:a(a﹣2b)+2(a+b)(a﹣b)+(a+b)2=a2﹣2ab+2a2﹣2b2+a2+2ab+b2=4a2﹣b2,当a=﹣,b=1时,原式=1﹣1=0,故答案为:4a2﹣b2;0.三.解答题(共8小题,满分78分)19.解:,把①代入②得:2x+4﹣3x=6,解得:x=﹣2,把x=﹣2代入①得:y=10,则方程组的解为.20.解:原式=3x2y﹣[(3x2y﹣xy)﹣(2y2﹣2xy+xy﹣x2)]=3x2y﹣(3x2y﹣xy﹣2y2+xy+x2)=3x2y﹣(3x2y﹣2y2+x2)=3x2y﹣3x2y+2y2﹣x2=2y2﹣x2,当x=3,y=﹣2时,原式=2×(﹣2)2﹣32=8﹣9=﹣1.21.解:给图中各角标上序号,如图所示.∵∠1+∠2=180°,∠2+∠5=180°,∴∠1=∠5,∴AB∥CD,∴∠3=∠6.∵∠4+∠6=180°,∠3=108°,∴∠4=180°﹣108°=72°.22.解:(1)如图,△CPQ为所作;(2)如图,△MNC为所作;(3)如图,△FGH为所作.23.解:(1)50﹣6﹣15﹣19﹣2=8(人),补全条形统计图如下:(2)八年级一班50名学生捐款金额出现次数最多的是20元,共出现19次,因此捐款的众数是20元,将这50名学生捐款金额从小到大排列,处在中间位置的两个数都是20元,因此捐款金额的中位数是20元,答:这组数据的众数是20元,中位数是20元;(3)八年级一班捐款的平均数为:=18(元),全校捐款总金额为:18×1600=28800(元),答:全校1600学生共捐款约为28800元.24.解:(1)∵AE平分∠BAC,AF平分∠CAD(已知),∴∠BAC=2∠1,∠CAD=2∠2(角平分线定义).又∵∠EAF=∠1+∠2=58°,∴∠BAD=∠BAC+∠CAD=2(∠1+∠2)=116°(等式的性质).又∵∠B=64°(已知),∴∠BAD+∠B=180°.∴AD∥BC(同旁内角互补,两直线平行).故答案为:2∠2,116,180,同旁内角互补,两直线平行;(2)∵AE⊥BC,∠B=64°,∴∠AEB=90°,∴∠BAE=180°﹣∠AEB﹣∠B=180°﹣90°﹣64°=26°,∵∠BAC=2∠BAE=52°,∴∠ACB=180°﹣∠B﹣∠BAC=180°﹣64°﹣52°=64°.25.解:(1)设小王每生产一件甲种产品和一件乙种产品分别需要x分钟、y分钟,则由题意得,解得;答:小王每生产一件甲种产品和一件乙种产品分别需要15分钟、20分钟;(2)设该月小王生产甲乙两种产品各a件、b件,则①若0≤a≤500时,由题意得,解得;②若a>500时,由题意得解得;答:该月小王生产甲、乙两种产品各为300件、375件或600件、150件.26.证明:(1)∠FAB=∠4.理由如下:∵AC∥EF,∴∠1+∠2=180°,又∵∠1+∠3=180°,∴∠2=∠3,∴AF∥CD,∴∠FAB=∠4;(2)∵AC平分∠FAB,∴∠2=∠CAD,又∵∠2=∠3,∴∠3=∠CAD,又∵∠4=∠3+∠CAD,∴72°=2∠3,∴∠3=36°,∵EF⊥BE,EF∥AC,∴∠FEC=90°,∠ACB=90°,∴∠BCD=∠ACB﹣∠3=90°﹣36°=54°.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下册数学期终检测试卷
班级 姓名
一.填空题:(每小题3分,共30分)
1.将方程3y –x = 2 变形成用含y 的代数式表示x ,则 x= 。
2.如果⎩⎨⎧-==12y x 是方程3mx -y =-1的解,则m =__________.
3. a 2
∙a 3
∙(- a)4
= ,6xy(- 3
1x +2
1 y )=
4、已知7,9x y x y +=-=,则22x y -=
5. 若2
6x
x k -+是x 的完全平方式,则k =__________。
6. 某工程队共有27人, 每天每人可挖土4方,或运土5方 为使挖出的土及时运走,应分配挖土的人是___________ 7.如图直线AB 、CD 相交于点O ,OE ⊥AB ,O 为垂足,
如果∠EOD = 38°,则∠AOC =
8. 如图,直线12l l ∥,l 分别与12l l ,相交,如果2120
∠=
, 那么1∠的度数是___________度. 9. 一个角的余角是这个角的补角的5
1,
则这个角的度数为___________
10 .一组数据2、3、3、3、4、5、6、6中,其平均数、众数、中位数、方差分
别是 、 、 、 。
二. 选择题: (每小题3分,共30分,)
11. 下列是二元一次方程的是 ( )
A.x x =-63
B.32x y =
C.01
=-y
x D. xy
y x =-32 12.下列计算中,正确的是( )
A 、 (x-1)2=x 2-2x-1
B 、(2a+b)2=2a 2+4ab+b 2
C 、 (3x+2)2=9x 2+6x+4
D 、(21m –n)2=4
1
m 2-mn+n 2
l l 1
l 2
1
2
13.方程组⎩⎨⎧=-=+1348
3y x y x 的解是 ( )
A.⎩⎨⎧=-=31y x
B.⎩⎨⎧-==13y x
C.⎩⎨⎧-=-=13y x
D.⎩⎨⎧-=-=31y x
14. 计算244
(3)()3
a b a b ⋅-的结果是( ).
A .62
a
b B .6
4a
b - C .624a b - D .8a b
15. 下列计算正确的是( )
A. 4
48236a a a ⋅= B. 448a a a += C. 4
44
2a a a ⋅= D. 448
()a a =
16. 下列图形中,轴对称图形的个数是( )
A.1
B.2 C.3
D.4
17. 右图是一个旋转对称图形,要使它旋转后能与自身重合,
至少应将它绕中心点旋转的度数是( ) (A )30° (B )60°
(C )120° (D )180°
18. 已知(a+b)2=11,ab=2, 则(a –b)2的值应为 ( )
A 、11
B 、5
C 、 3
D 、19
19. 下列说法错误的是( )
A.内错角相等,两直线平行.
B.两直线平行,同旁内角互补.
C.相等的角是对顶角.
D.等角的补角相等.
20. 如图a b ∥,M
N ,分别在a b ,上,P 为两平行线间一点, 那么123∠+∠+∠=( )
A .180
B .270
C .360
D .540
a
b
M P N 1 2
3
三.解答题:(5+5+5+5+5分,)
21.解方程组、 ⎩⎨⎧=-=+11533
2y x y x
22、(1)计算:(2)(3)x x +- (2)、分解因式:22()()a x y b y x -+-
23.先化简,再求值(x + 3)(x -3) –(x+ 3)
2
,其中x=-2
24.完成推理填空:如图:已知∠A =∠F ,∠C =∠D ,求证:BD ∥CE 。
证明:∵∠A =∠F ( 已知 )
∴AC ∥DF ( ____________________________) ∴∠D =∠1 (_________________________) 又∵∠C =∠D ( ) ∴∠1=∠C ( )
∴BD ∥CE ( )
四、综合题(7+8分)
25. 如图所示,已知∠B=∠C ,AD ∥BC ,试证明:AD 平分∠CAE
26.我市某汽车销售公司到某汽车制造厂选购A 、B 两种型号的轿车,用300万元可购进A 型轿车10辆,B 型轿车15辆,用300万元也可以购进A 型轿车8辆,B 型轿车18辆. 求A 、B 两种型号的轿车每辆分别为多少万元?
D
E
A B
C
2
1。