流体力学复习资料
《流体力学》复习资料
一、填空题1、液体的动力粘性系数随温度的而减小,牛顿流体是指切应力与成的流体。
2、欧拉法中,流体的加速度包括和两种,如果流场中时变加速度为零,则称流动为,否则,流动称为。
3、雷诺实验揭示了流体流动存在层流和两种流态,并可用来判别流态。
4、一般管路中的损失,是由和两部分构成,在定常紊流中,沿程水头损失与流速的成,所谓的长管是指比小得多,可以忽略不计。
5、已知三维流场的速度分布为:0vtxu,试求t=0时刻,经过=wy,4,2=+=点(1,1)的流线方程;点(1,1)处的加速为。
6、平面流动速度分布为:22y=,byu-ax=,如果流体不可压缩,试-v-xy求a= ;b= 。
7、子弹在15摄氏度的大气中飞行,如果子弹头部的马赫角为45度,已知音波速度为340m/s子弹的飞行速度为。
8、管道截面的变化、及壁面的热交换,都会对一元可压缩流动产生影响。
9、自由面上的压强的任何变化,都会地传递到液体中的任何一点,这就是由斯卡定律。
10、液体在相对静止时,液体在重力、、和压力的联合作用下保持平衡。
11、从海平面到11km处是,该层内温度随高度线性地。
12、平面壁所受到的液体的总压力的大小等于的表压强与面积的乘积。
13、水头损失可分为两种类型:和。
14、在工程实践中,通常认为,当管流的雷诺数超过,流态属于紊流。
15、在工程实际中,如果管道比较长,沿程损失远大于局部损失,局部损失可以忽略,这种管在水力学中称为。
16、紊流区的时均速度分布具有对数函数的形式,比旋转抛物面要均匀得多,这主要是因为脉动速度使流体质点之间发生强烈的,使速度分布趋于均匀。
17、流体在运动中如果遇到因边界发生急剧变化的局部障碍(如阀门,截面积突变),流线会发生变形,并出现许多大小小的,耗散一部分,这种在局部区域被耗散掉的机械能称为局部水头损失。
18、流动相似指的是两个流动系统所有对应点的对应物理量之比相等,具体地说,就是要满足,、和。
19、自由面上的压强的任何变化,都会地传递到液体中的任何一点,这就是由斯卡定律。
流体力学 大学考试复习资料 知识点总结
第一章流体及流场的基本特性1、流体定义——受任何微小剪切力作用都会连续变形的物质。
2、流体的特性——流动性、连续性3、流体的主要物理性质【惯性:密度(单位体积流体内所具有的质量)、比容(单位质量的流体所占有的体积)、重度(单位体积的流体所具有的重量)、关系(流体的密度与比体积之间互为倒数)、密度影响因素(流体种类、温度、压力)】【压缩性(流体的体积随压力增大而缩小的性质)、膨胀性(流体的体积随温度升高而增大的性质)、不可压缩流体(当压力与温度变化时,体积变化不大,密度可以看作是常数的流体)】【粘性定义(流体流动时在流体层与层之间产生内摩擦力的特性)、影响因素(流体的种类、温度、压力)、粘度(动力黏度,运动黏度)、理想流体粘性】(理想流体——假想的没有黏性的流体、实际流体——自然界中存在的具有黏性的流体)(表面张力——液体自由表面存在的力、毛细现象——表面张力可以引起相当显著的液面上升或下降,形成上凸或下凹的曲面)4、水力要素(有效截面面积、湿周——有效截面上液体与固体壁接触线的长度、水力半径——有效截面面积与断面湿周的比值、当量直径——在非圆形的有效截面中,水力半径的四倍)(工程圆管——原因:1.在有效截面面积相等的条件下,湿周愈小,流体与管壁的接触线长度愈小,所引起的流动阻力损失也愈小。
2.节省材料.)5、运动要素(动压力——作用在运动液体内部单位面积上的压力、流速——该质点在空间中移动的速度、流量——单位时间内通过有效截面的流体数量、平均流速——假设在有效截面上的各点均以相同的假象速度流过时,通过的流量与实际力量相等,那么这个假想的流速为平均流速.)第二章流体静力学1、作用在流体上的力表面力:作用在流体表面上的力,与面积成正比。
(包括:压力、内摩擦力)质量力:作用在流体质点上的力,与质量成正比。
(包括:重力、惯性力、离心力)2、静压力概念:静压力(作用在质点上,流体力学)平均静压力(作用在面上,物理学)3、静压力特性:①静压力方向总是垂直并且指向作用面。
流体力学复习内容
1.自然界物质存在的主要形式有:固体、流体(包括液体和气体)。
2.按连续介质的概念,流体质点(流体微团)是指(D)。
A、流体的分子;B、流体内的固体颗粒;C、几何的点;D、几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。
3.水的密度常用值:ρ=1000kg/m3。
水银的密度常用值:ρ=13600kg/m3。
4.牛顿内摩擦力公式:5.与牛顿内摩擦定律直接有关的因素是()。
A、切应力和压强;B、切应力和剪切变形速率;C、切应力和剪切变形;D、切应力和流速。
一、选择题1、水力学中,单位质量力是指作用在单位___C__ 液体上的质量力。
A 面积;B 体积;C 质量;D 重量2、不同的液体其粘滞性_______,同一种液体的粘滞性具有随温度____D___而降低的特性。
A 相同降低;B 相同升高;C 不同降低;D 不同升高3、液体粘度随温度的升高而____,气体粘度随温度的升高而____D_。
A 减小,不一定;B 增大,减小;C 减小,不变;D 减小,增大4、动力粘滞系数的单位是:B___A N*s/mB N*s/m^2C m^2/D m/s5、下列说法正确的是:___A_A 液体不能承受拉力,但能承受压力。
B 液体不能承受拉力,也不能承受压力。
C 液体能承受拉力,但不能承受压力。
D 液体能承受拉力,也能承受压力。
6.如图所示,一平板在油面上作水平运动。
已知平板运动速度V=1m/s,平板与固定边界的距离δ=5mm,油的动力粘度μ=0.1Pa·s,则作用在平板单位面积上的粘滞阻力为(C)A.10Pa B.15Pa C.20Pa D.25Pa7.与牛顿内摩擦定律有关的因素是:(B)A、压强、速度和粘度;B、流体的粘度、切应力与角变形率;C、切应力、温度、粘度和速度;D、压强、粘度和角变形。
8.在研究流体运动时,按照是否考虑流体的粘性,可将流体分为:(D)A、牛顿流体及非牛顿流体;B、可压缩流体与不可压缩流体;C、均质流体与非均质流体;D、理想流体与实际流体。
流体力学复习整理资料
一、填空:每空一分,共16分。
1、流体动力粘度的单位是()。
2、作用在流体上的力分为()和()。
3、度量压强的基准有()和()。
4、若压强p < 0 ,其绝对值称作()。
5、流体质点的加速度是由()加速度和()加速度组成。
6、连续性微分方程用于不可压缩流体时的形式是()。
7、无旋流动的条件是()。
8、流体流动分()和()两种状态,其判别标准是()。
9、沿程阻力实验中,测量流量采用的装置称作()。
10、流体力学中常用的基本量纲是()。
11、雷诺实验结果采用方程表示,层流段的m值为()。
二、选择:每题一分,共29分。
1、流体的粘度随温度的升高而()。
A 降低;B 不变;C 升高;D 不一定。
2、单位质量力的单位是()。
A N ;B N/m2 ;C kg ;D m/s2 。
3、流体静压强的方向是指向固体壁面的()。
A 外法线;B 内法线;C 任意;D 平行。
4、气体粘性是由于分子的()而产生的。
A 吸引力;B 摩擦力;C 质量力;D 热运动。
5、表示压强的国际单位是()。
A N ;B N/m2 ;C Pa ;D Pa/m2 。
6、不考虑流体粘性的流体称()流体。
A 理想;B 牛顿;C 非牛顿;D 实际。
7、平均流速的表达式为()。
A B C D8、动能修正系数在层流时的值是()。
A 1 ;B 1.1 ;C 1.5 ;D 2 。
9、圆管层流时速度分布与半径的()次方成正比。
A 1 ;B 1.5 ;C 1.5 ; D2 。
10、水力半径在数值上等于圆管直径的()倍。
A 1/2 ;B 2 ;C 1/4 ;D 4 。
11、矩形垂平面受到液体总压力的压力中心()其几何中心。
A 低于;B 等于;C 高于;D 不定。
12、流体运动力学中常用()进行研究。
A 拉格朗日法;B 欧拉法;C 雷利法;D 雷诺法。
13、动量修正系数在层流时的值是()。
A 2/3;B 3/2;C 3/4 ;D 4/3 。
14、实际流速()。
流体力学复习资料【最新】
流体力学复习资料1.流体的定义;宏观:流体是容易变形的物体,没有固定的形状。
微观:在静力平衡时,不能承受拉力或者剪力的物体就是流体。
2. 流体的压缩性:温度一定时,流体的体积随压强的增加而缩小的特性。
流体的膨胀性:压强一定时,流体的体积随温度的升高而增大的特性。
3. 黏度变化规律:液体温度升高,黏性降低;气体温度升高,黏性增加。
原因:液体黏性是分子间作用力产生;气体黏性是分子间碰撞产生。
4.牛顿内摩擦定律:运动的额流体所产生的内摩擦力F的大小与垂直于流动方向的速度梯度du/dy成正比,与接触面的面积A成正比,并与流体的种类有关,与接触面上的压强无关。
数学表达式:F=μA du/dy流层间单位面积上的内摩擦力称为切向应力τ=F/A=μdu/dy5.静止流体上的作用力:质量力、表面力。
质量力:指与流体微团质量大小有关并且集中作用在微团质量中心上的力。
表面力:指大小与流体表面积有关并且分布作用在流体表面上的力。
6.重力作用下静力学基本方程:dp=-ρgdz 对于均质不可压缩流体:z+p/ρ=c物理意义:几何意义7. .绝对压强:以绝对真空为基准计算的压强。
P相对压强:以大气压强为基准计算的压强。
P e真空度:某点的压强小于大气压强时,该点压强小于大气压强的数值。
P vP=p a+ρgh p e=p-pa p v=p a-p8.压力提的概念:所研究的曲面(淹没在静止液体中的部分)到自由液面或自由液面的延长面间投影所包围的一块空间体积。
液体在曲面上方叫实压力体或正压力体;下方的叫虚压力体或负压力体。
9. 研究流体运动的两种方法:①拉格朗日法②欧拉法10.定常流动:流体质点的运动要素只是坐标的函数而与时间无关。
非定常流动:流体质点的运动要素既是坐标的函数又是时间的函数。
11. 迹线:指流体质点的运动轨迹,它表示了流体质点在一段时间内的运动情况。
流线:在流场中每一点上都与速度矢量相切的曲线称为流线。
流线是同一时刻不同流体质点所组成的曲线,它给出该时刻不同流体质点的速度方向。
流体力学考试必备复习资料.doc
1.流体力学介绍(研宄对象、A容、方法)2.连续介质模型3.流动流体的粘性4.流体物理性质5.作用在流体上的力流体力学的概念流体力学:力学的一个分支。
力学研究中广泛采用抽象的理论模型:如质点,质点组,刚体,连续介质等。
理论力学研究这些理论模型的普遍运动规律和一般性原理。
连续介质力学研宂连续介质的运动规律,包括弹性力学(固体)和流体力学(液体和气体)。
流体力学:研宄流体在静止和运动时的受力与运动规律。
即流体在静止和运动时的压力分布, 流速变化,流y:大小,能传递与损失以及流体与同体壁而间的相互作用力等问题。
名词解释:连续介质--由没有空隙、完全充满所占空间的无数质点所组成的物质.流体的构成流体rh大量分子组成;流体分子无休止地作不规则的运动;流体分子之间经常相互碰撞,交换动量和能量。
流体力学的研宄内容流体的平衡规律:流体的运动规律;流体与流体以及流体与固体之间相互作用的规律。
流体力学的研究方法理论研究方法建立力学模型通过对流体性质及运动的观察,根据问题的要求,抓住主要因素,忽略次要因素,建立力学模型。
对力学模型根据物理定律或实验公式,以数学形式建立描写流体运动的封闭方程组,并给出初始条件和边界条件。
求解利用各种数学工具准确地或近似地解出方程纟11,建立起所求问题的流体各参量之间的解析关系或数值关系。
优缺点准确,清晰,但由于数学发展水平的局限,只能应用于简单理论模型,而不能应用于实际复杂的流体运动。
实验研究方法通过实验测S的方法研究流体的力学规律。
实验研宄是流体力学研宄的重要方法。
通过实验,可以给理论研宄以启示,并检验理论是否正确。
通过实验研究,还可建立一定的经验公式,用來解决工程M题。
优缺点可靠,准确,具有指导意义;但是受实验尺度和边界条件限制,有些实验无法开展,或耗资巨大。
数值研究方法流体力学方程的解析解十分难求,因此用数值计算的方法利用计算机对流体力学方程求解成为重要手段。
通常将流体力学的数学模型在计算域上离散化,然后采用一定的数值计算方法计算,以得到流场各参数的变化规律。
流体力学复习资料
1.迹线:同一质点在不同时刻所占有的空间位置联成的空间曲线称为迹线。
2.定常流动:液体流动时,若流体中任何一点的压力,速度和密度都不随时间变化,则这种流动就称为定常流动。
3.沿程阻力:流体在均匀流段上产生的流动阻力,称为沿程阻力。
4.量纲:量纲是指物理量的性质和类别。
5.体积模量:6.流动相似:两个流动相应点上的同名物理量具有各自固定的比例,则这两个流动就是相似的。
7.纲和谐原理:8.湍流:流体质点的远动轨迹是极不规则的,各部分相互混杂,这种流动状态称为紊流。
9.局部阻力:由于流体速度或方向的变化,导致流体剧烈冲击,由于涡流和速度重新分布而产生的阻力。
10.层流:液体层间有规则的流动状态称为层流。
11.渐变流:流线之间的夹角β很小、流线的曲率半径r很大的近乎平行直线的流动。
12.淹没出流:容器中的液体通过孔口出流到另一个充满液体的空间。
13.薄壁孔口:出流流股与孔口接触只有一条周线,这种条件的孔口称为薄壁孔口。
14.动能修正系数:15.流管:在流场内,取任意非流线的封闭曲线L,经此曲线上全部点做流线,这些流线组成的管状流面,称为流管。
简答题1.什么是等压面等压面的条件是什么等压面是指流体中压强相等的各点所组成的面。
只有重力作用下的等压面应满足的条件是:静止、连通、连续均质流体、同一水平面。
2.流线的定义性质。
流线的定义:在某一时刻,个点的切线方向与通过该点的流体质点的流速方向重合的空间去曲线。
流线的性质:a、同一时刻的不同流线,不能相交。
b、流线不能是折线,而是一条光滑的曲线或直线。
c、流线越密处,流速越大,流线越稀处,流速越小。
4.试简要回答缓变流的定义及其两个主要特性。
缓变流(渐变流):流线之间的夹角β很小、流线的曲率半径r很大的近乎平行直线的流动。
特性:5.试简要阐述局部能量损失的定义及大致分类。
6.简述孔口出流的分类情况。
按孔口直径D和孔口形心在液面下深度H分为大孔口和小孔口;按水头随时间变化,分为恒定出流和非恒定出流;按壁厚,分为薄壁孔口和厚壁孔口;按出流空间状况,分为自由出流和淹没出流。
流体力学总复习
流体⼒学总复习流体⼒学总复习1.流体连续介质假设,流体的易变形性,粘性,可压缩性2.流体的主要⼒学性质:粘性,压缩性和表⾯张⼒。
3.粘度⼀般不随压⼒变化;对于⽓体温度升⾼则粘度变⼤;对于液体温度升⾼则粘度变⼩。
4.流体的压缩性温度不变时,流体的体积随压强升⾼⽽缩⼩的性质。
5.流体的热膨胀性压⼒不变时,流体的体积随温度升⾼⽽增⼤的性质。
6.不可压缩流体的概念所有的流体均具有可压缩性,只不过液体压缩性很⼩,⽓体的压缩性⼤。
实际⼯程中,对于那些在整个流动过程中压⼒及温度变化不是很⼤,以致流体的密度变化可以忽略不计的问题,不论是液体或是⽓体,假设其密度为常数,并称其为不可压缩流体。
7.⽜顿内摩擦定律,τ=µ*du/dy。
上式说明流体在流动过程中流体层间所产⽣的剪应⼒与法向速度梯度成正⽐,与压⼒⽆关。
流体的这⼀规律与固体表⾯的摩擦⼒规律不同。
符合⽜顿切应⼒公式者为⽜顿流体,如⽔,空⽓;不符合⽜顿切应⼒公式者为⾮⽜顿流体,如油漆,⾼分⼦化合物液体。
8.粘性系数为零的流体称为理想流体,是⼀种假想的流体。
9.⼯程中常⽤运动粘度代替,10.黏性流体与理想流体之分。
⾃然界存在的实际流体都具有黏性,因此实际流体都是黏性流体;若黏性可以忽略不计,则称之为理想流体,即不具有黏性的流体为理想流体。
11.影响黏度的主要因素(1) 温度的影响A. 对于液体,其黏度随温度的升⾼⽽减少。
原因为:液体分⼦的黏性主要来源于分⼦间内聚⼒,温度升⾼时,液体分⼦间距离增⼤,内聚⼒随之下降⽽使黏度下降。
B. 对于⽓体,其黏度随温度的升⾼⽽增⼤。
原因为:⽓体黏性的主要原因是分⼦的热运动,温度升⾼时,⽓体分⼦的热运动加剧,层间分⼦交换频繁,因此⽓体黏度增⼤。
(2) 压强的影响通常压强下,压强对流体黏度的影响很⼩,可以忽略不计。
但在⾼压强下,流体,⽆论是液体还是⽓体,其黏度都随压强的增⼤⽽增⼤。
12.液体的⾃由表⾯存在表⾯张⼒,表⾯张⼒是液体分⼦间吸引⼒的宏观表现。
《流体力学》各章节复习要点
第一章一、名词解释1.理想流体:没有粘性的流体2.惯性:是物体所具有的反抗改变原有运动状态的物理性质。
3.牛顿内摩擦力定律:流体内摩擦力T 的大小与液体性质有关,并与流速梯度和接触面A成正比而与接触面上的压力无关。
4.膨胀性:在压力不变条件下,流体温度升高时,其体积增大的性质。
5.收缩性:在温度不变条件下,流体在压强作用下,体积缩小的性质。
6.牛顿流体:遵循牛顿粘性定律得流体。
二、填空题1.流体的动力粘性系数,将随流体的(温度)改变而变化,但随流体的(压力)变化则不大。
2.动力粘度μ的国际单位是(s p a ⋅或帕·秒)物理单位是(达因·秒/厘米2或2/cm s dyn ⋅)。
3.运动粘度的国际单位是(米2/秒、s m /2),物理单位是(沱 )。
4.流体就是各个(质点)之间具有很大的(流动性)的连续介质。
5.理想流体是一种设想的没有(粘性)的流体,在流动时各层之间没有相互作用的(切应力),即没有(摩擦力)三、单选题1. 不考虑流体粘性的流体称( )流体。
AA 理想B 牛顿C 非牛顿D 实际2.温度升高时,空气的粘性( ) BA .变小B .变大C .不变D .不能确定3.运动粘度的单位是( ) BA .s/m 2B .m 2/sC .N ·m 2/sD .N ·s/m 24.与牛顿内摩擦定律直接有关的因素是( ) CA .切应力与速度B .切应力与剪切变形C .切应力与剪切变形速度D .切应力与压强5.200℃体积为2.5m 3的水,当温度升至800℃时,其体积变化率为( ) C200℃时:1ρ=998.23kg/m 3; 800℃时: 2ρ=971.83kg/m 3A .2.16%B .1.28%C .2.64%D .3.08%6.温度升高时,水的粘性( )。
AA .变小B .变大C .不变D .不能确定2.[动力]粘度μ与运动粘度υ的关系为( )。
BA .υμρ=B .μυρ=C .ρυμ= D .μυ=P3.静止流体( )剪切应力。
流体力学考试复习资料
一、填 空 题1.流体力学中三个主要力学模型是(1)连续介质模型(2)不可压缩流体力学模型(3)无粘性流体力学模型。
2.在现实生活中可视为牛顿流体的有水 和空气 等。
3.流体静压力和流体静压强都是压力的一种量度。
它们的区别在于:前者是作用在某一面积上的总压力;而后者是作用在某一面积上的平均压强或某一点的压强。
4.均匀流过流断面上压强分布服从于水静力学规律。
5.和液体相比,固体存在着抗拉、抗压和抗切三方面的能力。
6.空气在温度为290K ,压强为760mmHg 时的密度和容重分别为 1.2a ρ= kg/m 3和11.77a γ=N/m 3。
7.流体受压,体积缩小,密度增大 的性质,称为流体的压缩性 ;流体受热,体积膨胀,密度减少 的性质,称为流体的热胀性 。
8.压缩系数β的倒数称为流体的弹性模量 ,以E 来表示9.1工程大气压等于98.07千帕,等于10m 水柱高,等于735.6毫米汞柱高。
10.静止流体任一边界上压强的变化,将等值地传到其他各点(只要静止不被破坏),这就是水静压强等值传递的帕斯卡定律。
11.流体静压强的方向必然是沿着作用面的内法线方向。
12.液体静压强分布规律只适用于静止、同种、连续液体。
13.静止非均质流体的水平面是等压面,等密面和等温面。
14.测压管是一根玻璃直管或U 形管,一端连接在需要测定的容器孔口上,另一端开口,直接和大气相通。
15.在微压计测量气体压强时,其倾角为︒=30α,测得20l =cm 则h=10cm 。
16.作用于曲面上的水静压力P 的铅直分力z P 等于其压力体内的水重。
17.通过描述物理量在空间的分布来研究流体运动的方法称为欧拉法。
18. 流线不能相交(驻点处除外),也不能是折线,因为流场内任一固定点在同一瞬间只能有一个速度向量,流线只能是一条光滑的曲线或直线。
19.静压、动压和位压之和以z p 表示,称为总压。
20.液体质点的运动是极不规则的,各部分流体相互剧烈掺混,这种流动状态称为紊流。
流体力学备考复习资料
【1.12】一圆锥体绕竖直中心轴作等速转动,锥体与固体的外锥体之间的缝隙δ=1mm ,其间充满μ=0.1Pa ·s 的润滑油。
已知锥体顶面半径R =0.3m,锥体高度H =0.5m,当锥体转速n =150r/min 时,求所需旋转力矩。
解:如图,在离圆锥顶h 处,取一微圆锥体(半径为),其高为。
这里该处速度剪切应力高为一段圆锥体的旋转力矩为其中代入总旋转力矩其中代入上式得旋转力矩【1.13】上下两平行圆盘,直径均为d ,间隙为δ,其间隙间充满黏度为μ的液体。
若下盘固定不动,上盘以角速度旋转时,试写出所需力矩M 的表达式。
解:在圆盘半径为处取的圆环,如图。
其上面的切应力则所需力矩总力矩【1.14】当压强增量=5×104N/m 2时,某种液体的密度增长0.02%。
求此液体的体积r d h Rr h H =()Rv h r h H ωω==()vRh r H ωτμμδδ==d h 2Rh H ωμπδ=2d cos hr θtan r h θ=2302tan d ()d cos HR M M h h h H πμωθHδθ⋅==⎰⎰rad/s 7.15602150s,Pa 1.0=⨯=⋅=πωμωr d r ()r r ωτμδ=()d 2M r τπ=32d d r rr r rπμωδ=42232d d 32d dd M M r r πμωπμωδδ===⎰⎰p ∆习题.121图弹性模量。
解:液体的弹性模量【1.15】一圆筒形盛水容器以等角速度绕其中心轴旋转。
试写出图中A(x,y,z)处质量力的表达式。
解:位于处的流体质点,其质量力有 惯性力重力(Z 轴向上)故质量力的表达式为【2.12】试决定图示装置中A 、B 两点间的压强差。
已知h 1=500mm ,h 2=200mm ,h 3=150mm ,h 4=250mm ,h 5=400mm ,酒精γ1=7 848N/m 3,水银γ2=133 400 N/m 3,水γ3=9 810 N/m 3。
流体力学复习资料
流体力学复习资料流体力学是物理学的一个分支,研究流体的运动、变形以及与力的相互作用。
在工程学中,流体力学是非常重要的学科,涉及到各种工程领域,如航空航天、船舶、汽车等。
本文将为读者提供一份流体力学的复习资料,帮助读者巩固和加深对流体力学的理解。
一、流体介绍1. 流体的定义:流体是指物质的一种状态,具有无定形、变形受力作用而容易发生流动的特点。
2. 流体的分类:流体分为液体和气体两种,液体具有一定的体积和形状,气体没有固定的体积和形状。
3. 流体力学假设:流体力学研究中常常使用一些假设,如连续介质假设、理想流体假设等,这些假设在分析流体力学问题时起到了简化计算的作用。
二、流体静力学1. 压力:压强是衡量流体压力的物理量,定义为单位面积上的垂直作用力。
介绍了压强的定义、单位以及压强的计算公式。
2. 压强的传递:介绍了帕斯卡定律,即在静态流体中,压力在各个方向上是等同的,不会随着距离的改变而改变。
3. 浮力:浮力是物体在液体中受到的向上的力,由于压强的不均匀分布造成的。
介绍了浮力的计算公式、性质以及浮力与物体浸没的关系。
三、连续介质力学1. 流体运动的描述:介绍了流体的质点法和连续介质法两种描述流体运动的方法,以及它们的适用范围和优缺点。
2. 流体的速度场和加速度场:介绍了速度场和加速度场的概念,以及它们与流体流动的关系。
3. 质量守恒定律:质量守恒定律是流体力学中的基本定律,表明在流体运动中质量是守恒的。
介绍了质量守恒定律的数学表达式和应用。
四、流体动力学1. 动量守恒定律:动量守恒定律是流体力学中的另一个基本定律,表明在流体运动中动量是守恒的。
介绍了动量守恒定律的数学表达式和应用。
2. 流体的雷诺数:雷诺数是描述流体流动状态的一个重要参数,可以用来判断流体是否属于层流还是湍流。
介绍了雷诺数的计算方法和不同数值范围的流动状态。
3. 能量守恒定律:能量守恒定律是流体力学中的另一个基本定律,表明在流体运动中能量是守恒的。
流体力学考试复习资料
第二讲流体动力学基础【内容提要】流体运动的基本概念:恒定总流的连续性方程,恒定总流的能量方程【重点、难点】恒定总流的连续性方程和能量方程的运用。
【内容讲解】一、流体运动的基本概念(一)流线和迹线流线是在流场中画出的这样一条曲线:同一瞬时,线上各流体质点的速度矢量都与该曲线相切,这条曲线就称为该瞬时的一条流线。
由它确定该瞬时不同流体质点的流速方向。
流线的特征是在同一瞬时的不同流线一般情况下不能相交;流线也不能转折,只能是光滑的曲线。
迹线是某一流体质点在一段时间内运动的轨迹,迹线上各点的切线表示同一质点在不同时刻的速度方向。
(二)元流和总流在流场中任取一微小封闭曲线,通过曲线上的每一点均可作出一根流线,这些流线形成一管状封闭曲面称流管。
由于速度与流线相切,所以穿过流管侧表面的流体流动是不可能的。
这就是说位于流管中的流体有如被刚性的薄壁所限制。
流管中的液(气)流就是元流,元流的极限是一条流线。
总流是无限多元流的总和。
因此,在分析总流前,先分析元流流动,再将元流积分就可推广到总流。
与元流或总流的流线相垂直的截面称过流断面,用符号A表示其断面面积。
在流线平行时,过流断面为平面,流线不平行则过流断面为曲面。
(三)流量和断面平均流速(四)流动分类1.按流动是否随时间变化将流动分为恒定流和非恒定流。
若所有的运动要素(流速、压强等)均不随时间而改变称为恒定流。
反之,则为非恒定流。
恒定流中流线不随时间改变;流线与迹线相重合。
在本节中,我们只讨论恒定流。
2.按流动是否随空间变化将流动分为均匀流和非均匀流。
流线为平行直线的流动称为均匀流。
如等直径长管中的水流,其任一点的流速的大小和方向沿流线不变。
反之,流线不相平行或不是直线的流动称为非均匀流。
即任一点流速的大小或方向沿流线有变化。
在非均匀流中,当流线接近于平行直线,即各流线的曲率很小,而且流线间的夹角也很小的流动称为渐变流。
否则,就称为急变流。
渐变流和急变流没有明确的界限,往往由工程需要的精度来决定。
流体力学资料复习整理.doc
流体复习整理资料第一章 流体及其物理性质1.流体的特征——流动性:在任意微小的剪切力作用下能产生连续剪切变形的物体称为流体。
也可以说能够流动的物质即为流体。
流体在静止时不能承受剪切力,不能抵抗剪切变形。
流体只有在运动状态下,当流体质点之间有相对运动时,才能抵抗剪切变形。
只要有剪切力的作用,流体就不会静止下来,将会发生连续变形而流动。
运动流体抵抗剪切变形的能力(产生剪切应力的大小)体现在变形的速率上,而不是变形的大小(与弹性体的不同之处)。
2.流体的重度:单位体积的流体所的受的重力,用γ表示。
g 一般计算中取9.8m /s 23.密度:=1000kg/,=1.2kg/,=13.6,常压常温下,空气的密度大约是水的1/8003. 当流体的压缩性对所研究的流动影响不大,可忽略不计时,这种流体称为不可压缩流体,反之称为可压缩流体。
通常液体和低速流动的气体(U<70m /s )可作为不可压缩流体处理。
4.压缩系数:弹性模数:21d /d p p E N mρβρ==膨胀系数:)(K /1d d 1d /d TVV T V V t ==β5.流体的粘性:运动流体内存在内摩擦力的特性(有抵抗剪切变形的能力),这就是粘滞性。
流体的粘性就是阻止发生剪切变形的一种特性,而内摩擦力则是粘性的动力表现。
温度升高时,液体的粘性降低,气体粘性增加。
6.牛顿内摩擦定律: 单位面积上的摩擦力为:内摩擦力为: 此式即为牛顿内摩擦定律公式。
其中:μ为动力粘度,表征流体抵抗变形的能力,它和密度的比值称为流体的运动粘度ν内摩擦力是成对出现的,流体所受的内摩擦力总与相对运动速度相反。
为使公式中的τ值既能反映大小,又可表示方向,必须规定:公式中的τ是靠近坐标原点一侧(即t -t 线以下)的流体所受的内摩擦应力,其大小为μ du/dy ,方向由du/dy 的符号决定,为正时τ与u 同向,为负时τ与u 反向,显然,对下图所示的流动,τ>0, 即t —t 线以下的流体Ⅰ受上部流体Ⅱ拖动,而Ⅱ受Ⅰ的阻滞。
流体力学复习资料,亲自整理。
第一章 绪论1. 重度:指流体单位体积所受的重力,以γ表示。
对于非均质流体:对于均质流体:单位:牛/米3(N/m3)不同流体ρ、γ不同,同一流体ρ、γ随温度和压强而变化。
在1标准大气压下:表1.1(P5)蒸馏水:4ºC ,密度1000kg/m3,重度9800 N/m3 ; 水银:0ºC ,密度13600kg/m3,重度133280 N/m3 ; 空气:20ºC ,密度1.2kg/m3,重度11.76N/m3 ;2. 粘性流体平衡时不能抵抗剪切力,即平衡时流体内部不存在切应力。
流体在运动状态下具有抵抗剪切变形能力的性质,称为粘性。
内摩擦切应力τ=T/A T=F A 为平板与流体的接触面积。
粘性只有在流体运动时才显示出来,处于静止状态的流体,粘性不表现有任何作用。
由牛顿流体的条件可知,若流体速度为线性分布(板距h 、速度u 0不大)板间y 处的流速为:切应力为:系数μ称为流体的动力粘性系数、动力粘度、绝对粘度;lim V G dGV dVγ∆→∆==∆0G mg gV Vγρ===u u y h=0u hτμ=0若流体速度u 为非线性分布流体内摩擦切应力τ:凡是内摩擦力按该定律变化的流体称为牛顿流体,如空气、水、石油等;否则为非牛顿流体。
牛顿流体▪ 切应力与速度梯度是通过原点的线性关系。
非牛顿流体塑性流体:如牙膏、凝胶等▪ 有一初始应力,克服该应力后其切应力才与速度梯度成正比。
假塑性流体:如新拌混凝土、泥石流、泥浆、纸浆▪ 速度梯度较小时,τ对速度梯度变化率较大;▪ 速度梯度较大时,τ对速度梯度的变化率逐渐降低。
胀塑性流体:如乳化液、油漆、油墨等▪ 速度梯度较小时,τ对速度梯度变化率较小; ▪ 速度梯度较大时,τ对速度梯度的变化率渐变大。
3.流体的运动粘度是动力粘性系数μ与其密度ρ之比,用ν表示若两种流体密度相差不多,单从ν值不好判断两者粘性大小。
只适用于判别同一流体(密度近似恒定)温度、压强不同时粘性变化。
流体力学复习资料
流体力学复习资料流体力学复习资料第一章基本概念1、流体力学的定义、流体的性质。
流体力学就是研究流体运动规律,以及流体和固体之间相互作用等方面的一门学科。
流体有三大性质:易流动性,黏性和压缩性。
2、流点的定义及其物理性质。
流点是指微观上足够大,宏观上足够小的分子团。
微观上足够大:使分子团的空间尺度选得足够大,使其含有大量的分子;平均的时间也应该足够大,使得这段时间内分子团内分子间碰撞已发生过很多次。
宏观上足够小:一方面使其可以近似看作几何上没有维度的一个点,另一方面使分子团被看作一个瞬间。
3、流体连续介质假说?并说明其必要性和可能性。
连续介质假设是把离散分子构成的实际流体,看作是由无数流体质点没有空隙连续分布而构成的。
可能性:通常,这样的分子团是存在的,如:0℃, 1个大气压,1cm3气体含有2.7x1019个分子;流点:10-9cm3 含有2.7x1010个分子;(体积上足够小)(微观上足够大,含有这么多分子)。
特殊问题,如稀薄气体运动或者空气动力学中的基波区。
稀薄气体运动:流点必须取得很大,则失去点的意义。
基波区:在非常小的空间范围内流体物理量就有剧烈的变化,就需要流点取得很小,结果无法包括足够多的分子数量来确定统计量。
必要性:a) 有了连续介质假定就可以不考虑流体的分子结构,从连续介质力学看来,流体的形象是宏观的均匀排列的流体,而不是含有大量分子的离散体。
b) 有了连续介质假定,当我们说流体质点处于静止状态时,那就是说它是停留在原地不动的,虽然那里的分子由于热运动将不断的位置移动。
c) 有了连续介质假定,当我们在连续介质内的某点A 上取极限时,不管A点多近的地方都有流体质点存在,并有确定的物理量。
(大量分子的总体表现是有规律的,或说微观量运动的统计平均是有规律的,这种微观量的统计平均值就是物体(流体)的宏观总体表现。
因而需要我们想个办法找到流体的基本运动元,(就像固体的质点一样),使我们对流体运动的描述变得简单方便,而且是可能和有效的。
流体力学复习要点
流体力学复习要点流体力学复习要点第一章绪论1.1流体的主要物理力学性质1、流体的主要物理力学性质包括哪几部分?2、水的密度为1000kg/m33、牛顿内摩擦定律4、牛顿内摩擦定律表明内摩擦力的大小与流体的角变形速率成正比5、流体的黏度,运动黏性系数与动力黏性系数的关系;液体的μ随温度的升高而减小,气体的μ随温度的升高而增大1.2作用在流体上的力1、按作用方式的不同分为:表面力和质量力2、单位质量力是作用在单位质量流体上的质量力1.3流体的力学模型1、常用的物理力学模型:连续介质模型、理想流体、不可压缩流体。
2、连续介质模型是指的流体是一种毫无空隙的充满其所占空间的连续体的假定。
流体质点指的是大小同一切流体空间相比微不足道,又含有大量分子具有一定质量的流体微元。
3、理想流体是指假定流体没有黏性4、不可压缩流体是指假定流体的密度是一个常数第一章流体静力学2.1静止流体中压强的特征1、静压强的定义2、静止流体中压强的特征:(1)静止流体只能承受压应力,压强的方向垂直指向作用面(受力面的内法线方向)(2)流体内同一点的静压强的大小在各个方向均相等2.2流体平衡微分方程1、等压面:压强相等的空间点构成的面2、对于仅受重力作用的联通的同一均质流体,等压面为水平面。
2.3重力作用下流体静压强的分布规律1、p z C gρ+= 当质量力仅为重力时,静止流体内部任一点的p z gρ+是常数 2、0p p g ρ=+h 3、压强的度量:相对压强、绝对压强、真空度。
4、静压强分布图的绘制2.4压强的测量一般采用仪器测得都是相对压强2.5流体的相对平衡1、等加速直线运动的流体的等压面:倾斜面2、等角速旋转运动的流体的等压面:旋转抛物面2.6液体作用在平面上的总压力1、解析法c F p A= c c c +D I y y y A=(注意一下:y D 代表的是什么) 2、图解法F=bS 2.6作用在曲面上的液体压力1、压力体的组成有3个面,分别是:2、压力体的绘制第二章流体运动理论与动力学基础3.1流体运动的描述方法欧拉法中加速度由两部分组成:位变加速度、时变加速度(或者说迁移加速度和当地加速度)3.2流场的基本概念(分类)1、按照运动要素是否随时间发生变化,分为:恒定流和非恒定流2、按照运动要素与坐标变量之间的关系分为:一元流、二元流和三元流。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
流体力学复习资料
考试题型:填空题:10个空。
选择题:20道。
简答题:4道。
计算题:4道。
第二章第四节不考。
第三章第七节第八节不考。
第四章派定理不考。
第五章第四、五、六、七节不考。
第六章主要看第一、二、三、6-4-1,第五节第一段。
第七章主要看第一节概念,其余不考。
第八章主要看第一节概念,其余不考。
计算题与作业题相似。
重点看前五章的基本概念。
公式推导过程不用看。
1、流体力学的研究对象:
1) 流体在平衡和运动时的压力分布、速度分布。
2) 与固体之间的相互作用。
3) 流动过程中的能量损失。
2、流体的定义:流体是一种受任何微小的剪切力作用时,都会产生连续的变形的物质。
3、流体的特征
①易流性(不能承受剪切力)
②形状不定性
③受力特性(绵续性)
液体:①无固定体积、②没有自由表面。
气体:易于压缩。
4、连续介质假说:质点(而不是分子)是组成宏观流体的最小基元,质点与质点之间没有间隙。
这就是连续介质假说。
连续介质是为研究
流体的宏观机械运动而提出的一种流体模型。
5、连续介质假说的目的:不仅理论分析中可以运用数学这一强有力工具,也为实验研究提供了可能。
6、流体压缩性:流体受压体积减小的性质。
(βp)
流体膨胀性:流体受热体积增加的性质。
(βt)
液体压缩性、膨胀性都很小,为不可压缩流体。
气体是可压缩流体。
7、流体的粘性:流体阻止发生剪切变形的特性,粘性力是它的动力表现。
实际流体都具有粘性,称为粘性流体。
8、粘性的度量:粘度【动力粘度(μ)运动粘度(ν)】(取决于流体的种类和温度)ν=μ/ρ
9、温度对液体和气体粘性的影响截然不同:温度升高时,液体的粘性降低,气体的粘性增加。
10、牛顿内摩擦定律:流体作层状流动(层流)时,粘性内摩擦切应力符合牛顿内摩擦定律。
τ= μdu/dy
11、作用于流体上的力包括:表面力和质量力。
表面力指作用在所研究的流体表面上的力。
质量力是流体质点受某种力场的作用力,它的大小与流体的质量成正比。
12、流体静压力:指流体处于静止或相对静止时,作用于流体的内法向应力。
13、流体静压力两特性:
①流体静压力的作用方向总是沿其作用面的内法线方向。
②在静止流体中任意一点压力的大小与作用的方位无关,其值均相等。
14、等压面具有两特性:
①平衡流体中,通过任意一点的等压面,必与该点所受的质量力互相垂直。
②当两种互不相混的液体处于平衡时,它们的分界面必为等压面。
15、流体静压力两种表示:①绝对压力Ρ;②相对压力Ρg
绝对压力是以绝对真空为零点算起的压力。
以大气压为零点算起的压力为相对压力。
16、拉格朗日法着眼于流体质点(跟踪法)。
欧拉法着眼于空间点(截迹法)。
17、定常流动:流场中各点流动参数与时间无关的流动为定常流动。
非定常流动:流场中各点的流动参数随时间变化的流动称为非定常流动。
18、流线:流场中若干连续流体质点在某一时刻的速度方向线形成的光滑曲线。
是表现和分析流场的重要工具。
迹线:流体质点的运动轨迹。
19、流线特点:
①非定常流动时,流线的形状随时间改变;定常流动时,其形状不随时间改变。
此时,流线与迹线重合,流体质点沿流线方向。
②流线是一条光滑曲线,流线之间不能相交。
③流线上某点切线方向与该点速度方向一致。
20、总流按边界性质分为有压流(靠压力),无压流(靠重力),射流(靠消耗自身的动能)来实现流动的。
21、过流断面:与总流或流束中的流线处处垂直的断面称为过流断面(越大越好)。
22、水力直径:总流的过流断面上,流体与固体接触的长度称为湿周,用х表示。
总流过流断面的面积A与湿周х之比称为水力半径R,水力半径的4倍称为水力直径用di表示。
di=4A/х=4R
23、连续性方程实质:是质量守恒定律在流体力学中的表现形式。
24、势函数应用条件:连续无旋。
流函数应用条件:连续。
25、伯努利方程应用条件:
①理想不可压缩流体
②作定常流动
③作用于流体上的质量力只有重力
④沿同一条流线(或微小流束)
26、动量方程应用条件:
①密度不变,不可压缩流体②定常流动
27、伯努利方程实质:机械能守恒及转换定律在流体力学中反映。
28、a称为动能修正系数,它表示截面上实际的平均单位重量流体的动能以平均流速表示的单位重量流体动能之比。
29、能量损失的两种形式:
①发生在沿流程边界形状(过流断面)变化不大的区域,一般在缓变流区域的阻力称沿程阻力。
②发生在流道边界形状急剧变化的地方,一般在急变流区域的阻力称为局部阻力。
30、黏性流体的流动状态有层流和紊流两种。
①当流体分层流动时,层与层之间的流体互不渗混,这种流动状态叫层流。
②若流体质点除了有沿轴向的运动外,还有极不规则的横向相互混杂和干扰运动,这种流动状态叫紊流。
31、流体判别准则:雷诺数。
Re= vd/ν=ρvd/μ
32、时均化:在紊流中,流体质点作复杂的无规律运动,如果对某点的速度进行长时间的观察,不难发现,虽然每一时刻的大小和方向都在变化,但它总是围绕某个平均值上下变动。
如果流场中各空间点的流动参量的时均值不随时间变化,就可以用时均值代替瞬时值,认为紊流运动也是定常流动。
33、水力粗糙(管)与水力光滑(管)粗糙高度几乎全被层流底层淹没,管壁对紊流区流体的流动影响最小,这与流体在完全光滑的管道中流动类似,阻力较小,这时管子称为水力光滑管。
管壁上几乎所有的凸峰都暴露在紊流中,紊流区的流体质点与凸峰相互碰撞,加剧了紊流,使流动阻力增加,此时管子称为水力粗糙管。
34、长管----局部损失在总损失中所占的比列较小(<5%)的管路称为水力长管。
往往不考虑局部损失而将沿程损失近似看做管路的总损
失。
如城市供水管,矿井主排水管和一些输油管。
短管----局部损失不能忽略的管路称为水力短管。
常见短管系统如水泵吸水管,锅炉送风管,液压系统中的管路等。
所谓“长管”和“短管”并不是指管路的几何长度,而是针对水头损失hw的计算特点而言。
压缩系数βp=−dv/dp乘1/v 弹性模量E=1/βp
切应力、单位面积所受摩擦力τ=F/A
流体内摩擦切应力τ=μdu/dy
μ—流体粘性比例系数,动力粘度,Pa·S
du/dy —速度在y方向变化率,速度梯度,1S
运动粘度ν=μ/ρ(m2s )
P=P0+rh P0液面上压力,rh液体自重静压力。