数据结构实验二 栈基本操作
数据结构实验报告(C语言)(强力推荐)
数据结构实验实验内容和目的:掌握几种基本的数据结构:集合、线性结构、树形结构等在求解实际问题中的应用,以及培养书写规范文档的技巧。
学习基本的查找和排序技术。
让我们在实际上机中具有编制相当规模的程序的能力。
养成一种良好的程序设计风格。
实验教材:数据结构题集(C语言版)清华大学出版社2007年实验项目:实验一、栈和循环队列㈠、实验内容:①栈掌握栈的特点(先进后出FILO)及基本操作,如入栈、出栈等,栈的顺序存储结构和链式存储结构,以便在实际问题背景下灵活应用。
本程序采用的是链栈结构,具有初始化一个栈、PUSH、POP、显示所有栈里的元素四个功能。
②循环队列掌握队列的特点(先进先出FIFO)及基本操作,如入队、出队等,学会循环队列的实现,以便在实际问题背景下灵活运用。
本程序具有初始化一个队列、入队、出队、显示队列的所有元素、队列长度五个功能。
㈡、实验代码①栈程序代码:#include <stdio.h>#include <malloc.h>#define Stack_Size 6#define ERROR 0#define OK 1typedef int SElemType;typedef struct SNode{SElemType data;struct SNode *next;}SNode,*LinkStack;int CreatTwo(LinkStack &head,int n){int i;SNode *p;head=(LinkStack)malloc(sizeof(SNode));head->next=NULL;printf("请输入数据(数字):\n");for(i=n;i>0;--i){p=(SNode *)malloc(sizeof(SNode));scanf("%d",&p->data);p->next=head->next;head->next=p;}return 1;}int menu_select(){int sn;for(;;){scanf("%d",&sn);if(sn<1||sn>6)printf("\n\t输入错误,请重新输入\n");elsebreak;}return sn;}int Push(LinkStack &top,SElemType e){SNode *q;q=(LinkStack)malloc(sizeof(SNode));if(!q){printf("溢出!\n");return(ERROR);}q->data=e;q->next=top->next;top->next=q;return(OK);}int Pop(LinkStack &top,SElemType &e){SNode *q;if(!top->next){printf("error!\n");return(ERROR);}e=top->next->data;q=top->next;top->next=q->next;free(q);return(OK);}void main(){ int e;LinkStack top;printf("1.初始化一个栈;\n2.PUSH;\n3.POP;\n4.显示所有栈里的元素;\n5.结束;\n");while(1){switch(menu_select()){case 1:if(CreatTwo(top,Stack_Size))printf("Success!\n");break; case 2:printf("Push:\n");scanf("%d",&e);if(Push(top,e))printf("Success!\n");break;case 3:if(Pop(top,e))printf("Success!\n");printf("%d\n",e);break;case 4:LinkStack p;printf("所有栈里的元素:\n");p=top;while(p->next){p=p->next;printf("%7d",p->data);}printf("\n");break;case 5:return;}}}运行结果:②循环队列程序代码:#include<stdlib.h>#include<stdio.h>#define OVERFLOW -1#define OK 1#define ERROR 0#define MAXSIZE 100typedef struct{int *elem;//队列存储空间int front;int rear;}SqQueue;//判断选择是否正确int menu_select(){int sn;for(;;){scanf("%d",&sn);if(sn<1||sn>6)printf("\n\t输入错误,请重新输入\n");elsebreak;}return sn;}//参数(传出)SqQueue &Q,循环队列(空)int InitQueue(SqQueue &Q){Q.elem=(int *)malloc(MAXSIZE*sizeof(int));if(!Q.elem)exit(OVERFLOW);Q.front=Q.rear=-1;for(int i=0;i<MAXSIZE;i++)Q.elem[i]=-1;return OK;}//返回Q的元素个数int QueueLength(SqQueue Q){return (Q.rear-Q.front+MAXSIZE)%MAXSIZE;}//显示队列的元素void Display(SqQueue Q){for(int i=0;i<=QueueLength(Q);i++)if(Q.elem[i]!=-1)printf("%d ",Q.elem[i]);printf("\n");}//入队int EnQueue(SqQueue &Q,int e){Q.rear=(Q.rear+1)%MAXSIZE;if(Q.rear==Q.front)return ERROR;Q.elem[Q.rear]=e;return OK;}//出队int DeQueue(SqQueue &Q,int &e){if(Q.front==Q.rear)return ERROR;e=Q.elem[Q.front+1];Q.elem[Q.front+1]=-1;Q.front=(Q.front+1)%MAXSIZE;return OK;}void main(){SqQueue Q;InitQueue(Q);int elem,e;printf("请输入队列元素(以0结束):\n");scanf("%d",&elem);while(elem!=0){EnQueue(Q,elem);scanf("%d",&elem);}printf("队列为:\n");Display(Q);printf("1.初始化一个队列;\n2.入队;\n3.出队;\n4.显示队列的所有元素;\n5.队列长度:\n6.结束;\n");while(1){switch(menu_select()){case 1:printf("请输入队列元素(以0结束):\n");scanf("%d",&elem);while(elem!=0){EnQueue(Q,elem);scanf("%d",&elem);}printf("队列为:\n");Display(Q);fflush(stdin);break;case 2:scanf("%d",&elem);EnQueue(Q,elem);printf("队列为:\n");Display(Q);fflush(stdin);break;case 3:DeQueue(Q,elem);printf("队列为:\n");Display(Q);break;case 4:printf("\n队列的所有元素:\n");Display(Q);break;case 5:printf("%d\n",QueueLength(Q));break;case 6:return;}}}运行结果:实验二、数组㈠、实验内容:数组一般不做插入或删除操作,也就是说,一旦建立了数组,则结构中的数据元素个数和元素之间的关系就不再发生变动。
数据结构实验报告实验总结
数据结构实验报告实验总结本次数据结构实验主要涉及线性表、栈和队列的基本操作以及链表的应用。
通过实验,我对这些数据结构的特点、操作和应用有了更深入的了解。
下面对每一部分实验进行总结。
实验一:线性表的基本操作线性表是一种常见的数据结构,本实验要求实现线性表的基本操作,包括插入、删除、查找、遍历等。
在实验过程中,我对线性表的结构和实现方式有了更清晰的认识,掌握了用数组和链表两种方式实现线性表的方法。
实验二:栈的应用栈是一种后进先出(LIFO)的数据结构,本实验要求利用栈实现简单的括号匹配和后缀表达式计算。
通过实验,我了解到栈可以方便地实现对于括号的匹配和后缀表达式的计算,有效地解决了对应的问题。
实验三:队列的应用队列是一种先进先出(FIFO)的数据结构,本实验要求利用队列实现银行排队和迷宫求解。
通过实验,我对队列的应用有了更加深入的了解,了解到队列可以解决需要按顺序处理的问题,如排队和迷宫求解等。
实验四:链表的应用链表是一种常用的数据结构,本实验要求利用链表实现学生信息管理系统。
通过实验,我对链表的应用有了更深入的了解,了解到链表可以方便地实现对于数据的插入、删除和修改等操作,并且可以动态地调整链表的长度,适应不同的需求。
通过本次实验,我掌握了线性表、栈、队列和链表的基本操作,并了解了它们的特点和应用方式。
同时,通过实际编程的过程,我对于数据结构的实现方式和效果有了更直观的认识,也锻炼了自己的编程能力和解决问题的能力。
在实验过程中,我遇到了一些问题,如程序逻辑错误和内存泄漏等,但通过调试和修改,最终成功解决了这些问题,对自己的能力也有了更多的信心。
通过本次实验,我深刻体会到了理论与实践的结合的重要性,也对于数据结构这门课程有了更加深入的理解。
总之,本次数据结构实验给予了我很多有益的启发和收获,对于数据结构的概念、特点和应用有了更深入的理解。
在以后的学习中,我会继续加强对数据结构的学习和研究,不断提高自己的编程能力和解决问题的能力。
栈基本操作
栈基本操作栈是一种常见的数据结构,它遵循“先进后出”的原则。
在栈中,数据项只能在栈顶进行插入和删除操作,因此栈的基本操作包括:入栈、出栈、取栈顶元素、判断栈是否为空和清空栈。
一、入栈操作入栈操作是向栈中添加元素的过程。
在入栈操作中,新元素被添加到栈顶位置。
具体实现方法是将新元素压入栈顶,在栈顶添加一个新节点,使其指向旧的栈顶节点。
二、出栈操作出栈操作是从栈中移除元素的过程。
在出栈操作中,栈顶元素被删除,并返回被删除的元素。
具体实现方法是将栈顶元素弹出,使其指向下一个元素,然后返回弹出的元素。
三、取栈顶元素取栈顶元素操作是返回栈顶元素的值,而不删除该元素。
具体实现方法是返回栈顶指针所指向的元素。
四、判断栈是否为空判断栈是否为空操作是检查栈中是否有元素。
具体实现方法是检查栈顶指针是否为NULL。
如果栈顶指针为NULL,则表示栈为空;否则,栈中至少有一个元素。
五、清空栈清空栈操作是将栈中所有元素都删除。
具体实现方法是将栈顶指针设置为NULL,使所有元素都失去了指向下一个元素的指针。
以上就是栈的基本操作。
在实际应用中,栈是一种非常重要的数据结构,常用于递归算法、表达式求值、括号匹配、迷宫问题等领域。
除了上述基本操作外,还有一些较为复杂的栈操作,例如:栈的遍历、栈的排序、栈的合并等等。
在实际应用中,我们需要根据具体的需求选择合适的操作。
需要注意的是,栈是一种线性数据结构,因此它的时间复杂度为O(1),即入栈、出栈、取栈顶元素、判断栈是否为空、清空栈等操作的时间复杂度都为O(1)。
这也是栈被广泛应用的重要原因之一。
栈的基本操作
栈的基本操作栈是一种重要的数据结构,它在计算机科学中有着广泛的应用。
对于栈的基本操作,包括入栈(push)、出栈(pop)、获取栈顶元素,以及查看栈的大小(size)等操作。
1.入栈(push)入栈的操作就是往栈里压栈,把元素压入栈顶,以实现入栈操作。
在把元素压入栈时,栈的元素数量会增加1,压入元素的位置就是栈顶。
2.出栈(pop)出栈的操作是从栈顶弹出元素,以实现出栈操作。
当一个元素从栈顶弹出时,栈的大小就会减少1,弹出元素的位置就是栈顶。
3.获取栈顶元素要获取栈顶元素,我们需要从栈中取出元素,但是这并不会改变栈的大小。
由于栈的特性,我们可以通过取出栈顶的元素来获取它,而不需要从栈的其他位置获取。
4.查看栈的大小(size)查看栈的大小也就是查看栈中有多少元素。
要查看栈的大小,我们只要通过查看栈的长度即可,从而知道栈中有多少元素,从而了解栈的大小。
到此,我们对栈的基本操作基本有了一个概念,包括入栈(push)、出栈(pop)、获取栈顶元素以及查看栈的大小(size)。
栈的操作可以用入栈出栈的方式来表示,也可以用推入和弹出的方式来表示,它们都是栈的基本操作。
栈的操作跟其他的数据结构的操作有所不同,比如要存储数据的时候,需要先进行入栈操作,而当要取出数据的时候,需要先进行出栈操作,而不是像队列里面先进行出队操作,再进行入队操作。
栈也可以用来实现字符串操作、算数表达式求值、函数调用以及实现括号的匹配等等,这些都是栈的基本操作的应用。
总而言之,栈是一种重要的数据结构,其基本操作可以说是它的核心。
因此,学习栈的基本操作非常重要,只有掌握了它的基本操作,才可以正确的使用栈这种数据结构。
数据结构实验报告2栈、队列、递归程序设计
日期:学号:姓名:
实验名称:实验报告二栈、队列、递归程序设计
实验目的与要求:
2.1栈和队列的基本操作
(1)正确理解栈的先进后出的操作特点,建立初始栈,通过相关操作显示栈底元素。
(2)程序中要体现出建栈过程和取出栈底元素后恢复栈的入栈过程,按堆栈的操作规则打印结果栈中的元素
{
return(s->top==-1);
}
//---出栈函数
int Pop(SeqStack *&s,ElemType &e)
{
if (s->top==-1)
return 0;
e=s->data[s->top];
s->top--;
return 1;
}
//---初始队列函数
void InitQueue(SqQueue *&q)
q->rear=(q->rear+1)%MaxSize;
q->elem[q->rear]=e;
return 1;
}
//---出队列函数
int OutQueue(SqQueue *&q,ElemType &e)
{
if (q->front==q->rear) //队空
return 0;
q->front=(q->front+1)%MaxSize;
printf("(10)栈为%s,",(StackEmpty(s)?"空":"非空"));
printf("队列为%s\n",(QueueEmpty(q)?"空":"非空"));
数据结构实验二_栈的基本操作
青岛理工大学课程实验报告及实验步骤只要X不为0重复做下列动作将X%R入栈X=X/R只要栈不为空重复做下列动作栈顶出栈输出栈顶元素调试过程及实验结果根据输入的十进制数通过桟的基本操作可以转换成二进制、八进制、十六进制的数。
在上机过程中程序的调用没有太大的问题,按照课本的基本算法就可以将程序正确的运行。
总结程序可以完成基本的功能,可以将十进制数转换为其他进制的数,基本掌握了桟的几种常用的操作;但程序存在缺陷,就是不能持续进行操作,输入了一个十进制数只能进行一次数制转换,程序就会退出,有待改进。
附录#include <stdio.h>#include <stdlib.h>#include <malloc.h>#define stack_init_size 100#define stackincrement 10typedef struct sqstack{int *base;int *top;int stacksize;} sqstack;int StackInit(sqstack *s){s->base=(int *)malloc(stack_init_size *sizeof(int));if(!s->base)return 0;{return 0;}}int conversion(sqstack *s){int n,e=0,flag=0;printf("输入要转化的十进制数:\n");scanf("%d",&n);printf("要转化为多少进制:2进制、8进制、16进制填数字!\n");scanf("%d",&flag);printf("将十进制数%d转化为%d进制是:\n",n,flag);while(n){s->top=s->base;s->stacksize=stack_init_size;return 1;}int Push(sqstack *s,int e){if(s->top-s->base>=s->stacksize){s->base=(int*)realloc(s->base,(s->stacksize+stackincrement)*sizeof(int)); if(!s->base)return 0;s->top=s->base+s->stacksize;s->stacksize+=stackincrement;}*(s->top++)=e;return e;}int Pop(sqstack *s,int e){if(s->top==s->base)return 0;e=*--s->top;return e;}int stackempty(sqstack *s){if(s->top==s->base){return 1;}elsePush(s,n%flag);n=n/flag;}while(!stackempty(s)) {e=Pop(s,e);switch(e){case 10: printf("A");break;case 11: printf("B");break;case 12: printf("C");break;case 13: printf("D");break;case 14: printf("E");break;case 15: printf("F");break;default: printf("%d",e); }}printf("\n");return 0;}int main(){sqstack s;StackInit(&s); conversion(&s);return 0;}。
实验二 堆栈和队列基本操作的编程实现
HUBEI UNIVERSITY OF AUTOMOTIVE TECHNOLOGY
数据结构
实验报告
实验二堆栈和队列基本操作的编程实现
【实验目的】
堆栈和队列基本操作的编程实现
要求:
堆栈和队列基本操作的编程实现(2学时,验证型),掌握堆栈和队列的建立、进栈、出栈、进队、出队等基本操作的编程实现,存储结构可以在顺序结构或链接结构中任选,也可以全部实现。
也鼓励学生利用基本操作进行一些应用的程序设计。
【实验性质】
验证性实验(学时数:2H)
【实验内容】
内容:把堆栈和队列的顺序存储(环队)和链表存储的数据进队、出队等运算其中一部分进行程序实现。
可以实验一的结果自己实现数据输入、数据显示的函数。
利用基本功能实现各类应用,如括号匹配、回文判断、事物排队模拟、数据逆序生成、多进制转换等。
【注意事项】
1.开发语言:使用C。
2.可以自己增加其他功能。
【实验分析、说明过程】
【思考问题】
【实验小结】 (总结本次实验的重难点及心得、体会、收获)。
栈的基本操作代码
栈的基本操作代码引言栈(Stack)是一种常见的数据结构,具有后进先出(Last In First Out,LIFO)的特性。
栈的基本操作包括入栈(Push)、出栈(Pop)、获取栈顶元素(Top)和判断栈是否为空(IsEmpty)。
本文将详细介绍栈的基本操作代码及其实现。
一、栈的定义栈是一种线性数据结构,仅允许在一端进行插入和删除操作。
这一端被称为栈顶,另一端称为栈底。
栈的插入操作叫做入栈,删除操作叫做出栈。
栈的特性决定了最后插入的元素最先删除。
二、栈的基本操作2.1 入栈(Push)入栈操作将一个元素添加到栈的栈顶。
具体实现如下:class Stack:def __init__(self):self.stack = []def push(self, item):self.stack.append(item)2.2 出栈(Pop)出栈操作将栈顶元素删除并返回。
具体实现如下:class Stack:def __init__(self):self.stack = []def push(self, item):self.stack.append(item)def pop(self):if not self.is_empty():return self.stack.pop()else:return None2.3 获取栈顶元素(Top)获取栈顶元素操作不改变栈的结构,仅返回栈顶元素的值。
具体实现如下:class Stack:def __init__(self):self.stack = []def push(self, item):self.stack.append(item)def pop(self):if not self.is_empty():return self.stack.pop()else:return Nonedef top(self):if not self.is_empty():return self.stack[-1]else:return None2.4 判断栈是否为空(IsEmpty)判断栈是否为空操作用于检测栈内是否还有元素。
栈的操作(实验报告)
引言:栈是一种常见的数据结构,它具有特殊的操作规则,即先进后出(LIFO)。
本文将介绍栈的操作,并结合实验报告的方式详细阐述栈的概念、基本操作以及应用场景。
概述:栈是一种线性数据结构,由相同类型的元素按照特定顺序排列而成。
在栈中,只能在栈顶进行插入和删除操作,其他位置的元素无法直接访问。
栈具有两个基本操作:压栈(push)和弹栈(pop)。
其中,压栈将一个元素添加到栈顶,弹栈则是删除栈顶的元素。
除了基本操作外,栈还具有其他常见的操作,如获取栈顶元素(top)、判断栈是否为空(empty)等。
正文内容:一、栈的基本操作1.压栈(push)push操作的实现原理和步骤在实际应用中的使用场景和例子2.弹栈(pop)pop操作的实现原理和步骤在实际应用中的使用场景和例子3.获取栈顶元素(top)top操作的实现原理和步骤在实际应用中的使用场景和例子4.判断栈是否为空(empty)empty操作的实现原理和步骤在实际应用中的使用场景和例子5.栈的大小(size)size操作的实现原理和步骤在实际应用中的使用场景和例子二、栈的应用场景1.括号匹配使用栈实现括号匹配的原理和过程在编译器、计算表达式等领域中的应用2.浏览器的后退和前进功能使用栈来记录浏览器访问历史的原理和过程实现浏览器的后退和前进功能3.函数调用和递归使用栈来实现函数调用和递归的原理和过程在程序执行过程中的应用和注意事项4.实现浏览器缓存使用栈来实现浏览器缓存的原理和过程提高用户浏览速度的实际应用案例5.撤销操作使用栈来实现撤销操作的原理和过程在编辑器、图形处理软件等领域的实际应用总结:本文详细介绍了栈的操作,包括基本操作(压栈、弹栈、获取栈顶元素、判断栈是否为空、栈的大小)和应用场景(括号匹配、浏览器的后退和前进功能、函数调用和递归、实现浏览器缓存、撤销操作)。
通过了解栈的操作和应用,我们可以更好地理解数据结构中的栈,并能够在实际问题中灵活运用栈的特性。
栈的基本操作实验报告
栈的基本操作实验报告实验目的本实验旨在通过使用栈来实现基本的操作,包括入栈、出栈、查看栈顶元素以及判断栈是否为空。
实验原理栈是一种后进先出(Last-In-First-Out)的数据结构,类似于我们平常生活中的堆栈。
栈有两个基本操作:入栈(Push)和出栈(Pop)。
•入栈:将一个元素放入栈的顶部,使其成为新的栈顶元素。
•出栈:移除栈顶元素,并返回该元素的值。
•查看栈顶元素:返回栈顶元素的值,但不将其从栈中移除。
•判断栈是否为空:若栈中没有元素,则栈为空。
实验步骤以下是使用Python语言来实现栈基本操作的步骤。
1. 创建一个空栈首先,我们需要创建一个空栈。
可以使用列表(List)来模拟栈的操作。
例如:stack = []2. 入栈操作接下来,我们可以通过使用append()函数将元素添加到栈的顶部来进行入栈操作。
例如,我们将数字1和2入栈:stack.append(1)stack.append(2)此时栈的内容为:[1, 2],其中2为栈顶元素。
3. 出栈操作要进行出栈操作,我们可以使用pop()函数。
该函数会移除并返回栈顶元素的值。
例如:value = stack.pop()print(value) # 输出:2此时栈的内容为:[1],其中1为新的栈顶元素。
4. 查看栈顶元素要查看栈顶元素的值,我们可以使用索引-1来访问栈的最后一个元素。
例如:value = stack[-1]print(value) # 输出:1此时栈的内容仍为:[1],其中1为栈顶元素。
5. 判断栈是否为空要判断栈是否为空,我们可以使用条件语句结合len()函数来判断栈的长度是否为0。
例如:if len(stack) ==0:print("栈为空")else:print("栈不为空")由于栈中还有一个元素1,所以输出为“栈不为空”。
实验总结通过本实验,我们学习了栈的基本操作,包括入栈、出栈、查看栈顶元素以及判断栈是否为空。
数据结构实验2——栈和队列实验报告
数据结构实验报告实验名称:实验2——栈和队列1 实验目的通过选择下面五个题目之一进行实现,掌握如下内容:进一步掌握指针、模板类、异常处理的使用掌握栈的操作的实现方法掌握队列的操作的实现方法学习使用栈解决实际问题的能力学习使用队列解决实际问题的能力2 实验内容利用栈结构实现八皇后问题。
八皇后问题19世纪著名的数学家高斯于1850年提出的。
他的问题是:在8*8的棋盘上放置8个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列、同一斜线上。
请设计算法打印所有可能的摆放方法。
提示:1、可以使用递归或非递归两种方法实现2、实现一个关键算法:判断任意两个皇后是否在同一行、同一列和同一斜线上2. 程序分析主程序:#include<iostream>using namespace std;const int StackSize=8; //皇后的个数int num=0;template <class T>class SeqStack //定义顺序栈模板类{public:SeqStack(){top=-1;} //构造函数,初始化空栈void Push(T x); //入栈操作void Pop();//出栈操作void PlaceQueen(int row); //放置皇后bool Judgement();//判断是否符合条件void Print();//输出符合条件的皇后排列bool Empty(){if(top==-1) return true;else return false;}; //判断栈是否为空private:T data[StackSize]; //定义数组int top; //栈顶指针};template <class T>void SeqStack<T>::Push(T x) //入栈操作{if(top>=StackSize-1) throw"上溢";top++;//栈顶指针上移data[top]=x;}template <class T>void SeqStack<T>::Pop()//出栈操作{if(Empty()) throw"下溢";top--;//栈顶指针下移}template <class T>bool SeqStack<T>::Judgement()//判断该位置是否合适{for(int i=0;i<top;i++)if(data[top]==data[i]||(abs(data[top]-data[i]))==(top-i))//判断是否满足任意两个皇后不在同列同一斜线return false;return true;}template <class T>void SeqStack<T>::PlaceQueen(int row) //放置皇后{for (int i=0;i<StackSize;i++){Push(i); //入栈if (Judgement())//判断位置是否合适{if (row<StackSize-1)PlaceQueen(row+1); //如果合适满足条件则放置一个皇后,递归调用else{num++;//不满足条件则到下一行Print();//输出符合条件的皇后}}Pop();//出栈}}template <class T>void SeqStack<T>::Print()//输出皇后函数{cout<<"NO."<<num<<":"<<endl; for(int i=0;i<StackSize;i++){for(int j=0;j<data[i];j++){cout<<"□";}cout<<"■";for(int j=StackSize-1;j>data[i];j--){cout<<"□";}cout<<endl;}cout<<endl;}void main(){SeqStack<int> Queen;Queen.PlaceQueen(0);cout<<"总共有"<<num<<"种摆放方法。
数据结构栈的基本操作
数据结构栈的基本操作栈是一种数据结构,它具有后进先出(LIFO)的特性。
栈可以用数组或链表实现,其基本操作包括入栈、出栈、查看栈顶元素和判断栈是否为空。
1. 入栈操作入栈操作是将元素添加到栈顶的过程。
在数组实现中,我们需要维护一个指针top,指向当前的栈顶元素。
当我们要入栈一个新元素时,我们将top加1,并将该元素放在新的top位置上。
在链表实现中,我们只需要在链表头部插入新节点即可。
以下是使用数组实现入栈操作的示例代码:```#define MAX_SIZE 100int stack[MAX_SIZE];int top = -1;void push(int x) {if (top == MAX_SIZE - 1) {printf("Stack overflow\n");return;}top++;stack[top] = x;}```2. 出栈操作出栈操作是将当前的栈顶元素删除并返回其值的过程。
在数组实现中,我们只需要将top减1即可。
在链表实现中,我们需要删除链表头部节点并返回其值。
以下是使用数组实现出栈操作的示例代码:```int pop() {if (top == -1) {printf("Stack underflow\n");return -1;}int val = stack[top];top--;return val;}```3. 查看栈顶元素查看栈顶元素是获取当前的栈顶元素的值,而不删除它的过程。
在数组实现中,我们只需要返回stack[top]即可。
在链表实现中,我们需要返回链表头部节点的值。
以下是使用数组实现查看栈顶元素操作的示例代码:```int peek() {if (top == -1) {printf("Stack is empty\n");return -1;}return stack[top];}```4. 判断栈是否为空判断栈是否为空是检查当前栈是否包含任何元素的过程。
北邮数据结构实验报告二_栈和队列
2009级数据结构实验报告实验名称:实验二栈和队列学生姓名:班级:班内序号:学号:日期:2010年12月18日实验要求题目四用栈做计算器。
设计一个算术四则运算表达式求值的简单计算器。
表达式求值是程序设计语言编译中最近本的问题,它要求把一个表达式翻译成能够直接求值的序列。
基本要求:输入中缀表达式能够转化成后缀表达式,比如输入中缀表达式“(A+B)*C”,输出“AB+C*”2、操作数使用单字母变量A、B、C等表示,操作符仅为+、-、*、/、(和);3、能够对变量A、B、C等赋值,得出正确的计算结果2. 程序分析首先,程序要求用户输入一个符号表达式,只能包含字母、+、-、*、/ 以及)和(,之后程序会用一个TurnInfixToPostfix()函数将表达式转化成后缀表达式存入一个栈中,转化过程借用逆波兰算法,建立一个符号栈,遍历用户输入的表达式,如果是字母,则直接输出,如果是运算符,则压入符号栈中(包括括号),在压栈的时候又需要注意,先要检查压栈前栈顶元素的优先级,如果优先级高于要压入的符号则直接压入该符号,否则要弹栈直到栈顶元素的优先级小于该元素的优先级然后才将该符号压入栈中(在压栈的时候会涉及到栈中有括号的情况,具体细节下面会说到),将转化的后缀表达式存入栈postfix,在输出的时候只要弹栈就行。
然后,要求用户逐个输入表达式中的字母的值,这时候,需要遍历当时在转化后缀表达式的时候过度容器vec_intoposfix,如果是字母则要求用户输入数值,压入用于计算的后缀表达式容器,如果是操作符则直接压入。
最后,在利用栈来计算值的时候,利用一个递归函数,就是一次弹栈,如果是操作符则先保存起来,接着继续弹栈,如果接下来的两个元素都为数字,就将这两个数字做相应的运算,然后压栈,如此反复,最后压入栈的元素就是表达式的值。
至此,程序的功能全部实现。
2.1 存储结构[内容要求]1、存储结构:顺序表、单链表或其他存储结构,需要画示意图,可参考书上P59页图2-92.2 关键算法分析关键算法一:将中缀表达式转化为后缀表达式VoidTurnInfixToPostfix(vector<char>&vec,stack<char>&sta,vector<char>&vecfix,stack< char>&stafix)1、 {2、int priority(-1);3、4、for (vector<char>::iterator itr=vec.begin();itr!=vec.end();itr++)5、{6、if(isLetter(*itr))7、{8、vecfix.push_back(*itr);9、}10、if (isOperator(*itr))11、{12、if(!sta.empty()) priority=getPriority(sta.top());13、else priority=-1;14、if (priority<getPriority(*itr)||priority==3&&sta.top()!=')')15、{16、sta.push(*itr);17、}18、else19、{20、if (sta.top()!=')')21、{22、while(priority>=getPriority(*itr)&&sta.top()!='(')23、{24、vecfix.push_back(sta.top());25、if (!sta.empty())26、{27、sta.pop();28、if(!sta.empty()) priority=getPriority(sta.top());29、else priority=-1;30、}31、else32、break;33、}34、sta.push(*itr);35、}36、else if(sta.top()==')')37、{38、while (sta.top()!='(')39、{40、vecfix.push_back(sta.top());41、if (!sta.empty()&&sta.top()!='(')42、{43、sta.pop();44、}45、else46、break;47、}48、}49、}50、51、52、}53、54、}55、for (vector<char>::iteratoritrfix=vecfix.end();itrfix!=vecfix.begin();--itrfix)56、stafix.push(*itrfix);57、stafix.push(*itrfix);58、}对表达式a + b * c – ( d – e) / f + g其符号栈的变化过程,红色表示未压栈的符号。
武汉理工数据结构实验2 栈和队列基本操作和应用
实验2 栈和队列的基本操作和应用1实验目的(1)熟练掌握顺序栈的基本操作。
(2)掌握顺序栈的应用。
(3)掌握顺序循环队列的基本操作。
(4)掌握链式队列的基本操作。
2实验内容(1)设计一个顺序栈的基本操作的演示程序;(2)利用顺序栈,进行整数的不同进制之间的转换;(3)设计一个顺序循环队列的基本操作演示程序;(4)设计一个链式队列的基本操作演示程序。
【基本要求】I.实验内容(1)的基本要求:编写一个程序,将一个顺序栈的元素依次取出,并打印其元素值。
II.实验内容(2)的基本要求:编写一个程序,将一个非负的十进制整数转换成二进制。
III.实验内容(3)的基本要求:编写一个程序,将一个顺序队列的元素依次取出,并打印其元素值。
IV.实验内容(4)的基本要求:编写一个程序,将一个链式队列的元素依次取出,并打印其元素值。
【测试数据】自定3实验结果按照学校实验格式要求撰写实验报告,内容主要包括1)实验目的;2)实验内容;3)实验环境和方法;4)实验过程描述;5)实验心得体会参考程序如下:实验内容(1)参考程序/*sqStack.h文件*/#define INIT_SIZE 100#define INCREMENT 10typedef int ElemType;//typedef char ElemType;typedef struct SqStack {ElemType *base;ElemType *top;int stacksize;}SqStack;enum Status{OK,ERROR,OVERFLOW};/*sqStackOp.h文件*/#include "sqStack.h"Status InitStack(SqStack &S) ;Status GetTop(SqStack S,ElemType &e);Status Push(SqStack &S,ElemType e);Status Pop(SqStack &S,ElemType &e);bool StackEmpty(SqStack &S);/*sqStackOp.cpp文件*/#include <malloc.h>#include <stdlib.h>#include "sqStackOp.h"Status InitStack(SqStack &S) {//构造一个空的栈S.base=(ElemType*)malloc(INIT_SIZE*sizeof(ElemType));if(! S.base) exit(OVERFLOW); //存储分配失败S.top=S.base;S.stacksize=INIT_SIZE;return OK;} //InitStackStatus GetTop(SqStack S,ElemType &e){//若栈不空,则用e返回S的栈顶元素,并返回OK;否则返回ERROR if(S.top==S.base) return ERROR;e=*(S.top-1);return OK;} //GetTopStatus Push(SqStack &S,ElemType e){//插入元素e为新的栈顶元素if(S.top-S.base>=S.stacksize){ //栈满,追加存储空间S.base=(ElemType *)realloc(S.base,(S.stacksize+INCREMENT)*sizeof(ElemType));if(!S.base)exit(OVERFLOW); //存储分配失败S.top=S.base+S.stacksize;S.stacksize+=INCREMENT;}*S.top++=e;return OK;} //PushStatus Pop(SqStack &S,ElemType &e){//若栈不空,则删除S的栈顶元素,用e返回其值,并返回OK;否则返回ERRORif(S.top==S.base) return ERROR;e=*(--S.top);return OK;} //Push//判断栈是否为空bool StackEmpty(SqStack &S){if(S.top == S.base)return true;elsereturn false;}/*main.cpp文件*/#include <stdio.h>#include <stdlib.h>#include "sqStackOp.h"void main(){printf("Hellow stack \n");SqStack S; //定义顺序栈Sif(OK != InitStack(S)) {printf("顺序栈初始化出错,退出....\n");exit(-1);}Push(S, 1);Push(S,2);Push(S,3);int e;Pop(S, e);printf("出栈元素= %d \n",e);Push(S,4);Push(S,5);while(!StackEmpty(S)){Pop(S, e);printf("出栈元素= %d \n",e);}/*SqStack S; char x,y;InitStack(S); x='c';y='k';Push(S,x); Push(S,'a'); Push(S,y);Pop(S,x); Push(S,'t'); Push(S,x);Pop(S,x); Push(S,'s');while(!StackEmpty(S)){ Pop(S,y);printf("%c ",y); };printf("%c ",x);*/getchar();}实验内容(2)参考程序/*sqStack.h文件*/#define INIT_SIZE 100#define INCREMENT 10typedef int ElemType;typedef struct SqStack {ElemType *base;ElemType *top;int stacksize;}SqStack;enum Status{OK,ERROR,OVERFLOW};/*sqStackOp.h文件*/#include "sqStack.h"Status InitStack(SqStack &S) ;Status GetTop(SqStack S,ElemType &e);Status Push(SqStack &S,ElemType e);Status Pop(SqStack &S,ElemType &e);bool StackEmpty(SqStack &S);/*sqStackOp.cpp文件*/#include <malloc.h>#include <stdlib.h>#include "sqStackOp.h"Status InitStack(SqStack &S) {//构造一个空的栈S.base=(ElemType*)malloc(INIT_SIZE*sizeof(ElemType));if(! S.base) exit(OVERFLOW); //存储分配失败S.top=S.base;S.stacksize=INIT_SIZE;return OK;} //InitStackStatus GetTop(SqStack S,ElemType &e){//若栈不空,则用e返回S的栈顶元素,并返回OK;否则返回ERRORif(S.top==S.base) return ERROR;e=*(S.top-1);return OK;} //GetTopStatus Push(SqStack &S,ElemType e){//插入元素e为新的栈顶元素if(S.top-S.base>=S.stacksize){ //栈满,追加存储空间S.base=(ElemType *)realloc(S.base,(S.stacksize+INCREMENT)*sizeof(ElemType));if(!S.base)exit(OVERFLOW); //存储分配失败S.top=S.base+S.stacksize;S.stacksize+=INCREMENT;}*S.top++=e;return OK;} //PushStatus Pop(SqStack &S,ElemType &e){//若栈不空,则删除S的栈顶元素,用e返回其值,并返回OK;否则返回ERRORif(S.top==S.base) return ERROR;e=*(--S.top);return OK;} //Push//判断栈是否为空bool StackEmpty(SqStack &S){if(S.top == S.base)return true;elsereturn false;}/*main.cpp文件*/#include <stdio.h>#include <stdlib.h>#include "sqStackOp.h"void main(){SqStack s;int x;InitStack(s);scanf("%d",&x); //%d--十进制输入;%O--八进制输入;%x--十六进制输入//修改这里输入进制和下面整除和余数计算,就可以获得其他进制的转换while(x!=0){Push(s,x%8);x=x/8;}while(!StackEmpty(s)){Pop(s,x);printf("%d ",x);}printf("\n");getchar();}实验内容(3)参考程序/*sqQueue.h 文件*/#define MAXQSIZE 100typedef int QElemType;typedef struct SqQueue {QElemType *base;int front;int rear;}SqQueue;enum Status{OK,ERROR,OVERFLOW};/*sqQueueOp.h 文件*/#include "sqQueue.h"Status InitQueue (SqQueue &Q) ;Status EnQueue (SqQueue &Q, QElemType e);Status DeQueue (SqQueue &Q, QElemType &e) ;bool QueueEmpty(SqQueue &Q);int QueueLength(SqQueue Q);/*sqQueueOp.cpp 文件*/#include <malloc.h>#include <stdlib.h>#include "sqQueueOp.h"Status InitQueue (SqQueue &Q) {// 构造一个空队列QQ.base = (QElemType *) malloc(MAXQSIZE *sizeof (QElemType));if (!Q.base) exit (OVERFLOW);// 存储分配失败Q.front = Q.rear = 0;return OK;}Status EnQueue (SqQueue &Q, QElemType e) { // 插入元素e为Q的新的队尾元素if ((Q.rear+1) % MAXQSIZE == Q.front)return ERROR; //队列满Q.base[Q.rear] = e;Q.rear = (Q.rear+1) % MAXQSIZE;return OK;}Status DeQueue (SqQueue &Q, QElemType &e) { // 若队列不空,则删除Q的队头元素,// 用e返回其值,并返回OK; 否则返回ERRORif (Q.front == Q.rear) return ERROR;e = Q.base[Q.front];Q.front = (Q.front+1) % MAXQSIZE;return OK;}//判断队列是否为空bool QueueEmpty(SqQueue &Q){if(Q.front== Q.rear)return true;elsereturn false;}//计算循环队列长度int QueueLength(SqQueue Q){return (Q.rear - Q.front + MAXQSIZE) % MAXQSIZE;}/*main.cpp 文件*/#include <stdio.h>#include <stdlib.h>#include "sqQueueOp.h"void main(){printf("Hello Queue \n");SqQueue Q; //定义顺序队列QQElemType e;if(OK != InitQueue(Q)) {printf("顺序队列初始化出错,退出....\n");exit(-1);}EnQueue(Q,1);EnQueue(Q,3);EnQueue(Q,5);EnQueue(Q,7);printf("当前队列长度= %d \n",QueueLength(Q));DeQueue(Q,e);printf("队首元素%d出队,当前队列长度=%d\n",e,QueueLength(Q));EnQueue(Q,9);EnQueue(Q,11);while(!QueueEmpty(Q)){DeQueue(Q,e);printf("队首元素%d出队,当前队列长度=%d\n",e,QueueLength(Q));}getchar();}实验内容(4)参考程序/*linkQueue.h 文件*/typedef int QElemType;typedef struct QNode {// 结点类型QElemType data;struct QNode *next;} QNode, *QueuePtr;typedef struct { // 链队列类型QueuePtr front; // 队头指针QueuePtr rear; // 队尾指针} LinkQueue;enum Status{OK,ERROR,OVERFLOW};/*linkQueueOp.h 文件*/#include "linkQueue.h"Status InitQueue (LinkQueue &Q) ;Status EnQueue (LinkQueue &Q, QElemType e); Status DeQueue (LinkQueue &Q, QElemType &e) ; bool QueueEmpty(LinkQueue &Q);/*linkQueueOp.cpp 文件*/#include <malloc.h>#include <stdlib.h>#include "linkQueueOp.h"Status InitQueue (LinkQueue &Q) {// 构造一个空队列QQ.front = Q.rear = (QueuePtr)malloc(sizeof(QNode));if (!Q.front) exit (OVERFLOW);//存储分配失败Q.front->next = NULL;return OK;}Status EnQueue (LinkQueue &Q, QElemType e) { // 插入元素e为Q的新的队尾元素QueuePtr p = (QueuePtr) malloc (sizeof (QNode));if (!p) exit (OVERFLOW); //存储分配失败p->data = e;p->next = NULL;Q.rear->next = p;Q.rear = p;return OK;}Status DeQueue (LinkQueue &Q, QElemType &e) { // 若队列不空,则删除Q的队头元素,//用e 返回其值,并返回OK;否则返回ERROR if (Q.front == Q.rear) return ERROR;QueuePtr p = Q.front->next;e = p->data;Q.front->next = p->next;if (Q.rear == p) Q.rear = Q.front;free (p);return OK;}//判断队列是否为空bool QueueEmpty(LinkQueue &Q){if(Q.front == Q.rear)return true;elsereturn false;}/*main.cpp 文件*/#include <stdio.h>#include <stdlib.h>#include "linkQueueOp.h"void main(){printf("Hello LinkQueue \n");LinkQueue Q; //定义顺序队列QQElemType e;if(OK != InitQueue(Q)) {printf("顺序队列初始化出错,退出....\n");exit(-1);}EnQueue(Q,1);EnQueue(Q,3);EnQueue(Q,5);EnQueue(Q,7);DeQueue(Q,e);printf("队首元素%d出队,\n",e);EnQueue(Q,9);EnQueue(Q,11);while(!QueueEmpty(Q)){DeQueue(Q,e);printf("队首元素%d出队,\n",e);}getchar();}。
《数据结构》实验书
目录实验一线性表基本操作的编程实现 (201)实验二堆栈或队列基本操作的编程实现 (49)实验四二维数组基本操作的编程实现 (18)实验五二叉树基操作的编程实现 (20)实验六图基本操作的编程实现 (45)(特别提示:程序设计包含两个方面的错误。
其一是错误,其二是能错误。
为了提高学生的编程和能力,本指导书给出的程序代码并的两种错误。
并且也不保证程序的完整性,有一些语句已经故意删除,就是要求学生自己编制完成,这样才能达到我们的要求。
希望大家以自己所学高级语言的基本功和点为基础,不要过于依赖给出的参考代码,这样才能有所进步。
如果学生能够根据要求完全自己编制,那就不好了。
)实验一线性表基本操作的编程实现【实验目的】线性表基本操作的编程实现要求:线性表基本操作的编程实现(2学时,验证型),掌握线性表的建立、遍历、插入、删除等基本操作的编程实现,也可以进一步编程实现查找、逆序、排序等操作,存储结构可以在顺序结构或链表结分主要功能,也可以用菜单进行管理完成大部分功能。
还鼓励学生利用基本操作进行一些更实际的应用型程序设计。
【实验性质】【实验内容】把线性表的顺序存储和链表存储的数据插入、删除运算其中某项进行程序实现。
建议实现键盘输入数据以实现程序的通据的函数。
【注意事项】【思考问题】1.线性表的顺序存储和链表存储的差异?优缺点分析?2.那些操作引发了数据的移动?3.算法的时间效率是如何体现的?4.链表的指针是如何后移的?如何加强程序的健壮性?【参考代码】(一)利用顺序表完成一个班级学生课程成绩的简单管理1、预定义以及顺序表结构类型的定义(1)#define ListSize //根据需要自己设定一个班级能够容纳的最大学生数(2)typedef struct Stu{int num; //学生的学号char name[10]; //学生的姓名float wuli; //物理成绩float shuxue; //数学成绩float yingyu; //英语成绩}STUDENT; //存放单个学生信息的结构体类型typedef struct List{stu[ListSize]; //存放学生的数组定义,静态分配空间int length; //记录班级实际学生个数}LIST; //存放班级学生信息的顺序表类型2、建立班级的学生信息void listcreate(LIST *Li,int m) //m为该班级的实际人数{int i;Li->length=0;for(i=0;i<m;i++) //输入m个学生的所有信息{printf("please input the %dth student's information:\n",i+1);printf("num=");scanf("%d", ); //输入第i个学生的学号printf("name=");scanf("%s", ); //输入第i个学生的姓名printf("wuli=");scanf("%f", ); //输入第i个学生的物理成绩printf("shuxue=");scanf("%f", ); //输入第i个学生的数学成绩printf("yingyu=");scanf("%f", ); //输入第i个学生的英语成绩Li->length++; //学生人数加1}}3、插入一个学生信息int listinsert(LIST *Li,int i) //将学生插入到班级Li的第i个位置。
数据结构实验报告(二)栈的应用
数据结构实验报告(⼆)栈的应⽤实验说明数据结构实验⼆ 栈的实验——栈的简单应⽤⼀、实验⽬的通过本实验使学⽣了解栈的简单应⽤,熟悉栈的特性及栈在顺序存储上的操作特点,深刻理解栈的基本操作与⽤栈解决应⽤问题的关系;特别训练学⽣使⽤栈解决实际问题的能⼒,为今后⽤栈解决相关问题奠定基础。
⼆、实验内容1.编程实现对给定的⼀组括号序列判断其是否匹配正确。
要求:(1)它必须成对出现,如“(”“)”是⼀对,“[”与“]”是⼀对;(2)出现时有严格的左右关系;(3)可以以嵌套的⽅式同时出现多组多括号,但必须是包含式嵌套,不允许交叉式嵌套。
⽐如“( )”、“[([][])]”这样是正确的,“[(])”或“([()))”或 “(()]”是不正确的。
(4)将处理的括号扩展为针对“()”“[]”“{}”三类。
2.编程实现⼀个简单的⾏编辑功能:⽤户可以输⼊⼀⾏内容,并可进⾏简易编辑。
要求:(1)遇到输⼊部分内容有误时操作退格符“#”表⽰前⼀位⽆效;(2)“@”表⽰之前的内容均⽆效。
实验报告1.实现功能描述编程实现对给定的⼀组括号序列判断其是否匹配正确,将处理的括号扩展为针对“()”“[]”“{}”三类,遇到输⼊部分内容有误时操作退格符“#”表⽰前⼀位⽆效;“@”表⽰之前的内容均⽆效。
2.⽅案⽐较与选择(1)可以使⽤栈和队列来实现。
因为栈的功能⾜以完成题⽬要求,所以初步打算使⽤栈来实现。
(2)因为编写⼀个标准的栈⽐较繁琐,⽽且本题中也没有⽤到所有栈的标准操作,所以通过模拟栈来完成本题。
(3)可以使⽤数组或链表来模拟栈。
因为括号匹配只有3对,所需空间不是很⼤,⼜因为特殊操作#、@可以在数组中通过-1和赋0值实现,因此选择了数组法来模拟栈。
3.设计算法描述(1)定义3个变量,分别⽤于记录()、[]、{}的出现次数。
遇到左符号时变量++,遇到右符号时--,变量为0时表⽰空栈。
当读到#时,再往前读⼀个字符,如果是()、[]、{}中的⼀种,则对其进⾏反向运算,即遇到右符号时++,遇到左符号时--。
数据结构实验指导书(C++)-栈、队列、串的操作
数据结构实验指导书(C++)-栈、队列、串的操作实验二栈、队列、串的操作实验类型:验证性实验要求:必修实验学时: 2学时一、实验目的:参照给定的栈类和队列类的程序样例,验证给出的栈和队列的常见算法,并结合线性表类实现有关串的操作。
二、实验要求:1、掌握栈、队列、串的特点。
掌握特殊线性表的常见算法。
2、提交实验报告,报告内容包括:目的、要求、算法描述、程序结构、主要变量说明、程序清单、调试情况、设计技巧、心得体会。
三、实验内容:1. 堆栈类测试和应用问题。
要求:(1)设计一个主函数实现对顺序堆栈类和链式堆栈类代码进行测试。
测试方法为:依次把数据元素1,2,3,4,5入栈,然后出栈堆栈中的数据元素并在屏幕上显示。
(2)定义数据元素的数据类型为如下形式的结构体:typedef struct{ char taskname[10];//任务名int taskno; //任务号}DataType;设计一个包含5个数据元素的测试数据,并设计一个主函数实现依次把5个数据元素入栈,然后出栈堆栈中的数据元素并在屏幕上显示。
2. 队列类测试和应用问题。
要求:设计一个主函数对循环队列类和链式队列类代码进行测试.测试方法为:依次把数据元素1,2,3,4,5入队,然后出队中的数据元素并在屏幕上显示。
3.设计串采用顺序存储结构,编写函数实现两个串的比较Compare(S, T)。
要求比较结果有大于、等于和小于三种情况。
*4. 设计算法利用栈类实现把十进制整数转换为二至九进制之间的任一进制输出。
*5. 设计串采用静态数组存储结构,编写函数实现串的替换Replace(S, start, T, V),即要求在主串S中,从位置start开始查找是否存在子串T,若主串S中存在子串T,则用子串V替换子串T,且函数返回1;若主串S中不存在子串T,则函数返回0。
并要求设计主函数进行测试。
一个测试例子为:S=”I am a student”,T=”student”,V=”teacher “。
栈基本操作
栈基本操作
栈是一种常见的数据结构,它的特点是先进后出,类似于我们平时使用的弹夹。
栈的基本操作包括入栈、出栈、查看栈顶元素和判断栈是否为空。
下面我们来详细介绍一下这些操作。
1. 入栈
入栈是指将一个元素放入栈中。
入栈操作需要指定要入栈的元素,然后将其放入栈顶。
如果栈已满,则无法进行入栈操作。
入栈操作的时间复杂度为O(1)。
2. 出栈
出栈是指将栈顶元素弹出栈。
出栈操作会返回栈顶元素,并将其从栈中删除。
如果栈为空,则无法进行出栈操作。
出栈操作的时间复杂度为O(1)。
3. 查看栈顶元素
查看栈顶元素是指获取栈顶元素的值,但不将其从栈中删除。
如果栈为空,则无法进行查看栈顶元素操作。
查看栈顶元素操作的时间复杂度为O(1)。
4. 判断栈是否为空
判断栈是否为空是指检查栈中是否有元素。
如果栈为空,则返回
true,否则返回false。
判断栈是否为空操作的时间复杂度为O(1)。
除了这些基本操作,栈还有一些其他的操作,比如获取栈的大小、清空栈等。
这些操作都是基于上述基本操作实现的。
栈的应用非常广泛,比如在编译器中用于实现函数调用栈、在计算器中用于实现表达式求值、在操作系统中用于实现进程调度等。
掌握栈的基本操作对于理解这些应用非常重要。
栈是一种非常常见的数据结构,掌握其基本操作对于理解其他应用非常重要。
希望本文能够帮助大家更好地理解栈的基本操作。
双向栈实验报告
一、实验背景栈是一种常见的数据结构,它遵循后进先出(LIFO)的原则。
传统的栈只允许在栈顶进行插入和删除操作,而双向栈则允许在栈顶和栈底进行插入和删除操作。
本实验旨在设计并实现一个双向栈,了解其基本原理和操作方法,并探讨其在实际应用中的优势。
二、实验目的1. 理解双向栈的定义、特点及逻辑结构。
2. 掌握双向栈的存储结构表示和实现方法。
3. 熟练掌握双向栈的基本操作,如入栈、出栈、栈顶元素获取等。
4. 分析双向栈在实际应用中的优势。
三、实验内容1. 设计双向栈的数据结构。
双向栈由栈顶和栈底两个指针组成,分别指向栈顶元素和栈底元素。
为了实现栈顶和栈底的插入和删除操作,我们使用两个数组分别存储栈顶元素和栈底元素。
以下是双向栈的数据结构定义:```c#define MAX_SIZE 100 // 定义双向栈的最大容量typedef struct {int top; // 栈顶指针int bottom; // 栈底指针int data[MAX_SIZE]; // 存储栈元素的数组} DStack;```2. 实现双向栈的基本操作。
(1)初始化双向栈```cvoid initDStack(DStack s) {s->top = -1;s->bottom = MAX_SIZE - 1;}```(2)判断双向栈是否为空```cint isEmptyDStack(DStack s) {return s->top == -1;}```(3)判断双向栈是否已满```cint isFullDStack(DStack s) {return s->top == s->bottom + 1;}```(4)入栈操作```cvoid pushDStack(DStack s, int element) { if (isFullDStack(s)) {printf("栈已满,无法入栈。
\n");return;}s->top++;s->data[s->top] = element;}```(5)出栈操作```cint popDStack(DStack s) {if (isEmptyDStack(s)) {printf("栈为空,无法出栈。
实验2 栈及其应用
实验二栈及其应用1.实验目的(1)掌握栈的特点及其描述方法。
(2)用链式存储结构实现一个栈。
(3)掌握建栈的各种等基本操作。
(4)掌握栈的几个典型应用的算法。
2.实验内容A.验证性部分(1)设计一个字符型的链栈;(2)编写进栈、出栈、显示栈中全部元素的程序;(3)编写一个把十进制整数转换成二进制数的应用程序;(4)设计一个选择式菜单,以菜单方式选择上述操作。
B.自主性实验部分(1)用键盘输入一个整数后缀表达式(操作数的范围是0~9,运算符只含+、-、*、/,而且中间不可以有空格),使用循环程序从左向右读入表达式。
(2)如果读入的是操作数,直接进入操作数栈。
(3)如果读入的是运算符,立即从操作数栈取出所需的操作数,计算操作数运算的值,并将计算结果存回操作数栈。
3.实验要求:(1)选择合适的存储结构(顺序栈或链式栈)表示栈,给出其定义。
(2)在上述存储结构上实现栈的基本操作:初始化、置栈空、入栈、出栈、取栈顶元素等。
(3)分析后缀表达式求值的算法思想,用C(或C++)语言设计程序。
(4)上机调试通过实验程序。
(5)给出具体的算法分析,包括时间复杂度和空间复杂度等。
(6)撰写实验报告。
4.实验预备知识(1)栈的定义及栈的“后进先出”的特点。
(2)栈的顺序存储与链式存储结构及栈的初始化、入栈、出栈、取栈顶等基本操作。
(3)算术表达式的三种表示形式(前缀式、中缀式、后缀式)。
5.实验环境(1)一台运行 Windows 2000/XP 操作系统的计算机(2)选用turbo c或visual c++6、实验说明(1)类型定义#define MAXSIZE 100 /*栈的最大值*/typedef struct{ElemType elem[MAXSIZE];int top;}SqStack; /*顺序栈的类型定义*/(2)注意问题①重点理解栈的算法思想,能够根据实际情况选择合适的存储结构②栈的算法是后续实验的基础(广义表、树、图、查找、排序等)7.实验用测试数据和相关结果分析:(由学生填写)8.实验总结:(由学生填写)9.参考程序参考模板A.验证性实验程序模板#include <stdio.h>#include <stdlib.h>#include “链栈.h”#define MAXLEN 100void main(){int i=1,j=1,choice,val,n;char a;linkstack *s=new linkstack;s->top=NULL;while(i){printf("\n\n");printf("\n\t\t 链栈子系统\n");printf("\n\t\t*******************************");printf("\n\t\t* 1----入栈*");printf("\n\t\t* 2----出栈*");printf("\n\t\t* 3----显示栈*");printf("\n\t\t* 4----进制转换*");printf("\n\t\t* 0----返回*");printf("\n\t\t*******************************");printf("\n\t\t 请选择(0--4):");choice=getchar();getchar();switch (choice){case '1':while(j){printf("\t\t请输入一个整数(按回车输入下一个,输入'0'结束):");scanf("%d",&val);getchar();if (val!=0)push(s,val);elsej=0;}break;case '2':if(s->top!=NULL) printf("出栈元素是:%6d\n",pop(s));break;case '3': showstack(s);break;case '4':printf("请输入待转换的数'n' 和进制'i':(n,i)\n");scanf("%d,%d",&n,&i);Conversion(i,n);break;case '0':i=0;break;default:;}if (choice=='1'||choice=='2'||choice=='3'||choice=='4'){printf("\n\t\t按回车键继续,按其它任意键返回!");a=getchar();if (a!='\xA')i=0;}}system("pause");}/*链栈头文件:链栈.h*/typedef char datatype;typedef struct stacknode{int data;struct stacknode *next;}stacknode;typedef struct{stacknode *top;}linkstack;void push(linkstack *s,int x) /*进栈*/{//请补充完善}int pop(linkstack *s) /*出栈*/{//请补充完善}void showstack(linkstack *s) /*显示栈元素*/{//请补充完善}void Conversion(int i,int n) /*进制转换*/{//请补充完善}B.自主性实验程序模板/*表达式求值程序*/#include"stdio.h"#include "stdlib.h"#include"string.h"#define MAXSIZE 100typedef char ElemType;#include "顺序栈.h"char operate(char a,char theta,char b) /*求两数a和b作θ运算的结果*/{int r;a=a-48;b=b-48;switch(theta){case '+':r=a+b;break;case '-':r=a-b;break;case '*':r=a*b;break;case '/':r=a/b;break;}return(r+48);}char precede(char theta1,char theta2) /*判断两个运算符θ1和θ2的优先关系*/{switch(theta1){case '+':case '-':{if(theta2=='+'||theta2=='-'||theta2==')'||theta2=='#')return('>');else if(theta2=='*'||theta2=='/'||theta2=='(')return('<');}case '*':case '/':{if(theta2=='+'||theta2=='-'||theta2=='*'||theta2=='/'||theta2==')'||theta2=='#')return('>');else if(theta2=='(')return('<');}case '(':{if(theta2=='+'||theta2=='-'||theta2=='*'||theta2=='/'||theta2=='(')return('<');else if(theta2==')')return('=');}case ')':{if(theta2=='+'||theta2=='-'||theta2=='*'||theta2=='/'||theta2==')'||theta2=='=')return('>');}case '=':{if(theta2=='+'||theta2=='-'||theta2=='*'||theta2=='/'||theta2=='(')return('<');else if(theta2=='=')return('=');}}}char Evaluation(char exp[20])/*返回由中缀式exp表示的算术表达式的运算结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二栈基本操作
一、实验目的
掌握栈的基本操作:初始化、判空、判满、入栈、出栈、取栈顶元素等运算。
二、实验要求包含有头文件和main函数;
1.格式正确,语句采用缩进格式;
2.设计子函数实现题目要求的功能;
3.编译、连接通过,熟练使用命令键;
4.运行结果正确,输入输出有提示,格式美观。
三、实验设备、材料和工具
1.奔腾2计算机或以上机型
2.turboc2,win-tc
四、实验内容和步骤
实验内容:
1.分析程序。
2.完成程序编写和补充
步骤:
3.确定数据的结构;
4.利用main函数调用各子函数;
5.调试、分析运行结果。
五、实验报告要求
1.根据实验内容初步设计好程序,并从理论上排除错误;
2.针对程序的健壮性准备好测试数据;
3.结果分析中如实填写运行后的结果,记录调试过程中产生的重要问题和解决方法。
六、根据实验过程填写下面内容
基础部分
1.构建下列头文件,文件名称seqstack.h
#define TRUE 1
#define FALSE 0
#define Stack_Size 500
#define StackElementType int
typedef struct
{
StackElementType elem[Stack_Size]; /*用来存放栈中元素的一维数组*/
int top; /*用来存放栈顶元素的下标,top为-1表示空栈*/
}SeqStack;
void InitStack(SeqStack *S)
{ S->top = -1; }
int IsEmpty(SeqStack *S) /*判断栈S为空栈时返回值为真,反之为假*/
{ return(S->top==-1?TRUE:FALSE);}
int IsFull(SeqStack *S) /*判断栈S为满栈时返回值为真,反之为假*/
{ return(S->top==Stack_Size-1?TRUE:FALSE);}
int Push(SeqStack *S,StackElementType x)
{ if(S->top==Stack_Size-1)
return(FALSE); /*栈已满*/
S->top++;
S->elem[S->top] = x;
return(TRUE);
}
int Pop(SeqStack *S,StackElementType *x)
{ if(S->top == -1) /*栈为空*/
return(FALSE);
else
{
*x = S->elem[S->top];
S->top--; /* 修改栈顶指针*/
return(TRUE);
}
}
int GetTop(SeqStack *S,StackElementType *x)
{ if(S->top == -1) /*栈为空*/
return(FALSE);
else
{ *x = S->elem[S->top];
return(TRUE); }
}
2.构建判断回文序列的程序,完成运行和调试。
回文序列如:序列1&序列2 //包含顺序栈头文件
#include"seqstack.h"//包含顺序栈头文件
#include "stdio.h"
void main()
{
char ch,temp,str[100];
int i;
SeqStack s;//定义顺序栈s
InitStack(&s);//初始化顺序栈s
printf("输入字符串(以&居中):\n");
scanf("%s",str);
i=0;
ch=str[i];
while(ch!='&')//括号内填入判断条件
{
Push(&s,ch);//变量ch值入栈
i++;//变量i自增
ch=str[i];//赋值str中下一个元素值给ch变量
}
while(!IsEmpty(&s))//括号内填入判断条件
{
Pop(&s,&temp);//s出栈,出栈值存放与temp变量中
i++;//变量i自增
ch=str[i];//赋值str中下一个元素值给ch变量
if(temp!=ch) //括号内填入判断条件
break;
}
if(!IsEmpty(&s)||str[i+1]!='\0')//括号内填入判断条件
printf("no!\n");
else
printf("yes!\n");
}
3.编写程序使栈内元素倒置(设置两个栈,把其中一个栈的元素顺序出栈,并顺序放入第二个栈中,则第二个栈中元素已经倒置)!
#include "stdio.h"//包含基本输入输出头文件
#include "seqstack.h"//包含顺序栈头文件
main()
{
SeqStack s,t;//定义两个栈,s和t
char str[100],x;//定义字符数组str用于存放输入的入栈字符串,x用于出栈存放的变量int i;
printf("请输入要入栈的字符:\n");
gets(str);//输入字符串
InitStack(&s);//对栈s进行初始化
InitStack(&t);//对栈t进行初始化
for(i=0;str[i]!='\0';i++)
Push(&s,str[i]);//顺序读取字符数组内容并入s栈
printf("第一个栈的内容:\n");
while(!IsEmpty(&s))
{ Pop(&s,&x);//对栈s出栈,出栈数据放入变量x中
printf("%c\n",x);//输出x的值
Push(&t,x);//对栈t入栈,入栈值为x
}
printf("第二个栈的内容:\n");
while(!IsEmpty(&t))
{ Pop(&t,&x);//对栈t出栈,出栈数据放入变量x中
printf("%c\n",x);//输出x的值
}
}
提高部分
4.编写程序用栈实现进制转换中的数据存放问题,完成进制转换功能(转换成二进制)。
#include"stdio.h"
#include"seqstack.h"
void main(){
int x,temp;
SeqStack s;
InitStack(&s);
printf("请输入x:\n");
scanf("%d",&x);
while(x>0){
temp=x%2;
Push(&s,temp);/*整除2的余数进栈*/
x=x/2;
}
while(!IsEmpty(&s)) {
Pop(&s,&temp);
printf("%d\n",temp);
}
}
5.编写程序用栈实现求fibonacci数列第n(n>=3)个数的值。
#include"stdio.h"
#include"seqstack.h"
void main (){
int a,b;
int temp;
int i;
SeqStack s;
InitStack(&s);
Push(&s,1);
Push(&s,1);
for(i=1;i<=18;i++){
Pop(&s,&a);
Pop(&s,&b);
Push(&s,b);
Push(&s,a);
Push(&s,(a+b));}
temp= 0;
while(!IsEmpty(&s)){
Pop(&s,&temp);
printf("%d\n",temp);
}
}。