精编人教版七年级数学上册第三章《一元一次方程》应用题拔高训练(一)

合集下载

(典型题)人教版初中七年级数学上册第三章《一元一次方程》模拟测试题(有答案解析)(1)

(典型题)人教版初中七年级数学上册第三章《一元一次方程》模拟测试题(有答案解析)(1)

一、选择题1.(0分)[ID :68204]某校社团活动课中,手工制作社的同学用一种彩色硬纸板制作某种长方体小礼品的包装盒,每张硬纸板可制作盒身12个,或制作盒底18个,1个盒身与2个盒底配成一套.现有28张这种彩色硬纸板,要使盒身和盒底刚好配套,若设需要x 张做盒身,则下列所列方程正确的是( ) A .()182812x x -= B .()1828212x x -=⨯ C .()181412x x -=D .()2182812x x ⨯-=2.(0分)[ID :68203]下列方程变形中,正确的是( ) A .方程3221x x -=+,移项,得3212x x -=-+ B .方程()3251x x -=--,去括号,得3251x x -=-- C .方程2332t =,系数化为1,得1t = D .方程110.20.5x x--=,整理得36x = 3.(0分)[ID :68193]已知下列四个应用题:①现有60个零件的加工任务,甲单独每小时可以加工4个零件,乙单独每小时可以加工6个零件.现甲乙两人合作,问两人开始工作几小时后还有20个零件没有加工?②甲乙两人从相距60km 的两地同时出发,相向面行,甲的速度是4/km h ,乙的速度是6/km h ,问经过几小时后两人相遇后又相距20km ?③甲乙两人从相距60km 的两地相向面行,甲的速度是4/km h ,乙的速度是6/km h ,如果甲先走了20km 后,乙再出发,问乙出发后几小时两人相遇?④甲乙两人从相距20km 的两地同时出发,背向而行,甲的速度是4/km h ,乙的速度是6/km h ,问经过几小时后两人相距60km ?其中,可以用方程462060x x ++=表述题目中对应数量关系的应用题序号是( ) A .①②③④ B .①③④ C .②③④D .①②4.(0分)[ID :68167]一元一次方程的解是( ) A .B .C .D .5.(0分)[ID :68163]下列解方程中去分母正确的是( ) A .由,得B .由,得C .由,得D .由,得6.(0分)[ID :68252]下列方程变形一定正确的是( )A .由x +3=-1,得x =-1+3B .由7x =-2,得x =-74C .由12x =0,得x =2 D .由2=x -1,得x =1+27.(0分)[ID :68244]已知a=2b ,则下列选项错误的是( )A .a+c=c+2bB .a ﹣m=2b ﹣mC .2ab = D .2ab= 8.(0分)[ID :68241]若代数式4x +的值是2,则x 等于( )A .2B .2-C .6D .6-9.(0分)[ID :68234]如图,长方形ABCD 中,AB 3cm =,BC 2cm =,点P 从A 出发,以1cm /s 的速度沿A B C →→运动,最终到达点C ,在点P 运动了3秒后点Q 开始以2cm /s 的速度从D 运动到A ,在运动过程中,设点P 的运动时间为t ,则当APQ △的面积为22cm 时,t 的值为( )A .2或103B .2或113C .1或103D .1或13310.(0分)[ID :68232]关于y 的方程331y k +=与350y +=的解相同,则k 的值为( ) A .-2B .34C .2D .43-11.(0分)[ID :68224]“某工厂用如图甲所示的长方形和正方形纸板做成如图乙所示的 A 、B 两种长方体形状的无盖纸盒.现 有正方形纸板 120 张,长方形纸板 360 张,刚好全部用完,问能做成多少个 A 型盒子?”则下列结论 正确的个数是( )①甲同学:设 A 型盒子个数为 x 个,根据题意可得: 4x + 3 ⋅1202x- = 360 ②乙同学:设 B 型盒中正方形纸板的个数为 m 个,根据题意可得: 3 ⋅ 2m+ 4(120 - m ) = 360③A 型盒 72 个④B 型盒中正方形纸板 48 个A .1B .2C .3D .412.(0分)[ID :68221]某项工作甲单独做4天完成,乙单独做6天完成,若甲先做1天,然后甲、乙合作完成此项工作,若甲一共做了x 天,则所列方程为( ) A .1146x x++= B .1146x x ++= C .1146x x -+= D .111446x x +++= 13.(0分)[ID :68178]书架上,第一层书的数量是第二层书的数量的2倍,从第一层抽8本书到第二层,这时第一层剩下的书的数量恰好比第二层书的数量的一半多3本.设第二层原有x 本书,则可列方程为( ) A .2x -8=12(x +8)+3 B .2x =12(x +8)+3 C .2x -8=12x +3 D .2x =12x +3 14.(0分)[ID :68176]甲、乙两个工程队,甲队人,乙队人,现在从乙队抽调人到甲队,使甲队人数为乙队人数的倍.则根据题意列出的方程是( )A .B .C .D .15.(0分)[ID :68170]下列方程中,以x =-1为解的方程是( ) A .B .7(x -1)=0C .4x -7=5x +7D .x =-3二、填空题16.(0分)[ID :68356]关于x 的方程927x kx -=+的解是自然数,则整数k 的值为________.17.(0分)[ID :68354]一件衣服进价120元,按标价的八折出售仍能赚32元,则标价是__元.18.(0分)[ID :68340]一个“数值转换机”按如图的程序计算,例如:输入的数为36,则经过一次运算即可输出结果106.若输出的结果127是经过两次运算才输出的,则输入的数是_____.19.(0分)[ID :68329]如果34x x =-+,那么3x +________4=.20.(0分)[ID :68328]如图所示,天平中放有苹果、香蕉、砝码,且两架天平都平衡,则一个苹果的质量是一个香蕉的质量的________.(填分数)21.(0分)[ID :68321]小石在解关于x 的方程225a x x -=时,误将等号前的“2x -”看作“3x -”,得出解为1x =-,则a 的值是_________,原方程的解为__________ .22.(0分)[ID :68297]某中学组织学生为“希望工程”捐款,甲、乙两班一共捐款425元,已知甲班有50人,乙班比甲班少5人,而乙班比甲班平均每人多捐1元,则乙班平均每人捐款______元.23.(0分)[ID :68284]方程3622y y y -+=,左边合并同类项后,得____________. 24.(0分)[ID :68271]用5个同样大小的小长方形恰好可以拼成如图所示的大长方形,若大长方形的周长是14,则小长方形的长是_______,宽是________.25.(0分)[ID :68273]一群学生参加夏令营活动,男生戴白色帽子,女生戴红色帽子,休息时他们坐在一起,大家发现了一个有趣的现象:每位男生看到的白色与红色的帽子一样多,而每位女生看到的白色帽子数量是红色的2倍.根据信息,这群学生共有______人.26.(0分)[ID :68262]关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程,则其解为_____.27.(0分)[ID :68259]若关于x 的方程3x m -2-m =0是一元一次方程,则m =________,方程的解为________.三、解答题28.(0分)[ID :68403]小明问小白:“你知道为什么任何无限循环小数都可以写成分数形式吗?”,看着小白一脸的茫然,小明热心地为小白讲解: (小明提出问题)利用一元一次方程将0.7⋅化成分数.(小明的解答)解:设0.7⋅=x .方程两边都乘以10,可得100.7⋅⨯=10x .由0.7⋅=0.777…,可知100.7⋅⨯=7.777…=7+0.7⋅,即7+x =10x .(请你体会将方程两边都乘以10起到的作用)可解得x 79=,即0.779⋅=.(小明的问题)将0.4⋅写成分数形式.(小白的答案)49.(正确的!) 请你仿照小明的方法把下列两个小数化成分数,要求写出利用一元一次方程进行解答的过程:①0.73⋅⋅;②0.432⋅.29.(0分)[ID :68380]已知关于x 的方程:2(x ﹣1)+1=x 与3(x +m )=m ﹣1有相同的解,求以y 为未知数的方程3332my m x--=的解. 30.(0分)[ID :68368]根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2015年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表.若2015年5月份,该市居民甲用电100千瓦时,交电费60元.(1)上表中,a=,若居民乙用电200千瓦时,交电费元.(2)若某用户某月用电量超过300千瓦时,设用电量为x千瓦时,请你用含x的代数式表示应交的电费.(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时时,其当月的平均电价每千瓦时不超过0.62元?【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.B2.D3.B4.A5.C6.D7.D8.B9.A10.C11.D12.C13.A14.A15.A二、填空题16.0或6或8【分析】先解方程得到一个含有字母k的解然后根据解是自然数解出k的值即可【详解】解:移项得9x-kx=2+7合并同类项得(9-k)x=9因为方程有解所以k≠9则系数化为1得x=又∵关于x的方17.190【分析】设标价为元根据题意列方程即可求解【详解】解:设标价为元由题意可知:解得:故答案为:190【点睛】此题主要考查列一元一次方程解应用题解题的关键是根据题意找出等量关系18.15【分析】根据题中的数值转换机计算即可求出所求【详解】解:根据题意得:3x﹣2=127解得:x=43可得3x﹣2=43解得:x=15则输入的数是15故答案为15【点睛】考核知识点:解一元一次方程理19.x【分析】根据题意得第一个等式等号右边为-x+4第二个等式等号右边为4因为(-x+4)+x=4所以等号两边同时加x【详解】两边同时加x得3x+x=4故答案为:x【点睛】本题考查的是等式的性质熟知等式20.【分析】设一个苹果的重量为x一个香蕉的重量为y一个砝码的重量为z分别用含z 的代数式表示xy再求即可【详解】设一个苹果的质量为x一个香蕉的质量为y一个砝码的质量为z由题意得则即则故故答案为:【点睛】此21.-4;【分析】把x=-1代入中求出a的值再求出原方程的解即可【详解】解:根据题意得:x=-1是的解∴把x=-1代入得:解得:∴原方程为:-8-2x=5x解得:故答案为:-4;【点睛】本题考查了一元一22.5【解析】【分析】首先设乙班平均每人捐款x元则甲班平均每人捐款(x-1)元根据题意可得等量关系:甲班的捐款+乙班的捐款=425元由等量关系列出方程即可【详解】解:设乙班平均每人捐款x元由题意得:5023.y=6【解析】【分析】先合并同类项再进行化简即可【详解】合并同类项得:y=6【点睛】本题考查合并同类项熟练掌握计算法则是解题关键24.1【解析】【分析】观察图形找出大长方形与小长方形的关系设小长方形的宽为x列出方程即可求出其长和宽的值【详解】解:设小长方形的宽为x则长=(14-10x)=2x解得x=1即小长方形的宽为1长为2;故答25.7【解析】【分析】设其中的男生有x人根据每位男生看到白色与红色的安全帽一样多可以表示出女生有(x-1)人再根据每位女生看到白色的安全帽是红色的2倍列方程求解【详解】设男生有x人则女生有(x−1)人根26.或或x=-3【分析】利用一元一次方程的定义判断即可【详解】解:关于的方程如果是一元一次方程(1)当即即解得:(2)当m=0时解得:(3)当2m-1=0即m=时方程为解得:x=-3故答案为x=2或x=27.x=1【解析】【分析】根据一元一次方程的定义得到:m-2=1进而求得M结合m的值可得原方程为3x-3=0求解可得方程的解【详解】由题意得:m-2=1解得:m=3所以原方程为3x-3=0解得x=1【点三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.B解析:B【分析】若设需要x张硬纸板制作盒身,则(28-x)张硬纸板制作盒底,然后根据1个盒身与2个盒底配成一套列出方程即可.【详解】解:若设需要x张硬纸板制作盒身,则(28-x)张硬纸板制作盒底,由题意可得,18(28-x)=2×12x,故选:B . 【点睛】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,找出题目中的等量关系,列出相应的方程.2.D解析:D 【分析】根据解方程的步骤逐一对选项进行分析即可. 【详解】A . 方程3221x x -=+,移项,得3212x x -=+,故A 选项错误;B . 方程()3251x x -=--,去括号,得325+5-=-x x ,故B 选项错误;C . 方程2332t =,系数化为1,得94t =,故C 选项错误;D . 方程110.20.5x x--=,去分母得()5121--=x x ,去括号,移项,合并同类项得:36x =,故D 选项正确.故选:D 【点睛】本题主要考查解一元一次方程,掌握解一元一次方程的步骤是解题的关键.3.B解析:B 【分析】①根据甲的工作量+乙的工作量+未完成的工作量=总的工作量,设x 小时后还有20个零件没有加工,据此列方程解答;②根据甲行驶的路程+乙行驶的路程=总路程+相遇后相距的路程,设x 小时后相遇后相距20km ,据此列方程解答;③依据甲乙行驶的路程和+甲先走的路程=总路程,设x 小时后相遇后,据此列方程解答; ④根据甲乙两人的距离+甲乙各自行驶的路程=总路程,设行驶x 小时,据此列方程解答即可. 【详解】①设x 小时后还有20个零件没有加工,根据题意得,462060x x ++=,故①正确; ②设x 小时后相遇后相距20km ,根据题意得,466020x x +=+,故②错误; ③甲先走了20km 后,乙再出发,设乙出发后x 小时两人相遇,根据题意得,462060x x ++=,故③正确;④经过x 小时后两人相距60km ,根据题意得,462060x x ++=,故④正确. 因此,正确的是①③④. 故选:B. 【点睛】此题考查了一元一次方程的应用,关键是读懂题意,找出题目中的等量关系,列出方程.4.A解析:A【解析】【分析】先移项,再合并同类项,把x的系数化为1即可;【详解】原式=;=故选A.【点睛】本题考查解一元一次方程,熟练掌握计算法则是解题关键.5.C解析:C【解析】【分析】根据等式的性质,各个选项中的方程两边同时乘分母的最小公倍数,然后再解答.【详解】A.2x−6=3−3x;故错误;B.2(x−2)−(3x−2)=−42(x−2)−3x+2=−4;故错误;C.3(y+1)=2y−(3y−1)−6y3y+3=2y−3y+1−6y;故正确;D.12x−15=5y+20;故错误;由以上可得只有C选项正确.故选:C.【点睛】此题考查方程的解和解方程,解题关键在于掌握运算法则.6.D解析:D 【分析】根据等式的性质,可得答案. 【详解】解:由x +3=-1,得x =-1-3,所以A 选项错误; 由7x =-2,得x =-27,所以B 选项错误;由12x =0,得x =0,所以C 选项错误; 由2=x -1,得x =1+2,所以D 选项正确. 故选D . 【点睛】本题考查了等式的性质,熟记等式的性质是解题关键.7.D解析:D 【分析】根据等式的性质判断即可. 【详解】解:A 、因为a=2b ,所以a+c=c+2b ,正确; B 、因为a=2b ,所以a-m=2b-m ,正确; C 、因为a=2b ,所以2a=b ,正确; D 、因为a=2b ,当b≠0,所以ab=2,错误; 故选D . 【点睛】此题考查比例的性质,关键是根据等式的性质解答.8.B解析:B 【分析】由已知可得4x +=2,解方程可得. 【详解】由已知可得4x +=2,解得x=-2. 故选B. 【点睛】本题考核知识点:列方程,解方程. 解题关键点:根据题意列出一元一次方程.9.A解析:A【分析】首先分P 运动了3秒以内和3秒以后两种情况,分别结合速度和距离的关系列出等式,从而完成求解.【详解】四边形ABCD 是矩形AD BC 2cm ∴==,当点P 在AB 边时AB 3cm =∴此时点Q 还在点D 处,AP t = ∴APQ 12t 22S =⨯⨯=△ ∴t 2=;3秒后,点P 在BC 上∴()AQ 22t 3=-- ∴()APQ 1322t 322S ⎡⎤=⨯⨯--=⎣⎦△ ∴10t 3= ∴当APQ △的面积为22cm 时,t 的值为2或103. 故选A .【点睛】 本题考察了矩形、一元一次方程、三角形面积计算等知识;求解的关键是熟练掌握矩形、一元一次方程的性质,并运用到实际问题的求解过程中,即可得到答案.10.C解析:C【分析】分别解出两方程的解,两解相等,就得到关于k 的方程,从而可以求出k 的值.【详解】 解第一个方程得:133k y -=, 解第二个方程得:53y =-, ∴133k -=53-, 解得:k=2.故选C .【点睛】本题解决的关键是能够求解关于y 的方程,要正确理解方程解的含义.11.D解析:D【分析】根据题意可知,A 型纸盒需要4个长方形纸板,1个正方形纸板,B 型纸盒需要3个长方形纸板和2个正方形纸板,设A 型盒子个数为x 个,可得A 型纸盒需要长方形纸板的数量和B 型纸盒需要长方形纸板的数量,可列出方程对①进行判断;设B 型盒中正方形纸板的个数为m 个,可得B 型纸盒需要长方形纸板的数量和A 型纸盒需要长方形纸板的数量,可列出方程对②进行判断;设做A 型盒子用了正方形纸板x 张,做B 型盒子用了正方形纸板y 张,则可得A 型盒子x 个,B 型盒子y 个,根据长方形纸板360张,正方形纸板120张,可得出方程组,求出A 型纸盒和B 型纸盒的数量可对③④进行判断.【详解】设A 型盒子个数为x 个,则A 型纸盒需要长方形纸板4x 张,正方形纸板x 张,由于制作一个B 型纸盒需要两张正方形纸板,因此可得B 型纸盒的数量为1202x -个,需要长方形纸板3×1202x -张,因此可得120433602x x -+=,故①正确; 设B 型盒中正方形纸板的个数为m 个,则B 型纸盒有2m 个,需要长方形纸板3×2m 个,A 型纸盒有(120-m )个,则需长方形纸板4(120-m )个,所以可得方程3×2m +4(120-m )=120,故②正确;设做A 型盒子用了正方形纸板x 张,做B 型盒子用了正方形纸板y 张,则有,212043360x y x y +=⎧⎨+=⎩解得,7224x y =⎧⎨=⎩即,A 型纸盒有72个,B 型纸盒有24个,所以B 型盒中正方形纸板 48 个故③④正确.故选D.【点睛】本题考查了列一元一次方程和二元一次方程组的应用,解答本题时注意无盖盒子中的长方形及正方形的个数之间的关系是解答的关键.12.C解析:C【分析】首先要理解题意找出题中存在的等量关系:甲完成的工作量+乙完成的工作量=总的工作量,根据题意我们可以设总的工作量为单位“1“,根据效率×时间=工作量的等式,分别用式子表示甲乙的工作量即可列出方程.【详解】设甲一共做了x天,则乙一共做了(x−1)天.可设工程总量为1,则甲的工作效率为14,乙的工作效率为16.那么根据题意可得出方程11 46x x-+=,故选C.【点睛】此题考查由实际问题抽象出一元一次方程,解题关键在于理解题意列出方程. 13.A解析:A【分析】根据题意可以列出相应的方程,从而可以解答本题.【详解】解:由题意可得,2x-8=12(x+8)+3,故选:A.【点睛】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.14.A解析:A【解析】【分析】分析本题题意,找到等量关系:32+甲队添加人数=2×(28-乙队减少人数),列出式子即可.【详解】解:列出的方程是32+x=2×(28-x).故答案为:32+x=2×(28-x),答案选A..【点睛】列方程解应用题的关键是找出题目中的相等关系.注意本题中甲增加的人数就是乙减少的人数.15.A解析:A【解析】【分析】方程的解的定义,就是能够使方程左右两边相等的未知数的值.所以把x=-1分别代入四个选项进行检验即可.【详解】解:A、把x=-1代入方程的左边= -=右边,左边=右边,所以是方程的解;B、把x=-1代入方程的左边=-14≠右边,所以不是方程的解;C、把x=-1代入方程的左边=-11≠右边,不是方程的解;D、把x=-1代入方程的左边=-≠右边,不是方程的解;故选:A.【点睛】本题关键是正确理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.二、填空题16.0或6或8【分析】先解方程得到一个含有字母k的解然后根据解是自然数解出k的值即可【详解】解:移项得9x-kx=2+7合并同类项得(9-k)x=9因为方程有解所以k≠9则系数化为1得x=又∵关于x的方解析:0或6或8【分析】先解方程,得到一个含有字母k的解,然后根据解是自然数解出k的值即可.【详解】解:移项得,9x-kx=2+7合并同类项得,(9-k)x=9,因为方程有解,所以k≠9,则系数化为1得,x=99-k,又∵关于x的方程9x-2=kx+7的解是自然数,∴k的值可以为:0、6、8.其自然数解相应为:x=1、x=3、x=9.故答案为:0或6或8.【点睛】本题考查解一元一次方程、方程的解,解答的关键是根据方程的解对整数k进行取值,注意不要漏解.17.190【分析】设标价为元根据题意列方程即可求解【详解】解:设标价为元由题意可知:解得:故答案为:190【点睛】此题主要考查列一元一次方程解应用题解题的关键是根据题意找出等量关系解析:190【分析】设标价为x元,根据题意列方程即可求解.【详解】解:设标价为x元,x-=,由题意可知:0.812032x=,解得:190故答案为:190.【点睛】此题主要考查列一元一次方程解应用题,解题的关键是根据题意找出等量关系.18.15【分析】根据题中的数值转换机计算即可求出所求【详解】解:根据题意得:3x﹣2=127解得:x=43可得3x﹣2=43解得:x=15则输入的数是15故答案为15【点睛】考核知识点:解一元一次方程理解析:15【分析】根据题中的“数值转换机”计算即可求出所求.【详解】解:根据题意得:3x﹣2=127,解得:x=43,可得3x﹣2=43,解得:x=15,则输入的数是15,故答案为15【点睛】考核知识点:解一元一次方程.理解程序意义是关键.19.x【分析】根据题意得第一个等式等号右边为-x+4第二个等式等号右边为4因为(-x+4)+x=4所以等号两边同时加x【详解】两边同时加x得3x+x=4故答案为:x【点睛】本题考查的是等式的性质熟知等式解析:x【分析】根据题意,得第一个等式等号右边为-x+4 ,第二个等式等号右边为4,因为(-x+4)+x=4 ,所以等号两边同时加x.【详解】两边同时加x,得3x+x=4,故答案为:x【点睛】本题考查的是等式的性质,熟知等式两边加或减同一个数或式子,结果仍相等是解答此题的关键.20.【分析】设一个苹果的重量为x 一个香蕉的重量为y 一个砝码的重量为z 分别用含z 的代数式表示xy 再求即可【详解】设一个苹果的质量为x 一个香蕉的质量为y 一个砝码的质量为z 由题意得则即则故故答案为:【点睛】此 解析:32【分析】设一个苹果的重量为x 、一个香蕉的重量为y 、一个砝码的重量为z ,分别用含z 的代数式表示x ,y ,再求x y 即可. 【详解】设一个苹果的质量为x ,一个香蕉的质量为y ,一个砝码的质量为z .由题意得24x z =,则2x z =,32y z x =+,即3224y z z z =+=,则43y z =, 故23423x z y z ==. 故答案为:32【点睛】此题主要考查了等式的性质,本题先通过用z 表示x ,y ,后通过求比值而求解. 21.-4;【分析】把x=-1代入中求出a 的值再求出原方程的解即可【详解】解:根据题意得:x=-1是的解∴把x=-1代入得:解得:∴原方程为:-8-2x=5x 解得:故答案为:-4;【点睛】本题考查了一元一解析:-4; 87-【分析】把x=-1代入235a x x -=中求出a 的值,再求出原方程的解即可【详解】解:根据题意,得:x=-1是235a x x -=的解,∴把x=-1代入235a x x -=得:23(1)5(1)a -⨯-=⨯-解得:4a =-∴原方程为:-8-2x=5x 解得:87x 故答案为:-4;87-【点睛】本题考查了一元一次方程,熟练掌握运算法则是解题的关键22.5【解析】【分析】首先设乙班平均每人捐款x 元则甲班平均每人捐款(x-1)元根据题意可得等量关系:甲班的捐款+乙班的捐款=425元由等量关系列出方程即可【详解】解:设乙班平均每人捐款x 元由题意得:50解析:5【解析】【分析】首先设乙班平均每人捐款x 元,则甲班平均每人捐款(x-1)元,根据题意可得等量关系:甲班的捐款+乙班的捐款=425元,由等量关系列出方程即可.【详解】解:设乙班平均每人捐款x 元,由题意得:50(x-1)+(50-5)x=425,解得:x=5,答:乙班平均每人捐款5元.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,表示出甲乙两班的捐款人数和人均捐款数,再根据捐款总数列出方程即可.23.y=6【解析】【分析】先合并同类项再进行化简即可【详解】合并同类项得:y=6【点睛】本题考查合并同类项熟练掌握计算法则是解题关键解析:y=6【解析】【分析】先合并同类项,再进行化简即可.【详解】3622y y y -+= 合并同类项,得:13-1+=622y ⎛⎫ ⎪⎝⎭ y=6【点睛】本题考查合并同类项,熟练掌握计算法则是解题关键.24.1【解析】【分析】观察图形找出大长方形与小长方形的关系设小长方形的宽为x 列出方程即可求出其长和宽的值【详解】解:设小长方形的宽为x 则长=(14-10x )=2x 解得x=1即小长方形的宽为1长为2;故答解析:1【解析】【分析】观察图形找出大长方形与小长方形的关系,设小长方形的宽为x ,列出方程即可求出其长和宽的值.【详解】解:设小长方形的宽为x ,则长=12(14-10x )=2x , 解得x=1,即小长方形的宽为1,长为2;故答案为:2;1.【点睛】本题考查了一元一次方程的应用,准确识图并列出方程是解题的关键.25.7【解析】【分析】设其中的男生有x 人根据每位男生看到白色与红色的安全帽一样多可以表示出女生有(x-1)人再根据每位女生看到白色的安全帽是红色的2倍列方程求解【详解】设男生有x 人则女生有(x−1)人根解析:7【解析】【分析】设其中的男生有x 人,根据每位男生看到白色与红色的安全帽一样多,可以表示出女生有(x-1)人.再根据每位女生看到白色的安全帽是红色的2倍列方程求解.【详解】设男生有x 人,则女生有(x−1)人,根据题意得x=2(x−1−1)解得x=4x−1=3.4+3=7人.故答案为:7.【点睛】此题考查一元一次方程的应用,解题关键在于列出方程.26.或或x=-3【分析】利用一元一次方程的定义判断即可【详解】解:关于的方程如果是一元一次方程(1)当即即解得:(2)当m=0时解得:(3)当2m-1=0即m=时方程为解得:x=-3故答案为x=2或x=解析:2x =或2x =-或x=-3. 【分析】利用一元一次方程的定义判断即可.【详解】 解:关于x 的方程2m 1mx m 1x 20+﹣(﹣)﹣=如果是一元一次方程,(1)当2m 11﹣=,即m 1=,即x 20﹣=解得:x 2=,(2)当m=0时,x20--=,解得:x2=-(3)当2m-1=0,即m=12时,方程为1120 22x--=解得:x=-3,故答案为x=2或x=-2或x=-3.【点睛】此题考查了一元一次方程的定义,熟练掌握一元一次方程的定义是解本题的关键.27.x=1【解析】【分析】根据一元一次方程的定义得到:m-2=1进而求得M结合m的值可得原方程为3x-3=0求解可得方程的解【详解】由题意得:m-2=1解得:m=3所以原方程为3x-3=0解得x=1【点解析:x=1【解析】【分析】根据一元一次方程的定义得到:m-2=1,进而求得M,结合m的值可得原方程为3x-3=0,求解可得方程的解【详解】由题意得:m-2=1,解得:m=3所以原方程为3x-3=0解得x=1【点睛】此题考查一元一次方程的知识,熟练掌握一元一次方程的定义是关键三、解答题28.①0.737399⋅⋅=,过程见解析;②0.433892900⋅=,过程见解析.【分析】①设0. 73⋅⋅=m,程两边都乘以100,转化为73+m=100m,求出其解即可.②设0.432⋅=n,程两边都乘以100,转化为43+0.2⋅=100n,求出其解即可.【详解】解:①设0.73⋅⋅=m,方程两边都乘以100,可得100×0.73⋅⋅=100m.由0.73⋅⋅=0.7373…,可知100×0.73⋅⋅=73.7373…=73+0.73⋅⋅;即73+m =100m ,可解得m 7399=,即0.737399⋅⋅=. ②设0.432⋅=n ,方程两边都乘以100,可得100×0.432⋅=100n . ∴43.2⋅=100n .∵0.229⋅=,∴4329+=100n n 389900= ∴0.433892900⋅=. 【点睛】本题考查了无限循环小数转化为分数的运用,运用一元一次方程解实际问题的运用,解答时根据等式的性质变形建立方程是解答的关键.29.214y =-. 【分析】根据方程可直接求出x 的值,代入另一个方程可求出m ,把所求m 和x 代入方程3,可得到关于y 的一元一次方程,解答即可.【详解】解:解方程2(x ﹣1)+1=x得:x =1将x =1代入3(x +m )=m ﹣1得:3(1+m )=m ﹣1解得:m =﹣2将x =1,m =﹣2代入3332my m x --= 得:3(2)2332y ----=, 解得:214y =-. 【点睛】本题考查了含分母的一次方程,属于简单题,正确求解方程是解题关键.30.(1)0.6;122.5.(2)0.9x ﹣82.5.(3)250千瓦.【分析】(1)根据100<150结合应交电费60元即可得出关于a 的一元一次方程,解之即可得出a 值;再由150<200<300,结合应交电费=150×0.6+0.65×超出150千瓦时的部分即可求出结论;(2)根据应交电费=150×0.6+(300-150)×0.65+0.9×超出300千瓦时的部分,即可得出结论;(3)设该居民用电x千瓦时,其当月的平均电价每千瓦时为0.62元,分x在第二档及第三档考虑,根据总电费=均价×数量即可得出关于x的一元一次方程,解之即可得出x值,结合实际即可得出结论.【详解】(1)∵100<150,∴100a=60,∴a=0.6,若居民乙用电200千瓦时,应交电费150×0.6+(200-150)×0.65=122.5(元),故答案为0.6;122.5;(2)当x>300时,应交的电费150×0.6+(300-150)×0.65+0.9(x﹣300)=0.9x﹣82.5;(3)设该居民用电x千瓦时,其当月的平均电价每千瓦时为0.62元,当该居民用电处于第二档时,90+0.65(x﹣150)=0.62x,解得:x=250;当该居民用电处于第三档时,0.9x﹣82.5=0.62x,解得:x≈294.6<300(舍去).综上所述该居民用电不超过250千瓦时,其当月的平均电价每千瓦时不超过0.62元.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据数量关系列式计算;(2)根据数量关系列出代数式;(3)根据总电费=均价×数量列出关于x的一元一次方程.。

人教版七年级上册第三章《一元一次方程》应用题分类:追击与相遇类专项练(一)

人教版七年级上册第三章《一元一次方程》应用题分类:追击与相遇类专项练(一)

第三章《一元一次方程》应用题分类:追击与相遇类专项练(一)1.A,B两地相距340千米,已知甲车的速度为60千米/小时,乙车的速度为80千米/小时.(1)如果甲车从A地向B地先开出1小时后,乙车从B地出发,两车相向而行,乙车出发多少小时后两车相遇?(2)如果(1)中两车相遇半小时后,乙车返回追赶甲车,能否在甲车到达B地前追上?2.家住山脚下的孔明同学想从家出发登山游玩,据以往的经验,他获得如下信息:(1)他下山时的速度比上山时的速度每小时快1千米;(2)他上山2小时到达的位置,离山顶还有1千米;(3)抄近路下山,下山路程比上山路程近2千米;(4)下山用1个小时;根据上面信息,他作出如下计划:(1)在山顶游览1个小时;(2)中午12:00回到家吃中餐.若依据以上信息和计划登山游玩,请问:孔明同学应该在什么时间从家出发?3.甲乙两人骑自行车,同时从相距65千米的AB两地相向而行,甲速度为17.5千米一小时,乙速度15千米一小时,几小时后,甲乙两人相距32.5千米?4.列方程解应用题:A、B两城相距720千米,普快列车从A城出发120千米后,特快列车从B城开往A城,6小时后两车相遇,若普快列车的速度是特快列车速度的,求两车的速度.5.甲、乙两站路程为360km,一列慢车从甲站开出,每小时行48km,一列快车从乙站开出,每小时行72km.(1)两车同时开出,相向而行,多少小时相遇?(2)若慢车先开出20分钟,快车再出发,两车同向而行,快车多少时间追上慢车?6.一架飞机在两城之间飞行,风速为24千米/小时,顺风飞行需2小时,逆风飞行需要3小时.(1)求无风时飞机的飞行速度;(2)求两城之间的距离.7.甲、乙两汽车站相距190km,一辆汽车以30km/h的速度从甲地开往乙地,出发2h后,一辆摩托车以50km/h的速度也从甲地开往乙地,摩托车需要多长时间才能追上汽车?8.A、B两个动点在数轴上做匀速运动,它们的运动时间以及位置记录如下.(1)根据题意,填写下列表格;时间(s)0 5 7 xA点位置19 ﹣1B点位置17 27(2)A、B两点能否相遇?如果相遇,求相遇时的时刻及在数轴上的位置;如果不能相遇,请说明理由;(3)A、B两点能否相距18个单位长度?如果能,求相距18个单位长度的时刻;如不能,请说明理由.9.甲车和乙车从A、B两地同时出发,沿同一线路相向匀速行驶,出发后1.5h两车相遇,相遇时甲车比乙车少走30km,相遇后1.2h乙车到达A地.(1)两车的行驶速度分别是多少?(2)相遇后,若乙车速度不变,甲车想和乙车同时到达目的地,那么甲车要比原来的行驶速度增加多少km/h?(3)相遇后,甲车到B地间的部分路段限速120km/h,部分路段限速140km/h,(2)中甲车在相应路段,既不超速又不低于限速行驶,刚好能和乙车同时到达目的地,试求限速120km/h和限速140km/h的路段各多少km?10.某校综合实践小分队成一列在野外拓展训练,在队伍中的队长数了一下他前后的人数,发现他前面人数是他后面的三倍,他往前超了5位队友后,发现他前面的人数和他后面的人数一样多.问:(1)这列队伍一共有多少名学生?(2)这列队伍要过一座240米的大桥,为拓展训练和安全需要,相邻两个学生保持相同的间距,队伍行进速度为3米/秒,从第一位学生刚上桥到全体通过大桥用了90秒时间,请问相邻两个学生间距离为多少米(不考虑学生身材的大小)?参考答案1.解:(1)乙车出发x小时后两车相遇,根据题意得:(60+80)x+60=340解得:x=2,答:乙车出发2小时后两车相遇;(2)乙车追上甲车需y小时,根据题意得:(80﹣60)y=0.5(80+60),解得:y=3.5,而甲车还需﹣3.5=小时到达B地,答:两车相遇半小时后,乙车返回追赶甲车,不能在甲车到达B地前追上.2.解:设上山的速度为v,下山的速度为(v+1),则2v+1=v+1+2,解得v=2.即上山速度是2千米/小时.则下山的速度是3千米/小时,山高为5千米.则计划上山的时间为:5÷2=2.5(小时),计划下山的时间为:1小时,则共用时间为:2.5+1+1=4.5(小时),所以出发时间为:12:00﹣4小时30分钟=7:30.答:孔明同学应该在7点30分从家出发.3.解:设经过x小时,甲、乙两人相距32.5千米.有两种情况:①两人没有相遇相距32.5千米,那么两人共同走了(65﹣32.5)千米,根据题意可以列出方程x(17.5+15)=65﹣32.5,解得x=1;②两人相遇后相距32.5千米,那么两人共同走了(65+32.5)千米,根据题意可以列出方程x(17.5+15)=65+32.5,解得x=3.答:经过1或3小时,甲、乙两人相距32.5千米.4.解:设特快列车速度为x千米/时,则普快列车的速度为x千米/时,由题意,得120+6(x+x)=720,解得:x=60,∴普快列车的速度为×60=40千米/时.答:特快列车速度为60千米/时,则普快列车的速度为40千米/时.5.解:(1)设两车同时开出相向而行,经x小时相遇,即72x+48x=360,解得:x=3.答:经过3小时两车相遇.(2)设快车行驶y小时追上慢车;根据题意有:48(y+)+360=72y,解得:y=.答:快车小时追上慢车.6.解:(1)设无风时飞机的飞行速度为x千米/小时,由题意得2(x+24)=3(x﹣24)解得:x=120答:无风时飞机的飞行速度是120千米/时;(2)2(x+24)=288千米答:两城之间的距离是288千米.7.解:设摩托车需要x小时长时间才能追上汽车,依题意有(50﹣30)x=30×2,解得x=3.故摩托车需要3小时长时间才能追上汽车.8.解:(1)填表如下:时间(s)0 5 7 xA点位置19 ﹣1 ﹣9 ﹣4x+19B点位置﹣8 17 27 5x﹣8 (2)根据题意可得:﹣4x+19=5x﹣8解得:x=3.答:相遇的时刻为3秒,在数轴上的位置为7;(3)根据题意可得:﹣4x+19﹣(5x﹣8)=18解得:x=1;根据题意可得:5x﹣8﹣(﹣4x+19)=18解得:x=5.综上所述,x=1或5时,A、B两点能否相距18个单位长度.9.(1)解:设乙车速度为vkm/h,依题意有1.2v=1.5v﹣30,解得:v=100,则甲车的速度为:,即.答:乙的速度为:100km/h,甲的速度为:80km/h;(2)设甲车的行驶速度比原来增加akm/h,则有:(80+a)×1.2=100×1.5,解得:a=45.答:甲车要比原来的行驶速度增加45km/h;(3)设限速120km/h的路段长xkm,则限速140km/h的路段长(150﹣x)km,则依题意有,解得:x=108,150﹣x=42.答:限速120km/h路段长108km,限速140km/h的路段42km.10.解:(1)设开始队长后面有x名学生,由题意得x+5=3x﹣5,解得x=5,共有学生4x+1=21(名)答:这列队伍一共有21名学生;(2)设相邻两个学生间距离为y米,由题意得20y+240=3×90,解得y=1.5答:相邻两个学生间距离为1.5米.。

人教版七年级数学上册第三章《一元一次方程》应用题解答题拔高训练及答案

人教版七年级数学上册第三章《一元一次方程》应用题解答题拔高训练及答案

第三章《一元一次方程》应用题解答题拔高训练(一)1.春节临近,许多商场利用打折的优惠措施吸引顾客,若某商品原标价为x元/件,现商场以八折优惠售出.(1)该商品现在售价为元/件(用含x的代数式表示);(2)若打八折后商场从该商品中仍可获利20元/件,但是打六折则要亏损20元/件,求该商品每件的进价是多少元.2.在课间活动中,小英、小丽和小敏在操场上画出A,B两个区域,一起玩投包游戏,沙包落在A区域所得分值与落在B区域所得分值不同,当每人各投沙包四次时,其落点和四次总分如图所示.(1)沙包落在A区域和B区域所得分值分别是多少?(2)求出小敏的四次总分.3.为了节约用水,自来水公司对水价作出规定:当用水量不超过10吨时,每吨收费1.2元;当超过10吨时,超过部分每吨收费1.5元.某个月一户居民交费18元,则这户居民这个月用水多少吨?4.将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?5.某公司生产一种产品,每件成本价是400元,销售价为510元,本季度销售了5万件,为进一步扩大市场,企业决定降低生产成本,经过市场调研,预测下一季度这种商品每件销售价会降低4%,销售量将提高10%,要使销售利润(销售利润=销售价﹣成本价)保持不变,该商品每件的成本应降低多少元?6.小明步行速度是每时5千米.某日他从家去学校,先走了全程的,改乘速度为每时20千米的公共汽车到校,比全部步行的时间快了2时.小明家离学校多少千米?7.如图,已知数轴上点A表示的数为8,B是数轴上的一点,AB=12,动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);(2)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、Q 同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长.8.一辆汽车以每小时40千米的速度由甲地驶向乙地,车行驶3小时后,因遭雨,平均速度被迫每小时减少10千米,结果到乙地比预算的时间晚45分钟,求甲、乙两地的距离?9.某件商品标价为13200元,若降价以九折出售,仍可获利10%,该商品的进价是多少元?10.某市出租车的收费标准如下:起步价5元,即3千米以内(含3千米)收费5元,超过3千米的部分,每千米收费1.3元.(不足1千米按1千米计算)(1)假如你乘出租车行驶7千米应付多少钱?(2)若小红付出租车费16.7元,则小红最多乘坐多少千米?11.甲厂和乙厂都有某种仪器可供其他厂使用,其中甲厂可提供10台,乙厂可提供4台,已知丙厂需要8台,丁厂需要6台,从甲厂到丙厂、丁厂每台仪器需运费分别为400元和800元,乙厂到丙厂、丁厂每台仪器的运费分别为300元和500元.设甲厂运往丙厂的仪器为x台.(1)请用含x的代数式填写下表中的空格:起点/终点丙厂丁厂甲厂x乙厂(2)现计划用7600元运送这批仪器,请你设计一种调运方案,使丙厂、丁厂能得到所需的仪器,而且费用正好用完;(3)试问有无可能使总运费为8000元?若可能,请求出甲厂运往丙厂的仪器台数;若不可能,请说明理由.12.如图,在数轴上有两点A、B,A表示的数为6,B在A的左侧,且AB=10.动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动.(1)请直接写出点B表示的数为;(2)经过多少时间,线段AP和BP的长度之和为18?(3)若点M、N分别在线段AP和BP上,且AM=2014PM,BN=2014PN.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请画出图形,并求出线段MN的长.13.如图,是舟山﹣嘉兴的高速公路示意图,王老师驾轿车从舟山出发,上高速公路途经舟山跨海大桥和杭州湾跨海大桥到嘉兴下高速,其间用了4.5小时;返回时平均速度提高了20千米/小时,比去时少用了1小时回到舟山.(1)求舟山与嘉兴两地间的高速公路路程;(2)两座跨海大桥的长度及过桥费见表:大桥名称舟山跨海大桥杭州湾跨海大桥大桥长度48千米36千米过桥费100元80元我省交通部门规定:轿车的高速公路通行费w(元)的计算方法为:w=am+b+5,其中a 元/(千米)为高速公路里程费,m(千米)为高速公路里程数(不包括跨海大桥长),b (元)为跨海大桥过桥费.若王老师从舟山到嘉兴所花的高速公路通行费为277.4元,求轿车的高速公路里程费a.14.某校七年级共三个班,在一次捐款活动中,1班的捐款为2、3班捐款和的一半,2班捐款为七年级捐款的,3班捐款380元,求七年级的捐款总数.15.我省公布的居民用电电价听证方案如下:第一档电量第二档电量第三档电量月用电量210度以下,每度价格0.55元月用电量210度至350度,每度比第一档提价0.05元月用电量350度以上,每度比第一档提价格0.15元例:某户月用电量400度,则需缴电费为210×0.55+(350﹣210)×(0.55+0.05)+(400﹣350)×(0.55+0.15)=234.5(元).(1)如果按此方案计算,小华家5月份的电费为139.5元,请你求出小华家5月份的用电量;(2)依据方案请你回答:若小华家某月的电费为248元,则小华家该月用电量是多少?属于第几档?16.县政府在江华瑶族自治县成立60周年县庆来临之际,为了做好城市的美化、亮化工作,政府在瑶都大道两旁安装了瑶鼓节能型路灯(每边两端必需各安装1盏).现在每两盏灯距离大约是40米,安装一边用了251盏;如果改用另一种型号的节能型路灯,且每两盏灯的距离改为50米,安装一边需要多少盏?17.霞霞和瑶瑶两位学生在数学活动课中,把长为30cm,宽为10cm的长方形白纸条粘合起来,霞霞按图(1)所示方法粘合起来得到长方形ABCD,粘合部分的长度为acm;瑶瑶按图(2)所示方法粘合起来得到长方形A1B1C1D1,粘合部分的长度为bcm.图形理解:若霞霞和瑶瑶两位学生按各自要求分别粘合2张白纸条(如图3),则DC=cm,D1C1=cm(用a或b的代数式表示);若霞霞和瑶瑶两位学生按各自要求分别粘合n张白纸条(如图1、2),则DC=cm(用a和n的代数式表示),D1C1=cm(用b和n的代数式表示).问题解决:若a=b=6,霞霞用7张为30cm,宽为10cm的长方形白纸条粘合成一个长方形ABCD,瑶瑶用n张长为30cm,宽为10cm的长方形白纸条粘合成一个长方形A1B1C1D1.若长方形ABCD的面积与长方形A1B1C1D1的面积相等,求n的值?拓展应用:若a=6,b=4,现有长为30cm,宽为10cm的长方形白纸条共30张.问如何分配30张长方形白纸条,才能使霞霞和瑶瑶按各自要求粘合起来的长方形面积相等(要求30张长方形白纸条全部用完)?若能,请求出霞霞和瑶瑶分别分配到几张长方形白纸条;若不能,请说明理由.18.某企业的两个分厂开展“献爱心”活动,捐赠生活物资若干,甲厂可支援外地4车,乙厂可支援外地10车,现在决定给A地8车,B地6车,每车的运费如表:设甲厂运往A地的生活物资为x车.(1)用含x的代数式填表:终点起点运量A地B地甲厂x乙厂终点起点A地B地甲厂550元800元乙厂300元560元(2)若总运费为6750元,则甲厂A地的生活物资应为多少车?19.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点O出发,以每秒6个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数;当t=3时,OP=(2)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R 同时出发,问点R运动多少秒时追上点P?(3)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R 同时出发,问点R运动多少秒时PR相距2个单位长度?20.小李和小刘在甲、乙两处之间的直道上练习跑步,小李每秒跑6米,小刘每秒跑8米.(1)两人在甲处同时跑,小刘比小李提前4秒到达乙处,求甲、乙之间的距离;(2)若小李在甲处,小刘在乙处同时相向跑,两人相遇的位置距甲处有多远?(3)两人都在甲处向乙处跑,小李跑了3秒钟后,小刘才开始跑,几秒后,小刘能追上小李?参考答案1.解:(1)由题意可得:该商品现在售价为:0.8x元/件;故答案为:0.8x;(2)设该商品第件的售价是x元,根据题意可得:0.8x﹣20=0.6x+20,解得:x=200,则200×0.8﹣20=140(元).答:该商品每件的进价是140元.2.解:(1)设沙包落在A区域得分为x,则落在B区域得分为(34﹣3x),由题意可列方程2x+2(34﹣3x)=32,解得x=9,34﹣3x=34﹣27=7.故沙包落在A区域得分为9分,落在B区域得分为7分.(2)小敏四次总分为:9×1+7×3=9+21=30(分).故小敏四次总分为30分.3.解:设这户居民这个月用水x吨,依题意有1.2×10+1.5(x﹣10)=18,解得x=14.答:这户居民这个月用水14吨.4.解:设笼的总数为x个.则4x+1=5(x﹣1),解得x=6,4x+1=25.答:鸡的总数为25只,共有6个笼.5.解:设该产品每件的成本价应降低x元,则根据题意得[510(1﹣4%)﹣(400﹣x)]×(1+10%)×50000=(510﹣400)×50000,解这个方程得x=10.4.答:该产品每件的成本价应降低10.4元.6.解:设小明家离学校x千米,根据题意得:=++2,解得:x=20.答:小明家离学校20千米.7.解:(1)∵AB=12,AO=8,∴BO=4,∴点B在数轴上表示的数为﹣4,点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,则AP=6t,∴点P表示的数为8﹣6t;故答案为﹣4,8﹣6t;(2)设x秒后P点追上Q点,则6t﹣4t=12,解得:t=6;(3)①点P在AB中间,∵AM=PM,BN=PN,∴MN=AB=6;②点P在B点左侧,PM=PA=(PB+AB),PN=PB,∴MN=PM﹣PN=PA﹣PB=AB=6,综上所述,MN在点P运用过程中长度无变化.8.解:设甲、乙两地的距离为x千米,由题意得+3﹣=,解得:x=210.答:甲、乙两地的距离为210千米.9.解:设该商品的进价是x元,由题意得13200×0.9﹣x=x×10%,解得:x=10800.答:该商品的进价是10800元.10.解:(1)5+1.3×(7﹣3)=5+1.3×4=5+5.2=10.2(元)答:出租车行驶7千米应付10.2元;(2)设小红最多乘坐x千米,由题意得5+1.3(x﹣3)=16.7解得:x=12答:小红最多乘坐12千米.11.解:(1)填表如下:起点/终点丙厂丁厂甲厂x10﹣x乙厂8﹣x x﹣4故答案为8﹣x,10﹣x,x﹣4.(2)400x+800(10﹣x)+300(8﹣x)+500(x﹣4)=7600,解得x=4,经检验,x=4符合题意,所以甲厂运往丙厂4台,运往丁厂6台,乙厂运往丙厂4台,运往丁厂0台;(3)400x+800(10﹣x)+300(8﹣x)+500(x﹣4)=8000,解得x=2,经检验,当x=2时,乙厂运往丁厂的仪器台数为负数,不合题意,故不可能.12.解:(1)AB=6﹣(﹣4)=10,即点B的数为﹣4;(2)若此时P在线段AB上,则AP+BP恒为10,故此时P必在点B的左侧.设经过t秒,则4t+4t﹣10=18,解得t=3.5,(3)线段MN的长度不发生变化,都等于.理由如下:分两种情况:①当点P在点A、B两点之间运动时:MN=MP+NP=,②当点P运动到点B的左侧时:MN=MP﹣NP=,综上所述,线段MN的长度不发生变化,都等于.13.借:(1)设从舟山去嘉兴的速度为x千米/小时,根据题意得:4.5x=3.5(x+20)解得x=70所以舟山与嘉兴两地间的路程为4.5×70=315(千米);(2)m=315﹣48﹣36,b=100+80,∵w=am+b+5=277.4∴277.4=a(315﹣48﹣36)+(100+80)+5解得:a=0.4答:轿车的高速公路里程费为0.4元.14.解:设七年级的捐款总数为x元,则2班捐款为x,1班捐款为(380+x),依题意得:x+(380+x)+380=x,解得x=1140.答:七年级的捐款总数是1140元.15.解:(1)用电量为210度时,需要缴纳210×0.55=115.5元,用电量为350度时,需要缴纳210×0.55+(350﹣210)×(0.55+0.05)=199.5元,故可得小华家5月份的用电量在第二档,设小华家5月份的用电量为x度,则210×0.55+(x﹣210)×(0.55+0.05)=139.5,解得:x=250,即小华家5月份的用电量为250度.(2)由(1)得,小华家该月用电量在第三档.设小华家该月用电量为y,根据题意得210×0.55+(350﹣210)×(0.55+0.05)+(y﹣350)×(0.55+0.15)=248,解得y≈419.答:若小华家某月的电费为248元,则小华家该月用电量约是419度,属于第三档.16.解:设安装一边需要x盏,可得:50x=40×(251﹣1),解得:x=200.答:安装一边需要200盏.17.解:图形理解:粘合2张白纸条,则DC=30×2﹣a=60﹣acm,D1C1=10×2﹣b=20﹣bcm;粘合n张白纸条,则DC=30n﹣a(n﹣1)cm,D1C1=10n﹣b(n﹣1)cm.故答案为:60﹣a;20﹣b;30n﹣a(n﹣1);10n﹣b(n﹣1).问题解决:由题意可得:10×[30×7﹣6×(7﹣1)]=30×[10n﹣6×(n﹣1)],∴1560=120n,∴n=13.答:n的值为13.拓展应用:设分给霞霞x张,则分给瑶瑶30﹣x张.根据题意得:10×[30x﹣6(x﹣1)]=30×[10×(30﹣x)﹣4×(30﹣x﹣1)],即420x=5460,解得x=13,则30﹣x=17.答:应分配给霞霞13张,瑶瑶17张.18.解:(1)设甲厂运往A地的机器为x台,则乙地运往A地的机器为(8﹣x)台,甲厂运往B地的机器为(4﹣x)台,乙厂运往B地的机器为:(2+x)台,从而填写表格即可:终点运量起点A地B地甲厂x4﹣x乙厂8﹣x2+x (2)由题意得,550x+300(8﹣x)+800(4﹣x)+560(2+x)=6750,解得:x=3.答:甲厂A地的生活物资应为3车.19.解:(1)∵数轴上点A表示的数为6,B是数轴上一点,且AB=10,∴BO=4,∴数轴上点B表示的数为:﹣4,∵动点P从点O出发,以每秒6个单位长度的速度沿数轴向右匀速运动,∴当t=3时,OP=18;故答案为:﹣4,18;(2)如图1,设点R运动x秒时,在点C处追上点P,则OC=6x,BC=8x,∵BC﹣OC=OB,∴8x﹣6x=4,解得:x=2,∴点R运动2秒时,在点C处追上点P.(3)设点R运动x秒时,PR=2.分两种情况:如图2,一种情况是当点R在点P的左侧时,8x=4+6x﹣2,即x=1;如图3,另一种情况是当点R在点P的右侧时,8x=4+6x+2,即x=3.综上所述R运动1秒或3秒时PR相距2个单位.20.解诶:(1)设小刘到达乙处所用的时间为t秒,则8t=6(t+4),解得t=12,则8×12=96(米).答:求甲、乙之间的距离是96米;(2)设小李、小刘经过x秒后相遇,则(6+8)x=96,解得x=则6x=6×=.答:两人相遇的位置距甲处有米.(3)设y秒后,小刘能追上小李.则6(3+y)=8y,解得y=9.答:9秒后,小刘能追上小李.。

人教版七年级上册数学第三章整一元一次方程应用题专题练习(word版含答案).doc

人教版七年级上册数学第三章整一元一次方程应用题专题练习(word版含答案).doc

人教版七年级上册数学第三章整一元一次方程应用题专题练习1.甲、乙、丙、丁四人一共做了820个零件,如果把甲做的个数加10个,乙做的个数减去20个,丙做的个数乘以2,丁做的个数除以2,那么四人做的个数正好相等,问乙实际上做了多少个零件?2.元旦期间,某商场将甲种商品降价40%,乙种商品降价20%开展优惠促价活动.已知甲、乙两种商品的原销售单价之和为1200元,小敏的妈妈参加活动购买甲、乙两种商品各一件,共付800元.(1)甲、乙两种商品原销售单价各是多少元?(2)商场在这次促销活动中销售甲种商品800件,销售乙种商品1500件,共获利99000元,已知每件甲种商品的利润比乙种商品的利润低20元,那么甲、乙两种商品每件的进价分别是多少元?3.某公司给学校赠送了一批图书,学校决定将这批图书分发给七年级所有班级,如果每班分200本,则剩余120本,若每班分240本,则还缺120本,这个学校七年级有多少个班级?4.篮球赛单循环赛一般按积分确定名次.胜一场得2分,负一场得1分.某次篮球联赛中,太阳队目前的战绩是7胜5负,后面还要比赛13场.若太阳队的最终得分为40分,求太阳队一共胜了几场?5.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?6.某商场开展优惠活动,将甲种商品六折出售,乙种商品八折出售.已知甲、乙两种商品的原销售单价之和为1600元,某顾客参加活动购买甲、乙两种商品各一件,共付1200元.甲、乙两种商品的原销售单价各是多少元?7.某商场开展优惠促销活动,将甲种商品六折出存,乙种商品八折出售,已知甲、乙两种商品的原销售单价之和为1400元,某顾客参加活动购买甲、乙各一件,共付1000元.(1)甲、乙两种商品原销售单价各是多少元?(2)若商场在这次促销活动中甲种商品亏损25%,乙种商品盈利25%,问:商场销售甲、乙两种商品各一件时是盈利还是亏损了?具体金额是多少?8.某校职工周转房已经落成,有一些结构相同的房间需要粉刷墙面.已知3名一级技工去粉刷8个房间,结果有30m2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间,另外又多粉刷20m2墙面.每名一级技工比二级技工一天多粉刷12m2墙面.(1)求每个房间需要粉刷的墙面面积;(列方程解决问题)(2)若粉刷1m2墙面给付一级技工6元费用,给付二级技工5.5元费用,问一级技工和二级技工每人每天各挣多少工钱?9.某医疗器械企业计划购进20台机器生产口罩,已知生产口罩面的机器每台每天的产量为12000个,生产耳挂绳的机器每台每天的产量为96000个,口罩是一个口罩面和两个耳挂绳构成,为使每天生产的口罩面和耳挂绳刚好配套,该企业应分别购进生产口罩面和生产耳挂绳的机器各多少台?10.一车队共有18辆小轿车,正以每小时36千米的速度在一条笔直的街道上匀速行驶,假定行驶时相邻两车的间隔均相等,小明同学站在路边等人,他发现该车队从第一辆车的车头到最后一辆的车尾经过自己身边共用了20秒的时间,假设每辆车的车长均为5.01米.求:行驶时相邻两车之间的间隔为多少米?11.某人给东家做长工,一年的工钱是一头羊和12块银元,此人做了10个月后因故不能再做了,东家给他结了10个月的工钱,共是2头羊和3块银元,此人给东家做长工的工钱如果都以银元结算,一年是多少银元?12.2020年新冠疫情来袭,某市有一批医疗物资需要运送到医院,原计划租用载货量30吨的卡车若干辆,恰好可以一次性全部运完;若租用载货量20吨的卡车,则需要多租2辆,且最后-辆卡车还差10吨装满,其他卡车满载.(1)请问租用30吨卡车多少辆?这批医疗物资有多少吨?(2)若载货量20吨的卡车每辆租金为500元,载货量30吨的卡车每辆租金为800元,要使医疗物资一次性运完,怎样租车更合算?13.A、B两地相距300km,甲车80km/h的速度从A地匀速驶往B地,甲车出发30分钟后,乙车以120km/h的速度也从A地匀速驶往B地,两车相继到达终点B地,乙车行驶多长时间后,甲、乙两车恰好相距20km?14.一辆客车和一辆卡车都从A地出发沿同一条公路匀速驶向B地,客车的行驶速度为70千米/小时,卡车的行驶速度为60千米/小时,已知卡车提前1小时出发,结果两车同时到达B地.(1)求A,B两地的距离是多少?(2)客车出发多少小时后,两车第一次相距20千米?15.北京冬奥会花样滑冰双人滑比赛中,中国队隋文静、韩聪圆梦夺金,获得中国代表团本届冬奥会第九金!某商场看准商机,需订购一批冰刀鞋,现有甲、乙两个供应商,均标价每双80元.为了促销,甲说:“凡来我店进货一律九折.”乙说:“如果超出60双,则超出的部分打八折”(1)购进多少双时,去两个供应商处的进货价钱一样多?(2)第一次购进了100双,第二次购进的数量比第一次的2倍多10双,如果你是商场的经理请设计一种购买方案,使得两次总进货价最少,并计算出总进货价为多少元?16.用A型和B型机器生产同样的产品,已知3台A型机器一天的产品装满3箱后还剩5个,6台B型机器一天的产品装满8箱后还剩4个,每台A型机器比每台B型机器一天少生产1个产品,求每箱装多少个产品?17.某商场从厂家购进了A、B两种品牌篮球共120个,已知购买B品牌篮球的总价比购买A品牌篮球总价的3倍还多800元,A品牌篮球每个进价60元,B品牌篮球每个进价100元.(1)求购进A、B两种品牌篮球各多少个?(2)在销售过程中,A品牌篮球每个按进价加价30%销售,很快全部售出;B品牌篮球每个售价140元,售出50个后出现滞销,商场决定打折出售剩余的B品牌篮球,两种品牌篮球全部售出后共获利3080元,求B品牌篮球打几折出售?18.为节约用水,某市决定实行如下收费标准:如果每户每月用水不超过10立方米,则按每立方米1.8元收费;若超过10立方米且不超过30立方米,超过的部分按每立方米2.5元收费;若超过30立方米,则超过的部分按每立方米4.2元收费.(1)某户8月用水25立方米,则该户的8月实际用水的平均价格为每立方米______元?(2)某户居民9月份的水费为28元,则该用户9月用水多少立方米?(3)另一户居民9月份的水费为93.2元,则该用户9月用水多少立方米?19.抗击疫情,人人有责,某校成立教师志愿者分队,共分成测温和宣传两个小组,测温和宣传人数比为3:5,总人数为40人.(1)请问两个组各多少人?(2)现疫情有反扑的趋势,两个组都需加派人手,于是学校另外抽调20名教师支援志愿者分队,使得测温组的人数恰好等于宣传组的人数;应调进测温组和宣传组各多少人?20.学校举办“爱我中华”诗歌朗诵比赛,1班、2班准备给每位同学租一套参赛服装.已知两班共102人,其中1班人数比2班人数多,且1班不到100人.租用服装的价格表如下:如果两个班单独给每位同学租一套服装,那么一共应付5590元.(1)如果1班和2班联合起来给每位同学租一套服装,比两个班单独租可以节省多少钱?(2)1班、2班各有多少名同学?答案1.200个2.(1)甲、乙两种商品原销售单价分别是800元和400元(2)甲、乙两种商品每件的进价分别是450元和270元3.这个学校七年级有6个班4.15场5.人数为7,物价为53钱6.甲商品的原销售单价是400元,乙商品的原销售单价是1200元7.(1)甲商品原销售单价为600元,乙商品的原销售单价为800元.(2)盈利,盈利了8元.8.(1)每个房间需要粉刷的墙面面积为392m(2)一级技工每人每天挣564元,二级技工每人每天挣451元.9.16;410.6.4611.18块银元12.(1)租用30吨卡车3辆,这批医疗物资有90吨(2)租用载货量30吨的卡车1辆,租用载货量20吨的卡车3辆最合算13.13h,h22或3h14.(1)A,B两地的距离是420千米;(2)客车出发4小时后,两车第一次相距20千米.15.(1)120双(2)第一次选择甲供应商实惠,第二次选择乙供应商实惠,总进货价为21600元.16.每箱装6个产品.17.(1)购进A品牌篮球40个,购进B品牌篮球80个(2)B品牌篮球打8折出售18.(1)2.22(2)14(3)3619.(1)测温组有15人,宣传组有25人(2)调进测温组15人,调进宣传组5人20.(1)可以节省1510元;(2)1班有53人,2班有49人。

人教版七年级数学上册第三章《一元一次方程》应用题综合拔高训练(一)

人教版七年级数学上册第三章《一元一次方程》应用题综合拔高训练(一)

《一元一次方程》应用题综合拔高训练(一)一.选择题1.某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有()A.54盏B.55盏C.56盏D.57盏2.某商店把一商品按标价的九折出售(即优惠10%),仍可获利20%,若该商品的标价为每件28元,则该商品的进价为()A.21元B.19.8元C.22.4元D.25.2元3.阳光公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为()A.26元B.27元C.28元D.29元4.已知有大、小两种纸杯与甲、乙两桶果汁,其中小纸杯与大纸杯的容量比为2:3,甲桶果汁与乙桶果汁的体积比为4:5,若甲桶内的果汁刚好装满小纸杯120个,则乙桶内的果汁最多可装满几个大纸杯()A.64 B.100 C.144 D.2255.某种商品进价为800元,标价1200元,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则最多可以打()折.A.6折B.7折C.8折D.9折6.某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为()A.26元B.27元C.28元D.29元7.如图是某超市中“漂柔”洗发水的价格标签,一售货员不小心将墨水滴在标签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价是()A.15.36元B.16元C.23.04元D.24元8.为确保信息安全,信息需要加密传输,发送方由明文⇒密文(加密),接收方由密文⇒明文(解密).已知加密规则为:明文a,b,c对应的密文a+1,2b+4,3c+9.例如明文1,2,3对应的密文2,8,18.如果接收方收到密文7,18,15,则解密得到的明文为()A.4,5,6 B.6,7,2 C.2,6,7 D.7,2,6 9.一件标价为250元的商品,若该商品按八折销售,则该商品的实际售价是()A.180元B.200元C.240元D.250元10.已知甲、乙、丙三人各有一些钱,其中甲的钱是乙的2倍,乙比丙多1元,丙比甲少11元,求三人的钱共有多少元()A.30 B.33 C.36 D.39二.填空题11.某市为提倡节约用水,采取分段收费.若每户每月用水不超过20m3,每立方米收费2元;若用水超过20m3,超过部分每立方米加收1元.小明家5月份交水费64元,则他家该月用水m3.12.如图,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行.若甲的速度是乙的速度的3倍,则它们第2015次相遇在边上.13.湘潭盘龙大观园开园啦!其中杜鹃园的门票售价为:成人票每张50元,儿童票每张30元.如果某日杜鹃园售出门票100张,门票收入共4000元.那么当日售出成人票张.14.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为元.15.某超市“五一放价”优惠顾客,若一次性购物不超过300元不优惠,超过300元时按全额9折优惠.一位顾客第一次购物付款180元,第二次购物付款288元,若这两次购物合并成一次性付款可节省元.三.解答题16.某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)2019年4月份a x a﹣x2020年4月份 1.1a 1.43x(2)求2020年4月份线上销售额与当月销售总额的比值.17.2020年5月份,省城太原开展了“活力太原•乐购晋阳”消费暖心活动,本次活动中的家电消费券单笔交易满600元立减128元(每次只能使用一张).某品牌电饭煲按进价提高50%后标价,若按标价的八折销售,某顾客购买该电饭煲时,使用一张家电消费券后,又付现金568元.求该电饭煲的进价.18.课外活动中一些学生分组参加活动,原来每组6人,后来重新编组,每组8人,这样就比原来减少2组,问这些学生共有多少人?19.某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?(2)若购买乙种奖品的件数不超过甲种奖品件数的3倍.如何购买甲、乙两种奖品,使得总花费最少?20.粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.参考答案一.选择题1.解:设需更换的新型节能灯有x盏,则70(x﹣1)=36×(106﹣1),70x=3850,x=55,则需更换的新型节能灯有55盏.故选:B.2.解:设该商品的进价是x元,由题意得:(1+20%)x=28×(1﹣10%),解得:x=21故选:A.3.解:设电子产品的标价为x元,由题意得:0.9x﹣21=21×20%解得:x=28∴这种电子产品的标价为28元.故选:C.4.解:设乙桶内的果汁最多可装满x个大杯,则甲桶内的果汁最多可装满个大杯.由题意得:120×2=×3,解得:x=100.∴乙桶内的果汁最多可装满100个大杯.故选:B.5.解:设打x折时,利润率为20%.根据题意得800×(1+20%)=1200×,解得x=8.故选:C.6.解:设标价是x元,根据题意则有:0.9x=21(1+20%),解可得:x=28,故选:C.7.解:设原价是x元,根据题意得:80%x=19.2解得:x=24.故选:D.8.解:由题意知a+1=7,2b+4=18,3c+9=15,解得明文a=6,b=7,c=2,故选:B.9.解:根据题意得:该商品的实际售价=250×80%=200(元).故选:B.10.解:本题可设丙的钱数为x元,那么甲的钱数为(x+11)元,乙的钱数为(x+1)元,根据“甲的钱是乙的2倍”可得出:x+11=2(1+x),解得:x=9.因此丙有9元,那么甲应该有20元,乙应该有10元,所以三人的钱的总数为9+20+10=39元,故选:D.二.填空题(共5小题)11.解:设该用户居民五月份实际用水x立方米,故20×2+(x﹣20)×3=64,故x=28.故答案是:28.12.解:设正方形的边长为a,因为甲的速度是乙的速度的3倍,时间相同,甲乙所行的路程比为3:1,把正方形的每一条边平均分成2份,由题意知:①第一次相遇甲乙行的路程和为2a,甲行的路程为2a×=,乙行的路程为2a ×=,在CD边相遇;②第一次相遇到第二次相遇甲乙行的路程和为4a,甲行的路程为4a×=3a,乙行的路程为4a×=a,在AD边相遇;③第二次相遇到第三次相遇甲乙行的路程和为4a,甲行的路程为4a×=3a,乙行的路程为4a×=a,在AB边相遇;④第三次相遇到第四次相遇甲乙行的路程和为4a,甲行的路程为4a×=3a,乙行的路程为4a×=a,在BC边相遇;⑤第四次相遇到第五次相遇甲乙行的路程和为4a,甲行的路程为4a×=3a,乙行的路程为4a×=a,在CD边相遇;…因为2015=503×4+3,所以它们第2015次相遇在边AB上.故答案为:AB.13.解:设当日售出成人票x张,儿童票(100﹣x)张,可得:50x+30(100﹣x)=4000,解得:x=50.答:当日售出成人票50张.故答案为:50.14.解:设该商品每件的进价为x元,则150×80%﹣10﹣x=x×10%,解得x=100.即该商品每件的进价为100元.故答案是:100.15.解:(1)若第二次购物超过300元,设此时所购物品价值为x元,则90%x=288,解得x=320.两次所购物价值为180+320=500>300.所以享受9折优惠,因此应付500×90%=450(元).这两次购物合并成一次性付款可节省:180+288﹣450=18(元).(2)若第二次购物没有过300元,两次所购物价值为180+288=468(元),这两次购物合并成一次性付款可以节省:468×10%=46.8(元)故答案是:18或46.8.三.解答题(共5小题)16.解:(1)∵与2019年4月份相比,该超市2020年4月份线下销售额增长4%,∴该超市2020年4月份线下销售额为1.04(a﹣x)元.故答案为:1.04(a﹣x).(2)依题意,得:1.1a=1.43x+1.04(a﹣x),解得:x=a,∴===0.2.答:2020年4月份线上销售额与当月销售总额的比值为0.2.17.解:设该电饭煲的进价为x元,则标价为(1+50%)x元,售价为80%×(1+50%)x 元,根据题意,得80%×(1+50%)x﹣128=568,解得x=580.答:该电饭煲的进价为580元.18.解:设这些学生共有x人,根据题意得,解得x=48.答:这些学生共有48人.19.解:(1)设甲种奖品购买了x件,乙种奖品购买了(30﹣x)件,根据题意得30x+20(30﹣x)=800,解得x=20,则30﹣x=10,答:甲种奖品购买了20件,乙种奖品购买了10件;(2)设甲种奖品购买了x件,乙种奖品购买了(30﹣x)件,设购买两种奖品的总费用为w元,根据题意得30﹣x≤3x,解得x≥7.5,w=30x+20(30﹣x)=10x+600,∵10>0,∴w随x的增大而增大,∴x=8时,w有最小值为:w=10×8+600=680.答:当购买甲种奖品8件、乙种奖品22件时,总花费最小,最小费用为680元.20.解:(1)50×(1﹣50%)=25(万元).故明年每辆无人驾驶出租车的预计改装费用是25万元;(2)设明年改装的无人驾驶出租车是x辆,则今年改装的无人驾驶出租车是(260﹣x)辆,依题意有50(260﹣x)+25x=9000,解得x=160.故明年改装的无人驾驶出租车是160辆.。

2023-2024年人教版七年级上册数学第三章一元一次方程应用题(销售盈亏问题)训练(含解析)

2023-2024年人教版七年级上册数学第三章一元一次方程应用题(销售盈亏问题)训练(含解析)

2023-2024年人教版七年级上册数学第三章一元一次方程应用题(销售盈亏问题)训练1.请根据图中提供的信息,回答下列问题:(1)一个水瓶是多少元?(2)商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买个水瓶和个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)2.新华书店准备订购一批图书,现有甲、乙两个供应商,均标价每本40元.为了促销,甲说:“凡来我处购书一律九折.”乙说:“如果购书超出100本,则超出的部分打八折.”(1)若新华书店准备订购150本图书,请分别求出去甲、乙两处需支付的钱数;(2)若新华书店去甲乙两处订购了相同数量的图书并且付了相同数量的钱,请问新华书店去甲乙各定了多少本书?3.某种笔记本的售价为5元/本,如果买100本以上,超过100本部分的,每本售价打八折.(1)甲校和乙校分别买了80本和120本,乙校比甲校多花了多少钱?(2)如果丙校买这种笔记本花了740元,丙校买了多少本?(列方程求解)(3)如果丁校买这种笔记本花了a 元,丁校买了多少本?(a 是20的整数倍)4.某商铺准备在端午节前购进一批肉粽和蜜枣粽,已知肉粽的单价比蜜枣粽的单价多元,且花元购买的肉粽数刚好是花元购买的蜜枣粽数的倍.5202.53001002(2)若按预售价将甲、乙两种型号的节能灯全部售完,该超市可获得多少元的利润?(3)在实际销售过程中,超市按预售价将购进的甲型号节能灯全部售出,购进的乙型号节能灯部分售出后,决定将乙型号节能灯打九折销售,全部售完后,两种节能灯共获得利润3100元,求乙型号节能灯按预售价售出了多少只?8.晨光文具店分两次购进一款礼品盲盒共70盒,总共花费960元,已知第一批盲盒进价为每盒15元,第二批盲盒进价为每盒12元.(利润销售额成本)(1)求两次分别购进礼品盲盒多少盒?(2)文具店老板计划将每盒盲盒标价20元出售,销售完第一批盲盒后,再打八折销售完第二批盲盒,按此计划该老板总共可以获得多少元利润?(3)在实际销售中,该文具店老板在以(2)中的标价20元售出一些第一批盲盒后,决定搞一场促销活动,尽快把第一批剩余的盲盒和第二批盲盒售完.老板现将标价提高到40元/盒,再推出活动:购买两盒,第一盒七五折,第二盒半价,不单盒销售.售完所有盲盒后该老板共获利润710元,按(2)中标价售出的礼品盲盒有多少盒?9.为了拉动内需,哈尔滨市自10月份开始启动“家电下乡”活动,某家电公司销售给农户的A 型电视机和型电视机在9月份(活动未开启)共售出960台,10月份销售给农户的A 型和型电视机的销量分别比9月份增长,,这两种型号的电视机共售出1228台.(1)9月份销售给农户的A 型和型电视机分别是多少台?(2)如果A 型电视机每台价格是1000元,型电视机每台价格是2000元,根据“家电下乡”的有关政府将按每台电视机价格的给购买电视机的农户补贴,10月份销售给农户的这两种型号共1228台电视机,政府共补贴了多少钱?10.某公司生产某种产品,每件成本价是元,销售价为元,本季度销售了5万件,为进一步扩大市场,企业决定降低生产成本,经过市场调研,预计下一季度这种商品每件售价会降低.销售量将提高.(1)下一季度每件产品的销售价和销售量各是多少?(2)为了使两个季度的销售利润保持不变,公司必须降低成本,问每件商品的成本应降低=-B B 30%25%B B 3%4006205%10%多少元11.静静超市购进一批魔方,按进价提高40%后标价,为了促销,超市决定打八折出售,这时每个魔方的售价为28元.(1)求每个魔方的进价是多少元?(2)魔方卖出一半后,超市决定将剩下的魔方以3个为一组捆绑销售,分组后恰好没有剩余,每组售价80元,很快销售一空,这批魔方超市共获利2800元,求该超市共购进魔方多少个?12.工业园区某服装厂加工A,B两种款式的学生服共100件,加工A种学生服的成本为每件80元,加工B种学生服的成本为每件100元,加工两种学生服的成本共用去9200元.(1)A、B两种学生服各加工多少件?(2)服装厂将这批学生服送到市场部销售,A种学生服的售价为200元,B种学生服的售价为220元,在销售过程中发现A种学生服的销量不好,A种学生服卖出一定数量后,服装厂决定余下的部分按原价的八折出售,两种学生服全部卖出后,共获利10520元,则A种学生服卖出多少件后打折销售?13.某超市购进一批运动服,按进价提高40%后标价.(1)为了让利于民,增加销量,超市决定打八折(即按标价的80%)出售,超市是亏损了还是盈利了?请说明理由.(2)若每套运动服的售价为140元,在(1)的条件下,超市卖出一半后,正好赶上双十一促销,商店决定将剩下的运动服每3套400元的价格出售,很快销售一空,这批运动服超市共获利7000元,求该超市所购进运动服的进价及数量?14.某工厂生产并销售A,B两种型号车床共14台,生产并销售1台A型车床可以获利10万元;如果生产并销售不超过4台B型车床,则每台B型车床可以获利17万元,如果超出4台B型车床,则每超出1台,每台B型车床获利将均减少1万元.(1)请分别计算生产并销售A型车床5台与11台时,工厂的总获利分别是多少?(2)若生产并销售B型车床比生产并销售A型车床获得的利润多70万元,问:生产并销参考答案:1.(1)元(2)选择乙商场购买更合算.【分析】本题考查一元一次方程的应用,有理数混合运算的实际应用,有理数的大小比较,(1)设一个水瓶元,则一个水杯为元,根据题意列出方程,求出方程的解即可得到结果;(2)计算出两商场的费用,比较即可得到结果;正确理解题意,找出题目中的等量关系并列出方程是解题的关键.【详解】(1)解:设一个水瓶元,则一个水杯为元,根据题意得:,解得:,∴(元),∴一个水瓶元,一个水杯是元;(2)选择乙商场购买更合算.理由:在甲商场购买所需费用为:(元),在乙商场购买所需费用为:(元),∵,∴选择乙商场购买更合算.2.(1)去甲处需支付的钱数为5400元;去乙处需支付的钱数为5600元(2)当订购200本图书时,去两个供应商处的进货价钱一样【分析】(1)根据题意列式计算即可;(2)列出方程,进行计算即可.【详解】(1)解:由题意得:甲:(元);乙:(元),答:去甲处需支付的钱数为5400元;去乙处需支付的钱数为5600元;40x ()48x -x ()48x -()3448152x x +-=40x =4848408x -=-=408()40582080%288⨯+⨯⨯=()40520528280⨯+-⨯⨯=288280>150400.95400⨯⨯=()40100150100400.85600⨯+-⨯⨯=∴,解得:,答:第二次甲种商品按原价打8折销售.【点睛】此题考查了一元一次方程的应用,弄清题意,找出合适的等量关系,进而列出方程是解答此类问题的关键.7.(1)购进甲型号的节能灯300只,购进乙型号的节能灯400只(2)3500元(3)300只【分析】(1)设该超市购进甲型号的节能灯x 只,则购进乙型号的节能灯只,根据购进700只节能灯的进货款恰好为20000元,列出方程,解方程即可;(2)根据题意列出算式进行计算即可;(3)设乙型号节能灯按预售价售出了y 只,根据购进的乙型号节能灯部分售出后,决定将乙型号节能灯打九折销售,全部售完后,两种节能灯共获得利润3100元,列出方程,解方程即可.【详解】(1)解:设该超市购进甲型号的节能灯x 只,则购进乙型号的节能灯只,由题意,得,解得,所以(只).答:该超市购进甲型号的节能灯300只,购进乙型号的节能灯400只.(2)解:(元).答:若按预售价将甲、乙两种型号的节能灯全部售完,该超市可获得3500元的利润.(3)解:设乙型号节能灯按预售价售出了y 只,由题意,得,解得.答:乙型号节能灯按预售价售出了300只.【点睛】本题主要考查了一元一次方程的应用,解题的关键是根据等量关系列出方程.8.(1)第一次购买了40盒,第二次购买了30盒(2)按此计划该老板总共可以获得320元的利润120050004600y﹣=8y =()700x -()700x -()203570020000x x +-=300x =700700300400x -=-=()()30025204004035150020003500⨯-+⨯-=+=()()()()300252040354004090%353100y y ⨯-+-+-⨯⨯-=300y =程求解;(2)根据总价乘以,列算式计算求解.【详解】(1)解:设9月份销售给农户的型台,则型电视机是台,则:,解得:,,答:9月份销售给农户的型560台,型电视机是400台;(2)(元,答:政府共补贴了51840元.【点睛】本题考查了一元一次方程的应用,根据题意列方程是解题的关键.10.(1)销售价为元,销售量为件(2)元【分析】(1)根据“商品每件售价会降低,销售量将提高”进行计算;(2)由题意可得等量关系:销售利润(销售利润=销售价-成本价)保持不变,列方程即可解得.【详解】(1)解:下一季度每件产品销售价为:(元).销售量为(件);(2)解:设该产品每件的成本价应降低x 元,则根据题意得:解这个方程得:.答:该产品每件的成本价应降低元.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.11.(1)魔方的进价是25元(2)该超市共购进四阶魔方1200个【分析】(1)设魔方的进价是元,进价八折售价,列方程并解出即可;(2)设该超市共购进四阶魔方个,根据“商店决定将剩下的魔方以每3个80元的价格出0.03A x B (960)x -()0.30.259601228960x x +-=-560x =960400x ∴-=A B ()1000560 1.32000400 1.250.0351840´´+´´´=)58955000115%10%()62015%589⨯-=()50000110%55000⨯+=[589(400)]55000(620400)50000x --=-⨯⨯11x =11x (140%)⨯+⨯=y当生产并销售A 型车床11台时,总获利是:万元.答:工厂的总获利分别是158万元,161万元.(2)设生产并销售B 型车床x 台,则生产并销售A 型车床台,当时,,不成立;当时,每台B 型车床可以获利万元;由题意得:解得:,(舍去)答:生产并销售B 型车床10台.【点睛】本题考查有理数的四则混合计算的实际应用,一元一次方程的运用,审题,明确数量间的关系是解题的关键.15.(1)每件服装的标价为200元,进价为120元(2)最低能打5折【分析】(1)设标价是x 元,根据题意,列出一元一次方程进行求解即可;(2)设小张最低能打a 折,根据题意,列出一元一次方程进行求解即可.【详解】(1)解:设标价是x 元,由题意,得,解得.即每件服装的标价是200元.进价为(元).答:每件服装的标价为200元,进价为120元.(2)解:设小张最低能打a 折,由题意,得:.解得.答:小张最低能打5折.【点睛】本题考查一元一次方程的应用.读懂题意,找准等量关系,正确的列出方程,是解题的关键.16.(1)购进青菜120斤,则购进瓜类80斤1110(1411)17161⨯+-⨯=()14x -4x ≤()171014271400x x x --=-<4x >()()17421x x ⎡⎤⎣=⎦---()()21101470x x x ---=110x =221x =50%2080%40x x +=-200x =50%2050%20020120x +=⨯+=()()()3002001205003002000.112020000a ⨯-+-⨯⨯-=5a =乙种商品每件的进价是元;∴甲、乙两种商品每件的进价分别是330元、590元.【点睛】此题考查了一元一次方程的应用,正确理解题意列得方程是解题的关键.19.(1)元(2)当每条裤子降价元时达到盈利的预期目标【分析】(1)根据利润(售价进价)数量直接计算即可得到答案;(2)设降价x 元,根据利润列方程求解即可得到答案;【详解】(1)解:由题意可得,(元),∴前条裤子的利润是元;(2)解:设降价x 元,由题意可得,,解得:,答:当每条裤子降价元时达到盈利的预期目标;【点睛】本题考查列代数式与一元一次方程解决销售利润问题,解题的关键是找到等量关系式.20.(1)第一次购进甲种商品50件,则购进乙种商品115件(2)9折【分析】(1)设第一次购进甲种商品x 件,则购进乙种商品件,根据“第一次以4450元购进甲、乙两种商品”列方程求解即可;(2)设第二次甲商品是按原价打m 折销售,根据“第二次两种商品都销售完以后获得的总利润与第一次获得的总利润一样”列方程求解即可.【详解】(1)解:设第一次购进甲种商品x 件,则购进乙种商品件,由题意得:,解得,,因此第一次购进甲种商品50件,则购进乙种商品115件.(2)解:设第二次甲商品是按原价打m 折销售,8000.850590⨯-=160002045%=-⨯400(12080)16000⨯-=4001600016000100(12080)8050045%x +⨯--=⨯⨯20x =2045%(215)x +(215)x +2030(215)4450x x ++=50x =21525015115x +=⨯+=。

人教版七年级数学上册第三章《一元一次方程》应用题专题训练(一)

人教版七年级数学上册第三章《一元一次方程》应用题专题训练(一)

人教版七年级数学上册第三章《一元一次方程》应用题专题训练(三)1.如图,将长方形ABCD分割成1个灰色长方形与148个面积相等的小正方形.若灰色长方形之长与宽的比为5:3,则AD:AB=()A.5:3 B.7:5 C.23:14 D.47:292.小李年初向建设银行贷款5万元用于购房,年利率为5%,按复利计算,若这笔借款分15次等额归还,每年1次,15年还清,并从借后次年年初开始归还,问每年应还大约()A.4819元B.4818元C.4817元D.4816元3.正方形ABCD的轨道上有两个点甲与乙,开始时甲在A处,乙在C处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1cm,乙的速度为每秒5cm,已知正方形轨道ABCD的边长为2cm,则乙在第2018次追上甲时的位置()A.AB上B.BC上C.CD上D.AD上4.李飒的妈妈买了几瓶饮料,第一天,他们全家喝了全部饮料的一半零半瓶;第二天,李飒招待来家中做客的同学,又喝了第一天剩下的饮料的一半零半瓶;第三天,李飒喝了剩下的一半零半瓶,正好喝完,则妈妈买的饮料一共有()A.5瓶B.6瓶C.7瓶D.8瓶5.某企业接到为地震灾区生产活动房的任务,此企业拥有九个生产车间,现在每个车间原有的成品活动房一样多,每个车间的生产能力也一样.有A、B两组检验员,其中A组有8名检验员前两天时间将第一、二车间的所有成品(原来的和这两天生产的)检验完毕后,再去检验第三、四车间所有成品,又用去三天时间;同时这五天时间B组检验员也检验完余下的五个车间的所有成品.如果每个检验员的检验速度一样快,那么B组检验员人数为()A.8人B.10人C.12人D.14人6.桌面上有甲、乙、丙三个圆柱形的杯子,杯深均为15公分,各装有10公分高的水,且表记录了甲、乙、丙三个杯子的底面积.今小明将甲、乙两杯内一些水倒入丙杯,过程中水没溢出,使得甲、乙、丙三杯内水的高度比变为3:4:5.若不计杯子厚度,则甲杯内水的高度变为多少公分?()底面积(平方公分)甲杯60乙杯80丙杯100A.5.4 B.5.7 C.7.2 D.7.57.在某月的月历中圈出相邻的3个数,其和为15.这3个数的位置可能是()A.B.C.D.8.小淇在某月的日历中圈出相邻的三个数,算出它们的和是19,那么这三个数的位置可能是()A.B.C.D.9.一家商店将某种服装按成本价提高40%后标价,又以8折优惠卖出,结果每件服装仍可获利24元,则这种服装每件的成本是()A.100元B.180元C.200元D.205元10.有一玻璃密封器皿如图①,测得其底面直径为20厘米,高20厘米,先内装蓝色溶液若干.若如图②放置时,测得液面高10厘米;若如图③放置时,测得液面高16厘米;则该玻璃密封器皿总容量为()立方厘米.(结果保留π)A.1250πB.1300πC.1350πD.1400π11.将连续的奇数1,3,5,7,9,……排成如图所示的数表,则十字形框中的五数之和能等于2020吗?能等于2021吗?()A.能,能B.能,不能C.不能,能D.不能,不能12.某超市正在热销一种商品,其标价为每件12元,打8折销售后每件可获利2元,该商品每件的进价为()A.7.4元B.7.5元C.7.6元D.7.7元13.某商场购进一批服装,又恰巧碰到双十一的促销活动,商场决定将这批服装按标价的五折销售,若打折后每件服装可获纯利润60元,其利润率为10%;若双十一过后,该商场按这批服装的标价打八折出售,那么获得的纯利润是()A.264元B.396元C.456元D.660元14.小明和小亮进行100米赛跑,两人在同一起跑线上,结果第一次比赛时小明胜10米;在进行第二次比赛时,小明的起跑线比原来起跑线推后10米,如果两次他们速度不变,则第二次结果().A.小亮胜B.小明胜C.同时到达D.不能确定15.在古代生活中,有很多时候也要用到不少的数学知识,比如有这样一道题:隔墙听得客分银,不知人数不知银.七两分之多四两,九两分之少半斤.(注:古秤十六两为一斤)请同学们想想有几人,几两银?()A.六人,四十四两银B.五人,三十九两银C.六人,四十六两银D.五人,三十七两银16.如图,小刚将一个正方形纸片剪去一个宽为5cm的长条后,再从剩下的长方形纸片上剪去一个宽为6cm的长条,如果两次剪下的长条面积正好相等,求两个所剪下的长条的面积之和为()A.215cm2B.250cm2C.300cm2D.320cm217.某商场为换季大清仓,以每件120元的价格出售两件衬衫,其中一件盈利20%,另一件亏损20%,那么在这次买卖中商场()A.不亏不赚B.亏了10元C.赚了10元D.赚了20元18.甲、乙两地相距1500千米.飞机从甲地到乙地是顺风,需2小时;从乙地返回甲地是逆风,需2.5小时.则飞机往返的平均速度是()千米/时.A.700 B.666C.675 D.65019.小华在某月的日历上圈出相邻的四个数,算出这四个数的和是36,则这个数阵的形式可能是()A.B.C.D.20.中国古代数学著作《算法统宗》中有这样一段记载,“三百七十八里关;初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是;有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到关口,则此人第一和第六这两天共走了()A.102里B.126里C.192里D.198里21.将连续的奇数1、3、5、7、9、,按一定规律排成如图:图中的T字框框住了四个数字,若将T字框上下左右移动,按同样的方式可框住另外的四个数.若将T字框上下左右移动,则框住的四个数的和不可能得到的数是()A.22 B.70 C.182 D.20622.小明在某月的日历上圈出了三个数a,b,c,并求出了它们的和为39,则这三个数在日历中的排位位置不可能的是()A.B.C.D.23.某套课外书的进价为80元/套,标价为200元/套,“双11”期间某网店打x折销售,此时可获利25%,则x为()A.7 B.6 C.5 D.424.如图,在矩形ABCD中,BC=15cm,动点P从点B开始沿BC边以每秒2cm的速度运动;动点Q从点D开始沿DA边以每秒1cm的速度运动,点P和点Q同时出发,当其中一点到达终点时,另一点也随之停止运动,设动点的运动时间为t秒,则当t=()秒时,四边形ABPQ为矩形.A.3 B.4 C.5 D.625.运动场环形跑道周长400米,小林跑步的速度是爷爷的二倍,他们从同一起点沿跑道的同一方向同时出发,5min 后小林第一次与爷爷相遇,小林跑步的速度是()米/分.A.120 B.160 C.180 D.200参考答案1.解:设灰色长方形的长上摆5x个小正方形,宽上摆3x个小正方形,2(5x+3x)+4=148x=95x=45,3x=27,AD=45+2=47,AB=27+2=29,=.故选:D.2.解:设每年应还x元,则根据题意可知:50000×(1+0.05)15=x×(1+0.05)14+x×(1+0.05)13+ (x)用计算器得出:x=4817故选:C.3.解:设乙走x秒第一次追上甲.根据题意,得5x﹣x=4解得x=1.∴乙走1秒第一次追上甲,则乙在第1次追上甲时的位置是AB上;设乙再走y秒第二次追上甲.根据题意,得5y﹣y=8,解得y=2.∴乙再走2秒第二次追上甲,则乙在第2次追上甲时的位置是BC上;同理:∴乙再走2秒第三次次追上甲,则乙在第3次追上甲时的位置是CD上;∴乙再走2秒第四次追上甲,则乙在第4次追上甲时的位置是DA上;乙在第5次追上甲时的位置又回到AB上;∴2018÷4=504 (2)∴乙在第2018次追上甲时的位置是BC上.故选:B.4.解:设妈妈买的饮料一共有x瓶,则第一天喝了(x+0.5)瓶,那么剩下(x﹣x﹣0.5)瓶,则第二天喝了(x﹣x﹣0.5)+0.5(瓶),那么剩下(x﹣x﹣0.5)﹣[(x﹣x﹣0.5)+0.5](瓶),所以第三天喝了{(x﹣x﹣0.5)﹣[(x﹣x﹣0.5)+0.5]}+0.5(瓶),(x+0.5)+[(x﹣x﹣0.5)+0.5]+{(x﹣x﹣0.5)﹣[(x﹣x﹣0.5)+0.5]}+0.5=x,解得x=7.故选:C.5.解:设每个车间原有成品a件,每个车间每天生产b件产品,根据检验速度相同得:,解得a=4b;则A组每名检验员每天检验的成品数为:2(a+2b)÷(2×8)=12b÷16=b.那么B组检验员的人数为:5(a+5b)÷(b)÷5=45b÷b÷5=12(人).故选:C.6.解:设后来甲、乙、丙三杯内水的高度为3x、4x、5x,根据题意得:60×10+80×10+100×10=60×3x+80×4x+100×5x,解得:x=2.4,则甲杯内水的高度变为3×2.4=7.2(公分).故选:C.7.解:A、设最小的数是x.x+x+7+x+7+1=15x=0故本选项不符合题意;B、设最小的数是x.x+x+6+x+7=15,x=.故本选项不符合题意.C、设最小的数是x.x+x+1+x+8=15,x=2,故本选项符合题意.D、设最小的数是x.x+x+1+x+7=15,x=,故本选项不符合题意.故选:C.8.解:A、设最小的数是x.x+x+7+x+7+1=19x=故本选项不符合题意;B、设最小的数是x.x+x+6+x+7=19,x=2.故本选项符合题意.C、设最小的数是x.x+x+1+x+7=19,x=,故本选项不符合题意.D、设最小的数是x.x+x+1+x+8=19,x=,故本选项不符合题意.故选:B.9.解:设这种服装每件的成本是x元,依题意,得:80%×(1+40%)x﹣x=24,解得:x=200.故选:C.10.解:设该玻璃密封器皿总容量为Vcm3,π×102×10=V﹣π×102×(20﹣16),解得,V=1400π,故选:D.11.解:由表格中的数据可知,这五个数的和等于十字形中间的数的5倍,设十字形中间的数为x,令5x=2020,解得x=404,∵404不是奇数,∴十字形框中的五数之和不能等于2020,再令5x=2021,得x=404.2,∵404.2不是奇数,∴十字形框中的五数之和不能等于2021,故选:D.12.解:设该商品每件的进价为x元,依题意,得:12×0.8﹣x=2,解得:x=7.6.故选:C.13.解:设该服装的标价为x元,由题意得,0.5x﹣60=,解得:x=1320.所以1320×80%﹣=456(元)故选:C.14.解:第一次小明跑100米和小亮跑90米的时间相等,则设小明的速度是a,小亮的速度是a,设第二次比赛,小明经过x秒追上小亮,ax=x+10,∴x=,∴a×=90米,∴小亮跑了90米时,就被小明追上,∴小明胜.故选:B.15.解:设有x两银,,解得,x=46,则人数为:=6,即有6个人,46两银,故选:C.16.解:设原来正方形纸的边长是xcm,则第一次剪下的长条的长是xcm,宽是5cm,第二次剪下的长条的长是(x ﹣5)cm,宽是6cm,则5x=6(x﹣5),解得:x=3030×5×2=300(cm2),答:两个所剪下的长条的面积之和为300cm2.故选:C.17.解:设两件衣服的进价分别为x、y元,根据题意得:120﹣x=20%x,y﹣120=20%y,解得:x=100,y=150,∴120+120﹣100﹣150=﹣10(元).即亏了10元.故选:B.18.解:设飞机往返的平均速度是x千米/时,根据题意,得(2.5+2)x=1500×2.解得x=666.故选:B.19.解:设第一个数为x,根据已知:A:得得x+x+6+x+7+x+8=36,则x=3.75不是整数,故本选项不可能.B:得x+x+1+x+8+x+9=36,则x=4.5不是整数,故本选项不可能.C:得x+x+1+x+7+x+8=36,则x=5,为正数符合题意.D:得x+x+1+x+6+x+7=36,则x=5.5不是整数,故本选项不可能.故选:C.20.解:设第六天走的路程为x里,则第五天走的路程为2x里,依此往前推,第一天走的路程为32x里,依题意,得:x+2x+4x+8x+16x+32x=378,解得:x=6.32x=192,6+192=198,答:此人第一和第六这两天共走了198里,故选:D.21.解:由题意,设T字框内处于中间且靠上方的数为2n﹣1,则框内该数左边的数为2n﹣3,右边的为2n+1,下面的数为2n﹣1+10,∴T字框内四个数的和为:2n﹣3+2n﹣1+2n+1+2n﹣1+10=8n+6.故T字框内四个数的和为:8n+6.A、由题意,令框住的四个数的和为22,则有:8n+6=22,解得n=2.符合题意.故本选项不符合题意;B、由题意,令框住的四个数的和为70,则有:8n+6=70,解得n=8.符合题意.故本选项不符合题意;C、由题意,令框住的四个数的和为182,则有:8n+6=182,解得n=22.符合题意.故本选项不符合题意;D、由题意,令框住的四个数的和为206,则有:8n+6=206,解得n=25.由于数2n﹣1=49,排在数表的第5行的最右边,它不能处于T字框内中间且靠上方的数,所以不符合题意.故框住的四个数的和不能等于206.故本选项符合题意;故选:D.22.解:A、设最小的数是x,则x+(x+1)+(x+8)=39,解得x=10,故本选项不符合题意;B、设最小的数是x,则x+(x+8)+(x+14)=39,解得x=,故本选项符合题意;C、设最小的数是x,则x+(x+8)+(x+16)=39,解得x=5,故本选项不符合题意;D、设最小的数是x,则x+(x+1)+(x+2)=39,解得:x=12,故本选项不符合题意.故选:B.23.解:根据题意得:200×﹣80=80×25%,解得:x=5.故选:C.24.解:设动点的运动时间为t秒,由题意,得15﹣t=2t.解得t=5.故选:C.25.解:设爷爷的速度为x米/分钟,则小林的速度为2x米/分钟,根据题意得:5×(2x﹣x)=400,解得:x=80,∴2x=160.答:爷爷的速度为80米/分钟,小林的速度为160米/分钟.故选:B.。

人教版七年级上册期末复习试题:第三章《一元一次方程》应用题专练(一)

人教版七年级上册期末复习试题:第三章《一元一次方程》应用题专练(一)

七年级上册期末复习试题:第三章《一元一次方程》应用题专练(一)1.甲、乙两人从A,B两地同时出发,沿同一条路线相向匀速行驶,已知出发后经3小时两人相遇,相遇时乙比甲多行驶了60千米,相遇后再经1小时乙到达A地.(1)甲,乙两人的速度分别是多少?(2)两人从A,B两地同时出发后,经过多少时间后两人相距20千米?2.元旦假期,甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市当日累计购物超出了300元以后,超出部分按原价8折优惠;在乙超市当日累计购物超出200元之后,超出部分按原价8.5折优惠.设某位顾客在元旦这天预计累计购物x元(其中x>300).(1)当x=400时,顾客到哪家超市购物优惠.(2)当x为何值时,顾客到这两家超市购物实际支付的钱数相同.3.周末小明和爸爸在400m的环形跑道上骑车锻炼,他们在同一地点沿着同一方向同时出发,骑行结束后两人有如下对话:(1)请根据他们的对话内容,求出小明和爸爸的骑行速度;(2)爸爸第一次追上小明后,在第二次相遇前,再经过多少分钟,小明和爸爸跑道上相距50m?4.甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价8折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价8.5折优惠.设顾客预计累计购物x元(x>300).(1)请用含x代数式分别表示顾客在两家超市购物所付的费用;(2)李明准备购买500元的商品,你认为他应该去哪家超市?请说明理由.(3)计算一下,李明购买多少元的商品时,到两家超市购物所付的费用一样?5.如图,直线l上有AB两点,AB=18cm,点O是线段AB上的一点,OA=2OB (1)OA=cm,OB=cm;(2)若点C是直线AB上一点,且满足AC=CO+CB,求CO的长;(3)若动点P,Q分别从A,B同时出发,向右运动,点P的速度为3cm/s,点Q的速度为1cm/s.设运动时间为ts,当点P与点Q重合时,P,Q两点停止运动.①当t为何值时,2OP﹣OQ=4;②当点P经过点O时,动点M从点O出发,以4cm/s的速度也向右运动.当点M追上点Q后立即返回,以4cm/s的速度向点P运动,遇到点P后再立即返回,以4cm/s的速度向点Q运动,如此往返.当点P与点Q重合时,P,Q两点停止运动.此时点M也停止运动.在此过程中,点M行驶的总路程是多少?6.某校计划购买20张书柜和一批书架,现从A、B两家超市了解到:同型号的产品价格相同,书柜每张210元,书架每只70元;A超市的优惠政策为每买一张书柜赠送一只书架,B超市的优惠政策为所有商品8折;设该校购买x(x>20)只书架.(1)若该校到同一家超市选购所有商品,则到A超市要准备元货款,到B超市要准备元货款;(用含x的式子表示)(2)若规定只能到其中一个超市购买所有商品,当购买多少只书架时,无论到哪家超市所付货款都一样?(3)若该校想购买20张书柜和100只书架,且可到两家超市自由选购,你认为至少准备多少货款,并说明理由.7.甲队原有工人65人,乙队原有工人40人,现又有30名工人调入这两队,为了使乙队人数是甲队人数的,应调往甲、乙两队各多少人?8.春节将至,市区两大商场均推出优惠活动:①商场一全场购物每满100元返30元现金(不是100元不返);②商场二所有的商品均按8折销售.某同学在两家商场发现他看中的运动服的单价相同,书包的单价也相同,这两件商品的单价之和为470元,且运动服的单价是书包的单价的7倍少10元.(1)根据以上信息,求运动服和书包的单价;(2)该同学要购买这两件商品,请你帮他设计出最佳的购买方案,并求出他所要付的费用.9.为了迎接期中考试,小强对考试前剩余时间作了一个安排,他把计划复习重要内容的时间用一个四边形圈起来.如图,他发现,用这样的四边形圈起来五个数的和恰好是5的倍数,他又试了几个位置,都符合这样的特征.日一二三四五六1 2 3 4 56 7 8 9 10 11 1213 14 15 16 17 18 1920 21 22 23 24 25 2627 28 29 30 31(1)若设这五个数中间的数为a,请你用整式的加减说明其中的道理.(2)这五个数的和能为150吗?若能,请写出中间那个数,若不能,请说明理由.10.小刚和小强分别从A、B两地出发,小刚骑自行车,小强步行,沿同一线路相向匀速而行,出发两小时两人相遇,相遇时小刚比小强多走了24千米,相遇后0.5小时小刚到达B点.(1)两人的行驶速度各是多少?(2)相遇时经过多少时间小强到达A地?(3)AB两地相距多少千米?参考答案1.解:(1)设甲的速度为x千米/时,4(x+20)=3(x+x+20)解得,x=10,∴x+20=30即甲的速度为10千米/时,乙的速度为30千米/时;(2)设经过y小时后两人相距20千米,4×30﹣20=y(10+30)或4×30+20=y(10+30)解得,y=2.5或y=3.5,即经过2.5小时或3.5小时后两人相距20千米.2.解:(1)在甲超市购物所付的费用是:300+0.8(x﹣300)=(0.8x+60)元,在乙超市购物所付的费用是:200+0.85(x﹣200)=(0.85x+30)元;当x=400时,在甲超市购物所付的费用是:0.8×400+60=380,在乙超市购物所付的费用是:0.85×400+30=370,所以到乙超市购物优惠;(2)根据题意由(1)得:300+0.8(x﹣300)=200+0.85(x﹣200),解得:x=600,答:当x=600时,两家超市所花实际钱数相同.3.解:(1)设小明的骑行速度为x米/分钟,则爸爸的骑行速度为2x米/分钟,根据题意得:2(2x﹣x)=400,解得:x=200,∴2x=400.答:小明的骑行速度为200米/分钟,爸爸的骑行速度为400米/分钟.(2)设爸爸第一次追上小明后,在第二次相遇前,再经过y分钟,小明和爸爸跑道上相距50m,①爸爸第一次追上小明后,在第二次相遇前,爸爸又比小明多骑了50米,根据题意得:400y﹣200y=50,解得:y =;②爸爸第一次追上小明后,在第二次相遇前,爸爸又比小明多骑了350米,根据题意得:400y ﹣200y =350,解得:y =.答:第二次相遇前,再经过或分钟,小明和爸爸跑道上相距50m . 4.解:(1)设顾客在甲超市购物所付的费用为y 甲,顾客在乙超市购物所付的费用为y 乙, 根据题意得:y 甲=300+0.8(x ﹣300)=0.8x +60;y 乙=200+0.85(x ﹣200)=0.85x +30.(2)他应该去乙超市,理由如下:当x =500时,y 甲=0.8x +60=460,y 乙=0.85x +30=455,∵460>455,∴他去乙超市划算.(3)令y 甲=y 乙,即0.8x +60=0.85x +30,解得:x =600.答:李明购买600元的商品时,到两家超市购物所付的费用一样.5.解:(1)∵AB =18cm ,OA =2OB ,∴OA +OB =3OB =AB =18cm ,解得:OB =6cm ,OA =2OB =12cm .故答案为:12;6.(2)设CO 的长是xcm ,依题意有:①当点C 在线段AO 上时,12﹣x =x +6+x ,解得x =2;②当点C 在线段OB 上时,12+x =x +6﹣x ,解得:x =﹣6(舍去);③当点C 在线段AB 的延长线上时,12+x =x +x ﹣6,解得x =18.故CO 的长为2cm 或18cm ;(3)当运动时间为ts 时,点P 表示的数为3t ﹣12,点Q 表示的数为t +6.当3t ﹣12=t +6时,t =9,∴0≤t≤9.①∵2OP﹣OQ=4,∴2|3t﹣12|﹣|t+6|=4.当0≤t<4时,有2(12﹣3t)﹣(6+t)=4,解得t=2;当4≤t≤9时,有2(3t﹣12)﹣(6+t)=4,解得t=6.8.故当t为2s或6.8s时,2OP﹣OQ=4.②当3t﹣12=0时,t=4,4×(9﹣4)=20(cm).答:在此过程中,点M行驶的总路程是20cm.6.解:(1)设买x张书架,根据题意得A超市所花钱数为:20×210+70(x﹣20)=70x+2800,B超市所花钱数为:0.8(20×210+70x)=56x+3360.(2)由题意,得70x+2800=56x+3360,解得:x=40.答:购买40只书架时,无论到哪家超市所付货款都一样.(3)因为买一个书柜赠一个书架相当于打7.5折,B超市的优惠政策为所有商品8折,所以应该到A超市购买20个书柜和20个书架,到B超市购买80个书架.20×210+70×80×0.8=8680(元)答:至少准备8680元贷款.7.解:设调往甲队x人,调往乙队(30﹣x)人,根据题意得40+30﹣x=(65+x),解得:x=25,所以30﹣x=30﹣25=5答:应调往甲队25人,调往乙队5人.8.解:(1)设书包单价为x元,则运动服的单价为(7x﹣10)元,由题意得x+7x﹣10=470,解得:x=60,则7x﹣10=410.答:书包单价为60元,则运动服的单价为410元;(2)到商场二这两件商品的费用为470×0.8=376(元),到商场一买这两件商品的费用470﹣4×30=350(元),去第一商场买运动服410﹣30×4=290(元),第二商场买书包60×0.8=48(元),共计338元,所以这个同学要去第一商场买运动服,去第二商场买书包,费用为338元.9.解:(1)若设中间的数为a,则其他四个数依次为:a﹣7,a﹣1,a+1,a+7,则这5个数的和为a﹣7+a﹣1+a+a+1+a+7=5a,∵a为整数,∴5a能被5整除.(2)不能,理由如下:由(1)知,若中间的数为a,则5a=150,∴a=30.则最下面那个数为37,不符合实际意义,故和不能为150.10.解:(1)设小强的速度为x千米/小时,则小刚的速度为(x+12)千米/小时.根据题意得:2x=0.5(x+12),解得:x=4.x+12=4+12=16.答:小强的速度为4千米/小时,小刚的速度为16千米/小时.(2)设在经过y小时,小强到达目的地.根据题意得:4y=2×16,解得:y=8.答:在经过8小时,小强到达目的地.(3)2×4+2×16=40(千米).答:AB两地相距40千米.。

人教版七年级数学上册第三章 一元一次方程 专题训练(含答案解析)

人教版七年级数学上册第三章 一元一次方程 专题训练(含答案解析)

人教版七年级数学上册第三章 一元一次方程 专题训练特殊一元一次方程的解法技巧1.解方程:4310.20.5x x ---=.2.解方程:1250.250.5x x +--=.3.解方程:32122234xx ⎡⎤⎛⎫---= ⎪⎢⎥⎝⎭⎣⎦.4.解方程:791246919753x ⎧⎫⎡+⎤⎛⎫+++=⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭.5.解方程:111(3)(3)1236x x x x ⎡⎤---=-+⎢⎥⎣⎦.6.解方程:41(7)6(7)55x x -=--.7.解方程:121(2050)(52)(410)0632x x x +++-+=.8.解方程:421263x xx ---=.9.解方程:228425920xx x--+=-.10.解方程:112259797z z +=-.11.解方程:32324343x x -=-.12.[中]解方程:2431362x x +--=.13.解方程223146x x +--=:.14.解方程:2123163234386x x x x -++++=+.15.解方程:16231056x x x x --++=-.参考答案 1.答案:见解析解析:分子、分母同乘10,得10(4)10(3)125x x ---=. 去分母,得5(4)2(3)1x x ---=. 去括号,得520261x x --+=. 移项,得521206x x -=+-. 合并同类项,得3x =15. 系数化为1,得x =5. 2.答案:见解析解析:原方程可化为4(1)2(2)5x x +--=. 去括号,得44245x x +-+=. 移项及合并同类项,得23x =-. 系数化为1,得32x =-. 3.答案:见解析解析:去括号,得1324x x ---=.移项及合并同类项,得364x-=.系数化为1,得8x =-. 4.答案:见解析解析:方程可化为12467153x +⎛⎫+++= ⎪⎝⎭.整理,得1241253x +⎛⎫+=-⎪⎝⎭. 方程两边都乘5,得24603x ++=-.方程两边都乘3,得212180x ++=-. 解得194. 5.答案:见解析解析:去中括号,得111(3)(3)1266x x x x -+-=-+. 将(3)x -看作一个整体, 移项及合并同类项,得112x =. 系数化为1,得x =2. 6.答案:见解析解析:移项,得41(7)(7)655x x -+-=.将(7)x -看作一个整体,合并同类项,得7x -=6. 移项及合并同类项,得x =13. 7.答案:见解析解析:原方程可化为52(25)(25)(25)033x x x +++-+=.将(25)x +看作一个整体,合并同类项,得521(25)033x ⎛⎫+-+= ⎪⎝⎭. 整理,得4(25)03x +=. 故250x +=. 移项,得25x =-. 系数化为1,得52x =-. 8.答案:见解析解析:原方程可化为211233x xx ---=. 去分母,得3(21)12x x x --=-. 去括号,得32112x x x -+=-.移项,得32211x x x -+=-. 合并同类项,得3x =0.系数化为1,得x =0.9.答案:见解析解析:原方程可化为2222595xx x --+=+. 移项及合并同类项,得229x =.系数化为1,得49x =.10.答案:见解析解析:移项,得112529977z z -=--.合并同类项,得1z =-. 11.答案:见解析解析:原方程可化为332204433x x ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭, 即32(1)(1)043x x -+-=.将(1)x -看作一个整体进行合并,得32(1)043x ⎛⎫+-= ⎪⎝⎭. 所以1x -=0,移项,得x =1.12.答案:见解析解析:原方程可化为221133322x x +-+=.移项及合并同类项,得233x -=-.系数化为1,得x =2. 13.答案:见解析解析:原方程可化为1114232x x +-+=.移项,得1114322x x -=--,合并同类项,得11043x ⎛⎫-= ⎪⎝⎭. 故x =0.14.答案:见解析解析:移项,得2323163213684x x x x +++--=-. 两边分别通分,得4112568x x ++=. 去分母,得4(41)3(125)x x +=+. 去括号,得1643615x x +=+. 移项,得1636154x x -=-. 合并同类项,得2011x -=. 系数化为1,得0.55x =-.15.答案:见解析解析:移项,得26136510x x x x +--+=-. 两边分别通分,得3211610x x +-=. 去分母,得5(32)3(11)x x +=-. 去括号,得1510333x x +=-.移项,得1533310x x -=--.合并同类项,得12 x =-43. 系数化为1,得4312x =-.。

第三章《一元一次方程》应用题数轴类提高篇(1)-2021-2022学年人教版数学七年级上册

第三章《一元一次方程》应用题数轴类提高篇(1)-2021-2022学年人教版数学七年级上册

第三章《一元一次方程》应用题数轴类提高篇11.如图,点A、B分别位于原点O的两侧,AB=12,且OA=2OB,动点P从点A出发以每秒3个单位长度的速度向右运动,同时动点Q从点B出发以每秒1个单位长度的速度向左运动.(1)求数轴上点A,B对应的数;(2)当OP=OQ时,求运动的时间.2.如图,已知在数轴上有三个点A、B、C,O是原点,满足OA=AB=BC=20cm,动点P从点O出发向右以每秒2cm的速度匀速运动;同时,动点Q从点C出发,在数轴上向左匀速运动,速度为v(v>1);运动时间为t.(1)求:点P从点O运动到点C时,运动时间t的值.(2)若Q的速度v为每秒3cm,那么经过多长时间P,Q两点相距30cm?此时|QB﹣QC|是多少?(3)当|PA+PB|=2|QB﹣QC|=24时,请直接写出点Q的速度v的值.3.如图,点P、Q在数轴上表示的数分别是﹣8、4,点P以每秒2个单位的速度运动,点Q 以每秒1个单位的速度运动.设点P、Q同时出发向右运动,运动时间为t秒.(1)若运动2秒时,则点P表示的数为,点P、Q之间的距离是个单位;(2)求经过多少秒后,点P、Q重合?(3)试探究:经过多少秒后,点P、Q两点间的距离为6个单位.4.如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).(1)填空:t秒后,点P表示的数为;点Q表示的数为.(2)求当t为何值时,PQ=AB;(3)当点P运动到点B的右侧时,点M是线段PA上靠近于点A的四等分点,点N为线段PB上靠近于点P的三等分点,求PM﹣BN的值.5.如图,在数轴上点A表示的数是﹣4,点B在点A的右侧,且到点A的距离是24,点C 在点A与点B之间,且BC=3AC.(1)点B表示的数是,点C表示的数是;(2)若点P从点A出发,沿数轴以每秒3个单位长度的速度向右匀速运动;同时,点Q 从点B出发,沿数轴以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒,在运动过程中,①当t为何值时,点P与点Q相遇?②当t为何值时,点P与点Q间的距离为9个单位长度?(3)在(2)的条件下,在运动过程中,是否存在某一时刻使得PC+QB=7?若存在,请求出此时点P表示的数;若不存在,请说明理由.6.如图,甲、乙两人(看成点)分别在数轴上﹣3和5的位置,沿数轴做移动游戏,规则如下:两人先猜硬币的正反面,依据猜的对错再移动,若都猜对或都猜错,则甲向右移动1个单位,同时乙向左移动1个单位;若甲猜对乙猜错,则甲向右移动4个单位,同时乙向右移动2个单位;若甲猜错乙猜对,则甲向左移动2个单位,同时乙向左移动4个单位.(1)第一次游戏时,若甲、乙都猜对,则移动后两人相距个单位;若甲猜对乙猜错,则移动后两人相距个单位;若甲猜错乙猜对,则移动后两人相距个单位;(2)若连续(下次在上次的基础上)完成了10次移动游戏,且每次甲、乙所猜结果均为一对一错.游戏结束后,①乙会不会落在原点O处?为什么?②求甲、乙两人之间的距离.7.已知数轴上两点A、B对应的数分别为﹣1、5,点P为数轴上一动点,其对应的数为X.(1)若点P到点A点B的距离相等,求点P对应的数是X=;(2)数轴上是否存在点P,使点P到点A,点B的距离之和为8?若存在,请求出X的值;若不存在,说明理由;(3)现在点A,点B分别以2个单位长度每分和1个单位长度每分的速度同时向右运动,点P以6个单位长度每分的速度从O点向左运动,当遇到A时,点P以原来的速度向右运动,并不停得往返于A与B之间,求当A遇到B重合时,P所经过的总路程.8.如图,在数轴上有A、B两点,点C是线段AB的中点,AB=12,OA=8.(1)求点C所表示的数;(2)动点P、Q分别从A、B同时出发,沿着数轴的正方向运动,点P、Q的运动速度分别是每秒3个单位和每秒2个单位(当P与Q相遇,运动停止),点M是线段PQ的中点,设运动时间为t秒,请用含t的式子表示CM的长;(3)在(2)的条件下,试问t为何值时,CM=PC.9.已知数轴上有两点A、B,点A对应的数为﹣12,点B在点A的右边,且距离A点16个单位,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,B的距离相等,求点P对应的数;(2)是否存在这样的点P,使点P到点A,B的距离之和为20?若存在,请求出x的值;若不存在,请说明理由?(3)点Q是数轴上另一个动点,动点P,Q分别从A,B同时出发,点P以每秒6个单位长度的速度沿数轴向右匀速运动,点Q以每秒4个单位长度的速度沿数轴向左匀速运动,点M为AP的中点,点N在线段BQ上,且BN=BQ,设运动时间为t(t>0)秒.①分别求数轴上点M,N表示的数(用含t的式子表示);②t为何值时,M,N之间的距离为10?10.“幸福是奋斗出来的”,在数轴上,若C到A的距离刚好是3.则C点叫做A的“幸福点”;若C到A、B的距离之和为6,则C叫做A和B的“幸福中心”.(1)如图1,点A表示的数为﹣1,则A的幸福点C所表示的数应该是.(2)如图2,M,N为数轴上两点,点M所表示的数为4,点N所表示的数为﹣2,若点C 就是M和N的幸福中心,则C所表示的所有数中,整数之和为;(3)如图3,A、B、C为数轴上三点,点A所表示的数为﹣1.点B所表示的数为4,点C所表示的数为8,点P从点C出发,以每秒2个单位的速度向左运动,同时,点M,N 分别从点A,B以每秒1个单位的速度向右运动,经过多少秒时,点P是M和N的幸福中心?11.已知数轴上有A,B,C,D,E,F六个点,点C在原点位置,点B表示的数为﹣4,下表中A﹣B,B﹣C,D﹣C,E﹣D,F﹣E的含义为前一个点所表示的数与后一个点所表示的数的差.比如B﹣C为﹣4﹣0=﹣4.A﹣B B﹣C D﹣C E﹣D F﹣E10 ﹣4 ﹣1 x 2(1)在数轴上A,D两点表示的数为,.(2)当点A 与点F 的距离为3时,求x 的值;(3)若点M 从D 出发,以每秒1个单位长度的速度向终点A 移动,同时,点N 从B 出发,以每秒3个单位长度向终点A 移动,当其中一个点到A 点时两点都停止运动.设点M 移动时间为t 秒,请说明t 为何值时,点M 、N 之间的距离为2个单位长度?12.若在数轴上有三点M ,B ,C ,满足M 到点B ,点C 两点的距离差为5,则称M 为点B ,C 的“界点”,已知:数轴上点B 表示数﹣2,点C 表示数9.(1)点M 1表述数﹣4,M 2表述数1,点M 3表述数12三点中,M 是点B ,C 的“界点”.(2)若点B 是M ,C 的界点,请直接写出M 表述的数.(3)M 是C 点左侧的点,若点B 向右运动,是否存在每一时刻,不论M 位于同处,点M 总是B ,C 的“界点”,若存在请写出时刻B 点表示的数,并说明理由,若不存在,也请说明理由.13.在数轴上,点A 表示的数为1,点B 表示的数为3.对于数轴上的图形M ,给出如下定义:P 为图形M 上任意一点,Q 为线段AB 上任意一点,如果线段PQ 的长度有最小值,那么称这个最小值为图形M 关于线段AB 的极小距离,记作d 1(M ,线段AB );如果线段PQ 的长度有最大值,那么称这个最大值为图形M 关于线段AB 的极大距离,记作d 2(M ,线段AB ).例如:点K 表示的数为4,则d 1(点K ,线段AB )=1,d 2(点K ,线段AB )=3.已知点O 为数轴原点,点C ,D 为数轴上的动点.(1)d 1(点O ,线段AB )= ,d 2(点O ,线段AB )= ;(2)若点C ,D 表示的数分别为m ,m +2,d 1(线段CD ,线段AB )=2.求m 的值;(3)点C 从原点出发,以每秒2个单位长度沿x 轴正方向匀速运动;点D 从表示数﹣2的点出发,第1秒以每秒2个单位长度沿x 轴正方向匀速运动,第2秒以每秒4个单位长度沿x 轴负方向匀速运动,第3秒以每秒6个单位长度沿x 轴正方向匀速运动,第4秒以每秒8个单位长度沿x 轴负方向匀速运动,…,按此规律运动,C ,D 两点同时出发,设运动的时间为t 秒,若d 2(线段CD ,线段AB )小于或等于6,直接写出t 的取值范围.(t 可以等于0)14.已知数轴上点A 表示的数为12,点B 表示的数为﹣8.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,同时动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)当点P 与点Q 关于原点O 对称时,求t 的值;(2)是否存在t 的值,使得点P 与点Q 之间的距离为3个单位长度?若存在,请求出t 的值;若不存在,请说明理由.15.如图,点A 在数轴上对应的数为a ,点B 对应的数为b ,点A 与点B 之间的距离记作AB .已知a =﹣2,b 比a 大12.(1)点B表示的数是;(2)设点P在数轴上对应的数为x,当PA﹣PB=4时,求x的值;(3)若点M以每秒1个单位的速度从点A出发沿数轴向右运动,同时点N以每秒2个单位的速度从点B出发沿数轴向左运动.设运动时间是t秒.①在运动过程中,点M对应的数为,点N对应的数为(用含t的代数式表示);②当点M与点N之间的距离是9时,直接写出t的值.。

人教版七年级数学上册第三章实际问题与一元一次方程解答题复习试题一(含答案) (3)

人教版七年级数学上册第三章实际问题与一元一次方程解答题复习试题一(含答案) (3)

人教版七年级数学上册第三章实际问题与一元一次方程解答题复习试题一(含答案)列方程解应用题:我校七年级某班共有学生48人,其中女生人数比男生人数的2倍少12人,则这个班的男生有多少人?【答案】这个班有男生20人.【解析】【分析】设这个班有男生x 人,则有女生(2x -12)人,根据男生人数+女生人数=48列出方程,解方程即可.【详解】解:设这个班有男生x 人,则有女生(2x -12)人,列方程得:21248x x +-=,解得,20x答:这个班有男生20人.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.22.你知道为什么任何无限循环小数都可以写成分数形式吗?下面的解答会告诉你方法.(1)阅读下列材料:问题:利用一元一次方程将0.7•化成分数.解:设0.7x •=.方程两边都乘以10,可得7.710x •=.由0.7x •=和7.710x •=,可得7.70.710x x ••-=-即710x x =-.(请你体会将方程两边都乘以10起到的作用) 解得79x =,即70.79•=. 填空:将0.4写成分数形式为 .(2)请你仿照上述方法把小数1.3化成分数,要求写出利用一元一次方程进行解答的过程.【答案】(1)49;(2)1.3=113,计算见解析. 【解析】【分析】(1)根据阅读材料设0.4=x ,方程两边都乘以10,转化为4+x=10x ,求出其解即可;(2)设0.3=m ,程两边都乘以10,转化为3+m=10m ,求出其解即可.【详解】解:(1)设0.4=x ,则4+x=10x ,∴x=49. 故答案是49; (2)设0.3=m ,方程两边都乘以10,可得10×0.3=10m .由0.3=0.3333⋅⋅⋅,可知10×0.3=3.3333…=3+0.3333….即3+m=10m可解得m=13,∴1.3=11.3【点睛】本题考查了无限循环小数转化为分数的运用,运用一元一次方程解实际问题的运用,解答时根据等式的性质变形建立方程是解答的关键.23.在抗击新冠状病毒战斗中,有152箱公共卫生防护用品要运到A、B 两城镇,若用大小货车共15辆,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,则恰好能一次性运完这批防护用品求这大小货车各多少辆?【答案】大货车8辆,小货车7辆.【解析】【分析】根据题意,可以先设这15辆车中大货车有a辆,则小货车有(15-a)辆,然后即可得到相应的方程,从而可以求得这15辆车中大小货车各多少辆.【详解】解:设这15辆车中大货车有a辆,则小货车有(15-a)辆,12a+8(15-a)=152解得,a=8,则15-a=7,答:这15辆车中大货车8辆,小货车7辆.【点睛】本题考查一元一次方程的应用,解答本题的关键是明确题意,利用题目中等量关系列出方程正确计算解答.24.2020年新冠肺炎爆发,省疾控中心组织医护人员和防疫药品赶赴湖北救援,装载防疫药品的货运飞机从机场出发,以600千米/小时的速度飞行,半小时后医护人员乘坐客运飞机从同一个机场出发,客运飞机速度是货运飞机速度的1.2倍,结果客运飞机比装载防疫药品的货运飞机迟15分钟到达湖北.(1)设货运飞机全程飞行时间为t 小时,用t 表示出发的机场到湖北的路程s ;(2)求出发的机场到湖北的路程.【答案】(1)s =600t ;(2)900千米.【解析】【分析】(1)根据路程=时间×速度列出关系式即可;(2)根据货运飞机和客运飞机的路程相同列出方程求的t 的值,进而可求得路程s 的值.【详解】解:(1)由题意,得s =600t(2)根据题意可知11600600 1.2()24t t =⨯⨯-+ 解得t =1.5∴s =600t =600×1.5=900答:出发的机场到湖北的路程是900千米【点睛】本题考查了一元一次方程的应用.解决本题的关键是要弄懂题意,找到题中的数量关系,列出方程进行解答.25.甲乙两辆汽车同时从 A 、B 两地相向开出,甲车每小时行 56 千米,乙车每小时行 48 千米,两车在距 A 、B 两地的中点 32 千米处相遇.求甲乙两地相距多少千米?【答案】甲乙两地相距832千米【解析】【分析】设甲乙两地相距x 千米,根据两车相遇,所用时间相等即可列出一元一次方程,求解方程即可.【详解】甲乙两地相距x 千米,根据题意得,3232225648x x +-= 解得,x=832所以,甲乙两地相距832千米【点睛】此题考查了列一元一次方程解决问题,关键是找出等量关系.26.“雷神山”病床安装突击队有 22 名队员,按要求在规定时间内要完成 340 张病床安装,其中高级工每人能安装 20 张,初级工每人能安装 15 张. 问该突击队高级工与初级工各多少人?【答案】该突击队有高级工2人,初级工20人.【解析】【分析】设该突击队高级工有x 人,则初级工有y 人,根据高级工+初级工=22人,x 名高级工安装的病床数+y 名初级工安装的病床数=340即可列出方程组,解方程组即得结果.【详解】解:设该突击队高级工有x 人,则初级工有y 人,根据题意,得:222015340x y x y +=⎧⎨+=⎩,解得:220x y =⎧⎨=⎩, 答:该突击队有高级工2人,初级工20人.【点睛】本题考查了二元一次方程组的应用,属于基本题型,正确理解题意、找准相等关系是解题关键.27.已知,两正方形在数轴上运动,起始状态如图所示.A 、F 表示的数分别为-2、10,大正方形的边长为4个单位长度,小正方形的边长为2个单位长度,两正方形同时出发,相向而行,小正方形的速度是大正方形速度的两倍,两个正方形从相遇到刚好完全离开用时2秒.完成下列问题:(1)求起始位置D、E表示的数;(2)求两正方形运动的速度;(3)M、N分别是AD、EF中点,当正方形开始运动时,射线MA开始以15°/s的速度顺时针旋转至MD结束,射线NF开始以30°/s的速度逆时针旋转至NE结束,若两射线所在直线互相垂直时,求MN的长.....【答案】(1)0,6;(2)小正方形速度2个单位/秒,大正方形速度1个单位/秒;(3)t=2,MN=3,t=6,MN=9【解析】【分析】(1)利用图象和正方形的边长即可得出;(2)设小正方形的速度是2x个单位/秒,大正方形的速度是x个单位/秒,然后列方程计算即可;(3)由题意可得若想要两射线所在直线互相垂直,则有①15°t+30°t=90°或②15°t+30°t=270°两种情况,根据两种情况分别讨论即可.【详解】(1)∵A、F表示的数分别为-2、10,大正方形的边长为4个单位长度,小正方形的边长为2个单位长度,∴D表示的数为:-2+2=0,E表示的数为:10-4=6;(2)解:设小正方形的速度是2x个单位/秒,大正方形的速度是x个单位/秒,则有2(2x+x)=2+4,解得:x=1,∴小正方形的速度是2个单位/秒,故小正方形速度2个单位/秒,大正方形速度1个单位/秒;(3)设运动时间为t,由题意可得若想要两射线所在直线互相垂直,则有①15°t+30°t=90°或②15°t+30°t=270°,①15°t+30°t=90°,解得t=2,此时小正方形运动了4个单位,D点在数字4的位置,大正方形运动了2个单位,E点也在数字4的位置,即D,E重合,∵M、N分别是AD、EF中点,∴MN=3;②15°t+30°t=270°,解得t=6,此时小正方形运动了12个单位,D点在数字12的位置,大正方形运动了6个单位,E点在数字0的位置,∵M、N分别是AD、EF中点,∴此时M点位于数字11的位置,N点位于数字2的位置,∴MN=11-2=9;综上:当t=2时,MN=3;当t=6时,MN=9.【点睛】本题考查了数轴的动点问题,一元一次方程的应用,根据题意推出对应情况是解题关键.28.姐妹两人在50米的跑道上进行短路比赛,两人从出发点同时起跑,姐姐到达终点时,妹妹离终点还差3米,已知姐妹两人的平均速度分别为a米/秒、b米/秒.(1)如果两人重新开始比赛,姐姐从起点向后退3米,姐妹同时起跑,两人能否同时到达终点?若能,请求出两人到达终点的时间;若不能,请说明谁先到达终点.(2)如果两人想同时到达终点,应如何安排两人的起跑位置?请你设计两种方案.【答案】(1)姐姐用时5350k 秒,妹妹用时5047k秒,所以不能同时到,姐姐先到;(2)姐姐后退15047米或妹妹前进3米【解析】【分析】(1)先求出姐姐和妹妹的速度关系,然后求出再次比赛时两人用的时间,从而得出结论;(2)2种方案,姐姐退后或者妹妹向前,要想同时到达终点,则比赛用时相等,根据这个关系列写等量关系式并求解.【详解】(1)∵姐姐到达终点是,妹妹距终点还有3米∴姐姐跑50米和妹妹跑47米的时间相同,设这个时间为:1k即:50471a b k == ∴a=50k ,b=47k 则再次比赛,姐姐的时间为:50350k +=5350k秒 妹妹的时间为:5047k秒 ∵532491502350k k =,502500472350k k= ∴5350k <5047k,即姐姐用时短,姐姐先到达终点 (2)情况一:姐姐退后x 米,两人同时到达终点 则:5050x k +=5047k,解得:x=15047 情况二:妹妹向前y 米,两人同时到达终点 则:5050k =5047y k -,解得:y=3 综上得:姐姐退后15047米或妹妹前进3米,两人同时到达终点 【点睛】本题考查行程问题,解题关键是引入辅助元k ,用于表示姐姐和妹妹的速度关系.29.玲玲和牛牛相约在小区笔直的步行道上健步走锻炼身体.两人都从步行道起点A 向终点B 走去.牛牛出发2分钟后,玲玲出发.又过了2分钟,牛牛停下来接了5分钟的电话,玲玲则以原速继续步行,与牛牛相遇后,玲玲的速度减少到原来的4走向终点B.牛牛接完电话后,提高速度向终点B走去,1.4分5钟后刚好追上玲玲,到达终点B后立即调头以提速后的速度返回起点A(调头时间忽略不计),玲玲、牛牛两人相距的路程y(米)与牛牛出发的时间x(分钟)之间的关系如图所示.(1)牛牛开始健步走的速度为_______米/分;(2)求玲玲开始健步走的速度和牛牛提速后的速度;(3)玲玲走到终点B后,停下来休息了一会儿.牛牛回到起点A后,立即调头仍以提速后的速度走向终点B,玲玲休息1分钟后以减速后的速度调头走向起点,A两人恰好在AB中点处相遇,求步行道AB的长度.【答案】(1)70;(2)玲玲开始健步走的速度为50米/分,牛牛提速后的速度为80米/分;(3)步行道AB的长度为624米.【解析】【分析】(1)根据第1段图像即可求得牛牛开始健步走的速度;(2)根据第2段图像即可求得玲玲开始健步走的速度,根据牛牛停下接了5分钟电话及需要1.4分钟刚好追上玲玲结合玲玲的速度可求得牛牛提速后的速度;(3)设AB的长度为a米,根据两人相遇后所用时间相同列出方程求解即可.【详解】解:(1)根据第1段图像可知,牛牛开始健步走的速度为:140÷2=70(米/分),故答案为:70;(2)根据第2段图像可知,玲玲开始健步走的速度比牛牛慢,且两人的速度差为:(180-140)÷2=20(米/分),∴玲玲开始健步走的速度为:70-20=50(米/分),根据题意可知第3段图像为牛牛接电话时玲玲追赶牛牛,则,追赶时间为180÷50=3.6(分),∵牛牛停下接了5分钟电话,∴第4段图像对应的时间是:5-3.6=1.4(分),此时玲玲的速度变为:50×45=40(米/分), ∵牛牛需要1.4分钟刚好追上玲玲∴牛牛提速后的速度为:40×(1.4+1.4)÷1.4=80(米/分),答:玲玲开始健步走的速度为50米/分,牛牛提速后的速度为80米/分;(3)由(2)可知牛牛追上玲玲时,两人的已行路程为:70×4+40×2.8=392(米)设AB 的长度为a 米,根据题意可知:113923922218040a a a a a -++-+=+解得624a =答:步行道AB 的长度为624米.【点睛】本题考查了一次函数图像的实际应用,读懂题意并结合图像正确理解两人的运动过程是解决本题的关键.30.通讯员骑摩托车要在规定的时间内把文件送到.他骑摩托车的速度是每小时36千米结果早到20分钟,若每小时30千米,就迟到12分钟.求规定时间是多少.【答案】3小时【解析】【分析】设规定时间为x 小时,两次行驶路程分别表示为1363x ⎛⎫- ⎪⎝⎭和1305x ⎛⎫+ ⎪⎝⎭,列方程,解方程即可.【详解】解:设规定时间为x 小时,由题意得11363035x x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭ 解得3x =答:规定时间是3小时.【点睛】本题考查了一元一次方程的应用,解题的关键是根据行程问题的数量关系“路程=速度×时间”两次表示出路程,由此列方程解决问题.。

2023-2024年人教版七年级上册数学第三章一元一次方程应用题(方案选择问题)训练(含解析)

2023-2024年人教版七年级上册数学第三章一元一次方程应用题(方案选择问题)训练(含解析)
2023-2024 年人教版七年级上册数学第三章一元一次方程应 用题(方案选择问题)训练
1.小颖购买练习本可以到甲店购买,也可以到乙店购买,已知两店的标价都是每本 1 元,甲店的优惠条件是:购买 10 本以上,从第 11 本开始按标价的 70%出售;乙商店的 优惠条件是:从第 1 本开始按标价的 80%出售. (1)小颖要买 20 本练习本时,到哪个店购买较省钱? (2)买多少本练习本时,在两店购买练习本付的费用相等? (3)小颖现有 24 元,最多可买多少本练习本?
9.一种蔬菜在某市场上的销售价格如下: 购买数量 不超过 20 千克 20 千克以上但不超过 40 千克 40 千克以上
价格
5 元/千克
4 元/千克
3 元/千克
已知小明两次购买了此种蔬菜共 70 千克(第二次购买数量多于第一次). (1)若第一次购买 15 千克,则两次的总费用为________元; (2)若两次购买蔬菜的总费用为 236 元,求第一次、第二次分别购买此种蔬菜多少千克?
(1)分别用含 x 的式子表示 M,N; (2)交费时间为多少个月时,两种方案费用相同? (3)若交费时间为 12 个月《义务教育课程方案》和课程标准(2022 年版),将劳动从原 来的综合实践活动课程中独立出来.我县某中学初中部为了让学生体验农耕劳动,开辟 了一处种植园,需要采购一批某种菜苗开展种植活动,已知甲、乙两菜苗基地该种菜苗 每捆的标价都是 6 元(菜苗的质量一样好),但甲、乙两菜苗基地的优惠条件却不同. 甲菜苗基地:若购买不超过 15 捆,则按标价付款;若一次购 15 捆以上,则超过 15 捆 的部分按标价的 60%付款; 乙菜苗基地:按标价的 80%付款. (1)若学校决定购买该种菜苗 20 捆,则在甲菜苗基地购买,需付款________元,在乙菜 苗基地购买,需付款________元; (2)若学校决定购买该种菜苗 x 捆( x 15),请用含 x 的式子分别表示在甲、乙两个菜苗 基地购买该种菜苗的费用; (3)学校决定购买该种菜苗多少捆时,到甲、乙两菜苗基地用的钱一样多?说明理由.

人教版数学七年级上册第三章《一元一次方程实际应用》专项练习

人教版数学七年级上册第三章《一元一次方程实际应用》专项练习

⼈教版数学七年级上册第三章《⼀元⼀次⽅程实际应⽤》专项练习《⼀元⼀次⽅程实际应⽤》专项练习1.某校七年级A班有x⼈,B班⽐A班⼈数的2倍少8⼈,如果从B班调出6⼈到A班.(1)⽤代数式表⽰两个班共有多少⼈?(2)⽤代数式表⽰调动后,B班⼈数⽐A班⼈数多⼏⼈?(3)x等于多少时,调动后两班⼈数⼀样多?2.列⽅程解应⽤题举世瞩⽬的2019年中国北京世界园艺博览会在长城脚下的北京延庆开园,它给⼈们提供了看⼭、看⽔、看风景的机会.⼀天⼩龙和朋友⼏家去延庆世园会游玩,他们购买普通票⽐购买优惠票的数量少5张,买票共花费了1400元,符合他们购票的条件如下表,请问他们买了多少张优惠票?平⽇普通票?适⽤所有⼈除指定⽇外任⼀平⽇参观120优惠票?适⽤残疾⼈⼠、60周岁以上⽼年⼈、学⽣、中国现役军⼈(具体⼈群规则同指定⽇优惠票)购票及⼊园时需出⽰相关有效证件除指定⽇外任⼀平⽇参观803.(⽤列⽅程或⽅程组解答本题)元旦期间某商店进⾏促销活动,活动⽅式有如下两种:⽅式⼀:购物每满200元减60元;⽅式⼆:标价不超过400元的商品,打8折:标价超过400元的商品,不超过400元的部分打8折,超出400元的部分打5折.设某⼀商品的标价为x元.(1)当x=300元,则按⽅式⼀应该付的钱为元;则按⽅式⼆应该付的钱为元;(2)当400<x<600时,x取何值两种⽅式的实际⽀出的费⽤相同?4.【新知理解】如图①,点C在线段AB上,图中有三条线段AB、AC和BC.若其中⼀条线段的长度是另外⼀条线段长度的2倍,则称点C是线段AB的“巧点”.(1)填空:线段的中点这条线段的巧点(填“是”或“不是”或“不确定是”);【问题解决】(2)如图②,点A和B在数轴上表⽰的数分别是﹣20和40,点C是线段AB的巧点,求点C在数轴上表⽰的数.【应⽤拓展】(3)在(2)的条件下,动点P从点A发,以每秒2个单位的速度沿AB向点B匀速运动,同时动点Q从点B出发,以每秒4个单位的速度沿BA向点A匀速运动,当其中⼀点到达终点时,两个点运动同时停⽌.当A、P、Q三点中,其中⼀点恰好是另外两点为端点的线段的巧点时,直接写出运动时间t(s)的所有可能取值.5.⼩明参加启秀期末考试时的考场座位号是由四个数字组成的,这四个数字组成的四位数有如下特征:(1)它的千位数字为2;(2)把千位上的数字2向右移动,使其成为个位数字,那么所得的新数⽐原数的2倍少1478,求⼩明的考场座位号.6.为了丰富⽼年⼈的晚年⽣活,甲、⼄两单位准备组织退休职⼯到某风景区游玩.甲、⼄两单位退休职⼯共102⼈,其中⼄单位⼈数少于50⼈,且甲单位⼈数不够100⼈.经了解,该风景区的门票价格如表:数量(张)1~50 51~100 101张及以上单价(元/张)60 50 40 如果两单位分别单独购买门票,⼀共应付5500元.(1)甲、⼄两单位各有多少名退休职⼯准备参加游玩?(2)如果甲单位有12名退休职⼯因⾝体原因不能外出游玩,那么你有⼏种购买⽅案,通过⽐较,你该如何购买门票才能最省钱?7.现有120台⼤⼩两种型号的挖掘机同时⼯作,⼤型挖掘机每⼩时可挖掘⼟⽅360⽴⽅⽶,⼩型挖掘机每⼩时可挖掘⼟⽅200⽴⽅⽶,20⼩时共挖掘⼟⽅704000⽴⽅⽶,求⼤⼩型号的挖掘机各多少台?8.重庆育才中学需要为⽼校友们订制80周年纪念吉祥物“陶娃”,原计划订750份,每份50元,订制公司表⽰:如果多订,可以优惠.根据校庆当天前来的校友数量,学校最终订了1000份,并按原价⼋折购买,但订制公司获得了同样的利润.(1)求订制公司⽣产每套“陶娃”的成本;(2)求订制公司获得的利润.9.元旦期间,某超市对出售A、B两种商品开展元旦促销活动,活动⽅案有如下两种:(同⼀种商品不可同时参与两种活动)商品A B标价(单位:元)200 300 ⽅案⼀每件商品出售价格按标价降价20% 按标价降价a%⽅案⼆若所购商品超过100件(不同商品可累计)时,每件商品按标价降价18%后出售(1)某单位购买A商品40件,B商品30件,共花费14050元,试求a的值;(2)在(1)求出的a值的条件下,若某单位购买A商品x件(x为正整数),购买B 商品的件数⽐A商品件数的2倍还多⼀件,请问该单位选择哪种⽅案才能获得最⼤优惠?请说明理由.10.蔬菜商店40元/箱的价格从哈达批发市场购进8箱西红柿,若以每箱西红柿净重25千克为标准,超过千克数记为正数,不⾜千克数记为负数,称重后记录如下:+1,﹣3.5,+2,﹣2.5,﹣3,+2,﹣2,﹣2(1)这8箱西红柿⼀共重多少千克?(2)若把这些西红柿全部以零售的形式卖掉,商店计划共获利160元,那么在销售过程中西红柿的单价应定为每千克多少元?11.我们知道,有理数包括整数、有限⼩数和⽆限循环⼩数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么⽆限循环⼩数如何表⽰为分数形式呢?请看以下⽰例:例:将0.化为分数形式,由于0.=0.777…,设x=0.777…,①得10x=7.777…,②②﹣①得9x=7,解得x=,于是得0.=.同理可得0.==,1.=1+0.=1+=.根据以上阅读,回答下列问题:(以下计算结果均⽤最简分数表⽰)【类⽐应⽤】(1)4.=;(2)将0.化为分数形式,写出推导过程;【迁移提升】(3)0.2=,2.0…18=;(注0.2=0.225225…,2.0…18=2.01818…)【拓展发现】(4)若已知0.1428=,则2.8571=.12.某班原分成两个⼩组进⾏课外体育活动,第⼀组28⼈,第⼆组20⼈,根据学校活动器材的数量,要将第⼀组的⼈数调整为第⼆组的⼀半,应从第⼀组调多少⼈到第⼆组去?13.如图,数轴上A,B,C三点对应的数分别是a,b,14,满⾜BC=6,AC=3BC.动点P 从A点出发,沿数轴以每秒2个单位长度匀速向右运动,同时动点Q从C点出发,沿数轴以每秒1个单位长度匀速向左运动,设运动时间为t.(1)则a=,b=.(2)当P点运动到数2的位置时,Q点对应的数是多少?(3)是否存在t的值使CP=CQ,若存在求出t值,若不存在说明理由.14.百姓商场以每件80元的价格购进某品牌衬衫共500件,加价50%后标价销售,在“庆元旦,迎新春”期间,商场计划降价销售.请根据商场的盈利需求,解答下列问题:(1)如果商场按降价后的价格售完这批衬衫,仍可盈利20%,求应按⼏折销售;(2)请从A,B两题中任选⼀题作答.A.如果商场先按标价售出400件后再降价,那么剩余的衬衫按⼏折销售,才能使售完这批衬衫后盈利35%;B.如果商场先按标价的九折销售300件,但为了尽快销售完,将剩余数量衬衫在九折的基础上每购买⼀件再送打车费.求购买⼀件送多少元打车费,售完这批衬衫后可盈利25%.15.巴南区认真落实“精准扶贫”.某“建卡贫困户”在党和政府的关怀和帮助下投资了⼀个鱼塘,经过⼀年多的精⼼养殖,今年10⽉份从鱼塘⾥捕捞了草鱼和花鲢共2500千克,在市场上草鱼以每千克16元的价格出售,花鲢以每千克24元的价格出售,这样该贫困户10⽉份收⼊52000元,(1)今年10⽉份从鱼塘⾥捕捞草鱼和花鲢各多少千克?(2)该贫困户今年12⽉份再次从鱼塘⾥捕捞.捕捞数量和销售价格上,草鱼数量⽐10⽉份减少了2a千克,销售价格不变;花鲢数量⽐10⽉份减少了a%,销售价格⽐10⽉份减少了,该贫困户在10⽉份和12⽉份两次捕捞中共收⼊了94040元,真正达到了脱贫致富,求a的值.16.研学基地⾼明盈⾹⽣态园的团体票价格如表:数量(张)30~50 51~100 101及以上单价(元/张)80 60 50 某校七年级(1)、(2)班共102⼈去研学,其中(1)班⼈数较少,不⾜50⼈,两个班相差不超过20⼈.经估算,如果两个班都以班为单位购票,则⼀共应付7080元,问:(1)两个班各有多少学⽣?(2)如果两个班联合起来,作为⼀个团体购票,可省多少钱?17.某超市第⼀次⽤3600元购进了甲、⼄两种商品,其中甲种商品80件,⼄种商品120件.已知⼄种商品每件进价⽐甲种商品每件进价贵5元.甲种商品售价为20元/件,⼄种商品售价为30元/件.(注:获利=售价﹣进价)(1)该超市第⼀次购进甲、⼄两种商品每件各多少元?(2)该超市将第⼀次购进的甲、⼄两种商品全部销售完后⼀共可获得多少利润?(3)该超市第⼆次⼜购进同样数量的甲、⼄两种商品.其中甲种商品每件的进价不变,⼄种商品进价每件少3元;甲种商品按原售价提价a%销售,⼄种商品按原售价降价a%销售,如果第⼆次两种商品都销售完以后获得的总利润⽐第⼀次获得的总利润多260元,那么a的值是多少?18.为了打造“书⾹校园”,明德华兴中学计划购买20张书柜和⼀批书架(书架不少于20只),现从A、B两家超市了解到:同型号的产品价格相同,书柜每张200元,书架每只80元,A超市的优惠政策为每买⼀张书柜赠送⼀只书架,B超市的优惠政策为所有商品⼋折,设购买书架x只(x≥20).(1)若规定只能到其中⼀个超市购买所有物品,当购买书架多少只时,到两家超市购买所需费⽤⼀样;(2)若学校想购买20张书柜和100只书架,且可到两家超市⾃由选购,你认为⾄少要准备多少货款,请⽤计算的结果来验证你的说法.19.青⽵湖湘⼀外国语学校初2019级全体学⽣从学校统⼀乘车去市科技馆参观学习,然后⼜统⼀乘车原路返回,需租⽤客车若⼲辆.现有甲、⼄两种座位数相同的客车可以租⽤,甲种客车每辆的租⾦为300元,另按实际⾏程每千⽶加收8元;⼄种客车每辆按每千⽶14元收费.(1)当⾏程为多少千⽶时,租⽤两种客车的费⽤相同?(2)青⽵湖湘⼀外国语学校距市科技馆约30公⾥,如果你是年级组杨组长,为节省费⽤,你会选择哪种客车?20.某超市计划购进甲、⼄两种型号的节能灯共1000只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型25 30⼄型45 60 (1)如果进货款恰好为37000元,那么可以购进甲型节能灯多少只?(2)超市为庆祝元旦进⾏⼤促销活动,决定对⼄型节能灯进⾏打折销售,要求全部售完后,⼄型节能灯的利润率为20%,请问⼄型节能灯需打⼏折?参考答案1.解:(1)∵七年级A班有x⼈,B班⽐A班⼈数的2倍少8⼈,∴B班有(2x﹣8)⼈,则x+2x﹣8=3x﹣8,答:两个班共有(3x﹣8)⼈;(2)调动后A班⼈数:(x+6)⼈;调动后B班⼈数:2x﹣8﹣6=(2x﹣14)⼈,∴(2x﹣14)﹣(x+6)=x﹣20(⼈).答:调动后B班⼈数⽐A班⼈数多(x﹣20)⼈;(3)根据题意得:x+6=2x﹣14,解得:x=20.答:x等于20时,调动后两班⼈数⼀样多.2.解:设⼩龙和⼏个朋友购买了x张优惠票,根据题意列⽅程,得:80x+120(x﹣5)=1400,80 x+120x﹣600=1400,200x=2000,x=10.答:⼩龙和⼏个朋友购买了10张优惠票.3.解:(1)当x=300元,按⽅式⼀应该付的钱为:300﹣60=240(元),按⽅式⼆应该付的钱为:300×0.8=240(元).故答案为:240;240;(2)当400<x<600时,400×0.8+0.5(x﹣400)=x﹣120,故当400<x<600时,x取480时,两种⽅式的优惠相同.4.解:(1)因原线段是中点分成的短线段的2倍,所以线段的中点是这条线段的巧点,故答案为:是;(2)设C点表⽰的数为x,则AC=x+20,BC=40﹣x,AB=40+20=60,根据“巧点”的定义可知:①当AB=2AC时,有60=2(x+20),解得,x=10;②当BC=2AC时,有40﹣x=2(x+20),解得,x=0;③当AC=2BC时,有x+20=2(40﹣x),解得,x=20.综上,C点表⽰的数为10或0或20;(3)由题意得,AP=2t,AQ=60﹣4t,PQ=,i)若0≤t≤10时,点P为AQ的“巧点”,有①当AQ=2AP时,60﹣4t=2×2t,解得,t=;②当PQ=2AP时,60﹣6t=2×2t,解得,t=6;③当AP=2PQ时,2t=2(60﹣6t),解得,t=;ii)若10<t≤15时,点Q为AP的“巧点”,有①当AP=2AQ时,2t=2×(60﹣4t),解得,t=12;②当PQ=2AQ时,6t﹣60=2×(60﹣4t),解得,t=;③当AQ=2PQ时,60﹣4t=2(6t﹣60),解得,t=.综上,所求运动时间t(s)的所有可能取值为,6,,12,,.5.解:设原来数字为x,2x﹣1478=(x﹣2000)×10+2解得,x=2315答:⼩明的考场号是2315.6.解:(1)设甲单位有x名退休职⼯准备参加游玩,则⼄单位有(102﹣x)名退休职⼯准备参加游玩,依题意,得:50x+60(102﹣x)=5500,解得:x=62,答:甲单位有62名退休职⼯准备参加游玩,⼄单位有40名退休职⼯准备参加游玩.(2)∵62﹣12=50(名),50+40=90(名),∴有4种购买⽅案,⽅案1:甲、⼄两单位分开购票,甲单位购买50张门票、⼄单位购买40张门票;⽅案2:甲、⼄两单位分开购票,甲单位购买51张门票、⼄单位购买40张门票;⽅案3:甲、⼄两单位联合购票,购买90张门票;⽅案4:甲、⼄两单位联合购票,购买101张门票.⽅案1所需费⽤为60×50+60×40=5400(元);⽅案2所需费⽤为50×51+60×40=4950(元);⽅案3所需费⽤为50×90=4500(元);⽅案4所需费⽤为40×101=4040(元).∵5400>4950>4500>4040,∴甲、⼄两单位联合购票,购买101张门票最省钱.7.解:设⼤型挖掘机x台,则⼩型挖掘机(120﹣x)台.根据题意得:20[360x+200(120﹣x)]=704000,解得x=70,则120﹣x=50,答:⼤型挖掘机70台,⼩型挖掘机50台.8.解:(1)设订制公司⽣产每套“陶娃”的成本是x元,由题意,可得(50﹣x)×750=(50×0.8﹣x)×1000,解得x=10.答:订制公司⽣产每套“陶娃”的成本是10元;(2)(50﹣10)×750=30000(元).答:订制公司获得的利润为30000元.9.解:(1)由题意有,40×200×0.8+30×300×(1﹣a%)=14050,解得a=15.故a的值为15;(2)若某单位购买A商品x件(x为正整数),则购买B商品(2x+1)件.当x+2x+1=100时,解得:x=33,当总数不⾜101时,即只能选择⽅案⼀获得最⼤优惠;当总数达到或超过101,即x>33时,⽅案⼀需付款:200×0.8x+300×0.85(2x+1)=160x+510x+255=670x+255,⽅案⼆需付款:[200x+300(2x+1)]×0.82=656x+246,∵(670x+255)﹣(656x+246)=14x+9>0,∴选⽅案⼆优惠更⼤.综上所述:当x≤33时,只能选择⽅案⼀获得最⼤优惠;当x>33时,采⽤⽅案⼆获得最⼤优惠.10.解:(1)25×8+(+1﹣3.5+2﹣2.5﹣3+2﹣2﹣2)=200﹣8=192(千克).故这8箱西红柿⼀共重192千克;(2)设在销售过程中西红柿的单价应定为每千克x元,根据题意得:192x﹣40×8=160,解得:x=2.5.故在销售过程中西红柿的单价应定为每千克2.5元.11.解:(1)4.=4=4;(2)设x=0.272727…,①∴100x=27.272727…,②②﹣①得:99x=27解得:∴∴0.=;(3)0.2==,∵∴∴;(4)∵0.1428=,∴等号两边同时乘以1000得:714..8571=,∴2.8571=714.8571﹣712=﹣712=.故答案为:4;,;.12.解:设应从第⼀组调x⼈到第⼆组去,依题意,得:28﹣x=(20+x),解得:x=12.答:应从第⼀组调12⼈到第⼆组去,13.解:(1)∵c=14,BC=6,∴b=14﹣6=8;∵AC=3BC,∴AC=18,∴a=14﹣18=﹣4;(2)[2﹣(﹣4)]÷2=3(秒),14﹣1×3=11.故Q点对应的数是11;(3)P在C点的左边,则18﹣2t=t,解得t=6;P在C点的右边,则2t﹣18=t,解得t=18.综上所述,t的值为6或18.故答案为:6;18.14.解:(1)设应按x折销售,则80×(1+50%)×0.1x﹣80=80×20%解得x=8答:应按8折销售;(2)A、设剩余的衬衫按a折销售,由题意,得80×(1+50%)×400+80×(1+50%)×0.1a×(500﹣400)﹣80×500=80×35%×500.解得a=5.答:剩余的衬衫按5折销售,才能使售完这批衬衫后盈利35%;B、设购买⼀件送b元打车费,由题意,得80×(1+50%)×0.9×500﹣(500﹣300)b﹣80×500=80×25%×500 解得b=20答:购买⼀件送20元打车费,售完这批衬衫后可盈利25%.15.解:(1)设今年10⽉份从鱼塘⾥捕捞草鱼x千克,则捕捞的花鲢是(2500﹣x)千克,由题意,得16x+(2500﹣x)×24=52000解得x=1000所以2500﹣1000=1500(千克)答:今年10⽉份从鱼塘⾥捕捞草鱼1000千克,则捕捞的花鲢是1500千克;(2)由题意,得16(1000﹣2a)+1500(1﹣a%)×24×(1﹣)=94040﹣52000 解得a=30.答:a的值是30.16.解:(1)设七年级(1)班的⼈数为x,则(2)班的⼈数为(102﹣x),由题得:80x+60(102﹣x)=7080化简得:20x=960解得:x=48(⼈)∴102﹣x=102﹣48=54(⼈)答:七年级(1)班有48⼈,(2)班有54⼈.(⽤算术⽅法求解正确同样给分)(2)联合购票应付钱数为:102×50=5100(元)则节省的钱数为:7080﹣5100=1980(元)答:如果两个班联合起来购票可省1980元.17.解:(1)设该超市第⼀次购进甲种商品每件x元,⼄种商品每件(x+5)元.由题意得80x+120(x+5)=3600,解得x=15,x+5=15+5=20.答:该超市第⼀次购进甲种商品每件15元,⼄种商品每件20元.(2)该超市将第⼀次购进的甲、⼄两种商品全部销售完后⼀共可获得的利润=80×(20﹣15)+120×(30﹣20)=1600元.答:该超市将第⼀次购进的甲、⼄两种商品全部销售完后⼀共可获得1600元的利润.(3)由题意80×[20(1+a%)﹣15]+120×[30(1﹣a%)﹣(20﹣3)]=1600+260,解得a=5.答:a的值是5.18.解:(1)设购买书架x只时,到两家超市购买所需费⽤⼀样.根据题意得:20×200+80(x﹣20)=0.8×(20×200+80x),解得:x=50.答:购买书架50只时,到两家超市购买所需费⽤⼀样;(2)到A超市购买20个书柜和20个书架,到B超市购买80只书架,钱数最少,共需货款:20×200+80×(100﹣20)×0.8=9120(元).答:⾄少要准备9120元货款.19.解:(1)设当⾏程为x千⽶时,租⽤两种客车的费⽤相同,依题意有300+8x=14x,解得x=50.故当⾏程为50千⽶时,租⽤两种客车的费⽤相同;(2)300+8×30×2=780(元),14×30×2=840(元),∵840>780,∴为节省费⽤,会选择甲种客车.20.解:(1)设商场购进甲型节能灯x只,则购进⼄型节能灯(1000﹣x)只,由题意,得25x+45(1000﹣x)=37000解得:x=400购进⼄型节能灯1000﹣x=1000﹣400=600(只)答:购进甲型节能灯400只,购进⼄型节能灯600只进货款恰好为37000元.(2)设⼄型节能灯需打a折,0.1×60a﹣45=45×20%,解得a=9,答:⼄型节能灯需打9折.。

(新)人教版七年级数学上册第三章《一元一次方程》应用题分类:数轴类综合练习(附解析)

(新)人教版七年级数学上册第三章《一元一次方程》应用题分类:数轴类综合练习(附解析)

《一元一次方程》应用题分类:数轴类综合练习(一)1.如图,小亮把东、西大街表示成一条数轴,把公交站的位置用数轴上的点表示出来,其中鼓楼站的位置记为原点,正东方向为正方向,公交车的一站地为一个单位长度(假设每站距离相同).请你根据图形回答下列问题:(1)到广济街的距离等于2站地的是.(2)到这8个站距离之和最小的站地是否存在?若存在,是哪个站地?最小值是多少?若不存在,请说明理由.(3)如果用a表示数轴上的点表示的数,那么|a﹣1|=2表示这个点与1对应点的距离为2,请你根据以上信息回答下面问题:①若|a﹣2|+|a+1|=3,请你指出满足条件a的所有站地表示的数.②若|a﹣4|+|a+1|=10,请你求出满足条件的a的值.2.【新定义】:A、B、C为数轴上三点,若点C到A的距离是点C到B的距离的3倍,我们就称点C是【A,B】的幸运点.【特例感知】(1)如图1,点A表示的数为﹣1,点B表示的数为3.表示2的点C到点A的距离是3,到点B的距离是1,那么点C是【A,B】的幸运点.①【B,A】的幸运点表示的数是;A.﹣1;B.0;C.1;D.2②试说明A是【C,E】的幸运点.(2)如图2,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4,则【M,N】的幸运点表示的数为.【拓展应用】(3)如图3,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以3个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B三个点中恰好有一个点为其余两点的幸运点?3.已知数轴上点A、点B、点C所对应的数分别是﹣6,2,12.(1)点M是数轴上一点,点M到点A、B、C三个点的距离和是35,直接写出点M对应的数;(2)若点P和点Q分别从点A和点B出发,分别以每秒3个单位和每秒1个单位的速度向点C运动,P点到达C点后,立即以同样的速度返回点A,点Q到达点C即停止运动,求点P和点Q运动多少秒时,点P和点Q相距2个单位长度?4.A,B两点在数轴上的位置如图,点A对应的数值为﹣5,点B对应的数值为11.(1)现有两动点M和N,点M从A点出发以2个单位长度/秒的速度向左运动,点N从点B出发以6个单位长度/秒的速度同时向右运动,问:运动多长时间满足MN=56?(2)现有两动点C和D,点C从A点出发以1个单位长度/秒的速度向右运动,点D从点B出发以5个单位长度/秒的速度同时向左运动,问:运动多长时间满足AC+BD=3CD?5.(直接填答案,不写推演过程)观察数轴,充分利用数形结合的思想.若点A,B在数轴上分别表示数a,b,则A,B两点的距离可表示为AB=|a﹣b|.根据以上信息回答下列问题:已知多项式2x4y2﹣3x2y﹣x﹣4的次数是b,3a与b互为相反数,在数轴上,点O是数轴原点,点A表示数a,点B 表示数b.设点M在数轴上对应的数为m.(1)A,B两点之间的距离是.(2)若满足AM=BM,则m=.(3)若A,M两点之间的距离为3,则B,M两点之间的距离是.(4)若满足AM+BM=12,则m=.(5)若动点M从点A出发第一次向左运动1个单位长度,在此新位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照此规律不断地左右运动,当运动了2019次时,则点M所对应的数m=.6.如图,已知数轴上点A表示的数为﹣1,点B表示的数为3,点P为数轴上一动点.(1)点A到原点O的距离为个单位长度;点B到原点O的距离为个单位长度;线段AB的长度为个单位长度;(2)若点P到点A、点B的距离相等,则点P表示的数为;(3)数轴上是否存在点P,使得PA+PB的和为6个单位长度?若存在,请求出PA的长;若不存在,请说明理由?(4)点P从点A出发,以每分钟1个单位长度的速度向左运动,同时点Q从点B出发,以每分钟2个单位长度的速度向左运动,请直接回答:几分钟后点P与点Q重合?7.如图,点A、B都在数轴上,O为原点.(1)线段AB中点表示的数是;(2)若点B以每秒3个单位长度的速度沿数轴向右运动了t秒,当点B在点O左边时,OB=,当点B至点O右边时,OB=;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O 不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值.8.如图,A、B、C为数轴上三点,A,B在数轴上对应的数分别为﹣12,16,点P与点Q分别从A、B两点同时当发,在数轴上运动,它们的速度分别是2个单位/秒,4个单位/秒,设它们运动的时间为t秒.(1)若点P与点Q在A、B两点之间相向运动,当它们相遇时,点P对应的数是;(2)若点P与点Q都向左运动,当点Q追上点P时,求点P对应的数.9.已知数轴上有A ,B ,C 三点,分别代表﹣36,﹣10,10,两只电子蚂蚁甲,乙分别从A ,C 两点同时相向而行,甲的速度为4个单位/秒.(1)问多少秒后,甲到A ,B ,C 的距离和为60个单位?(2)若乙的速度为6个单位/秒,两只电子蚂蚁甲,乙分别从A ,C 两点同时相向而行,问甲,乙在数轴上的哪个点相遇?(3)在(1)(2)的条件下,当甲到A 、B 、C 的距离和为60个单位时,甲调头返回.问甲,乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.10.已知数轴上两点A 、B 对应的数分别是6,﹣8,M 、N 、P 为数轴上三个动点,点M 从A点出发,速度为每秒2个单位,点N 从点B 出发,速度为M 点的3倍,点P 从原点出发,速度为每秒1个单位.(1)若点M 向右运动,同时点N 向左运动,求多长时间点M 与点N 相距54个单位?(2)若点M 、N 、P 同时都向右运动,求多长时间点P 到点M ,N 的距离相等?(3)当时间t 满足t 1<t ≤t 2时,M 、N 两点之间,N 、P 两点之间,M 、P 两点之间分别有55个、44个、11个整数点,请直接写出t 1,t 2的值.参考答案1.解:(1)由图可知,到广济街的距离等于2站地的是西门和端履门.故答案为:西门和端履门.(2)这8个站间隔相等,距离之和最小的站地应该是位于中间的两个,即广济站和钟楼站,最小值是:1+2+3+1+2+3+4=16.∴到这8个站距离之和最小的站地存在,是广济站和钟楼站,最小值是16.(3)①∵|a﹣2|+|a+1|=3,∴当a≤﹣1时,2﹣a﹣a﹣1=3,∴a=﹣1;当﹣1<a<2时,2﹣a+a+1=3,∴当﹣1<a<2时,满足条件a的站地表示的数为0或1;当2≤a≤3时,a﹣2+a+1=3,∴a=2.综上,满足条件a的所有站地表示的数为﹣1、0、1或2.②∵|a﹣4|+|a+1|=10,∴当a≤﹣1时,4﹣a﹣a﹣1=10,∴a=﹣3.5;当﹣1<a≤4时,4﹣a+a+1=10,∴此时a无解;当a>4时,a﹣4+a+1=10,∴a=6.5.综上,满足条件的a的值为﹣3.5或6.5.2.解:(1)①由题意可知,点0到B是到A点距离的3倍,即EA=1,EB=3,故选B.②由数轴可知,AC=3,AE=1,∴AC=3AE,∴A是【C,E】的幸运点.(2)设【M,N】的幸运点为P,P表示的数为p,∴PM=3PN,∴|p+2|=3|p﹣4|,∴p+2=3(p﹣4)或p+2=﹣3(p﹣4),∴p=7或p=2.5;故答案为7或2.5;(3)由题意可得,AB=60,BP=3t,AP=60﹣3t,①当P是【A,B】的幸运点时,PA=3PB,∴60﹣3t=3×3t,∴t=5;②当P是【B,A】的幸运点时,PB=3PA,∴3t=3×(60﹣3t),∴t=15;③当A是【B,P】的幸运点时,AB=3PA,∴60=3(60﹣3t)∴t=;④当B是【A,P】的幸运点时,AB=3PB,∴60=3×3t,∴t=;∴t为5秒,15秒,秒,秒时,P、A、B中恰好有一个点为其余两点的幸运点.3.解:设点M对应的数为x,当点M在点A左侧,由题意可得:12﹣x+2﹣x+(﹣6)﹣x=35,解得x=﹣9,当点M在线段AB上,由题意可得:12﹣x+2﹣x+x﹣(﹣6)=35,解得:x=﹣15(不合题意舍去);当点M在线段BC上时,由题意可得12﹣x+x﹣2+x+6=35,解得:x=19(不合题意舍去);当点M在点C右侧时,由题意可得:x﹣12+x﹣2+x+6=35,解得:x=,综上所述:点M对应的数为﹣9或;(2)设点P运动x秒时,点P和点Q相距2个单位长度,点P没有到达C点前,由题意可得:|3x﹣(8+x)|=2,解得:x=5或3;点P返回过程中,由题意可得:3x﹣18+8+x+2=18或3x﹣18+8+x=18+2,解得:x=或;综上所述:当点P运动5或3秒或或时,点P和点Q相距2个单位长度.4.解:(1)设运动时间为x秒时,MN=56.依题意,得:(6x+11)﹣(﹣2x﹣5)=56,解得:x=5.答:运动时间为5秒时,MN=56.(2)当运动时间为t秒时,点C对应的数为t﹣5,点D对应的数为﹣5t+11,∴AC=t,BD=5t,CD=|t﹣5﹣(﹣5t+11)|=|6t﹣16|.∵AC+BD=3CD,∴t+5t=3|6t﹣16|,即t+5t=3(6t﹣16)或t+5t=3(16﹣6t),解得:t=4或t=2.答:运动时间为2秒或4秒时,AC+BD=3CD.5.解:(1)由多项式的次数是6可知b=6,又3a和b互为相反数,故a=﹣2.∴A,B两点之间的距离是6﹣(﹣2)=8,故答案为:8;(2)∵AB=8,∴AM=BM=4,∴6﹣m=4,∴m=2,故答案为:2.(3)∵A,M两点之间的距离为3,∴|m+2|=3∴m=1或﹣5,∴BM=5或11;故答案为:5或11;(4)①当M在A左侧时,∵AM+MB=12,∴﹣2﹣x+6﹣x=12,∴x=﹣4;②M在A和B之间时,∵AM+MB=AB=8≠12,∴点M不存在;③点M在B点右侧时,∵AM+MB=12,∴x+2+x﹣6=12,∴x=8;故答案为:﹣4或8.(5)依题意得:﹣2﹣1+2﹣3+4﹣5+6﹣7+……+2018﹣2019=﹣2+1009﹣2019=﹣1012.∴点M对应的有理数为﹣1012.故答案为:﹣1012.6.解:(1)∵点A表示的数为﹣1,点B表示的数为3,∴点A到原点O的距离为1个单位长度,点B到原点O的距离为3个单位长度,线段AB 的长度为4个单位长度;故答案为:1,3,4;(2)设点P表示的数为x,∵点P到点A、点B的距离相等,∴3﹣x=x﹣(﹣1)∴x=1,∴点P表示的数为1,故答案为1;(3)存在,设点P表示的数为y,当y<﹣1时,∵PA+PB=﹣1﹣y+3﹣y=6,∴y=﹣2,∴PA=﹣1﹣(﹣2)=1,当﹣1≤y≤3时,∵PA+PB=y﹣(﹣1)+3﹣y=6,∴无解,当y>3时,∵PA+PB=y﹣(﹣1)+y﹣3=6,∴y=4,∴PA=5;综上所述:PA=1或5.(4)设经过t分钟后点P与点Q重合,2t﹣t=4,∴t=4答:经过4分钟后点P与点Q重合.7.解:(1)线段AB中点表示的数是:=﹣1.故答案是:﹣1;(2)当点B在点O左边时,OB=4﹣3t,当点B至点O右边时,OB=3t﹣4;故答案是:4﹣3t,3t﹣4;(3)①当点O是线段AB的中点时,OB=OA4﹣3t=2+tt=0.5②当点B是线段OA的中点时,OA=2OB2+t=2(3t﹣4)t=2;③当点A是线段OB的中点时,OB=2OA3t﹣4=2(2+t)t=8.综上所述,符合条件的t的值是0.5,2或8.8.解:(1)根据题意,得2t+4t=28解得t=∴2t=﹣12=﹣∴P对应的数是﹣.(2)根据题意,得4t﹣2t=28解得t=14∴﹣12﹣2t=﹣12﹣28=﹣40答:点P对应的数是﹣40.9.解:(1)设x秒后,甲到A,B,C的距离和为60个单位.B点距A,C两点的距离为26+20=46<60,A点距B、C两点的距离为26+46=72>60,C点距A、B的距离为46+20=66>40,故甲应位于AB或BC之间.①AB之间时:4x+(26﹣4x)+(26﹣4x+20)=60,x=3;②BC之间时:4x+(4x﹣26)+(46﹣4x)=60,x=10,综上所述,经过3s或10s后,甲到A,B,C的距离和为60个单位;(2)设ts后甲与乙相遇4t+6t=46,解得:x=4.6,4×4.6=18.4,﹣36+18.4=﹣17.6答:甲,乙在数轴上的点﹣17.6相遇;(3)设y秒后甲到A,B,C三点的距离之和为60个单位,①甲从A向右运动3秒时返回,此时甲、乙表示在数轴上为同一点,所表示的数相同.甲表示的数为:﹣36+4×3﹣4y;乙表示的数为:10﹣6×3﹣6y,依据题意得:﹣36+4×3﹣4y=10﹣6×3﹣6y,解得:y=8,相遇点表示的数为:﹣36+4×3﹣4y=﹣56(或:10﹣6×3﹣6y=﹣56),②甲从A向右运动10秒时返回,设y秒后与乙相遇.甲表示的数为:﹣36+4×10﹣4y;乙表示的数为:10﹣6×10﹣6y,依据题意得:﹣36+4×10﹣4y=10﹣6×10﹣6y,解得:y=﹣27(不合题意舍去),即甲从A向右运动3秒时返回,能在数轴上与乙相遇,相遇点表示的数为﹣56.10.解:(1)设运动时间为t秒,由题意可得:6+8+2t+6t=54,∴t=5,∴运动5秒点M与点N相距54个单位;(2)设运动时间为t秒,由题意可知:M点运动到6+2t,N点运动到﹣8+6t,P点运动到t,当t<1.6时,点N在点P左侧,MP=NP,∴6+t=8﹣5t,∴t=s;当t>1.6时,点N在点P右侧,MP=NP,∴6+t=﹣8+5t,∴t=s,∴运动s或s时点P到点M,N的距离相等;(3)由题意可得:M、N、P三点之间整数点的多少可看作它们之间距离的大小,M、N两点距离最大,M、P两点距离最小,可得出M、P两点向右运动,N点向左运动=5s时,P在5,M在16,N在﹣38,①如上图,当t1再往前一点,MP之间的距离即包含11个整数点,NP之间有44个整数点;②当N继续以6个单位每秒的速度向左移动,P点向右运动,若N点移动到﹣39时,此时N、P之间仍为44个整数点,若N点过了﹣39时,此时N、P之间为45 个整数点故t2=+5=s∴t1=5s,t2=s.。

人教版七年级数学上册第三章《一元一次方程》应用题填空题拔高训练(一)

人教版七年级数学上册第三章《一元一次方程》应用题填空题拔高训练(一)

人教版七年级数学上册第三章《一元一次方程》应用题专题训练1.暑假期间,亮视眼镜店开展学生配镜优惠活动.某款式眼镜的广告如下,请你为广告牌填上原价.原价:元暑假八折优惠,现价:160元2.幻方是相当古老的数学问题,我国古代的《洛书》中记载了最早的幻方﹣﹣九宫图.将数字1~9分别填入如图所示的幻方中,要求每一横行、每一竖行以及两条斜对角线上的数字之和都是15,则m的值为.3.“元旦”期间,某商店单价为130元的书包按八折出售可获利30%,则该书包的进价是元.4.有一列数,按一定的规律排列成,﹣1,3,﹣9,27,﹣81,….若其中某三个相邻数的和是﹣567,则这三个数中第一个数是.5.有两种消费券:A券,满60元减20元,B券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元、30元.小敏有一张A券,小聪有一张B券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,则所购商品的标价是元.6.某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是元.7.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?“其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走步才能追到速度慢的人.8.文具店销售某种笔袋,每个18元,小华去购买这种笔袋,结账时店员说:“如果你再多买一个就可以打九折,价钱比现在便宜36元”,小华说:“那就多买一个吧,谢谢,”根据两人的对话可知,小华结账时实际付款元.9.某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A区的物资比B区的物资的1.5倍少1000件,则发往A区的生活物资为件.10.一个书包的标价为115元,按8折出售仍可获利15%,该书包的进价为元.11.任何一个无限循环小数都可以写成分数的形式,应该怎样写呢?我们以无限循环小数0.为例进行说明:设0.=x,由0.=0.7777…可知,10x=7.7777…,所以10x﹣x=7,解方程,得x=,于是.得0.=.将0.写成分数的形式是.12.小明按标价的八折购买了一双鞋,比按标价购买节省了40元,这双鞋的实际售价为元.13.某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件销售利润为元.14.已知:派派的妈妈和派派今年共36岁,再过5年,派派的妈妈的年龄是派派年龄的4倍还大1岁,当派派的妈妈40岁时,则派派的年龄为岁.15.一件衣服售价为200元,六折销售,仍可获利20%,则这件衣服的进价是元.16.一台空调标价2000元,若按6折销售仍可获利20%,则这台空调的进价是元.17.明代数学家程大位的《算法统宗》中有这样一个问题(如图),其大意为:有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,请问:所分的银子共有两.(注:明代时1斤=16两,故有“半斤八两”这个成语)18.一件服装的标价为200元,打八折销售后可获利50元,则该件服装的成本价是元.19.某商品的进价为每件100元,按标价打八折售出后每件可获利20元,则该商品的标价为每件元.20.甲乙二人在环形跑道上同时同地出发,同向运动.若甲的速度是乙的速度的2倍,则甲运动2周,甲、乙第一次相遇;若甲的速度是乙的速度3倍,则甲运动周,甲、乙第一次相遇;若甲的速度是乙的速度4倍,则甲运动周,甲、乙第一次相遇,…,以此探究正常走时的时钟,时针和分针从0点(12点)同时出发,分针旋转周,时针和分针第一次相遇.21.书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书超过200元一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是元.22.一件服装的标价为300元,打八折销售后可获利60元,则该件服装的成本价是元.23.为了改善办学条件,学校购置了笔记本电脑和台式电脑共100台,已知笔记本电脑的台数比台式电脑的台数的还少5台,则购置的笔记本电脑有台.24.王大爷用280元买了甲、乙两种药材,甲种药材每千克20元,乙种药材每千克60元,且甲种药材比乙种药材多买了2千克,则甲种药材买了千克.参考答案1.解:设广告牌上的原价为x元,依题意,得:0.8x=160,解得:x=200.故答案为:200.2.解:依题意,得:2+m+4=15,解得:m=9.故答案为:9.3.解:设该书包的进价为x元,根据题意得:130×80%﹣x=30%x,整理得:1.3x=104,解得:x=80,则该书包的进价是80元.故答案为:80.4.解:设这三个数中的第一个数为x,则另外两个数分别为﹣3x,9x,依题意,得:x﹣3x+9x=﹣567,解得:x=﹣81.故答案为:﹣81.5.解:设所购商品的标价是x元,则①所购商品的标价小于90元,x﹣20+x=150,解得x=85;②所购商品的标价大于90元,x﹣20+x﹣30=150,解得x=100.故所购商品的标价是100或85元.故答案为:100或85.由题意得,(1+40%)x×0.8=2240.解得:x=2000,故答案为20007.解:设走路快的人追上走路慢的人所用时间为t,根据题意得:(100﹣60)t=100,解得:t=2.5,∴100t=100×2.5=250.答:走路快的人要走250步才能追上走路慢的人.故答案是:250.8.解:设小华购买了x个笔袋,根据题意得:18(x﹣1)﹣18×0.9x=36,解得:x=30,∴18×0.9x=18×0.9×30=486.答:小华结账时实际付款486元.故答案为:486.9.解:设发往B区的生活物资为x件,则发往A区的生活物资为(1.5x﹣1000)件,根据题意得:x+1.5x﹣1000=6000,解得:x=2800,∴1.5x﹣1000=3200.答:发往A区的生活物资为3200件.故答案为:3200.10.解:设该书包的进价为x元,根据题意得:115×0.8﹣x=15%x,解得:x=80.答:该书包的进价为80元.故答案为:80.11.解:设0.=x,则36.=100x,∴100x﹣x=36,解得:x=.故答案为:.根据题意,得0.8x=x﹣40x=200.200﹣40=160(元)故答案是:160.13.解:设该商品每件销售利润为x元,根据题意,得80+x=120×0.7,解得x=4.答:该商品每件销售利润为4元.故答案为4.14.解:设今年派派的年龄为x岁,则妈妈的年龄为(36﹣x)岁,根据题意得:36﹣x+5=4(x+5)+1,解得:x=4,∴36﹣x﹣x=28,∴40﹣28=12(岁).故答案为:12.15.解:设进价是x元,则(1+20%)x=200×0.6,解得:x=100.则这件衬衣的进价是100元.故答案为100.16.解:设这台空调的进价为x元,根据题意得:2000×0.6﹣x=x×20%,解得:x=1000.故这台空调的进价是1000元.故答案为:1000.17.解:设有x人,依题意有7x+4=9x﹣8,解得x=6,7x+4=42+4=46.答:所分的银子共有46两.故答案为:46.18.解:设该件服装的成本价是x元,依题意得:200×80%﹣x=50,解得:x=110.∴该件服装的成本价是110元.故答案为:110.19.解:设该商品的标价为每件x元,由题意得:80%x﹣100=20,解得:x=150.答:该商品的标价为每件150元.故答案为:150.20.解:设分针旋转x周后,时针和分针第一次相遇,则时针旋转了(x﹣1)周,根据题意可得:60x=720(x﹣1),解得:x=.故答案为:.21.解:设第一次购书的原价为x元,则第二次购书的原价为3x元,依题意得:①当0<x≤时,x+3x=229.4,解得:x=57.35(舍去);②当<x≤时,x+×3x=229.4,解得:x=62,此时两次购书原价总和为:4x=4×62=248;③当<x≤100时,x+×3x=229.4,解得:x=74,此时两次购书原价总和为:4x=4×74=296;④当100<x≤200时,x+×3x=229.4,解得:x≈76.47(舍去);⑤当x>200时,x+×3x=229.4,解得:x≈81.93(舍去).综上可知:小丽这两次购书原价的总和是248或296元.故答案为:248或296.22.解:设该件服装的成本价是x元,依题意得:300×﹣x=60,解得:x=180.∴该件服装的成本价是180元.故答案为:180.23.解:设购置的笔记本电脑有x台,则购置的台式电脑为(100﹣x)台,依题意得:x=(100﹣x)﹣5,即20﹣x=0,解得:x=16.∴购置的笔记本电脑有16台.故答案为:16.24.5解:设买了甲种药材x千克,乙种药材(x﹣2)千克,依题意,得20x+60(x﹣2)=280,解得:x=5.即:甲种药材5千克.故答案是:5.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档