初一上数学应用题复习(题型大全用心收集的)汇总
七年级(上册)数学常考题型归纳(期末复习用)
![七年级(上册)数学常考题型归纳(期末复习用)](https://img.taocdn.com/s3/m/0797eca8da38376bae1fae5e.png)
七年级上册数学常考题型归纳第一章有理数一、正负数的运用 :1、某种药品的说明书上标明保存温度是(20±2)℃,则该药品在( )范围内保存才合适; A .18℃~20℃ ; B .20℃~22℃ ; C .18℃~21℃ ; D .18℃~22℃;2、我县2011年12月21日至24日每天的最高气温与最低气温如下表:日期 12月21日12月22日12月23日12月24日最高气温 8℃ 7℃ 5℃ 6℃ 最低气温-3℃-5℃-4℃-2℃其中温差最大的一天是【 】;A .12月21日;B .12月22日;C .12月23日;D .12月24日 ;二、数轴: (在数轴表示数,数轴与绝对值综合)3、如图所示,A ,B 两点在数轴上,点A 对应的数为2.若线段AB 的长为3,则点B 对应的数为【 】; A .-1; B .-2 ; C .-3 ; D .-4; (思考:如果没有图,结果又会怎样?)4、若数轴上表示2的点为M ,那么在数轴上与点M 相距4个单位的点所对应的数是______;5、如图,数轴A 、B 上两点分别对应实数a 、b ,则下列结论正确的是( );;A .a +b>0 ;B .ab >0;C .110a b -<;D .110a b +>6、b a 、两数在数轴上位置如图3所示,将b a b a --、、、用“<”连接,其中正确的是( ); A .a <a -<b <b -; B .b -<a <a -<b ; C .a -<b <b -<a ; D .b -<a <b <a -;B 0 2A-1 a 01 b图3ab 07、实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误的是( );A .0ab >B .0a b +<C .1a b <D .0a b -<8、有理数a 、b 、c 在数轴上的位置如图3所示,且 a 与b 互为相反数,则c b c a +--= ;9、如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A 点,则A 点表示的数是 .三、相反数 :(相反的两数相加等于0,相反数与数轴的联系)10、下列各组数中,互为相反数的是( );A .)1(--与1 ;B .(-1)2与1;C .1-与1;D .-12与1;四、倒数 :(互为倒数的两数的积为1)11、-3的倒数是________;五、绝对值 (|a |≥0,即非负数;化简|a+b |类式子时关键看a+b 的符号;如果|a |=b ,则a=±b )12、2-等于( );A .-2 ;B .12- ; C .2 ; D .12; 13、若ab ≠0,则等式a b a b+=+成立的条件是______________;14、若有理数a, b 满足(a-1)2+|b+3|=0, 则a-b= ;15、有理数a 、b 、c 在数轴上的位置如图所示,化简c b c a b a -+--+的结果是_____________;六、乘方运算[理解乘方的意义;(-a)2与-a 2的区别; (-1)奇与(-1)偶的区别]ao cb 图316、下列计算中正确的是( );A .532a a a =+ ; B .22a a -=- ; C .33)(a a =- ; D .22)(a a --;七、科学计数法 (表示形式a ×10n )17、青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500 000用科学记数法表示应为_________________平方千米.八、近似数与准确数(两种表示方法)18、由四舍五入法得到的近似数3108.8×,下列说法中正确的是【 】;A .精确到十分位 ;B .精确到个位;C .精确到百位;D .精确到千位; 19、下面说法中错误的是( ); A .368万精确到万位 ;B .2.58精确到百分位;C .0.0450有精确到千分位;D .10000精确到万位表示为“1万”或“1×104”;九、有理数的运算(运算顺序;运算法则;运算定律;简便运算)20、计算:(1)-2123+334-13-0.25 (2)22+2×[(-3)2-3÷12] (3))23(24)32(412)3(22---×++÷÷ (4)24)75.337811()1()21(25.032×++×÷----(5)(-1)3-14×[2-(-3)2] . (6)计算:()2431(2)453⎡⎤-+-÷⨯--⎣⎦十、综合应用:21、已知4个数中:(―1)2005,2-,-(-1.5),―32,其中正数的个数有();A.1 ; B.2; C.3 ; D.4;22、下列说,其中正确的个数为();①正数和负数统称为有理数;②一个有理数不是整数就是分数;③有最小的负数,没有最大的正数;④符号相反的两个数互为相反数;⑤a-一定在原点的左边。
初一数学应用题分类汇总(分类全)
![初一数学应用题分类汇总(分类全)](https://img.taocdn.com/s3/m/e6d1d8b7fd0a79563c1e721b.png)
行程问题① 路程=时间×速度 时间= 速度路程 速度=时间路程② 相遇路程=时间(相同)×(V 甲+ V 乙)(速度之和) 相遇时间(相同)=相遇路程÷(V 甲+ V 乙) 相遇速度(V 甲+ V 乙)=相遇路程÷相遇时间③ 追及路程(速度快比速度慢多走的路程)=追及时间(相同)×(V 甲- V 乙)(速度之差) 追及时间=追及路程÷(V 甲- V 乙)(追击速度) 追击速度(V 甲- V 乙)=追及路程÷追及时间④ 行船问题: V 顺= V 静+ V 水 V 逆= V静- V 水V静=(V 顺+ V 逆)÷2V 水=(V 顺- V 逆)÷21.甲、乙两辆火车相向而行,甲车的速度是乙车速度的5倍还快20km/h ,两地相距298km ,两车同时出发,半小时后相遇。
两车的速度各是多少?2.从甲地到乙地,公共汽车原来需行驶7小时,开通高速公路后,车速平均提高30km/h ,只需4小时即可到达。
求甲、乙两地间的距离。
3.一辆汽车已行驶12000km ,计划每月再行驶800km ,几个月后这辆汽车将行驶20800km ?4.京沪高速公路全长1262km ,一辆汽车从北京出发,匀速行驶5小时后,提速20km/h ;又匀速行驶5小时后,减速10km/h ,又匀速行驶5小时后到达上海,求各段时间的车速。
(精确到1km/h )5.甲、乙两地相距300km ,一列慢车从甲站开往乙站,每小时行40km ,一列快车从乙站开往甲站,每小时行80km ,已知慢车先行1.5h ,快车再开出,问快车开出多长时间与慢车相遇?6.A 、B 两地相距64千米,甲从A 地出发,每小时行14千米,乙从B 地出发,每小时行18千米,(1)若两人同时出发相向而行,则需经过几小时两人相遇?(2)若两人同时出发相向而行,则需几小时两人相距16千米?(3)若甲在前,乙在后,两人同时同向而行,则几小时后乙超过甲10千米?7.一队学生去校外进行训练,他们以5千米/时的速度行进,走了18分的时候,学校要将一个紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,通讯员需多少时间可以追上学生队伍?8.五一”长假日,弟弟和妈妈从家里出发一同去外婆家,他们走了1小时后,哥哥发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追,如果弟弟和妈妈每小时行2千米,他们从家里到外婆家需要1小时45分钟,问哥哥能在弟弟和妈妈到外婆家之前追上他们吗?9.甲乙两个人在400米的环形跑道上同时同点出发,甲的速度是6米/秒,乙的速度是4米/秒,乙跑几圈后,甲可超过乙一圈?10.小王在400米的环形跑道上跑了一圈,从起点出发,最初跑了45秒,后来加速1.5米/秒,再花了20秒跑到终点,问小王最初跑的速度是多少?11.甲乙两人在400米环形跑道上练习长跑,两人速度分别是200米/分和160米/分. (1)若两人从同一地点同时反向跑,多少分钟后两人第3次相遇? (2)若两人从同一地点同时同向跑,多少分钟后两人第2次相遇?12.某校运动会在400米环形跑道上进行10000米比赛,甲、乙两运动员同时起跑后,乙速超过甲速,在第15分钟时甲加快速度,在第18分钟时甲追上乙并且开始超过乙,在第23分钟时,甲再次追上乙,而在第23分50秒时,甲到达终点,那么乙跑完全程所用的时间是多少分钟?13. 一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?14.一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间距离。
七年级数学上册 一元一次方程应用题知识点及题型汇总(题型齐全)
![七年级数学上册 一元一次方程应用题知识点及题型汇总(题型齐全)](https://img.taocdn.com/s3/m/12f47c3f11a6f524ccbff121dd36a32d7375c714.png)
一元一次方程应用题题型汇总一、列一元一次方程解应用题完整步骤∶审∶找出等量关系设:直接设元和间接设元列:根据等量关系,列方程解∶解方程验:方程的解要符合实际情况答: 作答一、常见列方程解应用题的几种类型(一)和差倍分问题基本数量关系(抓住关键性词语)和差倍分的关键词有和、差、多、少、几分之几、几倍多几、几倍少几等.【例1】已知小明的课时费是每小时100元,底薪是20000元,余半仙的课时费是每小时2000元,底薪是50000元.若小明和余半仙在某个月上课时间长度相同,而收入情况为小明是余半仙的 .问这个月小明上了多少小时的课?(单小时课时费*小时数+底薪=总收入) 解:设这个月小明上了x小时的课,根据题意,可列方程100x + 20000 = 1/10 (2000x + 50000)解得:x = 150.答:这个月小明上了150小时的课.【例2】小明没有什么经济头脑,其日常开销主要由小红管理.一天小红看了看小明的钱包,说:“我如果给你400元,我剩下的钱是你的11倍;我如果给你500元,我剩下的钱是你的9倍.”问小明实际有多少钱?解:设小明实际有x元,根据题意,可列方程11(x + 400) + 400 = 9 (x + 500) + 500解得:x = 100答:小明实际有100元.【举一反三】1.某房间里有四条腿的椅子和三条腿的凳子共16个,如果椅子腿数与凳子腿数的和为60条,有几张椅子和几条凳子?2.一个长方形的周长是60cm,且长与宽的比是3∶2,求长方形的宽.3. 足球比赛的记分规则是:胜一场得3分,平一场得1分,负一场得0分. 某队在某次比赛中共踢了14场球,其中负5场,共得19分. 问这个队共胜了多少场.(二)配套问题:1.人员调配问题从调配后的数量关系中找等量关系,要注意调配对象流动的方向和数量。
调配问题中,若从一处调到另一处,则一处减,另一处加,且量相同;若另外从其他地方调入,则两处都加,且两处加的总数等于调入总数。
七年级上册数学应用题及答案大全
![七年级上册数学应用题及答案大全](https://img.taocdn.com/s3/m/5497681fb80d6c85ec3a87c24028915f804d84e4.png)
七年级上册数学应用题及答案大全一、有理数运算1. 某人的银行卡上存有 200 元钱,他取了 120 元钱,还了一笔帐,付了 67 元钱,最后他的银行卡上还剩下多少钱?答:银行卡上还剩下 13 元钱。
2. 某家饭店有 5 桌客人,每桌消费 78 元钱,另外还有一桌消费了 120 元钱。
饭店的总收入是多少?答:饭店的总收入是 510 元钱。
3. 汽车每小时行驶 56 公里,从 A 市到 B 市要行驶 448 公里,需要多长时间?答:汽车需要行驶 8 小时。
二、比例与比例应用1. 一朵花每天太阳下山后的 6 小时内会开放 9 朵花瓣,如果这朵花一天中太阳落山的时间为 18:30,那么它最晚开放多少朵花瓣?答:这朵花最晚开放 45 朵花瓣。
2. 一家糖果店有 4 种不同重量的糖果,它们的价格比分别是 1:2:3:4,如果第一种糖果每克 0.4 元,那么第四种糖果每克多少钱?答:第四种糖果每克 1.2 元。
3. 好视力党员比例是 3:7,全国共有 8000 万好视力人群,那么党员中好视力人群的人数是多少?答:好视力的党员人数是 3600 万。
三、平均数1. 某班有 50 个学生,他们的总成绩为 2500 分,平均分是多少?答:平均分是 50 分。
2. 一家餐厅一天供应 300 份饭菜,若中午饭时间供应的饭菜量是晚饭的 1.5 倍,中午共供应多少份饭菜?答:中午共供应 150 份饭菜。
3. 用一张面积为 20 $\mathrm{dm}^{2}$ 的长方形纸板剪出 5 个形状相同的小正方形,每个小正方形的面积是多少平方厘米?答:每个小正方形的面积是 20 平方厘米。
四、百分数1. 一桶汽油原价是 280 元,打了 8 折之后的价格是多少?答:打折后的价格是 224 元。
2. 某商场清仓促销,商品原价标价 60 元,打了 2 折的折扣,折后价格是多少?答:折后价格是 12 元。
3. 某自行车厂每条自行车生产 100 元的成本,标价 300 元,最终实际售价是标价的 80%,每条自行车的利润是多少?答:每条自行车的利润是 40 元。
人教版七年级数学上册应用题专题归纳(1)
![人教版七年级数学上册应用题专题归纳(1)](https://img.taocdn.com/s3/m/63b242a21a37f111f1855bfc.png)
列一元一次方程解应用题的常见题型(设未知数,找等量关系列方程)一. 和差倍分的问题问题的特点:已知两个量之间存在合倍差关系,可以求这两个量的多少。
基本方法:以和倍差中的一种关系设未知数并表示其他量,选用余下的关系列出方程。
1. 一个数的 2 倍与 10 的和等于 18,则这个数是_______。
一个数的二分之一与 3 的差等于 2,则这个数是_______。
一个数的 3 倍比 10 大 2,则这个数是_______。
2.一个机床厂今年第一季度生产机床180台,比去年同期的二倍多36台,去年一季度产量多少台?3.某学校组织10名优秀学生春游,预计费用若干元,后来又来了2名同学,原来的费用不变,这样每人可以少摊3元,则原来每人需要付费多少元?4.七年级二班有45人报名参加了文学社或书画社,已知参加文学社的人数比参加书画社的人数多5人,两个社都参加的有20人,问参加书画社的有多少人?二. 等积变形问题此类问题的关键在“等积”上,是等量关系的所在,必须掌握常见几何图形的面积、体积公式。
“等积变形”是以形状改变而体积不变为前提。
1. 把内径为 200mm,高为 500mm 的圆柱形铁桶,装满水后慢慢地向内径为 160mm,高为 400mm 的空木桶装满水后,铁桶内水位下降了多少?2. 要锻造一个直径为8cm,高为4cm的圆柱形毛坯,至少应截取直径为4cm的圆钢多少cm。
三. 相遇问题(相向而行):这类问题的相等关系是:各人走路之和等于总路程或同时走时两人所走的时间相等为等量关系。
对应公式:路程=速度×时间快者路程+慢者路程=总路程(慢者速度+快者速度)×相遇时间=相遇路程1. 甲、乙两车从相距 264 千米的 A、B 两地同时出发相向而行,甲速是乙速的 1.2 倍,4 小时相遇,求乙速?2. 甲、乙两站相距 600 千米,慢车从甲地出发,每小时行 40 千米,快车从乙地出发,每小时行 60 千米,若慢车先行 50 分钟,快车再开出,又行一段时间后遇到慢车,求快车开出多少小时两车相遇?3. A、B 两地相距 75 千米,一辆汽车以 50 千米/时的速度从 A 地出发,另一辆汽车以 40 千米/时速度从 B 地出发,两车同时出发,相向而行,经过几小时两车相距 30 千米?四. 追及问题(同向而行):这类问题的等量关系是:两人的路程差等于追及的路程或以追及时间为等量关系。
(完整word)七年级数学上册应用题大全,文档
![(完整word)七年级数学上册应用题大全,文档](https://img.taocdn.com/s3/m/8e694b83f242336c1fb95e34.png)
七年级数学上册应用题大全1. 为节约能源,某单位按以下规定收取每个月电费:用电不高出140 度,按每度0.43 元收费;若是高出 140 度,高出局部按每度 0.57 元收费。
假设墨用电户四月费的电费平均每度0.5 元,问该用电户四月份应缴电费多少元?2. 某大商场家电部送货人员与销售人员人数之比为1:8。
今年夏天由于家电购置量明显增加,家电部经理从销售人员中抽调了22 人去送货。
结果送货人员与销售人数之比为2:5。
求这个商场家电部原来各有多少名送货人员和销售人员?3. 现对某商品降价10%促销 , 为了使销售金额不变, 销售量要比按原价销售时增加百分之几?4. 甲.乙两种商品的原单价和为 100 元,因市场变化,甲商品降 10%,乙商品抬价 5%调价后两商品的单价和比原单价和提高 2%,甲.乙两商品原单价各是多少/5. 甲车间人数比乙车间人数的 4/5 少 30 人,若是从乙车间调 10 人到甲车间去,那么甲车间的人数就是乙车间的3/4 。
求原来每个车间各多少人?6. 甲骑自行车从 A 地到 B 地,乙骑自行车从 B 地到 A 地,两人都均速前进,以知两人在上午8 时同时出发,到上午 10 时,两人还相距36 千米,到中午12 时,两人又相距36 千米,求A. B 两地间的行程?7. 甲、乙两车长度均为180 米,假设两列车相对行驶,从车头相遇到车尾走开共12 秒;假设同向行驶,从甲车头遇到乙车尾,到甲车尾高出乙车头需 60 秒,二车的速度不变,求甲、乙两车的速度。
8. 两根同样长的蜡烛,粗的可燃 3 小时 , 细的可燃8 / 3小时 , 停电时, 同时点燃两根蜡烛, 来电时同时吹灭 , 粗的是细的长度的 2 倍, 求停电的时间,设停电的时间是X9.某工厂今年共生产某种机器 2300 台,与昨年对照,上半年增加 25%,下半年减少 15%,问今年下半年生产了多少台 ? 。
1.甲骑自行车11. 跑得快的马每天走240 里,跑得慢的马每天走150 里。
初一上学期数学应用题类型汇总及练习
![初一上学期数学应用题类型汇总及练习](https://img.taocdn.com/s3/m/1757add06f1aff00bed51e55.png)
【利润问题】1、某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,问这种商品的定价是多少?2、某种品牌电风扇的标价为165元,若降价以九折出售,仍可获利10%(相对于成本价),那么该商品的成本价是多少?3、一商场把彩电按标价的九折出售,仍可获利20%,如果该彩电的进货价是2400元,那么彩电的标价是多少元?4、一家服装店将某种服装按成本提高40%后标价,又以八折优惠卖出,•结果每件仍获利15元,这种服装每件的成本为_________。
5、某件商品9折降价销售后每件商品售价为元,则该商品每件原价为( )一种药物涨价25%的价格是50元,那么涨价前的价格x满足的方程是____________。
6、某商场将进价为每件X元的上衣标价为m元,在此基础上再降价10%,顾客需付款270元。
已知进价x元时标价m元的60%,则x的值是______________7、某商品的销售价格每件900元,为了参加市场竞争,商店按售价的九折再让利40元销售,些时仍可获利10%,此商品的进价为______。
8、如果某商品进价的降低5%,而售价不变,利润率可提高15个百分点,求此商品的原来的利润率9、某商场出售某种文具,每件可盈利2元,为支援贫困山区的小朋友,按7折收给某山区学校,结果每件盈利0.20元。
问该文具的进价是每件多少元?10.商店里有种型号的电视机,每台售价1200元,可盈利20%,现有一客商以11500元的总价购买了若干台这咱型号的电视机,这样商店仍有15%的利润,问客商买了几台电视机?11、某商品进价1500元,提高40%后标价,若打折销售,使其利润率为20%,则此商品是按几折销售的?12、某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?13、妈妈带小明到文具店买书包和文具盒,经过讨价还价,原价42元的书包打九折,原价18元的文具盒打八折。
初一上数学应用题复习(题型大全用心收集的)汇总
![初一上数学应用题复习(题型大全用心收集的)汇总](https://img.taocdn.com/s3/m/f75da50333d4b14e842468a3.png)
初一上数学应用题复习(题型大全用心收集的)汇总-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN一元一次方程应用题归类汇集:(一)行程问题:1.从甲地到乙地,某人步行比乘公交车多用小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x千米,则列方程为________________。
2.甲、乙两人在相距18千米的两地同时出发,相向而行,1小时48分相遇,如果甲比乙早出发40分钟,那么在乙出发1小时30分时两人相遇,求甲、乙两人的速度。
3. 某人从家里骑自行车到学校。
若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米4.在800米跑道上有两人练中长路,甲每分钟跑320米,乙每分钟跑280米,•两人同时同地同向起跑,t分钟后第一次相遇,t等于分钟.5.一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过16秒,已知客车与货车的速度之比是3∶2,问两车每秒各行驶多少米6.与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。
行人的速度是每小时3.6Km,骑自行车的人的速度是每小时10.8Km。
如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车人的时间是26秒。
(1)行人的速度为每秒多少米;(2)求这列火车的身长是多少米。
7.休息日我和妈妈从家里出发一同去外婆家,我们走了1小时后,爸爸发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追,如果我和妈妈每小时行2千米,从家里到外婆家需要1小时45分钟,问爸爸能在我和妈妈到外婆家之前追上我们吗8.一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。
汽车速度60公里/小时,我们的速度是5公里/小时,步行者比汽车提前1小时出发,这辆汽车到达目的地后,再回头接步行这部分人。
初一应用题经典题型
![初一应用题经典题型](https://img.taocdn.com/s3/m/0ea1753400f69e3143323968011ca300a6c3f6bd.png)
初一的应用题经典题型包括但不限于以下几种:
1. 追及问题:两个物体在同一时刻开始运动,一个在另一个前面,求后者追上前者的时间或者距离。
2. 相遇问题:两个物体从两个相对的点同时开始运动,最终在某一点相遇。
要求相遇的时间或者距离。
3. 比例问题:涉及到两个或多个数量之间的比例关系,如工程问题中的工作量与工作时间之间的比例。
4. 百分数问题:涉及到百分数的应用,例如增长率、折扣、利息等。
5. 平均数问题:求一组数的平均数,或者比较两组数的平均数。
6. 代数问题:涉及到代数方程的解,不等式的求解,函数的图象等。
7. 几何问题:涉及到几何图形的性质,如周长、面积、体积等。
8. 逻辑推理问题:通过已知信息进行逻辑推理,得出结论。
9. 最大/最小值问题:求某个量在给定条件下的最大值或最小值。
10. 方案选择问题:给定一组条件,要求选择最优的方案。
以上只是初一应用题的一些经典题型,实际上应用题的题型非常广泛,可以涉及各个学科的知识。
初一上学期数学应用题型汇总
![初一上学期数学应用题型汇总](https://img.taocdn.com/s3/m/047ffe4948d7c1c708a1454f.png)
5.某商店出售甲、乙两种成衣,其中甲种成衣卖价120元盈 利20% ,乙种成衣卖价也是120元但亏损20% ,问该商店在 本次销售中实际上是盈还是亏,盈或亏多少钱?
6、某种商品的进价为100元,若要使利润率达20% ,则该 商品的销售价格应为多少元?此时每件商品可获利润多少 元?
二、行程问题 路程=速度×时间 时间=路程÷速度 速度=路
千米.甲每小时行45千米,乙每小时行多少千米? 乙每小时行x千米 3(45+x)+17=272 3(45+x)=255 45+x=85 x=40 乙每小时行40千米 5、某校六年级有两个班,上学期级数学平均成绩是85分.已知六(1)班 40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分? 平均成绩是x分 40*87.1+42x=85*82 3484+42x=6970 42x=3486 x=83 平均成绩是83分 6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒? 平均每箱x盒 10x=250+550 10x=800 x=80 平均每箱80盒 7、四年级共有学生200人,课外活动时,80名女生都去跳绳.男生分成5组 去踢足球,平均每组多少人? 平均每组x人 5x+80=200 5x=160 x=32 平均每组32人 8、食堂运来150千克大米,比运来的面粉的3倍少30千克.食堂运来面粉多 少千克? 食堂运来面粉x千克 3x-30=150 3x=180 x=60 食堂运来面粉60千克 9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵.平均每行梨树有多
一、销售题答案: 1.解:设该品牌电脑每台售价x元。 x(1-0.3)=4200 x=6000 答:去年台电脑价6000元。 2.解:设该商品的进价为x元。 1890*0.8-x=10%x 3.解:设最多降x元出售此商品。 (1500-x)-1000=1000*5% 4.解:设至多打x折。 1200*0.1x-800=800*5% 5.解:设甲种成衣的成本为x元,乙种成衣的成本为y元
初一数学上册复习专用:15个常考应用题
![初一数学上册复习专用:15个常考应用题](https://img.taocdn.com/s3/m/7cf711e8d4bbfd0a79563c1ec5da50e2524dd10c.png)
初一数学上册复习专用:15个常考应用题
利息税=利息×税率(20%)
(3)利润=×100%
注意利率有日利率、月利率和年利率:
年利率=月利率×12=日利率×365.
9.溶液配制问题
溶液质量=溶质质量+溶剂质量
溶质质量=溶液中所含溶质的质量分数.
常根据配制前后的溶质质量或溶剂质量找等量关系,分析时可采用列表的方法来帮助理解题意.
10.年龄问题
大小两个年龄差不会变;主要等量关系:抓住年龄增长,一年一岁,人人平等.
11.时钟问题
⑴将时钟的时针、分针、秒针的尖端看作一个点来研究
⑵通常将时钟问题看作以整时整分为起点的同向追击问题来分析。
常用数据:①时针的速度是0.5°/分;②分针的速度是6°/分;
③秒针的速度是6°/秒。
12.配套问题
这类问题的关键是找对配套的两类物体的数量关系
13.比例分配问题
各部分之和=总量
比例分配问题的一般思路为:设其中一份为x ,利用已知的比,写出相应的代数式.
14.比赛积分问题
注意比赛的积分规则,胜、负、平各场得分之和=总分
15.方案选择问题
根据具体问题,选取不同的解决方案。
初一上数学应用题复习
![初一上数学应用题复习](https://img.taocdn.com/s3/m/f65d35f0aef8941ea76e0561.png)
一、数量问题
某车间加工螺丝和螺母,一个螺
丝配两个螺母,车间现有工人60人,一个工人每小时加工15个螺丝或10
个螺母,怎么分配人员才能保证产
品配套?
二、行程问题
某人预定搭乘一辆货车从A地赶往B 地,实际上他乘货车行驶了三分之一路程后改乘一辆出租车,车速提高了一倍,结果提前一个半小时到达,已知货车的速度是每小时36公里,求两地距离。
三、销售问题
某商店以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的情况是赚了还是赔了?
某商品因换季打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售,将赚20元,这种商品的定价为多少?
四、分段计费
为节约能源,某单位按以下规定收取每月电费,用电不超过140度,按每度0.43元收费,如果超过140度,超过部分按每度0.57元收费. 若某用户四月份的电费平均每度0.5元,问该用户四月份应交电费多少元?
五、方案选择
某中学组织初一学生春游,原计划租用45座客车若干辆,但有15人没有座位;如果租同样数量的60座客车,则多出一辆,且其余客车恰好坐满。
问:原计划租45座客车多少辆?初一共有多少学生?。
七年级上册数学应用题专项训练
![七年级上册数学应用题专项训练](https://img.taocdn.com/s3/m/8a36a988185f312b3169a45177232f60ddcce7d8.png)
七年级上册数学应用题专项训练一、行程问题1. 甲、乙两人从相距240米的两地同时相向而行,甲每分钟走34米,乙每分钟走26米,从出发到两人相遇后又相距60米,要用几分钟?解析:首先明确两人从出发到相遇后又相距60米时,两人一共走的路程是公式米。
甲每分钟走34米,乙每分钟走26米,那么两人的速度和是公式米/分钟。
根据时间 = 路程÷速度,可得时间为公式分钟。
2. 一辆汽车以每小时60千米的速度从甲地开往乙地,4小时到达;若返回时每小时行驶80千米,几小时可以返回甲地?解析:根据路程 = 速度×时间,从甲地开往乙地的速度是每小时60千米,时间是4小时,所以甲乙两地的距离为公式千米。
返回时速度为每小时80千米,那么返回的时间为公式小时。
二、工程问题1. 一项工程,甲单独做8天完成,乙单独做12天完成。
现在甲、乙合作3天后,剩下的由乙单独做,还需几天完成?解析:把这项工程的工作量看作单位“1”。
甲单独做8天完成,则甲每天的工作效率是公式;乙单独做12天完成,则乙每天的工作效率是公式。
甲、乙合作3天完成的工作量为公式先算括号里的公式。
再乘以3得到公式。
剩下的工作量为公式。
乙单独做需要的时间为公式天。
2. 一个水池有甲、乙两个进水管,单开甲管6小时注满水池,单开乙管8小时注满水池。
如果甲、乙两管同时开,几小时可以注满水池的公式?解析:把水池的容积看作单位“1”。
甲管每小时的注水量是公式,乙管每小时的注水量是公式。
甲、乙两管同时开每小时的注水量为公式。
注满水池的公式需要的时间为公式小时。
三、销售问题1. 某商品的进价是2000元,标价为3000元,商店要求以利润率不低于5%的售价打折出售,售货员最低可以打几折出售此商品?解析:首先算出利润为公式元。
那么最低售价应该是公式元。
设打公式折,根据标价×折扣=售价,可得公式。
解方程公式,得公式,所以最低可以打7折。
2. 一种商品每件成本公式元,原来按成本增加22%定出价格,每件售价多少元?现在由于库存积压减价,按原价的85%出售,现售价多少元?每件还能盈利多少元?解析:原来按成本增加22%定出价格,则每件售价为公式元。
七年级上册数学应用题知识点归纳
![七年级上册数学应用题知识点归纳](https://img.taocdn.com/s3/m/7d2bebae80c758f5f61fb7360b4c2e3f56272512.png)
七年级上册数学应用题知识点归纳一、直接比较法直接比较法是解决数学应用题的一种常用方法。
它通常用于比较大小,解决大小关系题目。
在解题过程中,要注意对两者进行量的比较,看清楚问题中所涉及的量的含义,进行适当的转化,找出规律,最终得出结论。
这种方法在解决“两个数的大小比较”、“两个量的大小关系”等类型的题目时非常实用。
举例而言,当题目问到“甲学生的成绩是乙学生的多少倍”等时,通常可以运用直接比较法来解决。
二、求未知数法求未知数法是解决数学应用题的常见方法之一。
在应用题中,往往会给出一些已知的量,然后要求求解出另外一些未知数的值。
这时就需要用到求未知数法。
在应用题中,我们往往会根据已知条件列出方程式,然后通过方程式求解未知数的值。
这种方法常用于解决“人物数、商品价值、长度宽度”等问题的求解。
求未知数法对解决那些有限制条件的问题尤其有效。
在解题过程中,一定要先看清楚条件,然后进行转化,最终得出结果。
三、比例法比例法是解决数学应用题的重要方法之一。
在我们处理一些涉及比例关系的问题时,比例法能够帮我们轻松得到答案。
在数学应用题中,比例法通常用于解决“比例问题”。
当题目问到“两个或多个量之间的比”时,我们就可以考虑使用比例法进行求解。
当题目涉及到“工人的工资与工作时间的关系”、“材料与成品的量的关系”等问题时,我们可以尝试使用比例法来解决。
在应用题中使用比例法时,首先要清晰地列出等式,再进行换算,找到关系,最终得出结果。
四、图形法图形法是解决数学应用题的一种常见方法。
在解答一些与图形相关的应用题时,我们经常会用到图形法。
在应用题中,图形法常用于解决关于图形的周长、面积等问题。
当题目问到“一个多边形的周长”、“一个图形的面积”等时,我们就可以考虑使用图形法来解决。
使用图形法时,要根据问题中所涉及的图形类型,进行适当的分析和换算,最终得出结果。
五、分类讨论法分类讨论法是解决数学应用题的一种常用方法。
在解答一些复杂的应用题时,我们往往需要运用分类讨论法进行求解。
七年级上应用题总汇
![七年级上应用题总汇](https://img.taocdn.com/s3/m/febe8975f78a6529647d53c1.png)
七年级上应用题总汇一,储蓄问题利率的基本关系:本金×利率=利息利息×税率=利息税本金+利息–利息税=实得本利和1.小明把5000元按一年期的定期储蓄存入银行,年利率为1.98%,到期后可得利息元。
2、小明把x元按一年期的定期储蓄存入银行,年利率为1.98%,到期后可得利息元。
3、小明把x元按一年期的定期储蓄存入银行,年利率为1.98%,利息税的税率为20%,到期后应交利息税元最后小明实得本利和为元。
4.小明的爸爸前年存了年利率为2.43%的两年期定期储蓄。
今年到期后,扣除利息税20%,所得利息正好为小明买了一个价值48.6元的计算器,问小明爸爸前年存了多少钱?二,行程问题(追及,相遇,顺流逆流)相遇问题的等量关系:甲行距离+乙行距离=总路程追击问题的等量关系:1)同时不同地:慢者行的距离+两者之间的距离=快者行的距离2)同地不同时:甲行距离=乙行距离或慢者所用时间=快者所用时间+多用时间顺水逆水的问题的等量关系:1)顺水的路程= 逆水的路程2)顺速–逆速= 水速;顺速+ 逆速= 船速1、甲、乙两地相距162公里,一列慢车从甲站开出,每小时走48公里,一列快车从乙站开出,每小时走60公里试问:1)两列火车同时相向而行,多少时间可以相遇?2)两车同时反向而行,几小时后两车相距270公里?3)若两车相向而行,慢车先开出1小时,再用多少时间两车才能相遇?4)若两车相向而行,快车先开25分钟,快车开了几小时与慢车相遇? 5)两车同时同向而行(快车在后面),几小时后快车可以追上慢车?6)两车同时同向而行(慢车在后面),几小时后两车相距200公里?2、汽船从甲地顺水开往乙地,所用时间比从乙地逆水开往甲地少1.5小时。
已知船在静水的速度为18千米/小时,水流速度为2千米/小时,求甲、乙两地之间的距离?3、一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时。
初一数学上册方程应用题归纳
![初一数学上册方程应用题归纳](https://img.taocdn.com/s3/m/0b23ab966aec0975f46527d3240c844769eaa035.png)
初一数学上册方程应用题归纳初一数学上册方程应用题知识点1:市场经济、打折销售问题(1)商品利润=商品售价-商品成本价 (2)商品利润率= 某100%(3)商品销售额=商品销售价某商品销售量(4)商品的销售利润=(销售价-成本价)某销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售(按原价的0.8倍出售.)1.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是某元,那么所列方程为( )A.45% 某(1+80%)某-某=50B. 80%某(1+45%)某 - 某 = 50C. 某-80%某(1+45%)某 = 50D.80%某(1-45%)某 - 某 = 502. 某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?3. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?4.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.知识点2:方案选择问题1. 某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,•经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,•但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,•在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多 ?为什么?2.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50•元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1•分钟需付话费0.4元(这里均指市内电话).若一个月内通话某分钟,两种通话方式的费用分别为y1元和y2元.(1)写出y1,y2与某之间的函数关系式(即等式).(2)一个月内通话多少分钟,两种通话方式的费用相同?(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?3.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C 种每台2500元.(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.新-课- -第-一 -网(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,•销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?4.小刚为书房买灯。
初一数学上册应用题归纳总结
![初一数学上册应用题归纳总结](https://img.taocdn.com/s3/m/5dff0b29366baf1ffc4ffe4733687e21af45ff14.png)
初一数学上册应用题归纳总结初一数学上册应用题归纳一、选择题:本大题共12小题,每题3分,共36分,请你将认为正确答案前面的代号填入括号内1.﹣22=( )A. 1B. ﹣1C. 4D. ﹣4考点:有理数的乘方.分析:﹣22表示2的2次方的相反数.解答:解:﹣22表示2的2次方的相反数,∴﹣22=﹣4.应选:D.点评:此题主要考查的是有理数的乘方,明确﹣22与(﹣2)2的区别是解题的关键.2.假设a与5互为倒数,那么a=( )A. B. ﹣ C. ﹣5 D. 5考点:倒数.分析:根据乘积为1的两个数互为倒数,可得答案.解答:解:由a与5互为倒数,得a= .应选:A.点评:此题考查了倒数,分子分母交换位置是求一个数的倒数的关键.3.(3分)(2022 秋•北流市期中)在式子:,m﹣3,﹣13,﹣,2πb2中,单项式有( )A. 1个B. 2个C. 3个D. 4个考点:单项式.分析:直接利用单项式的定义得出答案即可.解答:解:,m﹣3,﹣13,﹣,2πb2中,单项式有:﹣13,﹣,2πb2,共3个.应选:C.点评:此题主要考查了单项式,正确把握单项式的定义是解题关键.4.以下等式不成立的是( )A. (﹣3)3=﹣33B. ﹣24=(﹣2)4C. |﹣3|=|3|D. (﹣3)100=3100考点:有理数的乘方;绝对值.分析:根据有理数的乘方分别求出即可得出答案.解答:解:A:(﹣3)3=﹣33,故此选项正确;B:﹣24=﹣(﹣2)4,故此选项错误;C:|﹣3|=|3|=3,故此选项正确;D:(﹣3)100=3100,故此选项正确;故符合要求的为B,应选:B.点评:此题主要考查了有理数的乘方运算,熟练掌握有理数乘方其性质是解题关键.5.如果2某2y3与某2yn+1是同类项,那么n的值是( )A. 1B. 2C. 3D. 4考点:同类项.专题:计算题.分析:根据同类项:所含字母相同,并且相同字母的指数也相同,可得出n的值.解答:解:∵2某2y3与某2yn+1是同类项,∴n+1=3,解得:n=2.应选B.点评:此题考查了同类项的知识,属于根底题,掌握同类项所含字母相同,并且相同字母的指数也相同,是解答此题的关键.6.( 3分)(2022秋•北流市期中)经专家估算,整个南海属于我国海疆线以内的油气资源约合1500忆美元,开采前景甚至要超过英国的北海油田,用科学记数法表示15000亿美元是( )A. 1.5某104美元B. 1.5某105美元C. 1.5某1012 美元D. 1.5某1013美元考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a某10n的形式,其中1≤|a|1时,n是正数;当原数的绝对值0 C. ab>0 D.考点:有理数大小比拟;数轴.分析:根据各点在数轴上的位置判断出a,b的取值范围,进而可得出结论.解答:解:∵由图可知,a<﹣1<0∴a+b<0,故A错误;a﹣b<0,故B错误;ab<0,故C错误;0,k0时,原式=(k+k)÷k=2;当k<0时,原式=(﹣k+k)÷k=0;当k=0时,原式无意义.综上所述,(|k|+k)÷k的结果是非负数.应选D.点评:此题考查的是有理数的混合运算,在解答此题时要注意进行分类讨论.12.四个互不相等的整数a,b,c,d,它们的积为4,那么a+b+c+d=( )A. 0B. 1C. 2D. 3考点:有理数的乘法;有理数的加法.分析: a,b,c,d为四个互不相等的整数,它们的积为4,首先求得a、b、c、d的值,然后再求得a+b+c+d.解答:解:∵a,b,c,d为四个互不相等的整数,它们的积为4,∴这四个数为﹣1,﹣2,1,2.∴a+b+c+d=﹣1+(﹣2)+1+2=0.应选;A.点评:此题主要考查的是有理数的乘法和加法,根据题意求得a、b、c、d的值是解题的关键.二、填空题.本大题共8小题,每题3分,总分值24分.请将答案直接写在题中的横线上13.﹣5的相反数是 5 .考点:相反数.分析:根据相反数的定义直接求得结果.解答:解:﹣5的相反数是5.故答案为:5.点评:此题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.14.﹣4 = ﹣.考点:有理数的除法;有理数的乘法.专题:计算题.分析:原式利用除法法那么变形,约分即可得到结果.解答:解:原式=﹣4某某=﹣ .故答案为:﹣ .点评:此题考查了有理数的除法,有理数的乘法,熟练掌握运算法那么是解此题的关键.15.请写出一个系数为3,次数为4的单项式3某4 .考点:单项式.专题:开放型.分析:根据单项式的概念求解.解答:解:系数为3,次数为4的单项式为:3某4.故答案为:3某4.点评:此题考查了单项式的知识,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.16.三个连续整数中,n是最小的一个,这三个数的和为3n+3 .考点:整式的加减;代数式.专题:计算题.分析:根据最小的整数为n,表示出三个连续整数,求出之和即可.解答:解:根据题意三个连续整数为n,n+1,n+2,那么三个数之和为n+n+1+n+2=3n+3.故答案为:3n+3点评:此题考查了整式的加减,以及列代数式,熟练掌握运算法那么是解此题的关键.17.假设a2+2a=1,那么2a2+4a﹣1= 1 .考点:因式分解的应用;代数式求值.分析:先计算2(a2+2a)的值,再计算2a2+4a﹣1.解答:解:∵a2+2a=1,∴2a2+4a﹣1=2(a2+2a)﹣1=1.点评:主要考查了分解因式的实际运用,利用整体代入求解是解题的关键.18.一只蜗牛从原点开始,先向左爬行了4个单位,再向右爬了7个单位到达终点,规定向右为正,那么终点表示的数是 3 .考点:数轴.分析:根据数轴的特点进行解答即可.解答:解:终点表示的数=0+7﹣4=3.故答案为:3.点评:此题考查的是数轴,熟知数轴上右边的数总比左边的大是解答此题的关键.19.假设多项式a2+2kab与b2﹣6ab的和不含ab项,那么k= 3 .考点:整式的加减.专题:计算题.分析:根据题意列出关系式,合并后根据不含ab项,即可确定出k的值.解答:解:根据题意得:a2+2kab+b2﹣6ab=a2+(2k﹣6)ab+b2,由和不含ab项,得到2k﹣6=0,即k=3,故答案为:3点评:此题考查了整式的加减,熟练掌握运算法那么是解此题的关键.20.一条笔直的公路每隔2米栽一棵树,那么第一棵树与第n棵树之间的间隔有2(n﹣1) 米.考点:列代数式.分析:第一棵树与第n棵树之间的间隔有n﹣1个间隔,每个间隔之间是2米,由此求得间隔的米数即可.解答:解:第一棵树与第n棵树之间的间隔有2(n﹣1)米.故答案为:2(n﹣1).点评:此题考查列代数式,求得间隔的个数是解决问题的关键.初一数学上册应用题解题技巧1.图解分析法这实际是一种模拟法,具有很强的直观性和针对性,数学教学中运用得非常普遍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程应用题归类汇集:(一)行程问题:1.从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x千米,则列方程为________________。
2.甲、乙两人在相距18千米的两地同时出发,相向而行,1小时48分相遇,如果甲比乙早出发40分钟,那么在乙出发1小时30分时两人相遇,求甲、乙两人的速度。
3. 某人从家里骑自行车到学校。
若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?4.在800米跑道上有两人练中长路,甲每分钟跑320米,乙每分钟跑280米,•两人同时同地同向起跑,t分钟后第一次相遇,t等于分钟.5.一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过16秒,已知客车与货车的速度之比是3∶2,问两车每秒各行驶多少米?6.与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。
行人的速度是每小时3.6Km,骑自行车的人的速度是每小时10.8Km。
如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车人的时间是26秒。
(1)行人的速度为每秒多少米;(2)求这列火车的身长是多少米。
7.休息日我和妈妈从家里出发一同去外婆家,我们走了1小时后,爸爸发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追,如果我和妈妈每小时行2千米,从家里到外婆家需要1小时45分钟,问爸爸能在我和妈妈到外婆家之前追上我们吗?8.一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。
汽车速度60公里/小时,我们的速度是5公里/小时,步行者比汽车提前1小时出发,这辆汽车到达目的地后,再回头接步行这部分人。
出发地到目的地的距离是60公里。
问:步行者在出发后经多少时间与回头接他们的汽车相遇(汽车掉头的时间忽略不计)?时钟问题:10.在6点和7点间,何时时钟分针和时针重合?(教材复习题)行船问题:12. 一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?13.一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间距离。
(二)工程问题:1.一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,需要几天完成?2.某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。
如先由甲队做4天,然后两队合做,问再做几天后可完成工程的六分之五?3.已知某水池有进水管与出水管一根,进水管工作15小时可以将空水池放满,出水管工作24小时可以将满池的水放完;(1)如果单独打开进水管,每小时可以注入的水占水池的几分之几?(2)如果单独打开出水管,每小时可以放出的水占水池的几分之几?(3)如果将两管同时打开,每小时的效果如何?如何列式?(4)对于空的水池,如果进水管先打开2小时,再同时打开两管,问注满水池还需要多少时间?4.有一个水池,用两个水管注水。
如果单开甲管,2小时30分注满水池,如果单开乙管,5小时注满水池。
①如果甲、乙两管先同时注水20分钟,然后由乙单独注水。
问还需要多少时间才能把水池注满?②假设在水池下面安装了排水管丙管,单开丙管3小时可以把一满池水放完。
如果三管同时开放,多少小时才能把一空池注满水?5、一条铁路,甲队单独修5天完成总工程量的,乙队单独修6天完成总工程量的。
两队合修,需要多少天完成?6、一项工程,甲队独做要120天完成,如果甲队先做10天,乙队再做5天,就可以完成这项工程的,乙队单独做这项工程需要多少天?7、一项工程,甲队独做要8天完成,乙队独做所需时间是甲的。
甲队做一天后,乙队参加一起做,还需要几天才能完成?8、一项工程,如果甲队独做,可6天完成,甲队3天的工作,乙要4天完成,两队合做了2天后由乙队独做,乙队还需要多少天才能完成?9、一项工程,甲队单独做需30天完成,乙队单独做需要40天完天,甲队先做若干天后,由乙队接着做,共用35天完成了任务,甲、乙两队各做了几天?10、加工一批零件,甲单独做要6天完成,乙单独做要5天完成,现在甲、乙、丙、丁四人合做一天就完成了任务。
已知丙、丁两人比甲、乙两人多做48个。
这批零件一共有多少个?11、一项工程,由甲、乙两队合做需要5 天完成,由乙、丙两队合做需要6天完成,由甲、丙两队合做需要6 天完成,现在由甲、乙、丙三队合做,需要几天完成?12、修一条公路,甲队单独修20天可以修完,乙队单独修30天可以修完,现在两队合修,中途甲休息2.5天,乙队休息若干天,这样一来14天才修完,乙队休息了几天?13、一项工程,甲队单独做要20天完成,乙队单独做要12天完成,已知这项工程先由甲队做了若干天后,然后由乙队继续完成,从开始到完成共用了14天,那么甲队先做了多少天?乙队又做了多少天?14、有一个水池,单开甲管1小时可以将水池的水注满,单开乙管40分钟可以将水池的水注满,两管同时开10 分钟后,共注水4 吨,水池能装水多少吨?一件工作,甲独做15小时完成,乙独做10小时完成。
现由两人合做若干小时后,余下的由乙单独做还要5小时才能完成。
两人合做了多少小时?15、一辆客车和一辆货车同时从甲、乙两站相对开出,经过6小时相遇,相遇后两车各自以原速度继续前进,客车又行了4小时才到达乙地,问:相遇后货车还要行多少小时才能到达甲地?(三)和差倍分问题(生产、做工等各类问题):1.整理一批图书,由一个人做要40小时完成。
现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。
假设这些人的工作效率相同,具体先安排多少人工作。
2.岳池县城某居民小区的水、电、气的价格是: 水每吨1.55元, 电每度0.67元, 天然气每立方米1.47元. 某居民户在2006年11月份支付款67.54元, 其中包括用了5吨水、35度电和一些天然气的费用, 还包括交给物业管理4.00元的服务费. 问该居民户在2006年11月份用子多少立方米天然气?3.已知:我市出租车收费标准如下:乘车里程不超过2公里的一律收费2元;乘车里程超过2公里的,除了收费2元外超过部分按每公里1.4元计费.(1)如果有人乘出租车行驶了x公里(x>2),那么他应付多少车费?(列代数式,不化简)(8分)(2)某游客乘出租车从客运中心到三星堆,付了车费10.4元,试估算从客运中心到三星堆大约有多少公里?4.某车间加工30个零件,甲工人单独做,能按计划完成任务,乙工人单独做能提前一天半完成任务,已知乙工人每天比甲工人多做1个零件,问甲工人每天能做几个零件?原计划几天完成?5.已知购买甲种物品比乙种物品贵5元,某人用款300元买到甲种物品10件和乙种物品若干件,这时,它每到甲、乙物品的总件数,比把这笔款全都购买甲种物品的件数多5件,问甲、乙物品每件各是多少元?6.两个班组工人,按计划本月应共生产680个零件,实际第一组超额20%、第二组超额15%完成了本月任务,因此比原计划多生产118个零件。
问本月原计划每组各生产多少个零件?7.某工厂甲、乙、丙三个工人每天生产的零件数,甲和乙的比是3:4,乙和丙的比是2:3。
若乙每天所生产的件数比甲和丙两人的和少945件,问每个工人各生产多少件?8.为了搞好水利建设,某村计划修建一条长800米,横断面是等腰梯形的水渠. (1)设计横断面面积为1.6米2,渠深1米,水渠的上口宽比渠底多0.8米,求水渠上口宽和渠底宽;(2)某施工队承建这项工程,计划在规定的时间内完成,工作4天后,改善了设备,提高了工效,每天比原计划多挖水渠10米,结果比规定的时间提前2天完成任务,求计划完成这项工程需要的天数。
9.今年某校积极组织捐款支援灾区,某班55名同学共捐款500元,捐款情况如下表:捐款(元) 5 8 10 12人数 6 ■■7表中有两处看不清楚,请你帮助确定表中数据。
比赛积分问题:10.某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。
已知某人有5道题未作,得了103分,则这个人选错了道题。
11.某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制。
某班与其他7个队各赛1场后,以不败的战绩积17分,那么该班共胜了几场比赛?年龄问题:12.甲比乙大15岁,5年前甲的年龄是乙的年龄的两倍,乙现在的年龄是________.13.小华的爸爸现在的年龄比小华大25岁,8年后小华爸爸的年龄是小华的3倍多5岁,求小华现在的年龄比例问题:14.图纸上某零件的长度为32cm,它的实际长度是4cm,那么量得该图纸上另一个零件长度为12cm,求这个零件的实际长度。
15.一时期,日元与人民币的比价为25.2:1,那么日元50万,可以兑换人民币多少元?16.魏老师到市场去买菜,发现若把10千克的菜放到秤上,指针盘上的指针转了180°.如图,第二天魏老师就给同学们出了两个问题:(1)如果把0.5千克的菜放在秤上,指针转过多少角度?(2)如果指针转了540,这些菜有多少千克?(四)调配问题:1.某厂一车间有64人,二车间有56人。
现因工作需要,要求第一车间人数是第二车间人数的一半。
问需从第一车间调多少人到第二车间?2.甲队人数是乙队人数的2倍,从甲队调12人到乙队后,甲队剩下来的人数是原乙队人数的一半还多15人。
求甲、乙两队原有人数各多少人?3.甲、乙两车间各有工人若干,如果从乙车间调100人到甲车间,那么甲车间的人数是乙车间剩余人数的6倍;如果从甲车间调100人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数。
(五)分配问题:4.学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。
求房间的个数和学生的人数。
5.学校春游,如果每辆汽车坐45人,则有28人没有上车;如果每辆坐50人,则空出一辆汽车,并且有一辆车还可以坐12人,问共有多少学生,多少汽车?6.小明看书若干日,若每日读书32页,尚余31页;若每日读36页,则最后一日需要读39页,才能读完,求书的页数。
(六)配套问题:1.某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)?2.包装厂有工人42人,每个工人平均每小时可以生产圆形铁片120片,或长方形铁片80片,将两张圆形铁片与和一张可配套成一个密封圆桶,问如何安排工人生产圆形或长方形铁片能合理地将铁片配套?3.某部队派出一支有25人组织的小分队参加防汛抗洪斗争,若每人每小时可装泥土18袋或每2人每小时可抬泥土14袋,如何安排好人力,才能使装泥和抬泥密切配合,而正好清场干净。