《生物化学》课件之一(武汉大学张楚富).pptx
合集下载
生物化学课件(第一部分:1-3章)
生物化学与医学的关系
总结词
生物化学与医学密切相关,它是医学领域的基础学科之一,对于疾病诊断、治疗和预防 具有重要意义。
详细描述
生物化学在医学领域的应用广泛,如药物研发、病理诊断、疾病治疗等。通过研究生物 体内的化学反应和物质变化,可以深入了解疾病的发病机制,为疾病的诊断和治疗提供 理论支持。同时,生物化学的研究成果也可以为新药研发提供思路和方法。因此,掌握
脂肪肝
脂肪在肝脏中过度积累可导致脂 肪肝,严重时可发展为肝硬化。
肥胖症
脂肪代谢异常可导致肥胖症,增 加糖尿病、心血管疾病等患病风
险。
THANKS FOR WATCHING
感谢您的观看
氨基酸的结构与分类
氨基酸的结构
氨基酸是构成蛋白质的基本单位 ,具有一个羧基(-COOH)、一个 氨基(-NH2)和一个侧链基团(R)。
氨基酸的分类
根据侧链基团的不同,氨基酸可 以分为20种不同的类型,如甘氨 酸、丙氨酸、缬氨酸等。
蛋白质的结构与功能
蛋白质的结构
蛋白质是由多个氨基酸通过肽键连接 而成的线性分子,具有一级、二级、 三级和四级结构。
生物化学知识对于医学生和医学工作者来说至关重要。
02
第二章:有机化学基础
有机化合物的分类与命名
脂肪族化合物
由碳、氢和氧组成的化 合物,如烷烃、烯烃和
醇等。
芳香族化合物
杂环化合物
碳水化合物
具有芳香环结构的化合 物,如苯、苯酚和苯胺
等。
具有杂环结构的化合物, 如嘧啶、嘌呤和喹啉等。
由碳、氢和氧组成的化 合物,如单糖、双糖和
低血糖
低血糖症是由于血糖水平过低引起 的症状,可能导致头晕、心悸、乏 力等不适,严重时可导致昏迷。
《生物化学》全套PPT课件
现状
生物化学已经成为生命科学领域的重要分支,与分子生物学、遗传学、细胞生 物学等学科相互渗透,共同揭示生命的奥秘。同时,生物化学在医学、农业、 工业等领域的应用也越来越广泛。
生物化学在医学领域重要性
A
疾病诊断
生物化学方法可用于检测血液中特定生物分子 的含量或结构异常,从而辅助疾病的诊断,如 血糖、血脂检测等。
脂类分类方法
根据化学结构和性质,脂类可分为简单脂质(如脂肪酸、甘油酯等 )和复合脂质(如磷脂、糖脂等)。
脂类在生物体内的分布
不同生物体内的脂类分布有差异,如动物体内主要储存甘油三酯, 而植物体内则以脂肪酸为主。
甘油三酯分解代谢过程剖析
01
甘油三酯的分解代谢途径
甘油三酯在体内主要通过脂肪酶的催化作用分解为甘油和脂肪酸,进而
药物研发
通过对生物体内代谢途径和药物作用机制 的研究,有助于设计和开发新的药物,提 高治疗效果和降低副作用。
B
C
营养与健康
生物化学在营养学领域的应用有助于了解食 物中营养成分的代谢和利用,为合理膳食和 营养补充提供科学依据。
遗传性疾病研究
生物化学方法可用于研究遗传性疾病的发病 机制和治疗方法,如基因疗法和干细胞疗法 等。
酶活性调节的方式
包括共价修饰、变构调节、酶原激活 和抑制剂作用等。
酶在医学领域应用实例分析
酶与疾病的关系
酶的异常与多种疾病的发生和发展密切相关,如酶缺陷病、代谢 性疾病等。
酶在疾病诊断中的应用
利用酶的特异性催化反应,开发酶学诊断方法,如酶活性测定、同 工酶分析等。
酶在疾病治疗中的应用
通过补充或抑制特定酶的活性,达到治疗疾病的目的,如酶替代疗 法、酶抑制剂疗法等。
进入血液循环被组织细胞摄取利用。
生物化学已经成为生命科学领域的重要分支,与分子生物学、遗传学、细胞生 物学等学科相互渗透,共同揭示生命的奥秘。同时,生物化学在医学、农业、 工业等领域的应用也越来越广泛。
生物化学在医学领域重要性
A
疾病诊断
生物化学方法可用于检测血液中特定生物分子 的含量或结构异常,从而辅助疾病的诊断,如 血糖、血脂检测等。
脂类分类方法
根据化学结构和性质,脂类可分为简单脂质(如脂肪酸、甘油酯等 )和复合脂质(如磷脂、糖脂等)。
脂类在生物体内的分布
不同生物体内的脂类分布有差异,如动物体内主要储存甘油三酯, 而植物体内则以脂肪酸为主。
甘油三酯分解代谢过程剖析
01
甘油三酯的分解代谢途径
甘油三酯在体内主要通过脂肪酶的催化作用分解为甘油和脂肪酸,进而
药物研发
通过对生物体内代谢途径和药物作用机制 的研究,有助于设计和开发新的药物,提 高治疗效果和降低副作用。
B
C
营养与健康
生物化学在营养学领域的应用有助于了解食 物中营养成分的代谢和利用,为合理膳食和 营养补充提供科学依据。
遗传性疾病研究
生物化学方法可用于研究遗传性疾病的发病 机制和治疗方法,如基因疗法和干细胞疗法 等。
酶活性调节的方式
包括共价修饰、变构调节、酶原激活 和抑制剂作用等。
酶在医学领域应用实例分析
酶与疾病的关系
酶的异常与多种疾病的发生和发展密切相关,如酶缺陷病、代谢 性疾病等。
酶在疾病诊断中的应用
利用酶的特异性催化反应,开发酶学诊断方法,如酶活性测定、同 工酶分析等。
酶在疾病治疗中的应用
通过补充或抑制特定酶的活性,达到治疗疾病的目的,如酶替代疗 法、酶抑制剂疗法等。
进入血液循环被组织细胞摄取利用。
生物化学教学课件ppt
分子间作用力
分子间作用力包括范德华力、氢键和疏水作用力等,影响分子的聚集状态和稳 定性。
化学反应与能量转化
化学反应
化学反应是原子或分子重新组合的过程,遵循质量守恒和能 量守恒定律。
能量转化
化学反应中伴随着能量的吸收或释放,可用于解释反应的动 力学和热力学性质。
酸碱反应与缓冲溶液
酸碱反应
酸和碱通过质子转移反应生成水和盐,酸碱反应是化学反应中的重要类型之一。
生物化学教学课件
目录
• 生物化学概述 • 生物化学基础知识 • 生物大分子与细胞结构 • 生物化学代谢过程 • 生物化学实验技术与方法 • 生物化学前沿研究与发展趋势
01
生物化学概述
生物化学的定义与重要性
定义
生物化学是生物学和化学两门学 科的交叉学科,主要研究生物体 内的化学过程和物质代谢。
重要性
02
生物化学基础知识
分子结构与性质
分子结构
分子由原子组成,通过化学键连接, 具有空间构型和电子分布,决定分子 的物理和化学性质。
分子性质
分子的性质由其结构决定,包括极性 、溶解度、挥发性等,影响分子的物 理状态和化学反应活性。
化学键与分子间作用力
化学键
化学键是原子间通过电子转移或共享形成的相互作用力,分为共价键、离子键 和金属键等。
核酸的结构与功能
总结词
核酸是生物体中重要的遗传物质,具有多种结构和功能。
详细描述
核酸包括DNA和RNA,它们由核苷酸组成,具有一级、二级和三级结构。一级结构决定了核酸的序列 ,二级结构决定了核酸的双螺旋结构,三级结构决定了核酸的空间构象。核酸的功能是携带和传递遗 传信息。
酶的结构与催化机制
总结词
分子间作用力包括范德华力、氢键和疏水作用力等,影响分子的聚集状态和稳 定性。
化学反应与能量转化
化学反应
化学反应是原子或分子重新组合的过程,遵循质量守恒和能 量守恒定律。
能量转化
化学反应中伴随着能量的吸收或释放,可用于解释反应的动 力学和热力学性质。
酸碱反应与缓冲溶液
酸碱反应
酸和碱通过质子转移反应生成水和盐,酸碱反应是化学反应中的重要类型之一。
生物化学教学课件
目录
• 生物化学概述 • 生物化学基础知识 • 生物大分子与细胞结构 • 生物化学代谢过程 • 生物化学实验技术与方法 • 生物化学前沿研究与发展趋势
01
生物化学概述
生物化学的定义与重要性
定义
生物化学是生物学和化学两门学 科的交叉学科,主要研究生物体 内的化学过程和物质代谢。
重要性
02
生物化学基础知识
分子结构与性质
分子结构
分子由原子组成,通过化学键连接, 具有空间构型和电子分布,决定分子 的物理和化学性质。
分子性质
分子的性质由其结构决定,包括极性 、溶解度、挥发性等,影响分子的物 理状态和化学反应活性。
化学键与分子间作用力
化学键
化学键是原子间通过电子转移或共享形成的相互作用力,分为共价键、离子键 和金属键等。
核酸的结构与功能
总结词
核酸是生物体中重要的遗传物质,具有多种结构和功能。
详细描述
核酸包括DNA和RNA,它们由核苷酸组成,具有一级、二级和三级结构。一级结构决定了核酸的序列 ,二级结构决定了核酸的双螺旋结构,三级结构决定了核酸的空间构象。核酸的功能是携带和传递遗 传信息。
酶的结构与催化机制
总结词
生物化学ppt课件
05
生物化学实验技术
Chapter
分光光度法
总结词
基于物质对光的选择性吸收而建立的方法
详细描述
分光光度法是利用物质对光的吸收特性来测定物质浓度的一种方法。通过测量物质在特定波长下的吸光度值,可 以计算出物质的浓度。该方法具有操作简便、准确度高、适用范围广等优点,是生物化学实验中常用的定量分析 方法之一。
分子性质
分子的性质由其组成原子的性质 和分子结构决定,包括极性、溶 解度、挥发性等。
化学键与分子间作用力
化学键
化学键是原子间力的一种表现,主要有共价键、离子键和金 属键。
分子间作用力
分子间作用力是影响物质物理性质的重要因素,包括范德华 力、氢键等。
化学反应与能量转化
化学反应
化学反应是分子间的转化,遵循质量 守恒和能量守恒定律。
生物化学的应用领域
医学
生物化学在医学领域的应用广泛 ,如疾病诊断、治疗和药物研发
等。
农业
通过研究植物的生理生化过程,改 良作物品种,提高农业生产效率。
工业
生物化学在食品、制药、环保等领 域有广泛应用,如发酵工程、酶工 程等。
02
生物化学基础知识
Chapter
分子结构与性质
分子结构
分子由原子组成,通过共价键连 接,具有固定的空间排列。
蛋白质的结构
蛋白质具有一级、二级、 三级和四级结构,这些结 构决定了蛋白质的功能。
蛋白质的功能
蛋白质在生物体内发挥着 多种功能,如酶、运输、 结构等。
核酸的结构与功能
核酸的组成
核酸的功能
核酸由核苷酸组成,包括脱氧核糖核 酸(DNA)和核糖核酸(RNA)。
DNA携带遗传信息,RNA在转录和翻 译过程中起关键作用。
生物化学01绪论 ppt课件_
5 如何学习生物化学?
✓掌握基本概念,抓住重点; ✓重点掌握化学本质、结构特点与功能; ✓分析、比较、归纳 ; ✓学以致用,理论联系实际,重视实验课程; ✓课堂学习和课外阅读相结合; ✓结合每章习题,及时复习巩固所学知识。
6 教材及参考书
• 蛋白质和核酸是生命的最基本物质。
• 构成蛋白质的氨基酸有20多种(还有一些氨基核酸有两个基本特征和功能:一是核酸的自我复制, 二是核酸能指导、参与合成生物所特有的蛋白质。
3.1 新陈代谢
• 新陈代谢:生物体从环境摄取营养物转变为自身 物质,同时将自身原有组成转变为废物排出到环 境中的不断更新的过程。
4 学习食品生物化学的目的
• 充分理解食品的物质组成、各类营养物质的结构、 理化性质、对人体的营养作用以及其在人体内的代 谢过程和规律。
• 从分子水平理解人类的物质需要及食品各成分对人 类的影响及重要意义。
• 为从事食品科学与工程的研究和生产奠定科学思维 及实验技能。
• 食品资源的高效利用、食品加工技术水平的不断提 升、食品生物技术的应用拓展都需要生物化学的原 理与技术。
……
• 1953年,J. D. Watson和F. H. Crick提出了DNA双螺旋三 维结构模型,为阐明遗传信 息贮存、传递、表达,揭开 生命的奥秘奠定了基础。
• 1958年,Crick提出中心 法则。
• 1965年,中国成功地人工合成了牛胰岛素。这是 世界上第一个人工合成的蛋白质。
…… • 1985年,Mullis等发明了聚合酶链式反应
• 新陈代谢包括同化和异化两个基本过程。
• 同化作用:生物体不断地从外界摄取氧、水、蛋 白质、糖、脂类、无机盐和其他营养物质,通过 一系列化学反应,将这些转化为自身物质。
1-生物化学导论
Байду номын сангаас 如何学?
1、把前行课程的基础知识融合到生化学习中去;
2、把握每一章的基本内容,分析它们之间的关 系是什么?
3、学习如何分析章节与章节之间的关系,使学 到的知识融合成为一个整体;
4、学习如何提出问题和解答问题,而这些问题 又是如何把相关的书本知识串联起来,用于解答 科学问题的;
5、学习如何从实验结果出发,运用所学的知识 进行科学的分析与归纳,从而得出科学结论。
是由非共价的相互作用力介导的,而这种力是很 弱的。
弱的作用力把生物的生存限制在一个窄小范 围的环境条件中,这就要求有适当的温度、离子 强度以及酸-碱度等才有功能上的活性。极端条 件将破坏维持大分子复杂结构所必需的弱的作用 力。这些复杂大分子的有序结构的丧失(也就是 变性)伴随着功能的消失。
六、生命为什么选择水? 水是生命所必需的。生物之所以选择水,
生物化学课件
张楚富 武汉大学生命科学学院
本课件使用时应注意的事项:
1、本课件以《生物化学原理》(张楚富主编, 高 等教育出版社出版, 2003, 9)为蓝本,根据综 合性大学理科教学大纲要求制作而成。
2、本课件共分21章, 打开每章文件夹即可使用。 3、文中的图例及题例点击即可显出。 4、如有图例太小,可点击该章文件夹所附相应
2、生物分子是分级的 ▲代谢物和大分子(图1-2) ▲细胞器:(图) ▲膜(图) ▲细胞是生命的基本单位(图)
四、生物分子为什么是有活性的?
1、生物大分子和它们的构件具有方向性 (图1-3)。
2、生物大分子是信息分子
生物大分子和它的组成元件具有感应, 只要构件单位具有多样性以及它们的次序不是 过分重复,它们的线性序列就应含有潜在的特 定信息(图)。
生物化学ppt课件
核酸的调节与疾病
核酸代谢异常可能引起疾病,如癌症 等,因此核酸代谢的调节对于维持身 体健康至关重要。
CHAPTER 04
生物化学与医学
疾病的发生与生物化学
疾病的发生
生物化学是许多疾病发生的基础,如糖尿病、心 血管疾病、癌症等。这些疾病的形成与生物化学 过程有关,如糖代谢、脂质代谢、蛋白质代谢等 。
生物化学的历史与发展
• 生物化学作为一门独立的学科,起源于20世纪初。早期的生物化学研究主要集中在蛋白质、糖类、脂肪、核酸等生物大分 子的结构和功能方面。随着技术的进步,生物化学逐渐深入到分子水平,对基因表达、蛋白质合成、代谢调控等生命过程 的研究取得了重大突破。近年来,随着生物信息学和系统生物学的发展,对生物化学的研究和应用也进一步扩大和深化。
要支持。
代谢组学技术
通过对生物体内代谢产 物的全面分析,代谢组 学技术能够揭示生物过 程和疾病发生的潜在机
制。
生物化学在医学领域的应用前景
总结词
应用广泛、潜力巨大
药物研发
生物化学对药物研发过程中的靶点筛选、 药效评估等方面具有决定性作用。
疾病诊断
生物治疗
基于生物化学原理的检测方法能够快速、 准确地诊断多种疾病。
营养与健康
生物化学研究营养与健康的关系,如营养不足或过剩对健 康的影响。这些研究为营养学提供理论依据,从而为预防 和治疗营养相关疾病提供帮助。
营养与疾病
生物化学研究营养与疾病的关系,如某些营养素缺乏可能 导致某些疾病的发生。这些研究为预防和治疗这些疾病提 供理论依据。
CHAPTER 05
生物化学的未来与发展
新兴的生物化学技术
第一季度
第二季度
第三季度
第四季度
精品课件-生物化学PPT课件
生物化学 的概念
生物化学是阐明生物分子是如何相互作用而形成 复杂而高效的生命现象的科学。
生物化学是一门运用化学的原理和方法研究生命 现象的本质,揭示生命奥秘的科学。
简单地说生物化学就是生命的化学。
生物化学的 研究内容
① 研究构成生物体的分子基础生物分子的 化学组成、结构、性质和功能。
动态生物化学阶段:奠基时期(20世纪初-1950年)
由于分析鉴定技术的进步,尤其是放射性同位素示踪技术的 应用,生物化学进入深入发展时期。 –科学家对生物物质代谢进行了广泛深入的研究,基本阐明:
(1)酶的化学本质 (2)与能量代谢有关的物质代谢途径
机能生物化学阶段:大发展时期(1950- )
素、辅酶、激素、核苷酸和氨基酸等。 其余都是某些生物小分子的聚合物,分子量很大,一
般在一万以上,有的高达1012,因而称为生物大分子,
如 多糖、脂、核酸和蛋白质。
1、碳架是生物分子结构的基础
• 碳元素一般占细胞干重的50%以 上。
• 碳原子既难得到电子,又难失去 电子,最适于形成共价键。
• 碳原子成键能力很强,且是四面 体构型,因此它自相结合可以形 成结构各异的生物分子骨架(碳 架)。
– 科学家对生物的研究已从整体水平逐步深入到细胞、 亚细胞、分子水平。伴随实验手段、技术(电镜、超 离心、色谱、电泳等)的不断改进,使得对生物大分 子结构及功能的研究也更加深入。
– 50年代以后生物化学迅猛发展,每年的诺贝尔生理 学/医学奖和化学奖的大部分奖项都是与生物化学领 域相关的。
– 美国、法国、德国、英国在近代生物化学发展史贡献 突出。
5、遗传学,研究核酸、蛋白质的生 物合
生物化学的应用
生物化学的原理和技术在生产实践中也得到 广泛的应用。如与农学、某些轻工业(如制药、酿 造、皮革、食品等)、医学都有密切关系,很多问 题都需要从生化的角度、利用生化的方法才能了 解。
生物化学PPT课件
生物化学的应用领域
01
02
03
04
医学研究
生物化学在医学领域中发挥着 重要作用,如疾病诊断、药物
研发和生理机制研究等。
农业生产
通过生物化学手段改良作物品 质、提高产量,以及研发新型
肥料和农药。
环境保护
利用生物化学方法处理环境污 染问题,如水体净化、土壤修
复等。
生物技术产业
生物化学在生物技术产业中具 有广泛应用,如基因工程、蛋
合成生物学
合成生物学是新兴的交叉学科,旨在设计和构建人工生物系统,实现新功能或 优化现有功能。通过合成生物学,科学家可以创建定制化的微生物,用于生产 燃料、药物和其他有用物质。
纳米技术与生物医学应用
纳米药物
纳米药物利用纳米技术将药物包裹在 纳米载体中,以提高药物的靶向性、 稳定性和生物利用度,降低副作用。 纳米药物在癌症治疗、疫苗开发等领 域具有广泛应用前景。
生物合成与分解代谢
生物合成
生物合成是指生物体利用简单无机物和单糖等合成复杂有机 物的过程。生物合成包括脂肪酸、蛋白质、核酸等物质的合 成。这些合成过程需要经过一系列酶促反应的完成。
分解代谢
分解代谢是指生物体将大分子有机物分解成小分子有机物和 无机物的过程。这些分解过程包括糖酵解、柠檬酸循环和氧 化磷酸化等。分解代谢是生物体获取能量和合成物质的重要 途径。
结论总结
根据实验结果和讨论,总结实验的结论,指 出研究的局限性和未来研究方向。
结果讨论
对实验结果进行深入分析和讨论,探讨结果 的合理性和科学性。
结论应用
探讨实验结论在实际生产和科研中的应用价 值和意义。
05
生物化学前沿研究
基因编辑与合成生物学
武汉大学生物化学课件
而得名。泛酸是某些微生物所必需的,人体肠道中的细菌可合 成,故一般不缺乏。泛酸由二羟基二甲茎基丁酸和β-丙氨酸组 成。
泛酸是辅酶A(coenzyme A,CoA 或CoA-SH) 和 4’-磷酸泛酰巯 基乙胺的组成部分。CoA由等摩尔的泛酸、具3'磷酸基的ADP、氨基 乙硫醇(图4-4)。
CoA-SH主要起传递酰基(acyl group) 的作用。在其分子中,-SH 可接受或供出酰基。所以CoA-SH与各种酰化反应关系密切,是各种 酰化反应的辅酶。
二、维生素B2和黄素辅酶 维生素B2又称核黄素,在体内是以黄素单核苷酸(flavin
mononucleotide,FMN)和黄素腺嘌呤二核苷酸(flavin adenine dinucleotide,FAD)的形式存在(图4-2) ,是生物体内黄素脱氢酶 的辅酶或辅基。黄素脱氢酶催化细胞内许多可逆和不可逆的氧 化还原反应,辅酶的异咯嗪部分接受或供出一个或二个电子 (图4-3) 。。
Chapter 4 维 生 素 和 辅 酶
Section 1 维 生 素 概述
一、概念: 维生素是活细胞为维持正常的生理功能而必需的天然有
机物质,若缺少它们,就会影响生物正常的生命活动,使其不 能正常生长,甚至发生疾病。大多数维生素是通过辅酶或辅 基的形式参与生物体内的酶促反应体系。 二、维生素的种类
需要磷酸呲哆醛作为辅酶的酶对氨基酸代谢是特别重要的,
它们催化几种不同类型的反应,例如. 转氨作用、脱羧作用 和 消旋作用等。作为辅酶,磷酸呲哆醛以希夫式碱(schiff-base, =C=N-)的形式同酶蛋白的赖氨酸残基上的ε-氨基共价相连 (图4-7)。在转氨酶催化的反应中, 磷酸呲哆醛参与转氨基反 应的机制如图4-8所示。 转氨酶催化反应实质是将一个氨基酸 上的α-氨基转移到一个相应的酮酸上, 生成新的α-氨基酸和一 个新的酮酸:
泛酸是辅酶A(coenzyme A,CoA 或CoA-SH) 和 4’-磷酸泛酰巯 基乙胺的组成部分。CoA由等摩尔的泛酸、具3'磷酸基的ADP、氨基 乙硫醇(图4-4)。
CoA-SH主要起传递酰基(acyl group) 的作用。在其分子中,-SH 可接受或供出酰基。所以CoA-SH与各种酰化反应关系密切,是各种 酰化反应的辅酶。
二、维生素B2和黄素辅酶 维生素B2又称核黄素,在体内是以黄素单核苷酸(flavin
mononucleotide,FMN)和黄素腺嘌呤二核苷酸(flavin adenine dinucleotide,FAD)的形式存在(图4-2) ,是生物体内黄素脱氢酶 的辅酶或辅基。黄素脱氢酶催化细胞内许多可逆和不可逆的氧 化还原反应,辅酶的异咯嗪部分接受或供出一个或二个电子 (图4-3) 。。
Chapter 4 维 生 素 和 辅 酶
Section 1 维 生 素 概述
一、概念: 维生素是活细胞为维持正常的生理功能而必需的天然有
机物质,若缺少它们,就会影响生物正常的生命活动,使其不 能正常生长,甚至发生疾病。大多数维生素是通过辅酶或辅 基的形式参与生物体内的酶促反应体系。 二、维生素的种类
需要磷酸呲哆醛作为辅酶的酶对氨基酸代谢是特别重要的,
它们催化几种不同类型的反应,例如. 转氨作用、脱羧作用 和 消旋作用等。作为辅酶,磷酸呲哆醛以希夫式碱(schiff-base, =C=N-)的形式同酶蛋白的赖氨酸残基上的ε-氨基共价相连 (图4-7)。在转氨酶催化的反应中, 磷酸呲哆醛参与转氨基反 应的机制如图4-8所示。 转氨酶催化反应实质是将一个氨基酸 上的α-氨基转移到一个相应的酮酸上, 生成新的α-氨基酸和一 个新的酮酸:
《生物化学基础》课件
《生物化学基础》ppt课 件
CATALOGUE
目 录
• 生物化学概述 • 生物分子结构与功能 • 生物化学反应与能量转换 • 生物膜与细胞器 • 生物化学实验技术与方法 • 生物化学前沿研究与展望
01
CATALOGUE
生物化学概述
生物化学的定义
总结词
生物化学是研究生物体内发生的化学反应和分子结构的科学。
03
CATALOGUE
生物化学反应与能量转换
光合作用与呼吸作用
光合作用
光合作用是植物、藻类和某些细菌利用 光能将二氧化ห้องสมุดไป่ตู้和水转化为葡萄糖和氧 气的过程。这个过程分为光反应和暗反 应两个阶段,光反应中产生ATP和 NADPH,暗反应中利用这些能量将二氧 化碳转化成葡萄糖。
VS
呼吸作用
呼吸作用是生物体在细胞内将有机物氧化 分解并释放能量的过程。这个过程分为三 个阶段,在第一和第二阶段中,有机物在 细胞质基质和线粒体基质中被氧化分解成 二氧化碳和水,释放能量;在第三阶段中 ,电子传递链将能量转化为ATP。
蛋白质代谢与核酸代谢
蛋白质代谢
蛋白质代谢是生物体内蛋白质合成和分解代 谢的过程。蛋白质的合成需要氨基酸作为原 料,通过翻译和转录等过程完成。蛋白质的 分解可以通过蛋白酶的催化水解成氨基酸和 肽等物质。
核酸代谢
核酸代谢是生物体内核酸的合成和分解代谢 的过程。DNA和RNA的合成需要核苷酸作 为原料,通过DNA复制、转录和逆转录等 过程完成。核酸的分解可以通过核酸酶的催 化水解成核苷酸等物质。
THANKS
感谢观看
生物大分子分离纯化
利用生物化学实验技术,对生物大分 子进行分离纯化,为后续的生物学研 究提供高质量的样品。
CATALOGUE
目 录
• 生物化学概述 • 生物分子结构与功能 • 生物化学反应与能量转换 • 生物膜与细胞器 • 生物化学实验技术与方法 • 生物化学前沿研究与展望
01
CATALOGUE
生物化学概述
生物化学的定义
总结词
生物化学是研究生物体内发生的化学反应和分子结构的科学。
03
CATALOGUE
生物化学反应与能量转换
光合作用与呼吸作用
光合作用
光合作用是植物、藻类和某些细菌利用 光能将二氧化ห้องสมุดไป่ตู้和水转化为葡萄糖和氧 气的过程。这个过程分为光反应和暗反 应两个阶段,光反应中产生ATP和 NADPH,暗反应中利用这些能量将二氧 化碳转化成葡萄糖。
VS
呼吸作用
呼吸作用是生物体在细胞内将有机物氧化 分解并释放能量的过程。这个过程分为三 个阶段,在第一和第二阶段中,有机物在 细胞质基质和线粒体基质中被氧化分解成 二氧化碳和水,释放能量;在第三阶段中 ,电子传递链将能量转化为ATP。
蛋白质代谢与核酸代谢
蛋白质代谢
蛋白质代谢是生物体内蛋白质合成和分解代 谢的过程。蛋白质的合成需要氨基酸作为原 料,通过翻译和转录等过程完成。蛋白质的 分解可以通过蛋白酶的催化水解成氨基酸和 肽等物质。
核酸代谢
核酸代谢是生物体内核酸的合成和分解代谢 的过程。DNA和RNA的合成需要核苷酸作 为原料,通过DNA复制、转录和逆转录等 过程完成。核酸的分解可以通过核酸酶的催 化水解成核苷酸等物质。
THANKS
感谢观看
生物大分子分离纯化
利用生物化学实验技术,对生物大分 子进行分离纯化,为后续的生物学研 究提供高质量的样品。
(武大张楚富版生化原理)第三章.蛋白质
第一节研究蛋白质空间结构的方法(1)X-射线衍射晶体结构分析(2)核磁共振光谱法(3)生物信息学计算推导★当Φ(Ψ)旋转键两侧的主链呈顺式时,规定Φ(Ψ) =0°★从Cα沿键轴方向看,顺时针旋转的Φ(Ψ)角为正值,反之为负值。
P59 图3-56(一)α-螺旋91.α螺旋的一般特征:¾多肽主链形成右手螺旋或左手螺旋,¾相邻的螺圈之间形成链内氢键¾构成螺旋的每个Cα都取相同的二面角Φ、Ψ。
1213个残基个原子。
反平行式C端N端18纤维蛋白中C端N端球状、纤维状蛋白19大纤维微原纤维角质层(鳞状细A.堆积的β-折叠片的三维结构B.交替层中的Ala(或Ser)残基和Gly残基侧链(H原子)的连锁29超二级结构类型βαβαβαα肌钙蛋白C蛋白质的结构域二级结构卷曲折叠成相对独立、近似球形的组装体40αβ结构域丙酮酸激酶结构域4木瓜蛋白酶结构域1无规则卷曲+ α-螺旋结构域无规则卷曲+β-回折结构域乳酸脱氢酶结构域1α+β结构域3-P-甘油醛脱氢酶结构域2木瓜蛋白酶结构域2多肽链R基团间的相互作用及稳定蛋白质三维构象的作用力a.盐键b.氢键c.疏水作用d.范德华力e.二硫键核糖核酸酶变性与复性作用8 M urea andβ-mercapotoethanol变性Native ribonuclease Denative reduced ribonuclease复性DialysisNative ribonuclease。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所述的弱的非共价键作用力介导的。
7、弱的作用力把生物限制在一个窄范围环境条件中 生物大分子仅在窄的环境条件下(例如温度、离子强度
以及酸-碱度等)才有功能上的活性。极端条件将破坏维持 大分子复杂结构所必需的弱的作用力。这些复杂大分子的 有序结构的丧失(也就是变性)伴随着功能的消失。
Section 2 水
在生物化学中,水存在的意义是显而易见的:①几乎 所有生物分子随环境中水的物理和化学性质而呈现它们的 形态。②大多数生物化学反应的介质是水,代谢反应的反应 物和产物在细胞范围内和细胞间运输都依赖于水。③水本 身活跃地参与支撑许多化学反应,水的离子化组分(H+和 OH-)往往作为真正的反应物参与反应。事实上,生物分子 的许多功能基团的反应性取决于环境介质中的H+和OH-的 相对浓度。④水的氧化产生的分子氧(O2)是通过光合作用完 成的。⑤水的离子化产物(H+和OH-)是蛋白质、核酸以及 膜的结构与功能的关键决定者。⑥在膜的内外两侧的氢离 子浓度的差异代表了能量转化的生物学机制所必需的能化 状态。
1、生物分子是含碳的化合物 所有生物分子都含有碳。碳的优势是由于它通过共用电
子对形成稳定的共价键方面的多面性。通常与碳以共价键相 结合的原子是碳本身以及H、O和N(图1—1)。
碳的共价键有两个特别值得注意的性质。一是碳与自身 形成共价键的能力,另一个是被键合碳原子周围的四个共价 键的四面体性质。这两种性质对于碳所形成的线性、分支以 及环状的化合物的惊人多样性是极为重要的。这种多样性可 因N、O和H原子的参与而进一步扩大。
Section 1 生命、细胞和生物分子 分子是无生命的, 然而分子却可以以适当的数目和 方式构成生命。生命系统因有其特殊性质而与非生命 系统不同。它们能生长、运动,能完成难以置信的代 谢化学反应,能对环境的刺激作出应答以及能准确地 进行自我复制。尽管生命存在着惊人的多样性、存在 着生物结构和维持生命必需的机制的复杂性,但是生 命的功能最终是可以用化学的原理来解释的。
由于生物大分子对它们的结构及其组成元件具有感应,因此,
只要构件单位的多样性或次序不是过分筒单或重复,它们的线性顺 序就应含有特定信息的潜在能力。蛋白质和核酸的构件单位是以非 显著重复方式排列的,它们的顺序是独特的。当把组成它们的构件 单位以字母排列时,可以组成有意义的词语,然而并非所有生物大 分子都含有信息。多糖往往由相同的单糖单位一次又一次地重复排 列构成。这类同聚多糖不可能含有什么信息。
结构互补性是生物分子间识别的手段。生命的复杂而高度
组织化的型式取决于生物分子彼此识别和相互作用的能力。如 果一种分子的结构与另一种分子的结构是互补的,例如某种酶 与它的专一性底物分子,那么这两种分子之间的相互作用就能 准确地实现。结构互补性的原理是生物分子识别的基本要素.
6、生物分子的的识别是由弱的相互作用力介导的 通过结构互补性所发生的生物分子识别事件是由前面
二、生命分子 生命物质的元素组成明显不同于地球外壳元素的元素组
成。H、O、C和N构成了人体原子总量的99%以上,其中大 多数H和O以H2O形式出现。
H、O、C和N的什么样的性质使其结合成适合于生命 的化学?是它们通过共用电子对形成共价键的能力。此外, H、C、N和O是元素周期表中最轻的元素。由于共价键的强 度与所涉及原子的原子量是成反比的,因此,H、C、N和O 彼此间能形成最强的共价键。两种其他能形成共价键的元素 磷和硫也在生物分子中起着重要的作用。
三、生物分子的特性反映它们对生命状态的适应 1、生物大分子和它们的构件具有方向性
生物大分子是由单位元件构筑而成的。蛋白质由氨基酸构成, 核酸由核苷酸构成,多糖由单糖构成。这些构件分子是有极性的, 即它们是不对称的。因此,从某种意义上说,它们是有“头”和有 “尾”的。当这些构件分子组成生物大分子时,它们头-尾连结。 于是,生物大分子聚合体也将是有头有尾的。因此,它们的结构应 该是有“感应”(sense)的或者说是有方向的(图1-3)。 2、生物大分子是信息分子
(3)膜 膜是细胞和细胞器的边界(但将膜归为超分子装配体或者归
为细胞器都不太适合,虽然它们具有两者共有的性质)。
(4)细胞是生命的基本单位 细胞是生命的单位,是唯一能展现生命特征(生长、代谢、
刺激应答和复制)的最小实体。细胞可分为两种类型,即真核生 物细胞和原核生物细胞。真核生物细胞具有复杂的内部结构。
生物化学
主讲教师: 张 楚 富
Chapter 1 生物化学导论
生物化学是研究生命分子和生命化学反应的科学, 是运用化学的原理在分子水平上解释生物学的科学。 它的主要研究范围包括这样几个方面:生物分子的化 学结构和三维构象;生物分子的相互作用;生物分子 的合成与降解;能量的保存与利用;生物分子的组装 和协调;遗传信息的贮存、传递和表达。
一、生命系统的独特性质 ●生物最显著的性质是它们具有复杂的结构和高度的组织形 式。 ●生命系统能活跃地进行能量转换,生物高度组织化的结构 和生命活动的维持依赖于从环境捕获能量的能力。被生物利 用的能量形式是特殊的生物分子。ATP和NADPH是其中最 重要的富含能量的生物分子,代表着生物在化学上可利用的 能量的贮存形式。 ●生命系统具有显著的自我复制能力。生物能一代一代地繁 衍与它们自身相同的后代。
3、生物大分子具有特征性的三维结构 任何一种分子结构都是独特的,并具有可区别的特有的性
质。生物大分子,尤其是蛋白质,分子结构已经达到了其复杂 性的极点。 4、非共价作用力维持生物大分子的结构
共价键把原子结合在一起形成分子,非共价作用力是分子
内或分子间的原子之间的吸引。非共价作用力是弱的作用力, 包括氢键、离子键、范德华力和疏水相互作用。这些作用力一 般介于4–30 kJ·mol-1范围。 5、结构互补物和大分子
无机物分子 →(同化)转变成代谢物(氨基酸、糖、核苷 酸、脂肪酸和甘油)→(通过共价)键构成大分子(蛋白质、多 糖、DNA和RNA以及脂类) →(大分子间的相互作用导致)超分 子复合物(酶复合物、核糖体、染色体和细胞骨架系统)(图1 -2) (2)细胞器
细胞器是生物分子等级中较高层次的一级。细胞器仅在真核 生物细胞中发现。
7、弱的作用力把生物限制在一个窄范围环境条件中 生物大分子仅在窄的环境条件下(例如温度、离子强度
以及酸-碱度等)才有功能上的活性。极端条件将破坏维持 大分子复杂结构所必需的弱的作用力。这些复杂大分子的 有序结构的丧失(也就是变性)伴随着功能的消失。
Section 2 水
在生物化学中,水存在的意义是显而易见的:①几乎 所有生物分子随环境中水的物理和化学性质而呈现它们的 形态。②大多数生物化学反应的介质是水,代谢反应的反应 物和产物在细胞范围内和细胞间运输都依赖于水。③水本 身活跃地参与支撑许多化学反应,水的离子化组分(H+和 OH-)往往作为真正的反应物参与反应。事实上,生物分子 的许多功能基团的反应性取决于环境介质中的H+和OH-的 相对浓度。④水的氧化产生的分子氧(O2)是通过光合作用完 成的。⑤水的离子化产物(H+和OH-)是蛋白质、核酸以及 膜的结构与功能的关键决定者。⑥在膜的内外两侧的氢离 子浓度的差异代表了能量转化的生物学机制所必需的能化 状态。
1、生物分子是含碳的化合物 所有生物分子都含有碳。碳的优势是由于它通过共用电
子对形成稳定的共价键方面的多面性。通常与碳以共价键相 结合的原子是碳本身以及H、O和N(图1—1)。
碳的共价键有两个特别值得注意的性质。一是碳与自身 形成共价键的能力,另一个是被键合碳原子周围的四个共价 键的四面体性质。这两种性质对于碳所形成的线性、分支以 及环状的化合物的惊人多样性是极为重要的。这种多样性可 因N、O和H原子的参与而进一步扩大。
Section 1 生命、细胞和生物分子 分子是无生命的, 然而分子却可以以适当的数目和 方式构成生命。生命系统因有其特殊性质而与非生命 系统不同。它们能生长、运动,能完成难以置信的代 谢化学反应,能对环境的刺激作出应答以及能准确地 进行自我复制。尽管生命存在着惊人的多样性、存在 着生物结构和维持生命必需的机制的复杂性,但是生 命的功能最终是可以用化学的原理来解释的。
由于生物大分子对它们的结构及其组成元件具有感应,因此,
只要构件单位的多样性或次序不是过分筒单或重复,它们的线性顺 序就应含有特定信息的潜在能力。蛋白质和核酸的构件单位是以非 显著重复方式排列的,它们的顺序是独特的。当把组成它们的构件 单位以字母排列时,可以组成有意义的词语,然而并非所有生物大 分子都含有信息。多糖往往由相同的单糖单位一次又一次地重复排 列构成。这类同聚多糖不可能含有什么信息。
结构互补性是生物分子间识别的手段。生命的复杂而高度
组织化的型式取决于生物分子彼此识别和相互作用的能力。如 果一种分子的结构与另一种分子的结构是互补的,例如某种酶 与它的专一性底物分子,那么这两种分子之间的相互作用就能 准确地实现。结构互补性的原理是生物分子识别的基本要素.
6、生物分子的的识别是由弱的相互作用力介导的 通过结构互补性所发生的生物分子识别事件是由前面
二、生命分子 生命物质的元素组成明显不同于地球外壳元素的元素组
成。H、O、C和N构成了人体原子总量的99%以上,其中大 多数H和O以H2O形式出现。
H、O、C和N的什么样的性质使其结合成适合于生命 的化学?是它们通过共用电子对形成共价键的能力。此外, H、C、N和O是元素周期表中最轻的元素。由于共价键的强 度与所涉及原子的原子量是成反比的,因此,H、C、N和O 彼此间能形成最强的共价键。两种其他能形成共价键的元素 磷和硫也在生物分子中起着重要的作用。
三、生物分子的特性反映它们对生命状态的适应 1、生物大分子和它们的构件具有方向性
生物大分子是由单位元件构筑而成的。蛋白质由氨基酸构成, 核酸由核苷酸构成,多糖由单糖构成。这些构件分子是有极性的, 即它们是不对称的。因此,从某种意义上说,它们是有“头”和有 “尾”的。当这些构件分子组成生物大分子时,它们头-尾连结。 于是,生物大分子聚合体也将是有头有尾的。因此,它们的结构应 该是有“感应”(sense)的或者说是有方向的(图1-3)。 2、生物大分子是信息分子
(3)膜 膜是细胞和细胞器的边界(但将膜归为超分子装配体或者归
为细胞器都不太适合,虽然它们具有两者共有的性质)。
(4)细胞是生命的基本单位 细胞是生命的单位,是唯一能展现生命特征(生长、代谢、
刺激应答和复制)的最小实体。细胞可分为两种类型,即真核生 物细胞和原核生物细胞。真核生物细胞具有复杂的内部结构。
生物化学
主讲教师: 张 楚 富
Chapter 1 生物化学导论
生物化学是研究生命分子和生命化学反应的科学, 是运用化学的原理在分子水平上解释生物学的科学。 它的主要研究范围包括这样几个方面:生物分子的化 学结构和三维构象;生物分子的相互作用;生物分子 的合成与降解;能量的保存与利用;生物分子的组装 和协调;遗传信息的贮存、传递和表达。
一、生命系统的独特性质 ●生物最显著的性质是它们具有复杂的结构和高度的组织形 式。 ●生命系统能活跃地进行能量转换,生物高度组织化的结构 和生命活动的维持依赖于从环境捕获能量的能力。被生物利 用的能量形式是特殊的生物分子。ATP和NADPH是其中最 重要的富含能量的生物分子,代表着生物在化学上可利用的 能量的贮存形式。 ●生命系统具有显著的自我复制能力。生物能一代一代地繁 衍与它们自身相同的后代。
3、生物大分子具有特征性的三维结构 任何一种分子结构都是独特的,并具有可区别的特有的性
质。生物大分子,尤其是蛋白质,分子结构已经达到了其复杂 性的极点。 4、非共价作用力维持生物大分子的结构
共价键把原子结合在一起形成分子,非共价作用力是分子
内或分子间的原子之间的吸引。非共价作用力是弱的作用力, 包括氢键、离子键、范德华力和疏水相互作用。这些作用力一 般介于4–30 kJ·mol-1范围。 5、结构互补物和大分子
无机物分子 →(同化)转变成代谢物(氨基酸、糖、核苷 酸、脂肪酸和甘油)→(通过共价)键构成大分子(蛋白质、多 糖、DNA和RNA以及脂类) →(大分子间的相互作用导致)超分 子复合物(酶复合物、核糖体、染色体和细胞骨架系统)(图1 -2) (2)细胞器
细胞器是生物分子等级中较高层次的一级。细胞器仅在真核 生物细胞中发现。