七年级数学《认识一元一次方程》同步练习3
人教版七年级数学上册第三章一元一次方程同步测试题含答案
人教版七年级数学上册第三章一元一次方程同步测试题含答案人教版七年级数学上册第三章同步测试题3.1从算式到方程一、选择题1、下列方程中,是一元一次方程的是( )A. B. C. D. 2、已知x ?y =0,下列等式不成立的是( )A. x =yB. 3x =3yC. x =y +1D. x 2=y 2 3、下列等式变形错误的是( )A.由a=b 得a+5=b+5;B.由a=b 得;C.由x+2=y+2得x=y;D.由-3x=-3y 得x=-y4、某工厂在第一季度生产机器300台,比原计划超产了20%.若设原计划第一季度生产x 台,则列出相应的方程是( )(A)300+20%×300=x(B)300+20%·x=x(C)300-20%×300=x(D)300-20%·x=x30x +=34x x+=321x y +=2512x x -=99a b =--5、甲从商贩A处购买了若干斤西瓜,又从商贩B处购买了若干斤西瓜.A、B两处所购买的西瓜重量之比为3:2,然后将买回的西瓜以从A、B两处购买单价的平均数为单价全部卖给了乙,结果发现他赔钱了,这是因为()A.商贩A的单价大于商贩B的单价B.商贩A的单价等于商贩B的单价C.商版A的单价小于商贩B的单价D.赔钱与商贩A、商贩B的单价无关6、下列各式中,是方程的为().①.2x-1=5 ②.4+8=12 ③.5y+8 ④.2x+3y=0⑤.2x2+x=1 ⑥.2x2-5x-1A.①②④⑤ B.①②⑤ C.①④⑤ D.6个都是7、如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A .3a+2bB .3a+4bC .6a+2bD .6a+4b8、根据下列条件可列出一元一次方程的是( )(A)a 与1的和的3倍(B)甲数的2倍与乙数的3倍的和(C)a 与b 的差的20%(D)一个数的3倍是59、用一根长为a (单位:cm )的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm )得到新的正方形,则这根铁丝需增加()A .4cmB .8cmC .(a+4)cmD .(a+8)cm10、运用等式性质进行的变形,正确的是( )A.如果a=b,那么a+c=b-c;B.如果,那么a=b;C.如果a=b,那么;D.如果a 2=3a,那么a=3 二、填空题ab c c =ab c c=11、若方程6x+5a=22与方程3x+5=11的解相同,则a的值为______ .12、如果(m+2)x|m|?1+8=0是一元一次方程,则m= ______ .13、已知4x2n?3+5=0是关于x的一元一次方程,则n= ______ .14、下列各式中:①x+3=5?x;②?5?4=?9;③3x2?2x=4x;④x=5,是一元一次方程的有______ (写出对应的序号).15、如果等式ax?3x=2+b不论x取什么值时都成立,则a= ______ ,b= ______ .16、在等式4y=5?2y的两边同时______ ,得到4y+2y=5,这是根据______ .三、解答题17、判断下列各式是不是方程.(1)y=-1(2)3x=x+3(3)1-8=-7(4)ab =ba(5)3m -n(6)18、已知x=-4是方程2x+3|a|=x-1的解,求a 的值。
2018-2019七年级上册数学《第三章 一元一次方程》同步训练(含答案和解析)
七年级上册数学《第三章一元一次方程》同步训练一、单选题1.若代数式a﹣3b=﹣5,则代数式6﹣a+3b的值是()A.0 B.6 C.8 D.112.下列方程中,是一元一次方程的是( )A.0.3x=6 B.C.D.x=3y-53.代数式a2+2a+7的值是6,则4a2+8a+7的值是()A.3 B.C.13 D.4.若方程的解与关于的方程的解相同,则的值为().A.B.-C.D.5.小颖按如图所示的程序输入一个正整数x,最后输出的结果为656,则满足条件的x 的不同值有()个.A.1 B.2 C.3 D.46.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x人,依题意列方程得( )A.B.C.D.二、填空题7.当x=_____时,的值与方程x+2=4的解互为倒数.8.关于x的方程的解是,则(|m|﹣1)2002=_____.9.定义新运算“”的运算法则为:,若,则的值为________.10.若是的相反数,,则的值是________.已知等式是关于的一元一次方程(即未知),求这个方程的解________.11.如图,点、在数轴上,它们所对应的数分别是和,且点、到原点的距离相等,则的值为________.三、解答题12.解方程:.13.若方程的解,同时也是关于x的方程的解,求a的值.14.阅读下题和解题过程:化简:,使结果不含绝对值.解:当时,即时:原式;当时,即时:原式.这种解题的方法叫“分类讨论法”.请你用“分类讨论法”解一元一次方程:.15.已知a、b满足,解关于x的方程.16.用◎定义一种新运算:对于任意有理数a和b,规定a◎b=ab2+2ab+a,如:1◎2=1×22+2×1×2+l=9.(1)求(﹣4)◎3;(2)若(◎3)=8,求a的值.17.某商场用2730元购进A、B两种新型节能日光灯共60盏,这两种日光灯的进价、标价如下表所示.型(1)这两种日光灯各购进多少盏?(2)若A型日光灯按标价的9折出售,要使这批日光灯全部售出后商场获得810元的利润,则B型日光灯应按标价的几折出售?18.如图在长方形ABCD中,AB=12cm,BC=8cm,点P从A点出发,沿A→B→C→D 路线运动,到D点停止;点Q从D点出发,沿D→C→B→A运动,到A点停止.若点P、点Q同时出发,点P的速度为每秒1cm,点Q的速度为每秒2cm,用x(秒)表示运动时间.(1)求点P和点Q相遇时的x值.(2)连接PQ,当PQ平分矩形ABCD的面积时,求运动时间x值.(3)若点P、点Q运动到6秒时同时改变速度,点P的速度变为每秒3cm,点Q的速度为每秒1cm,求在整个运动过程中,点P、点Q在运动路线上相距路程为20cm时运动时间x值.参考答案1.D【解析】∵a-3b=-5,∴6-a+3b=6-(a-3b)=6-(-5)=11,2.A【解析】选项A,是一元一次方程;选项B,未知数的最高次数是2,不是一元一次方程;选项C,等号左边不是整式,不是一元一次方程;选项D,含有两个未知数,不是一元一次方程.3.A【解析】∵a2+2a+7=6,∴a2+2a=-1,∴4a2+8a+7=4(a2+2a)+7=-1×4+7=3.4.B【解析】6x−3=2−3x,解得:x =,把x =代入方程6−2k=2x+6得:6−2k=2×+6,解得:k=−.5.C【解析】由题意得,5x+1=656,解得x=131,5x+1=131,解得x=26,5x+1=26,解得x=5,5x+1=5,解得x=(不符合),所以,满足条件的x的不同值有3个.6.C【解析】解:设大和尚有x人,则小和尚有(100-x)人,根据题意得:3x +=100..7.【解析】解方程x+2=4可得x=2,∵x ﹣的值与方程x+2=4的解互为倒数,∴x ﹣=,解得:x=.即当x=时x ﹣的值与方程x+2=4的解互为倒数.故答案为:.8.0.【解析】将x=﹣代入x+2=﹣(4x+m),得:﹣+2=﹣[4×(﹣)+m]解得:m=1.把m=1代入(|m|﹣1)2002得:(|1|﹣1)2002=0.9.1【解析】根据题意(2⊕x)⊕4=3化为:4(2x-1)-1=3,整理得:8x=8,解得:x=1,故答案为:1.10.或【解析】(1)因为若是的相反数,,所以,x=-2,y=±3,所以,x+y=-2+3=1,或x+y=-2-3=-5. (2)因为,等式是关于的一元一次方程,所以,a-2=0,所以,a=2.所以,一元一次方程是2x+1=0,解得x=.11.【解析】由题意可知=,解得x=-9. 故答案为:-912.;;.【解析】解:移项合并得:,解得:;去括号得:,移项合并得:,解得:;去分母得:,移项合并得:,解得:.13..【解析】解:,去分母得:,移项合并得:,解得:,把代入另一个方程得:,解得:.14.或【解析】解:当2x﹣1≥0时,原方程可化为:2x﹣1=3,解得:x=2,当2x﹣1<0时,原方程化为﹣(2x﹣1)=3,解得:x=﹣1,即原方程的解为x=2或x=﹣1.点睛:本题考查了含绝对值符号的一元一次方程的应用,关键是能正确去掉绝对值符号.15.x=4.【解析】根据题意得,2a+8=0,b﹣=0,解得a=﹣4,b= ,所以(﹣4+2)x+3=﹣4﹣1,即﹣2x=﹣8,解得x=4.16.(1)﹣64;(2)a=0.【解析】(1)(﹣4)◎3=﹣4×32+2×(﹣4)×3+(﹣4)=﹣64;(2)∵a◎b=ab2+2ab+a=a(b+1)2,∴◎3=×(3+1)2=8,解得:a=0.17.(1)购进A型日光灯39盏,购进B型日光灯21盏.(2)B型日光灯应按标价的八五折出售.【解析】(1)设购进A型日光灯x盏,则购进B型日光灯(60﹣x)盏,根据题意得:35x+65(60﹣x)=2730,解得:x=39,∴60﹣x=21,答:购进A型日光灯39盏,购进B型日光灯21盏;(2)设B型日光灯应按标价的a折出售,根据题意得:(50×0.9﹣35)×39+(100×﹣65)×21=810,解得:a=8.5,答:B型日光灯应按标价的八五折出售.18.(1)x=;(2)4 或20;(3)4或14.5【解析】(1)由题意得:x+2x=12×2+8,解得:x=;(2)当点P在AB边上,点Q在CD边上,由题意得:2x=12-x 解得,x=4 ;当点Q运动到点A时,用时(12+8+12)÷2=16秒,此时点P运动到BC边上,当点P运动到点C时,PQ平分矩形ABCD的面积,此时用时:(12+8)÷1=20 秒,综上:当PQ平分矩形ABCD在面积时,x的值为4或20;(3)变速前:x+2x=32-20,解得:x=4 ;变速后:12+(x-6)+6+3×(x-6)=32+20,解得:x=14.5;综上:x的值为4或14.5.。
人教版七年级数学上册随课练:3.4实际问题与一元一次方程同步练习(三)
随课练:3.4实际问题与一元一次方程同步练习(三)1.王老师为学校新年联欢会购买奖品,在某文具用品店购买明信片,每一张明信片的价格是8元,在结算时发现,如果再多买5张,就可以享受到打九折的优惠,总价格反而减少8元,为了能享受优惠,王老师比原计划多购买了5张明信片;(1)王老师实际购买多少张明信片?一共花了多少钱?(2)文具店开展元旦优惠活动:从即日起,在一周内,凭购物小票,累计购物超过500元,超过部分可以享受八折的优惠.王老师想了一想,又为学校购买了一定数量的笔记本,享受了八折优惠,这样,两次一共节省了36元,王老师购买笔记本实际花了多少元?2.甲、乙二人同时从学校出发,沿同一方向匀速行走,10min后,甲加快速度继续匀速行走(加速的时间忽略不计),乙始终匀速行走,两人都走了20min.两人在行走过程中得到如下表所示的信息:离开学校的时间0 10 t20/min0 500 b1200+a甲离学校的距离/m乙离学校的距离0 500+a b1200/m(1)根据题意,甲出发时的速度为m/min,乙的速度为m/min;(2)求表中t的值.3.有一旅客携带了30千克行李乘某航空公司的飞机,按该航空公司规定,旅客最多可免费携带20千克的行李,超重部分每千克按飞机票价的1.5%购买行李票,现该旅客购买的飞机票和行李票共920元.(1)该旅客需要购买千克的行李票;(2)该旅客购买的飞机票是多少元?4.某街道1000米的路面下雨时经常严重积水.需改建排水系统.市政公司准备安排甲、乙两个工程队做这项工程,根据评估,有两个施工方案:方案一:甲、乙两队合作施工,那么12天可以完成;方案二:如果甲队先做10天,剩下的工程由乙队单独施工,还需15天才能完成.(1)甲、乙两队单独完成此项工程各需多少天?(2)方案一中,甲、乙两队实际各施工了多少米?5.“乐天乐地乐巴蜀,巴蜀孩子最幸福”巴蜀中学一年一度的艺术节是孩子们最盼望的节日,不仅有各种精彩的节目表演,还有美淘街各具特色的小店,就像过年一样热闹.初二(1)班的同学们在2018年的美淘街上大放异彩,他们手工编织的小挂件非常受欢迎,当天一共卖出了40件动物挂件与50件植物挂件,其中动物挂件每件售价8元,植物挂件每件售5元.2019年他们打算继续卖手工编织的挂件.与2018年的售价相比,动物挂件的售价不变,优惠如下:买2件,首件全价,第二件半价,不单件销售:植物摆件的单价上调m%.与2018年的销售量相比,动物挂件的销量增加了5m%,植物挂件的销量下降了10件.结果2019年的销售额比2018年的销售额增加了m元,求m的值.6.如图,数轴上,点A表示的数为﹣7,点B表示的数为﹣1,点C表示的数为9,点D表示的数为13,在点B和点C处各折一下,得到一条“折线数轴”,我们称点A和点D在数轴上相距20个长度单位,动点P从点A出发,沿着“折线数轴”的正方向运动,同时,动点Q从点D出发,沿着“折线数轴“的负方向运动,它们在“水平路线”射线BA和射线CD上的运动速度相同均为2个单位/秒,“上坡路段”从B到C速度变为“水平路线”速度的一半,“下坡路段”从C到B速度变为“水平路线”速度的2倍.设运动的时间为t秒,问:(1)动点P从点A运动至D点需要时间为秒;(2)P、Q两点到原点O的距离相同时,求出动点P在数轴上所对应的数;(3)当Q点到达终点A后,立即调头加速去追P,“水平路线”和“上坡路段”的速度均提高了1个单位/秒,当点Q追上点P时,求出它们在数轴上对应的数.7.列一元一次方程解应用题:元旦晚会是南开中学“辞旧岁,迎新年”的传统活动.晚会当天,小明组织班上的同学出去买气球来布置教室.已知买气球的男生有23人,女生有16人,且每个女生平均买的气球数比每个男生平均买的气球数多1个.回到学校后他们发现,男生买的气球总数比女生气球总数的还少1个,请问每个女生平均买几个气球?8.已知数轴上点A、点B、点C所对应的数分别是﹣6,2,12.(1)点M是数轴上一点,点M到点A、B、C三个点的距离和是35,直接写出点M对应的数;(2)若点P和点Q分别从点A和点B出发,分别以每秒3个单位和每秒1个单位的速度向点C运动,P点到达C点后,立即以同样的速度返回点A,点Q到达点C即停止运动,求点P和点Q运动多少秒时,点P和点Q相距2个单位长度?9.已知多项式3m3n2﹣2mn3﹣2中,四次项的系数为a,多项式的次数为b,常数项为c,且4b、﹣10c3、﹣(a+b)2bc的值分别是点A、B、C在数轴上对应的数,点P从原点O出发,沿OC方向以1单位/s的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点P,Q其中有一点停止运动,另一点同时停止运动),两点同时出发.(1)分别求4b、﹣10c3、﹣(a+b)2bc的值;(2)若点Q运动速度为3单位/s,经过多长时间P、Q两点相距70;(3)当点P运动到线段AB上时,分别取OP和AB的中点E、F,试问的值是否变化,若变化,求出其范围:若不变,求出其值.10.小王离岗创业,销售某品牌电脑,1月份的销售量为100台,每台电脑售价相同,2月份的销售量比1月份增加10%,每台售价比1月份降低了400元,2月份与1月份的销售总额相同,求每台电脑1月份的售价.11.为了拉动内需,推动经济发展,某商店在“五•一“期间搞促销活动,购物不超过200元不予优惠;购物超过200元不足500元的按全价的90%优惠;超过500元的,其中500元按9折优惠,超过部分按8折优惠.某人两次购物分别用了134元和466元.(1)列方程求出此人两次购物若商品不打折共值多少钱?(2)若此人将这两次购物合为一次购买是否更节省?节省多少钱?12.有A、B两家复印社,A4纸复印计费方式如表:A4纸复印计费方式A复印社复印页数不超过20页时,每页0.12元;复印页数超过20页时,超过部分每页收费0.09元.B复印社不论复印多少页,每页收费0.1元.(1)若要用A4纸复印30页,选哪家复印社划算?能便宜多少钱?(2)用A4纸复印多少页时,两家复印社收费相同?13.今年元旦期间,晓风家装修,爸爸去买新家具,看到家具店促销活动的规定:根据家具标价,①一次性购物不超过6000元,不享受优惠;②一次性购物超过6000元但不超过10000元,一律九折;③一次性购物超过10000元,一律八折.晓风的爸爸根据装修需要,元旦期间先后两次到该家具店购买家具.(1)根据家具标价,晓风爸爸第一次购物超过6000元,实际付费5580元,则晓风的爸爸购买了标价是多少元的家具?(2)第二次购物晓风爸爸实际付费8640元,则晓风的爸爸本次购买了标价是多少元的家具?(3)如果晓风爸爸一次性购买这些家具,实际付费超过了13000元,将这些家具运回家中需要支付用车费和人工费,已知人工费是用车费的3倍多,晓风爸爸通过计算发现这次所有费用的支出(购买家具实际费用、人工费和用车费)恰好是这批家具的标价.则运输这批家具的人工费是多少元?14.“元旦”前夕,“星星”文具用品店从厂家购进A、B两种型号的钢笔.已知A、B两种型号的钢笔每支进价比为3:5,两种型号的钢笔每支售价比为9:16,两种型号的钢笔各购进50支,共用去200元,A型号的钢笔每支利润3元.(每支钢笔利润=每支钢笔售价﹣每支钢笔进价)(1)求A、B两种型号的钢笔每支进价各是多少元?(2)求B型号的钢笔每支售价是多少元?(3)在“元旦”期间,“星星”文具用品店对A、B两种型号的钢笔进行如下优惠(购买时只能选择一种优惠方案):方案一:购买两支以上(含两支)的钢笔按标价八五折出售;方案二:购买3支B型号的钢笔赠1支A型号的钢笔.小红同学想一次购买2支A型号钢笔和4支B型号的钢笔,请通过计算说明小红应选择哪种优惠方案购买比较便宜,便宜多少钱.15.今年小李的年龄是他爷爷年龄的五分之一,小李发现:12年之后,他的年龄变成爷爷的年龄三分之一.求小李爷爷今年的年龄.16.随着武汉解封,湖北各地的复工复产正有序进行,经济复苏也按下了“重启键”.为助力湖北复苏,4月8日抖音发起了“湖北重启,抖来助力﹣﹣抖音援鄂复苏计划”,通过直播或短视频助力推广湖北特色产品.已知当天的直播活动中热干面和周黑鸭共销售18万份,其中周黑鸭的销量是热干面的3.5倍.(1)求当天的直播活动中销售了多少万份周黑鸭?(2)为刺激消费,直播中推出了优惠活动.疫情前,疫情期间售价均为100元一份的周黑鸭(一份里面有一盒锁骨,两盒鸭脖,一盒鸭掌),以6折力度售卖.疫情前,疫情期间售价均为60元一份的热干面(一份里面有6包热干面),以5折力度售卖.已知疫情前周黑鸭的日销售量比直播当天的销量少2a%,疫情期间的日销售额比疫情前的日销售额减少了680万元;疫情前热干面的日销量比直播当天热干面的销量少a%,疫情期间的日销售量比疫情前的日销售量减少了8a%;疫情期间周黑鸭和热干面的总日销售额比直播当天的总销售额少5a%,求a的值.17.某市水果批发欲将A市的一批水果运往本市销售,有火车和汽车两种运输方式,运输过程中的损耗均为200元/时,其它主要参考数据如下:运输工具途中平均速度(千米/时)运费(元/千米)装卸费用(元)火车100 15 2000汽车80 20 900 (1)如果汽车的总支出费用比火车费用多1100元,你知道本市与A市之间的路程是多少千米吗?请你列方程解答.(总支出包含损耗、运费和装卸费用)(2)如果A市与B市之间的距离为S千米,你若是A市水果批发部门的经理,要想将这种水果运往B市销售,试分析以上两种运输工具中选择哪种运输方式比较合算呢?18.某校召开运动会,七(1)班学生到超市分两次(第二次少于第一次)购买某种饮料90瓶,共用去205元,已知该种饮料价格如表:购买瓶数/瓶不超过30 30以上不超过50 50以上单价/元 3 2.5 2 求:两次分别购买这种饮料多少瓶?19.列方程解应用题:现有校舍面积20000平方米,为改善办学条件,计划拆除部分旧校舍,建造新校舍,使新造校舍的面积是拆除旧校舍面积的3倍还多1000平方米.这样,计划完成后的校舍总面积可比现有校舍面积增加20%.(1)改造多少平方米旧校舍;(2)已知拆除旧校舍每平方米费用80元,建造新校舍每平方米需费用700元,问完成该计划需多少费用.20.粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.参考答案1.解:(1)设实际购买x张明信片,根据题意,得8(x﹣5)﹣8=8×90%x.解得x=60,∴实际花的钱数7.2×60=432(元),答:王老师实际购买60张明信,一共花了432元;(2)购买笔记本原价是y元,得(432+y﹣500)(1﹣80%)=36﹣8 解得y=208,∴实际购买笔记本208﹣28=180(元),答:王老师购买笔记本实际花了180元.2.解:(1)甲出发时的速度为:=50(m/min)乙的速度为:=60(m/min)故答案是:50;60;(2)由题意得,500+a=60×10,a=100所以20分钟时,甲离学校的距离为1200+a=1300(m)甲加速后的速度:因为tmin后,两人相遇,则可以列方程500+80(t﹣10)=60t解得t=15表中t=15.3.解:(1)30﹣20=10(千克).故答案为:10.(2)设该旅客购买的飞机票是x元,依题意,得:x+10×1.5%x=920,解得:x=800.答:该旅客购买的飞机票是800元.4.解:(1)设甲队每天施工x米,则乙队每天施工米,依题意,得:12x+12×=1000,解得:x=50,∴=,∴1000÷50=20(天),1000÷=30(天).答:甲队单独完成此项工程需要20天,则乙队单独完成此项工程需要30天.(2)50×12=600(米),×12=400(米).答:方案一中,甲队实际施工了600米,乙队实际施工了400米.5.解:根据题意得:×40(1+5m%)+5(1+m%)×(50﹣10)=8×40+5×50+m,240+12m+200+2m=320+250+m,整理得,13m=130,解得m=10.故m的值为10.6.解:(1)动点P从点A运动至D点需要时间t=(﹣1+7)÷2+(9+1)÷(2÷2)+(13﹣9)÷2=15(秒).答:动点P从点A运动至D点需要时间为15秒;(2)①当点P,点Q相遇时时,则(t﹣6÷2﹣1÷1)+6+1+4(t﹣4÷2)+4=20,解得t=,故动点P在数轴上所对应的数是t﹣6÷2﹣1÷1=;②当点P,点Q相遇后.(t﹣6÷2﹣1÷1)+6+1﹣7=4(t﹣4÷2)+4﹣13,解得t=,故动点P在数轴上所对应的数是t﹣6÷2﹣1÷1=.综上所述,故动点P在数轴上所对应的数是或;(3)4÷2=2(秒),10÷4=2.5(秒),6÷2=3(秒),2+2.5+3=7.5(秒),6÷(2+1)=2(秒),10÷(1+1)=5(秒),依题意有(2+1)(t﹣7.5﹣2﹣5)=2(t﹣3﹣10),解得t=17.5.9+2(t﹣3﹣10)=18.故它们在数轴上对应的数是18.故答案为:15.7.解:设每个女生平均买x个气球,则每个男生平均买(x﹣1)个气球,由题意可得:×16×x﹣1=23×(x﹣1)解得:x=2,答:每个女生平均买2个气球.8.解:设点M对应的数为x,当点M在点A左侧,由题意可得:12﹣x+2﹣x+(﹣6)﹣x=35,解得x=﹣9,当点M在线段AB上,由题意可得:12﹣x+2﹣x+x﹣(﹣6)=35,解得:x=﹣15(不合题意舍去);当点M在线段BC上时,由题意可得12﹣x+x﹣2+x+6=35,解得:x=19(不合题意舍去);当点M在点C右侧时,由题意可得:x﹣12+x﹣2+x+6=35,解得:x=,综上所述:点M对应的数为﹣9或;(2)设点P运动x秒时,点P和点Q相距2个单位长度,点P没有到达C点前,由题意可得:|3x﹣(8+x)|=2,解得:x=5或3;点P返回过程中,由题意可得:3x﹣18+8+x+2=18或3x﹣18+8+x=18+2,解得:x=或;综上所述:当点P运动5或3秒或或时,点P和点Q相距2个单位长度.9.解:(1)∵多项式3m3n2﹣2mn3﹣2中,四次项的系数为a,多项式的次数为b,常数项为c,∴a=﹣2,b=5,c=﹣2,∴4b=4×5=20;﹣10c3=﹣10×(﹣2)3=80;﹣(a+b)2bc=﹣(﹣2+5)2×5×(﹣2)=90;(2)设运动时间为t秒,则OP=t,CQ=3t,当P、Q两点相遇前:90﹣t﹣3t=70,解得:t=5;当P、Q两点相遇后:t+3t﹣70=90,解得:t=40>30(所以此情况舍去),∴经过5秒的时间P、Q两点相距70;(3)由题意可知:当点P运动到线段AB上时,OB=80,AP=t﹣20,又∵分别取OP和AB的中点E、F,∴点F表示的数是,点E表示的数是,∴EF=,∴,∴的值不变,=2.10.解:设每台电脑1月份的售价为x元,根据题意得,100(1+10%)(x﹣400)=100x,解得:x=4400,答:每台电脑1月份的售价为4400元.11.解:(1)①因为134元<200×90%=180元,所以该人不享受优惠;②因为第二次付了466元>500×90%=450元,所以该人享受超过500元,其中500元按9折优惠,超过部分8折优惠.设他所购价值x元的货物,则90%×500+(x﹣500)×80%=466,解得x=520,520+134=654(元).答:此人两次购物若商品不打折共值654元钱;(2)500×90%+(654﹣500)×80%=573.2(元),134+466=600(元),∵573.2<600,600﹣573.2=26.8(元).∴此人将这两次购物合为一次购买更节省,节省26.8元钱.12.解:(1)A复印社:20×0.12+0.09×(30﹣20)=3.3(元),B复印社:30×0.1=3(元),3<3.3,3.3﹣3=0.3(元),答:选B复印社划算,能便宜0.3元.(2)设:复印x页时两家复印社收费相同.可得:20×0.12+0.09×(x﹣20)=0.1x,解得:x=60,答:复印60页时两家复印社收费相同.13.解:(1)10000×90%=9000(元),5580元<9000元,5580÷90%=6200(元).答:晓风的爸爸购买了标价是6200元的家具.(2)10000×80%=8000(元),8000元<8640元<9000元,8640÷90%=9600(元),8640÷80%=10800(元).答:晓风的爸爸本次购买了标价是9600元或10800元的家具.(3)6200+9600=15800(元),15800×80%=12640(元),12640元<13000元,不合题意,舍去;6200+10800=17000(元),17000×80%=13600(元),13600元>13000元,符合题意.设运输这批家具的用车费为x元,则人工费用为3x元,依题意,得:13600+x+3x=17000,解得:x=800,∴3x=2600.答:运输这批家具的人工费是2600元.14.解:(1)设每支A型号钢笔的进价为3x元,则每支B型号钢笔的进价为5x元,依题意,得:50×3x+50×50x=200,解得:x=0.5,∴3x=1.5,5x=2.5.答:每支A型号钢笔的进价为1.5元,每支B型号钢笔的进价为2.5元.(2)设每支A型号钢笔的售价为9y元,则每支B型号钢笔的售价为16y元,依题意,得:9y﹣1.5=3,解得:y=0.5,∴9y=4.5,16y=8.答:每支B型号钢笔的售价是8元.(3)选择优惠方案一所需费用为(2×4.5+4×8)×0.85=34.85(元);选择优惠方案二所需费用为(2﹣1)×4.5+4×8=36.5(元).∵34.85<36.5,36.5﹣34.85=1.65(元),∴小红应选择优惠方案一购买比较便宜,便宜1.65元.15.解:设爷爷今年的年龄是x岁,则今年小李的年龄是x岁,依题意,得:x+12=(x+12),解得:x=60.答:爷爷今年60岁.16.解:(1)设当天的直播活动中销售了x万份热干面,则销售了3.5x万份周黑鸭,依题意,得:x+3.5x=18,解得:x=4,∴3.5x=14.答:当天的直播活动中销售了14万份周黑鸭;(2)依题意,得:[100×14×(1﹣2a%)﹣680]+60×4×(1﹣a%)×(1﹣8a%)=(100×0.6×14+60×0.5×4)×(1﹣5a%),整理,得:4a2﹣45a=0,解得:a1=,a2=0(不合题意,舍去).答:a的值为.17.(1)设本市与A市之间的路程是x千米,由题意可得:,解得x=400,答:本市与A市之间的路程是400千米,(2)火车的运输费用为×200+15S+2000=17S+2000,汽车运输的费用为+20S+900=22.5S+900,当17S+2000=22.5S+900,解得S=200,答:当S>200时,选择火车运输,当S<200时,选择汽车运输,当S=200时,两种方式都一样.18.解:设第一次购买这种饮料x瓶,则第二次购买这种饮料(90﹣x)瓶.(1)若第一次购买这种饮料50瓶以上,第二次购买这种饮料30瓶以下,则2x+3(90﹣x)=205,解得:x=65,得90﹣x=25,因为65>50,25<30,所以这种情况成立.(2)若第一次购买这种饮料50瓶以上,第二次购买这种饮料30瓶以上,则2x+2.5(90﹣x)=205,解得:x=40,得90﹣x=50.因为40<50,所以这种情况不成立.(3)若第一次第二次均购买这种饮料30瓶以上,但不超过50瓶.则2.5×90=225,因为225>205,所以这种情况不成立.答:第一次购买饮料65瓶,则第二次购买这种饮料25瓶.19.解:(1)设需要拆除的旧校舍的面积是x平方米,则新造校舍的面积是(3x+1000)平方米,依题意,得:20000﹣x+3x+1000=20000(1+20%),解得:x=1500.答:改造1500平方米旧校舍.(2)80×1500+700×(1500×3+1000)=3970000(元).答:完成该计划需3970000元.20.解:(1)50×(1﹣50%)=25(万元).故明年每辆无人驾驶出租车的预计改装费用是25万元;(2)设明年改装的无人驾驶出租车是x辆,则今年改装的无人驾驶出租车是(260﹣x)辆,依题意有50(260﹣x)+25x=9000,解得x=160.故明年改装的无人驾驶出租车是160辆.。
北师大版七年级数学上册第五章《一元一次方程》练习题含答案解析 (3)
一、选择题1.一件羽绒服先按成本提高50%标价,再以8折(标价的80%)出售,结果获利250元.若设这件羽绒服的成本是x元,根据题意,可得到的方程是( )A.x(1+50%)80%=x−250B.x(1+50%)80%=x+250C.(1+50%x)80%=x−250D.(1+50%x)80%=250−x+3的解也为整数,则所有满足条件的数2.已知a为整数,关于x的一元一次方程2x+1=ax3a的和为( )A.0B.24C.36D.483.某商品提价25%后.欲恢复原价,则应降低( )A.40%B.25%C.20%D.15%4.某种商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为( )A.80元B.85元C.90元D.95元5.妈妈将2万元为小明存了一个6年期的教育储蓄(免利息税),6年后,总共能得27056元,则这种教育储蓄的年利率为( )A.5.86%B.5.88%C.5.84%D.5.82%6.用一根绳子环绕一棵大树,环绕大树3周绳子还多4米,环绕4周又少了3米,则环绕大树一周需要的绳长为( )A.5米B.6米C.7米D.8米7.某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为( )A.240元B.250元C.280元D.300元8.若关于x的方程(k−4)x=3有正整数解,则自然数k的值是( )A.1或3B.5C.5或7D.3或79.如图,宽为50cm的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为( )A.400cm2B.500cm2C.600cm2D.300cm210.一台电视机成本价为a元,销售价比成本价增加了25%,因库存积压,所以就按销售价的70%出售,那么每台实际售价为( )A.(1+25%)(1+70%)a元B.70%(1+25%)a元C.(1+25%)(1−70%)a元D.(1+25%+70%)a元二、填空题11.9月6日,重庆来福购物中心正式开业,购物中心里的美食店推出了A,B两种套餐和其他美食,当天,A套餐的销售额占总销售额的40%,B套餐的销售额占总销售额的20%.国庆期间,重庆外来旅客增加,此店老板考虑外来游客的饮食口味推出了C套餐,在10月1日这一天,A,B套餐各自的销售额都比9月6日的销售额减少了15%,C套餐的销售额占10月1日当天总销售额的20%,其他美食的销售额不变,则10月1日的总销售额比9月6日的总销售额增加%.12.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有人,这个物品的价格是元.13.丰都县某中学为培养学生综合实践能力,开展了一系列综合实践活动,有一次财商训练活动中,小明同学准备去集市批发两种商品用于活动中交易.预先了解到A,B两种商品的价格之和为27元,小明计划购买B商品的数量比A商品的数量多2件,但一共不超过25件,且每样不少于3件,但小明去购买时发现A商品正打九折销售,而B商品的价格提高了20%,小明决定将A,B 产品的购买数量对调,这样实际花费只比计划多8元,已知价格和购买数量均为整数,则小明购买两种商品实际花费为元.14.如图,∠AOC是平角,∠AOB=60∘,在平面内,OA,OB绕点O顺时针转动,速度分别为每秒40∘和每秒20∘.经过t秒后,首次出现射线OA,OB,OC中的一条是另外两条组成角的角平分线,则t=.15.在一个长为3,宽为m(m<3)的矩形纸片上,剪下一个面积最大的正方形(称为第一次操作);再在剩下的矩形上剪下一个面积最大的正方形(称为第二次操作);如此反复操作下去.若在第n 次操作后,剩下的矩形为正方形,则操作终止.当n=2时,m的值为.16.某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件的销售利润为元.17.某种商品的标价为200元,按标价的八折出售,这时仍可盈利25%,若设这种商品的进价是x元,由题意可列方程为.三、解答题18.如图,已知线段AB,点C是线段AB的中点,点D在AB延长线上.(1) 用直尺和圆规在答题纸上作出点C;(2) 已知线段AD的长是7,线段AC的长比线段BD长的一半少1,求线段AC的长.19.已知一张方桌由1个桌面和4条桌腿组成,1立方米木料可制作方桌桌面50张或桌腿300条.现有5立方米木料,那么多少木料做桌面,多少木料做桌腿,可以恰好配套成方桌?20.如图1,O为直线AB上点,过点O作射线OC,∠AOC=30∘,将一直角三角板(∠M=30∘)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1) 将图1中的三角板绕点O以每秒3∘的速度沿顺时针方向旋转一周,如图2经过t秒后,OM恰好平分∠BOC.①求t的值.②此时ON是否平分∠AOC?请说明理由.(2) 在(1)问的基础上,若三角板在转动的同时,射线 OC 也绕 O 点以每秒 6∘ 的速度沿顺时针方向旋转一周,如图 3,那么经过多长时间 OC 平分 ∠MON ?请你说明理由.(3) 在(2)问的基础上,经过多长时间 OC 平分 ∠MOB ?请画图并说明理由.21. “六一”期间,小张购进 100 只两种型号的文具并全部售出后获利 500 元,其进价和售价之间的关系如下表:型号进价(元/只)售价(元/只)A 型1012B 型1523问当初小张进货,用了多少元?22. 已知有理数 a ,b ,c 在数轴上对应的点分别为 A ,B ,C ,其中 b 是最小的正整数,a ,c 满足∣a +2∣+(c −5)2=0.(1) 填空:a = ,b = ,c = ;(2) 现将点 A ,点 B 和点 C 分别以每秒 4 个单位长度,1 个单位长度和 1 个单位长度的速度在数轴上同时向右运动,设运动时间为 t 秒.①定义:已知 M ,N 为数轴上任意两点,将数轴沿线段 MN 的中点 Q 进行折叠,点 M 与点 N 刚好重合,所以我们又称线段 MN 的中点 Q 为点 M 和点 N 的折点. 试问:当 t 为何值时,这三个点中恰好有一点为另外两点的折点?②当点 A 在点 C 左侧时(不考虑点 A 与点 B 重合),是否存在一个常数 m 使得 2AC +m ⋅AB 的值在一定时间范围内不随 t 的改变而改变?若存在,求出 m 的值;若不存在,请说明理由.23. 已知;如图,线段 AB =6,点 C 是线段 AB 的中点.动点 P 从点 A 出发,以每秒 1 个单位的速度沿 AB 向终点 B 运动,设点 P 运动的时间是 t (秒).(1) 用含t的代数式表示AP,则AP=.(2) 当点P与点C重合时,求t的值.(3) 用含t的代数式表示CP.(4) 若在点P出发的同时,动点Q从点B出发,以每秒2个单位的速度沿BA向终点A运动,当P,Q两点的距离是1时,直接写出t的值.24.我们把解相同的两个方程称为同解方程.例如:方程2x=6与方程4x=12的解都为x=3,所以它们为同解方程.(1) 若方程2x−3=11与关于x的方程4x+5=3k是同解方程,求k的值.(2) 若关于x的方程3[x−2(x−k3)]=4x和3x+k12−1−5x8=1是同解方程,求k的值.(3) 若关于x的方程2x−3a=b2和4x+a+b2=3是同解方程,求14a2+6ab2+8a+6b2的值.25.某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1) 若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;(2) 若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售利润最多,你选择哪一种进货方案?答案一、选择题1. 【答案】B【解析】标价为:x(1+50%),八折出售的价格为:(1+50%)x×80%,则可列方程为:(1+50%)x×80%=x+250,故选B.【知识点】利润问题2. 【答案】D+3,【解析】∵2x+1=ax3∴(6−a)x=6,+3的解为整数,∵关于x的一元一次方程2x+1=ax3为整数,∴x=66−a∴6−a=±1或±2或±3或±6,又∵a为整数,∴a=5或7或4或8或3或9或0或12,∴所有满足条件的数a的和为:5+7+4+8+3+9+0+12=48.【知识点】含参一元一次方程的解法3. 【答案】C【知识点】利润问题4. 【答案】C【知识点】利润问题5. 【答案】B【知识点】和差倍分6. 【答案】C【解析】设环绕大树一周需要的绳长为x米.根据题意,得3x+4=4x−3,解得x=7,则环绕大树一周需要的绳长为7米.【知识点】和差倍分7. 【答案】A【知识点】利润问题8. 【答案】C【解析】由 (k −4)x =3,解得 x =3k−4,又因为 (k −4)x =3 有正整数解,k 为自然数, 所以 k −4=1或3,所以 k =5或7,所以自然数 k 的值是 5 或 7. 【知识点】含参一元一次方程的解法9. 【答案】A【解析】设一个小长方形的长为 x cm ,宽为 y cm , 则可列方程组 {x +y =50,x +4y =2x,解得 {x =40,y =10,则一个小长方形的面积 =40 cm ×10 cm =400 cm 2. 【知识点】几何问题10. 【答案】B【解析】可先求销售价 (1+25%)a 元,再求实际售价 70%(1+25%)a 元. 【知识点】利润问题二、填空题11. 【答案】 13.75【解析】设 9 月 6 日的总销售额为 x 元, 则 9 月 6 日 A 套餐的销售额为 40%x 元, B 套餐的销售额为 20%x 元,其他美食的销售额为 (1−40%−20%)x =40%x ,则 10 月 1 日 A 套餐的销售额为 40%x ×(1−15%)=34%x 元, B 套餐的销售额为 20%x ×(1−15%)=17%x 元, 其他美食的销售额为 40%x ,则 10 月 1 日的总销售额为 (34%x +17%x +40%x )÷(1−20%)=1.1375x ,则 10 月 1 日的总销售额比 9 月 6 日的总销售额增加 (1.1375x −x )÷x =13.75%. 【知识点】利润问题12. 【答案】 7 ; 53【解析】设共有 x 人,则这个物品的价格是 (8x −3) 元, 依题意,得:8x −3=7x +4,解得:x =7, ∴8x −3=53. 【知识点】和差倍分13. 【答案】312【解析】设A商品的单价为x元/件,则B商品的单价为(27−x)元/件,计划购买A商品a件,则B商品为(a+2)件,根据题意可得:0.9x×(a+2)+1.2×(27−x)×a=xa+(27−x)(a+2)+8,∴x=62−5.4a−0.3a+3.8,∵a≥3,a+2≥3,a+a+2≤25,x,a均为整数,∴a=10,x=10,∴小明购买两种商品实际花费=9×12+1.2×10×17=312元.【知识点】和差倍分14. 【答案】4【知识点】几何问题15. 【答案】1或2【解析】由题意第一象操作后剩下的矩形长是宽的2倍,由此可得:3−m=2m或m=2(3−m),解得m=1或2.【知识点】几何问题16. 【答案】4【解析】设该商品每件的销售利润为x元,根据进价+利润=售价,得80+x=120×0.7,解得x=4,故答案为4.【知识点】利润问题17. 【答案】200×80%=(1+25%)x【知识点】利润问题三、解答题18. 【答案】(1) 图略.(2) 设AC的长为x,则BD的长为7−2x.由题意得x=12(7−2x)−1.解得x=54.答:线段AC的长是54.【知识点】几何问题、线段中点的概念及计算、线段的和差19. 【答案】设桌面用木料x立方米,则桌腿用木料(5−x)立方米,根据题意得,50x×4=300(5−x)解得x=35−3=2答:桌面3立方米,桌腿2立方米.【知识点】和差倍分20. 【答案】(1) ① ∵∠AON+∠BOM=90∘,∠COM=∠MOB,∵∠AOC=30∘,∴∠BOC=2∠COM=150∘,∴∠COM=75∘,∴∠CON=15∘,∴∠AON=∠AOC−∠CON=30∘−15∘=15∘,解得t=15∘÷3∘=5秒.②是,理由如下:∵∠CON=15∘,∠AON=15∘,∴ON平分∠AOC.(2) 5秒时OC平分∠MON,理由如下:∵∠AON+∠BOM=90∘,∠CON=∠COM,∵∠MON=90∘,∴∠CON=∠COM=45∘,三角板绕点O以每秒3∘的速度,射线OC也绕O点以每秒6∘的速度旋转,设∠AON为3t,∠AOC为30∘+6t,∵∠AOC−∠AON=45∘,可得:30+6t−3t=45∘,解得:t=5秒.(3) OC平分∠MOB,∵∠AON+∠BOM=90∘,∠BOC=∠COM,∵三角板绕点O以每秒3∘的速度,射线OC也绕O点以每秒6∘的速度旋转,设∠AON为3t,∠AOC为30∘+6t,(90∘−3t),∴∠COM为12∵∠BOM+∠AON=90∘,(90∘−3t).可得:180∘−(30∘+6t)=12秒.解得:t=703如图:【知识点】角平分线的定义、几何问题、角的计算21. 【答案】A文具为40只,B文具60只,进货用了1300元.【知识点】利润问题22. 【答案】(1) −2;1;5(2) ① t秒后,点A表示的数为−2+4t,点B表示的数为1+t,点C表示的数为5+t.(i)当点A为点B和点C的对折点时,有:(1+t)+(5+t)=2(−2+4t),解得t=53;(ii)当点B为点A和点C的对折点时,有:(−2+4t)+(5+t)=2(1+t),解得t=−13<0(舍去);(iii)当点C为点B和点A的对折点时,有:(−2+4t)+(1+t)=2(5+t),解得t=113.综上所述,满足条件的t的值是53或113.② t秒后,点A表示的数为−2+4t,点B表示的数为1+t,点C表示的数为5+t.(i)当点A在点B的左侧时,如图所示,AC=(5+t)−(−2+4t)=7−3t,AB=(1+t)−(−2+4t)=3−3t∴2AC+m⋅AB=2(7−3t)+m(3−3t)=(−3m−6)t+3m+14.∵2AC+m⋅AB的值在一定时间范围内不随t的改变而改变,∴−3m−6=0.∴m=−2;(ii)当点A在点B与点C之间时,如图所示,AC=(5+t)−(−2+4t)=7−3t,AB=−(1+t)+(−2+4t)=−3+3t∴2AC+m⋅AB=2(7−3t)+m(−3+3t)=(3m−6)t−3m+14.∵2AC+m⋅AB的值在一定时间范围内不随t的改变而改变,∴3m−6=0.∴m=2.综上:m的值是2或−2.【解析】(1) ∵最小的正整数是1,∴b=1,由题意得,a+2=0,c−5=0,解得a=−2,c=5.【知识点】数轴的概念、行程问题23. 【答案】(1) t(2) ∵AB=6,C是线段AB的中点,∴AC=3,则此时AP=AC=t=3,∴t=3.(3) 0≤t≤3时,PC=3−t,3<t≤6时,PC=t−3.(4) 53或73.【解析】(1) 由题AP=t.(4) AP=t,BQ=2t,P与Q在t=2时相遇,①则0≤t≤2时,PQ=6−3t=1,则t=53符合条件,② 2<t≤3时,PQ=3t−6=1,则t=73符合条件,故t=53或73.【知识点】行程问题、绝对值的几何意义、线段中点的概念及计算、线段的和差24. 【答案】(1) 2x−3=11,解得x=7,∵2x−3=11与4x+5=3k是同解方程,∴把x=7代入4x+5=3k中可得k=11.(2) 3[x−2(x−k3)]=4x,3(x−2x+23k)=4x,−3x+2k=4x,7x=2k,x=27k,3x+k 12−1−5x8=1,2(3x+k)−3(1−5x)=24,6x+2k−3+15x=24,21x=27−2k,x=27−2k21,∵原方程为同解方程,∴27k=27−2k21,6k=27−2k,8k=27,k=278.(3) 2x−3a=b2,x=b2+3a2,4x+a+b2=3,x=3−a−b24.∵原方程为同解方程,b2+3a2=3−a−b24,4b2+12a=6−2a−2b2,6b2+14a=6,14a2+6ab2+8a+6b2=(14a+6b2)+8a+6b2=6a+8a+6b2=14a+6b2= 6.【知识点】含参一元一次方程的解法、解常规一元一次方程25. 【答案】(1) 分三种情况计算:①设购进甲种电视机x台,乙种电视机(50−x)台.1500x+2100(50−x)=90000.解得x=25.则50−x=50−25=25.故购进甲种电视机25台,乙种电视机25台.②设购进甲种电视机y台,丙种电视机(50−y)台.1500y+2500(50−y)=90000.解得y=35.则50−y=15.故购进买甲种电视机35台,丙种电视机15台.③设购进乙种电视机z台,丙种电视机(50−z)台.2100z+2500(50−z)=90000.解得z=87.5.则50−z=−37.5(不合题意,舍去).故有以下两种进货方案:①甲、乙两种型号的电视机各购进25台;②购进甲种电视机35台,丙种电视机15台.(2) 方案一:25×150+25×200=8750(元).方案二:35×150+15×250=9000(元).故购进甲种电视机35台,丙种电视机15台获利最多.【知识点】利润问题、方案决策。
七年级数学解一元一次方程同步测试题
七年级数学解一元一次方程同步测试题篇1:七年级数学解一元一次方程同步测试题七年级数学解一元一次方程同步测试题【基础过关】一、选择题1、方程=x-2的解是A.5B.-5C.2D.-22、解方程x=,正确的是 ( )A.x==x=;B.x=,x=C.x=,x=;D.x=,x=3、下列变形是根据等式的性质的是()A.由2x﹣1=3得2x=4B.由x2=x得x=1C.由x2=9得x=3D.由2x﹣1=3x得5x=﹣14、下列变形错误的是()A.由x+7=5得x+7-7=5-7;B.由3x-2=2x+1得x=3C.由4-3x=4x-3得4+3=4x+3xD.由-2x=3得x=-5、已知方程①3x-1=2x+1②③④中,解为x=2的是方程()A.①、②和③;B.①、③和④C.②、③和④;D.①、②和④二、填空题1、判断:方程6x=4x+5,变形得6x+4x=5()改正:________________________________________________.2、方程3y=,两边都除以3,得y=1()改正:________________________________________________.3、某数的4倍减去3比这个数的一半大4,则这个数为__________.4、当m=__________时,方程2x+m=x+1的解为x=-4.当a=____________时,方程3x2a-2=4是一元一次方程.6、求作一个方程,使它的'解为-5,这个方程为__________.三、解下列方程(1)6x=3x-12 (2)2y―=y―3(3)-2x=-3x+8(4)56=3x+32-2x(5)3x―7+6x=4x―8(6)7.9x+1.58+x=7.9x-8.42【知能升级】1、2a—3x=12是关于x的方程.在解这个方程时,粗心的小虎误将-3x看做3x,得方程的解为x=3.请你帮助小虎求出原方程的解.2、在代数式|()+6|+|0.2+2()|的括号中分别填入一个数,使代数式的值等于0.答案【基础过关】一、选择题1、A2、C3、A4、D5、D二、填空题1、错,6x-4x=52、错,y=3、24、5,6、x+5=0三、解下列方程1、x=-42、y=3、x=84、x=245、x=6、x=-10【知能升级】1、x=-32、-4,-0.1篇2:数学《一元一次方程》测试题数学《一元一次方程》测试题一、选择题(每题3分):将你选择的答案填入下表1、下列选项中,是方程的是A.B.C.D.2、下列方程中是一元一次方程的是()A.B.C.D.3、已知关于x的方程5x+3k=24与5x+3=0的解相同,则k的值为()A.7B.-8C.-10D.94、下列说法中,正确的个数是()①若mx=my,则mx-my=0②若mx=my,则x=y③若mx=my,则mx+my=2my④若x=y,则mx=myA.1B.2C.3D.45、下列变形正确的是().A.4x-5=3x+2变形得4x-3x=-2+5B.x-1=x+3变形得4x-1=3x+3C.3x=2变形得x=D.3(x-1)=2(x+3)变形得3x-1=2x+66、把方程的'分母化成整数后,可得方程()7、小华在某月的日历中圈出相邻的几个数,算出这三个数的和是36,那么这个数阵的形式不可能是()A.B.C.D.8、内径为120mm的圆柱形玻璃杯,和内径为300mm,内高为32mm的圆柱形玻璃盆可以盛同样多的水,则玻璃杯的内高为()A.300mmB.250mmC.200mmD.150mm9、某商场卖出两个进价不同的手机,都卖了1200元,其中一个盈利50%,另一个亏本20%,在这次买卖中,这家商场()A.不赔不赚B.赔100元C.赚100元D.赚360元10、甲以5km/h的速度先走16分钟,乙以13km/h的速度追甲,则乙追上甲需要的时间为()小时A.10B.6C.D.二、填空题(每题3分):11、方程3xm-2+5=0是一元一次方程,则代数式4m-5=_.12、小明的妈妈今年44岁,是小明年龄的3倍还大2岁,设小明今年x岁,则可列出方程:___________________.13、一件服装的进价是200元,按标价的8折销售,仍可获利10%,则该服装的标价是元.14、一轮船航行于相距60千米的两个码头之间顺水航行需用3小时,逆水航行需用5小时,则这只船的顺水速度是______千米/时,逆水速度是______千米/时.若设水流速度为x千米/时,求船在静水中的速度,则可列方程_____,解x=___.15、某班学生不到50人,一次测验中,有人得优,人得良,人得及格,则有人不及格.三、解下列方程(每题5分):16、(1)(2)3[2(x+1)-8]-2x-7=1(3)(4)四、列方程解应用题:17、要分别锻造直径70mm,高45mm和直径30mm,高30mm的圆柱形零件各一个,需要截取直径50mm的圆钢多长?(5分)18、一年前小明把他积蓄的钱存了一个的年期的教育储蓄(1年期的年利率为2.25%),现在到期了,他取出的本息恰好能够买1台中英文学习机,已知学习机每台511.3元,问一年前,小明存入银行多少元?(精确到个位)(6分)19、小张到新华书店帮同学们买书,售货员告诉他,如果花20元钱办理会员卡,将享受八折优惠.请问:①在这次买书中小张买标价为多少元书的情况下办会员卡与不办会员卡花钱一样多?(3分)②当小张买标价为200元书时,怎么做合算?能省多少钱?(2分)③当小张买标价为60元书时,怎么做合算?能省多少钱?(2分)20、某车间有28名工人,生产一种螺栓和螺帽,一个螺栓的两头各套上一个螺帽配成一套,每人每天平均生产螺栓12个或螺帽18个,问多少工人生产螺栓,多少工人生产螺帽,才能使一天所生产的螺栓和螺帽刚好配套?(7分)21、甲、乙两人骑自行车,同时从相距65千米的两地相向而行,甲的速度为17.5千米/时,乙的速度为15千米/时,经过几小时两人相距32.5千米?(10分)这是20道精选的一元一次方程测试题,同学们还等什么呢,赶紧动起来。
人教版 七年级数学上册 第3章 一元一次方程 同步训练
人教版七年级数学上册第3章一元一次方程同步训练一、选择题(本大题共10道小题)1. 下列解方程中,合并同类项不正确的是()A.由3x-2x=4,得x=4B.由2x-3x=3,得-x=3C.由-7x+2x=-1+5,得-5x=4D.由5x-2x+3x=-10-2,得6x=-82. 方程2x+1=3(x-1)的解是()A.x=3 B.x=4C.x=-3 D.x=-43. 足球比赛的积分规则是胜一场得3分,平一场得1分,负一场得0分.某足球队参加14场比赛,负5场,共得19分,那么这个队胜了()A.6场B.5场C.4场D.3场4. 下列结论中正确的是()A.在等式3635-=+.a b-=+的两边都除以3,可得等式25a bB.如果2x=-,那么2x=-.C.在等式50.1xx=.=的两边都除以0.1,可得等式0.5D.在等式753x-,可得等式6346-=+.x xx x=+的两边都减去35. 方程2x+3=7的解是()A.x=5 B.x=4C.x=3.5 D.x=26. 解方程4x-2=3-x的正确顺序是()①合并同类项,得5x=5;②移项,得4x+x=3+2;③系数化为1,得x=1. A.①②③B.③②①C.②①③D.③①②7. 学校机房今年和去年共购置了100台计算机,已知今年购置计算机的数量是去年购置计算机数量的3倍,则今年购置计算机的数量是()A.25台B.50台C.75台D.100台8. 若x=2是关于x的方程2x+3m-1=0的解,则m的值为() A.-1 B.0C.1 D.1 39. 中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.则此人第五天走的路程为() A.24里B.12里C.6里D.3里10. 小明前年用一笔钱买了一个某银行的两年期的理财产品,该理财产品的年回报率为4.5%,银行告知小明今年他将得到利息288元,则小明前年买理财产品的钱数为()A.6400元B.3200元C.2560元D.1600元二、填空题(本大题共8道小题)11. 若关于x的一元一次方程2x-k3-x-3k2=1的解是x=-1,则k的值是________.12. 若关于x的方程3x+(2a+1)=x-(3a+2)的解是x=0,则a=________.13. 整理一批图书,由一个人做要48小时完成,现在计划由一部分人先做4小时,再增加3人和他们一起做6小时完成这项工作.假设这些人的工作效率相同,则应先安排________个人工作.14. (1)填写下表:(2)根据上表直接写出方程5x -3=6+2x 的解为________.15. 甲骑自行车从A 地到B 地,乙骑自行车从B 地到A 地,两人都沿同一公路匀速前进.已知两人在上午8时同时出发,到上午10时,两人还相距35 km ,到中午12时,两人又相距35 km ,则A ,B 两地的距离为________km.16. 2019·芜湖南陵期末某校组织学生和教师为边远山区学校捐赠图书,原计划共捐赠5000册,实际捐赠时学生比原计划多捐了15%,教师比原计划多捐了20%,实际共捐赠5825册,则原计划学生捐赠图书________册.17.若方程2x +4=0与关于x 的方程3(x +a )=a -5x 有相同的解,则a =________.18. 某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价的8折销售,售价为2240元,则这种商品的进价是________元.三、解答题(本大题共4道小题)19. 解下列方程:(1)5a -18=74;(2)y +24-2y -16=1; (3)2x -16-3x +18=x3-1.20. 互逆思维能不能由(a +3)x =b -1得到等式x =b -1a +3,为什么?反之,能不能由x =b -1a +3得到(a +3)x =b -1,为什么?21. A ,B 两站间的路程为448千米,一列慢车从A 站出发,每小时行驶60千米,一列快车从B 站出发,每小时行驶80千米.(1)若两车同时开出,相向而行,则出发后多少小时相遇?(2)若两车相向而行,慢车先行28分钟,则快车开出后多少小时两车相遇? (3)若两车同时开出,同向而行,慢车在前,则出发后多少小时快车追上慢车?22. 解方程:11133312242y ⎧⎫⎛⎫---=⎨⎬⎪⎝⎭⎩⎭人教版 七年级数学上册 第3章 一元一次方程 同步训练-答案一、选择题(本大题共10道小题)1. 【答案】D2. 【答案】B3. 【答案】B[解析] 设胜了x 场.由题意,得3x +(14-5-x)=19,解得x =5,故选B.4. 【答案】B5. 【答案】D6. 【答案】C7. 【答案】C[解析] 设去年购置计算机x 台,则3x +x =100,x =25,3x =75.故今年购置计算机75台.故选C.8. 【答案】A[解析] 因为x =2是关于x 的方程2x +3m -1=0的解,所以2×2+3m -1=0,解得m =-1.故选A.9. 【答案】B[解析] 设第一天走了x 里,依题意得x +12x +14x +18x +116x +132x=378,解得x =192.则116x =116×192=12,即第五天走的路程为12里.10. 【答案】B[解析] 设小明前年买理财产品的钱数是x 元.由题意得4.5%x×2=288,解得x =3200.即小明前年买理财产品的钱数为3200元.二、填空题(本大题共8道小题)11. 【答案】1[解析] 把x =-1代入原方程,得-2-k 3--1-3k2=1,解这个关于k 的方程,得k =1.12. 【答案】-35 [解析] 把x =0代入方程,得2a +1=-(3a +2),解得a =-35.13. 【答案】3[解析] 由题意可得,每个人每小时完成148,设先安排x 个人工作,则148x×4+148×(x +3)×6=1,解得x =3. 故应先安排3个人工作.14. 【答案】(1)填表如下:(2)x =315. 【答案】105[解析] 解法一:设A ,B 两地的距离为x km ,则x -352=x +354, 解得x =105.故A ,B 两地的距离为105 km. 解法二:设两人的速度之和为x km/h , 则2x +35=4x -35,解得x =35.所以A ,B 两地的距离为2x +35=105(km).16. 【答案】3500[解析] 设原计划学生捐赠图书x 册,则教师捐赠图书(5000-x)册.依题意得15%x +(5000-x)×20%=5825-5000,解得x =3500.17. 【答案】8[解析] 由2x +4=0得x =-2.把x =-2代入3(x +a)=a -5x ,得3(-2+a)=a +10,解得a =8.18. 【答案】2000三、解答题(本大题共4道小题)19. 【答案】解:(1)去分母,得5a -1=14. 移项及合并同类项,得5a =15. 系数化为1,得a =3.(2)去分母,得3(y +2)-2(2y -1)=12. 去括号,得3y +6-4y +2=12. 移项及合并同类项,得-y =4. 系数化为1,得y =-4.(3)去分母,得4(2x -1)-3(3x +1)=8x -24. 去括号,得8x -4-9x -3=8x -24. 移项及合并同类项,得-9x =-17. 系数化为1,得x =179.20. 【答案】解:不能由(a +3)x =b -1得到x =b -1a +3,因为当a =-3时,a +3=0,而0不能作除数,即不符合等式的性质2的规定. 能由x =b -1a +3得到(a +3)x =b -1,因为x =b -1a +3是已知条件,已知条件中已经隐含着a +3≠0,等式两边同乘一个数,等式仍成立.21. 【答案】[解析] 本题中(1)(2)属于相遇问题,(3)属于追及问题,它们可借助示意图分析相等关系:(1)由上图可知:慢车行驶的路程+快车行驶的路程=全程448千米. (2)由上图可知:慢车提前行驶的路程+快车出发后慢车行驶的路程+快车行驶的路程=全程448千米. (3)由上图可知:快车行驶的路程-慢车行驶的路程=448千米. 解:(1)设两车出发后x 小时相遇. 依题意,得60x +80x =448, 解这个方程,得x =3.2. 答:两车出发后3.2小时相遇. (2)设快车开出后y 小时两车相遇. 依题意,得60×2860+60y +80y =448, 解这个方程,得y =3.答:快车开出后3小时两车相遇. (3)设两车出发后z 小时快车追上慢车. 依题意,得80z -60z =448, 解得z =22.4.答:两车出发后22.4小时快车追上慢车.22. 【答案】58【解析】解法一:从内向外去括号 去小括号,得11133312242y ⎡⎤⎛⎫---= ⎪⎢⎥⎝⎭⎣⎦, 去中括号,得1133312842y ⎛⎫---= ⎪⎝⎭, 去大括号,得1333116842y ---=,移项、合并同类项,得129168y =,系数化为1,得58y =.解法二:从外向内去括号去大括号,得11133314222y ⎡⎤⎛⎫---= ⎪⎢⎥⎝⎭⎣⎦,去中括号,得1133318242y ⎛⎫---= ⎪⎝⎭, 去小括号,得1333116842y ---=,移项、合并同类项,得129168y =,系数化为1,得58y =.解法三:多次去分母两边同乘以2,得1113332222y ⎡⎤⎛⎫---= ⎪⎢⎥⎝⎭⎣⎦,两边同乘以2,得11336422y ⎛⎫---= ⎪⎝⎭, 两边同乘以2,得1361282y ---=,移项合并同类项,得1292y =,系数化为1,得58y =.点评:解题时要善于观察题目特点选择合理得理解途径.。
人教版七年级数学上册同步练习第三章 一元一次方程复习题(word版,含答案解析)
第三章一元一次方程复习题一、选择题(共15小题;共60分)1. 下列叙述中正确的是( )A. 方程是含有未知数的式子B. 方程是等式C. 含有字母x,y的等式才叫方程D. 带等号和字母的式子叫方程2. 若方程Cx–5=10–x的解是x=5,那么C的值为( )A. 5B. 2C. −1D. 03. 若x=3是关于x的方程4x−(2a+1)=3x+3a−1的解,则a的值为( )A. −35B. −53C. 35D. 534. 某品牌商品,按标价八折出售,仍可获得10%的利润.若该商品标价为275元,则商品的进价为( )A. 192.5元B. 200元C. 244.5元D. 253元5. 一道来自课本的习题:从甲地到乙地有一段上坡与一段平路.如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地需54min,从乙地到甲地需42min.甲地到乙地全程是多少?小红将这个实际问题转化为二元一次方程组问题,设未知数x,y,已经列出一个方程x3+y4=5460,则另一个方程正确的是( )A. x4+y3=4260B. x5+y4=4260C. x4+y5=4260D. x3+y4=42606. 适合∣2a+5∣+∣2a−3∣=8的整数a的值有( )A. 4个B. 5个C. 7个D. 9个7. 杭州市用水收费规定如下:若每户每月的用水量不超过18立方米,则每立方米水价按 2.9元收费,若用水量在18到25(含)立方米之间,则超过18立方米部分每立方米按 3.85元收费,已知小静家1月份共交水费67.6元.若设小静家1月份用了x立方米的水,根据题意列出关于x的方程,正确的是( )A. 3.85x=67.6B. 18×2.9+3.85(x−18)=67.6C. 18×2.9+3.85x=67.6D. 18×2.9+3.85(25−x)=67.68. 今年父亲的年龄是儿子年龄的3倍,6年前父亲的年龄是儿子年龄的4倍.设今年儿子的年龄为x岁,则下列式子正确的是( )A. 4x−6=3(x−6)B. 4x+6=3(x+6)C. 3x+6=4(x+6)D. 3x−6=4(x−6)9. 墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示(单位:cm).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示.小颖所钉长方形的长、宽各为多少厘米?如果设长方形的长为x cm,根据题意,可得方程为( )A. 2(x+10)=10×4+6×2B. 2(x+10)=10×3+6×2C. 2x+10=10×4+6×2D. 2(x+10)=10×2+6×210. 下列方程:① x−2=3x ;② 0.3x=1;③ x2=5x−1;④ x2−4x=3;⑤ x=0;⑥ x+2y=0.其中一元一次方程的个数是( )A. 2B. 3C. 4D. 511. 适合∣2a+7∣+∣2a−1∣=8的整数a的值的个数有( )A. 5B. 4C. 3D. 212. 下列运用等式的性质,变形不正确的是( )A. 若x=y,则x+5=y+5B. 若a=b,则ac=bcC. 若ac =bc,则a=b D. 若x=y,则xa=ya13. 对于方程−3x−7=12x+6,下列移项正确的是( )A. −3x−12x=6+7B. −3x+12x=−7+6C. −3x−12x=7−6D. 12x−3x=6+714. A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/小时,乙车速度为80千米/小时,经过t小时两车相距50千米.则t的值是( )A. 2B. 2或 2.25C. 2.5D. 2或 2.515. 方程xa +xb=1的解是( )A. x=aba+b B. x=aba+b(a+b≠0)。
七年级数学上册《第三章 实际问题与一元一次方程》同步练习及答案-人教版
七年级数学上册《第三章 实际问题与一元一次方程》同步练习及答案-人教版学校:___________班级:___________姓名:___________考号:___________一、单选题1.某轮船在静水中的速度为20km /h ,水流速度为4km /h ,该船从甲码头顺流航行到乙码头,再返回甲码头,共用时5h (不计停留时间),设甲、乙两码头之间的距离为km x ,则可列方程为( ) A .2045x x +=B .(204)(204)5x x ++-=C .5204x x +=D .5204204x x +=+- 2.某商场有一种电视机,每台的原价为5000元,现在以8折销售.如果想使降价前后的销售额都为20万元,那么销售量应增加的台数为( )A .8B .9C .10D .153.某商店在某一时间以每件198元的价格卖出两件衣服,其中一件盈利10%,另一件亏损10%,在这次买卖中,这家商店( )A .盈利4元B .盈利10元C .亏损4元D .亏损10元4.几个人共同种一批树苗,如果每人种5棵,则剩下3棵树苗未种;如果每人种6棵,则缺4棵树苗.若设参与种树的人数为x 人,则下面所列方程中正确的是( )A .5364x x +=-B .5364x x +=+C .5364x x -=-D .5364x x -=+5.假期中,一群学生前往某工地进行社会实践活动,男生戴白色安全帽,女生戴红色安全帽.休息时他们坐在一起,大家发现了一个有趣的现象:每名男生看到白色与红色安全帽一样多,而每名女生看到白色安全帽是红色安全帽2倍.设这群学生中女生有x 人,下面所列方程正确的是( )A .()121x x -=+B .()121x x +=-C .22x x =+D .()21x x =-6.如图,现有33⨯的方格,每个小方格内均有210-之间不同的数字,要求方格内每一行、每一列以及每一条对角线上的三个数字之和均相等,图中给出了部分数字,则P 处对应的数字是( )A .4B .5C .7D .87.某商品的标价为200元,若降价以九折出售仍可获利30元,则该商品的进货价是( )A.180B.150C.130D.1208.一次知识竞赛,共有10道题,每答对一题得10分,答错或不答倒扣5分,小明共得55分,他答对()道.A.3B.6C.7D.11二、填空题9.甲、乙二人在环形跑道跑步,甲80秒跑一圈,乙48秒跑一圈.若两人同时同地同向跑,则第一次相遇要经过秒.10.商场将商品按进价提高40%后标价,后来为促销该商品,按标价八折销售,售价为2240元,则该商品的进价为元.11.一轮船往返于甲、乙两个港口,逆水航行需3小时,顺水航行需2小时,水速为5km/h,若设甲、乙两x,则可列方程为.港口之间的距离为km12.元旦期间,丹尼斯为了促销商品,特推出两种消费券:A券:满80元减20元;B券:满100元减30元,即一次购物大于等于80元、100元,付款时分别减20元、30元.小敏有一张A券,小聪有一张B券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款170元,则所购商品的标价是元.AC=,则x的值为.13.已知数轴上点A,C所表示的数分别是3-,x,若514.某车间有35名工人,每人每天能生产螺栓12个或螺母18个,一个螺栓与两个螺母配套,要使每天生产的螺栓与螺母配套,应如何安排生产?若设有x名工人生产螺栓,则可列方程.15.某电视台组织知识竞赛,共设20道选择题,要求每题必答,每答对一题得5分,答错一题扣1分,小智参赛得到了76分,他答对了题.16.如图,数轴上有A、B、C三点,A、B两点表示的有理数分别是2-和8,若将该数轴从点C处折叠后,点A和点B恰好重合,那么点C表示的有理数是.三、解答题17.某班学生分两组参加某项活动,甲组有36人,乙组有42人,后来由于活动需要,从甲组抽调了部分学生去乙组,结果乙组的人数是甲组人数的2倍少3人.从甲组抽调了多少学生去乙组?18.小明家打算靠墙修建一个长方形的养鸡场(靠墙一边作为长,墙长14米),另三边用35米长的竹篱笆围成,小明的爸爸打算让鸡场的长比宽多2米,小明的妈妈打算让鸡场的长比宽多5米,你认为他们谁的设计合理?按照这种设计,鸡场的面积是多少平方米?19.某家具城家具促销将某品牌的家具按照进价提高30%,以八折优惠全部卖出,结果每套家具获利600元,问这个品牌家电的进价多少元?20.某超市为回馈广大新老客户,元旦期间决定实行优惠活动.方案一:非会员购物所有商品价格可获九折优惠;方案二:花200元办卡成为该超市会员,所有商品价格可获八折优惠;(1)用x (元)表示商品价格,请用含x 的式子分别表示出两种优惠方案所花的钱数;(2)若某人计划在该超市购买一台价格为5000元的电视,请分析选择哪种方案更省钱?(3)当商品价格是多少时,两种优惠方案一样省钱?参考答案: 1.D2.C3.C4.A5.B6.D7.B8.C9.12010.200011.5532x x +=-(答案不唯一) 12.110或9513.2或8-14.()2121835x x ⨯=-15.1616.317.918.爸爸设计的合理一些,143平方米19.这个品牌家电的进价是15000元.20.(1)方案一的费用:0.9x 元;方案二的费用:()0.8200x +元;(2)选择方案二更省钱;(3)当商品价格是2000元时,两种方案一样省钱.。
七年级数学上册3.3一元一次方程的解法同步练习(新版)湘教版【含解析】
. .
. . . . ,������ =
19. 已知 ∣ ������ − 1 ∣ +∣ ������ − 2 ∣ +∣ ������ − 3 ∣ +∣ ������ − 4 ∣= 4,则实数 ������ 的取值范围是
3.3 一元一次方程的解法
一、选择题(共 10 小题;共 50 分) 1. 解方程 2(������ − 2) − 3(4������ − 1) = 9 正确的是 ( ) A. 2������ − 4 − 12������ + 3 = 9,−10������ = 9 − 4 + 3 = 8 ,故 ������ = −0.8 B. 2������ − 2 − 12������ + 1 = 9,−10������ = 10 ,故 ������ = −1 C. 2������ − 4 − 12������ − 3 = 9,−10������ = 16 ,故 ������ = −1.6 D. 2������ − 4 − 12������ + 3 = 9,−10������ = 10 ,故 ������ = −1 2. 如果方程 6������ + 3������ = 22 与方程 3������ + 5 = 11 的解相同,那么 ������ = ( A.
时,关于 ������ 的方程 2∣������ − 2∣ + ������ = ������ + ∣������ − 5∣ + 2 至少有 3 个解.
第 1 页(共 5 页)
二、填空题(共 10 小题;共 50 分) 11. 解形如 ������������ + ������ = ������������ + ������ 的一元一次方程就是通过 方程向着
人教版七年级数学上册第三章《一元一次方程》同步练习3.4 第2课时 实际问题与一元一次方程(2)
第2课时实际问题与一元一次方程(2)1.某品牌服装折扣店将某件衣服按进价提高50%后标价,再打8折(标价的80%)销售,售价为240元.设这件衣服的进价为x元,根据题意,下面所列方程正确的是()A.x·50%×80%=240B.x·(1+50%)×80%=240C.240×50%×80%=xD.x·(1+50%)=240×80%2.某商店将一件商品的进价提价20%后,又降价20%以96元出售,则该商店卖出这件商品的盈亏情况是() A.不亏不赚 B.亏了4元C.赚了6元D.亏了24元3.一种肥皂的零售价每块2元,凡购买2块以上(含2块),商场推出两种优惠销售方案,第一种:“1块按原价,其余按原价的七五折优惠”;第二种:“全部按原价的八折优惠”.在购买相同数量的情况下,要使第一种办法和第二种办法得到的优惠相同,需要购买肥皂()A.5块B.4块C.3块D.2块4.小华的妈妈为爸爸买了一件上衣和一条裤子,共用306元.其中上衣按标价打7折,裤子按标价打8折,上衣的标价为300元,则裤子的标价为元.5.某商品进价1 500元,提高50%后标价,若打折销售,使其获得的利润为300元,则此商品是按折销售的.6.某商品的标价为165元,若以9折售出(即优惠10%),仍可获利10%(相对于进货价),则该商品的进价是元.7.若某种货物进价便宜8%,而售价不变,则利润可以由目前的x%增加到(x+10)%,则x的值为.8.在五一期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)小明他们一共去了成人、学生各几人?(2)请你帮助小明算一算,用哪种方式购票更省钱?说明理由.9.某工厂出售一种产品,其成本价为每件28元.若直接由厂家门市部出售,每件产品的售价为35元,其他消耗费用为每月2 100元;若委托商店销售,出厂价为每件32元.(1)在这两种销售方式下,每月售出多少件时,所得利润相同?(2)当销售量达到每月1 000件时,采用哪种销售方式获利较多?★10.据了解,个体服装店的衣服售价只要高出进价的20%便可盈利,但老板们常以高出进价的50%~100%标价.假如你准备买一件标价为200元的服装,应在什么范围内还价?★11.在某商场“现金返还”活动期间,凡购买指定家用电器的购买者均可得到该商品售价13%的返还现金.小李购买了一台A型洗衣机,小王购买了一台B型洗衣机,两人一共得到返还现金351元,又知B型洗衣机售价比A型洗衣机售价高500元.求:(1)A型洗衣机和B型洗衣机的售价各是多少元?(2)小李和小王购买洗衣机返还现金外实际各付款多少元?参考答案1.B这件衣服的标价为x·(1+50%)元,打8折后的售价为[x·(1+50%)×80%]元,可列方程为x·(1+50%)×80%=240.2.B设这件商品的进价为x,根据题意,得x(1+20%)(1-20%)=96,解得x=100,以96元出售,可见亏了4元.3.A4.120设裤子的标价为x元,则300×0.7+0.8x=306,解得x=120.故裤子的标价为120元.5.八设此商品打x折销售,根据题意,得1500(1+50%)×=1500+300,解得x=8.6.1357.15设货物的原进价为t,而售价不变,根据题目中的等量关系可列方程为t(1+x%)=t(1-8%)[1+(x+10%)],即1+x%=(1-8%)[1+(x+10)%],解得x=15.8.解(1)设成人有x人,则学生有(12-x)人.则35x+(12-x)=350,解得x=8,故学生有12-8=4(人),成人有8人.(2)如果买团体票,按16人计算,那么共需费用35×0.6×16=336(元),336<350,所以,购团体票更省钱.答:有成人8人,学生4人;购团体票更省钱.9.解(1)设每月售出x件时,所得利润相同,则(35-28)x-2100=(32-28)x,解得x=700.答:每月售出700件时,所得利润相同.(2)第一种销售方式获利为(35-28)×1000-2100=4900(元).第二种销售方式获利为(32-28)×1000=4000(元).答:第一种销售方式获利较多.10.解设这件服装的进价为x元,若老板以高出进价的50%标价,则(1+50%)x=200.解得x≈133.若老板以高出进价的100%标价,则(1+100%)x=200,x=100.所以进价在100~133元之间,加上利润20%后,故还价范围可定在120~160元.创新应用11.解(1)设A型洗衣机的售价是x元,则B型洗衣机的售价是(x+500)元.由题意,得13%x+13%(x+500)=351,解得x=1100.所以B型洗衣机的售价是x+500=1100+500=1600(元).(2)A型洗衣机实际付款:1100-1100×13%=957(元),B型洗衣机实际付款:1600-1600×13%=1392(元).答:A型洗衣机和B型洗衣机的售价各是1100元和1600元.小李购买洗衣机除返还现金外实际付款957元,小王购买洗衣机除返还现金外实际付款1392元.。
2022年人教版数学七上第三章《一元一次方程》同步练习(附答案)3(3.4)
第三章 一元一次方程周周测3一、选择题〔每题3分,共30分〕1.假设2=x 是关于x 的方程092=-+a x 的解,那么a 的值是〔 〕A.2B.3C.4D.52.以下方程中,解为2=x 的方程是〔 〕A.323=-xB.x x 26=+-C.1)1(24=--xD.0121=+x 3.m n n m 23123+=-+,那么n m -的值是〔 〕4.一个三角形的三边之比为3:4:5,最长边为10,那么这个三角形的周长为〔 〕A.12B.24C.255.练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好用去14元,如果设水性笔的单价为x 元,那么以下方程正确的选项是〔 〕A.143)2(5=+-x xB.143)2(5=++x xC.14)2(35=++x xD.14)2(35=-+x x6.某班分两组去两处植树,第一组22人,第二组26人,现在第一组植树遇到困难,需要第二组支援,问从第二组高多少人去第一组才能使第一组人数是第二组的2倍,设抽调x 人,那么可列方程〔 〕A.26222⨯=+xB.)26(222x x -⨯=+C.x x -=+⨯26)22(2D.)26(222x -⨯=7.数学竞赛共有20道题,答对一题得5分,不答或答错一题扣3分,问要得到84分需答对几道题?设答对x 道题,可得〔 〕A.84)20(35=--x xB.84)20(3100=--xC.84)20(65=--x xD.84)20(35100=--+x x8.一根竹竿插入到池塘中,插入池塘淤泥中的局部占全长的51,水中局部是淤泥中局部的2倍多2米,露出水面的竹竿长1米。
设竹竿的长度为x 米,那么可列出方程〔 〕A.x x x =++15251 B.x x x =+++115251 C.x x x =-++115251 D.15251=+x x9.整理一批图书,由一个人做要40h 完成,现方案由一局部人先做4h ,然后增加2人与他们一起做8h ,完成这项工作,假设这些人的工作效率相同,具体应先安排多少人工作?如果设安排x 人先做4h ,以下四个方程中正确的选项是〔 〕A.140840)2(4=++x xB.140)2(8404=++x xC.140)2(8404=-+x xD.1408404=+x x 10.某种商品的进价为250元,按标价的九折出售时利润为10%,那么以下结论:①商品的利润为%10250⨯元;②商品的实际售价为%)101(250+⨯元;③该商品的标价为10090%)101(250⨯+⨯元;④该商品的标价为10090%)101(250÷+⨯元。
七年级数学上册《第三章 解一元一次方程》同步练习题及答案(人教版)
七年级数学上册《第三章 解一元一次方程》同步练习题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.若关于x 的方程3x +5=m 与x -2m =5有相同的解,则m 的值是( )A .3B .-3C .-4D .42.若2x =是方程250x a +-=的解,则a 的值是( )A .1B .-1C .9D .-9 3.若()123m m x--=是关于x 的一元一次方程,则m 的值是( ) A .2-B .1C .2D .2± 4.若方程114x +=的解是关于x 的方程4x +4+m =3的解,则m 的值为( ) A .-4 B .-2 C .2 D .05.如果代数式312x +与213x --互为相反数,那么x 的值是( ) A .1 B .-1 C .32 D .0 6.下列变形正确的是( )A .由35x +=,得53x =+B .由74x =-,得74x =-C .由32x =-,得32x =+D .由102y =,得2y = 7.方程2-40x =的解是( )A .2x =B .-2x =C .-4x =D .4x = 8.若-3x 6y 与4x 2myn 是同类项,则m +n 的值为( )A .7B .6C .4D .39.我国古代的“河图”是由3×3的方格构成的(每一行、每一列以及每一条对角线上的三个点图的点数之和均相等).如图给出了“河图”的部分点图,请你推算出P 处所对应的点图是( )A .B .C .D .二、填空题10.若(a ﹣1)x |a |+3=﹣6是关于x 的一元一次方程,则a= ;x= . 11.若34m a b -与213m n a b --可以合并成一项,则n m 的值是 .12.已知-15x 3y 2n 与2x 3m y 4是同类项,则m+n 的值是 . 13.若36a +=,则数轴上有理数a 对应的点与2-对应的点的距离是 . 14.若代数式5x -的值与21x -的值相等,则x 的值为 .三、解答题15.求未知数x(1)15519x = (2)211234x ÷= 16.解方程:434x -=-.17.解方程:1132x x -+=+ 18.解下列方程:(1)261x +=(2)3327x x +=+.19.423x x -=-.参考答案:1.C2.A3.A4.C5.D6.C7.A8.C9.C10.(1)﹣1;(2)9 2 .11.1 12.3 13.5 14.﹣4.15.(1)319 x=(2)92 x=16.14x=-17.4 3 -18.(1)52 x=-(2)4x=19.1x=第 1 页共3 页。
人教版七年级上册数学3.1.1一元一次方程同步训练(含答案)
人教版七年级上册数学3.1.1一元一次方程同步训练(含答案)人教版七年级上册数学3.1.1一元一次方程同步训练一、单选题1.下列选项中是一元一次方程的是()A.B.C.D.2.关于的方程的解是,则的值为()A.B.C.D.3.如果是关于的方程的解,则值为( )A.B.C.D.4.若关于y的一元一次方程的解为2,则()A.B.C.D.25.已知关于x的方程的解是,则a的值是()A.4 B.5 C.3 D.26.若关于x的方程是一元一次方程,则a的值为()A.1 B.±1 C.D.07.若是关于的一元一次方程的解,则的值为()A.3 B.5 C.7 D.98.当x的取值不同时,整式(其中a,b是常数)的值也不同,具体情况如下表所示:x 0 1则关于x的方程的解为()A.B.C.D.二、填空题9.若关于的方程是一元一次方程,则的值是.10.如果是一元一次方程,那么.11.关于的方程有无数解,则、满足的条件是.12.如果是关于的方程的解,那么.13.若是方程的解,则.14.已知是关于的方程的解,则的值为.15.若方程是关于的一元一次方程,则的值是.16.在方程:①;②;③;④;⑤中,一元一次方程有:.(填序号)三、解答题17.关于的方程有一个解是,求的值.18.判断是不是方程的解.19.已知关于x的方程是一元一次方程,求k的值.20.检验,是否为相应方程的解.参考答案:1.B2.C3.D5.B6.C7.C8.C9.010.111.12.13.214.415.16.②⑤/⑤②17.018.见解析19.k的值是20.不是方程的解,是方程的解答案第1页,共2页。
《认识一元一次方程》同步练习3【七年级 上学期 数学 北师大 试题】
5.1 认识一元一次方程一、选择题1.方程,,,,x yx x x x x x -=+=+=+==23222303221043中是一元一次方程的有( )个.A .1B .2C .3D .4 2.“比a 的31少2的数”可以列式表示为( ). A .⎪⎭⎫ ⎝⎛-⨯231a B .231+a C .231-a D .)2(31-a 3.长方形的宽是a 米,长比宽多2米,则此长方形的面积可以表示为( ).A .a a )2(2+B .)2(+a aC .)2(22++a aD .)22(2+a a4.下列各方程后面括号里的数,均是该方程的解是( )A .{}1,145-=+xB .⎭⎬⎫⎩⎨⎧=+67,61413121x C .{}4,2282x x -=- D .{}2,1,00)2)(1(--=++x x x5.方程x x 231=+-的解是( ) A .31- B .31 C .1 D .-1 6.一元一次方程)72(2)2(5+=+x x 的解是( ).A .7B .6C .5D .47.3-=x 是方程4=+a x 的解,则a 的值是( )A .7B .1C .-1D .-78.x 增加6倍后,比它扩大到8倍少4,则列得的方程是( )A .487-=x xB .487+=x xC .486-=x xD .486+=x x9.有一批画册,如果3人一本,还剩2本,如果2人一本,还有9人没有分到,设人数为x ,则可以列出方程为( )A .2923-=+x xB .2923-=-x x C .9223-=+x x D .2923+=-x x二、填空题1.为了保障师生的身体健康,学校每年都要购买无尘粉笔,现在无尘粉笔的售价是每盒a元,比去年便宜了b元:(1)去年此粉笔的售价是每盒____元;(2)若去年购进该粉笔100盒,需要_________元;(3)若学校现在购进该粉笔100盒,需要____元;(4)若购进100盒粉笔,今年比去年节省____元;(5)若该粉笔现在的售价是每盒1.5元,比去年每盒便宜了0.3元,则去年购买100盒粉笔的钱今年可以购买多少盒?设今年可以购买x盒,可列方程为_______________.2.某数与2的和的3倍是9,设某数为x,列成方程是___________.3.写一个以2-x为解的一元一次方程为_____________.=4.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件仍获利15元,如果设每件服装的成本价为x元,那么(1)每件服装的标价为________;(2)每件服装的实际售价为_______;(3)每件服装的利润为_________;(4)由此,可列出方程为________;三、解答题1.列方程:(1)小明在超市购买4瓶酸奶和3瓶鲜奶,共花去9.6元.酸奶的标价是每瓶1.5元,则鲜奶每瓶多少元?(2)校图书馆的图书被学生借出25%后,还剩15万册,则学校图书馆共有图书多少册?(3)校足球场的周长为310米,长与宽的差是25米,这个足球场的长是多少米?(4)甲、乙两名同学练习百米赛跑,甲每秒跑7米,乙每秒跑6.5米,如果甲让乙先跑1秒,那么甲经过几秒可以追上乙?(5)小伟今年14岁,爷爷60岁,多少年后小伟的年龄是爷爷年龄的31?2.我们赖以生存的地球是一个蓝色的星球,因为在地球上,海洋的面积是陆地面积的2.4倍,而地球的表面积约为5.1亿平方米,你能求出地球上海洋的总面积吗?3.足球的表面是由一些黑色的正五边形和白色的正六边形皮块组成,黑、白皮块的数目之比是3:5.一个足球的表面有32个皮块.请问,黑色皮块有多少块?4.商店里为了不积压夏装,在秋天往往都会打折销售.有一款裙装打8折出售,结果便宜了32元钱,你知道这套裙装原来的售价吗?5.由算术到代数是数学史上的一次伟大的进步.现在我们可以用含字母的式子,表示实际问题中的数量关系.如果已知一个含有字母的式子,你能用实际问题加以解释吗?例如:3a 可以解释为:苹果每公斤a 元,买3公斤共需3a 元;等边三角形的边长是a ,则此三角形的周长是3a ;等等.请你尝试用生活中的实际问题来解释25 a .6.根据题意设未知数并列出方程(不必求解)(1)矩形周长是16 cm ,长比宽多2cm ,则这个矩形的长是多少?(2)A 、B 两地相距50 km ,甲、乙两人分别从A 、B 两地出发,相向而行,甲每小时比乙多行2 km ,若两人同时出发,经过3 h 相遇,则甲、乙的速度分别为多少?(3)某校社会实践活动小组,调查了高峰时段的某市的二环路、三环路、四环路的车流量:二环路车流量为每小时10 000辆,四环路比三环路车流量每小时多2000辆,三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍.则三环路,四环路的车流量各是多少?参考答案一、选择题1. C 2.C 3.B 4.D 5.A 6.D 7.A 8.A 9.A二、填空题1.(1))(b a + (2))(100b a + (3)a 100 (4)b 100 (5)x 5.1)3.05.1(100=+2.9)2(3=+x 3.如262=+x 等4.(1)x %)401(+ (2)%80%)401(⋅+x(3)x x -⋅+%80%)401( (4)15%80%)401(=-⋅+x x三、解答题1.(1)设鲜奶每瓶x 元,则6.9345.1=+⨯x ;(2)设学校图书馆共有藏书x 万册,则15%25=-x x ;(3)设长是x 米,则310)25(22=-+x x ;(4)设甲经过x 秒可以追上乙,则x x 5.65.67+=;(5)设x 年后小伟的年龄是爷爷年龄的31,则)60(3114x x +=+. 2.设陆地面积x 亿平方米,则1.54.2=+x x .3.设黑皮块有x 个,则3235=+x x . 4.设原价x 元,则32%80-=x x .5.小明今年a 岁,爸爸的年龄比他的5倍还多2岁,则爸爸的年龄是(25+a )岁。
数学:《 解一元一次方程》同步练习3(人教版七年级上)
数学:《 解一元一次方程》同步练习3(人教版七年级上)1.如果两个数中较大的一个的3倍是较小一个的4倍,且两数的差是8,那么两个数中较大的一个是( ).A.1B.24C.32D.142.兄弟两人交谈,兄对弟说:“六年前,咱俩的年龄和已满一百岁了”,则现在两人的年龄和为( )A.94B.106C.88D.1123.某商品标价为132元,若以9折出售,仍可获利10%,则该物品进价是( )A 、105元B 、106元C 、108元D 、118元4.小红期末考试语文、数学、外语的成绩分别为三个连续偶数,其和为288。
则数学成绩为( )A.94B.96C.98D.1005. (1)52221+-=-y y (2))13(72)21(31+=-x x(3)8563+=-x x ; (4)x x x =---)433(32)23(43.6.如图所示,小明将一个正方形纸片剪去一个宽为4厘米的长条后,再从剩下的长方形纸片上剪去一个宽为5厘米的长条。
如果两次剪下的长条面积正好相等,那么每一个长条的面积为多少?7.有一些分别标有6、12、18、24、…的卡片上,后一张的数比前一张上的数字大6,小明拿到了相邻的3张卡片,且它们的和是342.(1)小明拿到了哪3张卡片?(2)你能拿到了相邻的3张卡片,使得这些卡片上的数字之和是86吗?8.试说明日历中一个竖列上的相邻的三个数不可能同为奇数或同为偶数。
4厘米 5厘米参考答案:1.C 2.D 3.C 4.B 5.(1) y=3 (2)321x (3)x=7 (4)x=12.5 6.802cm 提示:设正方形的边长为x cm ,则有4x=5(x-4),x=20,4x=807.(1)108;114;120 提示:设三张分别为x-6,x ,x+6,其和为(x-6)+x+(x+6)=342 3x=342,x=114(2)不能 提示:3x=86,86不能被3整除。
8.提示:设三数分别为x-7,x,x+7。
人教版数学七年级上册 第3章 一元一次方程 同步测试题
人教版数学七年级上册第3章同步测试题含答案3.1从算式到方程一.选择题1.下列方程中是一元一次方程的是()A.x+3=0B.x2﹣3x=2C.x+2y=7D.2.下列变形中正确的是()A.若x+3=5﹣3x,则x+3x=5+3B.若x=y,则C.若a=b,则a+c=b﹣cD.若m=n,则am=an3.下列变形中,正确的是()A.由﹣x+2=0 变形得x=﹣2B.由﹣2(x+2)=3 变形得﹣2x﹣4=3C.由x=3变形得x=D.由﹣+1=0变形得﹣(2x﹣1)+1=04.若x=﹣1是关于x的方程3x+6=t的解,则t的值为()A.3B.﹣3C.9D.﹣95.如果方程3x﹣2m=10的解是2,那么m的值是()A.2B.﹣2C.4D.﹣46.若关于x的方程(k﹣2019)x﹣2017=7﹣2019(x+1)的解是整数,则整数k的取值个数是()A.2B.3C.4D.67.有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等,现两个同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是()A.B.C.D.8.下列说法中,正确是()A.2.40万精确到百位B.﹣系数是﹣2,次数是3C.多项式﹣2x2y+xy﹣1是五次三项式D.若ax=ay,则x=y9.如图,三个天平的托盘中形状相同的物体质量相等.图(1)、(2)所示的两个天天平处于平衡状态,要使第3个天平也保持平衡,则需在它的右盘中放置()A.3个球B.4个球C.5个球D.7个球10.在方程①3x+y=4,②2x﹣=5,③3y+2=2﹣y,④2x2﹣5x+6=2(x2+3x)中,是一元一次方程的个数为()A.1个B.2个C.3个D.4个二.填空题11.已知方程(m﹣1)x|m|﹣5=0是关于x的一元一次方程,则m的值为.12.如果关于x的一元一次方程ax+2=0的解是,那么a=.13.已知a、b互为倒数,x、y互为相反数,m是方程﹣3(y+1)=9的解的绝对值.则2ab+3x+3y﹣m=.14.若关于x的方程,无论k为何值,它的解总是x=1,则代数式2a+b=.15.下列说法:①若m=n,则am=an;②若m=n,则;③若mx+5=nx+5,则m=n;④若m+n=1,则关于x的方程mx+n=1的解为x=1;⑤若m+n+s =1,则x=1是关于x的方程mx+n+s=1的解;⑥若mn=6,则关于x的方程mx+m=6的解为x=n﹣1.其中错误的是.求m的值;(2)求这两个方程的解.18.我们规定,若关于x的一元一次方程ax=b的解为a+b,则称该方程为“合并式方程”,例如:3x=﹣的解为﹣,且﹣,则该方程3x=﹣是合并式方程.(1)判断x=1是否是合并式方程并说明理由;(2)若关于x的一元一次方程5x=m+1是合并式方程,求m的值.19.【定义】若关于x的一元一次方程ax=b的解满足x=b+a,则称该方程为“友好方程”,例如:方程2x=﹣4的解为x=﹣2,而﹣2=﹣4+2,则方程2x=﹣4为“友好方程”.【运用】(1)①﹣2x=,②x=﹣1两个方程中为“友好方程”的是(填写序号);(2)若关于x的一元一次方程3x=b是“友好方程”,求b的值;(3)若关于x的一元一次方程﹣2x=mn+n(n≠0)是“友好方程”,且它的解为x=n,则m=,n=.参考答案与试题解析一.选择题1.【解答】解:一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式.故选:A.2.【解答】解:A、错误.若x+3=5﹣3x,则x+3x=5﹣3;B、错误.m=﹣1时,不成立;C、错误.一边加,一边减,不成立;D、正确.故选:D.3.【解答】解:A、由﹣x+2=0 变形得x=2,故不符合题意;B、由﹣2(x+2)=3 变形得﹣2x﹣4=3,故符合题意;C、由x=3变形得x=6,故不符合题意;D、由﹣+1=0变形得﹣(2x﹣1)+6=0,故不符合题意.故选:B.4.【解答】解:把x=﹣1代入方程得:﹣3+6=t,解得:t=3,故选:A.5.【解答】解:把x=2代入方程得:6﹣2m=10,解得:m=﹣2,故选:B.6.【解答】解:方程(k﹣2019)x﹣2017=7﹣2019(x+1)整理化简,可得kx=5,即x=,∵该方程的解是整数,k为整数,∴x=1或﹣1或5或﹣5,即=1或﹣1或5或﹣5,解得:k=5或﹣5或1或﹣1,∴整数k的取值个数是4个,故选:C.7.【解答】解:设“”的质量为x,“”的质量为y,“”的质量为:a,假设A正确,则x=2y,此时B选项中是x=1.5y,C、D选项中都是x=2y,故只有选项B一组左右质量不相等,符合题意.故选:B.8.【解答】解:A、2.40万=24000,2.40万精确到百位,原说法正确,故此选项符合题意;B、﹣系数是﹣,次数是3,原说法错误,故此选项不符合题意;C、多项式﹣2x2y+xy﹣1是三次三项式,原说法错误,故此选项不符合题意;D、如果a=0,那么两边都除以a是错误的,原说法错误,故此选项不符合题意;故选:A.9.【解答】解:设球的质量是x,小正方形的质量是y,小正三角形的质量是z.根据题意得到:,解得:,第三图中左边是:3x+2y+z=7x,因而需在它的右盘中放置7个球.故选:D.10.【解答】解:①3x+y=4中含有2个未知数,属于二元一次方程,不符合题意,②2x﹣=5是分式方程,不符合题意;③3y+2=2﹣y符合一元一次方程的定义,符合题意;④由2x2﹣5x+6=2(x2+3x)得到:﹣11x+6=0符合一元一次方程的定义,符合题意;故选:B.二.填空题(共5小题)11.【解答】解:∵方程(m﹣1)x|m|﹣5=0是关于x的一元一次方程,∴m﹣1≠0且|m|=1,解得:m=﹣1,故答案为:﹣1.12.【解答】解:将x=代入+2=0,∴a=﹣4故答案为:﹣413.【解答】解:根据题意得:ab=1,x+y=0,方程﹣3(y+1)=9,去括号得:﹣3y﹣3=9,移项合并得:﹣3y=12,解得:y=﹣4,即m=|﹣4|=4,则原式=2ab+3(x+y)﹣m=2+0﹣4=﹣2,故答案为:﹣214.【解答】解:将x=1代入方程,可得:(4﹣b)k=5﹣2a,由题意可知:4﹣b=0,5﹣2a=0,可得:b=4,a=2.5,把b=4,a=2.5代入2a+b=5+4=9,故答案为:915.【解答】解:①若m=n,等式两边同时乘以a得:am=an,即①正确,②若m=n,a2+2≠0,等式两边同时除以a2+2得:=,即②正确,③若mx+5=nx+5,等式两边同时减去5得:mx=nx,若x=0,则m和n不一定相等,即③错误,④若m=0,n=1,则方程mx+n=1的解为任意实数,即④错误,⑤若m=0,可以是任意解,那x=1也是满足条件的,即⑤正确,⑥若mn=6,则m≠0,n≠0,n=,则方程mx+m=6的解为:x ==﹣1=n﹣1,即⑥正确,故答案为:③④⑤.三.解答题(共4小题)16.【解答】解:根据题意将x=﹣4代入方程ax﹣1=7可得:﹣4a ﹣1=7,解得:a=﹣2.17.【解答】解:(1)解方程x﹣2m=﹣3x+4得x=m+1,解方程2﹣x=m得x=2﹣m,根据题意得,m+1+2﹣m=0,解得m=6;(2)当m=6时,x=m+1=×6+1=4,即方程x﹣2m=﹣3x+4的解为x=4;当m=6时,x=2﹣m=2﹣6=﹣4,即方程2﹣x=m的解为x=﹣4.18.【解答】解:(1)∵x=1,∴x=2,∵+1≠2,∴x=1不是合并式方程;(2)∵关于x的一元一次方程5x=m+1是合并式方程,∴5+m+1=,解得:m=﹣.故m的值为﹣.19.【解答】解:(1)①﹣2x=,解得:x=﹣,而﹣=﹣2+,是“友好方程”;②x=﹣1,解得:x=﹣2,﹣2≠﹣1+,不是“友好方程”;故答案是:①;(2)方程3x=b的解为x=.所以=3+b.解得b=﹣;x=n,3.2用合并同类项解一元一次方程一、选择题1、下列解方程移不符合题意的是()A.由3x﹣2=2x﹣1,得3x+2x=1+2B.由x﹣1=2x+2,得x﹣2x=2﹣1C.由2x﹣1=3x﹣2,得2x﹣3x=1﹣2D.由2x+1=3﹣x,得2x+x=3+12、解方程﹣3x+4=x ﹣8,下列移项正确的是( )A .﹣3x ﹣x=﹣8﹣4B .﹣3x ﹣x=﹣8+4C .﹣3x+x=﹣8﹣4D .﹣3x+x=﹣8+43、 合并同类项-a+a+a 得( )A . aB . aC . aD .04、在解方程2314-=+x x 时,下列移项正确的是( )A .2134-=+x xB .1234--=-x xC .1234-=-x xD .1234--=+x x5、下列方程的变形正确的个数有( )(1)由3+x=5,得x=5+3;(2)由7x=﹣4,得x=﹣;(3)由y=0得y=2;(4)由3=x ﹣2得x=﹣2﹣3.A .1个B .2个C .3个D .4个6、某人有连续4天的休假,这4天各天的日期之和是86,则休假第一天的日期是( ).A.20日B.21日C.22日D.23日7、已知1x =是方程20x x a -+=的解,则2a =( )A .1B .1-C .2D .2-1314112231316二、填空题8、合并下列式子,把结果写在横线上.(1)x -2x+4x=_________;(2)5y+3y -4y=_________;(3)4y -2.5y -3.5y=__________.9、4-23x =25x +2变形为-23x -25x =2-4,这种变形叫__________,其根据是_________.10、一件衣服标价132元,若以9折降价出售,仍可获利10%,则这件衣服的进价是___元.11、当x=________时,3x+4与﹣4x+6互为相反数.12.规定:a@b=2a ﹣b 若:x@5=8,则 x=________.13.已知m 1=3y+1,m 2=5y+3,当y=________时,m 1=m 2 .14.小华同学在解方程5x ﹣1=( )x+3时,发现“括号”处的数字模糊不清,但察看答案可知解为x=2,则“括号”处的数字为________.15.多项式8x 2﹣3x+5与多项式3x 3+2mx 2﹣5x+7相加后,不含二次项,则常数m 的值是________.16、 如果方程3x +4=0与方程3x +4k =18的解相同,则k = .三、解答题17、解下列方程:(1)4﹣m=﹣m ;(2)56﹣8x=11+x ;(3)x+1=5+x;(4)﹣5x+6+7x=1+2x﹣3+8x.18、甲、乙两站相距360km,一列慢车从甲站出发开往乙站,行驶1h 后,一列快车从乙站开往甲站,经过2h两车相遇.已知慢车每小时行驶的路程与快车每小时行驶的路程之比为2∶3,快车与慢车的速度分别是多少?19、小王在解关于x的方程2a﹣2x=15时,误将﹣2x看作+2x,得方程的解x=3,求原方程的解.20、先观察,再解答.图3-2-2如图3-2-2(1)是生活中常见的月历,你对它了解吗?(1)图3-2-2(2)是另一个月的月历,a 表示该月中某一天,b 、c 、d 是该月中其它3天,b 、c 、d 与a 有什么关系?b=____;c=____;d=____.(用含a 的式子填空).(2)用一个长方形框圈出月历中的三个数字(如图3-2-2 (2)中的阴影),如果这三个数字之和等于51,这三个数字各是多少?(3)这样圈出的三个数字的和可能是64吗?为什么?3.3 解一元一次方程(二)去括号与去分母一、选择题1、方程5174732+-=--x x 去分母得( )。
初中数学七年级上册-七年级数学同步练习 3.1.1一元一次方程 (有答案)
第三章 一元一次方程3.1.1 一元一次方程[学生用书B34]1.[2018春·九台区期末]下列各式中不是方程的是( B )A .2x +3y =1B .3π+4≠5C .-x +y =4D .x =82.[2018春·乐至期末]下列方程中是一元一次方程的是( B )A .-3x +2y =1B .3x -2=0C.2x +3=1D .x 2-x -2=03.[2018春·晋江期中]下列方程中,解是x =4的是( C )A .3x +1=11B .-2x -4=0C .3x -8=4D .4x =14.下列方程中解为x =0的是( B )A .x +1=-1B .2x =3xC .2x =2D.x +12+4=5x5.根据以下所给的条件,能列出方程的是( B )A .a 与1的差的12B .一个数的13是6C .甲数的2倍与乙数的12的和D .a 与b 的差的20%【解析】 A ,C ,D 只能列式子,B 能列出方程.设这个数为x ,则13x =6.故选B.6.[2018·拱墅区二模]某班分两组志愿者去社区服务,第一组20人,第二组26人.现第一组发现人手不够,需第二组支援.问从第二组调多少人去第一组才能使第一组的人数是第二组的2倍?设抽调x人,则可列方程(D)A.20=2(26-x)B.20+x=2×26C.2(20+x)=26-xD.20+x=2(26-x)7.[2018·路南区三模]甲、乙从某地出发,同向而行,甲每小时走3 km,乙每小时走2 km,乙先出发3 h,甲再出发追赶乙,设甲要x h才能追上乙,下列方程正确的是(A)A.2x+2×3=3xB.2x-2×3=3xC.2x+3×3=3xD.2x=3×3-3x8.已知甲煤场有煤518 t,乙煤场有煤106 t,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x t到乙煤场,则可列方程为(C)A.518=2(106+x)B.518-x=2×106C.518-x=2(106+x)D.518+x=2(106-x)9.[2018春·鲤城区期末]我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐.问人数和车数各多少?设车x辆,根据题意,可列出的方程是(B)A.3x-2=2x+9 B.3(x-2)=2x+9C.x3+2=x2-9 D.3(x-2)=2(x+9)10.写出一个以x=1为解的一元一次方程__2x+3=5(答案不唯一,合理即可)__.11.一头半岁的蓝鲸体重22 t ,90天后体重为30.1 t .如果设蓝鲸体重平均每天增加x t ,那么可得方程__22+90x =30.1__.【解析】 相等关系为22+90天体重增加量=30.1.12.把50 kg 大米分装在3个同样大小的袋子里,装满后还剩余5 kg ,如果设每个袋子可装大米x kg ,那么可得方程__3x +5=50__.【解析】 相等关系为3个袋子装的大米质量+5 kg =总质量.13.如果x 的2倍与1的和等于x 的一半,则列出的方程为__2x +1=12x __.14.根据下列条件列出方程:(1)x 的5倍比x 的2倍大12;(2)某数的5倍减去4等于该数的6倍加上1;(3)x 的20%与15的差的一半等于-2.解:(1)5x -2x =12;(2)设该数为x ,则5x -4=6x +1;(3)12(20%x -15)=-2.15.检验下列方程后面括号里的数是不是方程的解:5(x -2)=35(x =9;x =7).解:把x =9代入方程左右两边,左边=5×(9-2)=5×7=35,∵右边=35,左边=右边,∴x =9是方程的解;把x =7代入方程左右两边,左边=5×(7-2)=5×5=25,∵右边=35,左边≠右边,∴x =7不是方程的解.16.[2017·永州]x =1是关于x 的方程2x -a =0的解,则a 的值是( B )A .-2B .2C .-1D .1【解析】 把x =1代入方程2x -a =0得2-a =0,解得a =2.17.根据图3-1-1中给出的信息,可得正确的方程是( A )图3-1-1A .π×⎝ ⎛⎭⎪⎫822x =π×⎝ ⎛⎭⎪⎫622×(x +5) B .π×⎝ ⎛⎭⎪⎫822x =π×⎝ ⎛⎭⎪⎫622×(x -5) C .π×82x =π×62×(x +5)D .π×82x =π×62×5【解析】 设大量筒中水深x cm ,根据圆柱的体积公式求得大量筒中的水的体积(单位:cm 3)为π×⎝ ⎛⎭⎪⎫822x ,小量筒中的水的体积为π×⎝ ⎛⎭⎪⎫622×(x +5).根据题意,得π×⎝ ⎛⎭⎪⎫822x =π×⎝ ⎛⎭⎪⎫622×(x +5).故选A. 18.某学校七年级四个班为“希望工程”捐款:七(1)班捐的钱数是四个班的捐款总和的16;七(2)班捐的钱数是四个班的捐款总和的13;七(3)班捐的钱数是四个班的捐款总和的14;七(4)班捐了169元.若设这四个班捐款的总和为x 元,那么你能列出方程吗?并检验x =676是不是所列方程的解.解:根据题意,得16x +13x +14x +169=x .把x =676代入方程左右两边,左边=16×676+13×676+14×676+169=34×676+169=676,右边=676,∵左边=右边,∴x =676是所列方程的解.19.已知x2m-3+6=m是关于x的一元一次方程,试求式子(x+3)2 019的值.解:∵x2m-3+6=m是关于x的一元一次方程,∴2m-3=1,解得m=2,∴原方程可化为x+6=2,解得x=-4,∴原式=(-4+3)2 019=-1.20.已知等式(a-2)x2+ax+1=0是关于x的一元一次方程,求这个方程的解.解:根据题意,得a-2=0,解得a=2,故原方程可化为2x+1=0,解得x=-1 2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.1 认识一元一次方程
一、选择题
1.方程,,,,x yx x x x x x -=+=+
=+==23222303221043
中是一元一次方程的有( )个.
A .1
B .2
C .3
D .4 2.“比a 的3
1少2的数”可以列式表示为( ). A .⎪⎭
⎫ ⎝⎛-⨯231a B .231+a C .231-a D .)2(31-a 3.长方形的宽是a 米,长比宽多2米,则此长方形的面积可以表示为( ).
A .a a )2(2+
B .)2(+a a
C .)2(22++a a
D .)22(2+a a
4.下列各方程后面括号里的数,均是该方程的解是( )
A .{}1,145-=+x
B .⎭
⎬⎫⎩⎨⎧=+67,6141
3121x C .{}4,2282x x -=- D .{}2,1,00)2)(1(--=++x x x
5.方程x x 23
1=+-的解是( ) A .3
1- B .31 C .1 D .-1 6.一元一次方程)72(2)2(5+=+x x 的解是( ).
A .7
B .6
C .5
D .4
7.3-=x 是方程4=+a x 的解,则a 的值是( )
A .7
B .1
C .-1
D .-7
8.x 增加6倍后,比它扩大到8倍少4,则列得的方程是( )
A .487-=x x
B .487+=x x
C .486-=x x
D .486+=x x
9.有一批画册,如果3人一本,还剩2本,如果2人一本,还有9人没有分到,设人数为x ,则可以列出方程为( )
A .2923-=+x x
B .2923
-=-x x C .9223-=+x x D .2
923+=-x x
二、填空题
1.为了保障师生的身体健康,学校每年都要购买无尘粉笔,现在无尘粉笔的售价是每盒a元,比去年便宜了b元:
(1)去年此粉笔的售价是每盒____元;
(2)若去年购进该粉笔100盒,需要_________元;
(3)若学校现在购进该粉笔100盒,需要____元;
(4)若购进100盒粉笔,今年比去年节省____元;
(5)若该粉笔现在的售价是每盒1.5元,比去年每盒便宜了0.3元,则去年购买100盒粉笔的钱今年可以购买多少盒?设今年可以购买x盒,可列方程为_______________.
2.某数与2的和的3倍是9,设某数为x,列成方程是___________.
3.写一个以2-
x为解的一元一次方程为_____________.
=
4.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件仍获利15元,如果设每件服装的成本价为x元,那么
(1)每件服装的标价为________;
(2)每件服装的实际售价为_______;
(3)每件服装的利润为_________;
(4)由此,可列出方程为________;
三、解答题
1.列方程:
(1)小明在超市购买4瓶酸奶和3瓶鲜奶,共花去9.6元.酸奶的标价是每瓶1.5元,则鲜奶每瓶多少元?
(2)校图书馆的图书被学生借出25%后,还剩15万册,则学校图书馆共有图书多少册?
(3)校足球场的周长为310米,长与宽的差是25米,这个足球场的长是多少米?
(4)甲、乙两名同学练习百米赛跑,甲每秒跑7米,乙每秒跑6.5米,如果甲让乙先跑1秒,那么甲经过几秒可以追上乙?
(5)小伟今年14岁,爷爷60岁,多少年后小伟的年龄是爷爷年龄的3
1?
2.我们赖以生存的地球是一个蓝色的星球,因为在地球上,海洋的面积是陆地面积的2.4倍,而地球的表面积约为5.1亿平方米,你能求出地球上海洋的总面积吗?
3.足球的表面是由一些黑色的正五边形和白色的正六边形皮块组成,黑、白皮块的数目之比是3:5.一个足球的表面有32个皮块.请问,黑色皮块有多少块?
4.商店里为了不积压夏装,在秋天往往都会打折销售.有一款裙装打8折出售,结果便宜了32元钱,你知道这套裙装原来的售价吗?
5.由算术到代数是数学史上的一次伟大的进步.现在我们可以用含字母的式子,表示实际问题中的数量关系.如果已知一个含有字母的式子,你能用实际问题加以解释吗?例如:3a 可以解释为:苹果每公斤a 元,买3公斤共需3a 元;等边三角形的边长是a ,则此三角形的周长是3a ;等等.请你尝试用生活中的实际问题来解释25 a .
6.根据题意设未知数并列出方程(不必求解)
(1)矩形周长是16 cm ,长比宽多2cm ,则这个矩形的长是多少?
(2)A 、B 两地相距50 km ,甲、乙两人分别从A 、B 两地出发,相向而行,甲每小时比乙多行2 km ,若两人同时出发,经过3 h 相遇,则甲、乙的速度分别为多少?
(3)某校社会实践活动小组,调查了高峰时段的某市的二环路、三环路、四环路的车流量:二环路车流量为每小时10 000辆,四环路比三环路车流量每小时多2000辆,三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍.则三环路,四环路的车流量各是多少?
参考答案
一、选择题
1. C 2.C 3.B 4.D 5.A 6.D 7.A 8.A 9.A
二、填空题
1.(1))(b a + (2))(100b a + (3)a 100 (4)b 100 (5)x 5.1)3.05.1(100=+
2.9)2(3=+x 3.如262=+x 等
4.(1)x %)401(+ (2)%80%)401(⋅+x
(3)x x -⋅+%80%)401( (4)15%80%)401(=-⋅+x x
三、解答题
1.(1)设鲜奶每瓶x 元,则6.9345.1=+⨯x ;
(2)设学校图书馆共有藏书x 万册,则15%25=-x x ;
(3)设长是x 米,则310)25(22=-+x x ;
(4)设甲经过x 秒可以追上乙,则x x 5.65.67+=;
(5)设x 年后小伟的年龄是爷爷年龄的31,则)60(3
114x x +=+. 2.设陆地面积x 亿平方米,则1.54.2=+x x .
3.设黑皮块有x 个,则323
5=+x x . 4.设原价x 元,则32%80-=x x .
5.小明今年a 岁,爸爸的年龄比他的5倍还多2岁,则爸爸的年龄是(25+a )岁。
6.(1)设矩形的长是xcm 则宽是(x-2)cm, 列方程得2x+2(x-2)=16.
(2)设乙的速度是x 千米/时,则甲的速度是(x+2) 千米/时,列方程得3x+3(x+2)=50.
(3)设三环的车流量是每小时x 辆,则四环每小时(x+2000)辆,列方程得 3x -(x+2000)=10000×2.。