非递归遍历二叉树算法2
二叉树后序遍历的递归和非递归算法
安 徽电气工 程 职 业 技术学 院学报
:薹6 M2 a r 0 c h 0
.
-X树后序遍历的递归和非递归算法
孙泽宇, 赵国增 , 舒云星・
( 洛阳工业高等专科学校计算机系 , 河南 洛阳 4 10 ) 703
[ 要 ] 论述了二又树后序遍历的递归算法和非递归算法, 摘 对递归算法中的工作栈 的执行过程做 了
Srcbt e t t ie { u r
● 收稿 日期 :0 5—1 0 70 . 2— 2
作者筒介: 孙泽字(97 . 吉林长春人. 17 一) 男。 洛阳工业高等专科学校计算机秉麓师。研究方向: 人工智能。 趟 目增 (97 . 河南越壁人 。 阳工业高等专科 学校计算机 秉麓师 。研究方 向: 1 一) 男。 7 洛 人工智能。
s c br 木e , r h;} t t ie lt 木 i t m te f g
后序遍历二叉树的递归算法如下 :
T p d fs u tBT o e y e e r c in d t
法及执行时栈 的变化情况 , 可设计 出较好 的非递归化算法 , 本文讨论了二叉树后序遍历的递归和非递归
算法。 2 后序遍历二叉树的递归算法
1 后序遍历左子树( ) 若左子树不为空 ) 2 后序遍历右子树( ) 若右子树不为空 ) 3 访问根结点 ( ) 若存在根结点)
二叉树数据结构如下 :
二叉树是数据结构 中最常见 的存储形式 , 在算法与数据结构中经常使用。树与森林都可以转换为 二叉树 , 而遍历算法则是二叉树最重要的操作 。所谓遍历二叉树 , 就是遵从某种次序 , 遍访二叉树 中的
所有结点, 使得每个结点被访问一次 , 而且仅一次。在遍历算法中, 递归算法是最普遍 的, 弄清 了递归算
二叉树的遍历及常用算法
⼆叉树的遍历及常⽤算法⼆叉树的遍历及常⽤算法遍历的定义:按照某种次序访问⼆叉树上的所有结点,且每个节点仅被访问⼀次;遍历的重要性:当我们需要对⼀颗⼆叉树进⾏,插⼊,删除,查找等操作时,通常都需要先遍历⼆叉树,所有说:遍历是⼆叉树的基本操作;遍历思路:⼆叉树的数据结构是递归定义(每个节点都可能包含相同结构的⼦节点),所以遍历也可以使⽤递归,即结点不为空则继续递归调⽤每个节点都有三个域,数据与,左孩⼦指针和右孩⼦之指针,每次遍历只需要读取数据,递归左⼦树,递归右⼦树,这三个操作三种遍历次序:根据访问三个域的不同顺序,可以有多种不同的遍历次序,⽽通常对于⼦树的访问都按照从左往右的顺序;设:L为遍历左⼦树,D为访问根结点,R为遍历右⼦树,且L必须位于R的前⾯可以得出以下三种不同的遍历次序:先序遍历操作次序为DLR,⾸先访问根结点,其次遍历根的左⼦树,最后遍历根右⼦树,对每棵⼦树同样按这三步(先根、后左、再右)进⾏中序遍历操作次序为LDR,⾸先遍历根的左⼦树,其次访问根结点,最后遍历根右⼦树,对每棵⼦树同样按这三步(先左、后根、再右)进⾏后序遍历操作次序为LRD,⾸先遍历根的左⼦树,其次遍历根的右⼦树,最后访问根结点,对每棵⼦树同样按这三步(先左、后右、最后根)进⾏层次遍历层次遍历即按照从上到下从左到右的顺序依次遍历所有节点,实现层次遍历通常需要借助⼀个队列,将接下来要遍历的结点依次加⼊队列中;遍历的应⽤“遍历”是⼆叉树各种操作的基础,可以在遍历过程中对结点进⾏各种操作,如:对于⼀棵已知⼆叉树求⼆叉树中结点的个数求⼆叉树中叶⼦结点的个数;求⼆叉树中度为1的结点个数求⼆叉树中度为2的结点个数5求⼆叉树中⾮终端结点个数交换结点左右孩⼦判定结点所在层次等等...C语⾔实现:#include <stdio.h>//⼆叉链表数据结构定义typedef struct TNode {char data;struct TNode *lchild;struct TNode *rchild;} *BinTree, BinNode;//初始化//传⼊⼀个指针令指针指向NULLvoid initiate(BinTree *tree) {*tree = NULL;}//创建树void create(BinTree *BT) {printf("输⼊当前结点值: (0则创建空节点)\n");char data;scanf(" %c", &data);//连续输⼊整形和字符时.字符变量会接受到换⾏,所以加空格if (data == 48) {*BT = NULL;return;} else {//创建根结点//注意开辟的空间⼤⼩是结构体的⼤⼩⽽不是结构体指针⼤⼩,写错了不会⽴马产⽣问题,但是后续在其中存储数据时极有可能出现内存访问异常(飙泪....) *BT = malloc(sizeof(struct TNode));//数据域赋值(*BT)->data = data;printf("输⼊节点 %c 的左孩⼦ \n", data);create(&((*BT)->lchild));//递归创建左⼦树printf("输⼊节点 %c 的右孩⼦ \n", data);create(&((*BT)->rchild));//递归创建右⼦树}}//求双亲结点(⽗结点)BinNode *Parent(BinTree tree, char x) {if (tree == NULL)return NULL;else if ((tree->lchild != NULL && tree->lchild->data == x) || (tree->rchild != NULL && tree->rchild->data == x))return tree;else{BinNode *node1 = Parent(tree->lchild, x);BinNode *node2 = Parent(tree->rchild, x);return node1 != NULL ? node1 : node2;}}//先序遍历void PreOrder(BinTree tree) {if (tree) {//输出数据printf("%c ", tree->data);//不为空则按顺序继续递归判断该节点的两个⼦节点PreOrder(tree->lchild);PreOrder(tree->rchild);}}//中序void InOrder(BinTree tree) {if (tree) {InOrder(tree->lchild);printf("%c ", tree->data);InOrder(tree->rchild);}}//后序void PostOrder(BinTree tree) {if (tree) {PostOrder(tree->lchild);PostOrder(tree->rchild);printf("%c ", tree->data);}}//销毁结点递归free所有节点void DestroyTree(BinTree *tree) {if (*tree != NULL) {printf("free %c \n", (*tree)->data);if ((*tree)->lchild) {DestroyTree(&((*tree)->lchild));}if ((*tree)->rchild) {DestroyTree(&((*tree)->rchild));}free(*tree);*tree = NULL;}}// 查找元素为X的结点使⽤的是层次遍历BinNode *FindNode(BinTree tree, char x) {if (tree == NULL) {return NULL;}//队列BinNode *nodes[1000] = {};//队列头尾位置int front = 0, real = 0;//将根节点插⼊到队列尾nodes[real] = tree;real += 1;//若队列不为空则继续while (front != real) {//取出队列头结点输出数据BinNode *current = nodes[front];if (current->data == x) {return current;}front++;//若当前节点还有⼦(左/右)节点则将结点加⼊队列if (current->lchild != NULL) {nodes[real] = current->lchild;real++;}if (current->rchild != NULL) {nodes[real] = current->rchild;real++;}}return NULL;}//层次遍历// 查找元素为X的结点使⽤的是层次遍历void LevelOrder(BinTree tree) {if (tree == NULL) {return;}//队列BinNode *nodes[1000] = {};//队列头尾位置int front = 0, real = 0;//将根节点插⼊到队列尾nodes[real] = tree;real += 1;//若队列不为空则继续while (front != real) {//取出队列头结点输出数据BinNode *current = nodes[front];printf("%2c", current->data);front++;//若当前节点还有⼦(左/右)节点则将结点加⼊队列if (current->lchild != NULL) {nodes[real] = current->lchild;real++;}if (current->rchild != NULL) {nodes[real] = current->rchild;real++;}}}//查找x的左孩⼦BinNode *Lchild(BinTree tree, char x) {BinTree node = FindNode(tree, x);if (node != NULL) {return node->lchild;}return NULL;}//查找x的右孩⼦BinNode *Rchild(BinTree tree, char x) {BinTree node = FindNode(tree, x);if (node != NULL) {return node->rchild;}return NULL;}//求叶⼦结点数量int leafCount(BinTree *tree) {if (*tree == NULL)return 0;//若左右⼦树都为空则该节点为叶⼦,且后续不⽤接续递归了else if (!(*tree)->lchild && !(*tree)->rchild)return 1;else//若当前结点存在⼦树,则递归左右⼦树, 结果相加return leafCount(&((*tree)->lchild)) + leafCount(&((*tree)->rchild));}//求⾮叶⼦结点数量int NotLeafCount(BinTree *tree) {if (*tree == NULL)return 0;//若该结点左右⼦树均为空,则是叶⼦,且不⽤继续递归else if (!(*tree)->lchild && !(*tree)->rchild)return 0;else//若当前结点存在左右⼦树,则是⾮叶⼦结点(数量+1),在递归获取左右⼦树中的⾮叶⼦结点,结果相加 return NotLeafCount(&((*tree)->lchild)) + NotLeafCount(&((*tree)->rchild)) + 1;}//求树的⾼度(深度)int DepthCount(BinTree *tree) {if (*tree == NULL)return 0;else{//当前节点不为空则深度+1 在加上⼦树的⾼度,int lc = DepthCount(&((*tree)->lchild)) + 1;int rc = DepthCount(&((*tree)->rchild)) + 1;return lc > rc?lc:rc;// 取两⼦树深度的最⼤值 }}//删除左⼦树void RemoveLeft(BinNode *node){if (!node)return;if (node->lchild)DestroyTree(&(node->lchild));node->lchild = NULL;}//删除右⼦树void RemoveRight(BinNode *node){if (!node)return;if (node->rchild)DestroyTree(&(node->rchild));node->rchild = NULL;}int main() {BinTree tree;create(&tree);BinNode *node = Parent(tree, 'G');printf("G的⽗结点为%c\n",node->data);BinNode *node2 = Lchild(tree, 'D');printf("D的左孩⼦结点为%c\n",node2->data);BinNode *node3 = Rchild(tree, 'D');printf("D的右孩⼦结点为%c\n",node3->data);printf("先序遍历为:");PreOrder(tree);printf("\n");printf("中序遍历为:");InOrder(tree);printf("\n");printf("后序遍历为:");PostOrder(tree);printf("\n");printf("层次遍历为:");LevelOrder(tree);printf("\n");int a = leafCount(&tree);printf("叶⼦结点数为%d\n",a);int b = NotLeafCount(&tree);printf("⾮叶⼦结点数为%d\n",b);int c = DepthCount(&tree);printf("深度为%d\n",c);//查找F节点BinNode *node4 = FindNode(tree,'C');RemoveLeft(node4);printf("删除C的左孩⼦后遍历:");LevelOrder(tree);printf("\n");RemoveRight(node4);printf("删除C的右孩⼦后遍历:");LevelOrder(tree);printf("\n");//销毁树printf("销毁树 \n");DestroyTree(&tree);printf("销毁后后遍历:");LevelOrder(tree);printf("\n");printf("Hello, World!\n");return 0;}测试:测试数据为下列⼆叉树:运⾏程序复制粘贴下列内容:ABDGHECKFIJ特别感谢:iammomo。
遍历二叉树的非递归算法
问一次。这里的“ 问”的含义很广 ,比如修 改或输出结点的信息, 访 删除结 我们知道 , 二叉树有三个基本的组成部分, 根, 即: 左子树和右予 树, 只 要依次遍历这三个 部分, 能遍历整个二叉树 。 遍历二叉树的方式通常有 就
算, 所用到的数据仅为整型或实型即能满足要求 , 计算求精课程称作数值方 点等等。
子树, 再访问右子树 , 最后访 问根结 点) 。由于二叉树定义 的递归性, 我们很 容易就会想到用递 归算法来遍历二叉树。 设二叉树与栈 的结构如下 ( c 用 语言描述) :
t p d fs r c i N d y e e tu t B T o e f
c a d t h r a a:
据结构会对应复杂程度不 同的算法 ,丽设计一个合适 的数据 结构 能使算法 三 种, 先序遍历 ( 即: 先访 问根 结点, 再访问左子树 , 最后访问右子树) 中序 、 先访问左 予树 , 再访 问根结点, 后访 问右子树) 后序遍历 ( 最 。 先访问左 的复杂程度大大降低。 编程人员在实践 中体会到 ; 学好~种高级语言仪能解 遍历 ( 决三成所遇到的 问题, 而学好数据结构却 能解 决八成所遇 到的问题, 因此, 在软件 设计中选择一个合适的数据结构越发显得重要 。 在 管理科学领域中, 很多问题都可 以转化 为树 T e r e型结构 , 而多叉树
就会不同。
)A r ys q e c [a ] ra , eu n eM x
t p d f tu t y e e s r c
树, 它有 4 个结点。为了便于理解遍历思想 , 暂时为每个没有 予树 的结点都
f
e ely e b s 1 Ⅱ p 赤 a e: t e e t p *t p' lmye o ,
二叉树遍历的通用非递归算法
右子 树还未访 问)( 序访 问 A的左子树 的根结点 B , 和 l ,先 )B 进 栈 . 于 B的左 子 树 为 空 , 以 B 和 1出 栈 ,中 序 访 问 B)B 由 所 ( , 和 O进栈 ( O表 示 开 始 遍 历 结 点 B 的 右 子 树 ) 由 于 B 的 右 子树 . 为空 。 B和 O出栈 ,后 序访 问 B . 和 1出 栈 。 中序 访 问 A)A ( )A ( , 和 O进栈 .先 序 访 A的 右 子 树 的 根 结 点 C , ( )C和 1进 栈 , 由 于 C的左子树为空 , C和 l出栈 .中序 访问 C 。 ( )C和 O进栈 , 由 于 C 的 右 子 树 为 空 。 和 0出 栈 . 后 序 访 问 C)A 和 O出 栈 , C ( . ( 序 访 问 A)此 时 栈 已 空 , 历 过 程 结 束 。 后 , 遍 从 上 面可 知 , 每个 结 点 进栈 、 出栈 都 是 两 次 。若 进 栈 前 访 问 该结点 , 则得 到先 序 序 列 A C; 在 第 一 次 出栈 时 济 问 该结 点 , B 若 则得 到 中序 序 列 B C: 在 第 二 次 出栈 时访 问 该 结 点 , A 若 则得 到 后 序 序 列 B A。 此 . C 因 只需 对 二 叉树 遍 历 一 次 即 可 得 到 三 种 遍 历序 列 这里的关键是设置了一个标志位 . 用来 说明该结点的右子树 是 否 已访 问 . 以此 表 示 该 结 点 是第 一 次 出栈 还 是 第 二 次 出栈 。
维普资讯
20 0 6年 第 6期
福
建 电
脑
11 2
二叉树遍历的通用非递归算 法
徐凤生 1 李立群 2 马夕荣 2
( . 州 学 院 计算 机 系 。 东 德 州 2 32 2 山 东省 农 业 管 理 干部 学 院 , 东 济 南 2 0 0 ) 1德 山 503 . 山 5 10
非递归交换二叉树左右子树算法
非递归交换二叉树左右子树算法非递归交换二叉树左右子树是一种常见的二叉树操作,其目的是交换二叉树的每个节点的左右子树。
在本文中,我将为您介绍一种非递归的交换二叉树左右子树的算法,并通过详细的步骤解释其工作原理。
算法步骤如下:1.首先,我们需要创建一个空的栈。
栈是一种能够保存元素并支持后进先出操作的数据结构。
2.接下来,将根节点入栈。
3.开始一个循环,直到栈为空。
在循环中,执行以下操作:a.弹出栈顶节点,并将其保存在一个临时变量中。
b.检查临时变量的左子树是否存在。
如果存在,将其入栈。
c.检查临时变量的右子树是否存在。
如果存在,将其入栈。
d.交换临时变量的左右子树。
4.循环结束后,二叉树的左右子树交换完成。
接下来,我将逐步解释该算法的工作原理。
首先,我们将根节点入栈,然后开始一个循环。
在每次循环中,我们从栈中弹出一个节点,并检查其左右子树是否存在。
如果左子树存在,我们将其入栈。
由于栈是后进先出的数据结构,这意味着右子树将首先被处理。
接下来,我们将右子树入栈。
通过不断循环弹出和入栈节点,我们实现了对树的层次遍历。
同时,我们通过交换每个节点的左右子树,实现了左右子树的交换。
最后,当栈为空时,所有的节点都被处理完成,我们得到了一个交换了左右子树的二叉树。
非递归交换二叉树左右子树的算法具有以下优点:1.不需要额外的递归调用和回溯操作,因此空间复杂度较低。
2.通过使用栈来保存中间结果,实现了对二叉树的层次遍历,使得算法的时间复杂度较低。
3.算法的实现相对简单,易于理解和调试。
总结起来,非递归交换二叉树左右子树是一种高效且易于实现的算法。
通过仔细分析每个步骤,我们可以清楚地了解其工作原理。
此外,该算法还具有较低的空间复杂度和时间复杂度,适用于处理大规模的二叉树。
希望本文对您有所帮助!。
实现二叉链表存储结构下二叉树的先序遍历的非递归算法
实现二叉链表存储结构下二叉树的先序遍历的非递归算法要实现二叉链表存储结构下二叉树的先序遍历的非递归算法,可以使用栈来辅助存储节点。
首先,创建一个空栈,并将树的根节点压入栈中。
然后,循环执行以下步骤,直到栈为空:1. 弹出栈顶的节点,并访问该节点。
2. 若该节点存在右子节点,则将右子节点压入栈中。
3. 若该节点存在左子节点,则将左子节点压入栈中。
注:先将右子节点压入栈中,再将左子节点压入栈中的原因是,出栈操作时会先访问左子节点。
下面是使用Python语言实现的例子:```pythonclass TreeNode:def __init__(self, value):self.val = valueself.left = Noneself.right = Nonedef preorderTraversal(root):if root is None:return []stack = []result = []node = rootwhile stack or node:while node:result.append(node.val)stack.append(node)node = node.leftnode = stack.pop()node = node.rightreturn result```这里的树节点类为`TreeNode`,其中包含节点的值属性`val`,以及左子节点和右子节点属性`left`和`right`。
`preorderTraversal`函数为非递归的先序遍历实现,输入参数为二叉树的根节点。
函数中使用了一个栈`stack`来存储节点,以及一个列表`result`来存储遍历结果。
在函数中,先判断根节点是否为None。
如果是,则直接返回空列表。
然后,创建一个空栈和结果列表。
接下来,用一个`while`循环来执行上述的遍历过程。
循环的条件是栈`stack`不为空或者当前节点`node`不为None。
非递归中序遍历二叉树课件
04 非递归中序遍历 二叉树的复杂度 分析
时间复杂度
最好情况:O(n) 最坏情况:O(n)
平均情况:O(n)
空间复杂度
最好情况:O(1) 最坏情况:O(n)
平均情况:O(n)
05 非递归中序遍历 二叉树的优缺点
优点
01
02
03
空间效率高
非递归算法通常只需要常 数级别的额外空间,相比 之下,递归算法可能需要 更多的堆栈空间。
代码简洁
非递归算法的代码通常更 简洁,更易于理解和维护。
适合处理大型数据
由于非递归算法不需要大 量的堆栈空间,因此更适 合处理大型数据集。
缺点
编程技巧要求高
非递归算法需要更多的编程技巧, 特别是对于那些不熟悉这种技术 的人来说,理解和实现可能会比 较困难。
遍历过程
01
02
03
04
弹出栈顶元素,访问该 节点。
如果该节点右子节点存 在,将右子节点入栈。
如果该节点左子节点存 在,将左子节点入栈。
重复上述步骤,直到栈 为空。
遍历后的结果
01
中序遍历的顺序为:左子树 -> 根节点 -> 右子树。
02
非递归方法利用了栈的性质,实 现了从上到下、从左到右的遍历 顺序。
THANKS
感谢观看
栈为空。
实例二:复杂的二叉树
总结词:进阶应用
详细描述:对于复杂的二叉树,非递归中序遍历需要 更加细致的处理。由于树的形状可能不规则,我们需 要更加灵活地使用栈来处理节点之间的关系。在遍历 过程中,我们需要注意处理各种特殊情况,例如循环 引用、节点值相等的情况,以避免陷入无限循环或访 问错误的节点。此外,我们还需要注意优化算法的时 间复杂度和空间复杂度,以提高遍历的效率和准确性。
出二叉树的非叶子结点个数的算法
一、概述二叉树是一种重要的数据结构,它在计算机科学中有着广泛的应用。
在二叉树中,一个节点可以有零个、一个或两个子节点,而非叶子结点指的是拥有子节点的节点。
统计出二叉树中非叶子结点的个数是一项常见的算法问题,本文将介绍几种计算二叉树非叶子结点个数的算法,并对它们进行比较和分析。
二、算法一:遍历法遍历法是一种直观的计算非叶子结点个数的方法,其基本思路是通过对二叉树进行遍历,并统计出非叶子结点的数量。
具体步骤如下:1. 从二叉树的根节点开始,采用先序、中序或后序遍历的方式依次访问每一个节点。
2. 对每个访问到的节点,判断其是否为非叶子结点,如果是,则将计数器加一。
3. 继续遍历其子节点,直至遍历完成整棵二叉树。
遍历法的时间复杂度为O(n),其中n为二叉树的节点数。
由于需要对整棵二叉树进行遍历,因此遍历法在最坏情况下需要遍历所有节点,因此其时间复杂度较高。
另外,在实现上需要使用递归或栈等数据结构来存储遍历过程中的节点信息,因此在空间复杂度上也存在一定的开销。
三、算法二:递归法递归法是一种更加简洁和精炼的计算非叶子结点个数的方法,其基本思路是通过递归的方式对整棵二叉树进行遍历,并统计出非叶子结点的数量。
具体步骤如下:1. 从二叉树的根节点开始,采用递归的方式依次访问每一个节点。
2. 对每个访问到的节点,判断其是否为非叶子结点,如果是,则将计数器加一。
3. 继续递归地访问其左右子节点,直至遍历完成整棵二叉树。
递归法的时间复杂度同样为O(n),但由于在递归的过程中不需要显式地保存遍历的状态,因此在空间复杂度上相对较低。
四、算法三:迭代法迭代法是一种基于栈的非递归实现方式,其基本思路是通过维护一个栈结构来模拟递归的过程,以达到对二叉树进行遍历和统计非叶子结点数量的目的。
具体步骤如下:1. 从二叉树的根节点开始,将其入栈。
2. 从栈中弹出一个节点,并判断其是否为非叶子结点,如果是,则将计数器加一。
3. 将该节点的子节点依次入栈,直至遍历完成整棵二叉树。
中序遍历非递归算法
中序遍历非递归算法一、前言在二叉树的遍历中,中序遍历是一种重要的遍历方式。
中序遍历非递归算法是指不使用递归函数,通过循环和栈等数据结构实现对二叉树进行中序遍历。
本文将详细介绍中序遍历非递归算法的实现过程和相关知识点。
二、中序遍历的定义在二叉树中,对每个节点的访问顺序有三种方式:先访问左子树,再访问根节点,最后访问右子树;先访问根节点,再访问左子树和右子树;先访问左子树和右子树,最后访问根节点。
这三种方式分别称为前序遍历、中序遍历和后序遍历。
其中,中序遍历是指按照“先访问左子树,再访问根节点,最后访问右子树”的顺序进行访问。
三、中序遍历非递归算法的思路1. 定义一个空的辅助栈;2. 从二叉树的跟节点开始循环:a. 将当前节点压入辅助栈;b. 如果当前节点存在左孩子,则将当前节点设置为其左孩子,继续循环;c. 如果当前节点不存在左孩子,则从辅助栈中弹出一个节点,并将该节点的值输出;d. 如果被弹出的节点存在右孩子,则将当前节点设置为其右孩子,继续循环;e. 如果被弹出的节点不存在右孩子,则回到步骤c。
四、中序遍历非递归算法的实现1. 定义一个空的辅助栈和一个指向二叉树跟节点的指针cur;2. 对于每个节点,如果该节点不为空或者辅助栈不为空,则进行循环:a. 如果当前节点不为空,则将其压入辅助栈中,并将当前节点更新为其左孩子;b. 如果当前节点为空,则从辅助栈中弹出一个元素,并输出该元素的值;i. 将当前节点更新为被弹出元素的右孩子。
3. 循环结束后,即可完成对二叉树的中序遍历。
五、代码实现以下是Java语言实现中序遍历非递归算法的代码:```public static void inOrder(TreeNode root) {Stack<TreeNode> stack = new Stack<>();TreeNode cur = root;while (cur != null || !stack.isEmpty()) {if (cur != null) {stack.push(cur);cur = cur.left;} else {cur = stack.pop();System.out.print(cur.val + " ");cur = cur.right;}}}```六、时间和空间复杂度中序遍历非递归算法的时间复杂度为O(n),其中n为二叉树节点的个数。
计算机考研408 数据结构算法总结及二叉树三种遍历算法的源码背诵版
数据结构算法背诵一、线性表1.逆转顺序表中的所有元素算法思想:第一个元素和最后一个元素对调,第二个元素和倒数第二个元素对调,……,依此类推。
void Reverse(int A[], int n){int i, t;for (i=0; i < n/2; i++){t = A[i];A[i] = A[n-i-1];A[n-i-1] = t;}}2.删除线性链表中数据域为item的所有结点算法思想:先从链表的第2个结点开始,从前往后依次判断链表中的所有结点是否满足条件,若某个结点的数据域为item,则删除该结点。
最后再回过头来判断链表中的第1个结点是否满足条件,若满足则将其删除。
void PurgeItem(LinkList &list){LinkList p, q = list;p = list->next;while (p != NULL){if (p->data == item) {q->next = p->next;free(p);p = q->next;} else {q = p;p = p->next;}}if (list->data == item){q = list;list = list->next;free(q);}}3.逆转线性链表void Reverse(LinkList &list){LinkList p, q, r;p = list;q = NULL;while (p != NULL){r = q;q = p;p = p->next;q->next = r;}list = q;}4.复制线性链表(递归)LinkList Copy(LinkList lista){LinkList listb;if (lista == NULL)return NULL;else {listb = (LinkList)malloc(sizeof(LNode));listb->data = lista->data;listb->next = Copy(lista->next);return listb;}}5.将两个按值有序排列的非空线性链表合并为一个按值有序的线性链表LinkList MergeList(LinkList lista, LinkList listb){LinkList listc, p = lista, q = listb, r;// listc 指向 lista 和 listb 所指结点中较小者if (lista->data <= listb->data) {listc = lista;r = lista;p = lista->next;} else {listc = listb;r = listb;q = listb->next;}while (p != NULL && q != NULL){if (p->data <= q->data) {r->next = p;r = p;p = p->next;} else {r->next = q;r = q;q = q->next;}}// 将剩余结点(即未参加比较的且已按升序排列的结点)链接到整个链表后面 r->next = (p != NULL) ? p : q;return listc;}二、树1.二叉树的先序遍历(非递归算法)算法思想:若p所指结点不为空,则访问该结点,然后将该结点的地址入栈,然后再将p指向其左孩子结点;若p所指向的结点为空,则从堆栈中退出栈顶元素(某个结点的地址),将p指向其右孩子结点。
后序遍历非递归算法
后序遍历非递归算法后序遍历是二叉树遍历中的一种,它的遍历顺序是先访问左子树、再访问右子树、最后访问根节点。
在非递归算法中,我们需要借助栈来实现后序遍历。
具体步骤如下:1. 新建一个栈,并将根节点入栈2. 定义两个节点变量pre和cur,初始化pre为null3. 当栈不为空时,循环执行以下操作:- 将栈顶元素cur赋值为栈顶元素,但不弹出该元素- 如果当前节点没有左右子节点,或者左右子节点已经被访问过了,那么弹出当前节点,并将其值打印输出,并将pre赋值为当前节点- 否则,若当前节点有右子节点,就将其右子节点入栈。
若当前节点有左子节点,则将其左子节点入栈4. 循环结束可以看到,后序遍历的算法和前序遍历、中序遍历都有所区别。
与前序遍历的主要区别在于,在访问节点前,需要判断该节点的左右子节点是否已经被访问过。
而与中序遍历的主要区别在于,在访问节点后,需要将该节点的值打印输出。
此外,后序遍历还需要维护一个pre节点变量,用于记录上一个被访问过的节点。
那么,后序遍历的非递归算法有什么优点呢?相比递归算法,它的空间复杂度更低,因为递归算法需要维护函数调用栈。
而非递归算法中使用的栈只需要在遍历过程中存储节点,不需要再维护函数调用栈。
此外,非递归算法在一些嵌入式系统、服务器等资源受限的环境下表现更优秀。
总体而言,后序遍历非递归算法是一种非常实用的二叉树遍历算法,它可以帮助我们更加高效地对二叉树进行遍历,尤其是在空间限制较大的情况下。
需要注意的是,该算法的具体实现过程可能会因为树结构的复杂性而略有差异,建议大家在编写代码时用心梳理整个算法过程。
第六章树2
有六种遍历方法:D L R,L D R,L R D,D R L,R D L,R L D D R, R, D, L, L, 约定: R, R, 约定:先左后右,有三种遍历方法: D L R,L D R,L R D , 分别称为先序遍历,中序遍历,后序遍历
3
A,先序遍历(D L R)(前缀表示) D R 若二叉树非空 (1)访问根结点; (2)先序遍历左子树; D (3)先序遍历右子树; ; 例:先序遍历右图所示的二叉树
……
if (k== -1) T=NULL; else { } } // } // CrtBT
18
T=(BiTNode*)malloc(sizeof(BiTNode)); T->data = pre[ps]; if (k==is) T->Lchild = NULL; else CrtBT(T->Lchild, pre[], ino[], ps+1, is, k-is ); if (k=is+n-1) T->Rchild = NULL; else CrtBT(T->Rchild, pre[], ino[], ps+1+(k-is), k+1, n-(k-is)-1 );
2
2,对"二叉树"而言,可以有三条搜索路径: , 二叉树"而言,可以有三条搜索路径: 先上后下 先上后下的按层次遍历; 先左 先左(子树)后右 后右(子树)的遍历; 后右 先右 先右(子树)后左 后左(子树)的遍历. 后左
二叉树由根,左子树,右子树三部分组成 令: D:访问根结点 L:遍历左子树 R:遍历右子树 L D R
24
4,复制二叉树
(后序遍历) 后序遍历)
其基本操作为:生成一个结点. 其基本操作为:生成一个结点. T 根元素 左子树 左子树 右子树 右子树 左子树 NEWT 根元素 右子树
二叉排序树非递归插入算法
二叉排序树非递归插入算法
二叉排序树非递归插入算法指的是在二叉排序树中插入一个新
节点时,采用非递归的方式进行操作的算法。
其基本思想是从根节点开始找到插入位置,并将新节点插入到相应位置上。
具体实现过程为:先将新节点插入到二叉排序树的最底层,然后从底层向上逐层调整,使得整个树仍然满足二叉排序树的性质。
在插入过程中,需要从根节点开始一直向下查找,直到找到插入位置为止。
如果插入节点的值大于当前节点的值,则向右子树继续查找;如果插入节点的值小于当前节点的值,则向左子树继续查找。
非递归插入算法相对于递归插入算法具有简单、高效、节省空间等优点,因此在实际应用中被广泛采用。
同时,该算法的实现也相对较为简单,适合初学者学习二叉排序树的基本操作。
- 1 -。
递归非递归两种算法遍历二叉树讲解
用递归、非递归两种方法遍历二叉树一、设计思想1. 用递归算法遍历设计思想:主要是通过不同程序顺序,从而实现递归的顺序遍历前序遍历:先判断节点是否为空,如果不为空,则输出。
再判断左节点是否为空,如果不为空,则递归调用,直到遍历到最左边。
接着再遍历最左边的右子树,如果此时右子树不为空,则递归遍历左子树的操作,直到遍历到叶子节点。
如果右子树为空,则回溯上次的递归调用,重复输出和遍历右子树的操作。
中序遍历:先遍历左节点是否为空,如果不为空,则递归调用,直到遍历到最左边或者叶子节点,然后输出,接着再遍历最左边的右子树,如果此时右子树不为空,则递归重复遍历左子树的操作,直到遍历到叶子节点。
如果右子树为空,则回溯到上次递归调用,重复输出和遍历右子树的操作。
后序遍历:先判断左节点是否为空,如果不为空则一直递归直到遍历到最左边,然后遍历右节点,再接着遍历到左子树的最右边,直到遍历到叶子节点。
此时输出,回溯到上次递归,继续执行后面的操作,重复,直到将整个树遍历完毕。
2. 用非递归算法遍历设计思想:主要是通过栈的存取,判空,从而实现树的遍历前序遍历:通过一个循环实现。
先输出节点的数值,因为栈的特性,则需要先判断右子树是否为空,如果不为空,则将右子树压栈。
然后判断左子树是否为空,如果不为空,则将左子树压栈。
接着再将栈里面的子树弹出赋给给当前节点变量,重复上述操作,直到栈为空后退出循环。
中序遍历:通过循环实现。
将树一直遍历到最左端,并将中间所经过的节点保存在栈中,当遍历到最左边的时候,则弹出栈里面的子树。
输出数值,将当前节点赋值为当前节点的右子树,遍历右子树,即重复上述操作,直到当前节点为空,并且栈内元素为0。
后序遍历:通过循环和标记栈实现。
将数一直遍历到最左端,并将中间的节点保存在树栈中,同时同步的添加一个标记栈。
当遍历到最左边的时候,弹栈并赋值给当前栈,然后判断标记栈的数值,如果数值为0的话则代表当前树没有遍历过,遍历右子树。
二叉树的遍历实验报告
二叉树的遍历实验报告一、实验目的1.了解二叉树的基本概念和性质;2.理解二叉树的遍历方式以及它们的实现方法;3.学会通过递归和非递归算法实现二叉树的遍历。
二、实验内容1.二叉树的定义在计算机科学中,二叉树是一种重要的数据结构,由节点及它们的左右儿子组成。
没有任何子节点的节点称为叶子节点,有一个子节点的节点称为一度点,有两个子节点的节点称为二度点。
二叉树的性质:1.每个节点最多有两个子节点;2.左右子节点的顺序不能颠倒,左边是父节点的左子节点,右边是父节点的右子节点;3.二叉树可以为空,也可以只有一个根节点;4.二叉树的高度是从根节点到最深叶子节点的层数;5.二叉树的深度是从最深叶子节点到根节点的层数;6.一个深度为d的二叉树最多有2^(d+1) -1个节点,其中d>=1;7.在二叉树的第i层上最多有2^(i-1)个节点,其中i>=1。
2.二叉树的遍历方式二叉树的遍历是指从根节点出发,按照一定的顺序遍历二叉树中的每个节点。
常用的二叉树遍历方式有三种:前序遍历、中序遍历和后序遍历。
前序遍历:先遍历根节点,再遍历左子树,最后遍历右子树;中序遍历:先遍历左子树,再遍历根节点,最后遍历右子树;后序遍历:先遍历左子树,再遍历右子树,最后遍历根节点。
递归算法:利用函数调用,递归实现二叉树的遍历;非递归算法:利用栈或队列,对二叉树进行遍历。
三、实验步骤1.创建二叉树数据结构并插入节点;2.实现二叉树的前序遍历、中序遍历、后序遍历递归算法;3.实现二叉树的前序遍历、中序遍历、后序遍历非递归算法;4.测试算法功能。
四、实验结果1.创建二叉树数据结构并插入节点为了测试三种遍历方式的算法实现,我们需要创建一个二叉树并插入节点,代码如下:```c++//定义二叉树节点struct TreeNode {int val;TreeNode* left;TreeNode* right;TreeNode(int x) : val(x), left(NULL), right(NULL) {}};递归算法是实现二叉树遍历的最简单方法,代码如下:```c++//前序遍历非递归算法vector<int> preorderTraversal(TreeNode* root) {stack<TreeNode*> s;vector<int> res;if (!root) return res;s.push(root);while (!s.empty()) {TreeNode* tmp = s.top();s.pop();res.push_back(tmp->val);if (tmp->right) s.push(tmp->right);if (tmp->left) s.push(tmp->left);}return res;}4.测试算法功能return 0;}```测试结果如下:preorderTraversal: 4 2 1 3 6 5 7inorderTraversal: 1 2 3 4 5 6 7postorderTraversal: 1 3 2 5 7 6 4preorderTraversalNonRecursive: 4 2 1 3 6 5 7inorderTraversalNonRecursive: 1 2 3 4 5 6 7postorderTraversalNonRecursive: 1 3 2 5 7 6 4本次实验通过实现二叉树的递归和非递归遍历算法,加深了对二叉树的理解,并熟悉了遍历算法的实现方法。
浅析一种二叉树非递归遍历算法的C语言实现论文.doc
浅析一种二叉树非递归遍历算法的C语言实现论文一种二叉树非递归遍历算法的C语言实现论文导读:本论文是一篇关于一种二叉树非递归遍历算法的C语言实现的优秀论文范文,对正在写有关于递归论文的写有一定的参考和指导作用,摘要:针对二叉树的链式存储结构,分析了二叉树的各种遍历算法,探讨了递归算法的递推消除理由,提出了一种改善的非递归遍历算法并用C语言予以实现。
关键词:二叉树;遍历算法;非递归;C语言实现1009-3044(2014)01-0223-031 概述树形结构是一种非常常见的数据结构,而二叉树又是其中最重要的一种树形结构。
二叉树的遍历是指按照一定的规则和次序将二叉树中的每一个结点都访问一次,既不能重复,也不能漏掉。
一般而言,对二叉树的遍历有前序遍历、中序遍历、后序遍历和按层遍历等几种方式。
在具体的算法设计上,以上遍历方式一般采取递归算法来实现,该文将探讨采用非递归算法来实现二叉树的遍历。
2 二叉树的数据结构描述二叉树作为一种非线性结构,每个结点最多有一个双亲结点和两个子结点。
二叉树可以采用顺序存储结构和链式存储结构。
对于完全二叉树而言,采用顺序存储是非常方便并且节省空间的,但是对于大部分的非完全二叉树而言,采用顺序存储将导致空间浪费严重且结构混乱、效率低下。
因此,更多的时候,大家都更愿意用链式存储结构来表示二叉树,这样结构更加清晰,尤其是对于一种二叉树非递归遍历算法的C语言实现由写论文的好帮手.zbjy.提供,.左右子树的描述和双亲节点的描述更加方便。
该文中拟采用链式结构来表示二叉树。
用链式存储结构来表示二叉树,一个结点至少由3个域组成,即数据域、左子结点域和右子结点域(如图1所示)。
3 二叉树的遍历及递归算法实现3.1 二叉树的遍历二叉树的遍历就是一个不漏的访问树中的每个结点,同时也不能重复。
所谓“访问”,就是指对结点的数据域进行某种操作,比如说读取、删除、更新、求该节点深度等等。
对于二叉树中的任意一个部分,都可以把它看作三部分,根节点、左子树、右子树,我们用D表示访问跟结点,用L表示遍历左子树,用R表示遍历右子树,则共有以下6种遍历方式[1]。
二叉树的先序遍历和中序遍历的非递归算法
第 1期
电 脑 开 发 与 应 用
文 章编 号 :0 35 5 ( 00 9—0 30 1 0—8 0 2 1 ) 10 5 —3
二 叉树 的先 序 遍 历 和 中序 遍 历 的非 递 归 算 法
Di c s i n a s u s o nd Ana y i n— e u s v g r t m o e r r l s s of No r c r i e Al o ih f r Pr o de
t e S p e r rt a e s la t i r e’ r o de r v r a nd ob an non r c sv l ort o i ar r e’ e r ertav r a i t c A tls obt i ng non e ur i e a g ihm f r b n y t e Spr o d r e s lusng s a k. a t. ani
ta e s . r v r a1 The i p t c s an yssng oft e lf r bi r r e’ S pr or r tav r a d bi r r e’ S i r rt a er a . m oran e i al i i he r a o na y t e e de r e s lan na y t e no de r v s 1 K EYW O RDS bi r t e na y r e’ S pr or e t a r a , bi r t e e d r r ve s l na y r e’ a g ihm l ort
Pr o d ( 一 r hid); e r er bt> c l
从二 叉树 先 序遍 历非 递归 算法 实现 时 系统栈 的变 化情 况 , 我们 不难 看 出 , 二叉 树 先序遍 历 实 际上 是走 丫
三种遍历方法
三种遍历方法一、前序遍历前序遍历是二叉树遍历的一种方法,也是最常见的遍历方式之一。
在前序遍历中,首先访问根节点,然后递归地遍历左子树,最后递归地遍历右子树。
前序遍历的应用非常广泛,例如在二叉树的构建和重建、树的深度优先搜索等问题中都会用到前序遍历。
在进行前序遍历时,可以采用递归或者非递归的方式。
1. 递归实现前序遍历:递归实现前序遍历非常简单,具体步骤如下:- 首先判断当前节点是否为空,若为空则返回;- 访问当前节点;- 递归遍历左子树;- 递归遍历右子树。
2. 非递归实现前序遍历:非递归实现前序遍历需要借助栈来实现,具体步骤如下:- 将根节点入栈;- 循环执行以下步骤,直到栈为空:- 弹出栈顶节点,并访问该节点;- 若该节点的右子节点不为空,则将右子节点入栈;- 若该节点的左子节点不为空,则将左子节点入栈。
二、中序遍历中序遍历是二叉树遍历的另一种方法,同样也是一种常用的遍历方式。
在中序遍历中,首先递归地遍历左子树,然后访问根节点,最后递归地遍历右子树。
中序遍历的应用也非常广泛,例如在二叉搜索树的操作中,中序遍历可以按照升序输出所有节点的值。
1. 递归实现中序遍历:递归实现中序遍历的步骤如下:- 首先判断当前节点是否为空,若为空则返回;- 递归遍历左子树;- 访问当前节点;- 递归遍历右子树。
2. 非递归实现中序遍历:非递归实现中序遍历同样需要借助栈来实现,具体步骤如下:- 将根节点入栈;- 循环执行以下步骤,直到栈为空:- 若当前节点不为空,则将当前节点入栈,并将当前节点指向其左子节点;- 若当前节点为空,则弹出栈顶节点,并访问该节点,然后将当前节点指向其右子节点。
三、后序遍历后序遍历是二叉树遍历的另一种方式,也是最后一种常见的遍历方式。
在后序遍历中,首先递归地遍历左子树,然后递归地遍历右子树,最后访问根节点。
后序遍历的应用也非常广泛,例如在二叉树的删除操作中,需要先删除子节点,再删除根节点。
二叉树的遍历
T->rchild= CreatBiTree(); /*构造右子树*/ 扩展先序遍历序列
}
2021/2/21
return (T) ;}
A B Φ D Φ Φ C Φ 17Φ
T
T
T
ch=B
ch=Φ
Λ
T
T= Λ, Creat(T)
ch=A T
A
B creat(T L)
ΛB 返回
creat(T L)
creat(T R)
A
p=p->RChild;
}
2021/2/21
}
top
A
B
C
D
top
B
top
A
A
top
D
A
top
A
top
C
13
top
中序遍历二叉树的非递归算法:
A
void InOrder(BiTree T)
{ InitStack(&S); 相当于top=-1;
p=T;
B
C
while(p!=NULL | | !IsEmpty(S)) 相当于top==-1;
}
后序遍历二叉树的递归算法:
void PostOrder (BiTree T)
{ if(T!=NULL)
{ PostOrder (T->lchild);
PostOrder (T->rchild);
printf(T->data); }
2021/2/21
15
}
先序遍历二叉树的递归算法: void PreOder (BiTree T) { if(T! =NULL){ printf (T->data); PreOrder (T->lchild); PreOrder (T->rchild); } }
数据结构中二叉树的生成及遍历非递归算法浅析
及运算 都较为简练 , 因此 , 二叉树 在数据结构课 程 中显得 特别 c a dt; hr aa s ut to eci , hd t c bnd h dr i ; r l l cl 二叉树是 由结点的有 限集合构成 ,这个有限集合或者为空 }t e Br ; e 集 ,或者是 由一个根节点及两棵互不相交的分别称之为这个根 Bre [ as e t Q m xi ] e z;
一
、
引言
# c d “aoh il e m1 ・ nu ] ” c
t ee。 c b oe y d t t t d{ p n
、
二叉树是一种重要 的树形结构 , 其结构规整。许多实际问 # en U L0 df e L i N
题抽象 出来 的数据结构往往是二叉树 的形式 , 而且其存储结构 重要 , 这里 我们先 了解一下二叉树 。
,
立二 叉链表。 一般的二 对于 叉树, 必须添加一些 虚结点, 使其成 ‘ ~’ : 一 、
队列是一个指针类型 的数组 , 保存已输入 的结点 _… 、
… ~ … 一 ’
,
# e n x i 0 d f ema sz 1 0 i e 衔n l d sdoh” cu e“ t i.
s> 一
l= L ; d U L
r a+ ; e r +
Qra1s r ; e =
。
3 办公 自动化杂志 o。
i ra- 1T s f er= )= : ( =
es le
f=t kt ] T s c [p; a o
近 >i = p 卜 r =) 曲t
fr f“ " - dt ; pi (%c , > aa n T )
递归算法 , 故有关二叉树的试题通 常要求采用非递归算 法, 这就 Br , ; te e s 使得掌握二叉树的生成及遍历的非递归算法成为必要 。 tN I ; = uJ L
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
if(S.base == S.top)
return TRUE;
else
return FALSE;
}
Status CreateTree(BitTree *T)
{
char ch;
scanf("%c",&ch);
if(ch == ' ')
{
*T = NULL;
}
else
{
*T = (TreeNode *)malloc(LIST_SIZE*sizeof(TreeNode));
if(!(*T))
{
printf("分配内存空间失败!\n");
exit(OVERFLOW);
}
(*T)->data = ch;
e.ptr = p->lchild;
e.task = Travel;
PushStack(&S,e);
e.ptr = p;
e.task = Visit;
PushStack(&S,e);
}
}
}
}
//中序遍历二叉树
e.ptr = p->rchild;
e.task = Travel;
PushStack(&S,e);
e.ptr = p;
e.task = Visit;
PushStack(&S,e);
e.ptr = p->lchild;
e.task = Travel;
PushStack(&S,e);
}
}
}
}
//后序遍历二叉树
void LastVisit(BitTree T,void (*VisitTree)(TreeNode * q))
{
BiNode S;
InitStack(&S);
StackNode e;
{
if(S->base == S->top)
{
printf("栈为空!\n");
return ERROR;
}
*e = *S->top;
return OK;
}
Status EmptyStack(BiNode S) //检查栈是否为空,空则返回TRUE否则返回FALSE
CreateTree(&((*T)->lchild));
CreateTree(&((*T)->rchild));
}
return OK;
}
//前序遍历二叉树
void PreVisit(BitTree T,void (*VisitTree)(TreeNode * q))
{
BiNode S;
if(T)
PushStack(&S,e);
while(!EmptyStack(S))
{
PopStack(&S,&e);
if(e.task == Visit)
VisitTree(e.ptr);
else
{
if(e.ptr)
{
p = e.ptr;
exit(OVERFLOW);
}
S->base = newbase->base;
S->stacksize += LIST_INCRE;
}
*S->top++ = e;
return OK;
}
Status PopStack(BiNode *S,StackNode *e) //从栈顶删除元素
}
void GetNodeNum(BitTree T,int h,int *depth) //利用先序遍历获得树的深度
{
if(T)
{
if(h > *depth)
*depth = h;
GetNodeNum(T->lchild,h+1,depth);
GetNodeNum(T->rchild,h+1,depth);
else
{
if(e.ptr)
{
p = e.ptr;
e.task = Visit;
PushStack(&S,e);
e.ptr = p->rchild;
e.task = Travel;
PushStack(&S,e);
#define LIST_SIZE 20
#define LIST_INCRE 10
typedef enum{Travel = 1,Visit = 0}TaskType;
typedef struct TreeNode //二叉树的存储结构
{
struct TreeNode *lchild,*rchild;
BitTree p;
e.ptr = T;
e.task = Travel;
if(T)
PushStack(&S,e);
while(!EmptyStack(S))
{
PopStack(&S,&e);
if(e.task == Visit)
VisitTree(e.ptr);
{
printf("分配内存空间失败!\n");
exit(OVERFLOW);
}
S->stacksize = LIST_SIZE;
return OK;
}
Status PushStack(BiNode *S,StackNode e) //往栈顶压入元素
{
BiNode *newbase;
int stacksize;
}BiNode;
Status InitStack(BiNode *S) //构造一个空栈
{
S->top = S->base = (StackNode *)malloc(LIST_SIZE*sizeof(StackNode));
if(!S->base)
#include<stdio.h>
#include<stdlib.h>
#define OK 1
#define FALSE 0
#define TRUE 1
#define ERROR 0
#define OVERFLOW -1
#define Status int
#define ElemType int
if(e.task == Visit)
VisitTree(e.ptr);
else
{
if(e.ptr)
{
p = e.ptr;
e.ptr = p->rchild;
e.task = Travel;
PushStack(&S,e);
e.ptr = p->lchild;
e.task = Travel;
PushStack(&S,e);
}
}
}
}
void VisitTree(TreeNode *q) //访问二叉树中的节点
{
printf("%3c",q->data);
printf("\n");
printf("\n");
depth1 = GetNodeNum1(T);
printf("算法 2 求得的树的深度为:%d",depth1);
printf("\n");
return 0;
}
if(hl > hr)
return hl+1;
else
return hr+1;
}
}
int main()
{
BitTree T;
int depth = 0;
int h = 1;
int depth1 = 0;
printf("请按照先序输入字符创建一棵树:");
InitStack(&S);
StackNode e;
BitTree p;
e.ptr = T;
e.task = Travel;
if(T)
PushStack(&S,e);
while(!EmptyStack(S))
{
PopStack(&S,&e);
}
}
int GetNodeNum1(BitTree T) //利用 后序遍历获得树的深度
{
int hl,hr;
if(!T)
return 0;
else
{
hl = GetNodeNum1(T->lchild);
hr = GetNodeNum1(T->rchild);
if((S->top - S->base) >= S->stacksize)
{
newbase->base = (StackNode *)realloc(S->base,LIST_INCRE*sizeof(StackNode));
if(!newbase->base)
{
printf("分配内存空间失败!\n");