2016年松江区中考数学二模试卷及答案
2016年上海市松江区中考数学一模试卷含答案解析
18.已知在△ABC中,∠C=90°,BC=3,AC=4,点D是AB边上一点,将△ABC沿着直线CD翻折,点A落在直线AB上的点A′处,则sin∠A′CD=__________.
三.解答题
19.已知抛物线y=x2+bx+3经过点A(﹣1,8),顶点为M;
2.下列函数中,属于二次函数的是( )
A.y=2x+1B.y=(x﹣1)2﹣x2C.y=2x2﹣7D.
【考点】二次函数的定义.
【分析】根据一次函数、反比例函数、二次函数的定义判断各选项即可得出答案.
【解答】解:A、是一次函数,故本选项错误;
B、整理后是一次函数,故本选项错误;
C、y=2x2﹣7是二次函数,故本选项正确;
9.二次函数y=﹣2x2﹣x+3的图象与y轴的交点坐标为(0,3).
【考点】二次函数图象上点的坐标特征.
【分析】把x=0代入即可求得.
【解答】解:把x=0代入y=﹣2x2﹣x+3得,y=3,
所以二次函数y=﹣2x2﹣x+3的图象与y轴的交点坐标为(0,3),
故答案为(0,3).
【点评】本题考查了二次函数图象上点的坐标特征,y轴上的点的横坐标为0是解题的关键.
【解答】解:∵抛物线开口向下,
∴a<0,
∵抛物线的对称轴在y轴的右侧,
∴x=﹣ >0,
∴b>0,
∵抛物线与y轴的交点在x轴上方,
∴c>0.
故选A.
【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.
上海松江区高三数学二模试卷及答案
松江区2016学年度第二学期期中质量监控试卷高三数学(满分150分,完卷时间120分钟)一.填空题(本大题满分54分)本大题共有12题,考生必须在答题纸相应编号的空格内直接填写结果,第1~6题每个空格填对得4分,第7~12题每个空格填对得5分,否则一律得零分.1.已知()21x f x =-,则1(3)f -= ▲ .2.已知集合{}{}11,1,0,1,M x x N =+≤=-则M N =I ▲ .3.若复数122,2z a i z i =+=+(i 是虚数单位),且12z z 为纯虚数,则实数a = ▲ . 4.直线23x y ⎧=--⎪⎨=+⎪⎩(t 为参数)对应的普通方程是 ▲ .5.若()1(2),3n n n x x ax bx c n n -*+=++++∈≥N L ,且4b c =,则a 的值为 ▲ .6.某空间几何体的三视图如图所示,则该几何体的侧面积是 ▲ .7.若函数()2()1x f x x a =+-在区间[]0,1上有零点,则实数a 的取值范围是 ▲ .8.在约束条件123x y ++-≤下,目标函数2z x y =+的最大值为 ▲ .9.某学生在上学的路上要经过2个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,则这名学生在上学路上到第二个路口时第一次遇到红灯的概率是 ▲ . 10.已知椭圆()222101y x b b +=<<的左、右焦点分别为12F F 、,记122F F c =.若此椭圆上存在点P ,使P 到直线1x c=的距离是1PF 与2PFb 的最大值为 ▲ .11.如图同心圆中,大、小圆的半径分别为2和1,点P 在大圆上,PA 与小圆相切于点A ,Q 为小圆上的点,则PA PQ ⋅u u u r u u u r 的取值范围是 ▲ .12.已知递增数列{}n a 共有2017项,且各项均不为零,20171a =,如果从{}n a 中任取两项,i j a a ,当i j <时,j i a a -仍是数列{}n a 中的项,则数列{}n a 的各项和2017S = ▲ .二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生必须在答题纸相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.设a b r r 、分别是两条异面直线12l l 、的方向向量,向量a b r r 、夹角的取值范围为A ,12l l 、所成角的取值范围为B ,则“A α∈”是“B α∈”的(A) 充要条件(B) 充分不必要条件(C) 必要不充分条件(D) 既不充分也不必要条件14. 将函数sin 12y x π⎛⎫=- ⎪⎝⎭图像上的点,4P t π⎛⎫ ⎪⎝⎭向左平移(0)s s >个单位,得到点P ',若P '位于函数的图像上,则(A) 12t =,s 的最小值为6π (B) t =,s 的最小值为6π(C) 12t =,s 的最小值为12π (D) 2t =,s 的最小值为12π 15.某条公共汽车线路收支差额y 与乘客量x 的函数关系如图所示(收支差额=车票收入-支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议(Ⅰ)不改变车票价格,减少支出费用;建议(Ⅱ)不改变支出费用,提高车票价格,下面给出的四个图形中,实线和虚线分别表示目前和建议后的函数关系,则(A) ①反映了建议(Ⅱ),③反映了建议(Ⅰ)(B) ①反映了建议(Ⅰ),③反映了建议(Ⅱ)(C) ②反映了建议(Ⅰ),④反映了建议(Ⅱ)(D) ④反映了建议(Ⅰ),②反映了建议(Ⅱ)16.设函数()y f x =的定义域是R ,对于以下四个命题:(1) 若()y f x =是奇函数,则(())y f f x =也是奇函数;(2) 若()y f x =是周期函数,则(())y f f x =也是周期函数;(3) 若()y f x =是单调递减函数,则(())y f f x =也是单调递减函数;(4) 若函数()y f x =存在反函数1()y f x -=,且函数1()()y f x f x -=-有零点,则函数()y f x x =-也有零点.其中正确的命题共有(A) 1个(B) 2个 (C) 3个 (D) 4个三.解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(本题满分14分;第1小题6分,第2小题8分)直三棱柱111C B A ABC -中,底面ABC 为等腰直角三角形,AC AB ⊥,2==AC AB ,41=AA ,M 是侧棱1CC 上一点,设h MC =.(1) 若C A BM 1⊥,求h 的值;(2) 若2h =,求直线1BA 与平面ABM 所成的角.18.(本题满分14分;第1小题6分,第2小题8分)设函数()2xf x =,函数()g x 的图像与函数()f x 的图像关于y 轴对称.(1)若()4()3f x g x =+,求x 的值;(2)若存在[]0,4x ∈,使不等式3)2()(≥--+x g x a f 成立,求实数a 的取值范围.19.(本题满分14分;第1小题6分,第2小题8分)如图所示,PAQ ∠是某海湾旅游区的一角,其中ο120=∠PAQ ,为了营造更加优美的旅游环境,旅游区管委会决定在直线海岸AP 和AQ 上分别修建观光长廊AB 和AC ,其中AB 是宽长廊,造价是800元/米,AC 是窄长廊,造价是400元/米,两段长廊的总造价为120万元,同时在线段BC 上靠近点B 的三等分点D 处建一个观光平台,并建水上直线通道AD (平台大小忽略不计),水上通道的造价是1000元/米.(1) 若规划在三角形ABC 区域内开发水上游乐项目,要求ABC △的面积最大,那么AB和AC 的长度分别为多少米(2) 在(1)的条件下,建直线通道AD 还需要多少钱20.(本题满分16分;第1小题4分,第2小题6分,第3小题6分)设直线l 与抛物线24y x =相交于不同两点A 、B ,与圆)0()5(222>=+-r r y x相切于点M ,且M 为线段AB 中点.(1) 若AOB △是正三角形(O 是坐标原点),求此三角形的边长;(2) 若4r =,求直线l 的方程;(3) 试对()0,r ∈+∞进行讨论,请你写出符合条件的直线l 的条数(直接写出结论).21.(本题满分18分;第1小题4分,第2小题6分,第3小题8分)对于数列{}n a ,定义12231n n n T a a a a a a +=+++L ,*n N ∈.(1) 若n a n =,是否存在*k N ∈,使得2017k T =请说明理由;(2) 若13a =,61n n T =-,求数列{}n a 的通项公式; (3) 令21*112122,n n n n T T n b T T T n n N +--=⎧=⎨+-≥∈⎩,求证:“{}n a 为等差数列”的充要条件是“{}n a 的前4项为等差数列,且{}n b 为等差数列”.松江区二模考试数学试卷题(印刷稿)(参考答案)一.填空题(本大题共54分)第1~6题每个空格填对得4分,第7~5题每个空格填对得5分1. 2 2.{1,0}- 3.1 4.10x y +-= 5.16 6. 7. 1[,1]2- 8.9 9.2910.2 11.[3-+ 12.1009二、选择题 (每小题5分,共20分)13. C 14.A 15. B 16.B三.解答题(共78分)17.(1)以A 为坐标原点,以射线AB 、AC 、1AA 分别为x 、y 、z 轴建立空间直角坐标系,如图所示,则)0,0,2(B ,)4,0,0(1A ,)0,2,0(C ,),2,0(h M ……………………2分 ),2,2(h BM -=,)4,2,0(1-=C A ……………………4分 由C A BM 1⊥得01=⋅A ,即0422=-⨯h解得1=h . ……………………6分(2) 解法一:此时(0,2,2)M()()()12,0,0,0,2,2,2,0,4AB AM BA ===-u u u r u u u u r u u u r ……………8分设平面ABM 的一个法向量为(,,)n x y z =r由00n AB n AM ⎧⋅=⎪⎨⋅=⎪⎩r u u u r r u u u u r 得00x y z =⎧⎨+=⎩所以(0,1,1)n =-r ……………………10分设直线1BA 与平面ABM 所成的角为θ则11sin n BA n BA θ⋅===⋅r u u u r r u u u r ……………12分 所以直线1BA 与平面ABM所成的角为sinarc ………………14分 解法二:联结1A M ,则1A M AM ⊥,1,AB AC AB AA ⊥⊥Q ,AB ∴⊥平面11AAC C …………………8分 1AB A M ∴⊥ 1A M ∴⊥平面ABM所以1A BM ∠是直线1BA 与平面ABM 所成的角; ……………………10分在1A BM Rt △中,11AM A B ==所以111sin A M A BM A B ∠===……………………12分所以1arcsin A BM ∠= 所以直线1BA 与平面ABM所成的角为sinarc ………………14分18.(1)由()4()3f x g x =+得2423x x -=⋅+ ……………………2分 223240x x ⇒-⋅-=所以21x =-(舍)或24x =, ……………………4分 所以2x = ……………………6分(2)由()(2)3f a x g x +--≥得2223a x x +-≥ ……………………8分 2223a x x +≥+2232a x x -⇒≥+⋅ ……………………10分而232x x -+⋅≥[]4232,log 30,4x x x -=⋅=∈即时取等号…12分所以2a ≥211log 32a ≥+.………………………………14分19.(1)设AB 长为x 米,AC 长为y 米,依题意得8004001200000x y +=, 即23000x y +=, ………………………………2分1sin1202ABC S x y ∆=⋅⋅o y x ⋅⋅=43 …………………………4分 y x ⋅⋅=28322283⎪⎭⎫ ⎝⎛+≤y x=2m 当且仅当y x =2,即750,1500x y ==时等号成立,所以当ABC △的面积最大时,AB 和AC 的长度分别为750米和1500米……6分(2)在(1)的条件下,因为750,1500AB m AC m ==. 由2133AD AB AC =+u u u r u u u r u u u r …………………………8分 得222133AD AB AC ⎛⎫=+ ⎪⎝⎭u u u r u u u r u u u r 22919494+⋅+= …………………………10分 2244117507501500()15009929=⨯+⨯⨯⨯-+⨯250000= ||500AD ∴=u u u r , …………………………12分1000500500000⨯=元所以,建水上通道AD 还需要50万元. …………………………14分 解法二:在ABC ∆中,ο120cos 222AC AB AC AB BC ⋅-+=7750= ………8分在ABD ∆中,ACAB AC BC AB B ⋅-+=2cos 222775075021500)7750(750222⨯⨯-+=772= …………………………10分 在ABD ∆中,B BD AB BD AB AD cos 222⋅-+=772)7250(7502)7250(75022⋅⨯⨯-+==500 …………12分 1000500500000⨯=元所以,建水上通道AD 还需要50万元. …………………………14分解法三:以A 为原点,以AB 为x 轴建立平面直角坐标系,则)0,0(A ,)0,750(B )120sin 1500,120cos 1500(οοC ,即)3750,750(-C ,设),(00y x D ………8分 由2CD DB =u u u r u u u r ,求得⎪⎩⎪⎨⎧==325025000y x ,所以(D …………10分 所以,22)03250()0250(||-+-=AD 500=……………………12分 1000500500000⨯=元所以,建水上通道AD 还需要50万元. …………………………14分20. (1)设AOB △的边长为a ,则A的坐标为1,)22a a ±………2分所以214,22a ⎛⎫±=⋅ ⎪⎝⎭所以a =此三角形的边长为 ……………………………4分(2)设直线:l x ky b =+当0k =时,1,9x x ==符合题意 ……………………………6分当0k ≠时,224404x ky b y ky b y x =+⎧⇒--=⎨=⎩…………………8分 222121216()0,4,42(2,2)k b y y k x x k b M k b k ∆=+>+=+=+⇒+ 11,AB CM AB k k k k⋅=-=Q 2223225CM k k k b k k b ∴==-⇒=-+- 22216()16(3)003k b k k ∴∆=+=->⇒<<4r ===Q ()230,3k ∴=∉,舍去综上所述,直线l 的方程为:1,9x x == ……………………………10分(3)(][)0,24,5r ∈U 时,共2条;……………………………12分 ()2,4r ∈时,共4条; ……………………………14分 [)5,r ∈+∞时,共1条. ……………………………16分21.:(1)由0n a n =>,可知数列{}n T 为递增数列,……………………………2分 计算得1719382017T =<,1822802017T =>, 所以不存在*k N ∈,使得2017k T =; ………………………4分(2)由61n n T =-,可以得到当*2,n n N ≥∈时,1111(61)(61)56n n n n n n n a a T T --+-=-=---=⋅, ……………………6分又因为1215a a T ==,所以1*156,n n n a a n N -+=⋅∈, 进而得到*1256,n n n a a n N ++=⋅∈,两式相除得*26,n na n N a +=∈, 所以数列21{}k a -,2{}k a 均为公比为6的等比数列, ……………………8分 由13a =,得253a =, 所以1*22*23621,562,3n n n n k k N a n k k N --⎧⋅=-∈⎪=⎨⎪⋅=∈⎩; ………… …………10分(3)证明:由题意12123122b T T a a a a =-=-,当*2,n n N ≥∈时,111212n n n n n n n n b T T T a a a a +-+++=+-=-,因此,对任意*n N ∈,都有121n n n n n b a a a a +++=-. …………12分必要性(⇒):若{}n a 为等差数列,不妨设n a bn c =+,其中,b c 为常数, 显然213243a a a a a a -=-=-,由于121n n n n n b a a a a +++=-=2212()222n n n a a a b n b bc ++-=++,所以对于*n N ∈,212n n b b b +-=为常数,故{}n b 为等差数列; …………14分 充分性(⇐):由于{}n a 的前4项为等差数列,不妨设公差为d 当3(1)n k k ≤+=时,有4131213,2,a a d a a d a a d =+=+=+成立。
中考数学 二模 25题
1.(2017年嘉定宝山)已知:8=AB ,⊙O 经过点A 、B .以AB 为一边画平行四边形ABCD ,另一边CD 经过点O (如图8).以点B 为圆心,BC 为半径画弧,交线段OC 于点E (点E 不与点O 、点C 重合).(1)求证:OE OD =;(2)如果⊙O 的半径长为5(如图9),设x OD =,y BC =,求y 关于x 的函数解析式,并写出它的定义域;(3)如果⊙O 的半径长为5,联结AC ,当AC BE ⊥时,求OD 的长.2.(2017年普陀)如图10,半圆O 的直径AB =10,有一条定长为6的动弦CD 在弧AB 上滑动(点C 、点D 分别不与点A 、点B 重合),点E 、F 在AB 上,EC ⊥CD ,FD ⊥CD . (1)求证:EO OF =;(2)联结OC ,如果△ECO 中有一个内角等于45 ,求线段EF 的长; (3)当动弦CD 在弧AB 上滑动时,设变量CE x =,四边形CDFE 面积为S ,周长为l ,问:S 与l 是否分别随着x 的变化而变化?试用所学的函数知识直接写出它们的函数解析式及函数定义域,以说明你的结论.图9 B O A 备用图 B OA 图8 E CB A O D 图103.(2017年崇明)如图,梯形ABCD 中,AB CD ∥,90ABC ∠=︒,6AB =,8BC =,tan 2D =,点E 是射线CD 上一动点(不与点C 重合),将BCE ∆沿着BE 进行翻折,点C 的对应点记为点F . (1)如图1,当点F 落在梯形ABCD 的中位线MN 上时,求CE 的长;(2)如图2,当点E 在线段CD 上时,设CE x =,BFC EFCS y S ∆∆=,求y 与x 之间的函数关系式,并写出定义域;(3)如图3,联结AC ,线段BF 与射线CA 交于点G ,当CBG ∆是等腰三角形时,求CE 的长.ABCDEFM NEDCFABEDC FAB GD CAB(第25题图1)(第25题图2)(第25题图3)(第25题备用图)4.(2017年杨浦)已知:以O 为圆心的扇形AOB 中,∠AOB =90°,点C 为»AB 上一动点,射线AC 交射线OB 于点D ,过点D 作OD 的垂线交射线OC 于点E ,联结AE . (1) 如图1,当四边形AODE 为矩形时,求∠ADO 的度数; (2) 当扇形的半径长为5,且AC =6时,求线段DE 的长;(3) 联结BC ,试问:在点C 运动的过程中,∠BCD 的大小是否确定?若是,请求出它 的度数;若不是,请说明理由.5.(2017年奉贤)已知:如图9,线段AB =4,以AB 为直径作半圆O ,点C 为弧AB 的中点,点P 为直径AB 上一点,联结PC ,过点C 作CD //AB ,且CD =PC ,过点D 作DE//PC ,交射线PB 于点E ,PD 与CE 相交于点Q . (1)若点P 与点A 重合,求BE 的长; (2)设PC = x ,y CEPD,当点P 在线段AO 上时,求y 与x 的函数关系式及定义域; (3)当点Q 在半圆O 上时,求PC 的长.图9ACPOBD E Q备用图AO BCA OBCD E(备用图) A O B CD E (图1)6.(2017年闵行)如图,在梯形ABCD 中,AD // BC ,∠B = 90°,AB = 4,BC = 9,AD = 6.点E 、F 分别在边AD 、BC 上,且BF = 2DE ,联结FE .FE 的延长线与CD 的延长线相交于点P .设DE = x ,PEy EF . (1)求y 关于x 的函数解析式,并写出函数的定义域;(2)当以ED 为半径的⊙E 与以FB 为半径的⊙F 外切时,求x 的值;(3)当△AEF ∽△PED 时,求x 的值.7.(2017年长宁金山)如图,△ABC 的边AB 是⊙O 的直径,点C 在⊙O 上,已知AC =6 cm ,BC =8 cm ,点P 、Q 分别在边AB 、BC 上,且点P 不与点A 、B 重合,BQ =k ·AP (k >0),连接PC 、PQ . (1)求⊙O 的半径长; (2)当k =2时,设AP =x ,△CPQ 的面积为y ,求y 关于x 的函数关系式,并写出定义域; (3)如果△CPQ ∽△ABC ,且∠ACB =∠CPQ ,求k 的值.第25题图A B CDE F P (第25题图)A B C D (备用图)EP 第25题图 C AB D8.(2017年虹口)如图,在△ABC 中,AB=AC =5,cos B =45,点P 为边BC 上一动点,过点P 作射线PE 交射线BA 于点D ,∠BPD=∠BAC .以点P 为圆心,PC 长为半径作⊙P 交射线PD 于点E ,联结CE ,设BD=x ,CE=y . (1)当⊙P 与AB 相切时,求⊙P 的半径;(2)当点D 在BA 的延长线上时,求y 关于x 的函数解析式,并写出定义域; (3)如果⊙O 与⊙P 相交于点C 、E ,且⊙O 经过点B ,当OP=54时,求AD 的长.9.(2017年浦东新区)如图所示,︒=∠45MON ,点P 是MON ∠内一点,过点P 作OM PA ⊥于点A 、ON PB ⊥于点B ,且22=PB .取OP 的中点C ,联结AC 并延长,交OB 于点D .(1)求证:OPB ADB ∠=∠;(2)设x PA =,y OD =,求y 关于x 的函数解析式;(3)分别联结AB 、BC ,当ABD △与CPB △相似时,求PA 的长.(第25题图)(备用图)10.(2016年崇明)如图,已知BC 是半圆O 的直径,8BC =,过线段BO 上一动点D ,作AD BC ⊥交半圆O 于点A ,联结AO ,过点B 作BH AO ⊥,垂足为点H ,BH 的延长线交半圆O 于点F . (1)求证:AH BD =;(2)设BD x =,BE BF y ⋅=,求y 关于x 的函数关系式;(3)如图2,若联结FA 并延长交CB 的延长线于点G ,当FAE ∆与FBG ∆相似时,求BD 的长度.11.(2016年宝山嘉定)如图8,⊙O 与过点O 的⊙P 相交于AB ,D 是⊙P 的劣弧OB 上一点,射线OD 交⊙O 于点E ,交AB 的延长线于点C .如果AB =24,32tan =∠AOP . (1) 求⊙P 的半径长;(2) 当△AOC 为直角三角形时,求线段OD 的长; (3) 设线段OD 的长度为x ,线段CE 的长度为y ,求y 与x 之间的函数关系式及其定义域.(第25题图1)ABDOE HFC(第25题图2) CO D B G A F H E 图8_C _ E _B _O_P_A_ D12.(2016年长宁金山)如图, 已知在Rt △ABC 中, ∠ACB =90°, AB =5, 4sin 5A, P 是边BC 上的一点, PE ⊥AB , 垂足为E , 以点P 为圆心, PC 为半径的圆与射线PE 相交于点Q , 线段CQ 与边AB 交于点D . (1)求AD 的长;(2)设CP =x , △PCQ 的面积为y , 求y 关于x 的函数解析式, 并写出定义域;(3)过点C 作CF ⊥AB , 垂足为F , 联结PF 、QF , 如果△PQF 是以PF 为腰的等腰三角形, 求CP 的长.13.(2016年闸北)如图,在△ABC 中,AB=AC=6,BC=4,⊙B 与边AB 相交于点D ,与边BC 相交于点E ,设⊙B 的半径为x . (1)当⊙B 与直线AC 相切时,求x 的值;(2)设DC 的长为y ,求y 关于x 的函数解析式,并写出定义域; (3)若以AC 为直径的⊙P 经过点E ,求⊙P 与⊙B 公共弦的长.BCAP EQDBCACB ADE (第25题图)14.(2016年闵行)如图,已知在△ABC 中,AB = AC = 6,AH ⊥BC ,垂足为点H .点D 在边AB 上,且AD = 2,联结CD 交AH 于点E .(1)如图1,如果AE = AD ,求AH 的长;(2)如图2,⊙A 是以点A 为圆心,AD 为半径的圆,交线段AH 于点F .设点P 为边BC 上一点,如果以点P 为圆心,BP 为半径的圆与⊙A 外切,以点P 为圆心,CP 为半径的圆与⊙A 内切,求边BC 的长;(3)如图3,联结DF .设DF = x ,△ABC 的面积为y ,求y 关于x 的函数解析式,并写出自变量x 的取值范围.15.(2016年松江)已知:如图1,在梯形ABCD 中,AD //BC ,∠BCD =90º, BC=11,CD=6,tan ∠ABC =2,点E 在AD 边上,且AE=3ED ,EF //AB 交BC 于点F ,点M 、N 分别在射线FE 和线段CD 上.(1)求线段CF 的长; (2)如图2,当点M 在线段FE 上,且AM ⊥MN ,设FM ·cos ∠EFC =x ,CN =y ,求y 关于x 的函数解析式,并写出它的定义域;(3)如果△AMN 为等腰直角三角形,求线段FM 的长.AB C H D (第25题图1) E AB C H D E(第25题图3) F P AB C H D E(第25题图2) F (第25题图1)AC B DE F(第25题图2)AC B DE FNM (备用图)A CBDE F16.(2016年黄埔)如图7,在Rt △ABC 中,90ACB ∠=︒,1AC =,BC =7,点D 是边CA 延长线上的一点,AE ⊥BD ,垂足为点E ,AE 的延长线交CA 的平行线BF 于点F ,联结CE 交AB 于点G .(1)当点E 是BD 的中点时,求tan AFB ∠的值;(2)CE AF 的值是否随线段AD 长度的改变而变化,如果不变,求出CE AF 的值;如果变化,请说明理由;(3)当BGE ∆与BAF ∆相似时,求线段AF 的长.19.(2016年杨浦)已知:半圆O 的直径AB =6,点C 在半圆O 上,且tan 22ABC ∠=,点D 为AC 上一点,联结DC (如图).(1)求BC 的长;(2)若射线DC 交射线AB 于点M ,且△MBC 与△MOC 相似,求CD 的长; (3)联结OD ,当OD//BC 时,作∠DOB 的平分线交线段DC 于点N ,求ON 的长.图7AB C DEF G (第25题备用图) A B O C A B O C D(第25题图)20.(2016年奉贤) 已知:如图,在边长为5的菱形ABCD 中,cos A =35,点P 为边AB 上一点,以A 为圆心、AP 为半径的⊙A 与边AD 交于点E ,射线CE 与⊙A 另一个交点为点F . (1)当点E 与点D 重合时,求EF 的长;(2)设AP =x ,CE =y ,求y 关于x 的函数关系式及定义域;(3)是否存在一点P ,使得 2EF PE =⋅,若存在,求AP 的长,若不存在,请说明理由.21.(2016年普陀)如图9,在Rt △ABC 中,90C ∠= ,14AC =,3tan 4A =,点D 是边AC 上的一点,8AD =.点E 是边AB 上一点,以点E 为圆心,EA 为半径作圆,经过点D .点F 是边AC 上一动点(点F 不与A 、C 重合),作FG EF ⊥,交射线BC 于点G . (1)用直尺圆规作出圆心E ,并求圆E 的半径长(保留作图痕迹);(2)当点G 在边BC 上时,设AF x =,CG y =,求y 关于x 的函数解析式,并写出它的定义域;(3)联结EG ,当△EFG 与△FCG 相似时,推理判断以点G 为圆心、CG 为半径的圆G 与圆E 可能产生的各种位置关系.DCBA E F第25题图P DCBA备用图DCBA图9DCBA图9备用图22.(2016年浦东)如图,Rt △ABC 中,90ACB ∠= ,6BC =,点D 为斜边AB 的中点,点E 为边AC 上的一个动点.联结DE ,过点E 作DE 的垂线与边BC 交于点F ,以,DE EF 为邻边作矩形DEFG .(1)如图1,当8AC =,点G 在边AB 上时,求DE 和EF 的长; (2)如图2,若12DE EF =,设AC x =,矩形DEFG 的面积为y ,求y 关于x 的函数解析式; (3)若23DE EF =,且点G 恰好落在Rt △ABC 的边上,求AC 的长.23.(2015年黄埔)如图8,Rt △ABC 中,90C ︒∠=,30A ︒∠=,BC =2,CD 是斜边AB 上的高,点E 为边AC 上一点(点E 不与点A 、C 重合),联结DE ,作CF ⊥DE ,CF 与边AB 、线段DE 分别交于点F 、G .(1)求线段CD 、AD 的长;(2)设CE x =,DF y =,求y 关于x 的函数解析式,并写出它的定义域; (3)联结EF ,当△EFG 与△CDG 相似时,求线段CE 的长.GFED C BA 第25题 图2A BC D EFG 第25题 图1 ABCD备用图DCBA(备用图)图8GFDCB A E23.(2015年奉贤)已知:如图,线段AB =8,以A 为圆心,5为半径作圆A ,点C 在⊙A 上,过点C 作CD //AB 交⊙A 于点D (点D 在C 右侧),联结BC 、AD . (1)若CD=6,求四边形ABCD 的面积;(2)设CD =x ,BC =y ,求y 与x 的函数关系式及自变量x 的取值范围;(3)设BC 的中点为M ,AD 的中点为N ,线段MN 交⊙A 于点E ,联结CE ,当CD 取何值时,CE //AD .23.(2015年松江区)如图,已知在直角梯形ABCD 中,AD ∥BC ,∠ABC =90º,AB =4,AD=3,552sin =∠BCD ,点P 是对角线BD 上一动点,过点P 作PH ⊥CD ,垂足为H . (1)求证:∠BCD =∠BDC ;(2)如图1,若以P 为圆心、PB 为半径的圆和以H 为圆心、HD 为半径的圆外切时,求DP 的长;(3)如图2,点E 在BC 延长线上,且满足DP =CE ,PE 交DC 于点F ,若△ADH 和△ECF 相似,求DP 的长.DCB (第25题图)AB(备用图)AABCHPD (第25题图1)ABCHPD EF(第25题图2)23.(2015年闵行区)如图,已知在梯形ABCD 中,AD // BC ,AB = DC = 5,AD = 4.M 、N 分别是边AD 、BC 上的任意一点,联结AN 、DN .点E 、F 分别在线段AN 、DN 上,且ME // DN ,MF // AN ,联结EF .(1)如图1,如果EF // BC ,求EF 的长;(2)如果四边形MENF 的面积是△ADN 的面积的38,求AM 的长;(3)如果BC = 10,试探索△ABN 、△AND 、△DNC 能否两两相似?如果能,求AN 的长;如果不能,请说明理由.23.(2015年嘉定)在Rt △ABC 中,︒=∠90C ,2=BC ,Rt △ABC 绕着点B 按顺时针方向旋转,使点C 落在斜边AB 上的点D ,设点A 旋转后与点E 重合,联结AE ,过点E 作直线EM 与射线CB 垂直,交点为M .(1)若点M 与点B 重合如图10,求BAE ∠cot 的值;(2)若点M 在边BC 上如图11,设边长x AC =,y BM =,点M 与点B 不重合,求y 与x 的函数关系式,并写出自变量x 的取值范围; (3)若EBM BAE ∠=∠,求斜边AB 的长.A B C D M N E F(图1)A B C D M NE F (第25题图)A CB (M )ED 图10ACBMED图11。
2016上海中考数学二模试卷含闵行,普陀,杨浦,虹口,黄浦,松江,浦东,长宁8个区包括答案
闵行区2015-2016学年第二学期九年级质量调研考试2016.4数学试卷(考试时间100分钟,满分150分)考生注意:1.本试卷含三个大题,共25题.2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.如果单项式22n a b c是六次单项式,那么n的值取(A)6;(B)5;(C)4;(D)3.2(A;(B(C1;(D1.3.下列函数中,y随着x的增大而减小的是(A)3y x=;(B)3y x=-;(C)3yx=;(D)3yx=-.4.一鞋店销售一种新鞋,试销期间卖出情况如下表,对于鞋店经理来说最关心哪种尺码的鞋畅销,那么下列统计量对该经理来说最有意义的是(A)平均数;(B)中位数;(C)众数;(D)方差.5.下列图形中,既是轴对称又是中心对称图形的是(A)正五边形;(B)等腰梯形;(C)平行四边形;(D)圆.6.下列四个命题,其中真命题有(1)有理数乘以无理数一定是无理数;(2)顺次联结等腰梯形各边中点所得的四边形是菱形;(3)在同圆中,相等的弦所对的弧也相等;(4)如果正九边形的半径为a,那么边心距为sin20a⋅o.(A)1个;(B)2个;(C)3个;(D)4个.二、填空题:(本大题共12题,每题4分,满分48分) 7.计算:22-= ▲ .8.在实数范围内分解因式:32a a -= ▲ . 92=的解是 ▲ . 10.不等式组30,43x x x -≥⎧⎨+>-⎩的解集是 ▲ .11.已知关于x 的方程20x x m --=没有实数根,那么m 的取值范围是 ▲ .12.将直线213y x =-+向下平移3个单位,那么所得到的直线在y 轴上的截距为 ▲ .13.如果一个四边形的两条对角线相等,那么称这个四边 形为“等对角线四边形”.写出一个你所学过的特殊 的等对角线四边形的名称 ▲ .14.如图,已知在梯形ABCD 中,AD // BC ,且BC = 3AD ,点E 是边DC 的中点.设AB a =uu u r r ,AD b =uuu r r ,那么 AE =uu u r ▲ (用a r 、b r的式子表示).15.布袋中有大小、质地完全相同的4个小球,每个小球上分别标有数字1、2、3、4,如果从布袋中随机抽取两个小球,那么这两个小球上的数字之和为偶数的概率是 ▲ .16.9月22日世界无车日,某校开展了“倡导绿色出行”为主题的调查,随机抽查了部分师生,将收集的数据绘制成下列不完整的两种统计图.已知随机抽查的教师人数为学生人数的一半,根据图中信息,乘私家车出行的教师人数是 ▲ .17.点P 为⊙O 内一点,过点P 的最长的弦长为10cm ,最短的弦长为8cm ,那么OP的长等于 ▲ cm .18.如图,已知在△ABC 中,AB = AC ,1tan 3B ∠=,将△ABC 翻折,使点C 与点A 重合,折痕DE 交边BC 于点D ,交边AC 于点E ,那么BDDC的值为 ▲ . ABD C(第14题图)EABC(第18题图)(第16题图) 乘公车 y % 步行 x %骑车 25%私家车 15%学生出行方式扇形统计图师生出行方式条形统计图三、解答题:(本大题共7题,满分78分)19.(本题满分10分)110212(cos60)32--++-o.20.(本题满分10分)解方程:222421242xx x x x x-+=+--.21.(本题满分10分,其中每小题各5分)如图,已知在△ABC中,∠ABC = 30º,BC = 8,sin A∠=,BD是AC边上的中线.求:(1)△ABC的面积;(2)∠ABD的余切值.22.(本题满分10分,其中每小题各5分)如图,山区某教学楼后面紧邻着一个土坡,坡面BC平行于地面AD,斜坡AB的坡比为i =1∶512,且AB = 26米.为了防止山体滑坡,保障安全,学校决定对该土坡进行改造.经地质人员勘测,当坡角不超过53º时,可确保山体不滑坡.(1)求改造前坡顶与地面的距离BE的长.(2)为了消除安全隐患,学校计划将斜坡AB改造成AF(如图所示),那么BF至少是多少米?(结果精确到1米)(参考数据:sin530.8≈o,cos530.6≈o,tan53 1.33≈o,cot530.75≈o).BCD(第21题图)BDC(第22题图)F23.(本题满分12分,其中每小题各6分)如图,已知在矩形ABCD 中,过对角线AC 的中点O 作 AC 的垂线,分别交射线AD 和CB 于点E 、F ,交边DC 于 点G ,交边AB 于点H .联结AF ,CE . (1)求证:四边形AFCE 是菱形; (2)如果OF = 2GO ,求证:2GO DG GC =⋅. 24.(本题满分12分,其中每小题各4分)如图,已知在平面直角坐标系xOy 中,抛物线22y ax x c =++与x 轴交于 点A (-1,0)和点B ,与y 轴相交于点C (0,3),抛物线的对称轴为直线l . (1)求这条抛物线的关系式,并写出其对称轴和顶点M 的坐标;(2)如果直线y kx b =+经过C 、M 两点,且与x 轴交于点D ,点C 关于直 线l 的对称点为N ,试证明四边形CDAN(3)点P 在直线l 上,且以点P 为圆心的圆经过A 、B 两点,并且与直线CD 相切, 求点P 的坐标.(第24题图)(第23题图)AB CDE FGOH25.(本题满分14分,其中第(1)小题各4分,第(2)、(3)小题各5分)如图,已知在△ABC中,AB = AC = 6,AH⊥BC,垂足为点H.点D在边AB上,且AD = 2,联结CD交AH于点E.(1)如图1,如果AE = AD,求AH的长;(2)如图2,⊙A是以点A为圆心,AD为半径的圆,交AH于点F.设点P为边BC上一点,如果以点P为圆心,BP为半径的圆与⊙A外切,以点P为圆心,CP为半径的圆与⊙A内切,求边BC的长;(3)如图3,联结DF.设DF = x,△ABC的面积为y,求y关于x的函数解析式,并写出自变量x的取值范围.(第25题图3)普陀区2015-2016学年度第二学期初三质量调研数学试卷 2016年4月13日(时间:100分钟,满分析150分)一、选择题:(本大题共6题,每题4分,满分24分)1、据统计,2015年上海市全年接待国际旅游入境者共80016000人次,80016000用科学记数法表示是( )(A )8.0016⨯610; (B )8.0016710⨯; (C )8100016.8⨯; (D )9100016.8⨯2、下列计算结果正确的是( )(A )824a a a =⋅; (B )()624a a =; (C )()222b a ab =; (D )()222b a b a -=-.3、下列统计图中,可以直观地反映出数据变化的趋势的统计图是( )(A )折线图; (B )扇形图; (C )统形图; (D )频数分布直方图。
中考二模测试《数学试卷》附答案解析
A B. ﹣ C.2D. ﹣2
二、填空题
11.因式分解:ab2﹣2ab+a=_____.
12.如图,已知正六边形ABCDEF,则∠ADF=_____度.
13.若点A(1,2)、B(﹣2,n)在同一个反比例函数的图象上,则n的值为_____.
24.如图,抛物线y=ax2+c(a≠0)与y轴交于点A,与x轴交于B,C两点(点C在x轴正半轴上),△ABC为等腰直角三角形,且面积为4,现将抛物线沿BA方向平移,平移后的抛物线过点C时,与x轴的另一交点为E,其顶点为F.
(1)求a、c 值;
(2)连接OF,试判断△OEF是否为等腰三角形,并说明理由.
【答案】B
【解析】
试题分析:三棱柱的展开图为3个矩形和2个三角形,故B不能围成.
考点:棱柱的侧面展开图.
3.如图,在Rt△ABC中,∠C=90°.D为边CA延长线上的一点,DE∥AB,∠ADE=42°,则∠B的大小为( )
A.42°B.45°C.48°D.58°
【答案】C
【解析】
【详解】解:∵DE∥AB,∠ADE=42°,∴∠CAB=∠ADE=42°.
【详解】A、 ,故A选项错误;
B、 ,故B选项错误;
C、 ,故C选项错误;
D、 a2+a2=2a2,故D选项正确,
故选D.
【点睛】本题考查了单项式乘以单项式、积的乘方、和合并同类项,正确掌握相关运算法则是解题关键.
6.如图,∠ACB=90°,D为AB中点,连接DC并延长到点E,使CE= CD,过点B作BF∥DE交AE的延长线于点F.若BF=10,则AB的长为()
2016年上海市宝山、嘉定区初三二模数学试卷及参考答案
2016年宝山、嘉定区初三二模一、选择题(本大题共6题,每题4分,满分24分) 1、2-的倒数是( )A 、5-B 、2C 、21-D 、122、下列计算正确的是( )A 、21a a -=B 、2242a a a +=C 、532a a a =⋅D 、222()a b a b -=-3、某地气象局预报称:明天A 地区降水概率为80%,这句话指的是( )A 、明天A 地区80%的时间都下雨B 、明天A 地区的降雨量是同期的80%C 、明天A 地区80%的地方都下雨D 、明天A 地区下雨的可能性是80%4、某老师在试卷分析中说:参加这次考试的82位同学中,考91分的人数最多,有11人之众,遗憾的是 我们仍然有一位同学只得了56分,由此可知本次考试分数的众数是( )A 、82B 、91C 、11D 、565、如果点K 、L 、M 、N 分别是四边形ABCD 的四条边AB 、BC 、CD 、DA 的中点,且四边形KLMN 是菱形,那么下列选项正确的是( )A 、AB BC ⊥ B 、AC BD ⊥ C 、=AB BC D 、=AC BD6、如图,在梯形ABCD 中,AD BC ∥,AB DC =,︒=∠45DBC ,点E 在BC 上,点F 在AB 上,将 梯形ABCD 沿直线EF 翻折,使点B 与点D 重合,如果14AD BC =,那么AFBF的值是( )A 、12 B 、35 C 、23 D 、第6题二、填空题(本大题共12题,每题4分,满分48分)7、据统计,今年上海“樱花节”活动期间顾村公园赏樱人数约312万人次,用科学记数法可表示为 人次8、因式分解:228x -= 9、不等式组1321x x x+<⎧⎨->⎩的解集是10、如果反比例函数1ky x-=在其图像所在的每一个象限内,y 都随x 的增大而增大,那么k 的取值范围 是11、如果函数()y f x =图像沿x 轴的正方向平移1个长度单位后与抛物线223y x x =-+重合,那么函数()y f x =的解析式是12、甲、乙、丙、丁四位同学五次数学测验成绩统计如下表,如果从这四位同学中选出一位成绩较好且状 态稳定的同学参加初中数学竞赛,那么应选同学13、方程1x +14、已知在平行四边形ABCD 中,点M 、N 分别是AB 、BC 的中点,如果AB a =,AD b =,那么向 量MN = (结果用a 、b 表示) 15、已知A 的半径长为1、B 的半径长为2、C 的半径长为3,如果这三个圆两两外切,那么cos B 的值是16、如图,如果在大厦AB 所在的平地上选择一点C ,测得大厦顶端A 的仰角为30︒,然后向大厦方向 前进40米,到达点D 处(C 、D 、B 三点在同一直线上),此时测得大厦顶端A 的仰角为45︒,那么 大厦AB 的高度为 米(计算结果保留根号)第16题 第18题 17、对于实数m 、n ,定义一种运算“*”:m n m n n *=+,如果关于x 的方程41)(-=**x a x 有两个相 等的实数根,那么实数a 的值是18、如图,等边ABC △的边长为6,点D 在边AC 上,且2AD =,将ABC △绕点C 顺时针方向旋转60︒, 点A 与点D 的对应点分别记作点E 与点F ,联结BF 交AC 于点G ,那么tan AEG ∠的值为三、解答题(本大题共7题,满分78分)19、先化简,再求值:,其中2x =+20、解方程:2132021x xx x --+=-21、如图,在△ABC 中,按以下步骤作图:①分别以A 、B 为圆心,大于12AB 的长为半径画弧,相交 于两点M 、N ;②经过M 、N 两点作直线,交ABC △的边AC 于点D ,联结BD ,如果此时测得34A ∠=︒, BC CD =,求ABC ∠与C ∠的度数22、如图,在平面直角坐标系xOy 中,过点(4,2)A -向x 轴作垂线,垂足为B ,联结AO 得到AOB △, 反比例函数ky x=的图像经过AO 的中点C ,且与边AB 交于点D (1)求反比例函数的解析式 (2)求直线CD 与x 轴的交点坐标23、如图,BD 是平行四边形ABCD 的对角线,︒=∠45DBC ,DE BC ⊥,垂足为E ,BF CD ⊥,垂 足为F ,DE 与BF 相交于点H ,BF 与AD 的延长线相交于G 求证:(1)CD BH =(2)AB 是AG 和HE 的比例中项24、在平面直角坐标系xOy 中,经过点(1,0)A -的抛物线23y x bx =-++与y 轴交于点C ,点D 与点C 关 于该抛物线的对称轴对称(1)求b 的值以及直线AD 与x 轴正方向的夹角(2)如果点E 是抛物线上一动点,过E 作EF 平行于x 轴交直线AD 于点F ,且F 在E 的右边,过点E 作EG AD ⊥于点G ,设E 横坐标为m ,EFG △周长为l ,试用m 表示l(3)点M 是该抛物线的顶点,点P 是y 轴上一点,Q 是坐标平面内一点,如果以A 、M 、P 、Q 为 顶点的四边形是矩形,求该矩形的顶点Q 的坐标25、如图,O 与过点O 的P 相交于AB ,D 是P 的劣弧OB 上一点,射线OD 交O 于点E ,交AB的延长线于点C ,如果24AB =,2tan 3AOP ∠= (1)求P 的半径长(2)当AOC △为直角三角形时,求线段OD 的长(3)设线段OD 长度为x ,线段CE 长度为y ,求y 与x 之间的函数关系式及其定义域2016年宝山、嘉定区初三二模参考答案一、选择题二、填空题三、解答题 19、原式1xx ==-20、⎪⎩⎪⎨⎧==51121x x21、︒=∠102ABC ,︒=∠44C22、(1)2y x =-(2)(6,0)-23.、(1)略 (2)略24、1)2b =,45︒ (2)21)(2)l m m =-++ (3)(0,2、(0,2、1(2,)2-、7(2,)225、(1)13 (2) (3)468y x=-0x <<。
2016上海各区初中数学二模试题及解答
十分遗憾最低的同学仍然只得了 56 了。这说明本次考试分数的众数是(
)
A、82;
B、91;
C、11;
D、56;
5、如果点 K、L、M、N 分别是四边形 ABCD 的四条边 AB、BC、CD、DA 的中点,且四边形 KLMN
是菱形,那么下列选项正确的是(
)
A、AB⊥BC;
B、AC⊥BD;
C、AB=BC;
6、如图 1,梯形 ABCD 中,AD∥BC,AB=DC,∠DBC=45°,
D、AC=BD;
AD
点 E 在 BC 上,点 F 在 AB 上,将梯形 ABCD 沿直线 EF 翻折,
F
使得点 B 与点 D 重合。如果 AD 1 ,那么 AF 的值是(
)
BC 4
BF
A、 1 ; 2
B、 3 ; 5
C、 2 ; 3
三、解答题(本大题共 7 题,满分 78 分)
19.(本题满分 10 分)
1
计算: 273 (
3
1)2
1 2
1
2 3 1
M C
N
B
A
(第 18 题图)
20.(本题满分 10 分)
解方程组:
x 2y 1
x2
3xy
2y2
0
21.(本题满分 10 分,其中每小题各 5 分)
如图,在平面直角坐标系 xOy 中,一次函数 y kx b (k 0) 的图像经过 A(0, 2) , B(1, 0)
BF 相交于 H,BF 与 AD 的延长线相交于 G.求证:
(1)CD=BH; (2)AB 是 AG 和 HE 的比例中项.
A
D
G
HF
B
中考数学二模试题(有答案解析)
中考仿真模拟测试数学试卷学校________ 班级________ 姓名________ 成绩________时间100分钟满分150分一.选择题(共6小题,满分24分,每小题4分)1.下列代数式中,为单项式的是()A .B .AC .D .x2+y22.已知x>y,那么下列正确的是()A .x+y>0B .A x>A yC .x﹣2>y+2D .2﹣x<2﹣y3.将抛物线y=(x﹣2)2+1向上平移3个单位,得到新抛物线的顶点坐标是()A .(2,4)B .(﹣1,1)C .(5,1)D .(2,﹣2)4.在平面直角坐标系中,以点A (2,1)为圆心,1为半径的圆与x轴的位置关系是()A .相离B .相切C .相交D .不确定5.如图,反映的是某中学九(3)班学生外出方式(乘车、步行、骑车)的频数(人数)分布直方图(部分)和扇形分布图,那么下列说法正确的是()A .九(3)班外出的学生共有42人B .九(3)班外出步行的学生有8人C .在扇形图中,步行的学生人数所占的圆心角为82°D .如果该校九年级外出学生共有500人,那么估计全年级外出骑车的学生约有140人6.如图,在△A B C 中,点D 、E分别是边B C 、A C 的中点,A D 和B E交于点G,设=,=,那么向量用向量、表示为()A .B .C .D .二.填空题(共12小题,满分48分,每小题4分)7.分解因式:x2﹣4x=.8.计算:A 3•A ﹣1=.9.已知函数f(x)=,那么f(10)=.10.如果关于x的方程x2﹣6x+m﹣1=0有一个根为2,那么m=.11.某品牌旗舰店将某商品按进价提高40%后标价,在一次促销活动中,按标价的8折销售,售价为2240元,那么这种商品的进价为元.12.某校200名学生一次数学测试的分数均大于75且小于150,分数段的频数分布情况如下:75~90有15人,90~105有42人,105~120有58人,135~150有35人(其中每个分数段可包括最小值,不包括最大值),那么测试分数在120~135分数段的频率是.13.用换元法解方程=3时,设=y,那么原方程化成关于y的整式方程是.14.如果正六边形的半径是1,那么它的边心距是.15.如果从方程x+1=0,x2﹣2x﹣1=0,x+=3中任意选取一个方程,那么取到的方程是整式方程的概率是.16.已知,在Rt△A B C 中,∠C =90°,A C =9,B C =12,点D 、E分别在边A C 、B C 上,且C D :C E =3:4.将△C D E绕点D 顺时针旋转,当点C 落在线段D E上的点F处时,B F恰好是∠A B C 的平分线,此时线段C D 的长是.17.如图,某人在山坡坡脚A 处测得电视塔塔尖点P的仰角为60°,沿山坡向上走200米到达B 处,在B 处测得点P的仰角为15°.已知山坡A B 的坡度i=1:,且H、A 、B 、P在同一平面内,那么电视塔的高度PH为米.(结果保留根号形式)18.如图,已知在等边△A B C 中,A B =4,点P在边B C 上,如果以线段PB 为半径的⊙P与以边A C 为直径的⊙O外切,那么⊙P的半径长是.三.解答题(共7小题,满分78分)19.(10分)先化简,再求值:,其中.20.(10分)解不等式组:,并将解集在数轴上表示出来.21.(10分)如图,是一个地下排水管的横截面图,已知⊙O的半径OA 等于50C m,水的深度等于25C m(水的深度指的中点到弦A B 的距离).求:(1)水面的宽度A B .(2)横截面浸没在水中的的长(结果保留π).22.(10分)一辆汽车从甲地出发前往相距350千米的乙地,在行驶了100千米后,因降雨,汽车每行驶1千米的耗油量比降雨前多0.02升.如图中的折线A B C 反映了该汽车行驶过程中,油箱中剩余的油量y(升)与行驶的路程x(千米)之间的函数关系.(1)当0≤x≤100时,求y关于x的函数解析式(不需要写出定义域);(2)当汽车到达乙地时,求油箱中的剩余油量.23.(12分)如图,已知在直角梯形A B C D 中,A D ∥B C ,∠A B C =90°,A E⊥B D ,垂足为E,联结C E,作EF ⊥C E,交边A B 于点F.(1)求证:△A EF∽△B EC ;(2)若A B =B C ,求证:A F=A D .24.(12分)已知直线交x轴于点A ,交y轴于点C (0,4),抛物线经过点A ,交y轴于点B (0,﹣2),点P为抛物线上一个动点,设P的横坐标为m(m>0),过点P作x轴的垂线PD ,过点B 作B D ⊥PD 于点D ,联结PB .(1)求抛物线的解析式;(2)当△B D P为等腰直角三角形时,求线段PD 的长;(3)将△B D P绕点B 旋转得到△B D ′P′,且旋转角∠PB P′=∠OA C ,当点P对应点P′落在y轴上时,求点P的坐标.25.(14分)如图,已知扇形A OB 的半径OA =4,∠A OB =90°,点C 、D 分别在半径OA 、OB 上(点C 不与点A 重合),联结C D .点P是弧A B 上一点,PC =PD .(1)当C ot∠OD C =,以C D 为半径的圆D 与圆O相切时,求C D 的长;(2)当点D 与点B 重合,点P为弧A B 的中点时,求∠OC D 的度数;(3)如果OC =2,且四边形OD PC 是梯形,求的值.参考答案一.选择题(共6小题,满分24分,每小题4分)1.下列代数式中,为单项式的是()A .B .AC .D .x2+y2【解答】解:A 、分母中含有字母,不是单项式;B 、符合单项式的概念,是单项式;C 、分母中含有字母,不是单项式;D 、不符合单项式的概念,不是单项式.故选:B .2.已知x>y,那么下列正确的是()A .x+y>0B .A x>A yC .x﹣2>y+2D .2﹣x<2﹣y【解答】解:∵x>y,∴x﹣y>0,A x>A y(A >0),x+2>y+2,2﹣x<2﹣y.故选:D .3.将抛物线y=(x﹣2)2+1向上平移3个单位,得到新抛物线的顶点坐标是()A .(2,4)B .(﹣1,1)C .(5,1)D .(2,﹣2)【解答】解:将抛物线y=(x﹣2)2+1向上平移3个单位,得y=(x﹣2)2+1+3,即y=(x﹣2)2+4,顶点坐标为(2,4),故选:A .4.在平面直角坐标系中,以点A (2,1)为圆心,1为半径的圆与x轴的位置关系是()A .相离B .相切C .相交D .不确定【解答】解:∵点A (2,1)到x轴的距离为1,圆的半径=1,∴点A (2,1)到x轴的距离=圆的半径,∴圆与x轴相切;故选:B .5.如图,反映的是某中学九(3)班学生外出方式(乘车、步行、骑车)的频数(人数)分布直方图(部分)和扇形分布图,那么下列说法正确的是()A .九(3)班外出的学生共有42人B .九(3)班外出步行的学生有8人C .在扇形图中,步行的学生人数所占的圆心角为82°D .如果该校九年级外出的学生共有500人,那么估计全年级外出骑车的学生约有140人【解答】解:A 、由题意知乘车的人数是20人,占总人数的50%,所以九(3)班有20÷50%=40人,故此选项错误;B 、步行人数为:40﹣12﹣20=8人,故此选项正确;C 、步行学生所占的圆心角度数为×360°=72°,故此选项错误;D 、如果该中学九年级外出的学生共有500人,那么估计全年级外出骑车的学生约为500×=150人,故此选项错误;故选:B .6.如图,在△A B C 中,点D 、E分别是边B C 、A C 的中点,A D 和B E交于点G,设=,=,那么向量用向量、表示为()A .B .C .D .【解答】解:∵=,=,∴=+=﹣+,∵A D ,B E是△A B C 的中线,∴G是△A B C 的重心,∴B G= B E,∴=﹣+,故选:A .二.填空题(共12小题,满分48分,每小题4分)7.分解因式:x2﹣4x=x(x﹣4).【解答】解:x2﹣4x=x(x﹣4).故答案为:x(x﹣4).8.计算:A 3•A ﹣1= A 2.【解答】解:原式=A 3+(﹣1)=A 2.故答案为:A 2.9.已知函数f(x)=,那么f(10)=2.【解答】解:∵f(x)=,∴f(10)==2.故答案为:2.10.如果关于x的方程x2﹣6x+m﹣1=0有一个根为2,那么m=9.【解答】解:把x=2代入方程得:22﹣6×2+m﹣1=0.解得m=9.故答案是:9.11.某品牌旗舰店将某商品按进价提高40%后标价,在一次促销活动中,按标价的8折销售,售价为2240元,那么这种商品的进价为2000元.【解答】解:设这种商品的进价是x元,根据题意可以列出方程:由题意得,(1+40%)x×0.8=2240.解得:x=2000,故答案为:2000.12.某校200名学生一次数学测试的分数均大于75且小于150,分数段的频数分布情况如下:75~90有15人,90~105有42人,105~120有58人,135~150有35人(其中每个分数段可包括最小值,不包括最大值),那么测试分数在120~135分数段的频率是0.25.【解答】解:120~135分数段的频数=200﹣15﹣42﹣58﹣35=50人,则测试分数在120~135分数段的频率==0.25.故答案为:0.25.13.用换元法解方程=3时,设=y,那么原方程化成关于y的整式方程是y2﹣3y+2=0.【解答】解:设=y,则.所以原方程可变形为:.方程的两边都乘以y,得y2+2=3y.即y2﹣3y+2=0.故答案为:y2﹣3y+2=0.14.如果正六边形的半径是1,那么它的边心距是.【解答】解:∵A B C D D EF为正六边形,∴∠B OC =360°÷6=60°,OG⊥B C .∴∠B OG=∠B OC =30°.在Rt△B OG中,C os∠B OG=.∵OB =1,∴OG=OB •C os∠B OG=1×=.故答案为:.15.如果从方程x+1=0,x2﹣2x﹣1=0,x+=3中任意选取一个方程,那么取到的方程是整式方程的概率是.【解答】解:∵在所列的6个方程中,整式方程有x+1=0,x2﹣2x﹣1=0,x4﹣1=0这3个,∴取到的方程是整式方程的概率是=,故答案为:.16.已知,在Rt△A B C 中,∠C =90°,A C =9,B C =12,点D 、E分别在边A C 、B C 上,且C D :C E =3:4.将△C D E绕点D 顺时针旋转,当点C 落在线段D E上的点F处时,B F恰好是∠A B C 的平分线,此时线段C D 的长是6.【解答】解:如图所示,设C D =3x,则C E=4x,B E=12﹣4x,∵=,∠D C E=∠A C B =90°,∴△A C B ∽△D C E,∴∠D EC =∠A B C ,∴A B ∥D E,∴∠A B F=∠B FE,又∵B F平分∠A B C ,∴∠A B F=∠C B F,∴∠EB F=∠EFB ,∴EF=B E=12﹣4x,由旋转可得D F=C D =3x,∵Rt△D C E中,C D 2+C E2=D E2,∴(3x)2+(4x)2=(3x+12﹣4x)2,解得x1=2,x2=﹣3(舍去),∴C D =2×3=6,故答案为:6.17.如图,某人在山坡坡脚A 处测得电视塔塔尖点P的仰角为60°,沿山坡向上走200米到达B 处,在B 处测得点P的仰角为15°.已知山坡A B 的坡度i=1:,且H、A 、B 、P在同一平面内,那么电视塔的高度PH为100米.(结果保留根号形式)【解答】解:过B 作B M⊥HA 于M,过B 作B N∥A M,如图所示:则∠A MB =90°,∠A B N=∠B A M,由题意得:A B =200米,∠PB N=15°,∠P A H=60°,∵山坡A B 的坡度i=1:,∴tA n∠B A M=1:=,∴∠B A M=30°,∴∠A B N=30°,∴∠P A B =180°﹣∠P A H﹣∠B A M=90°,∠A B P=∠A B N+∠PB N=45°,∴△P A B 是等腰直角三角形,∴P A =A B =200米,在Rt△P A H中,sin∠P A H==sin60°=,∴PH=P A =100(米),故答案为:100.18.如图,已知在等边△A B C 中,A B =4,点P在边B C 上,如果以线段PB 为半径的⊙P与以边A C 为直径的⊙O外切,那么⊙P的半径长是.【解答】解:如图,连接OP,过点O作OH⊥B C 于P,在等边△A B C 中,A B =4,∴A C =B C =A B =4,∠A C B =60°,∵点O是A C 的中点,∴A O=OC =2,∵以线段PB 为半径的⊙P与以边A C 为直径的⊙O外切,∴PO=2+B P,∵OH⊥B C ,∴∠C OH=30°,∴HC =1,OH=,∵OP2=OH2+PH2,∴(2+B P)2=3+(4﹣1﹣B P)2,∴B P=,故答案为.三.解答题(共7小题,满分78分)19.(10分)先化简,再求值:,其中.【解答】解:原式==﹣=,当x=﹣1时,原式==.20.(10分)解不等式组:,并将解集在数轴上表示出来.【解答】解:解不等式3(x+2)>x﹣2,得:x>﹣4,解不等式x﹣≤,得:x≤,则不等式组的解集为﹣4<x≤,将不等式组的解集表示在数轴上如下:21.(10分)如图,是一个地下排水管的横截面图,已知⊙O的半径OA 等于50C m,水的深度等于25C m(水的深度指的中点到弦A B 的距离).求:(1)水面的宽度A B .(2)横截面浸没在水中的的长(结果保留π).【解答】解:(1)过O作OH⊥A B 于H,并延长交⊙O于D ,∵OH⊥A B ,OH过O,∴∠OHA =90°,A H= A B ,=,∵水的深度等于25C m,∴HD =25(C m),∵OA =OD =50C m,∴OH=OD ﹣HD =25(C m),∴A H===25(C m),∴A B =50 C m;(2)连接OB ,∵OA =50C m,OH=25C m,∴OH=OA ,∵∠OHA =90°,∴∠OA H=30°,∴∠A OH=60°,∵OA =OB ,OH⊥A B ,∴∠B OH=∠A OH=60°,即∠A OB =120°,∴的长是=(C m).22.(10分)一辆汽车从甲地出发前往相距350千米的乙地,在行驶了100千米后,因降雨,汽车每行驶1千米的耗油量比降雨前多0.02升.如图中的折线A B C 反映了该汽车行驶过程中,油箱中剩余的油量y(升)与行驶的路程x(千米)之间的函数关系.(1)当0≤x≤100时,求y关于x的函数解析式(不需要写出定义域);(2)当汽车到达乙地时,求油箱中的剩余油量.【解答】解:(1)设当0≤x≤100时,y关于x的函数解析式为y=kx+B ,根据题意,得:,解得,∴y=﹣x+50;(2)由题意可知,前100千米耗油量为10升,后250千米的耗油量为:250×(0.1+0.02)=30(升),油箱中的剩余油量为:50﹣10﹣30=10(升).23.(12分)如图,已知在直角梯形A B C D 中,A D ∥B C ,∠A B C =90°,A E⊥B D ,垂足为E,联结C E,作EF ⊥C E,交边A B 于点F.(1)求证:△A EF∽△B EC ;(2)若A B =B C ,求证:A F=A D .【解答】解:(1)证明:∵A E⊥B D ,EF⊥C E,∴∠A EB =∠C EF=∠A B C =90°,∴∠A B E+∠EA F=∠A B E+∠C B E=90°,∴∠EA F=∠C B E,∵∠A EF+∠B EF=∠B EC +∠B EF=90°,∴∠A EF=∠B EC ,∴△A EF∽△B EC ;(2)证明:∵A D ∥B C ,∠A B C =90°,∴∠B A D =180°﹣∠A B C =90°,∵A E⊥B D ,∴∠A EB =90°=∠B A D ,∵∠A B E=∠D B A ,∴△A B E∽△D B A ,∴=,∵△A EF∽△B EC ,∴=,∴=,∵A B =B C ,∴A F=A D .24.(12分)已知直线交x轴于点A ,交y轴于点C (0,4),抛物线经过点A ,交y轴于点B (0,﹣2),点P为抛物线上一个动点,设P的横坐标为m(m>0),过点P作x轴的垂线PD ,过点B 作B D ⊥PD 于点D ,联结PB .(1)求抛物线的解析式;(2)当△B D P为等腰直角三角形时,求线段PD 的长;(3)将△B D P绕点B 旋转得到△B D ′P′,且旋转角∠PB P′=∠OA C ,当点P对应点P′落在y轴上时,求点P的坐标.【解答】解:(1)∵点C (0,4)在直线y=﹣x+n上,∴n=4,∴y=﹣x+4,令y=0,∴x=3,∴A (3,0),∵抛物线y=x2+B x+C 经过点A ,交y轴于点B (0,﹣2),∴C =﹣2,6+3B ﹣2=0,∴B =﹣,∴抛物线解析式为y=x2﹣x﹣2;(2)∵P的横坐标为m(m>0),且点P在抛物线上,∴P(m,m2﹣m﹣2),∵PD ⊥x轴,B D ⊥PD ,∴点D 坐标为(m,﹣2),若△B D P为等腰直角三角形,则PD =B D ,①当点P在直线B D 上方时,PD =m2﹣m﹣2﹣(﹣2)=m2﹣m,如图1,B D =m.∴m2﹣m=m,解得:m1=0,m2=,∵m>0,∴m=;②当点P在直线B D 下方时,如图2,m>0,B D =m,PD =﹣m2+m,∴﹣m2+m=m,解得:m1=0,m2=,∵m>0,∴m=;综上所述,m=或;即当△B D P为等腰直角三角形时,线段PD 的长为或.(3)∵∠PB P'=∠OA C ,OA =3,OC =4,∴A C =5,∴sin∠PB P'=,C os∠PB P'=,若点P在y轴右侧,①当△B D P绕点B 逆时针旋转,且点P'落在y轴上时,如图3,过点D ′作D ′M⊥x轴,交B D 于M,过点P′作P′N⊥y轴,交MD '的延长线于点N,∴∠D B D ′=∠ND ′P′=∠PB P′,由旋转知,P′D ′=PD =m2﹣m,在Rt△P′D ′N中,sin∠ND ′P′==sin∠PB P′=,∴P′N=P′D ′=(m2﹣m),在Rt△B D ′M中,B D ′=m,C os∠D B D ′==C os∠PB P′=,∴B M= B D ′=m,∵P′N=B M,∴(m2﹣m)=m,∴m=,∴P(,);②当△B D P绕点B 顺时针旋转,且点P'落在y轴上时,如图4,过点P作PT⊥y轴于点T,∴PT=m,B T=OT﹣OB =﹣(m2﹣m﹣2)﹣2=﹣m2+m,∵∠PB P′=∠OA C ,∴tA n∠PB P′=tA n∠OA C ==,∴=,∴PT= B T,∴m=(﹣m2+m),解得:m=0(舍去)或m=,∴P(,﹣);若点P在y轴左侧,仿照上述方法讨论均不存在满足条件的点P;综上所述,点P的坐标为(,)或(,﹣).25.(14分)如图,已知扇形A OB 的半径OA =4,∠A OB =90°,点C 、D 分别在半径OA 、OB 上(点C 不与点A 重合),联结C D .点P是弧A B 上一点,PC =PD .(1)当C ot∠OD C =,以C D 为半径的圆D 与圆O相切时,求C D 的长;(2)当点D 与点B 重合,点P为弧A B 的中点时,求∠OC D 的度数;(3)如果OC =2,且四边形OD PC 是梯形,求的值.【解答】解:(1)如图1中,∵∠C OD =90°,C ot∠OD C ==,∴可以假设OD =3k,OC =4k,则C D =5k,∵以C D 为半径的圆D 与圆O相切,∴C D =D B =5k,∴OB =OD +D B =3K+5K=4,∴k=,∴C D =.(2)如图2中,连接OP,过点P作PE⊥OA 于E,PF⊥OB 于F.∵=,∴∠A OP=∠POB ,∵PE⊥OA ,PF⊥OB ,∴PE=PF,∵∠PEC =∠PFB =90°,PD =PC ,∴Rt△PEC ≌Rt△PFB (HL),∴∠EPC =∠FPB ,∵∠PEO=∠EOF=∠OFP=90°,∴∠EPF=90°,∴∠EPF=∠C PB =90°,∴∠PC B =∠PB C =45°,∵OP=OB ,∠POB =45°,∴∠OB P=∠OPB =67.5°,∴∠C B O=67.5°﹣45°=22.5°,∴∠OC D =90°﹣22.5°=67.5°.(3)如图3﹣1中,当OC ∥PD 时,∵OC ∥PD ,∴∠PD O=∠A OD =90°,∵C E⊥PD ,∴∠C ED =90°,∴四边形OC ED 是矩形,∴OC =D E=2,C E=OD ,设PC =PD =x,EC =OD =y,则有,可得x=2﹣2(不合题意的已经舍弃),∴PD =2﹣2,∴==﹣1.如图3﹣2中,当PC ∥OD 时,∵PC ∥OD ,∴∠C OD =∠OC E=∠C ED =90°,∴四边形OC ED 是矩形,∴OC =D E=2,C E=OD ,∵OP=4,OC =2,∴PC ===2,∴PD =PC =2,∴PE===2,∴EC =OD =2﹣2,∴===3+,综上所述,的值为﹣1或3+.。
2016年中考数学二模试卷(带答案)
2016年中考数学二模试卷一、选择题:本大题共12小题,每题3分,共36分.1.﹣8的立方根是()A.2 B.2C.﹣D.﹣22.统计显示,2013年底某市各类高中在校学生人数约是11.4万人,将11.4万用科学记数法表示应为()A.11.4×104 B.1.14×104 C.1.14×105 D.0.114×1063.函数中自变量x的取值范围是()A.x≥2 B.x≥﹣2 C.x<2 D.x<﹣24.下列计算正确的是()A.a2+a2=2a4 B.3a2b2÷a2b2=3abC.(﹣a2)2=a4D.(﹣m3)2=m95.抛物线y=﹣6x2可以看作是由抛物线y=﹣6x2+5按下列何种变换得到()A.向上平移5个单位 B.向下平移5个单位C.向左平移5个单位 D.向右平移5个单位6.河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为()A.12米B.4米C.5米D.6米7.如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB 于点E,交AC于点F,点P是⊙A上的一点,且∠EPF=45°,则图中阴影部分的面积为()A.4﹣π B.4﹣2πC.8+πD.8﹣2π8.按一定规律排列的一列数:,,,…其中第6个数为()A.B.C.D.9.在一次体育达标测试中,九年级(3)班的15名男同学的引体向上成绩如下表所示:成绩(个)8 9 11 12 13 15人数 1 2 3 4 3 2这15名男同学引体向上成绩的中位数和众数分别是()A.12,13 B.12,12 C.11,12 D.3,410.下列四个命题:①对角线互相垂直的平行四边形是正方形;②,则m≥1;③过弦的中点的直线必经过圆心;④圆的切线垂直于经过切点的半径;⑤圆的两条平行弦所夹的弧相等;其中正确的命题有()个.A.1 B.2 C.3 D.411.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1.反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为()A.2 B.4 C.2D.412.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②>0;③ac﹣b+1=0;④OA•OB=﹣.其中正确结论的个数是()A.4 B.3 C.2 D.1二、填空题:每题3分,共24分.13.计算:(﹣)=.14.在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则n=.15.=.16.折叠矩形ABCD,使点D落在BC边上的点F处,若折痕AE=5,tan∠EFC=,则BC=.17.如图,Rt△A′BC′是由Rt△ABC绕B点顺时针旋转而得,且点A、B、C′在同一条直线上,在Rt△ABC中,若∠C=90°,BC=2,AB=4,则斜边AB旋转到A′B所扫过的扇形面积为.18.关于x的不等式组的解集为x<3,那么m的取值范围是.19.如图,AB是⊙O的直径,且经过弦CD的中点H,过CD延长线上一点E作⊙O的切线,切点为F.若∠ACF=65°,则∠E=.20.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H.给出下列结论:①△ABE≌△DCF;②;③DP2=PH•PB;④.其中正确的是.(写出所有正确结论的序号)三、解答题:本大题共6小题,共60分.21.(8分)某校课题研究小组对本校九年级全体同学体育测试情况进行调查,他们随即抽查部分同学体育测试成绩(由高到低分A、B、C、D四个等级),根据调查的数据绘制成如下的条形统计图和扇形统计图.请根据以上不完整的统计图提供的信息,解答下列问题:(1)该课题研究小组共抽查了名同学的体育测试成绩,扇形统计图中B级所占的百分比b=,D级所在小扇形的圆心角的大小为;(2)请直接补全条形统计图;(3)若该校九年级共有600名同学,请估计该校九年级同学体育测试达标(测试成绩C级以上,含C级)的人数.22.(8分)海船以5海里/小时的速度向正东方向行驶,在A处看见灯塔B在海船的北偏东60°方向,2小时后船行驶到C处,发现此时灯塔B在海船的北偏西45°方向,求此时灯塔B到C处的距离.23.(12分)杰瑞公司成立之初投资1500万元购买新生产线生产新产品,此外,生产每件该产品还需要成本60元.按规定,该产品售价不得低于100元/件且不得超过180元/件,该产品销售量y(万件)与产品售价x(元)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出x的取值范围;(2)第一年公司是盈利还是亏损?求出当盈利最大或者亏损最小时的产品售价;(3)在(2)的前提下,即在第一年盈利最大或者亏损最小时,第二年公司重新确定产品售价,能否使两年共盈利达1340万元?若能,求出第二年产品售价;若不能,请说明理由.24.(8分)如图,AB是⊙O的直径,OD⊥弦BC于点F,交⊙O于点E,连结CE、AE、CD,若∠AEC=∠ODC.(1)求证:直线CD为⊙O的切线;(2)若AB=5,BC=4,求线段CD的长.25.(12分)已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上,∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm.如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿BA匀速移动,当△DEF的顶点D 移动到AC 边上时,△DEF 停止移动,点P 也随之停止移动,DE 与AC 相交于点Q ,连接PQ ,设移动时间为t (s )(0<t <4.5). 解答下列问题:(1)当t 为何值时,点A 在线段PQ 的垂直平分线上?(2)连接PE ,设四边形APEC 的面积为y (cm 2),求y 与t 之间的函数关系式,是否存在某一时刻t ,使面积y 最小?若存在,求出y 的最小值;若不存在,说明理由; (3)是否存在某一时刻t ,使P 、Q 、F 三点在同一条直线上?若存在,求出此时t 的值;若不存在,说明理由.26.(12分)如图所示,抛物线y=ax 2+c (a >0)经过梯形ABCD 的四个顶点,梯形的底AD 在x 轴上,其中A (﹣2,0),B (﹣1,﹣3). (1)求抛物线的解析式;(2)点M 为y 轴上任意一点,当点M 到A ,B 两点的距离之和为最小时,求此时点M 的坐标;(3)在第(2)问的结论下,抛物线上的点P 使S △PAD =4S △ABM 成立,求点P 的坐标.2016年内蒙古包头市昆都仑区中考数学二模试卷参考答案与试题解析一、选择题:本大题共12小题,每题3分,共36分.1.﹣8的立方根是()A.2 B.2C.﹣D.﹣2【考点】立方根.【分析】直接利用立方根的定义分析得出答案.【解答】解:﹣8的立方根是:﹣2.故选:D.【点评】此题主要考查了立方根,正确把握立方根的定义是解题关键.2.统计显示,2013年底某市各类高中在校学生人数约是11.4万人,将11.4万用科学记数法表示应为()A.11.4×104 B.1.14×104 C.1.14×105 D.0.114×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:11.4万=1.14×105,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.函数中自变量x的取值范围是()A.x≥2 B.x≥﹣2 C.x<2 D.x<﹣2【考点】函数自变量的取值范围;二次根式有意义的条件.【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,二次根式有意义的条件是:被开方数为非负数.【解答】解:依题意,得x+2≥0,解得x≥﹣2,故选B.【点评】注意二次根式的被开方数是非负数.4.下列计算正确的是()A.a2+a2=2a4 B.3a2b2÷a2b2=3abC.(﹣a2)2=a4D.(﹣m3)2=m9【考点】整式的除法;合并同类项;幂的乘方与积的乘方.【分析】分别利用合并同类项法则以及单项式除以单项式运算法则和积的乘方运算法则化简,进而判断得出答案.【解答】解:A、a2+a2=2a2,故此选项错误;B、3a2b2÷a2b2=3,故此选项错误;C、(﹣a2)2=a4,正确;D、(﹣m3)2=m6,故此选项错误;故选:C.【点评】此题主要考查了合并同类项以及单项式除以单项式运算和积的乘方运算等知识,正确掌握相关运算法则是解题关键.5.抛物线y=﹣6x2可以看作是由抛物线y=﹣6x2+5按下列何种变换得到()A.向上平移5个单位 B.向下平移5个单位C.向左平移5个单位 D.向右平移5个单位【考点】二次函数图象与几何变换.【分析】先得到两个抛物线的顶点坐标,然后根据顶点坐标判断平移的方向和单位长度.【解答】解:∵y=﹣6x2+5的顶点坐标为(0,5),而抛物线y=﹣6x2的顶点坐标为(0,0),∴把抛物线y=﹣6x2+5向下平移5个单位可得到抛物线y=﹣6x2.故选B.【点评】本题考查了抛物线的几何变换:抛物线的平移问题可转化为其顶点的平移问题,抛物线的顶点式:y=a(x﹣h)2+k(a≠0),则抛物线的顶点坐标为(h,k).6.河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为()A.12米B.4米C.5米D.6米【考点】解直角三角形的应用-坡度坡角问题.【分析】根据迎水坡AB的坡比为1:,可得=1:,即可求得AC的长度,然后根据勾股定理求得AB的长度.【解答】解:Rt△ABC中,BC=6米,=1:,∴AC=BC×=6,∴AB===12.故选A.【点评】此题主要考查解直角三角形的应用,构造直角三角形解直角三角形并且熟练运用勾股定理是解答本题的关键.7.如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB 于点E,交AC于点F,点P是⊙A上的一点,且∠EPF=45°,则图中阴影部分的面积为()A.4﹣π B.4﹣2πC.8+πD.8﹣2π【考点】扇形面积的计算;切线的性质.【分析】根据圆周角定理可以求得∠A的度数,即可求得扇形EAF的面积,根据阴影部分的面积=△ABC的面积﹣扇形EAF的面积即可求解.【解答】解:△ABC的面积是:BC•AD=×4×2=4,∠A=2∠EPF=90°.则扇形EAF的面积是:=π.故阴影部分的面积=△ABC的面积﹣扇形EAF的面积=4﹣π.故选A.【点评】本题主要考查了扇形面积的计算,正确求得扇形的圆心角是解题的关键.8.按一定规律排列的一列数:,,,…其中第6个数为()A.B.C.D.【考点】算术平方根.【分析】观察这列数,得到分子和分母的规律,进而得到答案.【解答】解:根据一列数:,,,可知,第n个数分母是n,分子是n2﹣1的算术平方根,据此可知:第六个数是,故选C.【点评】此题考查了数字的变化类,从分子、分母两个方面考虑求解是解题的关键,难点在于观察出分子的变化.9.在一次体育达标测试中,九年级(3)班的15名男同学的引体向上成绩如下表所示:成绩(个)8 9 11 12 13 15人数 1 2 3 4 3 2这15名男同学引体向上成绩的中位数和众数分别是()A.12,13 B.12,12 C.11,12 D.3,4【考点】众数;中位数.【分析】根据中位数与众数的定义,从小到大排列后,中位数是第8个数,众数是出现次数最多的一个,解答即可.【解答】解:第8个数是12,所以中位数为12;12出现的次数最多,出现了4次,所以众数为12,故选B.【点评】本题主要考查众数与中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.一组数据中出现次数最多的数据叫做众数.10.下列四个命题:①对角线互相垂直的平行四边形是正方形;②,则m≥1;③过弦的中点的直线必经过圆心;④圆的切线垂直于经过切点的半径;⑤圆的两条平行弦所夹的弧相等;其中正确的命题有()个.A.1 B.2 C.3 D.4【考点】命题与定理.【分析】利用正方形的判定方法、垂径定理及其推理、圆的有关性质等知识分别判断后即可确定正确的选项.【解答】解:①对角线互相垂直的平行四边形是菱形,故错误;②,则m≥1,正确;③过弦的中点的且垂直于弦的直线必经过圆心,故错误;④圆的切线垂直于经过切点的半径,正确;⑤圆的两条平行弦所夹的弧相等,正确,正确的有3个,故选C;【点评】本题考查了命题与定理的知识,解题的关键是了解正方形的判定方法、垂径定理及其推理、圆的有关性质等知识,难度不大.11.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1.反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为()A.2 B.4 C.2D.4【考点】菱形的性质;反比例函数图象上点的坐标特征.【分析】过点A作x轴的垂线,与CB的延长线交于点E,根据A,B两点的纵坐标分别为3,1,可得出横坐标,即可求得AE,BE,再根据勾股定理得出AB,根据菱形的面积公式:底乘高即可得出答案.【解答】解:过点A作x轴的垂线,与CB的延长线交于点E,∵A,B两点在反比例函数y=的图象上且纵坐标分别为3,1,∴A,B横坐标分别为1,3,∴AE=2,BE=2,∴AB=2,S=底×高=2×2=4,菱形ABCD故选D.【点评】本题考查了菱形的性质以及反比例函数图象上点的坐标特征,熟记菱形的面积公式是解题的关键.12.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②>0;③ac﹣b+1=0;④OA•OB=﹣.其中正确结论的个数是()A.4 B.3 C.2 D.1【考点】二次函数图象与系数的关系.【分析】由抛物线开口方向得a<0,由抛物线的对称轴位置可得b>0,由抛物线与y轴的交点位置可得c>0,则可对①进行判断;根据抛物线与x轴的交点个数得到b2﹣4ac>0,加上a<0,则可对②进行判断;利用OA=OC可得到A(﹣c,0),再把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,两边除以c则可对③进行判断;设A(x1,0),B(x2,0),则OA=﹣x1,OB=x2,根据抛物线与x轴的交点问题得到x1和x2是方程ax2+bx+c=0(a≠0)的两根,利用根与系数的关系得到x1•x2=,于是OA•OB=﹣,则可对④进行判断.【解答】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的右侧,∴b>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,而a<0,∴<0,所以②错误;∵C(0,c),OA=OC,∴A(﹣c,0),把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,∴ac﹣b+1=0,所以③正确;设A(x1,0),B(x2,0),∵二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,∴x1和x2是方程ax2+bx+c=0(a≠0)的两根,∴x1•x2=,∴OA•OB=﹣,所以④正确.故选:B.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab >0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题:每题3分,共24分.13.计算:(﹣)=﹣.【考点】分式的混合运算.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=•=﹣•=﹣.故答案为:﹣.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.14.在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则n=1.【考点】概率公式.【分析】根据白球的概率公式列出关于n的方程,求出n的值即可.【解答】解:由题意知:,解得n=1.【点评】用到的知识点为:概率=所求情况数与总情况数之比.15.=5.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】分别根据数的开方法则、0指数幂的运算法则、特殊角的三角函数值及绝对值的性质计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=2﹣4×+1+4=2﹣2+5=5.故答案为:5.【点评】本题考查的是实数的运算,熟知数的开方法则、0指数幂的运算法则、特殊角的三角函数值及绝对值的性质是解答此题的关键.16.折叠矩形ABCD,使点D落在BC边上的点F处,若折痕AE=5,tan∠EFC=,则BC=10.【考点】矩形的性质;翻折变换(折叠问题).【分析】根据tan∠EFC=,设CE=3k,在RT△EFC中可得CF=4k,EF=DE=5k,根据∠BAF=∠EFC,利用三角函数的知识求出AF,然后在RT△AEF中利用勾股定理求出k,继而代入可得出答案.【解答】解:设CE=3k,则CF=4k,由勾股定理得EF=DE==5k,∴DC=AB=8k,∵∠AFB+∠BAF=90°,∠AFB+∠EFC=90°,∴∠BAF=∠EFC,∴tan∠BAF=tan∠EFC=,∴BF=6k,AF=BC=AD=10k,在Rt△AFE中,由勾股定理得AE===5k=5,解得:k=1,∴BC=10×1=10;故答案为:10.【点评】此题考查了翻折变换的性质、矩形的性质、勾股定理;解答本题关键是根据三角函数值,表示出每条线段的长度,然后利用勾股定理进行解答,有一定难度.17.如图,Rt△A′BC′是由Rt△ABC绕B点顺时针旋转而得,且点A、B、C′在同一条直线上,在Rt△ABC中,若∠C=90°,BC=2,AB=4,则斜边AB旋转到A′B所扫过的扇形面积为.【考点】扇形面积的计算.【分析】根据题意可知斜边AB旋转到A'B所扫过的扇形面积为扇形ABA′的面积,根据扇形面积公式计算即可.【解答】解:AB=4,∠ABA′=120°,所以s==π.【点评】主要考查了扇形面积的求算方法.面积公式有两种:(1)、利用圆心角和半径:s=;(2)、利用弧长和半径:s=lr.针对具体的题型选择合适的方法.18.关于x的不等式组的解集为x<3,那么m的取值范围是m≥3.【考点】解一元一次不等式组.【分析】首先解第一个不等式,然后根据不等式组的解集即可确定m的范围.【解答】解:,解①得x<3,∵不等式组的解集是x<3,∴m≥3.故答案是:m≥3.【点评】本题考查了一元一次不等式组的解法,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.19.如图,AB是⊙O的直径,且经过弦CD的中点H,过CD延长线上一点E作⊙O的切线,切点为F.若∠ACF=65°,则∠E=50°.【考点】切线的性质.【分析】连接DF,连接AF交CE于G,由AB是⊙O的直径,且经过弦CD的中点H,得到,由于EF是⊙O的切线,推出∠GFE=∠GFD+∠DFE=∠ACF=65°根据外角的性质和圆周角定理得到∠EFG=∠EGF=65°,于是得到结果.【解答】解:连接DF,连接AF交CE于G,∵AB是⊙O的直径,且经过弦CD的中点H,∴,∵EF是⊙O的切线,∴∠GFE=∠GFD+∠DFE=∠ACF=65°,∵∠FGD=∠FCD+∠CFA,∵∠DFE=∠DCF,∠GFD=∠AFC,∠EFG=∠EGF=65°,∴∠E=180°﹣∠EFG﹣∠EGF=50°,故答案为:50°.方法二:连接OF,易知OF⊥EF,OH⊥EH,故E,F,O,H四点共圆,又∠AOF=2∠ACF=130°,故∠E=180°﹣130°=50°【点评】本题考查了切线的性质,圆周角定理,垂径定理,正确的作出辅助线是解题的关键.20.如图,在正方形ABCD 中,△BPC 是等边三角形,BP 、CP 的延长线分别交AD 于点E 、F ,连接BD 、DP ,BD 与CF 相交于点H .给出下列结论: ①△ABE ≌△DCF ;②;③DP 2=PH •PB ;④.其中正确的是 ①③ .(写出所有正确结论的序号)【考点】相似三角形的判定与性质;全等三角形的判定与性质;等边三角形的性质;正方形的性质.【分析】①根据等边三角形的性质和正方形的性质,得到∠ABE=∠DCF ,∠A=∠ADC ,AB=CD ,证得△ABE ≌△DCF ,①正确;②由于∠FDP=∠PBD ,∠DFP=∠BPC=60°,推出△DFP ∽△BPH ,得到===tan∠DCF=,②错误;③由于∠PDH=∠PCD=30°,∠DPH=∠DPC ,推出△DPH ∽△CPD ,得到=,PB=CD ,等量代换得到DP 2=PH •PB ,③正确;④设正方形ABCD 的边长是3,则PB=BC=AD=3,求得∠EBA=30°,得出AE 、BE 、EP 的长,由S △BED =S ABD ﹣S ABE ,S △EPD =S △BED ,求得=,④错误;即可得出结论.【解答】解:①∵△BPC 是等边三角形, ∴BP=PC=BC ,∠PBC=∠PCB=∠BPC=60°, ∵四边形ABCD 为正方形,∴AB=BC=CD ,∠A=∠ADC=∠BCD=90° ∴∠ABE=∠DCF=30°, 在△ABE 与△CDF 中,,∴△ABE ≌△DCF (ASA ),故①正确;②∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠FCB=∠BPC=60°,∴△DFP∽△BPH,∴===tan∠DCF=,故②错误;③∵∠FDP=15°,∴∠PDH=30°∴∠PDH=∠PCD,∵∠DPH=∠DPC,∴△DPH∽△CDP,∴=,∴DP2=PH•CD,∵PB=CD,∴DP2=PH•PB,故③正确;④设正方形ABCD的边长是3,∵△BPC为正三角形,∴∠PBC=60°,PB=BC=AD=3,∴∠EBA=30°,∴AE=ABtan30°=3×=,BE===2,∴EP=BE﹣BP=2﹣3,S=S ABD﹣S ABE=×3×3﹣×3×=,△BEDS △EPD =S △BED =×=,∴==,故④错误;∴正确的是①③; 故答案为:①③.【点评】本题考查了相似三角形的判定与性质、全等三角形的判定、等边三角形的性质、正方形的性质、三角形面积计算、三角函数等知识;熟练掌握相似三角形的判定与性质、三角形面积计算、三角函数是解决问题的关键.三、解答题:本大题共6小题,共60分.21.某校课题研究小组对本校九年级全体同学体育测试情况进行调查,他们随即抽查部分同学体育测试成绩(由高到低分A 、B 、C 、D 四个等级),根据调查的数据绘制成如下的条形统计图和扇形统计图.请根据以上不完整的统计图提供的信息,解答下列问题:(1)该课题研究小组共抽查了 80 名同学的体育测试成绩,扇形统计图中B 级所占的百分比b= 40% ,D 级所在小扇形的圆心角的大小为 18° ; (2)请直接补全条形统计图;(3)若该校九年级共有600名同学,请估计该校九年级同学体育测试达标(测试成绩C 级以上,含C 级)的人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据A 组人数及其百分比可得抽查总人数,将B 级人数除以总人数可得其百分比,用D 等级人数占被抽查人数的比例乘以360°即可;(2)总人数减去A 、B 、D 三等级人数可得C 等级人数,补全条形图即可;(3)用样本中C等级及其以上(即A、B、C三等级)人数占被抽查人数的比例乘以总人数600可得.【解答】解:(1)课题研究小组共抽查学生:20÷25%=80(名),b=×100%=40%,D级所在小扇形的圆心角的大小为×360°=18°;故答案为:80,40%,18.(2)C等级人数为:80﹣20﹣32﹣4=24(名),补全条形统计图如图:(3)600×=570(人),答:估计该校九年级同学体育测试达标(测试成绩C级以上,含C级)的约有570人.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意,从统计图中得到必要的信息是解决问题的关键.22.海船以5海里/小时的速度向正东方向行驶,在A处看见灯塔B在海船的北偏东60°方向,2小时后船行驶到C处,发现此时灯塔B在海船的北偏西45°方向,求此时灯塔B到C 处的距离.【考点】解直角三角形的应用-方向角问题.【分析】由已知可得△ABC中∠BAC=30°,∠BCA=45°且AC=10海里.要求BC的长,可以过B作BD⊥BC于D,先求出AD和CD的长.转化为运用三角函数解直角三角形.【解答】解:如图,过B点作BD⊥AC于D.∴∠DAB=90°﹣60°=30°,∠DCB=90°﹣45°=45°.设BD=x,在Rt△ABD中,AD==x,在Rt△BDC中,BD=DC=x,BC=,∵AC=5×2=10,∴x+x=10.得x=5(﹣1).∴BC=•5(﹣1)=5(﹣)(海里).答:灯塔B距C处海里.【点评】解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.23.(12分)(2016•包头二模)杰瑞公司成立之初投资1500万元购买新生产线生产新产品,此外,生产每件该产品还需要成本60元.按规定,该产品售价不得低于100元/件且不得超过180元/件,该产品销售量y(万件)与产品售价x(元)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出x的取值范围;(2)第一年公司是盈利还是亏损?求出当盈利最大或者亏损最小时的产品售价;(3)在(2)的前提下,即在第一年盈利最大或者亏损最小时,第二年公司重新确定产品售价,能否使两年共盈利达1340万元?若能,求出第二年产品售价;若不能,请说明理由.【考点】二次函数的应用;一次函数的应用.【分析】(1)设y=kx+b,则由图象可求得k,b,从而得出y与x之间的函数关系式,并写出x的取值范围100≤x≤180;(2)设公司第一年获利W万元,则可表示出W=﹣(x﹣180)2﹣60≤﹣60,则第一年公司亏损了,当产品售价定为180元/件时,亏损最小,最小亏损为60万元;(3)假设两年共盈利1340万元,则﹣x2+36x﹣1800﹣60=1340,解得x的值,根据100≤x≤180,则x=160时,公司两年共盈利达1340万元.【解答】解:(1)设y=kx+b,则由图象知:,解得k=﹣,b=30,∴y=﹣x+30,100≤x≤180;(2)设公司第一年获利W万元,则W=(x﹣60)y﹣1500=﹣x2+36x﹣3300=﹣(x﹣180)2﹣60≤﹣60,∴第一年公司亏损了,当产品售价定为180元/件时,亏损最小,最小亏损为60万元;(3)若两年共盈利1340万元,因为第一年亏损60万元,第二年盈利的为(x﹣60)y=﹣x2+36x﹣1800,则﹣x2+36x﹣1800﹣60=1340,解得x1=200,x2=160,∵100≤x≤180,∴x=160,∴每件产品的定价定为160元时,公司两年共盈利达1340万元.【点评】本题是一道一次函数的综合题,考查了二次函数的应用,还考查了用待定系数法求一次函数的解析式.24.如图,AB是⊙O的直径,OD⊥弦BC于点F,交⊙O于点E,连结CE、AE、CD,若∠AEC=∠ODC.(1)求证:直线CD为⊙O的切线;(2)若AB=5,BC=4,求线段CD的长.【考点】切线的判定.【分析】(1)利用圆周角定理结合等腰三角形的性质得出∠OCF+∠DCB=90°,即可得出答案;(2)利用圆周角定理得出∠ACB=90°,利用相似三角形的判定与性质得出DC的长.【解答】(1)证明:连接OC,∵∠CEA=∠CBA,∠AEC=∠ODC,∴∠CBA=∠ODC,又∵∠CFD=∠BFO,∴∠DCB=∠BOF,∵CO=BO,∴∠OCF=∠B,∵∠B+∠BOF=90°,∴∠OCF+∠DCB=90°,∴直线CD为⊙O的切线;(2)解:连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠DCO=∠ACB,又∵∠D=∠B∴△OCD∽△ACB,∵∠ACB=90°,AB=5,BC=4,∴AC=3,∴=,即=,解得;DC=.【点评】此题主要考查了切线的判定以及相似三角形的判定与性质,得出△OCD∽△ACB 是解题关键.25.(12分)(2016•昆都仑区二模)已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上,∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm.如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2cm/s 的速度沿BA匀速移动,当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移动,DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0<t<4.5).解答下列问题:(1)当t为何值时,点A在线段PQ的垂直平分线上?(2)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式,是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由;(3)是否存在某一时刻t,使P、Q、F三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由.【考点】三角形综合题.【分析】(1)因为点A在线段PQ垂直平分线上,所以得到线段相等,可得CE=CQ,用含t的式子表示出这两个线段即可得解;(2)作PM⊥BC,将四边形的面积表示为S△ABC ﹣S△BPE即可求解;(3)假设存在符合条件的t值,由相似三角形的性质即可求得.【解答】解:(1)∵点A在线段PQ的垂直平分线上,∴AP=AQ;∵∠DEF=45°,∠ACB=90°,∠DEF+∠ACB+∠EQC=180°,∴∠EQC=45°;∴∠DEF=∠EQC;∴CE=CQ;由题意知:CE=t,BP=2t,∴CQ=t;∴AQ=8﹣t;在Rt△ABC中,由勾股定理得:AB=10cm;则AP=10﹣2t;∴10﹣2t=8﹣t;解得:t=2;答:当t=2s时,点A在线段PQ的垂直平分线上;(2)如图1,过P作PM⊥BE,交BE于M,∴∠BMP=90°;在Rt△ABC和Rt△BPM中,sinB=,∴=,∴PM=,∵BC=6cm,CE=t,∴BE=6﹣t,∴y=S△ABC ﹣S△BPE=BC•AC﹣BE•PM=6×8﹣(6﹣t)×t=t2﹣t+24=(t﹣3)2+,∵a=,∴抛物线开口向上;∴当t=3时,y最小=;答:当t=3s时,四边形APEC的面积最小,最小面积为cm2.(3)假设存在某一时刻t,使点P、Q、F三点在同一条直线上;如图2,过P作PN⊥AC,交AC于N∴∠ANP=∠ACB=∠PNQ=90°;∵∠PAN=∠BAC,∴△PAN∽△BAC,∴,∴,∴PN=6﹣tAN=8﹣t,∵NQ=AQ﹣AN,。
上海各区初中数学二模试题及解答
1.下列计算中,正确的是 ……………………………………………………………………( ▲ )
(A) a3 a3 a6
(B) a3 a2 a6
(C) (a3 )2 a9
(D) (a2 )3 a6
2.下列说法不.一.定.成立的是 …………………………………………………………………( ▲ )
16、如图 2,如果在大厦 AB 所在的平地上选择一点 C,测得大厦顶端 A 的
仰角为 30°,然后向大厦方向前进 40 米,到达点 D 处(C、D、B 三点在同
一直线上),此时测得大厦顶端 A 的仰角为 45°,那么大厦 AB 的高度 为_______米(保留根号);
C
D 图2 B
17、对于实数 m、n,定义一种运算“*”为:m*n=mn+n.如果关于 x 的方程 x*(a*x)= 1 有两个相等的
(A) 直线 x 4
(B) 直线 x 4
(C) 直线 x 8
(D) 直线 x 8
4.一个不透明的盒子中装有 3 个红球,2 个黄球和 1 个绿球,这些球除了颜色外无其他差别,
从中随机摸出一个小球,恰好是黄球的概率为 …………………………………………( ▲ )
(A) 1 6
(B) 1 3
两点,与反比例函数 y m (m 0) 的图像在第一象限内交于点 M, x
若 OBM 的面积是 2.
y
(1)求一次函数和反比例函数的解析式;
(2)若点 P 是 x 轴正半轴上一点且 AMP 90 ,
M
求点 P 的坐标.
1 2
1
2 3 1
上海松江区初三数学二模试卷及答案
2015年松江区初中毕业生学业模拟考试数学试卷(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.下列根式中,与24是同类根式的是( ) (A )2;(B )3;(C )5;(D )6.2.如果关于x 的一元二次方程042=+-k x x 有两个不相等的实数根,那么k 的取值范围是( )(A )4<k ; (B )4>k ;(C )0<k ;(D )0>k .3.已知一次函数y =kx ﹣1,若y 随x 的增大而增大,则它的图像经过( ) (A )第一、二、三象限;(B )第一、三、四象限; (C )第一、二、四象限;(D )第二、三、四象限.4.一组数据:-1,1,3,4,a ,若它们的平均数为2,则这组数据的众数为( ) (A )1;(B )2;(C )3;(D )4.5.已知在四边形ABCD 中,AB ∥CD ,添加下列一个条件后,一定能判定四边形ABCD 是平行四边形的是( )(A )AD =BC ; (B )AC =BD ; (C )∠A =∠C ; (D )∠A =∠B . 6.如图,在Rt△ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,AB =c ,∠A =α,则CD 长为( ) (A )α2sin ⋅c ;(B )α2cos ⋅c ;ACBD(C )ααtan sin ⋅⋅c ; (D )ααcos sin ⋅⋅c . 二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上】 7.计算:1-2=________.8.分解因式:224b a -=______________________. 9.已知1)(-=x xx f ,那么)3(f =___________. 10.已知正比例函数的图像经过点(-1,3),那么这个函数的解析式为________. 11.不等式组⎩⎨⎧><+6251x x 的解集是___________.12.用换元法解方程221201x x x x -++=-时,可设21x y x-=,则原方程可化为关于y 的整式方程为 .13.任意掷一枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6),朝上的面的数字大于2的概率是_______.14.将抛物线221y x =-向上平移4个单位后,所得抛物线的解析式是___________. 15.在△ABC 中,AD 是BC 边上的中线,如果=,=,那么 .(用、表示) 16.如图,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB 为直角,若AB =8,BC =10,则EF的长为 .17.如图,当小明沿坡度3:1=i 的坡面由A 到B 行走了100米,那么小明行走的水平距离=AC 米.(结果可以用根号表示) 18.如图,在△ABC 中,AB =AC =5cm ,BC =6cm ,BD 平分∠ABC ,BD 交AC 于点D .如果将△ABD沿BD 翻折,点A 落在点A ′处,那么△D A ′C 的面积为_______________cm 2.BA EFCD (第16题图)ABD(第18题图)ABC (第17题图)三、解答题:(本大题共7题,满分78分)19.(本题满分10分) 计算:323112---÷-+x x x x )(20.(本题满分10分) 解方程组:⎩⎨⎧=--=+0548322y xy x y x21.(本题满分10分)某品牌电动车经销商一月份销售该品牌电动车100辆,二月份的销售量比一月份增加10%,二月份每辆电动车的售价比一月份每辆电动车的售价低80元,二月份的销售总额比一月份销售总额多12200元,问一月份每辆电动车的售价是多少?22.(本题满分10分,每小题各5分)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,且CD =24,点M 在⊙O 上,MD 经过圆心O ,联结MB .(1)若BE =8,求⊙O 的半径; (2)若∠DMB=∠D ,求线段OE 的长.23.(本题满分12分,每小题各6分)如图,已知在正方形ABCD 中,点E 在CD 边上,过C 点作AE 的垂线交于点F ,联结DF ,过点D 作DF 的垂线交AF 于点G ,联结BG . (1)求证:△ADG ≌△CDF ;(2)如果E 为CD 的中点,求证:BG ⊥AF .A(第23题图)EGDFCB(第22题图)24.(本题满分12分,每小题各4分)如图,二次函数bx x y +-=2的图像与x 轴的正半轴交于点A (4,0),过A 点的直线与y 轴的正半轴交于点B ,与二次函数的图像交于另一点C ,过点C 作CH ⊥x 轴,垂足为H .设二次函数图像的顶点为D ,其对称轴与直线AB 及x 轴分别交于点E 和点F . (1)求这个二次函数的解析式; (2)如果CE =3BC ,求点B 的坐标;(3)如果△DHE 是以DH 为底边的等腰三角形,求点E 的坐标.(第24题图)x25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)如图,已知在直角梯形ABCD 中,AD ∥BC ,∠ABC =90º,AB =4,AD=3,552sin =∠BCD ,点P 是对角线BD 上一动点,过点P 作PH ⊥CD ,垂足为H . (1)求证:∠BCD =∠BDC ;(2)如图1,若以P 为圆心、PB 为半径的圆和以H 为圆心、HD 为半径的圆外切时,求DP 的长;(3)如图2,点E 在BC 延长线上,且满足DP =CE ,PE 交DC 于点F ,若△ADH 和△ECF 相似,求DP 的长.ABCHPD (第25题图1)ABCHPD EF(第25题图2)2015年松江区初中毕业生学业模拟考试数学参考答案及评分标准一、选择题1、D ;2、A ;3、B ;4、C ;5、C ;6、D . 二、填空题7、21; 8、()()b a b a 22-+; 9、23; 10、x y 3-=; 11、43<<x ;12、0122=++y y ; 13、32; 14、322+=x y ; 15、-2; 16、1; 17、1030; 18、1112. 三、解答题19.解: 原式=()()31232-+-÷--x x x x x ………………………………………………………6分 =()()12332+--⨯--x x x x x …………………………………………………………2分 =11+x ……………………………………………………………………………2分 20.解:由②得0,05=+=-y x y x …………………………………………………………4分原方程组化为⎩⎨⎧=-=+0583y x y x ,⎩⎨⎧=+=+083y x y x …………………………………………2分解得⎩⎨⎧=-=⎩⎨⎧==44152211y x y x …………………………………………………………4分 21.解:(1)设一月份每辆电动车的售价是x 元.…………………………………………1分 根据题意得:()()12200100-80%101100=-+x x …………………………………………5分 解得2100=x …………………………………………………………………………………2分 答:一月份每辆电动车的售价是2100元.……………………………………………………2分22.解:(1)设⊙O 的半径为r ,则OD =OB =r∵BE =8,∴OE =r -8………………………………………………………………………………1分 ∵OB ⊥CD ,OB 是半径,∴ED =CD 21…………………………………………………………1分∵CD =24,∴ED =12 ……………………………………………………………………………1分 在Rt△OED 中,222OD ED OE =+∴222128r r =+-)( …………………………………………………………………………1分解得13=r ………………………………………………………………………………………1分 ∴⊙O 的半径为13.(2)∵OM =OB ,∴∠OMB =∠B ……………………………………………………………1分 ∵∠DOE =∠OMB +∠B ,∴∠DOE =2∠OMB ………………………………………………1分 ∵∠DMB=∠D ,∴∠DOE =2∠D ,∵∠DOE +∠D =90°,∴∠D =30°………………………1分 在Rt △OED 中,EDOED =∠tan ………………………………………………………………1分 ∵ED =12,∠D =30°∴OE =34………………………………………………………………………………………1分 23.证明:(1)∵四边形ABCD 是正方形∴AD =DC ,∠ADC =90°…………………………………………………………………………2分 ∵GD ⊥DF ,∴∠GDF =90°∴∠ADG =∠CDF ………………………………………………………………………………1分 ∵CF ⊥AF ,∴∠AFC =90°,∴∠CFD =90°+∠DFG …………………………………………1分 ∵∠AGD =∠GDF +∠DFG =90°+∠DFG∴∠AGD =∠CFD ………………………………………………………………………………1分 ∴△ADG ≌△CDF ………………………………………………………………………………1分 (2)∵∠ADE =∠EFC ,∠DEA =∠FEC ,∴△ADE ∽△CFE ,∴FCEFAD DE =……………1分 ∵E 为CD 的中点,∴21=DC DE ,∴21=AD DE ,∴21=FC EF ∵△ADG ≌△CDF ,∴FC =AG ,∴21=AG EF ,∵21=AB EC ,∴ABECAG EF = ……………1分 ∵AB ∥EC ,∴∠FEC=∠GAB …………………………………………………………………1分∴△EFC ∽△AGB ………………………………………………………………………………1分 ∴∠EFC =∠AGB =90° …………………………………………………………………………1分 ∴BG ⊥AF ………………………………………………………………………………………1分24.解:(1)∵抛物线bx x y +-=2经过点A (4,0)∴b 416-0+=…………………………………………………………………………………1分 ∴4=b …………………………………………………………………………………………1分 ∴ 4x 2+-=x y ………………………………………………………………………………1分 ∴抛物线的解析式为x x y 42+-=……………………………………………………………1分(2)∵422+--=)(x y ,顶点D 的坐标是(2,4)……………………………………1分 由抛物线的对称性可得OF =AF =2∵BO ∥CH ∥EF ,∴OF OHBE BC =∵CE =3BC ,∴41=BE BC ,∴OH =21…………………………………………………………1分∴CH =y =47∵AO AH OB CH =,∴421447-=OB ………………………………………………………………1分 ∴OB =2,∴B (0,2) …………………………………………………………………………1分 (3)设点C 的坐标为(x ,-x 2+4x ),∵AH AF CH EF =,∴xx x EF -=+424-2 ∴EF =2x …………………………………………………………………………………………1分∵EH =DE ,∴x x x 242222-=+-)()(…………………………………………………1分∴3461+-=x ,3462--=x (舍)…………………………………………………1分∴38122+-==x EF ,∴),(38122+-E …………………………………………1分25.解:(1)过点D 作DG ⊥BC ,垂足为G∵在Rt △ABD 中,∠ABC =90º,AB =4,AD=3,∴BD=5……………………………………1分 在Rt △DCG 中,∠DGC =90º,552sin =∠BCD =DC DG…………………………………1分 ∵AD ∥BC ,∴AB =DG =4,AD =BG =3,∴DC=52,∴CG=2∴BC=3+2=5……………………………………………………………………………………1分 ∴BD=BC ,∴∠BCD =∠BDC …………………………………………………………………1分 (2)设DP=x ,则R P =PB=5-x ………………………………………………………………1分 ∵∠BCD =∠BDC ,∴552sin sin =∠=∠BDC BCD ……………………………………1分在Rt △PDH 中,∠PHD =90º,552sin =∠BDC =x PHPD PH = ∴PH =x 552,∴DH =x 55,∴R H =HD=x 55……………………………………………1分∵⊙P 与⊙H 外切,∴PH R R H P =+ ………………………………………………………1分 ∴x x x 552555=+-,∴45525-=x …………………………………………………1分 即45525-=DP (3)过点P 作PM ∥BC 交DC 于点M ,∴∠DMP =∠DCB∵∠BDC =∠DCB ,∴∠DMP =∠BDC ,∴PD =PM ,∵PH ⊥CD ,∴DH =HM ……………1分 ∵PM ∥BC ,∴CEPMFC MF =,∵DP =CE ,∴PM =CE ,∴MF =CF ∴521==DC HF ,∴x HF DH CD CF 555-=--=…………………………1分 ∵AD ∥CE ,∴∠ADH=∠FCE …………………………………………………………………1分 (ⅰ)若CFDHCE AD =,则△ADH ∽△ECF ∴xxx 555553-=,解得2693+-=x (负值已舍)……………………………………1分(ⅱ)若CEDHCF AD =,则△ADH ∽△FCE ∴xx x 555553=-,解得10-=x (舍)………………………………………………1分 综上所述,2693+-=DP .。
上海市松江区2016届九年级上学期期末考试数学试题(含详细答案)
上海市松江区2016届九年级上学期期末考试数学试题一. 选择题1. 如果两个相似三角形的面积比是1:4,那么它们的周长比是( ) A. 1:16; B. 1:4; C. 1:6; D. 1:2;2. 下列函数中,属于二次函数的是( )A. 21y x =+;B. 22(1)y x x =--;C. 227y x =-;D. 21y x =-; 3. 在Rt △ABC 中,90ACB ∠=︒,1BC =,2AB =,则下列结论正确的是( )A. sin A =; B. cos A = C. 1tan 2A =; D. cot A = 4. 若四边形ABCD 的对角线交于点O ,且有2AB DC =u u u r u u u r,则以下结论正确的是( )A. 2AO OC =u u u r u u u r ;B. ||||AC BD =u u u r u u u r ;C. AC BD =u u u r u u u r ;D. 2DO OB =u u u r u u u r;5. 如果二次函数2y ax bx c =++(0a ≠)的图像 如图所示,那么( )A. 0a <,0b >,0c >;B. 0a >,0b <,0c >;C. 0a >,0b >,0c <;D. 0a <,0b <,0c <;6. P 是△ABC 一边上的一点(P 不与A 、B 、C 重合),过点P 的一条直线截△ABC , 如果截得的三角形与△ABC 相似,我们称这条直线为过点P 的△ABC 的“相似线” Rt △ABC 中,90C ∠=︒,30A ∠=︒,当点P 为AC 的中点时,过点P 的△ABC 的 “相似线最多有几条?( )A. 1条;B. 2条;C. 3条;D. 4条;二. 填空题7. 若::1:3:2a b c =,且24a b c ++=,则a b c +-= ;8. 已知线段2a cm =,8b cm =,那么线段a 、b 的比例中项等于 cm ; 9. 二次函数223y x x =--+的图像与y 轴的交点坐标为 ;10. 在Rt △ABC 中,90C ∠=︒,如果4AC =,2sin 3B =,那么AB = ; 11. 一位运动员投掷铅球,如果铅球运行时离地面的高度为y (米)关于水平距离x (米)的函数解析式为21251233y x x =-++,那么铅球运动过程中最高点离地面的距离为 米;12. 如图,直线AD ∥BE ∥CF ,23BC AB =,6DE =,那么EF 的值是 ;13. 在一个斜坡上前进5米,水平高度升高了1米,则该斜坡坡度i = ;14. 若点1(3,)A y -、2(0,)B y 是二次函数22(1)3y x =--+图像上的两点,那么1y 与2y 的大小关系是 (填12y y >、12y y =或12y y <);15. 将抛物线2y x =沿x 轴向右平移2个单位后所得抛物线的解析式是 ; 16. 如图,已知DE ∥BC ,且DE 经过△ABC 的重心G ,若6BC cm =,那么DE 等于 cm ;17. 已知二次函数的图像经过(0,3)、(4,3)两点,则该二次函数的图像对称轴为直线 ;18. 已知在△ABC 中,90C ∠=︒,3BC =,4AC =,点D 是AB 边上一点,将△ABC沿着直线CD 翻折,点A 落在直线AB 上的点'A 处,则sin 'A CD ∠= ;三. 解答题19. 已知抛物线23y x bx =++经过点(1,8)A -,顶点为M ; (1)求抛物线的表达式;(2)设抛物线对称轴与x 轴交于点B ,连接AB 、AM ,求△ABM 的面积;20. 如图,已知平行四边形ABCD ,点M 、N 是边DC 、BC 的中点,设AB a =u u u r r ,AD b =u u u r r;(1)求向量MN u u u u r (用向量a r 、b r表示);(2)在图中求作向量MN u u u u r 在AB u u u r 、AD u u u r方向上的分向量; (不要求写作法,但要指出所作图中表示结论的向量)21. 如图,小明所在教学楼的每层高度为3.5米,为了测量旗杆MN 的高度,他在教学楼一 楼的窗台A 处测得旗杆顶部M 的仰角为45°,他在二楼窗台B 处测得M 的仰角为31°, 已知每层楼的窗台离该层的地面高度均为1米,求旗杆MN 的高度;(结果保留两位小数) (参考数据:sin 310.52︒≈,cos310.86︒≈,tan 310.60︒≈)22. 如图,已知△ABC 中,90C ∠=︒,1tan 2A =,点D 在边AB 上,:3:1AD DB =,求cot DCB ∠的值;23. 已知如图,在△ABC 中,BD 平分ABC ∠交AC 于点D ,点E 在AB 上,且2BD =BE BC ⋅;(1)求证:BDE C ∠=∠; (2)求证:2AD AE AB =⋅;24. 如图,已知抛物线23y ax bx =+-与x 轴交于A 、B 两点,与y 轴交于点C ,O 是坐 标原点,已知点B 的坐标是(3,0),tan 3OAC ∠=; (1)求该抛物线的函数表达式;(2)点P 在x 轴上方的抛物线上,且PAB CAB ∠=∠,求点P 的坐标;(3)点D 是y 轴上一动点,若以D 、C 、B 为顶点的三角形与△ABC 相似,求出符合条件的点D 的坐标;25. 已知,等腰梯形ABCD 中,AD ∥BC ,45B BCD ∠=∠=︒,3AD =,9BC =, 点P 是对角线AC 上的一个动点,且APE B ∠=∠,PE 分别交射线AD 和射线CD 于点E 和点G ;(1)如图1,当点E 、D 重合时,求AP 的长;(1)如图2,当点E 在AD 的延长线上时,设AP x =,DE y =,求y 关于x 的函数解 析式,并写出它的定义域;(3)当线段DG =AE 的值;2016年松江区中考数学一模卷一、选择题1.D2.C3.B4.A5.A6.C二、填空题 7.8 8.4 9.(0,3) 10.6 11.3 12.413. 6214.21y y < 15.()22-=x y16.4 17.x =2 18.54三、解答题19.【解】(1)∵抛物线32++=bx x y 经过点(1,8)A -,∴28(1)3b =--+,……………………………………………………(2分) 解得4b =-,……………………………………………………………(2分) ∴所求抛物线的表达式为342+-=x x y ;…………………………(1分) (2)作AH ⊥BM 于点H ,∵由抛物线243y x x =-+解析式可得,点M 的坐标为(2,1)-,点B 的坐标为(2,0),………………………(2分) ∴BM =1,…………………………………………………………………(1分) ∵对称轴为直线2=x ,∴AH =3,……………………………………(1分) ∴△ABM 的面积1132S =⨯⨯=23.……………………………………(1分)第19题图20.【解】(1)方法一:∵四边形ABCD 是平行四边形,∴AB P DC ,AD P BC ,AB =DC ,AD =BC ,……………………………(1分) ∵=,=,∴=,=,…………………………(1分)∵点M 、N 分别为DC 、BC 的中点,∴a MC 21=,b NC 21=,…………(2分) ∴b a CN MC MN 2121-=+=,……………………………………(1分)方法二: ∵a AB =,b AD =,∴b a AD AB DB -=-=,……………………………………………………(2分)∵点M 、N 分别为DC 、BC 的中点,b a DB MN 212121-==,………………………………………………………(3分) (2)作图.………………………………………………………………(4分)结论:AP 、AQ 是向量MN 分别在AB 、AD 方向上的分向量.………(1分)第20题图21.【解】过点M 的水平线交直线AB 于点H ,由题意,得∠AMH =∠MAH =45°,31BMH ∠=︒,AB =3.5,………………(3分) 设MH =x ,则AH =x , tan310.60BH x x =︒=, ……………………………(2分) ∴0.600.4 3.5AB AH BH x x x =-=-==,…………………………………(3分) ∴x =8.75,…………………………………………………………………………(1分) 则旗杆高度19.75MN x =+=(米)答:旗杆MN 的高度度约为9.75米.…………………………………………(1分) 22.【解】过D 点作DH ⊥BC 于点H ,…………………………………………(1分)∵90,ACB ∠=︒∴DH P AC , ∵:3:1,AD DB =∴::1:4,DH AC BH BC == ……(2分)∵设DH =x ,则AC =4 x , ……………………………………………………(2分) ∵90C ∠=︒,1tan ,2A =∴2BC x = , …………………………………………………………………(2分)∵:1:4,BH BC =∵CH =x 23, ……………………………………………………………………(2分) ∴23cot =∠DCB .…………………………………(1分)第22题图23.【证明】(1)∵BD 平分∠ABC ,∴∠ABD =∠CBD ,……………………………………………………………(1分)∵BC BE BD ⋅=2,∴BDBCBE BD =,…………………………………………………………………(2分) ∴△EBD ∽△DBC ,……………………………………………………………(2分) ∴∠BDE =∠C ;…………………………………………………………………(1分) (2) ∵∠BDE =∠C ,∠DBC +∠C=∠BDE +∠ADE ,………………………………………………(1分) ∴∠DBC =∠ADE ,……………………………………………………………(1分) ∵∠ABD =∠CBD ,∴∠ABD =∠ADE ,………………………………………………………………(1分) ∴ADE ABD △∽△,…………………………………………………………(1分) ∴ADAEAB AD =, 即AB AE AD ⋅=2.……………………………………………………………(2分)第23题图24.【解】(1)∵抛物线23y ax bx =+-与y 轴交于点C ,∴点C 的坐标为(0,3)-,∴3OC =,∵tan 3OAC ∠=,∴OA =1,即点A 的坐标为(1,0)-,…(1分)又点(3,0)B ,∴ ⎩⎨⎧=-+=--.0339,03b a b a ∴a =1,b =-2, ………………………………(2分)∴抛物线的函数表达式是223y x x =--;……………………………(1分)(2)∵∠P AB =∠CAB ,∴tan tan 3PAB CAB ∠=∠=,……………………………………………(1分) ∵点P 在x 轴上方,设点P 的横坐标为x ,则点P 的纵坐标为3(1)x +,∴23(1)23x x x +=--,得x =-1(舍去)或x =6,……………………(2分)当x =6时,y =21,∴点P 的坐标为(6,21); …………………………………………………(1分) (3)设点D 的坐标为(0,)y ,易得ABC △为∠ABC =45°的锐角三角形,所以△DCB 也是锐角三角形,∴点D 在点C 的上方, …………………………………………………………(1分) ∴∠DCB =45°, ∴∠ABC =∠DCB ,Q AB =4,BC =23,DC =y +3, ………………………………………………(1分)①如果BC AB BC DC =则234233=+y , ∴y =1,即点D (0,1), ………………………………………………………(1分) ②如果AB BCBC DC =则423233=+y , ∴y =23,即点D (0,23). ……………………………………………………(1分)第24题图25.【解】(1)作AH ⊥BC 于点H , ∵∠B =∠BCD =45°,AD =3,BC =9, ∴BH =AH =3,AB =23,CH =6,∴AC =53,………………………………(1分) ∵AD P BC ,∴∠DAP =∠ACB ,又∠APE =∠B ,∴ADP CAB △∽△,……………………………………………………………(2分) ∴BC APAC AD =,即9533AP =, ∴559=AP ;…………………………………………………………………(1分)第25题图1(2)∵∠DAP =∠ACB ,∠APE =∠B ,∴APE CBA △∽△,……………………(1分) ∴BCAPAC AE =, ∴9533xy =+,………………………………………………………………(1分) ∴335-=x y , ……………………………………………………………(1分) 95355x <… ……………………………………………(1分) (3)方法一:①当点G 在线段CD 上时, 作DM P EP 交AC 于点M , 由(1)得AM =559,∴CM =556,……………………………………(1分) Q DG =2,CD =AB =23,∴CG =22,QMPCPDG CG =, ∴PM =552,……………………………………………………………………(1分)由MP AM DE AD =得DE =32,………………………………………………………(1分) ∴AE =311323=+,………………………………………………………………(1分)第25题图2②当点G 在CD 的延长线上时,同①可得DE =32, ………………………………………………………………(1分) ∴AE =27333-=;………………………………………………………………(1分)第25题图3方法二:当点G 在线段CD 上时,Q AD P BC ,∴∠EAC =∠ACB , ∴∠EDC =∠BCD ,Q ∠B =∠BCD=45°,∴∠EDC =∠B , Q ∠APE =∠B , ∴∠APE=∠ EDC , ∴∠EGD =∠EAP , ∴∠EGD =∠ACB ,∴△ACB ∽△EGD ,……………………………………………………………(1分) ∴BA BCDE DG =, ∴2392=DE ,∴得DE =32,……………………………………………………………………(1分) ∴AE =311323=+,………………………………………………………………(1分) ②当点G 在CD 的延长线上时,ACB EGD △∽△, ……………………………………………………………(1分)同①可得DE =32,…………………………………………………………………(1分) ∴AE =37323=-.…………………………………………………………………(1分)第25题图4。
2016年上海市松江区中考数学一模试卷含答案解析
2016年上海市松江区中考数学一模试卷一。
选择题1.如果两个相似三角形的面积比是1:4,那么它们的周长比是( )A.1:16 B.1:4 C.1:6 D.1:22.下列函数中,属于二次函数的是( )A.y=2x+1 B.y=(x﹣1)2﹣x2C.y=2x2﹣7 D.3.在Rt△ABC中,∠ACB=90°,BC=1,AB=2,则下列结论正确的是( )A.B.C.D.4.若四边形ABCD的对角线交于点O,且有,则以下结论正确的是( ) A.B.C.D.5.如果二次函数y=ax2+bx+c(a≠0)的图象如图所示,那么()A.a<0,b>0,c>0 B.a>0,b<0,c>0 C.a>0,b>0,c<0 D.a<0,b<0,c<06.P是△ABC一边上的一点(P不与A、B、C重合),过点P的一条直线截△ABC,如果截得的三角形与△ABC相似,我们称这条直线为过点P的△ABC的“相似线”.Rt△ABC中,∠C=90°,∠A=30°,当点P为AC的中点时,过点P的△ABC的“相似线"最多有几条?() A.1条B.2条C.3条D.4条二。
填空题7.若a:b:c=1:3:2,且a+b+c=24,则a+b﹣c=__________.8.已知线段a=2cm,b=8cm,那么线段a和b的比例中项为__________cm.9.二次函数y=﹣2x2﹣x+3的图象与y轴的交点坐标为__________.10.在Rt△ABC中,∠C=90°,如果AC=4,sinB=,那么AB=__________.11.一位运动员投掷铅球,如果铅球运行时离地面的高度为y(米)关于水平距离x(米)的函数解析式为y=﹣,那么铅球运动过程中最高点离地面的距离为__________米.12.如图,直线AD∥BE∥CF,,DE=6,那么EF的值是__________.13.在一个斜坡上前进5米,水平高度升高了1米,则该斜坡坡度i=__________.14.若点A(﹣3,y1)、B(0,y2)是二次函数y=﹣2(x﹣1)2+3图象上的两点,那么y1与y2的大小关系是__________(填y1>y2、y1=y2或y1<y2).15.将抛物线y=x2沿x轴向右平移2个单位后所得抛物线的解析式是__________.16.如图,已知DE∥BC,且DE经过△ABC的重心G,若BC=6cm,那么DE等于__________cm.17.已知二次函数的图象经过(0,3)、(4,3)两点,则该二次函数的图象对称轴为直线__________.18.已知在△ABC中,∠C=90°,BC=3,AC=4,点D是AB边上一点,将△ABC沿着直线CD翻折,点A落在直线AB上的点A′处,则sin∠A′CD=__________.三.解答题19.已知抛物线y=x2+bx+3经过点A(﹣1,8),顶点为M;(1)求抛物线的表达式;(2)设抛物线对称轴与x轴交于点B,连接AB、AM,求△ABM的面积.20.(16分)如图,已知平行四边形ABCD,点M、N是边DC、BC的中点,设=,=; (1)求向量(用向量、表示);(2)在图中求作向量在、方向上的分向量;(不要求写作法,但要指出所作图中表示结论的向量)21.如图,小明所在教学楼的每层高度为3.5米,为了测量旗杆MN的高度,他在教学楼一楼的窗台A处测得旗杆顶部M的仰角为45°,他在二楼窗台B处测得M的仰角为31°,已知每层楼的窗台离该层的地面高度均为1米,求旗杆MN的高度;(结果保留两位小数)(参考数据:sin31°≈0。
2016年上海松江区初三一模数学试卷答案
编辑
.(填y1 > y2,
.
答案 解析
y = (x − 2)
2
由“左加右减”的原则可知, 将抛物线y = x2 向右平移2个单位, 所得函数解析式为:y = (x − 2) 2 , 故答案为:y = (x − 2) 2 .
16. 如图,已知DE//BC ,且DE经过△ABC 的重心G,若BC
= 6cm
当P E//AB时,△C P E ∼ △BAC ; 当P E⊥AB时,△AP F
∼ △ABC
故过点P 的△ABC 的相似线最多有3条. ∵∠C P E不可能为60∘, ∴当∠C P E = 60∘ 时,相似的这种情形不存在. 理由:连接P B, ∵∠C P B = ∠A + ∠ABP , ∴P B > P C ,P C ∴P B > P A , ∴∠P BA < ∠A , ∴∠C P B < 60∘ , ∴∠C P E不可能为60∘, 故选:C.
a < 0
,b < 0 ,c < 0
答案 解析
A ∵抛物线开口向下, ∴a < 0 , ∵抛物线的对称轴在y轴的右侧, ∴x = −
b 2a > 0
,
∴b > 0 , ∵抛物线与y轴的交点在x轴上方, ∴c >Leabharlann 0 . 故选A.6.P
是△ABC 一边上的一点(P 不与A 、B、C 重合),过点P 的一条直线截△ABC ,如果截得的三角形与△ABC 相似,我们
,那么DE等于
cm
.
答案 解析
4
连接AG并延长到BC 上一点N , ∵△ABC 的重心G,DE//BC , ∴△ADG∽△ABN ,BN ∴
松江区初三数学二模卷及答案
2012年松江区初中毕业生学业模拟考试数学试卷(满分150分,完卷时间100分钟)2012.4一、选择题:(本大题共6题,每题4分,满分24分) 1.下列二次根式中,属于最简二次根式的是(A )21; (B )8; (C )y x 2;(D )y x +2. 2.下列运算正确的是(A )2a a a =+; (B )322a a a =⋅;(C )a a a =÷23;(D )532)(a a =.3.在平面直角坐标系中,点A 和点B 关于原点对称,已知点A 的坐标为(2-,3),那么点B 的坐标为(A )(3,2-); (B )(2,3-); (C )(3-,2); (D )(2-,3-). 4.如果正五边形绕着它的中心旋转α角后与它本身重合,那么α角的大小可以是 (A )36°; (B )45°; (C )72°; (D )90°. 5.已知Rt △ABC 中,∠C =90°,那么下列各式中,正确的是 (A )AB BC A =sin ;(B )AB BC A =cos ;(C )AB BC A =tan ; (D )ABBCA =cot . 6.下列四个命题中真命题是 (A)矩形的对角线平分对角;(B)菱形的对角线互相垂直平分;(C) 梯形的对角线互相垂直; (D) 平行四边形的对角线相等. 二、填空题:(本大题共12题,每题4分,满分48分) 7.计算:22-= ___.8.如果关于x 的一元二次方程02=+-m x x 有两个不相等的实数根,那么m 的取值范围是.9.方程312=+x 的解是____. 10.用换元法解方程122222=---xx x x 时,如设x x y 22-=,则将原方程化为关于y 的整式方程是__.11.已知函数13)(-=x x f ,那么=)4(f . 12.已知反比例函数xky =(0≠k )的图像经过点A (-3,2),那么k =__. 13.已知包裹邮资为每千克2元,每件另加手续费3元,若一件包裹重x 千克,则该包裹邮资y (元)与重量x (千克)之间的函数关系式为.14.在一个不透明的口袋中,装有4个红球和6个白球,除顔色不同外其余都相同,从口袋中任意摸一个球摸到的是红球的概率为.15.已知⊙1O 和⊙2O 外切,821=O O ,若⊙1O 的半径为3,则⊙2O 的半径为. 16.如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,设=,=,那么=.17.如图是利用四边形的不稳定性制作的菱形凉衣架.已知其中每个菱形的边长为13 cm ,135cos =∠ABC ,那么凉衣架两顶点A 、E 之间的距离为cm . 18.将一个平面图形分成面积相等的两部分的直线叫做该平面图形的“面线”,“面线”被这个平面图形截得的线段叫做该图形的“面径”,例如圆的直径就是它的“面径”.已知等边三角形的边长为2,则它的 “面径”长可以是 (写出2个). 三、解答题:(本大题共7题,满分78分)19.(本题满分10分)计算:332141222+-+÷⎪⎭⎫ ⎝⎛---+a a a a a a a . 20.(本题满分10分)解方程组:⎩⎨⎧=-=-+230222y x y xy x .21.(本题满分10分)某公园有一圆弧形的拱桥,如图已知拱桥所在圆的半径为10M ,拱桥顶D 到水面AB 的距离DC =4M . (1)求水面宽度AB 的大小;(2)当水面上升到EF 时,从点E 测得桥顶D 的仰角 为α,若3cot =α,求水面上升的高度.A BC D O(第16题图)(第17题图) F EDC BA(第21题图)22.(本题满分10分)随着“微博潮”的流行,初中学生也开始忙着“织围脖”,某校在上微博的280名学生中随机抽取了部分学生调查他们平常每天上微博的时间,绘制了扇形统计图和频数分布直方图,请根据图中信息,回答下列问题:(1)本次调查共抽取了名学生;将频数分布直方图补充完整; (2)被调查的学生中上微博时间中位数落在这一小组内; (3)样本中,平均每天上微博的时间为0.5小时这一组的频率是;(4)请估计该校上微博的学生中,大约有名学生平均每天上微博的时间不少于1小时.23.(本题满分12分)如图,在梯形ABCD 中,AD ∥BC ,∠BCD =90°,BC =DC ,点E 在对角线BD 上,作∠ECF =90°,连接DF ,且满足CF =EC . (1)求证:BD ⊥DF .(2)当DB DE BC ⋅=2时,试判断 四边形DECF 的形状,并说明理由.0.5 1 1.5 2 时间(小时)0.5小时1小时1.5小时 15%2小时(第22题图)AFED C B(第23题图)24.(本题满分12分)已知直线33-=x y 分别与x 轴、y 轴交于点A ,B ,抛物线c x ax y ++=22经过点A ,B . (1(2)记该抛物线的对称轴为直线l ,点B 关于直线l 若点D 在y 轴的正半轴上,且四边形ABCD ①求点D 的坐标;②将此抛物线向右平移,平移后抛物线的顶点为P , 其对称轴与直线33-=x y 交于点E ,若tan ∠DPE 求四边形BDEP 的面积.25.(本题满分14分)如图,在△ABC 中,10==AC AB ,53cos =B ,点D 在AB 边上(点D 与点A ,B 不重合),DE ∥BC 交AC 边于点E ,点F 在线段EC 上,且AE EF 41=,以DE 、EF 为邻边作平行四边形DEFG ,联结BG . (1)当EF =FC 时,求△ADE 的面积;(2)设AE =x ,△DBG 的面积为y ,求y 与x 的函数关系式,并写出x 的取值范围; (3)如果△DBG 是以DB 为腰的等腰三角形,求AD 的值.松江区九年级数学中考模拟试卷参考答案及评分说明 2012.4一、选择题: 1.D ; 2.C ; 3.B ;4.C ;5.A ;6.B .二、填空题: 7.41; 8.41<m ; 9.4=x ;10.022=--y y ; 11.1; 12.-6; 13.32+=x y ;14.52; 15.5; 16.2121-; 17.136; 18.2,3,(第24题图)GE D BAF(第25题图)(或介于2和3之间的任意两个实数). 三、解答题: 19.解:原式=3)1)(3(])1)(1(4)1(1[+-+÷-+--+a a a a a a a a ……………………(4分)=)1)(3(3)1)(1()1(2-++⨯-+-a a a a a a a …………………………………(4分)=aa +21.…………………………………………………………(2分) 20.解:由(1)得0=-y x 和02=+y x .………………………………(2分)原方程组可化为⎩⎨⎧=-=+⎩⎨⎧=-=-;23,02;23,0y x y x y x y x ……………………………(4分) 解得原方程组的解为⎪⎪⎩⎪⎪⎨⎧-==;52,5411y x ,⎩⎨⎧-=-=1122y x …………………………(4分)21.解:(1)设拱桥所在圆的圆心为O ,由题意可知,点O 在DC 的延长线上,联结OA ,∵AB OD ⊥,∴︒=∠90ACO ……………………………(1分) 在ACO Rt ∆中,6410,10=-=-==DC OD OC OA , ∴8=AC (2分) ∵AB OD ⊥,OD 是半径, ∴162==AC AB ……………………(2分) 即水面宽度AB 的长为16M.(2)设OD 与EF 相交于点G ,联结OE , ∵AB OD AB EF ⊥,// ∴EF OD ⊥,∴︒=∠=∠90EGO EGD , ………………………(1分) 在EGD Rt ∆中,3cot ==DGEGα, ∴DG EG 3=……………(1分) 设水面上升的高度为x M ,即x CG =,则x DG -=4, ∴x EG 312-= 在EGO Rt ∆中,222OE OG EG =+,()()222106312=++-x x , 化简得 0862=+-x x解得 41=x (舍去),22=x …………………………………………(2分) 答:水面上升的高度为2M.……………………………………………………(1分) 22.(1)40……………(2分);补全图形…………………(2分)(2)1小时……………(2分);(3)4019……………(2分);(4)147……(2分) 23.(1)证明:∵︒=∠=∠90ECF BCD , ∴DCF BCE ∠=∠…………(1分)∵CF EC DC BC ==,,∴BCE ∆≌DCF ∆……………………………(1分) ∴FDC EBC ∠=∠…………………………………………………………(1分) ∵︒=∠=90,BCD DC BC ,∴︒=∠=∠45BDC DBC ………………(1分) ∴︒=∠45FDC ,∴︒=∠90FDB ………………………………………(1分) ∴DF BD ⊥…………………………………………………………………(1分) (2)四边形DECF 是正方形…………………………………………………(1分)∵DC BC DB DE BC =⋅=,2,∴DB DE DC ⋅=2, ∴DCDEDB DC =…(2分) ∵BDC CDE ∠=∠∴CDE ∆∽BDC ∆………………………………(1分) ∴︒=∠=∠90DCB DEC …………………………………………………(1分) ∵︒=∠=∠90ECF FDE , ∴四边形DECF 是矩形………………(1分) ∵CF CE =, ∴四边形DECF 是正方形24.解:(1)由题意得()0,1A ,()30-,B ………………………………………(1分) ∵抛物线c x ax y ++=22过点()0,1A ,()30-,B ∴⎩⎨⎧-==++302c c a 解得⎩⎨⎧-==31c a …………………………………………(1分)∴322-+=x x y ……………………………………………………………(1分) ∴4)1(2-+=x y∴对称轴为直线1-=x ,顶点坐标为()4,1--………………………………(2分) (2)①由题意得:CD AB //,设直线CD 的解读式为b x y +=3………(1分) ∵()3,2--C , ∴36-=+-b , ∴3=b …………………………(1分) ∴直线CD 的解读式为33+=x y ,∴()3,0D …………………………(1分)②作PE DF ⊥于F ,则7=PF ……………………………………………(1分) 在DFP Rt ∆中,737tan ===∠DF PF DF DPE ,∴DF =3……………(1分)∵x =3, ∴y =3×3-3=6,∴点E (3,6)……………………………………(1分)∴24)(21=⋅+=DF EP BD S BDEP 四边形…………………………………(1分) 25.(1)作BC AH ⊥于H ,在AHB Rt ∆中,53cos ==AB BH B∵10=AB ,∴6=BH ,∴8=AH ∵AC AB =, ∴122==BH BC ,∴4881221=⨯⨯=∆ABCS ………………………(1分) ∵BC DE //,∴ADE ∆∽ABC ∆,∴2⎪⎭⎫⎝⎛=∆∆AC AE S S ABC ADE ………………(1分)∵AE EF 41=, FC EF =,∴3264==AC AE ,………………………(1分) ∴9448=∆ADE S ,∴364=∆ADE S ……………………………………………(1分)(2)设AH 交DE 、GF 于点M 、N∵BC DE //,∴BC DEAH AM AC AE == ∵x AE =,∴x DE x AM 56,54==………………………………………(1分)∵x AM MN 5141==,∴x NH -=8……………………………………(1分)∴GBCF DGFE DBCG DBG S S S S 梯形平行四边形梯形--=∆ ∴()x x x x x x y -⎪⎭⎫⎝⎛+-⋅-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=81256215156548125621 ∴x x y 562532+-=()80≤<x ………………………………………(2分)(3)作Q BC GQ P BC FP 于,于⊥⊥ 在FPC Rt ∆中,53cos cos ,4510=∠=-=ABC C x FC ∴x PC 436-=, ∴x x x BQ 20964365612-=⎪⎭⎫ ⎝⎛---= ∴()2220968⎪⎭⎫ ⎝⎛-+-=x x BG ……………………………………………(2分) 在DBG ∆中,x DB -=10,x DG 41= ①若DG DB =,则x x 4110=-,解得8=x …………………………………(2分)②若BG DB =,则()222096810⎪⎭⎫ ⎝⎛-+-=-x x x 解得()81560021==x x ,舍去………………………………………(2分) ∴815608==AD AD 或。
松江区二模考试数学试卷题(印刷稿)
高三数学 第1页 共4页松江区2016学年度第二学期期中质量监控试卷高三数学(满分150分,完卷时间120分钟) 2017.4一.填空题(本大题满分54分)本大题共有12题,考生必须在答题纸相应编号的空格内直接填写结果,第1~6题每个空格填对得4分,第7~12题每个空格填对得5分,否则一律得零分.1.已知()21x f x =-,则1(3)f -= ▲ .2.已知集合{}{}11,1,0,1,M x x N =+≤=-则M N = ▲ .3.若复数122,2z a i z i =+=+(i 是虚数单位),且12z z 为纯虚数,则实数a = ▲ .4.直线23x y ⎧=--⎪⎨=+⎪⎩(t 为参数)对应的普通方程是 ▲ .5.若()1(2),3nnn x x axbx c n n -*+=++++∈≥N ,且4b c =,则a 的值为 ▲ .6.某空间几何体的三视图如图所示,则该几何体的侧面积是 ▲ .7.若函数()2()1xf x x a =+-在区间[]0,1上有零点,则实数a 的取值范围是 ▲ .8.在约束条件123x y ++-≤下,目标函数2z x y =+的最大值为 ▲ .9.某学生在上学的路上要经过2个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,则这名学生在上学路上到第二个路口时第一次遇到红灯的概率是 ▲ .10.已知椭圆()222101y x b b+=<<的左、右焦点分别为12F F 、,记122F F c =.若此椭圆上存在点P ,使P 到直线1x c=的距离是1PF 与PF b 的最大值为 ▲ .11.如图同心圆中,大、小圆的半径分别为2和1,点P 在大圆上,PA 与小圆相切于点A ,Q 为小圆上的点,则PA PQ ⋅的取值范围是▲ .高三数学 第2页 共4页12.已知递增数列{}n a 共有2017项,且各项均不为零,20171a =,如果从{}n a 中任取两项,i j a a ,当i j <时,j i a a -仍是数列{}n a 中的项,则数列{}n a 的各项和2017S = ▲ .二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生必须在答题纸相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.设a b 、分别是两条异面直线12l l 、的方向向量,向量a b、夹角的取值范围为A ,12l l 、所成角的取值范围为B ,则“A α∈”是“B α∈”的 (A) 充要条件 (B) 充分不必要条件 (C) 必要不充分条件 (D) 既不充分也不必要条件 14. 将函数sin 12y x π⎛⎫=-⎪⎝⎭图像上的点,4P t π⎛⎫⎪⎝⎭向左平移(0)s s >个单位,得到点P ',若P '位于函数sin 2y x=的图像上,则(A) 12t =,s 的最小值为6π(B) t =,s 的最小值为6π(C) 12t =,s 的最小值为12π(D) 2t =,s 的最小值为12π15.某条公共汽车线路收支差额y 与乘客量x 的函数关系如图所示(收支差额=车票收入-支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议(Ⅰ)不改变车票价格,减少支出费用;建议(Ⅱ)不改变支出费用,提高车票价格,下面给出的四个图形中,实线和虚线分别表示目前和建议后的函数关系,则 (A) ①反映了建议(Ⅱ),③反映了建议(Ⅰ) (B) ①反映了建议(Ⅰ),③反映了建议(Ⅱ) (C) ②反映了建议(Ⅰ),④反映了建议(Ⅱ) (D) ④反映了建议(Ⅰ),②反映了建议(Ⅱ)高三数学 第3页 共4页16.设函数()y f x =的定义域是R ,对于以下四个命题:(1) 若()y f x =是奇函数,则(())y f f x =也是奇函数; (2) 若()y f x =是周期函数,则(())y f f x =也是周期函数; (3) 若()y f x =是单调递减函数,则(())y f f x =也是单调递减函数;(4) 若函数()y f x =存在反函数1()y f x -=,且函数1()()y f x f x -=-有零点,则函数()y f x x =-也有零点.其中正确的命题共有 (A) 1个 (B) 2个 (C) 3个 (D) 4个三.解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(本题满分14分;第1小题6分,第2小题8分)直三棱柱111C B A ABC -中,底面ABC 为等腰直角三角形,AC AB ⊥,2==AC AB ,41=AA ,M 是侧棱1CC 上一点,设h MC =.(1) 若C A BM 1⊥,求h 的值;(2) 若2h =,求直线1BA 与平面ABM 所成的角.18.(本题满分14分;第1小题6分,第2小题8分)设函数()2xf x =,函数()g x 的图像与函数()f x 的图像关于y 轴对称.(1)若()4()3f x g x =+,求x 的值;(2)若存在[]0,4x ∈,使不等式3)2()(≥--+x g x a f 成立,求实数a 的取值范围.B高三数学 第4页 共4页19.(本题满分14分;第1小题6分,第2小题8分)如图所示,PAQ ∠是某海湾旅游区的一角,其中 120=∠PAQ ,为了营造更加优美的旅游环境,旅游区管委会决定在直线海岸AP 和AQ 上分别修建观光长廊AB 和AC ,其中AB 是宽长廊,造价是800元/米,AC 是窄长廊,造价是400元/米,两段长廊的总造价为120万元,同时在线段BC 上靠近点B 的三等分点D 处建一个观光平台,并建水上直线通道AD (平台大小忽略不计),水上通道的造价是1000元/米.(1) 若规划在三角形ABC 区域内开发水上游乐项目,要求ABC △的面积最大,那么AB 和AC 的长度分别为多少米?(2) 在(1)的条件下,建直线通道AD 还需要多少钱?20.(本题满分16分;第1小题4分,第2小题6分,第3小题6分)设直线l 与抛物线24y x =相交于不同两点A 、B ,与圆)0()5(222>=+-r r y x相切于点M ,且M 为线段AB 中点.(1) 若AOB △是正三角形(O 是坐标原点),求此三角形的边长; (2) 若4r =,求直线l 的方程;(3) 试对()0,r ∈+∞进行讨论,请你写出符合条件的直线l 的条数(直接写出结论).21.(本题满分18分;第1小题4分,第2小题6分,第3小题8分)对于数列{}n a ,定义12231n n n T a a a a a a +=+++ ,*n N ∈. (1) 若n a n =,是否存在*k N ∈,使得2017k T =?请说明理由; (2) 若13a =,61nn T =-,求数列{}n a 的通项公式;(3) 令21*112122,n n n nT T n b T T T n n N+--=⎧=⎨+-≥∈⎩,求证:“{}n a 为等差数列”的充要条件是“{}n a 的前4项为等差数列,且{}n b 为等差数列”.AB CPQ D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年松江区初中毕业生学业模拟考试数学试卷(满分150分,考试时间100分钟) 2016.4考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分) 1.下列各数是无理数的是( ) A .722; B .5; C .9 ; D .16. 2.下列式子中,属于最简二次根式的是( ) A .12; B .8; C .9; D .7. 3.在平面直角坐标系中,直线1y x =-经过( ) A .第一、二、三象限; B .第一、二、四象限; C .第一、三、四象限;D .第二、三、四象限.4.某班一个小组7名同学的体育测试成绩(满分30分)依次为:27,29,27,25,27,30, 25,这组数据的中位数和众数分别是( )A .27,25;B .25,27;C .27,27 ;D .27,30. 5. 如图,已知四边形ABCD 是平行四边形,要使它成为菱形, 那么需要添加的条件可以是( )A . AC ⊥BD ;B . AB =AC ; C .∠ABC =90°;D .AC =BD .6.已知⊙O 1的半径r 1=6,⊙O 2的半径为r 2,圆心距O 1O 2=3,如果⊙O 1与⊙O 2有交点, 那么 r 2的取值范围是( )A .32≥r ;B .92≤r ;C .932<<r ;D .932≤≤r . 二、填空题:(本大题共12题,每题4分,满分48分) 7.因式分解:a a 322- = _______. 8.函数12-=x y 的定义域是_____________. 9.计算:2 (a ─b ) + 3b = ___________.(第5题图) DCB A10.关于x 的一元二次方程022=+-m x x 有两个实数根,则m 的取值范围是 .11.不等式组⎪⎩⎪⎨⎧>-≤-042021x x 的解集为______.12.将抛物线22-=x y 向左平移3个单位长度,再向上平移2个单位长度,所得的抛物线的解析式为_______. 13.反比例函数xky =的图象经过点(﹣1,2),A ),(11y x ,B ),(22y x 是图像上另两点,其中021<<x x ,则1y 、2y 的大小关系是_________. 14.用换元法解分式方程13101x x x x --+=-时,如果设1x y x-=,将原方程化为关于y 的整式方程,那么这个整式方程是_________.15.某服装厂从20万件同类产品中随机抽取了100件进行质检,发现其中有2件不合格,那么你估计该厂这20万件产品中合格品约为__________万件.16.从1到10的十个自然数中,随意取出一个数,该数为3的倍数的概率是_____. 17.某商品原价289元,经连续两次降价后售价为256元,设平均每次降价的百分率为x ,那么根据题意可列关于x 的方程是________. 18.如图,梯形ABCD 中,AD ∥BC , ∠B =90°,AD =2,BC =5, E 是AB 上一点,将△BCE 沿着直线CE 翻折,点B 恰好与D 点 重合,则BE= .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)计算:821)14.3(21)31(02+-+---π 20.(本题满分10分)解方程组: 22212,320.x y x x y y +=⎧⎨-+=⎩21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知气温的华氏度数y 是摄氏度数x 的一次函数.如图所示是一个家用温度表的 表盘.其左边为摄氏温度的刻度和读数(单位℃),右边为华氏温度的刻度和读数 (单位℉).观察发现表示-40℃与-40℉的刻度线恰好对齐(在一条水平线上), 而表示0℃与32℉的刻度线恰好对齐.(1)求y 关于x 的函数关系式(不需要写出函数的定义域);(第21题图)① ② (第18题图)A DBE(2)当华氏温度为104℉时,温度表上摄氏温度为多少? 22. (本题满分10分,每小题满分各5分)如图,在△ABC 中,AB =AC=10,BC =12,AD ⊥BC 于D ,O 为AD 上一点,以O 为圆心,OA 为半径的圆交AB 于G ,交BC 于E 、F ,且AG =AD . (1)求EF 的长; (2)求tan ∠BDG 的值.23.(本题满分12分,每小题满分各6分)如图,已知等腰△ABC 中,AB =AC ,AD ⊥BC ,CE ⊥AB ,垂足分别为D 、E . (1)求证:∠CAD =∠ECB ;(2)点F 是AC 的中点,联结DF ,求证:BD 2=FC ·BE . 24.(本题满分12分,每小题满分各4分)如图,平面直角坐标系xOy 中,已知B (-1,0),一次函数5+-=x y 的图像与x 轴、y 轴分别交于点A ,C 两点.二次函数y =﹣x 2+bx +c 的图像经过点A 、点B . (1)求这个二次函数的解析式;(2)点P 是该二次函数图像的顶点,求△APC 的面积;(3)如果点Q 在线段AC 上,且△ABC 与△AOQ 相似,求点Q 的坐标.(第22题图)CADEF(第23题图)(第24题图)25.(本题满分14分,其中第(1)小题4分,第(2)小题5分,第(3)小题5分) 已知:如图1,在梯形ABCD 中,AD //BC ,∠BCD =90º, BC=11,CD=6,tan ∠ABC =2,点E 在AD 边上,且AE=3ED ,EF //AB 交BC 于点F ,点M 、N 分别在射线FE 和线段CD 上. (1)求线段CF 的长;(2)如图2,当点M 在线段FE 上,且AM ⊥MN ,设FM ·cos ∠EFC =x ,CN =y ,求y 关于x 的函数解析式,并写出它的定义域;(3)如果△AMN 为等腰直角三角形,求线段FM 的长.(第25题图1)AC B DE F(第25题图2)AC B DE FNM (备用图)A CBDE F2016年松江区初中毕业生学业模拟考试参考答案及评分标准一、选择题:(本大题共6题,每题4分,满分24分) 1. B 2.D 3.C 4.C 5. A 6.D 二、填空题:(本大题共12题,每题4分,满分48分) 7.)32(-a a8.1≠a9.b a+210.1≤m11.x >2 12.2)3(+=x y13.1y <2y 14.032=-+y y15.19.6 16.10317.256)1(2892=-x 18.2.5三、解答题:(本大题共7题,满分78分) 19.解:原式=21)12(9++--……………………………(每个2分)=11 ……………………………………………………………2分 20.解方程组: 22212,320.x y x x y y +=⎧⎨-+=⎩ 解:由②得:0)2)((=--y x y x .∴0=-y x 或02=-y x . …………………………………………2分原方程组可化为⎩⎨⎧=-=+,0,122y x y x⎩⎨⎧=-=+.02,122y x y x ……………………………4分 解这两个方程组,得原方程组的解为⎩⎨⎧==,4,411y x⎩⎨⎧==.3,622y x ………………………4分 另解:由①得 y x 212-=. ③ ……………………………………………1分 把③代入②,得 02)212(3)212(22=+---y y y y .………………………1分 整理,得 01272=+-y y .……………………………………………………2分 解得 41=y ,32=y .……………………………………………………………2分 分别代入③,得 41=x ,62=x .……………………………………………2分 ∴原方程组的解为⎩⎨⎧==,4,411y x⎩⎨⎧==.3,622y x …………………………………………2分 21.解:(1)设)0(≠+=k b kx y ,依题意,得40-=x 时,40-=y ;0=x 时,32=y …………………………………2分① ②代入,得⎩⎨⎧=-=+-324040b b k ……2分 解得⎪⎩⎪⎨⎧==3259b k ……2分 ∴3259+=x y ………1分 (2)由104=y 得,1043259=+x ,……2分; 7259=x ,40=x …………1分 答:温度表上摄氏温度为40度.22.解:(1)过点O 作OH ⊥AG于点H ,联接OF …………1分 AB =AC=10,AD ⊥BC,BC=12∴BD =CD =21BC =6, ∴AD =8,cos ∠BAD =54∵AG =AD, OH ⊥AG ∴AH =21AG =4, ∴AO =5cos =∠BADAH…………………………………………………2分∴OD =3,OF =5∴DF =4…………………………………………………………………1分 ∴EF =8…………………………………………………………………1分 (2)过B 作BM ⊥BD 交DG 延长线于M ………………………………1分 ∴BM //AD ,∴∠BMG =∠ADG ∵AD =AG , ∴∠ADG =∠AGD ∴∠BMG =∠BGM∴ BM =BG =10-8=2……………………………………………………2分 tan ∠BDG=BD MB =62=31…………2分 23.证明: (1) ∵AB =AC ,∴∠ABC =∠ACB …………………………………………………2分 ∵AD ⊥BC ,CE ⊥AB ,∴∠ABC +∠ECB =∠ACB+∠CAD=90°…………………………2分 ∴∠CAD =∠ECB ;……………………………………………2分 (2) ∵ AD ⊥BC ,∴DB =CD …………………………………………………………1分 ∵F 是AC 的中点∴FD =FC , ………………………………………………………1分 ∵CE ⊥AB ,∴DE =DB ………………………………………………………1分 ∵∠ABC =∠ACB∴△FCD ∽△DBE ………………………………………………1分 ∴BEDBCD FC =, CB ADEF(第23题图)(第22题图)∴BD ·CD =FC ·BE .……………………………………………………1分 ∵DB =CD∴BD 2=FC ·BE .……………………………………………………………1分 24.解:∵直线5+-=x y ,0=y 得5=x ,由0=x 得5=y ∴A (5,0) C (0,5)………………………………………………1分 ∵二次函数y =-x 2+bx +c 的图像经过点A (5,0)、点B (-1,0).∴⎩⎨⎧=+--=++-010525c b c b 解得:⎩⎨⎧==54c b …………2分∴二次函数的解析式为542++-=x x y …………1分(2)由9)2(5422+--=++-=x x x y 题意得顶点P (2,9) …………1分 设抛物线对称轴与x 轴交于G 点,∴155.125.1314S APC =-+=-+=-=∆∆∆∆AOC APG OCPG AOC AOCP S S S S S 梯形四边形…3分 (3)∠CAB =∠OAQ ,AB=6,AO=6,AC=25, ①△ABC ∽△AOQ ∴AQ AO AC AB =∴2625=AQ …………1分 )625,65(1Q …………1分 ②△ABC ∽△AQO ∴AO AQAC AB =∴23=AQ …………1分 )3,2(2Q …………1分 ∴点Q 的坐标)625,65(1Q )3,2(2Q 时,△ABC 与△AOQ 相似.25.解:(1)作AG ⊥BC 于点G ,∴∠BGA =90°∵∠BCD =90°,AD ∥BC ,∴AG =DC =6,……………………………………………(1分) ∵tan ∠ABC =BGAG =2∴BG =3, ∵BC =11 ∴GC =8,∴AD =GC =8………………………………………………(1分) ∴AE =3ED∴AE =6,ED =2……………………………………………(1分) ∵AD ∥BC ,AB ∥EF ∴BF =AE =6∴CF =BC -BF =5………………………………………………(1分)A CB DE F G(2)过点M 作PQ ⊥CD ,分别交AB 、CD 、AG 于点P 、Q 、H ,作MR ⊥BC 于点R 易得GH =CQ =MR ∵MF cos ∠EFC =x ,∴FR =x …………………………………………………………………(1分) ∵tan ∠ABC =2 ∴GH =MR =CQ =2x∴BG =3,由BF =6得GF =3∴HM =3+x ,MQ =CF -FR =5-x ,AH =AG -GH =6-2x ………………………(1分) ∵∠AMQ =∠AHM +∠MAH ,且∠AMN =∠AHM =90° ∴∠MAH =∠NMQ∴△AHM ∽△MQN ………………………………………………………(1分) ∴NQHM MQAH =,即xy x xx 23526-+=--∴62151452---=x x x y …………………………………………………(1分)定义域:10≤≤x ………(1分) (3)①∠AMN =90°1)当点M 在线段EF 上时,∵△AHM ∽△MQN 且AM =MN ,∴AH=MQ ……………(1分)∴6-2x =5-x , ∴x =1∴FM =5 …………………………………………………………………(1分) 2)当点M 在FE 的延长线上时 同上可得AH=MQ ∴2x -6=5-x∴311=x ∴FM =5311…………………(2分)②∠ANM =90°过点N 作PQ ⊥CD ,分别交AB 、AG 于点P 、H ,作MR ⊥BC 于交BC 延长线于交直线PN 于点Q,∵AN=MN, 易得△AHN ≌△NQM ∴AH =N Q , HN =MQ=8令PH =a ,则AH =2a ,DN =2a ,CN =6-2a ∴FR =5+2a ,MR =8+(6-2a )=14-2a由MR =2FR 得a =32, ∴FR =319,MR =338∴FM =5319…………………………(1分)ACBDE F NM PGQ H RACBDEFG H QR N M A C B DE F NMPHQR G。