2020-2021上海市北初级中学九年级数学上期末一模试题(含答案)
2020-2021上海上海中学九年级数学上期末一模试题带答案
2020-2021上海上海中学九年级数学上期末一模试题带答案一、选择题1.毕业前期,某班的全体学生互赠贺卡,共赠贺卡1980张.设某班共有x 名学生,那么所列方程为( ) A .()1119802x x += B .()1119802x x -= C .()11980x x +=D .()11980x x -=2.已知2(0)y ax bx c a =++≠的图象如图,则y ax b =+和cy x=的图象为( )A .B .C .D .3.已知一次函数()10y kx m k =+≠和二次函数()220y ax bx c a =++≠部分自变量和对应的函数值如表: x … -1 0 2 4 5 … y 1 … 0 1 3 5 6 … y 2…-159…当y 2>y 1时,自变量x 的取值范围是 A .-1<x <2B .4<x <5C .x <-1或x >5D .x <-1或x >44.如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是( )A .2332π-B .233π-C .32π-D .3π-5.在一个不透明纸箱中放有除了标注数字不同外,其他完全相同的3张卡片,上面分别标有数字1,2,3,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之和为奇数的概率为( ) A .59B .49C .56D .136.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( ) A .15B .25C .35D .457.如图,点C 是线段AB 的黄金分割点(AC >BC ),下列结论错误的是( )A .AC BCAB AC= B .2·BC AB BC = C .512AC AB -=D .0.618≈BCAC8.下列函数中是二次函数的为( ) A .y =3x -1 B .y =3x 2-1 C .y =(x +1)2-x 2D .y =x 3+2x -39.二次函数2(0)y ax bx c a =++≠的图像如图所示,下列结论正确是( )A .0abc >B .20a b +<C .30a c +<D .230ax bx c ++-=有两个不相等的实数根 10.已知点P (﹣b ,2)与点Q (3,2a )关于原点对称点,则a 、b 的值分别是( ) A .﹣1、3B .1、﹣3C .﹣1、﹣3D .1、311.天虹商场一月份鞋帽专柜的营业额为100万元,三月份鞋帽专柜的营业额为150万元.设一到三月每月平均增长率为x ,则下列方程正确的是( ) A .100(1+2x )=150B .100(1+x )2=150C .100(1+x )+100(1+x )2=150D .100+100(1+x )+100(1+x )2=15012.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为点P ,若CD =AP =8,则⊙O 的直径为( )A .10B .8C .5D .3二、填空题13.从五个数1,2,3,4,5中随机抽出1个数 ,则数3被抽中的概率为_________.14.设二次函数y =x 2﹣2x ﹣3与x 轴的交点为A ,B ,其顶点坐标为C ,则△ABC 的面积为_____.15.函数 2y 24x x =-- 的最小值为_____.16.一个不透明的口袋中有5个完全相同的小球,分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号是偶数的概率为 .17.若直角三角形两边分别为6和8,则它内切圆的半径为_____.18.心理学家发现:学生对概念的接受能力y 与提出概念的时间x (分)之间的关系式为y=﹣0.1x 2+2.6x+43(0≤x≤30),若要达到最强接受能力59.9,则需________ 分钟. 19.从甲地到乙地有A ,B ,C 三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下: 公交车用时 公交车用时的频数 线路 3035t ≤≤ 3540t <≤ 4045t <≤ 4550t <≤ 合计A 59 151 166 124 500B 50 50 122 278 500 C4526516723500早高峰期间,乘坐_________(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.20.一元二次方程250x x c -+=有两个不相等的实数根且两根之积为正数,若c 是整数,则c=_____.(只需填一个).三、解答题21.已知二次函数y=2x 2+m .(1)若点(-2,y 1)与(3,y 2)在此二次函数的图象上,则y 1_________y 2(填“>”、“=”或“<”);(2)如图,此二次函数的图象经过点(0,-4),正方形ABCD 的顶点C 、D 在x 轴上,A 、B 恰好在二次函数的图象上,求图中阴影部分的面积之和.22.如图,已知二次函数23y x ax =++的图象经过点()2,3P -.(1)求a的值和图象的顶点坐标。
2020-2021上海市九年级数学上期末试卷(及答案)
2020-2021上海市九年级数学上期末试卷(及答案)一、选择题1.毕业前期,某班的全体学生互赠贺卡,共赠贺卡1980张.设某班共有x 名学生,那么所列方程为( )A .()1119802x x +=B .()1119802x x -= C .()11980x x +=D .()11980x x -= 2.下列图形中既是轴对称图形又是中心对称图形的是( ) A .正三角形B .平行四边形C .正五边形D .正六边形 3.把抛物线y =2(x ﹣3)2+k 向下平移1个单位长度后经过点(2,3),则k 的值是( )A .2B .1C .0D .﹣1 4.等腰三角形一条边的边长为3,它的另两条边的边长是关于x 的一元二次方程x 2﹣12x+k=0的两个根,则k 的值是( )A .27B .36C .27或36D .185.五粮液集团2018年净利润为400亿元,计划2020年净利润为640亿元,设这两年的年净利润平均增长率为x ,则可列方程是( )A .400(1)640x +=B .2400(1)640x +=C .2400(1)400(1)640x x +++=D .2400400(1)400(1)640x x ++++= 6.如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是( )A .233π-B .233π-C .3π-D .3π-7.下列说法正确的是( )A .“任意画出一个等边三角形,它是轴对称图形”是随机事件B .某种彩票的中奖率为11000,说明每买1000张彩票,一定有一张中奖 C .抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为13D .“概率为1的事件”是必然事件 8.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )A.6B.8C.10D.129.关于下列二次函数图象之间的变换,叙述错误的是()A.将y=﹣2x2+1的图象向下平移3个单位得到y=﹣2x2﹣2的图象B.将y=﹣2(x﹣1)2的图象向左平移3个单位得到y=﹣2(x+2)2的图象C.将y=﹣2x2的图象沿x轴翻折得到y=2x2的图象D.将y=﹣2(x﹣1)2+1的图象沿y轴翻折得到y=﹣2(x+1)2﹣1的图象10.如图,A、D是⊙O上的两个点,BC是直径,若∠D=34°,则∠OAC等于()A.68°B.58°C.72°D.56°11.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则在下列各式子:①abc>0;②a+b+c>0;③a+c>b;④2a+b=0;⑤ =b2-4ac<0中,成立的式子有( )A.②④⑤B.②③⑤C.①②④D.①③④12.关于y=2(x﹣3)2+2的图象,下列叙述正确的是()A.顶点坐标为(﹣3,2)B.对称轴为直线y=3C.当x≥3时,y随x增大而增大D.当x≥3时,y随x增大而减小二、填空题13.如图,有6张扑克牌,从中任意抽取两张,点数和是偶数的概率是_____.14.如图,在Rt △ABC 中,∠ABC=90°,AB=BC=2,将△ABC 绕点C 逆时针旋转60°,得到△MNC ,连接BM ,则BM 的长是__.15.己知抛物线2114y x =+具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x 轴的距离始终相等,如图,点M 的坐标为(3,3),P 是抛物线2114y x =+上一个动点,则△PMF 周长的最小值是__________.16.四边形ABCD 内接于⊙O ,∠A =125°,则∠C 的度数为_____°.17.三角形两边长分别是4和2,第三边长是2x 2﹣9x +4=0的一个根,则三角形的周长是_____.18.如图,Rt △OAB 的顶点A (﹣2,4)在抛物线y=ax 2上,将Rt △OAB 绕点O 顺时针旋转90°,得到△OCD ,边CD 与该抛物线交于点P ,则点P 的坐标为_____.19.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A 、B 、C 、D 分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x 2﹣6x ﹣16,AB 为半圆的直径,则这个“果圆”被y 轴截得的线段CD 的长为_____.20.如图,在平面直角坐标系中,二次函数y=ax 2+c (a≠0)的图象过正方形ABOC 的三个顶点A ,B ,C ,则ac 的值是________.三、解答题21.已知x =n 是关于x 的一元二次方程mx 2﹣4x ﹣5=0的一个根,若mn 2﹣4n+m =6,求m 的值.22.已知关于x 的一元二次方程(a+c )x 2+2bx+(a ﹣c )=0,其中a 、b 、c 分别为△ABC 三边的长.(1)如果x=﹣1是方程的根,试判断△ABC 的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由;(3)如果△ABC 是等边三角形,试求这个一元二次方程的根.23.某同学报名参加校运动会,有以下5个项目可供选择:径赛项目:100m ,200m ,400m(分别用1A 、2A 、3A 表示);田赛项目:跳远,跳高(分别用1B 、2B 表示). ()1该同学从5个项目中任选一个,恰好是田赛项目的概率为______;()2该同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.24.如图,将△ABC 绕点C 顺时针旋转得到△DEC ,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE .(Ⅰ)求证:∠A =∠EBC ;(Ⅱ)若已知旋转角为50°,∠ACE =130°,求∠CED 和∠BDE 的度数.25.将图中的A 型、B 型、C 型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.(1)搅匀后从中摸出1个盒子,求摸出的盒子中是A型矩形纸片的概率;(2)搅匀后先从中摸出1个盒子(不放回),再从余下的两个盒子中摸出一个盒子,求2次摸出的盒子的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据题意得:每人要赠送(x-1)张贺卡,有x个人,然后根据题意可列出方程:(x-1)x=1980.【详解】解:根据题意得:每人要赠送(x-1)张贺卡,有x个人,∴全班共送:(x-1)x=1980,故选:D.【点睛】此题主要考查了由实际问题抽象出一元二次方程,本题要注意读清题意,弄清楚每人要赠送(x-1)张贺卡,有x个人是解决问题的关键.2.D解析:D【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A. 是轴对称图形,不是中心对称图形,故错误;B. 不是轴对称图形,是中心对称图形,故错误;C. 是轴对称图形,不是中心对称图形,故错误;D. 是轴对称图形,也是中心对称图形,故正确.故答案选:D.【点睛】本题考查的知识点是中心对称图形,轴对称图形,解题的关键是熟练的掌握中心对称图形,轴对称图形.3.A解析:A【解析】【分析】把点坐标代入y=2(x-3)2+k-1解方程即可得到结论.【详解】解:设抛物线y=2(x-3)2+k向下平移1个单位长度后的解析式为y=2(x-3)2+k-1,把点(2,3)代入y=2(x-3)2+k-1得,3=2(2-3)2+k-1,∴k=2,故选A.【点睛】本题考查二次函数的图象与几何变换,熟练掌握抛物线的平移规律是解题关键.4.B解析:B【解析】试题分析:由于等腰三角形的一边长3为底或为腰不能确定,故应分两种情况进行讨论:(1)当3为腰时,其他两条边中必有一个为3,把x=3代入原方程可求出k的值,进而求出方程的另一个根,再根据三角形的三边关系判断是否符合题意即可;(2)当3为底时,则其他两条边相等,即方程有两个相等的实数根,由△=0可求出k的值,再求出方程的两个根进行判断即可.试题解析:分两种情况:(1)当其他两条边中有一个为3时,将x=3代入原方程,得:32-12×3+k=0解得:k=27将k=27代入原方程,得:x2-12x+27=0解得x=3或93,3,9不能组成三角形,不符合题意舍去;(2)当3为底时,则其他两边相等,即△=0,此时:144-4k=0解得:k=36将k=36代入原方程,得:x2-12x+36=0解得:x=63,6,6能够组成三角形,符合题意.故k的值为36.故选B.考点:1.等腰三角形的性质;2.一元二次方程的解.5.B解析:B【解析】【分析】根据平均年增长率即可解题.【详解】解:设这两年的年净利润平均增长率为x ,依题意得:()24001640x +=故选B.【点睛】本题考查了一元二次方程的实际应用,属于简单题,熟悉平均年增长率概念是解题关键. 6.B解析:B【解析】【分析】根据菱形的性质得出△DAB 是等边三角形,进而利用全等三角形的判定得出△ABG ≌△DBH ,得出四边形GBHD 的面积等于△ABD 的面积,进而求出即可.【详解】连接BD ,∵四边形ABCD 是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB 是等边三角形,∵AB=2,∴△ABD 3,∵扇形BEF 的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,在△ABG 和△DBH 中,2{34A AB BD ∠=∠=∠=∠,∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD =26021233602π⨯-⨯=23 3π-.故选B.7.D解析:D【解析】试题解析:A、“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误;B. 某种彩票的中奖概率为11000,说明每买1000张,有可能中奖,也有可能不中奖,故B错误;C. 抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为12.故C错误;D. “概率为1的事件”是必然事件,正确.故选D.8.D解析:D【解析】【分析】连接AO、BO、CO,根据中心角度数=360°÷边数n,分别计算出∠AOC、∠BOC的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.【详解】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.9.D解析:D【解析】【分析】根据平移变换只改变图形的位置不改变图形的形状与大小对各选项分析判断后利用排除法求解.【详解】A选项,将y=﹣2x2+1的图象向下平移3个单位得到y=﹣2x2﹣2的图象,故A选项不符合题意;B选项,将y=﹣2(x﹣1)2的图象向左平移3个单位得到y=﹣2(x+2)2的图象,故B选项不符合题意;C选项,将y=﹣2x2的图象沿x轴翻折得到y=2x2的图象,故C选项不符合题意;D选项,将y=﹣2(x﹣1)2+1的图象沿y轴翻折得到y=﹣2(x+1)2+1的图象,故D选项符合题意.故选D.【点睛】本题主要考查了二次函数图象与几何变换,熟练掌握平移变换只改变图形的位置不改变图形的形状与大小的关键.10.D解析:D【解析】【分析】根据圆周角定理求出∠AOC,再根据等腰三角形的性质以及三角形的内角和定理即可解决问题.【详解】∵∠ADC=34°,∴∠AOC=2∠ADC=68°.∵OA=OC,∴∠OAC=∠OCA12(180°﹣68°)=56°.故选D.【点睛】本题考查了圆周角定理,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.11.D解析:D【解析】【分析】根据二次函数的性质,利用数形结合的思想一一判断即可.【详解】解:∵抛物线的开口向上,∴a>0,∵对称轴在y轴的右侧,∴a,b异号,∴b<0,∵抛物线交y轴于负半轴,∴c<0,∴abc>0,故①正确,∵x=1时,y<0,∴a+b+c<0,故②错误,∵x=-1时,y>0,∴a-b+c>0,∴a+c>b,故③正确,∵对称轴x=1,∴-b2a=1,∴2a+b=0,故④正确,∵抛物线与x轴有两个交点,∴△=b2-4ac>0,故⑤错误,故选D.【点睛】本题考查二次函数的性质,解题的关键是熟练掌握基本知识,学会利用数形结合的思想解决问题,属于中考常考题型.12.C解析:C【解析】∵ y=2(x﹣3)2+2的图象开口向上,顶点坐标为(3,2),对称轴为直线x=3,∴当3x 时,y随x的增大而增大.∴选项A、B、D中的说法都是错误的,只有选项C中的说法是正确的.故选C.二、填空题13.【解析】【分析】列举出所有情况再找出点数和是偶数的情况根据概率公式求解即可【详解】解:从6张牌中任意抽两张可能的情况有:(410) (510) (610 ) (810) (910) (109) (4解析:7 15.【解析】【分析】列举出所有情况,再找出点数和是偶数的情况,根据概率公式求解即可.【详解】解:从6张牌中任意抽两张可能的情况有:(4,10)(5,10)(6,10)(8,10)(9,10)(10,9) (4,9)(5,9)(6,9)(8,9)(9,8)(10,8) (4,8)(5,8)(6,8)(8,6)(9,6)(10,6) (4,6)(5,6)(6,5)(8,5)(9,5)(10,5) (4,5)(5,4)(6,4)(8,4)(9,4)(10,4)∴一共有30种情况,点数和为偶数的有14个,∴点数和是偶数的概率是147 3015=;故答案为7 15.【点睛】本题考查概率的概念和求法.解题的关键是找到所求情况数与总情况数,根据:概率=所求情况数与总情况数之比.14.1+【解析】【分析】试题分析:首先考虑到BM所在的三角形并不是特殊三角形所以猜想到要求BM可能需要构造直角三角形由旋转的性质可知AC=AM∠CA M=60°故△ACM是等边三角形可证明△ABM与△CB解析:【解析】【分析】试题分析:首先考虑到BM所在的三角形并不是特殊三角形,所以猜想到要求BM,可能需要构造直角三角形.由旋转的性质可知,AC=AM,∠CAM=60°,故△ACM是等边三角形,可证明△ABM与△CBM全等,可得到∠ABM=45°,∠AMB=30°,再证△AFB和△AFM是直角三角形,然后在根据勾股定理求解【详解】解:连结CM,设BM与AC相交于点F,如下图所示,∵Rt△ABC中,AB=BC,∠ABC=90°∴∠BCA=∠BAC=45°∵Rt△ABC绕点A逆时针旋转60°与Rt△ANM重合,∴∠BAC=∠NAM=45°,AC=AM又∵旋转角为60°∴∠BAN=∠CAM=60°,∴△ACM是等边三角形∴AC=CM=AM=4在△ABM与△CBM中,BA BC AM CM BM BM=⎧⎪=⎨⎪=⎩∴△ABM≌△CBM (SSS)∴∠ABM=∠CBM=45°,∠CMB=∠AMB=30°∴在△ABF中,∠BFA=180°﹣45°﹣45°=90°∴∠AFB=∠AFM=90°在Rt△ABF中,由勾股定理得,BF=AF=2212AB BC+=又在Rt△AFM中,∠AMF=30°,∠AFM=90°FM=3AF=3∴BM=BF+FM=1+3故本题的答案是:1+3点评:此题是旋转性质题,解决此题,关键是思路要明确:“构造”直角三角形.在熟练掌握旋转的性质的基础上,还要应用全等的判定及性质,直角三角形的判定及勾股定理的应用15.5【解析】【分析】过点M作ME⊥x轴于点EME与抛物线交于点P′由点P′在抛物线上可得出P′F=P′E结合点到直线之间垂线段最短及MF为定值即可得出当点P运动到点P′时△PMF周长取最小值【详解】解解析:5【解析】【分析】过点M作ME⊥x轴于点E,ME与抛物线交于点P′,由点P′在抛物线上可得出P′F=P′E,结合点到直线之间垂线段最短及MF为定值,即可得出当点P运动到点P′时,△PMF周长取最小值.【详解】解:过点M作ME⊥x轴于点E,ME与抛物线交于点P′,如图所示.∵点P′在抛物线上,∴P′F=P′E.又∵点到直线之间垂线段最短,MF=22(30)(32)-+-=2,∴当点P运动到点P′时,△PMF周长取最小值,最小值为ME+MF=3+2=5.故答案为5.【点睛】本题考查了二次函数的性质、二次函数图象上点的坐标特征以及点到直线的距离,根据点到直线之间垂线段最短找出△PMF周长的取最小值时点P的位置是解题的关键. 16.【解析】【分析】根据圆内接四边形的对角互补的性质进行计算即可【详解】解:∵四边形ABCD内接于⊙O∴∠A+∠C=180°∵∠A=125°∴∠C=55°故答案为:55【点睛】本题考查了圆内接四边形的性解析:【解析】【分析】根据圆内接四边形的对角互补的性质进行计算即可.【详解】解:∵四边形ABCD内接于⊙O,∴∠A+∠C=180°,∵∠A=125°,∴∠C=55°,故答案为:55.【点睛】本题考查了圆内接四边形的性质,理解圆内接四边形的对角互补的性质是解答本题的关键. 17.【解析】【分析】先利用因式分解法求出方程的解再由三角形的三边关系确定出第三边最后求周长即可【详解】解:方程2x2﹣9x+4=0分解因式得:(2x﹣1)(x﹣4)=0解得:x=或x=4当x=时+2<4解析:【解析】【分析】先利用因式分解法求出方程的解,再由三角形的三边关系确定出第三边,最后求周长即可.【详解】解:方程2x2﹣9x+4=0,分解因式得:(2x﹣1)(x﹣4)=0,解得:x=12或x=4,当x =12时,12+2<4,不能构成三角形,舍去; 则三角形周长为4+4+2=10. 故答案为:10. 【点睛】本题主要考查了解一元二次方程,正确使用因式分解法解一元二次方程是解答本题的关键.18.(2)【解析】由题意得:即点P 的坐标解析:(2 ,2). 【解析】由题意得:441a a =⇒= 2y x ⇒=2222OD x x =⇒=⇒= ,即点P 的坐标()2,2.19.20【解析】【分析】抛物线的解析式为y=x2-6x-16可以求出AB=10;在Rt△COM 中可以求出CO=4;则:CD=CO+OD=4+16=20【详解】抛物线的解析式为y=x2-6x-16则D (0解析:20 【解析】 【分析】抛物线的解析式为y=x 2-6x-16,可以求出AB=10;在Rt △COM 中可以求出CO=4;则:CD=CO+OD=4+16=20. 【详解】抛物线的解析式为y=x 2-6x-16, 则D (0,-16)令y=0,解得:x=-2或8,函数的对称轴x=-2ba=3,即M (3,0), 则A (-2,0)、B (8,0),则AB=10,圆的半径为12AB=5, 在Rt △COM 中,OM=5,OM=3,则:CO=4, 则:CD=CO+OD=4+16=20. 故答案是:20. 【点睛】考查的是抛物线与x 轴的交点,涉及到圆的垂径定理.20.-2【解析】【分析】设正方形的对角线OA 长为2m 根据正方形的性质则可得出BC 坐标代入二次函数y=ax2+c 中即可求出a 和c 从而求积【详解】设正方形的对角线OA 长为2m 则B (﹣mm )C (mm )A (02解析:-2. 【解析】 【分析】设正方形的对角线OA 长为2m ,根据正方形的性质则可得出B 、C 坐标,代入二次函数y=ax 2+c 中,即可求出a 和c ,从而求积. 【详解】设正方形的对角线OA 长为2m ,则B (﹣m ,m ),C (m ,m ),A (0,2m ); 把A ,C 的坐标代入解析式可得:c=2m ①,am 2+c=m ②, ①代入②得:am 2+2m=m , 解得:a=-1m, 则ac=-1m⨯2m=-2. 考点:二次函数综合题.三、解答题21.1 【解析】 【分析】把x=n 代入方程求出mn 2-4n 的值,代入已知等式求出m 的值即可. 【详解】依题意,得2450mn n --=. ∴245mn n -=. ∵246mn n m -+=, ∴56m +=.∴1m =. 【点睛】此题考查了一元二次方程的解,以及一元二次方程的定义,熟练掌握运算法则是解本题的关键.22.(1) △ABC 是等腰三角形;(2)△ABC 是直角三角形;(3) x 1=0,x 2=﹣1. 【解析】试题分析:(1)直接将x=﹣1代入得出关于a,b的等式,进而得出a=b,即可判断△ABC 的形状;(2)利用根的判别式进而得出关于a,b,c的等式,进而判断△ABC的形状;(3)利用△ABC是等边三角形,则a=b=c,进而代入方程求出即可.试题解析:(1)△ABC是等腰三角形;理由:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;(2)∵方程有两个相等的实数根,∴(2b)2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形;(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:2ax2+2ax=0,∴x2+x=0,解得:x1=0,x2=﹣1.考点:一元二次方程的应用.23.(1)25;(2)35.【解析】【分析】(1)由5个项目中田赛项目有2个,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好是一个田赛项目和一个径赛项目的情况,再利用概率公式即可求得答案.【详解】(1)∵5个项目中田赛项目有2个,∴该同学从5个项目中任选一个,恰好是田赛项目的概率为:25.故答案为25;(2)画树状图得:∵共有20种等可能的结果,恰好是一个田赛项目和一个径赛项目的有12种情况,∴恰好是一个田赛项目和一个径赛项目的概率为:123 205=.【点睛】本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.(Ⅰ)证明见解析;(Ⅱ)∠BDE=50°, ∠CED =35°【解析】【分析】(Ⅰ)由旋转的性质可得AC=CD,CB=CE,∠ACD=∠BCE,由等腰三角形的性质可求解.(Ⅱ)由旋转的性质可得AC=CD,∠ABC=∠DEC,∠ACD=∠BCE=50°,∠EDC=∠A,由三角形内角和定理和等腰三角形的性质可求解.【详解】证明:(Ⅰ)∵将△ABC绕点C顺时针旋转得到△DEC,∴AC=CD,CB=CE,∠ACD=∠BCE,∴∠A=180ACD2︒-∠,∠CBE=180BCE2︒-∠,∴∠A=∠EBC;(Ⅱ)∵将△ABC绕点C顺时针旋转得到△DEC,∴AC=CD,∠ABC=∠DEC,∠ACD=∠BCE=50°,∠EDC=∠A,∠ACB=∠DCE∴∠A=∠ADC=65°,∵∠ACE=130°,∠ACD=∠BCE=50°,∴∠ACB=∠DCE =80°,∴∠ABC=180°﹣∠BAC﹣∠BCA=35°,∵∠EDC=∠A=65°,∴∠BDE=180°﹣∠ADC﹣∠CDE=50°.∠CED=180°﹣∠DCE﹣∠CDE=35°【点睛】本题主要考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.25.(1)13;(2)23.【解析】【分析】(1)直接利用概率公式计算可得;(2)画树状图得出所有等可能结果,从中找打2次摸出的盒子的纸片能拼成一个新矩形的结果数,利用概率公式计算可得.【详解】解:(1)搅匀后从中摸出1个盒子有3种等可能结果,所以摸出的盒子中是A型矩形纸片的概率为13;(2)画树状图如下:由树状图知共有6种等可能结果,其中2次摸出的盒子的纸片能拼成一个新矩形的有4种结果,所以2次摸出的盒子的纸片能拼成一个新矩形的概率为42 63 =.【点睛】考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.。
沪教版2020-2021年九年级上册期末数学试题(含答案)
沪教版2020-2021年九年级上册期末数学试题(含答案)一、选择题1.sin 30°的值为( )A B .2C .12D .22.入冬以来气温变化异常,在校学生患流感人数明显增多,若某校某日九年级8个班因病缺课人数分别为2、6、4、6、10、4、6、2,则这组数据的众数是( ) A .5人B .6人C .4人D .8人3.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是( ) A .甲、乙两队身高一样整齐 B .甲队身高更整齐C .乙队身高更整齐D .无法确定甲、乙两队身高谁更整齐4.已知52x y =,则x y y-的值是( ) A .12 B .2C .32D .235.△ABC 的外接圆圆心是该三角形( )的交点. A .三条边垂直平分线 B .三条中线 C .三条角平分线D .三条高6.10件产品中有2件次品,从中任意抽取1件,恰好抽到次品的概率是( ) A .12B .13C .14D .157.已知⊙O 的半径为1,点P 到圆心的距离为d ,若关于x 的方程x 2-2x+d=0有实数根,则点P ( )A .在⊙O 的内部B .在⊙O 的外部C .在⊙O 上D .在⊙O 上或⊙O 内部8.二次函数2(1)3y x =-+图象的顶点坐标是( ) A .(1,3) B .(1,3)- C .(1,3)- D .(1,3)-- 9.若圆锥的底面半径为2,母线长为5,则圆锥的侧面积为( ) A .5πB .10πC .20πD .40π10.二次函数22y x x =-+在下列( )范围内,y 随着x 的增大而增大. A .2x <B .2x >C .0x <D .0x >11.13名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前6名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这13名同学成绩的( ) A .方差 B .众数C .平均数D .中位数12.如图,O 的半径为2,弦2AB =,点P 为优弧AB 上一动点,60PAC ∠=︒,交直线PB 于点C ,则ABC 的最大面积是 ( )A.12B.1 C.2 D.213.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+m上的三点,则y1,y2,y3的大小关系为()A.y3>y2>y1B.y1>y2>y3C.y1>y3>y2D.y2>y1>y314.如图,AB,AM,BN 分别是⊙O 的切线,切点分别为 P,M,N.若 MN∥AB,∠A=60°,AB=6,则⊙O 的半径是()A.32B.3 C.323D.315.下列方程中,是一元二次方程的是()A.2x+y=1 B.x2+3xy=6 C.x+1x=4 D.x2=3x﹣2二、填空题16.如图,为了测量某棵树的高度,小明用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m,与树相距15m,则树的高度为_________m.17.正方形ABCD的边长为4,圆C半径为1,E为圆C上一点,连接DE,将DE绕D顺时针旋转90°到DE’,F 在CD 上,且CF=3,连接FE’,当点E 在圆C 上运动,FE’长的最大值为____.18.如图,四边形的两条对角线AC 、BD 相交所成的锐角为60︒,当8AC BD +=时,四边形ABCD 的面积的最大值是______.19.如图,在△ABC 中,AB =3,AC =4,BC =6,D 是BC 上一点,CD =2,过点D 的直线l 将△ABC 分成两部分,使其所分成的三角形与△ABC 相似,若直线l 与△ABC 另一边的交点为点P ,则DP =________.20.抛物线y =3(x+2)2+5的顶点坐标是_____.21.关于x 的方程2()0a x m b ++=的解是19x =-,211x =(a ,m ,b 均为常数,0a ≠),则关于x 的方程2(3)0a x m b +++=的解是________.22.已知⊙O 半径为4,点,A B 在⊙O 上,21390,sin 13BAC B ∠=∠=,则线段OC 的最大值为_____.23.已知 x 1、x 2 是关于 x 的方程 x 2+4x -5=0的两个根,则x 1 + x 2=_____. 24.将抛物线 y =(x+2)2-5向右平移2个单位所得抛物线解析式为_____.25.一个口袋中放有除颜色外,形状大小都相同的黑白两种球,黑球6个,白球10个.现在往袋中放入m 个白球和4个黑球,使得摸到白球的概率为35,则m =__.26.如图,在△ABC 和△APQ 中,∠PAB =∠QAC ,若再增加一个条件就能使△APQ ∽△ABC ,则这个条件可以是________.27.已知二次函数2(0)y ax bx c a =++≠,y 与x 的部分对应值如下表所示:x… -1 0 1 2 3 4 … y…61-2-3-2m…下面有四个论断:①抛物线2(0)y ax bx c a =++≠的顶点为(23)-,; ②240b ac -=;③关于x 的方程2=2ax bx c ++-的解为12=13x x =,; ④=3m -.其中,正确的有___________________.28.有4根细木棒,它们的长度分别是2cm 、4cm 、6cm 、8cm .从中任取3根恰好能搭成一个三角形的概率是_____.29.若关于x 的一元二次方程22(1)0k x x k -+-=的一个根为1,则k 的值为__________. 30.如图,二次函数y =x (x ﹣3)(0≤x ≤3)的图象,记为C 1,它与x 轴交于点O ,A 1;将C 1点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A 2旋转180°得C 3,交x 轴于点A 3;……若P (2020,m )在这个图象连续旋转后的所得图象上,则m =_____.三、解答题31.如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,D 、E 分别是边BC 、AC 上的两个动点,且DE =4,P 是DE 的中点,连接PA ,PB ,则PA +14PB 的最小值为_____.32.如图,已知抛物线经过原点O ,顶点为A(1,1),且与直线-2y x =交于B ,C 两点. (1)求抛物线的解析式及点C 的坐标; (2)求△ABC 的面积;(3)若点N 为x 轴上的一个动点,过点N 作MN ⊥x 轴与抛物线交于点M ,则是否存在以O ,M ,N 为顶点的三角形与△ABC 相似?若存在,请求出点N 的坐标;若不存在,请说明理由.33.某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如下: 命中环数6 7 8 9 10 甲命中相应环数的次数 0 1 3 1 0 乙命中相应环数的次数221(1)根据上述信息可知:甲命中环数的中位数是_____环,乙命中环数的众数是______环;(2)试通过计算说明甲、乙两人的成绩谁比较稳定?(3)如果乙再射击1次,命中8环,那么乙射击成绩的方差会变小.(填“变大”、“变小”或“不变”) 34.解方程: (1)x 2-8x +6=0 (2)(x -1)2 -3(x -1) =035.一只不透明的袋子中装有标号分别为1、2、3、4、5的5个小球,这些球除标号外都相同.(1)从袋中任意摸出一个球,摸到标号为偶数的概率是 ;(2)先从袋中任意摸出一个球后不放回,将球上的标号作为十位上的数字,再从袋中任意摸出一个球,将球上的标号作为个位上的数字,请用画树状图或列表的方法求组成的两位数是奇数的概率.四、压轴题36.如图, AB 是⊙O 的直径,点D 、E 在⊙O 上,连接AE 、ED 、DA ,连接BD 并延长至点C ,使得DAC AED ∠=∠.(1)求证: AC 是⊙O 的切线;(2)若点E 是BC 的中点, AE 与BC 交于点F , ①求证: CA CF =;②若⊙O 的半径为3,BF =2,求AC 的长. 37.如图,已知抛物线234y x bx c =++与坐标轴交于A 、B 、C 三点,A 点的坐标为(1,0)-,过点C 的直线334y x t=-与x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作PH OB ⊥于点H .若5PB t =,且01t <<.(1)点C 的坐标是________,b =________; (2)求线段QH 的长(用含t 的式子表示);(3)依点P 的变化,是否存在t 的值,使以P 、H 、Q 为顶点的三角形与COQ 相似?若存在,直接写出所有t 的值;若不存在,说明理由.38.如图1,ABC ∆是⊙O 的内接等腰三角形,点D 是弧AC 上异于,A C 的一个动点,射线AD 交底边BC 所在的直线于点E ,连结BD 交AC 于点F . (1)求证:ADB CDE ∠=∠;(2)若7BD =,3CD =,①求AD DE •的值;②如图2,若AC BD ⊥,求tan ACB ∠;(3)若5tan 2CDE ∠=,记AD x =,ABC ∆面积和DBC ∆面积的差为y ,直接写出y 关于x 的函数关系式.39.如图,正方形ABCD 中,点O 是线段AD 的中点,连接OC ,点P 是线段OC 上的动点,连接AP 并延长交CD 于点E ,连接DP 并延长交AB 或BC 于点F , (1)如图①,当点F 与点B 重合时,DEDC等于多少; (2)如图②,当点F 是线段AB 的中点时,求DEDC的值; (3)如图③,若DE CF ,求DEDC的值.40.如图,PA 切⊙O 于点A ,射线PC 交⊙O 于C 、B 两点,半径OD ⊥BC 于E ,连接BD 、DC 和OA ,DA 交BP 于点F ; (1)求证:∠ADC+∠CBD =12∠AOD ; (2)在不添加任何辅助线的情况下,请直接写出图中相等的线段.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:sin 30°=1 2故选C【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键.2.B解析:B【解析】【分析】找出这组数据出现次数最多的那个数据即为众数.【详解】解:∵数据2、6、4、6、10、4、6、2,中数据6出现次数最多为3次,∴这组数据的众数是6.故选:B.【点睛】本题考查众数的概念,出现次数最多的数据为这组数的众数.3.B解析:B【解析】【分析】根据方差的意义可作出判断,方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵S2甲=1.7,S2乙=2.4,∴S2甲<S2乙,∴甲队成员身高更整齐;故选B.【点睛】此题考查方差,掌握波动越小,数据越稳定是解题关键4.C解析:C【解析】【分析】设x=5k(k≠0),y=2k(k≠0),代入求值即可.解:∵52x y = ∴x=5k (k ≠0),y=2k (k ≠0) ∴52322x y k k y k --== 故选:C . 【点睛】本题考查分式的性质及化简求值,根据题意,正确计算是解题关键.5.A解析:A 【解析】 【分析】根据三角形的外接圆的概念、三角形的外心的概念和性质直接填写即可. 【详解】解:△ABC 的外接圆圆心是△ABC 三边垂直平分线的交点, 故选:A . 【点睛】本题考查了三角形的外心,三角形的外接圆圆心即为三角形的外心,是三条边垂直平分线的交点,正确理解三角形外心的概念是解题的关键.6.D解析:D 【解析】 【分析】由于10件产品中有2件次品,所以从10件产品中任意抽取1件,抽中次品的概率是21105=. 【详解】解:()21P 105==次品 . 故选:D . 【点睛】本题考查的知识点是用概率公式求事件的概率,根据题目找出全部情况的总数以及符合条件的情况数目是解此题的关键.7.D解析:D 【解析】 【分析】先根据条件x 2 -2x+d=0有实根得出判别式大于或等于0,求出d 的范围,进而得出d 与r的数量关系,即可判断点P 和⊙O 的关系.. 【详解】解:∵关于x 的方程x 2 -2x+d=0有实根, ∴根的判别式△=(-2) 2 -4×d ≥0, 解得d ≤1, ∵⊙O 的半径为r=1, ∴d ≤r∴点P 在圆内或在圆上. 故选:D. 【点睛】本题考查了点和圆的位置关系,由点到圆心的距离和半径的数量关系对点和圆的位置关系作出判断是解答此题的重要途径,即当d>r 时,点在圆外,当d=r 时,点在圆上,当d<r 时,点在圆内.8.A解析:A 【解析】 【分析】根据二次函数顶点式即可得出顶点坐标. 【详解】∵2(1)3y x =-+,∴二次函数图像顶点坐标为:(1,3). 故答案为A. 【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a (x-h )2+k 中,对称轴为x=h ,顶点坐标为(h ,k ).9.B解析:B 【解析】 【分析】利用圆锥面积=Rr 计算. 【详解】Rr =2510,故选:B. 【点睛】此题考查圆锥的侧面积公式,共有三个公式计算圆锥的面积,做题时依据所给的条件恰当选择即可解答.10.C解析:C【解析】【分析】先求函数的对称轴,再根据开口方向确定x 的取值范围.【详解】222(1)1y x x x =-+=--+,∵图像的对称轴为x=1,a=-10<,∴当x 1<时,y 随着x 的增大而增大,故选:C.【点睛】此题考查二次函数的性质,当a 0a 0<时,对称轴左增右减,当>时,对称轴左减右增. 11.D解析:D【解析】【分析】由于有13名同学参加歌咏比赛,要取前6名参加决赛,故应考虑中位数的大小.【详解】共有13名学生参加比赛,取前6名,所以小红需要知道自己的成绩是否进入前六.我们把所有同学的成绩按大小顺序排列,第7名学生的成绩是这组数据的中位数,所以小红知道这组数据的中位数,才能知道自己是否进入决赛.故选D .【点睛】本题考查了用中位数的意义解决实际问题.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.12.B解析:B【解析】【分析】连接OA 、OB ,如图1,由2OA OB AB ===可判断OAB 为等边三角形,则60AOB ∠=︒,根据圆周角定理得1302APB AOB ∠=∠=︒,由于60PAC ∠=︒,所以90C ∠=︒,因为2AB =,则要使ABC 的最大面积,点C 到AB 的距离要最大;由90ACB ∠=︒,可根据圆周角定理判断点C 在D 上,如图2,于是当点C 在半圆的中点时,点C 到AB 的距离最大,此时ABC 为等腰直角三角形,从而得到ABC 的最大面积.【详解】解:连接OA 、OB ,如图1,2OA OB ==,2AB =,OAB ∴为等边三角形,60AOB ∴∠=︒, 1302APB AOB ∴∠=∠=︒, 60PAC ∠=︒90ACP ∴∠=︒ 2AB =,要使ABC 的最大面积,则点C 到AB 的距离最大,作ABC 的外接圆D ,如图2,连接CD ,90ACB ∠=︒,点C 在D 上,AB 是D 的直径,当点C 半圆的中点时,点C 到AB 的距离最大,此时ABC 等腰直角三角形,CD AB ∴⊥,1CD =,12ABC S ∴=⋅AB ⋅CD 12112=⨯⨯=, ABC ∴的最大面积为1.故选B .【点睛】本题考查了圆的综合题:熟练掌握圆周角定理和等腰直角三角形的判断与性质;记住等腰直角三角形的面积公式.13.B解析:B【解析】【分析】本题要比较y 1,y 2,y 3的大小,由于y 1,y 2,y 3是抛物线上三个点的纵坐标,所以可以根据二次函数的性质进行解答:先求出抛物线的对称轴,再由对称性得A 点关于对称轴的对称点A '的坐标,再根据抛物线开口向下,在对称轴右边,y 随x 的增大而减小,便可得出y 1,y 2,y 3的大小关系.【详解】∵抛物线y=﹣(x+1)2+m,如图所示,∴对称轴为x=﹣1,∵A(﹣2,y1),∴A点关于x=﹣1的对称点A'(0,y1),∵a=﹣1<0,∴在x=﹣1的右边y随x的增大而减小,∵A'(0,y1),B(1,y2),C(2,y3),0<1<2,∴y1>y2>y3,故选:B.【点睛】本题考查了二次函数图象上点的坐标的特征,解题的关键是能画出二次函数的大致图象,据图判断.14.D解析:D【解析】【分析】根据题意可判断四边形ABNM为梯形,再由切线的性质可推出∠ABN=60°,从而判定△APO≌△BPO,可得AP=BP=3,在直角△APO中,利用三角函数可解出半径的值.【详解】解:连接OP,OM,OA,OB,ON∵AB,AM,BN 分别和⊙O 相切,∴∠AMO=90°,∠APO=90°,∵MN∥AB,∠A=60°,∴∠AMN=120°,∠OAB=30°,∴∠OMN=∠ONM=30°,∵∠BNO=90°,∴∠ABN=60°,∴∠ABO=30°,在△APO和△BPO中,OAP OBP APO BPOOP OP∠=∠⎧⎪∠=∠⎨⎪=⎩,△APO≌△BPO(AAS),∴AP=12AB=3,∴tan∠OAP=tan30°=OPAP=3,∴OP=3,即半径为3.故选D.【点睛】本题考查了切线的性质,切线长定理,解直角三角形,全等三角形的判定和性质,关键是说明点P是AB中点,难度不大.15.D解析:D【解析】【分析】利用一元二次方程的定义判断即可.【详解】解:A、原方程为二元一次方程,不符合题意;B、原式方程为二元二次方程,不符合题意;C、原式为分式方程,不符合题意;D、原式为一元二次方程,符合题意,故选:D.【点睛】此题主要考查一元二次方程的识别,解题的关键是熟知一元二次方程的定义.二、填空题16.7【解析】设树的高度为m,由相似可得,解得,所以树的高度为7m解析:7【解析】设树的高度为x m,由相似可得6157262x+==,解得7x=,所以树的高度为7m17.【解析】【分析】先作出FE’最大时的图形,再利用勾股定理即可求解.【详解】解:如下图,过点F作FP⊥AB于P,延长DP到点E’,使PE’=1,此时FE’长最大, 由题可知,PF=4,DF=解析:171+【解析】【分析】先作出FE’最大时的图形,再利用勾股定理即可求解.【详解】解:如下图,过点F作FP⊥AB于P,延长DP到点E’,使PE’=1,此时FE’长最大,由题可知,PF=4,DF=1,∴DP=2241+=17,∴FE’=171+,故答案是:171+【点睛】本题考查了图形的旋转,圆的基本性质,勾股定理的应用,中等难度,准确找到点P的位置是解题关键.18.【解析】【分析】设AC=x,根据四边形的面积公式,,再根据得出,再利用二次函数最值求出答案.【详解】解:∵AC、BD相交所成的锐角为∴根据四边形的面积公式得出,设AC=x ,则BD=8-解析:【解析】【分析】设AC=x,根据四边形的面积公式,1S sin 602AC BD =⨯⨯︒,再根据sin 60︒=()1 S 82x x =-. 【详解】解:∵AC 、BD 相交所成的锐角为60︒ ∴根据四边形的面积公式得出,1S sin 602AC BD =⨯⨯︒ 设AC=x ,则BD=8-x所以,()()21S 84224x x x =-⨯=--+∴当x=4时,四边形ABCD 的面积取最大值故答案为:【点睛】本题考查的知识点主要是四边形的面积公式,熟记公式是解题的关键.19.1, ,【解析】【分析】分别利用当DP ∥AB 时,当DP ∥AC 时,当∠CDP=∠A 时,当∠BPD=∠BAC 时求出相似三角形,进而得出结果.【详解】BC =6,CD=2,∴BD=4,①如图解析:1,83 ,32【解析】【分析】分别利用当DP ∥AB 时,当DP ∥AC 时,当∠CDP=∠A 时,当∠BPD=∠BAC 时求出相似三角形,进而得出结果.【详解】BC =6,CD=2,①如图,当DP∥AB时,△PDC∽△ABC,∴PD CDAB BC=,∴236DP=,∴DP=1;②如图,当DP∥AC时,△PBD∽△ABC.∴PD BDAC BC=,∴446DP=,∴DP=83;③如图,当∠CDP=∠A时,∠DPC∽△ABC,∴DP DCAB AC=,∴234DP=,∴DP=32;④如图,当∠BPD=∠BAC时,过点D的直线l与另一边的交点在其延长线上,,不合题意。
沪教版2020-2021学年度九年级数学第一学期期末模拟测试卷A卷(附答案)
沪教版2020-2021学年度九年级数学第一学期期末模拟测试卷A 卷(附答案)一、单选题1.已知⊙O 的半径r =3,设圆心O 到一条直线的距离为d ,圆上到这条直线的距离为2的点的个数为m ,给出下列命题:①若d >5,则m =0;②若d =5,则m =1;③若1<d <5,则m =3;④若d =1,则m =2;⑤若d <1,则m =4. 其中正确命题的个数是( ) A .1 B .2 C .3 D .52.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲 乙 丙 丁 平均数(cm ) 181 186 181 186 方差3.53.56.57.5根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( ) A .甲B .乙C .丙D .丁3.如图是某市5月1日至5月7日每天最高、最低气温的折线统计图,在这7天中,日温差最大的一天是( )A .5月1日B .5月2日C .5月3日D .5月5日4.飞人刘翔伤愈归来,在恢复训练中,大家十分关注他的训练成绩是否稳定,为此对他训练中的10次110米栏成绩进行统计分析,下列数据中最能反映成绩是否稳定的是( )A .众数B .中位数C .平均数D .方差5.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,5,8OC cm CD cm ==,则AE =( )6.有一组数据16,x,19,19,它们的平均数比众数小1,则这组数据的平均数和中位数分别是()A.18,17.5 B.18,19 C.19,18 D.18,18.5 7.以下问题不适合采用全面调查的是( )A.调查某班学生每周课前预习的时间B.调查某中学在职教师的身体健康状况C.调查某电视节目的收视率D.调查某校篮球队员的身高8.把二次函数y=4x2﹣4x+4的图象,先向左平移1个单位,再向上平移1个单位,平移后的二次函数解析式为( )A.y=22x+4 B.y=42x+4x+5 C.y=42x﹣4x+5 D.y=42x+4x+49.在△ABC中,∠C=90°,1cos2A ,那么∠B的度数为()A.60°B.45°C.30°D.30°或60°10.如图,在RtΔABC中∠C=90°,AC=6,BC=8,则sin∠A的值()A.35B.45C.34D.53二、填空题11.在直角三角形ABC中,角C为直角,锐角A的余弦函数定义为_____,写出sin70º、cos40º、cos50º的大小关系__________.12.已知⊙O的半径为6 cm,直线l上有P、Q、R三点,OA⊥l,A为垂足,若OA = 4 cm,PA = 5 cm,QA = 4 cm,RA = 25,则点P在圆_______,点Q在圆_______,点R在圆________.13.两条弧所含的度数相等, 叫等弧.(____)14.如图,P为⊙O的弦AB上的点,P A=6,PB=2,⊙O的半径为5,则OP=______.16.小亮应聘小记者,进行了三项素质测试,测试成绩分别是:采访写作90分,计算机输入85分,创意设计70分,若将采访写作、计算机输入、创意设计三项成绩按5:2:3的比例来计算平均成绩,则小亮的平均成绩是_____分.17.如图,直线AB 与⊙O 切于点A ,⊙O 的半径为2,若∠OBA =30°,则AB 的长为_______.18.如图,AD ∥EF ∥BC ,则图的相似三角形共有_____对.19.某校对初一全体学生进行了一次视力普查,得到如下统计表,则视力在4.9 5.5x ≤<这个范围的频率为______. 视力x频数 4.0 4.3x ≤<20 4.3 4.6x ≤< 40 4.6 4.9x ≤<70 4.9 5.2x ≤≤60 5.2 5.5x ≤<1020.甲、乙、丙三人进行射击测试,每人10次射击的平均成绩恰好都是9.4环,方差分别是S 2=0.90,S 乙2=1.22,S 丙2=0.43,在本次射击测试中,成绩最稳定的是 . 三、解答题21.鄂北公司以10元/千克的价格收购一批产品进行销售,为了得到日销售量y (千克)与销售价格x (元/千克)之间的关系,经过市场调查获得部分数据如表: 销售价格x (元/千克)1015202530日销售量y (千克) 30022515075(1)请你根据表中的数据确定y 与x 之间的函数表达式;(2)鄂北公司应该如何确定这批产品的销售价格,才能使日销售利润W 1元最大? (3)若鄂北公司每销售1千克这种产品需支出a 元(a >0)的相关费用,当20≤x≤25时,鄂北公司的日获利W 2元的最大值为1215元,求a 的值.22.图中是抛物线拱桥,P处有一照明灯,水面OA宽4m,从O、A两处观测P处,仰角分别为α、β,且tanα=,,以O为原点,OA所在直线为x轴建立直角坐标系.(1)求点P的坐标;(2)水面上升1m,水面宽多少m(取1.41,结果精确到0.1m)?23.已知二次函数y=x2+4x+k-1.(1)若抛物线与x轴有两个不同的交点,求k的取值范围;(2)若抛物线的顶点在x轴上,求k的值.24.今年4月23日是第23个“世界读书日”.某校围绕学生日人均阅读时间这一问题,对初二学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是.(2)请将条形统计图补充完整.(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角是度.(4)根据本次抽样调查,试估计我市12000名初二学生中日均阅读时间在0.5~1.5小时的有多少人.25.体育委员统计了全班同学60秒跳绳的次数,绘制出频数分布表和部分频数分布直方图,如图所示.请根据以下信息,解答下列问题:次数x 频数60≤x<80 280≤x<100 4100≤x<120 20120≤x<140 12140≤x<160 8160≤x<180 3180≤x<200 1(Ⅰ)补全直方图;(Ⅱ)全班有学生______名,频数分布表的组距是_______,组数是_______;(Ⅲ)求跳绳次数x在100≤x<140范围内的学生有多少?占全班学生的百分之几?26.运动服装店销售某品牌S号,M号,L号,XL号,XXL号五种不同型号服装,随机统计该品牌运动服装一周的销售情况并绘制如图所示不完整统计图.(1)L号运动服一周的销售所占百分比为.(2)请补全条形统计图;(3)服装店老板打算再次购进该品牌服饰共600件,根据各种型号的销售情况,你认为购进XL号约多少件比较合适,请计算说明.27.为了了解成都市初中学生“数学核心素养”的掌握情况,教育科学院命题教师赴某校初三年级进行调 研,命题教师将随机抽取的部分学生成绩(得分为整数,满分 160 分)分为 5 组:第一组 85~100;第二组100~115;第三组 115~130;第四组 130~145;第五组 145~160,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:(1)本次调查共随机抽取了该年级多少名学生?成绩为第五组的有多少名学生? (2)针对考试成绩情况,现各组分别派出1名代表(分别用 A 、B 、C 、D 、E 表示5个小组中选出来的同学),命题教师从这5名同学中随机选出两名同学谈谈做题的感想,请你用列表或画树状图的方法求出所选两名同学刚好来自第一、五组的概率. 28.(1)计算;20)21()2(60sin 4-12-︒+++π; (2) 解方程:24111x x x -=+-. 29.某公司销售人员15人,销售经理为了制定某种商品的月销售定额,统计了这15人某月的销售量如表所示:每人销售量/件 1800 510 250 210 150 120 人数 113532(1)这15位营销人员该月销售量的中位数是______,众数是______;(2)假设销售部负责人把每位销售人员的月销售额定为210件,你认为是否合理?如不合理,请你制定一个较为合理的销售定额,并说明理由. 30.(本题满分8分)解方程:(1)计算:03cos303tan 452018︒+︒-; (2)解方程:.参考答案1.C 【解析】试题分析:①若d >5时,直线与圆相离,则m=0,正确; ②若d=5时,直线与圆相切,则m=1,故正确; ③若1<d <5,则m=3,正确;④若d=1时,直线与圆相交,则m=2正确; ⑤若d <1时,直线与圆相交,则m=2,故错误. 故选C .考点:1.直线与圆的位置关系2.命题与定理. 2.B 【解析】 【分析】根据平均数与方差的意义解答即可. 【详解】 解:=x x x x <=甲乙丁丙,∴乙与丁二选一,又22s s <乙丁,∴选择乙.【点睛】本题考查数据的平均数与方差的意义,理解两者所代表的的意义是解答关键. 3.D 【解析】试题解析:在图中,从5月1日至5月7日找出实线与虚线差距最大的一天,为5月5日; 故选D . 4.D【解析】由于方差反映数据的波动情况,故最能反映成绩是否稳定的量是方差.故选D 5.A 【解析】 【分析】根据垂径定理可得出CE 的长度,在Rt △OCE 中,利用勾股定理可得出OE 的长度,再利用AE=AO+OE 即可得出AE 的长度. 【详解】∵弦CD ⊥AB 于点E ,CD=8cm , ∴CE=12CD=4cm . 在Rt △OCE 中,OC=5cm ,CE=4cm ,∴=3cm , ∴AE=AO+OE=5+3=8cm . 故选A . 【点睛】本题考查了垂径定理以及勾股定理,利用垂径定理结合勾股定理求出OE 的长度是解题的关键. 6.D 【解析】 【分析】先求出x 值,分两种情况讨论:众数是19时和众数是16时,再根据平均数和中位数的概念求解. 【详解】因为数据16,x ,19,19的平均数比众数小1, 所以当众数是19时,平均数为18, 则有(161919)418,x +++÷=18x =;当众数是16时,此时这组数据有两一些人众数16和19,平均数也有两个,故这种情况不存在.故这组数据按从小到大的顺序排列为16,18,19,19,中位数是(1819)218.5+÷=.故选D.【点睛】本题考查中平均数和中位数的意义.一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.7.C【解析】电视节目的收视率调查范围太大,不适合采用全面调查.故选C.8.B【解析】【分析】先将二次函数化成顶点式,利用平移的规律“左加右减,上加下减”可得到答案.【详解】解:∵y=4x2﹣4x+4=21432x⎛⎫-+⎪⎝⎭,∴把二次函数y=4x2﹣4x+4的图象,先向左平移1个单位,再向上平移1个单位,其解析式为:y=4211312x⎛⎫-+++⎪⎝⎭,即y=4x2+4x+5.故选:B.【点睛】本题主要考查二次函数图象的平移,掌握平移的规律“左加右减,上加下减”是解题的关键.9.C【解析】【分析】根据特殊角的三角函数值可知∠A=60°,再根据直角三角形中两锐角互余求出∠B的值即可. 【详解】解:∵1 cos2A=,∴∠A=60°.∵∠C=90°,∴∠B=90°-60°=30°.点睛:本题考查了特殊角的三角函数值和直角三角形中两锐角互余的性质,熟记特殊角的三角函数值是解答本题的突破点.10.B【解析】【分析】由勾股定理可求得AB的长度,再根据锐角三角函数的定义式求得sin∠A的值.【详解】∵AC=6,BC=8,∴10=,∴sin∠A=84105 BCAB==.故选B.【点睛】本题考查勾股定理和锐角三角函数的综合应用,根据求得的直角三角形的边长利用锐角三角函数的定义求值是解题关键.11.ACcos A=ABsin70º>cos40 º>cos50 º【解析】【分析】根据余弦的定义即可确定答案;根据sin70°=cos20°且正弦随角度的增大而增大,余弦随角度的增大而减小即可确定大小关系.【详解】解:∵直角三角形ABC中,角C为直角∴BC为斜边,AC为直角边且为∠A的一边∴余弦的定义为AC cos A=AB;∵sin70°=cos20°且正弦在锐角范围内随角度的增大而增大,余弦在锐角范围内随角度的增∴sin70º==cos20 º>cos40º,cos40 º>cos50 º∴sin70º>cos40 º>cos50 º.故答案为ACcos A=AB,sin70º>cos40 º>cos50 º.【点睛】本题考查了余弦函数的定义和正弦、余弦函数的增减性,掌握正弦在锐角范围内为增函数、余弦在锐角范围内为减函数是解答本题的关键.12.外,内,上.【解析】【分析】如图,根据题意作图,根据勾股定理求出AB= 25= RA,故点R在圆上,再根据PA,QA 与AB的长度大小即可知点P,Q的位置.【详解】如图,∵OA⊥l,OA = 4 cm,OB=6cm,∴AB=22OB OA-=2264-=25,∵PA=5cm,QA=4cm,RA=25cm,∴PA>AB,QA<AB,RA= AB,∴点P在圆外,点Q在圆内,点R在圆上.【点睛】此题主要考查点与圆的位置关系,解题的关键是找到点在圆上时的条件.13.错误【解析】根据“在同圆或等圆中,所对的圆心角相等的两段弧是等弧”进行判断即可.【详解】在同圆或等圆中,所对的圆心角相等的两段弧是等弧.故答案为:错误.【点睛】本题考查等弧的定义:在同圆或等圆中,所对的圆心角相等的两段弧是等弧.14.13【解析】【分析】连接OA,过点O作OC⊥AB,垂足为C,由垂径定理求得AC,再由勾股定理求得OC,再在直角三角形OPC中,利用勾股定理求得OP即可.【详解】解:如图,连接OA,过点O作OC⊥AB,垂足为C,∵PA=6,PB=2,∴AC=4,∴PC=2,∵OA=5,∴由勾股定理得:OC=22-=3,54∴OP=223213+=,故答案为:13.【点睛】本题考查了勾股定理和垂径定理,解此类题目要注意将圆的问题转化成三角形的问题再进行计算.15 【解析】根据特殊角的三角函数值,直接计算即可得tan60°﹣cos30°2=2.16.83【解析】【分析】 利用加权平均数的算法进行计算即可.【详解】 解:90585270383523⨯+⨯+⨯=++(分). 故答案为:83.【点睛】本题考查了加权平均数的计算方法,在进行计算时候注意权的分配,数量掌握加权平均数是解题的关键.17.【解析】【分析】根据切线的性质可得∠OAB=90°,根据30°所对的直角边是斜边的一半即可求出OB ,利用勾股定理即可求出结论.【详解】解:∵直线AB 与⊙O 切于点A ,∴∠OAB=90°在Rt △OAB 中,∠OBA =30°,半径OA=2∴OB=2OA=4∴=故答案为:23.【点睛】此题考查的是切线的性质和直角三角形的性质,掌握切线的性质、30°所对的直角边是斜边的一半和勾股定理是解题关键.18.3【解析】本题主要考查了相似三角形的判定定理.根据平行于三角形一边的直线和其他两边相交所构成的三角形与原三角形相似可判断相似三角形的对数.解:∵AD∥EF∥BC,∴△AEF∽△ABC,△AFD∽△CFB,△BEF∽△BAD,∴共3对.19.0.35【解析】【分析】直接利用频数÷总数=频率进而得出答案.【详解】解:∵视力在4.9≤x<5.5这个范围的频数为:60+10=70,∴视力在4.9≤x<5.5这个范围的频率为:70=0.35.2040706010++++故答案为:0.35.【点睛】此题主要考查了频率求法,正确把握频率的定义是解题关键.20.丙【解析】试题分析:方差的意义:方差反映的是一组数据的波动情况,方差越小,成绩越稳定.∵∴成绩最稳定的是丙.考点:方差的意义点评:本题属于基础应用题,只需学生熟练掌握方差的意义,即可完成.21.(1)y =﹣15x+450;(2)这批产品的销售价格定为20元,才能使日销售利润最大;(3)a 的值为2【解析】【分析】(1)由表格数据变化规律可知:y 是x 的一次函数,然后利用待定系数法求一次函数解析式即可;(2)根据“总利润=每千克利润×千克数”即可求出W 1与x 的函数关系式,然后利用二次函数求最值即可;(3)根据“总利润=每千克利润×千克数”即可求出W 2与x 的函数关系式,然后根据对称轴的位置分类讨论,分别求出最值,然后列出方程即可求出结论.【详解】解:(1)由表格可知: x 每增加5,y 都下降75∴y 是x 的一次函数设y 与x 之间的函数表达式为y =kx+b ,则1030015225k b k b +=⎧⎨+=⎩, 解得:k =﹣15,b =450,∴y 与x 之间的函数表达式为:y =﹣15x+450;(2)设日销售利润W 1=y (x ﹣10)=(﹣15x+450)(x ﹣10)即W 1=﹣15x 2+600x ﹣4500∵150,=-<a∴当x =﹣6002(15)⨯-=20时,W 1有最大值1500元, 答:这批产品的销售价格定为20元,才能使日销售利润最大;(3)日获利W 2=y (x ﹣10﹣a )=(﹣15x+450)(x ﹣10﹣a ),即W 2=﹣15x 2+(600+15a )x ﹣(450a+4500),则对称轴为x =20+12a ①若20+12a ≥25,即a≥10时,则当x =25时,W 2有最大值,即W2=1125﹣75a<1215(不合题意);②若20<20+12a <25,即0<a<10时,则当x=20+12a时,W2有最大值,将x=20+12a代入,可得W2=154a2﹣150a+1500,当W2=1215时,154a2﹣150a+1500=1215,解得a1=2,a2=38(舍去),综上所述,a的值为2【点睛】此题考查的是一次函数和二次函数的应用,掌握实际问题中的等量关系、利用待定系数法求一次函数的解析式和利用二次函数求最值是解决此题的关键.22.(1)点P的坐标为.(2)2.8m.【解析】【分析】(1)过点P作PH⊥OA于H,如图,设PH=3x,运用三角函数可得OH=6x,AH=2x,根据条件OA=4可求出x,即可得到点P的坐标;(2)若水面上升1m后到达BC位置,如图,运用待定系数法可求出抛物线的解析式,然后求出y=1时x的值,就可解决问题.【详解】(1)如图,过点P作PB⊥OA,垂足为B.设点P的坐标为(x,y).在Rt△POB中,∵tanα=,∴OB==2y.在Rt△P AB中,∵tanβ=,∴AB=y.∵OA=OB+AB,即2y+y=4,∴y=.∴x=2×=3.∴点P的坐标为(3,).(2)设这条抛物线表示的二次函数的表达式为y=ax2+bx,由函数图象经过(4,0),(3,)两点,可得解方程组,得,∴这条抛物线表示的二次函数的表达式为y=-x2+2x.当水面上升1 m 时,水面的纵坐标为1,即-x2+2x=1,解得x1=2-,x2=2+,∴x2-x1=2+-(2-)=2≈2.8.因此,若水面上升1 m,则水面宽约2.8 m.【点睛】本题主要考查了三角函数、运用待定系数法求抛物线的解析式、解一元二次方程等知识,出现角的度数(30°、45°或60°)或角的三角函数值,通常放到直角三角形中通过解直角三角形来解决问题.23.k<5;k=5.【解析】试题分析:(1)、当抛物线与x轴有两个不同的交点,则△>0,从而求出k的取值范围;(2)、顶点在x轴上则说明顶点的纵坐标为0.试题解析:(1)、∵抛物线与x轴有两个不同的交点,∴b2-4ac>0,即16-4k+4>0.解得k<5.(2)、∵抛物线的顶点在x轴上,∴顶点纵坐标为0,即244ac ba=0.解得k=5.考点:二次函数的顶点24.(1)150 (2)图见解析(3)108 (4)9600【解析】【分析】【详解】试题分析:(1)利用日人均阅读时间在0~0.5小时的人数除以所占的比例可得本次抽样调查的样本容量;(2)求出日人均阅读时间在0.5~1小时的人数即可;(3)人均阅读时间在1~1.5小时对应的圆心角度数=360°×所占比例;(4)日人均阅读时间在0.5~1.5小时的人数=12000×后两组所占的比例和.试题解析:(1)样本容量是:30÷20%=150;(2)日人均阅读时间在0.5~1小时的人数是:150-30-45=75(人).;(3)人均阅读时间在1~1.5小时对应的圆心角度数是:360°×45150=108°;(4)12000×7545150=9600(人).考点:1.用样本估计总体;2. 条形统计图;3. 扇形统计图.25.(Ⅰ)补全直方图见解析;4,8;(Ⅱ)50,20,7;(Ⅲ)跳绳次数x在100≤x<140范围内的学生有32人,占全班学生人数的64%.【解析】【分析】(1)根据表格的数据找到相关数据即可;(2)把所有人数加起来就是总人数,每一组两个数之间的差距即可得到结果;根据表格的组数可以得到数据;(3)先算出在100≤x<140范围内的学生人数,再除以总人数即可.【详解】(Ⅰ)补全直方图:在80≤x<100范围的频数4,在140≤x<160范围内的频数是8;(Ⅱ)总人数=2+4+20+12+8+3+1=50,因为每一组数据的差距是20,所以组距是20,根据表格的数据可得到总共分成7组,故答案是50,2,7.(Ⅲ)20+12=32人,32100%64% 50⨯=.∴跳绳次数x在100≤x<140范围内的学生有32人,占全班学生人数的64%.【点睛】本题主要考查了数据分析的应用,准确根据表格分析数据是解题的关键.26.(1)20%;(2)详见解析;(3)96.【解析】【分析】(1)利用百分比之和为1,计算即可;(2)求出M、L的件数,画出条形图即可;(3)利用样本估计总体的思想解决问题即可;【详解】解:(1)L号运动服一周的销售所占百分比为1﹣16%﹣8%﹣30%﹣26%=20%.故答案为20%.(2)总数=13÷26%=50,M有50×30%=15,L有50×20%=10,条形统计图如图所示:(3)购进XL号约600×16%=96(件)比较合适.【点睛】本题考查了频数分布直方图、扇形统计图和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.27.(1)本次调查的学生总数为50(名),成绩在第5组的学生人数为4(人);(2)所选两名同学刚好来自第一、五组的概率为1 10.【解析】试题分析:(1)首先根据题意得:本次调查共随机抽取了该年级学生数为:20÷40%=50(名);则可求得第五组人数为:50-4-8-20-14=4(名);即可补全统计图;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两名同学刚好来自第一、五组的情况,再利用概率公式求解即可求得答案.解:(1)本次调查的学生总数为20÷40%=50(名),成绩在第5组的学生人数为50﹣(4+8+20+14)=4(人);(2)画树状图如下:由树状图知,共有20种等可能结果,其中所选两名同学刚好来自第一、五组的情况有2种结果,所以所选两名同学刚好来自第一、五组的概率为.28.(1) 5 (2) x=-3【解析】试题分析:首先将各式进行计算,然后进行求和;首先进行去分母,将分式方程转化为整式方程,然后进行求解,最后需要验根.试题解析:(1)原式(2)去分母得:x (x -1)-4=2x -1 解得:x=-3. 经检验:x=-3是原方程的解. 考点:实数的计算、解分式方程.29.(1)210,210;(2)合理,理由见解析【解析】【分析】(1)根据中位数和众数的定义求解;(2)先观察出能销售210件的人数为能达到大多数人的水平即合理.【详解】解:(1)按大小数序排列这组数据,第7个数为210,则中位数为210;210出现的次数最多,则众数为210;故答案为:210,210;(2)合理;因为销售210件的人数有5人,210是众数也是中位数,能代表大多数人的销售水平,所以售部负责人把每位销售人员的月销售额定为210件是合理的.【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.30.(1)72;(2)11x =21x =【解析】试题分析:(1)第一、二项按照特殊角的三角函数解答,第三项非零数的零次方等于1;(2)先把-2移到右边,然后两边都加上一次项系数一半的平方,把左边配成完全平方的形式,然后开平方即可..(1)原式311+⨯-=72 (2)配方得:()213x -=直接开平方得:1211x x ==点睛:本题主要考查了特殊角的三角函数值及配方法解一元二次方程方程,熟练掌握特殊角的三角函数值及配方的方法是解答本题的关键.。
2020-2021上海北郊学校九年级数学上期末第一次模拟试卷(附答案)
2020-2021上海北郊学校九年级数学上期末第一次模拟试卷(附答案)一、选择题1.已知a ,b 是方程230x x +-=的两个实数根,则22019a b -+的值是( )A .2023B .2021C .2020D .20192.把抛物线y =﹣2x 2向上平移1个单位,再向右平移1个单位,得到的抛物线是( )A .y =﹣2(x +1)2+1B .y =﹣2(x ﹣1)2+1C .y =﹣2(x ﹣1)2﹣1D .y =﹣2(x +1)2﹣13.如图中∠BOD 的度数是( )A .150°B .125°C .110°D .55°4.下列命题错误..的是 ( ) A .经过三个点一定可以作圆B .经过切点且垂直于切线的直线必经过圆心C .同圆或等圆中,相等的圆心角所对的弧相等D .三角形的外心到三角形各顶点的距离相等5.已知一次函数()10y kx m k =+≠和二次函数()220y ax bx c a =++≠部分自变量和对应的函数值如表: x … -1 0 2 4 5 … y 1 … 0 1 3 5 6 … y 2…-159…当y 2>y 1时,自变量x 的取值范围是 A .-1<x <2B .4<x <5C .x <-1或x >5D .x <-1或x >46.如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是( )A .2332π-B .233π- C .32π-D .3π-7.若将抛物线y=x 2平移,得到新抛物线2(3)y x =+,则下列平移方法中,正确的是( ) A .向左平移3个单位 B .向右平移3个单位 C .向上平移3个单位D .向下平移3个单位8.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x 名学生,根据题意,列出方程为( ) A .x(x -1)=2070 B .x(x +1)=2070 C .2x(x +1)=2070D .(1)2x x -=2070 9.如图,二次函数2y ax bx c =++的图象与x 轴相交于(﹣2,0)和(4,0)两点,当函数值y >0时,自变量x 的取值范围是( )A .x <﹣2B .﹣2<x <4C .x >0D .x >410.若20a ab -=(b ≠0),则aa b+=( ) A .0B .12 C .0或12D .1或 211.一只布袋里装有4个只有颜色不同的小球,其中3个红球,1个白球,小敏和小丽依次从中任意摸出1个小球,则两人摸出的小球颜色相同的概率是( ) A .14B .12C .23D .3412.已知二次函数y =ax 2+bx +c(a≠0)的图象如图所示,当y >0时,x 的取值范围是( )A .-1<x <2B .x >2C .x <-1D .x <-1或x >2二、填空题13.一个不透明的口袋中有5个完全相同的小球,分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号是偶数的概率为 .14.△ABC 中,∠A =90°,AB =AC ,以A 为圆心的圆切BC 于点D ,若BC =12cm ,则⊙A 的半径为_____cm .15.四边形ABCD 内接于⊙O ,∠A =125°,则∠C 的度数为_____°.16.一个等边三角形边长的数值是方程x 2﹣3x ﹣10=0的根,那么这个三角形的周长为_____.17.一元二次方程x 2﹣2x ﹣3=0的解是x 1、x 2(x 1<x 2),则x 1﹣x 2=_____.18.已知在同一坐标系中,抛物线y 1=ax 2的开口向上,且它的开口比抛物线y 2=3x 2+2的开口小,请你写出一个满足条件的a 值:_____.19.若1x 、2x 是方程22x 2mx m m 10-+--=的两个实数根,且x 1+x 2=1-x 1⋅x 2,则 m 的值为________.20.在一空旷场地上设计一落地为矩形ABCD 的小屋,AB +BC =10m ,拴住小狗的10m 长的绳子一端固定在B 点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S (m 2).(1)如图1,若BC =4m ,则S =_____m 2.(2)如图2,现考虑在(1)中矩形ABCD 小屋的右侧以CD 为边拓展一正△CDE 区域,使之变成落地为五边形ABCED 的小屋,其他条件不变,则在BC 的变化过程中,当S 取得最小值时,边BC 的长为____m .三、解答题21.鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千 克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y (千克)是销售单价x (元)的一次函数,且当x=60时 ,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y 与x 的函数关系式,并写出自变量x 的取值范围.(2)求该公司销售该原料日获利w (元)与销售单价x (元)之间的函数关系式. (3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元? 22.如图,已知二次函数23y x ax =++的图象经过点()2,3P -.(1)求a 的值和图象的顶点坐标。
2020年上海市初三数学上期末第一次模拟试题含答案
2020年上海市初三数学上期末第一次模拟试题含答案一、选择题1.下列图形中既是轴对称图形又是中心对称图形的是( )A .正三角形B .平行四边形C .正五边形D .正六边形 2.已知a ,b 是方程230x x +-=的两个实数根,则22019a b -+的值是( )A .2023B .2021C .2020D .2019 3.下列智能手机的功能图标中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .4.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知4EF CD ==,则球的半径长是( )A .2B .2.5C .3D .45.如图,在宽为20米、长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪.要使草坪的面积为540平方米,设道路的宽x 米.则可列方程为( )A .32×20﹣32x ﹣20x =540 B .(32﹣x )(20﹣x )=540 C .32x +20x =540 D .(32﹣x )(20﹣x )+x 2=5406.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x k =-++上的三点,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .132y y y >>C .231y y y >>D .312y y y >>7.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )A.12B.14C.16D.1128.关于下列二次函数图象之间的变换,叙述错误的是()A.将y=﹣2x2+1的图象向下平移3个单位得到y=﹣2x2﹣2的图象B.将y=﹣2(x﹣1)2的图象向左平移3个单位得到y=﹣2(x+2)2的图象C.将y=﹣2x2的图象沿x轴翻折得到y=2x2的图象D.将y=﹣2(x﹣1)2+1的图象沿y轴翻折得到y=﹣2(x+1)2﹣1的图象9.如图,A、D是⊙O上的两个点,BC是直径,若∠D=34°,则∠OAC等于()A.68°B.58°C.72°D.56°10.方程x2=4x的解是()A.x=0B.x1=4,x2=0C.x=4D.x=211.天虹商场一月份鞋帽专柜的营业额为100万元,三月份鞋帽专柜的营业额为150万元.设一到三月每月平均增长率为x,则下列方程正确的是()A.100(1+2x)=150B.100(1+x)2=150C.100(1+x)+100(1+x)2=150D.100+100(1+x)+100(1+x)2=150 12.一只布袋里装有4个只有颜色不同的小球,其中3个红球,1个白球,小敏和小丽依次从中任意摸出1个小球,则两人摸出的小球颜色相同的概率是()A.14B.12C.23D.34二、填空题13.如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=EF,则AB的长为_____.14.已知:如图,在△AOB中,∠AOB=90°,AO=3 cm,BO=4 cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D=__________cm.15.若把一根长200cm的铁丝分成两部分,分别围成两个正方形,则这两个正方形的面积的和最小值为_____.16.如图,Rt△ABC中,∠C=90°,AC=30cm,BC=40cm,现利用该三角形裁剪一个最大的圆,则该圆半径是_____cm.17.函数y=x2﹣4x+3的图象与y轴交点的坐标为_____.18.不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是_________.19.如图,如果一只蚂蚁从圆锥底面上的点B出发,沿表面爬到母线AC的中点D处,则最短路线长为_____.20.如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=2,则图中阴影部分的面积等于_____.三、解答题21.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为15m的住房墙,另外三边用27m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长,宽分别为多少米时,猪舍面积为96m2?22.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(-2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形.(2)平移△ABC,使点A的对应点A2坐标为(-2,-6),请画出平移后对应的△A2B2C2的图形.(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.23.如图,等腰Rt△ABC中,BA=BC,∠ABC=90°,点D在AC上,将△ABD绕点B沿顺时针方向旋转90°后,得到△CBE(1)求∠DCE的度数;(2)若AB=4,CD=3AD,求DE的长.24.已知关于x的一元二次方程x2+(m+3)x+m+2=0.(1)求证:无论m取何值,原方程总有两个实数根;(2)若x1,x2是原方程的两根,且x12+x22=2,求m的值.25.为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A. 是轴对称图形,不是中心对称图形,故错误;B. 不是轴对称图形,是中心对称图形,故错误;C. 是轴对称图形,不是中心对称图形,故错误;D. 是轴对称图形,也是中心对称图形,故正确.故答案选:D.【点睛】本题考查的知识点是中心对称图形, 轴对称图形,解题的关键是熟练的掌握中心对称图形, 轴对称图形.2.A解析:A【解析】【分析】根据题意可知b=3-b 2,a+b=-1,ab =-3,所求式子化为a 2-b+2019=a 2-3+b 2+2019=(a+b )2-2ab+2016即可求解.【详解】a ,b 是方程230x x +-=的两个实数根,∴23b b =-,1a b +=-,-3ab =,∴222201932019a b a b -+=-++()2220161620162023a b ab =+-+=++=; 故选A .【点睛】本题考查一元二次方程的根与系数的关系;根据根与系数的关系将所求式子进行化简代入是解题的关键. 3.C解析:C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、图形既不是轴对称图形是中心对称图形,B、图形是轴对称图形,C、图形是轴对称图形,也是中心对称轴图形,D、图形是轴对称图形.故选C.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.B解析:B【解析】【分析】取EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=4-x,MF=2,然后在Rt△MOF中利用勾股定理求得OF的长即可.【详解】如图:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=4,设OF=x,则ON=OF,∴OM=MN-ON=4-x,MF=2,在直角三角形OMF中,OM2+MF2=OF2,即:(4-x)2+22=x2,解得:x=2.5,故选B.【点睛】本题主考查垂径定理及勾股定理的知识,正确作出辅助线构造直角三角形是解题的关键.5.B解析:B【分析】先将图形利用平移进行转化,可得剩余图形的长等于原来的长减去小路的宽,剩余图形的宽等于原来的宽减去路宽,然后再根据矩形面积公式计算.【详解】利用图形平移可将原图转化为下图,设道路的宽为x ,根据题意得:(32-x )(20-x )=540.故选B.【点睛】本题考查的是一元二次方程的实际运用,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.6.A解析:A【解析】【分析】根据二次函数的性质得到抛物线y =-(x +1)2+k (k 为常数)的开口向下,对称轴为直线x =﹣1,然后根据三个点离对称轴的远近判断函数值的大小.【详解】解:∵抛物线y =-(x +1)2+k (k 为常数)的开口向下,对称轴为直线x =﹣1,而A (2,y 1)离直线x =﹣1的距离最远,C (﹣2,y 3)点离直线x =1最近,∴123y y y >>. 故选A .【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.7.C解析:C【解析】【分析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:21 126.故答案为C.【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.8.D解析:D【解析】【分析】根据平移变换只改变图形的位置不改变图形的形状与大小对各选项分析判断后利用排除法求解.【详解】A选项,将y=﹣2x2+1的图象向下平移3个单位得到y=﹣2x2﹣2的图象,故A选项不符合题意;B选项,将y=﹣2(x﹣1)2的图象向左平移3个单位得到y=﹣2(x+2)2的图象,故B选项不符合题意;C选项,将y=﹣2x2的图象沿x轴翻折得到y=2x2的图象,故C选项不符合题意;D选项,将y=﹣2(x﹣1)2+1的图象沿y轴翻折得到y=﹣2(x+1)2+1的图象,故D选项符合题意.故选D.【点睛】本题主要考查了二次函数图象与几何变换,熟练掌握平移变换只改变图形的位置不改变图形的形状与大小的关键.9.D解析:D【解析】【分析】根据圆周角定理求出∠AOC,再根据等腰三角形的性质以及三角形的内角和定理即可解决问题.【详解】∵∠ADC=34°,∴∠AOC=2∠ADC=68°.∵OA=OC,∴∠OAC=∠OCA12(180°﹣68°)=56°.故选D.【点睛】本题考查了圆周角定理,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.B解析:B【解析】【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】x2=4x,x2﹣4x=0,x(x﹣4)=0,x﹣4=0,x=0,x1=4,x2=0,故选B.【点睛】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.11.B解析:B【解析】【分析】可设每月营业额平均增长率为x,则二月份的营业额是100(1+x),三月份的营业额是100(1+x)(1+x),则可以得到方程即可.【详解】设二、三两个月每月的平均增长率是x.根据题意得:100(1+x)2=150,故选:B.【点睛】本题考查数量平均变化率问题.原来的数量为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到a×(1±x),再经过第二次调整就是a(1±x)(1±x)=a (1±x)2.增长用“+”,下降用“-”.12.B解析:B【解析】【分析】画树状图展示所有12种等可能的结果数,再两人摸出的小球颜色相同的结果数然后根据概率公式求解.【详解】解:画树状图如下:,一共12种可能,两人摸出的小球颜色相同的有6种情况,所以两人摸出的小球颜色相同的概率是612=12,故选:B.【点睛】此题考查的是用列表法或树状图法求概率.解题的关键是要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.二、填空题13.3【解析】【分析】根据旋转的性质知AB=AE在直角三角形ADE中根据勾股定理求得AE长即可得【详解】∵四边形ABCD是矩形∴∠D=90°BC=AD=3∵将矩形ABCD绕点A逆时针旋转得到矩形AEFG解析:2【解析】【分析】根据旋转的性质知AB=AE,在直角三角形ADE中根据勾股定理求得AE长即可得.【详解】∵四边形ABCD是矩形,∴∠D=90°,BC=AD=3,∵将矩形ABCD绕点A逆时针旋转得到矩形AEFG,∴EF=BC=3,AE=AB,∵DE=EF,∴AD=DE=3,∴22AD DE2,∴2,故答案为2.【点睛】本题考查矩形的性质和旋转的性质,熟知旋转前后哪些线段是相等的是解题的关键.14.5【解析】试题解析:∵在△AOB中∠AOB=90°AO=3cmBO=4cm∴AB==5cm ∵点D为AB的中点∴OD=AB=25cm∵将△AOB绕顶点O按顺时针方向旋转到△A1O B1处∴OB1=OB=解析:5【解析】试题解析:∵在△AOB 中,∠AOB =90°,AO =3cm ,BO =4cm ,∴AB =22OA OB +=5cm ,∵点D 为AB 的中点,∴OD =12AB =2.5cm .∵将△AOB 绕顶点O ,按顺时针方向旋转到△A 1OB 1处,∴OB 1=OB =4cm ,∴B 1D =OB 1﹣OD =1.5cm .故答案为1.5.15.1250cm2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分则两个正方形的边长分别是cmcm 再列出二次函数求其最小值即可【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分列二次解析:1250cm 2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分,则两个正方形的边长分别是4x cm ,2004x -cm ,再列出二次函数,求其最小值即可. 【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分,列二次函数得:y =(4x )2+(2004x -)2=18(x ﹣100)2+1250, 由于18>0,故其最小值为1250cm 2, 故答案为:1250cm 2.【点睛】本题考查二次函数的最值问题,解题的关键是根据题意正确列出二次函数.16.【解析】【分析】根据勾股定理求出的斜边AB 再由等面积法即可求得内切圆的半径【详解】由题意得:该三角形裁剪的最大的圆是Rt△ABC 的内切圆设AC 边上的切点为D 连接OAOBOCOD∵∠ACB=90°AC解析:【解析】【分析】根据勾股定理求出的斜边AB ,再由等面积法,即可求得内切圆的半径.【详解】由题意得:该三角形裁剪的最大的圆是Rt △ABC 的内切圆,设AC 边上的切点为D ,连接OA 、OB 、OC ,OD ,∵∠ACB=90°,AC=30cm,BC=40cm,∴AB223040+50cm,设半径OD=rcm,∴S△ACB=12AC BC⋅=111AC r BC r AB r222⋅+⋅+⋅,∴30×40=30r+40r+50r,∴r=10,则该圆半径是 10cm.故答案为:10.【点睛】本题考查内切圆、勾股定理和等面积法的问题,属中档题.17.(03)【解析】【分析】令x=0求出y的值然后写出与y轴的交点坐标即可【详解】解:x=0时y=3所以图象与y轴交点的坐标是(03)故答案为(03)【点睛】本题考查了求抛物线与坐标轴交点的坐标掌握二次解析:(0,3).【解析】【分析】令x=0,求出y的值,然后写出与y轴的交点坐标即可.【详解】解:x=0时,y=3,所以.图象与y轴交点的坐标是(0,3).故答案为(0,3).【点睛】本题考查了求抛物线与坐标轴交点的坐标,掌握二次函数与一元二次方程的联系是解答本题的关键.18.【解析】【分析】【详解】解:从袋子中随机取出1个球总共有6种等可能结果这个球为红球的结果有5中所以从袋子中随机取出1个球则它是红球的概率是故答案为:解析:5 6【解析】【分析】【详解】解:从袋子中随机取出1个球,总共有6种等可能结果,这个球为红球的结果有5中,所以从袋子中随机取出1个球,则它是红球的概率是5 6故答案为:56.19.【解析】【分析】将圆锥侧面展开根据两点之间线段最短和勾股定理即可求得蚂蚁的最短路线长【详解】如图将圆锥侧面展开得到扇形ABB′则线段BF 为所求的最短路线设∠BAB′=n°∵∴n=120即∠BAB′=解析:3【解析】【分析】将圆锥侧面展开,根据“两点之间线段最短”和勾股定理,即可求得蚂蚁的最短路线长.【详解】如图将圆锥侧面展开,得到扇形ABB′,则线段BF为所求的最短路线.设∠BAB′=n°.∵64 180nππ⋅=,∴n=120,即∠BAB′=120°.∵E为弧BB′中点,∴∠AFB=90°,∠BAF=60°,Rt△AFB中,∠ABF=30°,AB=6∴AF=3,BF2263-=3,∴最短路线长为3.故答案为:3【点睛】本题考查“化曲面为平面”求最短路径问题,属中档题.20.-1【解析】由题意得ABBC于DBC于EBC交BC于FAB=勾股定理得AE=AD=1DB=-12-1【解析】由题意得, AB ⊥B’C’于D ,BC 'AC ⊥于E ,BC 交B’C’于F .Q AB =2,勾股定理得∴AE =AD=1,∴DB =2-122112122ABE DBF S S S AE BD =-=-=-V V 阴影.三、解答题21.所围矩形猪舍的长为12m 、宽为8m【解析】【分析】设矩形猪舍垂直于住房墙一边长为xm 可以得出平行于墙的一边的长为(27﹣2x+1)m .根据矩形的面积公式建立方程求出其解就可以了.【详解】解:设矩形猪舍垂直于住房墙一边长为xm 可以得出平行于墙的一边的长为(27﹣2x+1)m ,由题意得x(27﹣2x+1)=96,解得:x 1=6,x 2=8,当x =6时,27﹣2x+1=16>15(舍去),当x =8时,27﹣2x+1=12.答:所围矩形猪舍的长为12m 、宽为8m .【点睛】本题考查了列一元二次方程解实际问题的运用,矩形的面积公式的运用及一元二次方程的解法的运用,解答时寻找题目的等量关系是关键.22.(1)作图见解析;(2)作图见解析;(3)(0,-2).【解析】试题分析:(1)利用旋转的性质得出对应点坐标进而得出答案;(2)利用平移规律得出对应点位置,进而得出答案;(3)利用旋转图形的性质,连接对应点,即可得出旋转中心的坐标.试题解析:(1)如图所示:△A 1B 1C 即为所求;(2)如图所示:△A 2B 2C 2即为所求;(3)旋转中心坐标(0,﹣2).【考点】作图-旋转变换;作图-平移变换.23.解:(1)90°;(2)5【解析】试题分析:(1)首先由等腰直角三角形的性质求得∠BAD、∠BCD的度数,然后由旋转的性质可求得∠BCE的度数,故此可求得∠DCE的度数;(2)由(1)可知△DCE是直角三角形,先由勾股定理求得AC的长,然后依据比例关系可得到CE和DC的长,最后依据勾股定理求解即可.试题解析:(1)∵△ABCD为等腰直角三角形,∴∠BAD=∠BCD=45°.由旋转的性质可知∠BAD=∠BCE=45°.∴∠DCE=∠BCE+∠BCA=45°+45°=90°.(2)∵BA=BC,∠ABC=90°,∴2242+=.AB BC∵CD=3AD,∴2,2.由旋转的性质可知:2.∴2225+=CE DC考点:旋转的性质.24.(1)详见解析;(2)m=﹣3或m=﹣1【解析】【分析】(1)根据根的判别式即可求出答案.(2)利用跟与系数的关系可以得到如果把所求代数式利用完全平方公式变形,结合前面的等式即可解答.【详解】解:(1)证明:∵△=(m+3)2﹣4(m+2)=(m+1)2,∵无论m取何值,(m+1)2≥0,∴原方程总有两个实数根.(2)∵x1,x2是原方程的两根,∴x1+x2=﹣(m+3),x1x2=m+2,∵x12+x22=2,∴(x1+x2)2﹣2x1x2=2,∴代入化简可得:m2+4m+3=0,解得:m=﹣3或m=﹣1【点睛】此题考查根与系数的关系,根的判别式,解题的关键是熟练运用根与系数的关系,本题属于基础题型.25.(1)20%;(2)10368万元.【解析】试题分析:(1)首先设该县投入教育经费的年平均增长率为x,然后根据增长率的一般公式列出一元二次方程,然后求出方程的解得出答案;(2)根据增长率得出2017年的教育经费.试题解析:(1)设该县投入教育经费的年平均增长率为x.则有:6000=8640解得:=0.2=-2.2(舍去)所以该县投入教育经费的年平均增长率为20%(2)因为2016年该县投入教育经费为8640万元,且增长率为20%所以2017年该县投入教育经费为8640×(1+20%)=10368(万元)考点:一元二次方程的应用。
2020-2021上海市初三数学上期末模拟试题(附答案)
2020-2021上海市初三数学上期末模拟试题(附答案)一、选择题1.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,BC 与⊙O 交于点D ,连结OD .若50C ∠=︒,则∠AOD 的度数为( )A .40︒B .50︒C .80︒D .100︒ 2.把抛物线y =2(x ﹣3)2+k 向下平移1个单位长度后经过点(2,3),则k 的值是( ) A .2 B .1C .0D .﹣13.把抛物线y =﹣2x 2向上平移1个单位,再向右平移1个单位,得到的抛物线是( )A .y =﹣2(x +1)2+1B .y =﹣2(x ﹣1)2+1C .y =﹣2(x ﹣1)2﹣1D .y =﹣2(x +1)2﹣14.现有一块长方形绿地,它的短边长为20 m ,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加300 m 2,设扩大后的正方形绿地边长为xm ,下面所列方程正确的是( )A .x(x-20)=300B .x(x+20)=300C .60(x+20)=300D .60(x-20)=3005.如图,抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac <b 2;②方程ax 2+bx +c =0的两个根是x 1=-1,x 2=3;③3a +c >0;④当y >0时,x 的取值范围是-1≤x <3;⑤当x <0时,y 随x 增大而增大.其中结论正确的个数是( )A .4个B .3个C .2个D .1个6.二次函数236yx x =-+变形为()2y a x m n =++的形式,正确的是( )A .()2313y x =--+B .()2313y x =---C .()2313y x =-++ D .()2313y x =-+-7.某人到瓷砖商店去购买一种多边形形状的瓷砖,用来铺设无缝地板,他购买的瓷砖形状不可以是( ) A .正三角形B .矩形C .正八边形D .正六边形8.下列说法正确的是( )A .“任意画出一个等边三角形,它是轴对称图形”是随机事件B .某种彩票的中奖率为11000,说明每买1000张彩票,一定有一张中奖 C .抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为13D .“概率为1的事件”是必然事件9.如图,点C 是线段AB 的黄金分割点(AC >BC ),下列结论错误的是( )A .AC BCAB AC= B .2·BC AB BC = C .512AC AB -=D .0.618≈BCAC10.下列函数中是二次函数的为( ) A .y =3x -1 B .y =3x 2-1 C .y =(x +1)2-x 2 D .y =x 3+2x -311.已知二次函数y =ax 2+bx +c(a≠0)的图象如图所示,当y >0时,x 的取值范围是( )A .-1<x <2B .x >2C .x <-1D .x <-1或x >2 12.若关于x 的方程x 2﹣2x +m =0的一个根为﹣1,则另一个根为( )A .﹣3B .﹣1C .1D .3二、填空题13.一个不透明袋中装有若干个红球,为估计袋中红球的个数,小文在袋中放入10个白球(每个球除颜色外其余都与红球相同).摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到白球的频率是27,则袋中红球约为________个.14.关于x 的230x ax a --=的一个根是2x =-,则它的另一个根是___.15.如图,抛物线y =﹣2x 2+2与x 轴交于点A 、B ,其顶点为E .把这条抛物线在x 轴及其上方的部分记为C 1,将C 1向右平移得到C 2,C 2与x 轴交于点B 、D ,C 2的顶点为F ,连结EF .则图中阴影部分图形的面积为______.16.己知抛物线2114y x =+具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x 轴的距离始终相等,如图,点M 的坐标为(3,3),P 是抛物线2114y x =+上一个动点,则△PMF 周长的最小值是__________.17.已知二次函数,当x _______________时,随的增大而减小.18.在一个不透明的口袋中装有5个红球和3个白球,他们除颜色外其他完全相同,任意摸出一个球是白球的概率为________.19.如图,在△ABC 中,CA=CB ,∠ACB=90°,AB=4,点D 为AB 的中点,以点D 为圆心作圆,半圆恰好经过三角形的直角顶点C ,以点D 为顶点,作90°的∠EDF ,与半圆交于点E ,F ,则图中阴影部分的面积是____.20.如图,已知O e 的半径为2,ABC ∆内接于O e ,135ACB ∠=o ,则AB =__________.三、解答题21.请你依据下面图框中的寻宝游戏规则,探究“寻宝游戏”的奥秘:(1)用树状图(或表格)表示出所有可能的寻宝情况;(2)求在寻宝游戏中胜出的概率.22.如图,PA,PB是圆O的切线,A,B是切点,AC是圆O的直径,∠BAC=25°,求∠P的度数.23.“校园安全”越来越受到人们的关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:(1)接受问卷调查的学生共有______人,条形统计图中m的值为______;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为______;(3)若该中学共有学生1800人,根据上述调查结果,可以估计出该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为______人;(4)若从对校园安全知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加校园安全知识竞赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率.24.某商场今年“十一”期间举行购物摸奖活动,摸奖箱里有四个标号分别为1,2,3,4的质地,大小都相同的小球,任意摸出一个小球,记下小球标号后,放回箱里并摇匀,再摸出一个小球,再记下小球标号.商场规定:两次摸出的小球之和为“8”或“6”时才算中奖.请结合“树形图法”或“列表法”,求出顾客小彦参加此次摸奖活动时中奖的概率.25.为改善生态环境,建设美丽乡村,某村规划将一块长18米,宽10米的矩形场地建设成绿化广场,如图,内部修建三条宽相等的小路,其中一条路与广场的长平行,另两条路与广场的宽平行,其余区域种植绿化,使绿化区域的面积为广场总面积的80%.(1)求该广场绿化区域的面积;(2)求广场中间小路的宽.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】由AC 是⊙O 的切线可得∠CAB=90︒,又由50C ∠=︒,可得∠ABC=40︒;再由OD=OB ,则∠BDO=40︒最后由∠AOD=∠OBD+∠OBD 计算即可. 【详解】解:∵AC 是⊙O 的切线 ∴∠CAB=90︒, 又∵50C ∠=︒ ∴∠ABC=90︒-50︒=40︒ 又∵OD=OB∴∠BDO=∠ABC=40︒ 又∵∠AOD=∠OBD+∠OBD ∴∠AOD=40︒+40︒=80︒ 故答案为C. 【点睛】本题考查了圆的切线的性质、等腰三角形以及三角形外角的概念.其中解题关键是运用圆的切线垂直于半径的性质.2.A解析:A 【解析】 【分析】把点坐标代入y=2(x-3)2+k-1解方程即可得到结论. 【详解】解:设抛物线y=2(x-3)2+k 向下平移1个单位长度后的解析式为y=2(x-3)2+k-1,把点(2,3)代入y=2(x-3)2+k-1得,3=2(2-3)2+k-1, ∴k=2, 故选A . 【点睛】本题考查二次函数的图象与几何变换,熟练掌握抛物线的平移规律是解题关键.3.B解析:B 【解析】 【详解】∵函数y=-2x 2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=-2x 2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1, 故选B . 【点睛】二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.4.A解析:A 【解析】 【分析】设扩大后的正方形绿地边长为xm ,根据“扩大后的绿地面积比原来增加300m 2”建立方程即可. 【详解】设扩大后的正方形绿地边长为xm , 根据题意得x (x-20)=300, 故选A . 【点睛】本题考查了由实际问题抽象出一元二次方程,解题的关键是弄清题意,并找到等量关系.5.B解析:B 【解析】 【分析】 【详解】解:∵抛物线与x 轴有2个交点,∴b 2﹣4ac >0,所以①正确;∵抛物线的对称轴为直线x =1,而点(﹣1,0)关于直线x =1的对称点的坐标为(3,0),∴方程ax 2+bx +c =0的两个根是x 1=﹣1,x 2=3,所以②正确; ∵x =﹣2ba=1,即b =﹣2a ,而x =﹣1时,y =0,即a ﹣b +c =0,∴a +2a +c =0,所以③错误; ∵抛物线与x 轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x <3时,y >0,所以④错误;∵抛物线的对称轴为直线x =1,∴当x <1时,y 随x 增大而增大,所以⑤正确. 故选:B . 【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.6.A解析:A 【解析】 【分析】根据配方法,先提取二次项的系数-3,得到()232y x x =--,再将括号里的配成完全平方式即可得出结果. 【详解】解:()()()222236=323211313y x x x x x x x =-+--=--+-=--+,故选:A . 【点睛】本题主要考查的是配方法,正确的掌握配方的步骤是解题的关键.7.C解析:C 【解析】因为正八边形的每个内角为135︒,不能整除360度,故选C.8.D解析:D 【解析】试题解析:A 、“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误; B. 某种彩票的中奖概率为11000,说明每买1000张,有可能中奖,也有可能不中奖,故B 错误;C. 抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为12.故C 错误; D. “概率为1的事件”是必然事件,正确. 故选D.9.B解析:B 【解析】 【详解】 ∵AC >BC , ∴AC 是较长的线段,根据黄金分割的定义可知:AC BC AB AC =≈0.618, 故A 、C 、D 正确,不符合题意; AC 2=AB •BC ,故B 错误,符合题意; 故选B .10.B解析:B 【解析】A. y =3x −1是一次函数,故A 错误;B. y =3x 2−1是二次函数,故B 正确;C. y=(x+1)2−x2不含二次项,故C错误;D. y=x3+2x−3是三次函数,故D错误;故选B.11.D解析:D【解析】【分析】根据已知图象可以得到图象与x轴的交点是(-1,0),(2,0),又y>0时,图象在x 轴的上方,由此可以求出x的取值范围.【详解】依题意得图象与x轴的交点是(-1,0),(2,0),当y>0时,图象在x轴的上方,此时x<-1或x>2,∴x的取值范围是x<-1或x>2,故选D.【点睛】本题考查了二次函数与不等式,解答此题的关键是求出图象与x轴的交点,然后由图象找出当y>0时,自变量x的范围,注意数形结合思想的运用.12.D解析:D【解析】【分析】设方程另一个根为x1,根据一元二次方程根与系数的关系得到x1+(-1)=2,解此方程即可.【详解】解:设方程另一个根为x1,∴x1+(﹣1)=2,解得x1=3.故选:D.【点睛】本题考查一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根分别为x1,x2,则x1+x2=-ba,x1•x2=ca.二、填空题13.25【解析】【分析】【详解】试题分析:根据实验结果估计袋中小球总数是10÷=35个所以袋中红球约为35-10=25个考点:简单事件的频率解析:25【解析】 【分析】 【详解】试题分析:根据实验结果估计袋中小球总数是10÷27=35个,所以袋中红球约为35-10=25个.考点:简单事件的频率.14.6【解析】【分析】【详解】解:设方程另一根为x1把x =-2代入方程得(-2)2+2a -3a =0解得a =4∴原方程化为x2-4x -12=0∵x1+(-2)=4∴x 1=6故答案为6点睛:本题考查了一元二解析:6 【解析】 【分析】 【详解】解:设方程另一根为x 1,把x =-2代入方程得(-2)2+2a -3a =0, 解得a =4,∴原方程化为x 2-4x -12=0, ∵x 1+(-2)=4, ∴x 1=6. 故答案为6.点睛:本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根与系数的关系:若方程的两根为x 1,x 2,则x 1+ x 2=b a,x 1·x 2=ca.也考查了一元二次方程的解. 15.4【解析】【分析】由S 阴影部分图形=S 四边形BDFE =BD×OE 即可求解【详解】令y =0则:x =±1令x =0则y =2则:OB =1BD =2OB =2S 阴影部分图形=S 四边形BDFE =BD×OE=2×2=解析:4 【解析】 【分析】由S 阴影部分图形=S 四边形BDFE =BD×OE ,即可求解. 【详解】令y =0,则:x =±1,令x =0,则y =2, 则:OB =1,BD =2,OB =2,S 阴影部分图形=S 四边形BDFE =BD×OE =2×2=4. 故:答案为4. 【点睛】本题考查的是抛物线性质的综合运用,确定S 阴影部分图形=S 四边形BDFE 是本题的关键.16.5【解析】【分析】过点M 作ME⊥x 轴于点EME 与抛物线交于点P′由点P′在抛物线上可得出P′F=P′E结合点到直线之间垂线段最短及MF为定值即可得出当点P运动到点P′时△PMF周长取最小值【详解】解解析:5【解析】【分析】过点M作ME⊥x轴于点E,ME与抛物线交于点P′,由点P′在抛物线上可得出P′F=P′E,结合点到直线之间垂线段最短及MF为定值,即可得出当点P运动到点P′时,△PMF周长取最小值.【详解】解:过点M作ME⊥x轴于点E,ME与抛物线交于点P′,如图所示.∵点P′在抛物线上,∴P′F=P′E.又∵点到直线之间垂线段最短,22(30)(32)-+-=2,∴当点P运动到点P′时,△PMF周长取最小值,最小值为ME+MF=3+2=5.故答案为5.【点睛】本题考查了二次函数的性质、二次函数图象上点的坐标特征以及点到直线的距离,根据点到直线之间垂线段最短找出△PMF周长的取最小值时点P的位置是解题的关键.17.<2(或x≤2)【解析】试题分析:对于开口向上的二次函数在对称轴的左边y随x的增大而减小在对称轴的右边y随x的增大而增大根据性质可得:当x<2时y随x的增大而减小考点:二次函数的性质解析:<2(或x≤2).【解析】试题分析:对于开口向上的二次函数,在对称轴的左边,y随x的增大而减小,在对称轴的右边,y随x的增大而增大.根据性质可得:当x<2时,y随x的增大而减小.考点:二次函数的性质18.【解析】【分析】【详解】解:∵在一个不透明的口袋中装有5个红球和3个白球∴任意从口袋中摸出一个球来P(摸到白球)==解析:3 8【解析】【分析】【详解】解:∵在一个不透明的口袋中装有5个红球和3个白球,∴任意从口袋中摸出一个球来,P(摸到白球)=3 53+=38.19.π﹣2【解析】【分析】连接CD作DM⊥BCDN⊥AC证明△DMG≌△DNH则S 四边形DGCH=S四边形DMCN求得扇形FDE的面积则阴影部分的面积即可求得【详解】连接CD作DM⊥BCDN⊥AC∵CA解析:π﹣2.【解析】【分析】连接CD,作DM⊥BC,DN⊥AC,证明△DMG≌△DNH,则S四边形DGCH=S四边形DMCN,求得扇形FDE的面积,则阴影部分的面积即可求得.【详解】连接CD,作DM⊥BC,DN⊥AC.∵CA=CB,∠ACB=90°,点D为AB的中点,∴DC=12AB=2,四边形DMCN是正方形,DM=2.则扇形FDE的面积是:2902360π⨯=π.∵CA=CB,∠ACB=90°,点D为AB的中点,∴CD平分∠BCA.又∵DM⊥BC,DN⊥AC,∴DM=DN.∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN.在△DMG和△DNH中,∵DMG DNHGDM HDNDM DN∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DMG≌△DNH(AAS),∴S四边形DGCH=S四边形DMCN=2.则阴影部分的面积是:π﹣2.故答案为π﹣2.【点睛】本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△DMG≌△DNH,得到S四边形DGCH=S四边形DMCN是关键.20.【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍可以求得∠AOB的度数然后根据勾股定理即可求得AB的长详解:连接ADAEOAOB∵⊙O的半径为2△ABC内接于⊙O∠ACB=13解析:22【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB 的度数,然后根据勾股定理即可求得AB的长.详解:连接AD、AE、OA、OB,∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴AB=22,故答案为:22.点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.三、解答题21.(1)答案见解析;(2)1 6【解析】【分析】列举出所有情况,让寻宝游戏中胜出的情况数除以总情况数即为所求的概率.【详解】(1)树状图如下:(2)由(1)中的树状图可知:P(胜出)【点睛】本题考查的是用画树状图法求概率,解答本题的关键是熟练掌握概率=所求情况数与总情况数之比.同时熟记用树状图或表格表达事件出现的可能性是求解概率的常用方法22.∠P=50°【解析】【分析】根据切线性质得出PA=PB ,∠PAO=90°,求出∠PAB 的度数,得出∠PAB=∠PBA ,根据三角形的内角和定理求出即可.【详解】∵PA 、PB 是⊙O 的切线,∴PA=PB ,∴∠PAB=∠PBA ,∵AC 是⊙O 的直径,PA 是⊙O 的切线,∴AC ⊥AP ,∴∠CAP=90°,∵∠BAC=25°,∴∠PBA=∠PAB=90°-25°=65°,∴∠P=180°-∠PAB-∠PBA=180°-65°-65°=50°.【点睛】本题考查了切线长定理,切线性质,三角形的内角和定理,等腰三角形的性质的应用,主要考查学生运用定理进行推理和计算的能力,题目具有一定的代表性,难度适中,熟记切线的性质定理是解题的关键.23.(1)60,10;(2)96°;(3)1020;(4)23 【解析】【分析】(1)根据基本了解的人数以及所占的百分比可求得接受调查问卷的人数,进行求得不了解的人数,即可求得m 的值;(2)用360度乘以“了解很少”的比例即可得;(3)用“非常了解”和“基本了解”的人数和除以接受问卷的人数,再乘以1800即可求得答案;(4)画树状图表示出所有可能的情况数,再找出符合条件的情况数,利用概率公式进行求解即可.【详解】(1)接受问卷调查的学生共有3050%60÷=(人),604301610m =---=, 故答案为:60,10;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数163609660=︒⨯=︒, 故答案为:96°;(3)该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为:4301800102060+⨯=(人),故答案为:1020;(4)由题意列树状图:由树状图可知,所有等可能的结果有12 种,恰好抽到1名男生和1名女生的结果有8种,∴恰好抽到1名男生和1名女生的概率为82 123=.【点睛】本题考查了条形统计图与扇形统计图信息关联,列表法或树状图法求概率,弄清题意,读懂统计图,从中找到必要的信息是解题的关键.24.“树状图法”或“列表法”见解析,1 4【解析】【分析】列举出所有情况,让两次摸出的小球的标号之和为“8”或“6”的情况数除以总情况数即为所求的概率.【详解】解:解法一:列树状图得:共有16种结果,且每种结果的可能性相同,因为6=2+4=3+3=4+2,8=4+4,所以两次摸出的小球之和为“8”或“6”的有4种,所以小彦中奖的概率为41 164=.解法二:列表得:共有16种结果,且每种结果的可能性相同,因为6=2+4=3+3=4+2,8=4+4,所以两次摸出的小球之和为“8”或“6”的有4种,所以小彦中奖的概率为41 164.【点睛】此题考查的是用列表法或用树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.树状图法适用于两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.25.(1)该广场绿化区域的面积为144平方米;(2)广场中间小路的宽为1米.【解析】【分析】(1)根据该广场绿化区域的面积=广场的长×广场的宽×80%,即可求出结论;(2)设广场中间小路的宽为x米,根据矩形的面积公式(将绿化区域合成矩形),即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【详解】解:(1)18×10×80%=144(平方米).答:该广场绿化区域的面积为144平方米.(2)设广场中间小路的宽为x米,依题意,得:(18﹣2x)(10﹣x)=144,整理,得:x2﹣19x+18=0,解得:x1=1,x2=18(不合题意,舍去).答:广场中间小路的宽为1米.【点睛】本题考查的知识点是一元二次方程的应用,找准题目中的等量关系式是解此题的关键.。
2020-2021学年最新沪科版九年级数学上学期期末综合模拟测试及答案解析-精编试题
沪科版九年级上学期期末数学练习卷(考试时间:100分钟,满分:150分)考生注意:1、本试卷含三个大题,共25题;2、答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3、除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.如果点G是△ABC的重心,联结AG并延长,交对边BC于点D,那么AG︰AD 是………………………………………………………………………………………(▲)(A)2︰3 ;(B)1︰2;(C)1︰3 ;(D)3︰4.2.已知点D、E分别在△ABC的边AB、AC上,下列给出的条件中,不能判定DE∥BC 的是……………………………………………………………………………………(▲)(A)BD︰AB =CE︰AC;(B)DE︰BC =AB︰AD;(C)AB︰AC =AD︰AE;(D)AD︰DB =AE︰EC.3.下列有关向量的等式中,不一定成立的是…………………………………(▲)(A)AB=-BA;(B)︱AB︱=︱BA︱;(C ) AB +BC =AC ; (D )︱AB +BC ︱=︱AB ︱+︱BC |. 4.在直角△ABC 中,∠C =90°,∠A 、∠B 与∠C 的对边分别是a 、b 和c ,那么下列关系中,正确的是 ……………………………………………………………………( ▲ )(A )cosA =c a ; (B )tanA =a b ; (C )sinA =c a ; (D )cotA =ba . 5.在下列y 关于x 的函数中,一定是二次函数的是…………………………( ▲ )(A )2x y =; (B )21xy =; (C )2kx y =; (D )x k y 2=. 6.如图1,小明晚上由路灯A 下的点B 处走到点C 处时,测得自身影子CD 的长为1米.他继续往前走3米到达点E 处(即CE =3米),测得自己影子EF 的长为2米.已知小明的身高是1.5米,那么路灯A 的高度AB 是………………(A )4.5米; (B )6米; (C )7.2米; (D )8米.二、填空题(本大题共12题,每题4分,满分48分) 7.已知y x =25,则yy x -的值是 ▲ . 8.如果点P 是线段AB 的黄金分割点,且AP >PB ,那么APBP的比值是 ▲ . 9.如图2,在平行四边形ABCD 中,点E 在BC 边上,且CE ︰BC =2︰3,AC 与DE 相交于点F ,若 S △AFD =9,则S △EFC = ▲ .A BCEDF图110.如果α是锐角,且tan α =cot20°,那么 α= ▲ 度.11.计算:2sin60°+tan45°= ▲ . 12.如果一段斜坡的坡角是30°,那么这段斜坡的 坡度是 ▲ .(请写成1︰m 的形式).13.如果抛物线2)1(x m y -=的开口向上,那么m 的取值范围是 ▲ .14.将抛物线5)3(2+--=x y 向下平移6个单位,所得到的抛物线的顶点坐标为 ▲ .15.已知抛物线经过A (0,-3)、B (2,-3)、C (4,5),判断点D (-2,5)是否在该抛物线上.你的 结论是: ▲ (填“是”或“否”).16.如图3,正方形DEFG 内接于Rt △ABC ,∠C =90°,AE =4,BF =9 ,则tanA = ▲ .17.如图4,梯形ABCD 中,AD//BC ,AB=DC ,点P 是AD 边上一点,联结PB 、PC ,且PD AP AB ⋅=2,则图中有 ▲ 对相似三角形.18.如图5,在Rt △ABC 中,∠C =90°,点D 在边 AB 上,线段DC 绕点D 逆时针旋转,端点C 恰巧落在边 AC 上的点E 处.如果m DB AD =,n ECAE=.那么m 与n 满足的关系式是:m = ▲ (用含n 的代数式表示m ).三、解答题(本大题共7题,满分78分)ABD E C图5CABDEFG图3图419.(本题满分10分) 解方程:4322--x x -x-21=2. 20.(本题满分10分, 第(1)小题6分,第(2)小题4分)已知二次函数c bx x y ++-=22的图像经过点A (0,4)和B (1,-2).(1)求此函数的解析式;并运用配方法,将此抛物线解析式化为y =a (x +m )2+k 的形式;(2)写出该抛物线顶点C 的坐标,并求出△CAO 的面积.21.(本题满分10分)如图6,已知点E 在平行四边形ABCD 的边AD上,AE =3ED ,延长CE 到点F ,使得EF =CE ,设BA=a ,BC =b ,试用a 、b分别表示向量CE 和AF .22.(本题满分10分)如图7,某人在C 处看到远处有一凉亭B ,在凉亭A BFE DC图6ABB 正东方向有一棵大树A ,这时此人在C 处测得B 在北偏 西45°方向上,测得A 在北偏东35°方向上.又测得A 、C 之间的距离为100米,求A 、B 之间的距离.(精确到1米). (参考数据:sin35°≈0.574,cos35°≈0.819,tan35°≈0.700)23.(本题满分12分, 第(1)小题4分,第(2)小题4分,第(3)小题4分) 如图8,已知等腰梯形ABCD 中,AD ∥BC ,AD =1,BC =3, AB =CD =2,点E 在BC 边上,AE 与BD 交于点F ,∠BAE =∠DBC ,(1)求证:△ABE ∽△BCD ; (2)求tan ∠DBC 的值; (3)求线段BF 的长.24.(本题满分12分, 第(1)小题6分,第(2)小题6分) 如图9,在平面直角坐标系内,已知直线4+=x y 与x 轴、y 轴分别相交于点A 和点C ,抛物线12-++=k kx x y 图像过点A 和点C ,抛物线与x 轴的另一交点是B ,图8(1)求出此抛物线的解析式、对称轴以及B 点坐标; (2)若在y 轴负半轴上存在点D ,能使得以A 、C 、 D 为顶点的三角形与△ABC 相似,请求出点D 的坐标.25.(本题满分14分 ,第(1)小题5分,第(2)小题5分,第(3)小题4分) 如图10,已知在等腰 Rt △ABC 中,∠C =90°,斜边AB =2,若将△ABC 翻折,折痕EF 分别交边AC 、边BC 于点E 和点F (点E 不与A 点重合,点F 不与B 点重合),且点C 落在AB 边上,记作点D .过点D 作DK ⊥AB ,交射线AC 于点K ,设AD =x ,y =cot ∠CFE ,(1)求证:△DEK ∽△DFB ;(2)求y 关于x 的函数解析式并写出定义域;(3)联结CD ,当EFCD=23时,求x 的值.ABC备用图A BC备用图ABCE KF图10答案及评分参考(考试时间:100分钟,满分:150分)一、选择题(本大题共6题,每题4分,满分24分)二、填空题(本大题共12题,每题4分,满分48分)7、23. 8、215-. 9、4. 10、70. 11、3+1. 12、1︰3.13、m >1. 14、(3,-1). 15、是. 16、23. 17、3. 18、2n +1.三、解答题(本大题共12题,满分78分)19.(本题满分10分) 解方程:4322--x x -x-21=2. 解:4322--x x +21-x =2……………………………………(2分) )4(22322-=++-x x x ………………………………………………………(3分) 062=-+x x ………………………………………………………………(2分)解得:x 1=2,x 2=-3…………………………………………(2分) 经检验x =2是增根,舍去∴x =-3是原方程的根.………………………………………(1分)20.(本题满分10分, 第(1)小题6分,第(2)小题4分)解:(1)∵二次函数y =-2x 2+bx +c 的图像经过点A (0,4)和B (1,-2)∴根据题意,得⎩⎨⎧-=++-=224c b c 可以解得⎩⎨⎧=-=44c b ……………………(2分)∴这个抛物线的解析式是y =-2x 2-4x +4;……………………………………(1分) y =-2x 2-4x +4=4)2(22++-x x ………………………(1分)=42)1(22+++-x=6)1(22++-x ……………………(2分)(2)顶点C 的坐标(-1,6)………………(2分) S △CAO =2142121=⨯⨯=⋅⋅C x AO ………………(2分)21.(本题满分10分)解:∵平行四边形ABCD∴AB ∥CD,AD ∥BC ,AB=CD,AD=BC ……………(2分)∵BA =a ,BC =b ,∴CD =a,AD =b ,………………(2分)又∵AE=3ED ∴b ED 41=,b43=………………………(1分)CE = CD + DE = b a41-…………………………(2分)又∵EF=CE ∴EF = CE = b a41-…………………(1分)ABFEDC图6∴AF = AE +EF = b a b a b214143+=-+…………………………(2分)22.(本题满分10分)解:作CD ⊥AB 于点D .根据题意,…………………(1分) 在Rt △ADC 中,sin ∠ACD =ACAD,……(1分) ∠ACD =35°,AC =100米,∴AD =AC ·sin35°≈100×0.574=57.4(米)……(2分) cos ∠ACD =ACCD, …………(1分) CD =AC ·cos35°≈100×0.819=81.9(米),……………(2分) 在Rt △BDC 中,∠BCD =45°,∴∠B =45° ∴BD =CD =81.9(米), …………(1分)∴AB =AD +BD =57.4+81.9=139.3(米)≈139(米).……………(2分) 答:AB 之间的距离是139米23.(本题满分12分, 第(1)小题4分,第(2)小题4分,第(3)小题4分)解:(1)∵等腰梯形ABCD 中,AD ∥BC ,∴∠ABE =∠C ……………(2分) 又∵∠BAE =∠DBC ∴△ABE ∽△BCD ……………(2分)(2)分别过点A 、D 向BC 边作垂线段,垂足分别为点G 、H ……(1分)∵AD ∥BC ∴AG=DH, 矩形AGHD 中AG=DH, 又∵AB=CD ∴△ABG ≌△DCH ∴BG=HC45° 35° ABC 图7D图8A B CDF∵AD =1,BC =3 ,GH =1∴HC=(3-1)÷2=1, BH=2 ……………(1分)∴在Rt △HDC 中, HD=2212-=3……………(1分)∴在Rt △BHD 中, tan ∠DBC=BHDH = 23……………(1分)(3)∵△ABE ∽△BCD ∴BCABCD BE =……………(1分) 又∵BC =3,AB =CD =2,∴BE=34……………(1分) ∵AD ∥BC , AD =1,BF DF BE AD ==43……………(1分) 又∵BD=22)3(2+=7, ∴BF =774 ……………(1分)24.(本题满分12分第(1)小题6分,第(2)小题6分)(1)∵直线4+=x y 与x 轴、y 轴分别相交于点A 和点C∴得:A(-4,0), C(0,4) …………………(2分)∵抛物线12-++=k kx x y 图像过点A 和点C ,代入点A 或点C 坐标得:k=5…………………(1分) ∴452++=x x y …………………(1分)对称轴:直线25-=x …………………(1分)令y=0,得0452=++x x解方程得1,421-=-=x x ∴B(-1,0) …………………(1分) (2)AC =42,AB =3.根据题意, AO=CO=4,∴∠CAB =∠ACD= 45°……………(1分)(图一)当△CAD ∽△ABC 时,CD ︰AC =CA ︰AB , 即CD ︰42=42︰3,∴CD =332 ∴点1D (0,-320);……………(2分)当△CDA ∽△ABC 时,CD ︰AB =CA ︰AC ,即CD =AB =3 , ∴点2D (0,1);……………(2分) ∵点D 在y 轴负半轴上∴2D (0,1)舍去……………(1分) ∴综上所述:D 点坐标是(0,-320)25.(本题满分14分 ,第(1)小题5分,第(2)小题5分,第(3)小题4分)解:(1)在等腰 Rt △ABC 中,∠C =90°,∴∠A =∠B=45° 又∵DK ⊥AB,∴∠EKD =45°∴∠EKD =∠B …………(2分) ∵将△ABC 翻折后点C 落在AB 边上的点D 处∴∠EDF=∠C =90° ………………………………(1分) ∵∠KDA= ∠KDB=90°∴∠EDK=90°-∠KDF, ∠FDB=90°-∠KDF∴∠EDK=∠FDB …………………………………………(1分) ∴△DEK ∽△DFB …………………………………………(1分)(说明:点K 在线段AC 延长线上时等同于在线段上的相似的情况,故不必分类证明) (2)∵△DEK ∽△DFB ,∴DE DF =DKDB…………(1分) ∵∠DFE =∠CFE ,∴y =cot ∠CFE =cot ∠DFE =DE DF =DKDB…………(1分)ABCEKF图10∵AD =x ,AB =2,∴DK =AD =x ,DB =2-x ,∴DK DB =x x -2,∴y =xx-2……(1分) 定义域:2-2<x <2……………………………(2分)(3)方法一:设CD 与EF 交于点H ,CD 被折痕EF 垂直平分,CD=2 CH∵EF CD =23,∴EF CH=43,设CH=k 3,EF=4k∵CD ⊥EF,∠C =90°∴∠EHC =∠CHF=90°, ∠ECH=∠CFH=90°-∠HCF ∴△ECH ∽△CFH, 得:∴CH EH =FHCH , 即FH EH CH ⋅=2设EH=a ,则得:),4(32a k a k -= ,03422=+-k ka a 解得:k a k a 3,21==……(2分)当EH=k 时,∠ECH=∠CFE=30°,∴y =xx-2=cot30°=3,∴x =3-1; 当EH=3k 时,∠ECH=∠CFE=60°,∴y =xx-2=cot60°=33,∴x =3-3;经检验:x =3-1,x =3-3分别是原各方程的根,且符合题意; 综上所述,x =3-1或x =3-3.……………………………(2分)方法二:设CD 与EF 交于点H ,取EF 的中点O ,联结OC ,∴CH ⊥EF ,CH =21CD ,CO =21EF . ∵EF CD =23,∴COCH =23.……………………………(2分)HABCDE K FO(备一)HABCE F当0<AD <1时(如图备一),在Rt △COH 中,∠COH =60°,∴∠CFE =30°,∴y =xx-2=cot30°=3,∴x =3-1;………(1分) 当1<AD <2时(如图备二),在Rt △COH 中,∠COH =60°,∴∠CFE =60°,∴y =xx-2=cot60°=33,∴x =3-3.经检验:x =3-1,x =3-3分别是原各方程的根,且符合题意; 综上所述,x =3-1或x =3-3.……………………(1分)ABCDF K E H O(备二)。
2020-2021九年级数学上期末一模试卷含答案(4)
2020-2021九年级数学上期末一模试卷含答案(4)一、选择题1.关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根12,x x ,()1212122(2)2x x x x x x -+--+3=-,则k 的值( )A .0或2B .-2或2C .-2D .22.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知4EF CD ==,则球的半径长是( )A .2B .2.5C .3D .43.把抛物线y =﹣2x 2向上平移1个单位,再向右平移1个单位,得到的抛物线是( )A .y =﹣2(x +1)2+1B .y =﹣2(x ﹣1)2+1C .y =﹣2(x ﹣1)2﹣1D .y =﹣2(x +1)2﹣14.已知一次函数()10y kx m k =+≠和二次函数()220y ax bx c a =++≠部分自变量和对应的函数值如表: x … -1 0 2 4 5 … y 1 … 0 1 3 5 6 … y 2…-159…当y 2>y 1时,自变量x 的取值范围是 A .-1<x <2B .4<x <5C .x <-1或x >5D .x <-1或x >45.五粮液集团2018年净利润为400亿元,计划2020年净利润为640亿元,设这两年的年净利润平均增长率为x ,则可列方程是( ) A .400(1)640x +=B .2400(1)640x +=C .2400(1)400(1)640x x +++=D .2400400(1)400(1)640x x ++++=6.如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是( )A .2332π-B .233π- C .32π-D .3π-7.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x k =-++上的三点,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .132y y y >>C .231y y y >>D .312y y y >>8.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )A .6B .8C .10D .129.下列函数中是二次函数的为( )A .y =3x -1B .y =3x 2-1C .y =(x +1)2-x 2D .y =x 3+2x -310.二次函数2y (x 3)2=-++图象的开口方向、对称轴和顶点坐标分别为( )A .向下,直线x 3=,()3,2B .向下,直线x 3=-,()3,2C .向上,直线x 3=-,()3,2D .向下,直线x 3=-,()3,2-11.下列判断中正确的是( ) A .长度相等的弧是等弧B .平分弦的直线也必平分弦所对的两条弧C .弦的垂直平分线必平分弦所对的两条弧D .平分一条弧的直线必平分这条弧所对的弦12.一只布袋里装有4个只有颜色不同的小球,其中3个红球,1个白球,小敏和小丽依次从中任意摸出1个小球,则两人摸出的小球颜色相同的概率是( ) A .14B .12C .23D .34二、填空题13.如图,已知抛物线y=ax 2+bx+c 与x 轴交于A 、B 两点,顶点C 的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线y=a 1x 2+b 1x+c 1,则下列结论正确的是_________.(写出所有正确结论的序号)①b >0;②a ﹣b+c <0;③阴影部分的面积为4;④若c=﹣1,则b 2=4a .14.函数 2y 24x x =-- 的最小值为_____.15.如图,在直角坐标系中,已知点30A -(,)、04B (,),对OAB V 连续作旋转变换,依次得到1234V V V V 、、、,则2019V 的直角顶点的坐标为__________.16.如图,在Rt △ABC 中,∠ABC=90°,AB=BC=2,将△ABC 绕点C 逆时针旋转60°,得到△MNC ,连接BM ,则BM 的长是__.17.二次函数22(1)3y x =+-上一动点(,)P x y ,当21x -<≤时,y 的取值范围是_____.18.一个扇形的半径为6,弧长为3π,则此扇形的圆心角为___度.19.如图,AB 是⊙O 的直径,点C 在⊙O 上,AE 是⊙O 的切线,A 为切点,连接BC 并延长交AE 于点D .若AOC=80°,则ADB 的度数为( )A .40°B .50°C .60°D .20°20.飞机着陆后滑行的距离s (单位:m )关于滑行的时间t (单位:s )的函数解析式是s =60t ﹣1.5t 2,飞机着陆后滑行_____米才能停下来.三、解答题21.在平面直角坐标系xOy 中,抛物线y =a 2x -4ax 与x 轴交于A ,B 两点(A 在B 的左侧). (1)求点A ,B 的坐标;(2)已知点C(2,1),P(1,-32a),点Q在直线PC上,且Q点的横坐标为4.①求Q点的纵坐标(用含a的式子表示);②若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.22.在“阳光体育”活动时间,小英、小丽、小敏、小洁四位同学进行一次羽毛球单打比赛,要从中选出两位同学打第一场比赛.(1)若已确定小英打第一场,再从其余三位同学中随机选取一位,求恰好选中小丽同学的概率;(2)用画树状图或列表的方法,求恰好选中小敏、小洁两位同学进行比赛的概率.23.如图,已知二次函数y=-x2+bx+c的图象经过A(-2,-1),B(0,7)两点.(1)求该抛物线的解析式及对称轴;(2)当x为何值时,y>0?(3)在x轴上方作平行于x轴的直线l,与抛物线交于C,D两点(点C在对称轴的左侧),过点C,D作x轴的垂线,垂足分别为F,E.当矩形CDEF为正方形时,求C点的坐标.24.解下列方程3(x-2)2=x(x-2).25.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC 于点E,交AB的延长线于点F.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)如果AB=5,BC=6,求DE的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】将()1212122(2)2=3x x x x x x -+--+-化简可得,()21212124423x x x x x x +-+=--,利用韦达定理,()2142(2)3k k ----+=-,解得,k =±2,由题意可知△>0, 可得k =2符合题意. 【详解】解:由韦达定理,得:12x x +=k -1,122x x k +=-,由()1212122(2)23x x x x x x -+--+=-,得:()21212423x x x x --+=-,即()21212124423x x x x x x +-+=--, 所以,()2142(2)3k k ----+=-, 化简,得:24k =, 解得:k =±2,因为关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根, 所以,△=()214(2)k k ---+=227k k +-〉0, k =-2不符合, 所以,k =2 故选:D. 【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握并灵活运用是解题的关键.2.B解析:B 【解析】 【分析】取EF 的中点M ,作MN ⊥AD 于点M ,取MN 上的球心O ,连接OF ,设OF=x ,则OM=4-x ,MF=2,然后在Rt △MOF 中利用勾股定理求得OF 的长即可.【详解】如图:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=4,设OF=x,则ON=OF,∴OM=MN-ON=4-x,MF=2,在直角三角形OMF中,OM2+MF2=OF2,即:(4-x)2+22=x2,解得:x=2.5,故选B.【点睛】本题主考查垂径定理及勾股定理的知识,正确作出辅助线构造直角三角形是解题的关键.3.B解析:B【解析】【详解】∵函数y=-2x2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=-2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1,故选B.【点睛】二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.4.D解析:D【解析】【分析】利用表中数据得到直线与抛物线的交点为(-1,0)和(4,5),-1<x<4时,y1>y2,从而得到当y2>y1时,自变量x的取值范围.【详解】∵当x=0时,y1=y2=0;当x=4时,y1=y2=5;∴直线与抛物线的交点为(-1,0)和(4,5),而-1<x<4时,y1>y2,∴当y2>y1时,自变量x的取值范围是x<-1或x>4.故选D.【点睛】本题考查了二次函数与不等式:对于二次函数y=ax2+bx+c(a、b、c是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.5.B解析:B【解析】【分析】根据平均年增长率即可解题.【详解】解:设这两年的年净利润平均增长率为x,依题意得:()2+=x4001640故选B.【点睛】本题考查了一元二次方程的实际应用,属于简单题,熟悉平均年增长率概念是解题关键. 6.B解析:B【解析】【分析】根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.【详解】连接BD,∵四边形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等边三角形,∵AB=2,∴△ABD,∵扇形BEF 的半径为2,圆心角为60°, ∴∠4+∠5=60°,∠3+∠5=60°, ∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H , 在△ABG 和△DBH 中,2{34A AB BD ∠=∠=∠=∠, ∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD=2602123602π⨯-⨯=23π故选B .7.A解析:A 【解析】 【分析】根据二次函数的性质得到抛物线y =-(x +1)2+k (k 为常数)的开口向下,对称轴为直线x =﹣1,然后根据三个点离对称轴的远近判断函数值的大小. 【详解】解:∵抛物线y =-(x +1)2+k (k 为常数)的开口向下,对称轴为直线x =﹣1,而A (2,y 1)离直线x =﹣1的距离最远,C (﹣2,y 3)点离直线x =1最近,∴123y y y >>. 故选A . 【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.8.D解析:D 【解析】 【分析】连接AO 、BO 、CO ,根据中心角度数=360°÷边数n ,分别计算出∠AOC 、∠BOC 的度数,根据角的和差则有∠AOB =30°,根据边数n =360°÷中心角度数即可求解. 【详解】连接AO 、BO 、CO ,∵AC 是⊙O 内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.9.B解析:B【解析】A. y=3x−1是一次函数,故A错误;B. y=3x2−1是二次函数,故B正确;C. y=(x+1)2−x2不含二次项,故C错误;D. y=x3+2x−3是三次函数,故D错误;故选B.10.D解析:D【解析】【分析】已知抛物线解析式为顶点式,根据二次项系数可判断开口方向,根据解析式可知顶点坐标及对称轴.【详解】解:由二次函数y=-(x+3)2+2,可知a=-1<0,故抛物线开口向下;顶点坐标为(-3,2),对称轴为x=-3.故选:D.【点睛】顶点式可判断抛物线的开口方向,对称轴,顶点坐标,最大(小)值,函数的增减性.11.C解析:C【解析】【分析】根据等弧概念对A进行判断,根据垂径定理对B、C、D选项进行逐一判断即可.本题解析. 【详解】A.能够互相重合的弧,叫等弧,不但长度相等而且半径相等.故本选项错误.B. 由垂径定理可知平分弦(不是直径)的直径平分弦所对的两条弧,而不是直线,也未注明被平分的弦不是直径,故选项B 错误;C. 由垂径定理可知弦的垂直平分线经过圆心,并且平分弦所对的两条弧,故选项C 正确D.由垂径定理可知平分一条弧的直径必平分这条弧所对的弦,而不是直线.故本选项错误. 故选C.12.B解析:B 【解析】 【分析】画树状图展示所有12种等可能的结果数,再两人摸出的小球颜色相同的结果数然后根据概率公式求解. 【详解】解:画树状图如下:,一共12种可能,两人摸出的小球颜色相同的有6种情况, 所以两人摸出的小球颜色相同的概率是612=12, 故选:B . 【点睛】此题考查的是用列表法或树状图法求概率.解题的关键是要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.二、填空题13.③④【解析】【分析】①首先根据抛物线开口向上可得a >0;然后根据对称轴为x=﹣>0可得b <0据此判断即可②根据抛物线y=ax2+bx+c 的图象可得x=﹣1时y >0即a ﹣b+c >0据此判断即可③首先判解析:③④ 【解析】 【分析】①首先根据抛物线开口向上,可得a >0;然后根据对称轴为x=﹣2ba>0,可得b <0,据此判断即可.②根据抛物线y=ax 2+bx+c 的图象,可得x=﹣1时,y >0,即a ﹣b+c >0,据此判断即可. ③首先判断出阴影部分是一个平行四边形,然后根据平行四边形的面积=底×高,求出阴影部分的面积是多少即可.④根据函数的最小值是2424ac b a-=-,判断出c=﹣1时,a 、b 的关系即可. 【详解】解:∵抛物线开口向上,∴a >0,又∵对称轴为x=﹣2b a>0,∴b <0,∴结论①不正确; ∵x=﹣1时,y >0,∴a ﹣b+c >0,∴结论②不正确; ∵抛物线向右平移了2个单位,∴平行四边形的底是2,∵函数y=ax 2+bx+c 的最小值是y=﹣2,∴平行四边形的高是2,∴阴影部分的面积是:2×2=4,∴结论③正确; ∵2424ac b a-=-,c=﹣1,∴b 2=4a ,∴结论④正确. 故答案为:③④.【点睛】本题考查二次函数图象与几何变换;二次函数图象与系数的关系.14.-5【解析】【分析】将二次函数配方即可直接求出二次函数的最小值【详解】∵y=x2﹣2x ﹣4=x2﹣2x+1﹣5=(x ﹣1)2﹣5∴可得二次函数的最小值为﹣5故答案是:﹣5【点睛】本题考查了二次函数的解析:-5【解析】【分析】将二次函数配方,即可直接求出二次函数的最小值.【详解】∵y =x 2﹣2x ﹣4=x 2﹣2x+1﹣5=(x ﹣1)2﹣5,∴可得二次函数的最小值为﹣5.故答案是:﹣5.【点睛】本题考查了二次函数的最值问题,用配方法是解此类问题的最简洁的方法.15.【解析】【分析】根据勾股定理列式求出AB 的长再根据第四个三角形与第一个三角形的位置相同可知每三个三角形为一个循环组依次循环然后求出一个循环组旋转前进的长度再用2019除以3根据商为673可知第201解析:()8076,0【解析】【分析】根据勾股定理列式求出AB 的长,再根据第四个三角形与第一个三角形的位置相同可知每三个三角形为一个循环组依次循环,然后求出一个循环组旋转前进的长度,再用2019除以3,根据商为673可知第2019个三角形的直角顶点为循环组的最后一个三角形的顶点,求出即可.【详解】解:∵点A(-3,0)、B(0,4),∴,由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12,∵2019÷3=673,∴△2019的直角顶点是第673个循环组的最后一个三角形的直角顶点,∵673×12=8076,∴△2019的直角顶点的坐标为(8076,0).故答案为(8076,0).【点睛】本题主要考查了点的坐标变化规律,仔细观察图形得到每三个三角形为一个循环组依次循环是解题的关键,也是求解的难点.图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.16.1+【解析】【分析】试题分析:首先考虑到BM所在的三角形并不是特殊三角形所以猜想到要求BM可能需要构造直角三角形由旋转的性质可知AC=AM∠CAM=60°故△ACM是等边三角形可证明△ABM与△CB解析:【解析】【分析】试题分析:首先考虑到BM所在的三角形并不是特殊三角形,所以猜想到要求BM,可能需要构造直角三角形.由旋转的性质可知,AC=AM,∠CAM=60°,故△ACM是等边三角形,可证明△ABM与△CBM全等,可得到∠ABM=45°,∠AMB=30°,再证△AFB和△AFM是直角三角形,然后在根据勾股定理求解【详解】解:连结CM,设BM与AC相交于点F,如下图所示,∵Rt△ABC中,AB=BC,∠ABC=90°∴∠BCA=∠BAC=45°∵Rt△ABC绕点A逆时针旋转60°与Rt△ANM重合,∴∠BAC=∠NAM=45°,AC=AM又∵旋转角为60°∴∠BAN=∠CAM=60°,∴△ACM是等边三角形∴AC=CM=AM=4在△ABM与△CBM中,BA BC AM CM BM BM=⎧⎪=⎨⎪=⎩∴△ABM≌△CBM (SSS)∴∠ABM=∠CBM=45°,∠CMB=∠AMB=30°∴在△ABF 中,∠BFA=180°﹣45°﹣45°=90°∴∠AFB=∠AFM=90°在Rt △ABF 中,由勾股定理得, BF=AF=2212AB BC += 又在Rt △AFM 中,∠AMF=30°,∠AFM=90°FM=3AF=3∴BM=BF+FM=1+3故本题的答案是:1+3点评:此题是旋转性质题,解决此题,关键是思路要明确:“构造”直角三角形.在熟练掌握旋转的性质的基础上,还要应用全等的判定及性质,直角三角形的判定及勾股定理的应用17.【解析】【分析】先确定抛物线的对称轴和顶点坐标再根据抛物线的性质以对称轴为界分情况求解即得答案【详解】解:∵抛物线的解析式是∴抛物线的对称轴是直线:顶点坐标是(-1-3)抛物线的开口向上当x<-1时 解析:35y -≤≤【解析】【分析】先确定抛物线的对称轴和顶点坐标,再根据抛物线的性质以对称轴为界分情况求解即得答案.【详解】解:∵抛物线的解析式是22(1)3y x =+-,∴抛物线的对称轴是直线:1x =-,顶点坐标是(-1,-3),抛物线的开口向上,当x <-1时,y 随x 的增大而减小,当x >-1时,y 随x 的增大而增大,且当2x =-时,1y =-;当x =1时,y =5;∴当21x -<≤-时,31y -≤<-,当11x -<≤ 时,35y -<≤,∴当21x -<≤时,y 的取值范围是:35y -≤≤.故答案为:35y -≤≤.【点睛】本题考查的是二次函数的图象和性质,属于基本题型,熟练掌握抛物线的性质是解题关键. 18.90【解析】【分析】根据弧长公式列式计算得到答案【详解】设这个扇形的圆心角为n°则=3π解得n=90故答案为:90【点睛】考核知识点:弧长的计算熟记公式是关键解析:90【解析】【分析】根据弧长公式列式计算,得到答案.【详解】设这个扇形的圆心角为n°,则6180nπ⋅=3π,解得,n=90,故答案为:90.【点睛】考核知识点: 弧长的计算.熟记公式是关键.19.B【解析】试题分析:根据AE是⊙O的切线A为切点AB是⊙O的直径可以先得出∠BAD为直角再由同弧所对的圆周角等于它所对的圆心角的一半求出∠B从而得到∠ADB的度数由题意得:∠BAD=90°∵∠B=∠解析:B.【解析】试题分析:根据AE是⊙O的切线,A为切点,AB是⊙O的直径,可以先得出∠BAD为直角.再由同弧所对的圆周角等于它所对的圆心角的一半,求出∠B,从而得到∠ADB的度数.由题意得:∠BAD=90°,∵∠B=∠AOC=40°,∴∠ADB=90°-∠B=50°.故选B.考点:圆的基本性质、切线的性质.20.600【解析】【分析】将函数解析式配方成顶点式求出s的最大值即可得【详解】∵s=60t﹣15t2=﹣t2+60t=﹣(t﹣20)2+600∴当t=20时s取得最大值600即飞机着陆后滑行600米才能解析:600【解析】【分析】将函数解析式配方成顶点式求出s的最大值即可得.【详解】∵s=60t﹣1.5t2,=﹣32t2+60t,=﹣32(t﹣20)2+600,∴当t =20时,s 取得最大值600,即飞机着陆后滑行600米才能停下来,故答案为:600.【点睛】此题考查二次函数解析式的配方法,利用配方法将函数解析式化为顶点式由此得到函数的最值是一种很重要的解题方法.三、解答题21.(1)A (0,0),B (4,0);(2)①Q 点的纵坐标为3+3a ,②符合题意的a 的取值范围是 -1≤a <0.【解析】【分析】(1)令y =0,则a 2x -4ax =0,可求得A 、B 点坐标;(2)①设直线PC 的解析式为,将点P (1,-32a ),C (2,1)代入可解得31,13.2k a b a =+=-- ()3113.2y x a =+-- 由于Q 点的横坐标为4,可求得Q 点的纵坐标为3+3a ②当a >0时,如图1,不合题意;当a <0时,由图2,图3可知,3+3a≥0,可求出a 的取值范围.【详解】(1)令y =0,则a 2x -4ax =0.解得 120, 4.x x ==∴ A (0,0),B (4,0)(2)①设直线PC 的解析式为.y kx b =+将点P (1,-32a ),C (2,1)代入上式, 解得31,13.2k ab a =+=-- ∴y=(1+32a)x-1-3a. ∵点Q 在直线PC 上,且Q 点的横坐标为4,∴Q 点的纵坐标为3+3a②当a >0时,如图1,不合题意;当a <0时,由图2,图3可知,3+3a≥0.∴a≥-1.∴符合题意的a 的取值范围是 -1≤a <0.图1 图2 图3【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征,数形结合讨论交点是解题的关键.22.(1)13;(2)16.【解析】【分析】(1)由题意直接利用概率公式求解即可求得答案;(2)根据题意列出表格,然后由表格求得所有等可能的结果与恰好选中小敏、小洁两位同学的情况,再利用概率公式求解即可求得答案.【详解】解:(1)若已确定小英打第一场,再从其余三位同学中随机选取一位,共有3种情况,而选中小丽的情况只有一种,所以P(恰好选中小丽)=13;(2)列表如下:所有可能出现的情况有12种,其中恰好选中小敏、小洁两位同学组合的情况有两种,所以P(小敏,小洁)=212=16.【点睛】本题考查列表法与树状图法.23.(1) y=-(x-1)2+8;对称轴为:直线x=1;(2)当<x<时,y>0;(3) C点坐标为:(-1,4).【解析】【分析】(1)根据待定系数法求二次函数解析式,再用配方法或公式法求出对称轴即可;(2)求出二次函数与x轴交点坐标即可,再利用函数图象得出x取值范围;(3)利用正方形的性质得出横纵坐标之间的关系即可得出答案.【详解】(1)∵二次函数y=-x2+bx+c的图象经过A(-2,-1),B(0,7)两点.∴1427b cc-=--+⎧⎨=⎩,解得:27bc=⎧⎨=⎩,∴y=-x2+2x+7,=-(x2-2x)+7,=-[(x2-2x+1)-1]+7,=-(x-1)2+8,∴对称轴为:直线x=1.(2)当y=0,0=-(x-1)2+8,∴x-1=±,x1x2,∴抛物线与x轴交点坐标为:(,0),(,0),∴当<x<时,y>0;(3)当矩形CDEF为正方形时,假设C点坐标为(x,-x2+2x+7),∴D点坐标为(-x2+2x+7+x,-x2+2x+7),即:(-x2+3x+7,-x2+2x+7),∵对称轴为:直线x=1,D到对称轴距离等于C到对称轴距离相等,∴-x2+3x+7-1=-x+1,解得:x1=-1,x2=5(不合题意舍去),x=-1时,-x2+2x+7=4,∴C点坐标为:(-1,4).【点睛】此题主要考查了待定系数法求二次函数解析式以及利用图象观察函数值和正方形性质等知识,根据题意得出C、D两点坐标之间的关系是解决问题的关键.24.x1=2,x2=3【解析】【分析】先移项,再利用提公因式法因式分解求出方程的根.【详解】3(x-2)2-x(x-2)=0(x-2)[3(x-2)-x]=0(x-2)(2x-6)=0x-2=0或2x-6=0∴x1=2,x2=3.【点睛】本题考查了用因式分解法解一元二次方程,用提公因式法因式分解可以求出方程的根.25.(1)相切,理由见解析;(2)DE=125.【解析】【分析】(1)连接AD,OD,根据已知条件证得OD⊥DE即可;(2)根据勾股定理计算即可.【详解】解:(1)相切,理由如下:连接AD,OD,∵AB为⊙O的直径,∴∠ADB=90°.∴AD⊥BC.∵AB=AC,∴CD=BD=12 BC.∵OA=OB,∴OD∥AC.∴∠ODE=∠CED.∵DE⊥AC,∴∠ODE=∠CED=90°.∴OD⊥DE.∴DE与⊙O相切.(2)由(1)知∠ADC=90°,∴在Rt△ADC中,由勾股定理得,==4.∵S ACD=12AD•CD=12AC•DE,∴12×4×3=12×5DE.∴DE=125.【点睛】本题主要考查直线与圆的位置关系,等腰三角形的性质、勾股定理等知识.正确大气层造辅助线是解题的关键.。
上海市北初级中学初三数学九年级上册期末模拟试卷
上海市北初级中学初三数学九年级上册期末模拟试卷 一、选择题 1.圆锥的底面半径为2,母线长为6,它的侧面积为( )A .6πB .12πC .18πD .24π2.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到红灯的概率是( )A .13B .512C .12D .13.已知⊙O 的半径是4,圆心O 到直线l 的距离d =6.则直线l 与⊙O 的位置关系是( )A .相离B .相切C .相交D .无法判断4.如图,点P 为⊙O 外一点,PA 为⊙O 的切线,A 为切点,PO 交⊙O 于点B ,∠P=30°,OB=3,则线段BP 的长为( )A .3B .33C .6D .9 5.二次函数2(1)3y x =-+图象的顶点坐标是( )A .(1,3)B .(1,3)-C .(1,3)-D .(1,3)--6.方程2210x x --=的两根之和是( )A .2-B .1-C .12D .12- 7.下列方程是一元二次方程的是( )A .2321x x =+B .3230x x --C .221x y -=D .20x y += 8.如图,抛物线2144y x =-与x 轴交于A 、B 两点,点P 在一次函数6y x =-+的图像上,Q 是线段PA 的中点,连结OQ ,则线段OQ 的最小值是( )A .22B .1C .2D .29.抛物线y =x 2先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是( ) A .y =(x+1)2+3B .y =(x+1)2﹣3C .y =(x ﹣1)2﹣3D .y =(x ﹣1)2+310.如图,AB 为⊙O 的直径,点C 、D 在⊙O 上,∠BAC=50°,则∠ADC 为( )A .40°B .50°C .80°D .100°11.如图,已知一组平行线////a b c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且 1.5AB =,2BC =, 1.8DE =,则EF =( )A .4.4B .4C .3.4D .2.4 12.已知△ABC ≌△DEF ,∠A =60°,∠E =40°,则∠F 的度数为( ) A .40B .60C .80D .100 13.如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且∠D =40°,则∠PCA 等于( )A .50°B .60°C .65°D .75°14.2的相反数是( )A .12-B .12C .2D .2-15.如图,点A 、B 、C 在⊙O 上,∠ACB =130°,则∠AOB 的度数为( )A .50°B .80°C .100°D .110°二、填空题16.三角形的两边长分别为3和6,第三边的长是方程x 2﹣6x+8=0的解,则此三角形的周长是_____.17.已知tan (α+15°)= 33,则锐角α的度数为______°. 18.已知线段4AB =,点P 是线段AB 的黄金分割点(AP BP >),那么线段AP =______.(结果保留根号)19.若x 1,x 2是一元二次方程2x 2+x -3=0的两个实数根,则x 1+x 2=____.20.如图,在Rt △ABC 中,BC AC ⊥,CD 是AB 边上的高,已知AB =25,BC =15,则BD =__________.21.在△ABC 中,∠C =90°,cosA =35,则tanA 等于 . 22.已知实数,,a b c 满足0a ≠,且0a b c -+=,930a b c ++=,则抛物线2y ax bx c =++图象上的一点(2,4)-关于抛物线对称轴对称的点为__________.23.如图,曲线AB 是顶点为B ,与y 轴交于点A 的抛物线y =﹣x 2+4x +2的一部分,曲线BC 是双曲线k y x=的一部分,由点C 开始不断重复“A ﹣B ﹣C ”的过程,形成一组波浪线,点P (2018,m )与Q (2025,n )均在该波浪线上,则mn =_____.24.两个相似三角形的面积比为9:16,其中较大的三角形的周长为64cm ,则较小的三角形的周长为__________cm .25.若m 是关于x 的方程x 2-2x-3=0的解,则代数式4m-2m 2+2的值是______.26.一组数据:3,2,1,2,2,3,则这组数据的众数是_____.27.如图,⊙O 是正五边形ABCDE 的外接圆,则∠CAD =_____.28.若a b b -=23,则a b的值为________. 29.用配方法解一元二次方程2430x x +-=,配方后的方程为2(2)x n +=,则n 的值为______.30.已知二次函数y =3x 2+2x ,当﹣1≤x ≤0时,函数值y 的取值范围是_____.三、解答题31.已知二次函数216y ax bx =++的图像经过点(-2,40)和点(6,-8),求一元二次方程2160ax bx ++=的根.32.(1)计算:()212cos6020202π-⎛⎫++-︒ ⎪⎝︒⎭(2)若关于x 的方程22210x x m ++-=有两个相等的实数根,求m 的值.33.2019年12月17日,我国第一艘国产航母“山东舰”在海南三亚交付海军.如图,“山东舰”在一次试水测试中,航行至M 处,观测指挥塔P 位于南偏西30方向,在沿正南方向以30海里/小时的速度匀速航行2小时后,到达N 处,再观测指挥塔P 位于南偏西45︒方向,若继续向南航行.求“山东舰”与指挥塔之间的最近距离为多少海里?(结果保留根号)34.某商店经销的某种商品,每件成本为30元.经市场调查,当售价为每件70元时,可销售20件.假设在一定范围内,售价每降低2元,销售量平均增加4件.如果降价后商店销售这批商品获利1200元,问这种商品每件售价是多少元?35.已知二次函数y =a 2x −4x +c 的图象过点(−1,0)和点(2,−9),(1)求该二次函数的解析式并写出其对称轴;(2)当x 满足什么条件时,函数值大于0?(不写求解过程),四、压轴题36.阅读理解:如图,在纸面上画出了直线l与⊙O,直线l与⊙O相离,P为直线l上一动点,过点P作⊙O的切线PM,切点为M,连接OM、OP,当△OPM的面积最小时,称△OPM为直线l与⊙O的“最美三角形”.解决问题:(1)如图1,⊙A的半径为1,A(0,2) ,分别过x轴上B、O、C三点作⊙A的切线BM、OP、CQ,切点分别是M、P、Q,下列三角形中,是x轴与⊙A的“最美三角形”的是.(填序号)①ABM;②AOP;③ACQ(2)如图2,⊙A的半径为1,A(0,2),直线y=kx(k≠0)与⊙A的“最美三角形”的面积为12,求k的值.(3)点B在x轴上,以B为圆心,3为半径画⊙B,若直线y=3x+3与⊙B的“最美三角形”的面积小于32,请直接写出圆心B的横坐标B x的取值范围.37.如图,已知在矩形ABCD中,AB=2,BC=3P,Q分别是BC,AD边上的一个动点,连结BQ,以P为圆心,PB长为半径的⊙P交线段BQ于点E,连结PD.(1)若DQ3且四边形BPDQ是平行四边形时,求出⊙P的弦BE的长;(2)在点P,Q运动的过程中,当四边形BPDQ是菱形时,求出⊙P的弦BE的长,并计算此时菱形与圆重叠部分的面积.38.MN 是O 上的一条不经过圆心的弦,4MN =,在劣弧MN 和优弧MN 上分别有点A,B (不与M,N 重合),且AN BN =,连接,AM BM .(1)如图1,AB 是直径,AB 交MN 于点C ,30ABM ︒∠=,求CMO ∠的度数; (2)如图2,连接,OM AB ,过点O 作//OD AB 交MN 于点D ,求证:290MOD DMO ︒∠+∠=;(3)如图3,连接,AN BN ,试猜想AM MB AN NB ⋅+⋅的值是否为定值,若是,请求出这个值;若不是,请说明理由.39.如图,函数y=-x 2+bx +c 的图象经过点A (m ,0),B (0,n )两点,m ,n 分别是方程x 2-2x -3=0的两个实数根,且m <n .(1)求m ,n 的值以及函数的解析式;(2)设抛物线y=-x 2+bx +c 与x 轴的另一交点为点C ,顶点为点D ,连结BD 、BC 、CD ,求△BDC 面积;(3)对于(1)中所求的函数y=-x 2+bx +c ,①当0≤x ≤3时,求函数y 的最大值和最小值;②设函数y 在t ≤x ≤t +1内的最大值为p ,最小值为q ,若p-q =3,求t 的值.40.如图,抛物线2()20y ax x c a =++<与x 轴交于点A 和点B (点A 在原点的左侧,点B 在原点的右侧),与y 轴交于点C ,3OB OC ==.(1)求该抛物线的函数解析式.(2)如图1,连接BC ,点D 是直线BC 上方抛物线上的点,连接OD ,CD .OD 交BC 于点F ,当32COF CDF S S =::时,求点D 的坐标.(3)如图2,点E 的坐标为(03)2-,,点P 是抛物线上的点,连接EB PB PE ,,形成的PBE △中,是否存在点P ,使PBE ∠或PEB ∠等于2OBE ∠?若存在,请直接写出符合条件的点P 的坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据圆锥的底面半径为2,母线长为6,直接利用圆锥的侧面积公式求出它的侧面积.【详解】根据圆锥的侧面积公式:πrl =π×2×6=12π,故选:B .【点睛】本题主要考查了圆锥侧面积公式.熟练地应用圆锥侧面积公式求出是解决问题的关键.2.C解析:C【解析】【分析】根据随机事件A 的概率P(A)=事件A 可能出现的结果数÷所有可能出现的结果数,据此用红灯亮的时间除以以上三种灯亮的总时间,即可得出答案.【详解】解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴红灯的概率是:301 302552=++.故答案为:C.【点睛】本题考查的知识点是简单事件的概率问题,熟记概率公式是解题的关键.3.A解析:A【解析】【分析】根据直线和圆的位置关系的判定方法,即圆心到直线的距离大于半径,则直线与圆相离进行判断.【详解】解:∵圆心O到直线l的距离d=6,⊙O的半径R=4,∴d>R,∴直线和圆相离.故选:A.【点睛】本题考查直线与圆位置关系的判定.掌握半径和圆心到直线的距离之间的数量关系是解答此题的关键..4.A解析:A【解析】【分析】直接利用切线的性质得出∠OAP=90°,进而利用直角三角形的性质得出OP的长.【详解】连接OA,∵PA为⊙O的切线,∴∠OAP=90°,∵∠P=30°,OB=3,∴AO=3,则OP=6,故BP=6-3=3.故选A.【点睛】此题主要考查了切线的性质以及圆周角定理,正确作出辅助线是解题关键.解析:A【解析】【分析】根据二次函数顶点式即可得出顶点坐标.【详解】∵2(1)3y x =-+,∴二次函数图像顶点坐标为:(1,3).故答案为A.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a (x-h )2+k 中,对称轴为x=h ,顶点坐标为(h ,k ). 6.C解析:C【解析】【分析】利用两个根和的关系式解答即可.【详解】两个根的和=1122b a , 故选:C.【点睛】此题考查一元二次方程根与系数的关系式, 1212,b c x x x x a a+=-=. 7.A解析:A【解析】【分析】根据一元二次方程的定义逐一判断即可.【详解】解:A . 2321x x =+是一元二次方程,故本选项符合题意;B . 3230x x --是一元三次方程,故本选项不符合题意;C . 221x y -=是二元二次方程,故本选项不符合题意;D . 20x y +=是二元一次方程,故本选项不符合题意;故选A .【点睛】此题考查的是一元二次方程的判断,掌握一元二次方程的定义是解决此题的关键.8.A【解析】【分析】先求得A 、B 两点的坐标,设()6P m m -,,根据之间的距离公式列出2PB 关于m 的函数关系式,求得其最小值,即可求得答案.【详解】令0y =,则21404x -=, 解得:4x =±,∴A 、B 两点的坐标分别为:()()4040A B -,、,, 设点P 的坐标为()6m m -,, ∴()()2222246220522(5)2PB m m m m m =-+-=-+=-+,∵20>,∴当5m =时,2PB 有最小值为:2,即PB ,∵A 、B 为抛物线的对称点,对称轴为y 轴,∴O 为线段AB 中点,且Q 为AP 中点,∴122OQ PB ==. 故选:A .【点睛】本题考查了二次函数与一次函数的综合问题,涉及到的知识有:两点之间的距离公式,三角形中位线的性质,二次函数的最值问题,利用两点之间的距离公式求得2PB 的最小值是解题的关键.9.D解析:D【解析】【分析】按“左加右减,上加下减”的规律平移即可得出所求函数的解析式.【详解】抛物线y =x 2先向右平移1个单位得y =(x ﹣1)2,再向上平移3个单位得y =(x ﹣1)2+3.故选D.【点睛】本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a (x -h )2+k (a ,b ,c 为常数,a ≠0),确定其顶点坐标(h ,k ),在原有函数的基础上“h 值正右移,负左移; k 值正上移,负下移”.10.A解析:A【解析】试题分析:先根据圆周角定理的推论得到∠ACB=90°,再利用互余计算出∠B=40°,然后根据圆周角定理求解.解:连结BC,如图,∵AB为⊙O的直径,∴∠ACB=90°,∵∠BAC=50°,∴∠B=90°﹣50°=40°,∴∠ADC=∠B=40°.故选A.考点:圆周角定理.11.D解析:D【解析】【分析】根据平行线等分线段定理列出比例式,然后代入求解即可.【详解】解:∵////a b c∴AB DEBC EF=即1.5 1.82EF=解得:EF=2.4故答案为D.【点睛】本题主要考查的是平行线分线段成比例定理,利用定理正确列出比例式是解答本题的关键.12.C解析:C【解析】【分析】根据全等三角形对应角相等可得∠B=∠E=40°,∠F=∠C,然后利用三角形内角和定理计算出∠C的度数,进而可得答案.【详解】解:∵△ABC≌△DEF,∴∠B=∠E=40°,∠F=∠C,∵∠A=60°,∴∠C=180°-60°-40°=80°,∴∠F=80°,故选:C.【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.13.C解析:C【解析】【分析】根据切线的性质,由PD切⊙O于点C得到∠OCD=90°,再利互余计算出∠DOC=50°,由∠A=∠ACO,∠COD=∠A+∠ACO,所以1252A COD∠=∠=︒,然后根据三角形外角性质计算∠PCA的度数.【详解】解:∵PD切⊙O于点C,∴OC⊥CD,∴∠OCD=90°,∵∠D=40°,∴∠DOC=90°﹣40°=50°,∵OA=OC,∴∠A=∠ACO,∵∠COD=∠A+∠ACO,∴1252A COD∠=∠=︒,∴∠PCA=∠A+∠D=25°+40°=65°.故选C.【点睛】本题考查了切线的性质、等腰三角形的性质、直角三角形的性质、三角形外角性质等知识;熟练掌握切线的性质与三角形外角性质是解题的关键.14.D解析:D【解析】【分析】根据相反数的概念解答即可.【详解】2的相反数是-2,故选D.15.C解析:C【解析】【分析】根据圆内接四边形的性质和圆周角定理即可得到结论.【详解】在优弧AB上任意找一点D,连接AD,BD.∵∠D=180°﹣∠ACB=50°,∴∠AOB=2∠D=100°,故选:C.【点睛】本题考查了圆周角定理,圆内接四边形的性质,正确的作出辅助线是解题的关键.二、填空题16.14【解析】【分析】先求出方程的两根,然后根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【详解】解:x2﹣6x+8=0,(x﹣2)(x﹣4)=0,x﹣2=0,x﹣4=0解析:14【解析】【分析】先求出方程的两根,然后根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【详解】解:x2﹣6x+8=0,(x﹣2)(x﹣4)=0,x﹣2=0,x﹣4=0,x1=2,x2=4,当x=2时,2+3<6,不符合三角形的三边关系定理,所以x=2舍去,当x=4时,符合三角形的三边关系定理,三角形的周长是3+6+4=13,故答案为:13.【点睛】本题考查了因式分解法解一元二次方程以及三角形的三边关系,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯,熟练掌握一元二次方程的解法是解法本题的关键.17.15【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:tan(α+15°)=∴α+15°=30°,∴α=15°故答案是15【点睛】此题主要考查了特殊角的三角函数值,解析:15【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:tan(α+15°)=3∴α+15°=30°,∴α=15°故答案是15【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键.18.【解析】【分析】根据黄金比值为计算即可.【详解】解:∵点P是线段AB的黄金分割点(AP>BP)∴故答案为:.【点睛】本题考查的知识点是黄金分割,熟记黄金分割点的比值是解题的关键.解析:2【解析】【分析】计算即可. 【详解】解:∵点P 是线段AB 的黄金分割点(AP>BP )∴AP 2AB ==故答案为:2.【点睛】本题考查的知识点是黄金分割,熟记黄金分割点的比值是解题的关键.19.【解析】【分析】直接利用根与系数的关系求解.【详解】解:根据题意得x1+x2═故答案为.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1 解析:12- 【解析】【分析】直接利用根与系数的关系求解.【详解】解:根据题意得x 1+x 2═12b a -=- 故答案为12-. 【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x 1,x 2,则x 1+x 2=b a -,x 1•x 2=c a. 20.9【解析】【分析】利用两角对应相等两三角形相似证△BCD∽△BAC,根据相似三角形对应边成比例得比例式,代入数值求解即可.【详解】解:∵,,∴∠ACB=∠CDB=90°,∵∠B=∠B,解析:9【解析】【分析】利用两角对应相等两三角形相似证△BCD ∽△BAC ,根据相似三角形对应边成比例得比例式,代入数值求解即可.【详解】解:∵BC AC ⊥,CD AB ⊥,∴∠ACB=∠CDB=90°,∵∠B=∠B,∴△BCD ∽△BAC, ∴BC BD AB BC = , ∴152515BD =, ∴BD=9.故答案为:9.【点睛】本题考查利用相似三角形的性质求线段长,证明两三角形相似注意题中隐含条件,如公共角,对顶角等,利用相似的性质得出比例式求解是解答此题的关键.21..【解析】试题分析:∵在△ABC 中,∠C =90°,cosA =,∴.∴可设.∴根据勾股定理可得.∴.考点:1.锐角三角函数定义;2.勾股定理.解析:43. 【解析】 试题分析:∵在△ABC 中,∠C =90°,cosA =35,∴35AC AB =. ∴可设35AC k AB k ==,.∴根据勾股定理可得4BC k =. ∴44tanA 33BC k AC k ===. 考点:1.锐角三角函数定义;2.勾股定理.22.【解析】【分析】先根据题意确定抛物线的对称轴,再利用抛物线的对称性解答即可.【详解】解:∵,,∴点(-1,0)与(3,0)在抛物线上,∴抛物线的对称轴是直线:x=1,∴点关于直线x=解析:(4,4)【解析】【分析】先根据题意确定抛物线的对称轴,再利用抛物线的对称性解答即可.【详解】解:∵0a b c -+=,930a b c ++=,∴点(-1,0)与(3,0)在抛物线2y ax bx c =++上,∴抛物线的对称轴是直线:x =1,∴点(2,4)-关于直线x =1对称的点为:(4,4).故答案为:(4,4).【点睛】本题考查了二次函数的性质和二次函数图象上点的坐标特征,属于常考题型,根据题意判断出点(-1,0)与(3,0)在抛物线上、熟练掌握抛物线的对称性是解题的关键. 23.24【解析】【详解】点B 是抛物线y=﹣x2+4x+2的顶点,∴点B 的坐标为(2,6),2018÷6=336…2,故点P 离x 轴的距离与点B 离x 轴的距离相同,∴点P的坐标为(2018,6),解析:24【解析】【详解】点B是抛物线y=﹣x2+4x+2的顶点,∴点B的坐标为(2,6),2018÷6=336…2,故点P离x轴的距离与点B离x轴的距离相同,∴点P的坐标为(2018,6),∴m=6;点B(2,6)在kyx=的图象上,∴k=6;即12yx=,2025÷6=337…3,故点Q离x轴的距离与当x=3时,函数12yx=的函数值相等,又x=3时,1243y==,∴点Q的坐标为(2025,4),即n=4,∴mn=6424.⨯=故答案为24.【点睛】本题主要考查了反比例函数图象上的点的坐标特征以及二次函数的图象与性质.本题是一道找规律问题.找到点P、Q在A﹣B﹣C段上的对应点是解题的关键.24.48【解析】【分析】根据面积之比得出相似比,然后利用周长之比等于相似比即可得出答案.【详解】∵两个相似三角形的面积比为∴两个相似三角形的相似比为∴两个相似三角形的周长也比为∵较大的三解析:48【解析】【分析】根据面积之比得出相似比,然后利用周长之比等于相似比即可得出答案.【详解】∵两个相似三角形的面积比为9:16∴两个相似三角形的相似比为3:4∴两个相似三角形的周长也比为3:4∵较大的三角形的周长为64cm∴较小的三角形的周长为643484cm ⨯=故答案为:48.【点睛】本题主要考查相似三角形的性质,掌握相似三角形的性质是解题的关键.25.-4【解析】【分析】先由方程的解的含义,得出m2-2m-3=0,变形得m2-2m=3,再将要求的代数式提取公因式-2,然后将m2-2m=3代入,计算即可.【详解】解:∵m是关于x的方程x2解析:-4【解析】【分析】先由方程的解的含义,得出m2-2m-3=0,变形得m2-2m=3,再将要求的代数式提取公因式-2,然后将m2-2m=3代入,计算即可.【详解】解:∵m是关于x的方程x2-2x-3=0的解,∴m2-2m-3=0,∴m2-2m=3,∴4m-2m2+2= -2(m2-2m)+2= -2×3+2= -4.故答案为:-4.【点睛】本题考查了利用一元二次方程的解的含义在代数式求值中的应用,明确一元二次方程的解的含义并将要求的代数式正确变形是解题的关键.26.【解析】【分析】根据众数的定义:一组数据中出现次数最多的数据解答即可.【详解】在数据:3,2,1,2,2,3中,2出现3次,出现的次数最多,∴这组数据的众数是2,故答案为:2.【点睛解析:【解析】【分析】根据众数的定义:一组数据中出现次数最多的数据解答即可.【详解】在数据:3,2,1,2,2,3中,2出现3次,出现的次数最多,∴这组数据的众数是2,故答案为:2.【点睛】此题考查的是求一组数据的众数,掌握众数的定义是解决此题的关键.27.36°.【解析】【分析】由正五边形的性质得出∠BAE=(5﹣2)×180°=108°,BC=CD=DE,得出 ==,由圆周角定理即可得出答案.【详解】∵⊙O是正五边形ABCDE的外接圆,解析:36°.【解析】【分析】由正五边形的性质得出∠BAE=15(5﹣2)×180°=108°,BC=CD=DE,得出BC=CD=DE,由圆周角定理即可得出答案.【详解】∵⊙O是正五边形ABCDE的外接圆,∴∠BAE=15(n﹣2)×180°=15(5﹣2)×180°=108°,BC=CD=DE,∴BC=CD=DE,∴∠CAD=13×108°=36°;故答案为:36°.【点睛】本题主要考查了正多边形和圆的关系,以及圆周角定理的应用;熟练掌握正五边形的性质和圆周角定理是解题的关键.28.【解析】【分析】根据条件可知a与b的数量关系,然后代入原式即可求出答案.【详解】∵=,∴b=a,∴=,故答案为:.【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.解析:5 3【解析】【分析】根据条件可知a与b的数量关系,然后代入原式即可求出答案.【详解】∵a bb-=23,∴b=35 a,∴ab=5335aa=,故答案为:5 3 .【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.29.7【解析】【分析】根据配方法,先移项,然后两边同时加上4,即可求出n的值. 【详解】解:∵,∴,∴,∴,∴;故答案为:7.【点睛】本题考查了配方法解一元二次方程,解题的关键是熟解析:7【解析】【分析】根据配方法,先移项,然后两边同时加上4,即可求出n 的值.【详解】解:∵2430x x +-=,∴243x x +=,∴2447x x ++=,∴2(2)7x +=,∴7n =;故答案为:7.【点睛】本题考查了配方法解一元二次方程,解题的关键是熟练掌握配方法的步骤. 30.﹣≤y≤1【解析】【分析】利用配方法转化二次函数求出对称轴,根据二次函数的性质即可求解.【详解】∵y =3x2+2x =3(x+)2﹣,∴函数的对称轴为x =﹣,∴当﹣1≤x≤0时,函数有最解析:﹣13≤y ≤1 【解析】【分析】 利用配方法转化二次函数求出对称轴,根据二次函数的性质即可求解.【详解】∵y =3x 2+2x =3(x +13)2﹣13, ∴函数的对称轴为x =﹣13, ∴当﹣1≤x ≤0时,函数有最小值﹣13,当x =﹣1时,有最大值1,∴y 的取值范围是﹣13≤y ≤1, 故答案为﹣13≤y ≤1. 【点睛】 本题考查二次函数的性质、一般式和顶点式之间的转化,解题的关键是熟练掌握二次函数的性质.三、解答题31.x 1=2,x 2=8.【解析】【分析】把已知两点坐标代入二次函数解析式求出a 与b 的值,代入方程计算即可求出解.【详解】解:将点(-2,40)和点(6,-8)代入二次函数得,404216836616a b a b =-+⎧⎨-=++⎩解得:110a b =⎧⎨=-⎩∴求得二次函数关系式为21016y x x =-+,当y=0时,210160x x -+=,解得x 1=2,x 2=8.【点睛】此题考查了抛物线与x 轴的交点,抛物线与x 轴的交点与根的判别式有关:根的判别式大于0,有两个交点;根的判别式大于0,没有交点;根的判别式等于0,有一个交点.32.(1)6;(2)1m =.【解析】【分析】(1)根据负指数幂和0次幂法则,特殊三角函数值分别算出原算式中的每一项,然后进行实数运算即可.(2)根据一元二次方程根的判别式与根个数的关系,可得出b 2-4ac=0,列方程求解.【详解】解:(1)()2012cos6020202π-⎛⎫++- ⎪⎝⎭︒ 12412=⨯++ 6=;(2)∵22210x x m ++-=有两个相等的实数根,∴b 2-4ac=22-4(2m-1)=0,∴m=1.【点睛】本题考查实数运算和一元二次方程根的判别式与根个数的关系,掌握负指数幂,0次幂和特殊三角形函数值及根的判别式是解答此题的关键.33.30330+【解析】【分析】过P 作PH ⊥MN 于H ,构建直角三角形,设PH=x 海里,分别在两个直角三角形△PHN 和△PHM 中利用正切函数表示出NH 长和MH 长,列方程求解.【详解】过P 作PH ⊥MN ,垂足为H ,设PH=x 海里,在Rt △PHN ,tan ∠PNH=PH NH , ∴tan45°=PH NH , ∴NH=tan 45x x ,在Rt △PHM 中,tan ∠PMH=PH MH , ∴tan30°=PH MH , ∴MH=3tan 30xx , ∵MN=30×2=60海里,∴360x x -= ,∴30330x .答:“山东舰”与指挥塔之间的最近距离为30330海里.【点睛】本题考查解直角三角形的应用,解答此题的关键是构建直角三角形,找准线段之间的关系,利用锐角三角函数进行解答.34.每件商品售价60元或50元时,该商店销售利润达到1200元.【解析】【分析】根据题意得出,(售价-成本)⨯(原来的销量+2⨯降低的价格)=1200,据此列方程求解即可.【详解】解:设每件商品应降价x 元时,该商店销售利润为1200元.根据题意,得()()70302021200x x --+=整理得:2302000x x -+=,解这个方程得:110x =,220x =.所以,7060x -=或50答:每件商品售价60元或50元时,该商店销售利润达到1200元.【点睛】本题考查的知识点是生活中常见的商品打折销售问题,弄清题目中的关键概念,找出题目中隐含的等量关系式是解决问题的关键.35.(1)245y x x =--,2x =;(2)当x <1-或x >5时,函数值大于0.【解析】【分析】(1)把(-1,0)和点(2,-9)代入y=ax 2-4x+c ,得到一个二元一次方程组,求出方程组的解,即可得到该二次函数的解析式,然后求出对称轴;(2)求得抛物线与x 轴的交点坐标后即可确定正确的答案.【详解】解:(1)∵二次函数24y ax x c =-+的图象过点(−1,0)和点(2,−9), ∴40449a c a c ++=⎧⎨-+=-⎩, 解得:15a c =⎧⎨=-⎩, ∴245y x x =--; ∴对称轴为:4222b x a -=-=-=; (2)令2450x y x --==,解得:11x =-,25x =,如图:∴点A 的坐标为(1-,0),点B 的坐标为(5,0);∴结合图象得到,当x <1-或x >5时,函数值大于0.【点睛】本题主要考查对用待定系数法求二次函数的解析式及抛物线与x 轴的交点坐标的知识,解题的关键是正确的求得抛物线的解析式.四、压轴题36.(1)②;(2)±1;(3)23-<B x <33或733-<B x <23-- 【解析】【分析】(1)本题先利用切线的性质,结合勾股定理以及三角形面积公式将面积最值转化为线段最值,了解最美三角形的定义,根据圆心到直线距离最短原则解答本题.(2)本题根据k 的正负分类讨论,作图后根据最美三角形的定义求解EF ,利用勾股定理求解AF ,进一步确定∠AOF 度数,最后利用勾股定理确定点F 的坐标,利用待定系数法求k .(3)本题根据⊙B 在直线两侧不同位置分类讨论,利用直线与坐标轴的交点坐标确定∠NDB 的度数,继而按照最美三角形的定义,分别以△BND ,△BMN 为媒介计算BD 长度,最后与OD 相减求解点B 的横坐标范围.【详解】(1)如下图所示:∵PM 是⊙O 的切线,∴∠PMO=90°,当⊙O 的半径OM 是定值时,22PM OP OM =-∵1=2PMO S PM OM ••, ∴要使PMO △面积最小,则PM 最小,即OP 最小即可,当OP ⊥l 时,OP 最小,符合最美三角形定义.故在图1三个三角形中,因为AO ⊥x 轴,故△AOP 为⊙A 与x 轴的最美三角形. 故选:②.(2)①当k <0时,按题意要求作图并在此基础作FM ⊥x 轴,如下所示:按题意可得:△AEF 是直线y=kx 与⊙A 的最美三角形,故△AEF 为直角三角形且AF ⊥OF . 则由已知可得:111=1222AEF S AE EF EF ••=⨯⨯=,故EF=1. 在△AEF 中,根据勾股定理得:22AF AE ==.∵A(0,2),即OA=2, ∴在直角△AFO 中,22=2OF OA AF AF -==,∴∠AOF=45°,即∠FOM=45°,故根据勾股定理可得:MF=MO=1,故F(-1,1),将F 点代入y=kx 可得:1k =-.②当k >0时,同理可得k=1.故综上:1k =±.(3)记直线33y x =+与x 、y 轴的交点为点D 、C ,则(3,0)D -,(0,3)C , ①当⊙B 在直线CD 右侧时,如下图所示:在直角△COD 中,有3OC =,3OD =tan 3OC ODC OD∠==ODC=60°. ∵△BMN 是直线33y x =+与⊙B 的最美三角形,∴MN ⊥BM ,BN ⊥CD ,即∠BND=90°,在直角△BDN 中,sin BN BDN BD ∠=,故==sin sin 60?3BN BN BD BN BDN =∠.∵⊙B ,∴BM =.当直线CD 与⊙B 相切时,BN BM ==因为直线CD 与⊙B 相离,故BN BD >2,所以OB=BD-OD >2.由已知得:11=222BMN S MN BM MN MN ••=•=<2,故MN <1.在直角△BMN 中,BN ==,此时可利用勾股定理算得BD OB BD OD =- -则2<B x②当⊙B 在直线CD 左侧时,同理可得:B x <2-故综上:2<B x <3或3-<B x <2- 【点睛】 本题考查圆与直线的综合问题,属于创新题目,此类型题目解题关键在于了解题干所给示例,涉及动点问题时必须分类讨论,保证不重不漏,题目若出现最值问题,需要利用转化思想将面积或周长最值转化为线段最值以降低解题难度,求解几何线段时勾股定理极为常见.37.(12)BE . 【解析】【分析】(1)作PT ⊥BE 于点T ,根据垂径定理和勾股定理求BQ 的值,再根据相似三角形的判定和性质即可求解;(2)根据菱形性质和勾股定理求出菱形边长,此时点E 和点Q 重合,再根据扇形面积公式即可求解.【详解】解:(1)如图:过点P作PT⊥BQ于点T,∵AB=2,AD=BC=3,DQ3∴AQ3在Rt△ABQ中,根据勾股定理可得:BQ7.又∵四边形BPDQ是平行四边形,∴BP=DQ3,∵∠AQB=∠TBP,∠A=∠BTP,∴△AQB∽△TBP,∴3,37 BT BDAQ BQ==即∴BT 33 7∴BE=2BT 63 7(2)设菱形BPDQ的边长为x,则AQ=3x,在Rt△ABQ中,根据勾股定理,得AB2+AQ2=BQ2,即4+(3x)2=x2,解得x 43 3.∵四边形BPDQ为菱形,∴43 3,又233即DP=2CP,∴∠DPC=60°,∴∠BPD=120°,∴连接PQ,易得△BPQ为等边三角形,∴PQ=BP,∴点Q也在圆P上,圆P经过点B,D,Q,如图.∴点E 、Q 重合,∴BE 433∴菱形与圆重叠部分面积即为菱形的面积,∴S 菱形833. 【点睛】 本题考查了平行四边形、矩形、菱形的性质、垂径定理、勾股定理、相似三角形的判定和性质、扇形面积公式,解决本题的关键是综合运用以上知识.38.(1)15°;(2)见解析;(3)16【解析】【分析】(1)先求得45AMN BMN ︒∠=∠=,再由OM OB =得到30OMB OBM ︒∠=∠=,于是可解;(2)连接,,OA OB ON .可证AON BON ∠=∠,ON AB ⊥,由//OD AB 可知90DON ︒∠=,在MON ∆中用内角和定理可证明;(3)延长MB 至点M ',使BM AM '=,连接NM ',作NE MM '⊥于点E.证明AMN BM N '≅,得到'MM N ∆是等腰三角形,然后在MNE ∆中用勾股定理即可求出16AM MB AN NB ⋅+⋅=.【详解】(1)AB 是O 的直径,90AMB ︒∴∠=AN BN =45AMN BMN ︒∴∠=∠=OM OB =30OMB OBM ︒∴∠=∠=453015CMO ︒︒︒∴∠=-=(2)连接,,OA OB ON .。
2020-2021初三数学上期末一模试题(含答案)(3)
2020-2021初三数学上期末一模试题(含答案)(3)一、选择题1.下列图形中,可以看作是中心对称图形的是( )A .B .C .D .2.下列图形中既是轴对称图形又是中心对称图形的是( )A .正三角形B .平行四边形C .正五边形D .正六边形3.如图,ABC ∆是O e 的内接三角形,119A ∠=︒,过点C 的圆的切线交BO 于点P ,则P ∠的度数为( )A .32°B .31°C .29°D .61° 4.将抛物线y=2x 2向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为( )A .y=2(x ﹣3)2﹣5B .y=2(x+3)2+5C .y=2(x ﹣3)2+5D .y=2(x+3)2﹣55.关于下列二次函数图象之间的变换,叙述错误的是( )A .将y =﹣2x 2+1的图象向下平移3个单位得到y =﹣2x 2﹣2的图象B .将y =﹣2(x ﹣1)2的图象向左平移3个单位得到y =﹣2(x+2)2的图象C .将y =﹣2x 2的图象沿x 轴翻折得到y =2x 2的图象D .将y =﹣2(x ﹣1)2+1的图象沿y 轴翻折得到y =﹣2(x+1)2﹣1的图象6.如图,A 、D 是⊙O 上的两个点,BC 是直径,若∠D =34°,则∠OAC 等于( )A .68°B .58°C .72°D .56°7.下列图标中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .8.下列函数中是二次函数的为( )A .y =3x -1B .y =3x 2-1C .y =(x +1)2-x 2D .y =x 3+2x -3 9.若a 是方程22x x 30--=的一个解,则26a 3a -的值为( )A .3B .3-C .9D .9- 10.一只布袋里装有4个只有颜色不同的小球,其中3个红球,1个白球,小敏和小丽依次从中任意摸出1个小球,则两人摸出的小球颜色相同的概率是( )A .14B .12C .23D .3411.当ab >0时,y =ax 2与y =ax +b 的图象大致是( )A .B .C .D .12.某人到瓷砖商店去购买一种多边形形状的瓷砖,用来铺设无缝地板,他购买的瓷砖形状不可以是( )A .正三角形B .矩形C .正八边形D .正六边形二、填空题13.设a 、b 是方程220190x x +-=的两个实数根,则()()11a b --的值为_____.14.如图,在直角坐标系中,已知点30A -(,)、04B (,),对OAB V 连续作旋转变换,依次得到1234V V V V 、、、,则2019V 的直角顶点的坐标为__________.15.已知如图所示的图形的面积为24,根据图中的条件,可列出方程:_______.16.已知二次函数,当x _______________时,随的增大而减小. 17.如图,AB 是⊙O 的直径,∠AOE =78°,点C 、D 是弧BE 的三等分点,则∠COE =_____.18.如图,点A 是抛物线24y x x =-对称轴上的一点,连接OA ,以A 为旋转中心将AO 逆时针旋转90°得到AO ′,当O ′恰好落在抛物线上时,点A 的坐标为______________.19.若一元二次方程x 2+px ﹣2=0的一个根为2,则p =_____,另一个根是_____.20.如图,在Rt △ABC 中,∠ACB =90°,CB =4,以点C 为圆心,CB 的长为半径画弧,与AB 边交于点D ,将»BD 绕点D 旋转180°后点B 与点A 恰好重合,则图中阴影部分的面积为_____.三、解答题21.已知二次函数y=2x 2+m .(1)若点(-2,y 1)与(3,y 2)在此二次函数的图象上,则y 1_________y 2(填“>”、“=”或“<”);(2)如图,此二次函数的图象经过点(0,-4),正方形ABCD 的顶点C 、D 在x 轴上,A 、B 恰好在二次函数的图象上,求图中阴影部分的面积之和.22.有四张完全相同的卡片,正面分别写有四个角度现将这四张卡片洗匀后,背面朝上;(1)若从中任意抽取一张,求抽到锐角卡片的概率;(2)若从中任意抽取两张,求抽到两张角度恰好互余卡片的概率;23.已知二次函数2y x bx c =++(b ,c 为常数).(1)当2b =,3c =-时,求二次函数的最小值;(2)当5c =时,若在函数值1y =的情况下,只有一个自变量x 的值与其对应,求此时二次函数的解析式;(3)当2c b =时,若在自变量x 的值满足b ≤x ≤3b +的情况下,与其对应的函数值y 的最小值为21,求此时二次函数的解析式.24.“六•一”前夕质监部门从某超市经销的儿童玩具、童车和童装中共抽查了300件儿童用品,以下是根据抽查结果绘制出的不完整的统计表和扇形图;类别儿童玩具 童车 童装抽查件数90请根据上述统计表和扇形提供的信息,完成下列问题:(1)分别补全上述统计表和统计图;(2)已知所抽查的儿童玩具、童车、童装的合格率分别为90%、88%、80%,若从该超市的这三类儿童用品中随机购买一件,买到合格品的概率是多少?25.已知抛物线y =x 2-2x -8与x 轴的两个交点为A ,B (A 在B 的左侧),与y 轴交于点C .(1)直接写出点A ,B ,C 的坐标;(2)求△ABC 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A 、是中心对称图形,故本选项正确;B 、不是中心对称图形,故本选项错误;C 、不是中心对称图形,故本选项错误;D 、不是中心对称图形,故本选项错误;故选:A .点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.2.D解析:D【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A. 是轴对称图形,不是中心对称图形,故错误;B. 不是轴对称图形,是中心对称图形,故错误;C. 是轴对称图形,不是中心对称图形,故错误;D. 是轴对称图形,也是中心对称图形,故正确.故答案选:D.【点睛】本题考查的知识点是中心对称图形, 轴对称图形,解题的关键是熟练的掌握中心对称图形, 轴对称图形.3.A解析:A【解析】【分析】根据题意连接OC ,COP ∆为直角三角形,再根据BC 的优弧所对的圆心角等于圆周角的2倍,可计算的COP ∠的度,再根据直角三角形可得P ∠的度数.【详解】根据题意连接OC.因为119A ∠=︒所以可得BC 所对的大圆心角为2119238BOC ︒︒∠=⨯=因为BD 为直径,所以可得23818058COD ︒︒︒∠=-=由于COP ∆为直角三角形所以可得905832P ︒︒︒∠=-=故选A.【点睛】本题主要考查圆心角的计算,关键在于圆心角等于同弧所对圆周角的2倍.4.A解析:A【解析】把22y x =向右平移3个单位长度变为:223()y x =-,再向下平移5个单位长度变为:22(3)5y x =--.故选A .5.D解析:D【解析】【分析】根据平移变换只改变图形的位置不改变图形的形状与大小对各选项分析判断后利用排除法求解.【详解】A 选项,将y =﹣2x 2+1的图象向下平移3个单位得到y =﹣2x 2﹣2的图象,故A 选项不符合题意;B 选项,将y =﹣2(x ﹣1)2的图象向左平移3个单位得到y =﹣2(x +2)2的图象,故B 选项不符合题意;C 选项,将y =﹣2x 2的图象沿x 轴翻折得到y =2x 2的图象,故C 选项不符合题意;D 选项,将y =﹣2(x ﹣1)2+1的图象沿y 轴翻折得到y =﹣2(x +1)2+1的图象,故D 选项符合题意.故选D .【点睛】本题主要考查了二次函数图象与几何变换,熟练掌握平移变换只改变图形的位置不改变图形的形状与大小的关键.6.D解析:D【解析】【分析】根据圆周角定理求出∠AOC ,再根据等腰三角形的性质以及三角形的内角和定理即可解决问题.【详解】∵∠ADC =34°,∴∠AOC =2∠ADC =68°.∵OA=OC,∴∠OAC=∠OCA12(180°﹣68°)=56°.故选D.【点睛】本题考查了圆周角定理,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.D解析:D【解析】试题分析:根据轴对称图形和中心对称图形的概念,可知:A既不是轴对称图形,也不是中心对称图形,故不正确;B不是轴对称图形,但是中心对称图形,故不正确;C是轴对称图形,但不是中心对称图形,故不正确;D即是轴对称图形,也是中心对称图形,故正确.故选D.考点:轴对称图形和中心对称图形识别8.B解析:B【解析】A. y=3x−1是一次函数,故A错误;B. y=3x2−1是二次函数,故B正确;C. y=(x+1)2−x2不含二次项,故C错误;D. y=x3+2x−3是三次函数,故D错误;故选B.9.C解析:C【解析】由题意得:2a2-a-3=0,所以2a2-a=3,所以6a2-3a=3(2a2-a)=3×3=9,故选C.10.B解析:B【解析】【分析】画树状图展示所有12种等可能的结果数,再两人摸出的小球颜色相同的结果数然后根据概率公式求解.【详解】解:画树状图如下:,一共12种可能,两人摸出的小球颜色相同的有6种情况, 所以两人摸出的小球颜色相同的概率是612=12, 故选:B .【点睛】此题考查的是用列表法或树状图法求概率.解题的关键是要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比. 11.D解析:D【解析】【分析】【详解】∵ab >0,∴a 、b 同号.当a >0,b >0时,抛物线开口向上,顶点在原点,一次函数过一、二、三象限,没有图象符合要求;当a <0,b <0时,抛物线开口向下,顶点在原点,一次函数过二、三、四象限,B 图象符合要求.故选B .12.C解析:C【解析】因为正八边形的每个内角为135︒,不能整除360度,故选C.二、填空题13.-2017【解析】【分析】根据根与系数的关系可得出将其代入中即可得出结论【详解】∵是方程的两个实数根∴∴故答案为:-2017【点睛】本题考查了根与系数的关系牢记两根之和等于两根之积等于是解题的关键解析:-2017【解析】【分析】根据根与系数的关系可得出1a b +=-,2019ab =-,将其代入()()()111a b ab a b --=-++中即可得出结论.【详解】∵a 、b 是方程220190x x +-=的两个实数根,∴1a b +=-,2019ab =-,∴()()()111a b ab a b --=-++2019112017=-++=-.故答案为:-2017.【点睛】本题考查了根与系数的关系,牢记“两根之和等于ba-,两根之积等于ca”是解题的关键.14.【解析】【分析】根据勾股定理列式求出AB的长再根据第四个三角形与第一个三角形的位置相同可知每三个三角形为一个循环组依次循环然后求出一个循环组旋转前进的长度再用2019除以3根据商为673可知第201解析:()8076,0【解析】【分析】根据勾股定理列式求出AB的长,再根据第四个三角形与第一个三角形的位置相同可知每三个三角形为一个循环组依次循环,然后求出一个循环组旋转前进的长度,再用2019除以3,根据商为673可知第2019个三角形的直角顶点为循环组的最后一个三角形的顶点,求出即可.【详解】解:∵点A(-3,0)、B(0,4),∴,由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12,∵2019÷3=673,∴△2019的直角顶点是第673个循环组的最后一个三角形的直角顶点,∵673×12=8076,∴△2019的直角顶点的坐标为(8076,0).故答案为(8076,0).【点睛】本题主要考查了点的坐标变化规律,仔细观察图形得到每三个三角形为一个循环组依次循环是解题的关键,也是求解的难点.图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.15.(x+1)2=25【解析】【分析】此图形的面积等于两个正方形面积的差据此即可列出方程【详解】根据题意得:(x+1)2-1=24即:(x+1)2=25故答案为(x+1)2=25【点睛】本题考查了一元二解析:(x+1)2=25【解析】【分析】此图形的面积等于两个正方形面积的差,据此即可列出方程.【详解】根据题意得:(x+1)2 -1=24,即:(x+1)2 =25.故答案为(x+1)2 =25.【点睛】本题考查了一元二次方程的应用——图形问题,解题的关键是明确图中不规则图形的面积计算方法.16.<2(或x≤2)【解析】试题分析:对于开口向上的二次函数在对称轴的左边y随x的增大而减小在对称轴的右边y随x的增大而增大根据性质可得:当x<2时y随x的增大而减小考点:二次函数的性质解析:<2(或x≤2).【解析】试题分析:对于开口向上的二次函数,在对称轴的左边,y随x的增大而减小,在对称轴的右边,y随x的增大而增大.根据性质可得:当x<2时,y随x的增大而减小.考点:二次函数的性质17.68°【解析】【分析】根据∠AOE的度数求出劣弧的度数得到劣弧的度数根据圆心角弧弦的关系定理解答即可【详解】∵∠AOE=78°∴劣弧的度数为78°∵AB是⊙O的直径∴劣弧的度数为180°﹣78°=1解析:68°【解析】【分析】根据∠AOE的度数求出劣弧¶AE的度数,得到劣弧¶BE的度数,根据圆心角、弧、弦的关系定理解答即可.【详解】∵∠AOE=78°,∴劣弧¶AE的度数为78°.∵AB是⊙O的直径,∴劣弧¶BE的度数为180°﹣78°=102°.∵点C、D是弧BE的三等分点,∴∠COE23=⨯102°=68°.故答案为:68°.【点睛】本题考查了圆心角、弧、弦的关系定理,掌握在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等是解题的关键.18.(22)或(2-1)【解析】∵抛物线y=x2-4x对称轴为直线x=-∴设点A坐标为(2m)如图所示作AP⊥y轴于点P作O′Q⊥直线x=2∴∠APO=∠AQO′=90°∴∠QAO′+∠AO′Q=90°解析:(2,2)或(2,-1)【解析】∵抛物线y=x2-4x对称轴为直线x=-42 2-=∴设点A坐标为(2,m),如图所示,作AP⊥y轴于点P,作O′Q⊥直线x=2,∴∠APO=∠AQO ′=90°, ∴∠QAO ′+∠AO ′Q=90°, ∵∠QAO ′+∠OAQ=90°, ∴∠AO ′Q=∠OAQ , 又∠OAQ=∠AOP , ∴∠AO ′Q=∠AOP , 在△AOP 和△AO′Q 中,APO AQO AOP AO Q AO AO ∠∠'⎧⎪∠∠'⎨⎪'⎩===∴△AOP ≌△AO ′Q (AAS ), ∴AP=AQ=2,PO=QO′=m , 则点O ′坐标为(2+m ,m-2),代入y=x 2-4x 得:m-2=(2+m )2-4(2+m ), 解得:m=-1或m=2,∴点A 坐标为(2,-1)或(2,2), 故答案是:(2,-1)或(2,2).【点睛】本题考查了坐标与图形的变换-旋转,全等三角形的判定与性质,函数图形上点的特征,根据全等三角形的判定与性质得出点O ′的坐标是解题的关键.19.-1-1【解析】【分析】设方程的另一根为t 根据根与系数的关系得到2+t=-p2t=-2然后先求出t 再求出p 【详解】解:设方程的另一根为t 根据题意得2+t =﹣p2t =﹣2所以t =﹣1p =﹣1故答案为:解析:-1 -1 【解析】 【分析】设方程的另一根为t ,根据根与系数的关系得到2+t=-p ,2t=-2,然后先求出t ,再求出p . 【详解】解:设方程的另一根为t , 根据题意得2+t =﹣p ,2t =﹣2, 所以t =﹣1,p =﹣1. 故答案为:﹣1,﹣1. 【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a ≠0)的两根时,x 1+x 2=-b a ,x 1•x 2=c a. 20.【解析】【分析】根据题意用的面积减去扇形的面积即为所求【详解】由题意可得AB =2BC∠ACB=90°弓形BD 与弓形AD 完全一样则∠A=30°∠B=∠BCD =60°∵CB=4∴AB=8AC =4∴阴影部解析:83π. 【解析】 【分析】根据题意,用ABC n 的面积减去扇形CBD 的面积,即为所求. 【详解】 由题意可得,AB =2BC ,∠ACB =90°,弓形BD 与弓形AD 完全一样, 则∠A =30°,∠B =∠BCD =60°, ∵CB =4,∴AB =8,AC =,2604360π⨯⨯-=83π,故答案为:83π. 【点睛】本题考查不规则图形面积的求法,属中档题.三、解答题21.<;(2)8. 【解析】 【分析】 【详解】解:(1)由二次函数22y x m =+图象知:其图像关于y 轴对称 又∵点1(2,)y -在此二次函数的图象上 ∴1(2,)y 也在此二次函数的图象上 ∵当0x >时函数是增函数 ∴12y y < 故答案为:<;(2)∵二次函数22y x m =+的图象经过点(0,-4) ∴m = -4∵四边形ABCD 为正方形又∵抛物线和正方形都是轴对称图形,且y 轴为它们的公共对称轴 ∴OD=OC ,=BCOE S S 阴影矩形 设点B 的坐标为(n ,2n )(n >0) ∵点B 在二次函数224y x =-的图象上 ∴2224n n =-解得,122,1n n ==-(舍负) ∴点B 的坐标为(2,4) ∴=BCOE S S 阴影矩形=2⨯4=8. 【点睛】本题考查二次函数的图象. 22.(1)34;(2)16【解析】 【分析】(1)利用四张卡片有三张锐角卡片即可得出答案;(2)利用列表法得出多少可能结果,找到两张角度恰好互余卡片的可能结果即可得出答案. 【详解】解:(1)一共有四张卡片,其中写有锐角的卡片有三张, 因此P (抽到写有锐角卡片)34= (2)列表如下:所以(抽到两张角度恰好互余卡片)16= 【点睛】本题考查了概率的求法,根据题意得出总数与可能的结果数是解题的关键. 23.(1)二次函数取得最小值-4;(2)245y x x =++或245y x x =-+;(3)27y x =++或2416y x x =-+.【解析】【分析】(1)当b=2,c=-3时,二次函数的解析式为223y x x =+-,把这个解析式化为顶点式利用二次函数的性质即可求最小值.(2)当c=5时,二次函数的解析式为25y x bx =++,又因函数值y=1的情况下,只有一个自变量x 的值与其对应,说明方程251x bx ++=有两个相等的实数根,利用0∆=即可解得b 值,从而求得函数解析式.(3)当c=b 2时,二次函数的解析式为22y x bx b =++,它的图象是开口向上,对称轴为2bx =-的抛物线.分三种情况进行讨论,①对称轴位于b≤x≤b+3范围的左侧时,即2b -<b ;②对称轴位于b≤x≤b+3这个范围时,即b≤2b-≤b+3;③对称轴位于b≤x≤b+3范围的右侧时,即2b->b+3,根据列出的不等式求得b 的取值范围,再根据x 的取值范围b≤x≤b+3、函数的增减性及对应的函数值y 的最小值为21可列方程求b 的值(不合题意的舍去),求得b 的值代入也就求得了函数的表达式. 【详解】解:(1)当b=2,c=-3时,二次函数的解析式为223y x x =+-,即2y (x 1)4=+-.∴当x=-1时,二次函数取得最小值-4.(2)当c=5时,二次函数的解析式为25y x bx =++.由题意得,方程251x bx ++=有两个相等的实数根. 有2160b ∆=-=,解得124,4b b ==-,∴此时二次函数的解析式为245y x x =++或245y x x =-+.(3)当c=b 2时,二次函数的解析式为22y x bx b =++.它的图象是开口向上,对称轴为2bx =-的抛物线. ①若2b-<b 时,即b >0, 在自变量x 的值满足b≤x≤b+3的情况下,与其对应的函数值y 随x 的增大而增大, 故当x=b 时,2223y b b b b b =+⋅+=为最小值.∴2321b =,解得1b =2b =(舍去). ②若b≤2b-≤b+3,即-2≤b≤0, 当x=2b -时,2223224b b y b b b ⎛⎫⎛⎫=-+⋅-+= ⎪ ⎪⎝⎭⎝⎭为最小值.∴23214b =,解得1b =(舍去),2b =-③若2b->b+3,即b <-2, 在自变量x 的值满足b≤x≤b+3的情况下,与其对应的函数值y 随x 的增大而减小, 故当x=b+3时,222(3)(3)399y b b b b b b =++++=++为最小值. ∴239921b b ++=,即2340b b +-= 解得11b =(舍去),24b =-. 综上所述,7b =或b=-4.∴此时二次函数的解析式为277y x x =++或2416y x x =-+. 考点:二次函数的综合题. 24.(1)详见解析(2)85% 【解析】 【分析】(1)根据童车的数量是300×25%,童装的数量是300-75-90,儿童玩具占得百分比是90÷300×100%,童装占得百分比1-30%-25%,即可补全统计表和统计图.(2)先分别求出儿童玩具、童车、童装中合格的数量之和,再根据概率公式计算即可. 【详解】解:(1)童车的数量是300×25%=75,童装的数量是300-75-90=135; 儿童玩具占得百分比是(90÷300)×100%=30%.童装占得百分比1-30%-25%=45%. 补全统计表和统计图如下: 类别儿童玩具童车童装抽查件数9075135(2)∵儿童玩具中合格的数量是90×90%=81,童车中合格的数量是75×88%=66,童装中合格的数量是135×80%=108, ∴从该超市的这三类儿童用品中随机购买一件,购买到合格品的概率是816610885%300++=.25.(1)A (-2,0),B (4,0),C (0,-8);(2)S △ABC =24 【解析】【分析】(1)令y=0可求得相应方程的两根,从而求得A 、B 的坐标;令x=0,可求得C 点坐标. (2)根据A 、B 、C 三点坐标直接可求得△ABC 的面积. 【详解】(1)在y =x 2-2x -8,令0x =,可得8y =-, 即C 点坐标为(0,8)C -令0y =,得2280x x =-- 解得122,4x x =-= ∵A 在B 的左侧 ∴(2,0),(4,0)A B -(2)∵(2,0),(4,0),(0,8)A B C -- ∴6,8AB OC == S △ABC =12AB OC ⋅=1682⨯⨯=24 【点睛】本题考查了抛物线与坐标轴的交点问题,解题的关键在于求出交点坐标.。
2020-2021九年级数学上期末一模试卷(及答案)(4)
2020-2021九年级数学上期末一模试卷(及答案)(4)一、选择题1.下列图形中,可以看作是中心对称图形的是( )A .B .C .D .2.二次函数236y x x =-+变形为()2y a x m n =++的形式,正确的是( )A .()2313y x =--+B .()2313y x =--- C .()2313y x =-++ D .()2313y x =-+- 3.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )A .6B .8C .10D .12 4.若将抛物线y=x 2平移,得到新抛物线2(3)y x =+,则下列平移方法中,正确的是( )A .向左平移3个单位B .向右平移3个单位C .向上平移3个单位D .向下平移3个单位5.下列图标中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .6.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x 名学生,根据题意,列出方程为( )A .x(x -1)=2070B .x(x +1)=2070C .2x(x +1)=2070D .(1)2x x -=2070 7.下列函数中是二次函数的为( )A .y =3x -1B .y =3x 2-1C .y =(x +1)2-x 2D .y =x 3+2x -3 8.已知点P (﹣b ,2)与点Q (3,2a )关于原点对称点,则a 、b 的值分别是( )A .﹣1、3B .1、﹣3C .﹣1、﹣3D .1、3 9.当﹣2≤x≤1时,二次函数y=﹣(x ﹣m )2+m 2+1有最大值4,则实数m 的值为( )A .74-B .3或3-C .2或3-D .2或3-或74- 10.当ab >0时,y =ax 2与y =ax +b 的图象大致是( )A .B .C .D .11.如图,在△ABC 中,BC =4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于点E ,交AC 于点F .P 是⊙A 上一点,且∠EPF =40°,则图中阴影部分的面积是( )A .4-9π B .4-89π C .8-49π D .8-89π 12.二次函数2(0)y ax bx c a =++≠的图像如图所示,下列结论正确是( )A .0abc >B .20a b +<C .30a c +<D .230ax bx c ++-=有两个不相等的实数根二、填空题13.关于x 的230x ax a --=的一个根是2x =-,则它的另一个根是___.14.直线y=kx +6k 交x 轴于点A ,交y 轴于点B ,以原点O 为圆心,3为半径的⊙O 与l 相交,则k 的取值范围为_____________.15.已知二次函数y =3x 2+2x ,当﹣1≤x ≤0时,函数值y 的取值范围是_____.16.心理学家发现:学生对概念的接受能力y 与提出概念的时间x (分)之间的关系式为y=﹣0.1x 2+2.6x+43(0≤x≤30),若要达到最强接受能力59.9,则需________ 分钟.17.抛物线21(2)43y x =++关于x 轴对称的抛物线的解析式为_______ 18.二次函数22(1)3y x =+-上一动点(,)P x y ,当21x -<≤时,y 的取值范围是_____. 19.一个等边三角形边长的数值是方程x 2﹣3x ﹣10=0的根,那么这个三角形的周长为_____.20.一元二次方程22x 20-=的解是______.三、解答题21.某童装店购进一批20元/件的童装,由销售经验知,每天的销售量y (件)与销售单价x (元)之间存在如图的一次函数关系.(1)求y 与x 之间的函数关系;(2)当销售单价定为多少时,每天可获得最大利润,最大利润是多少?22.请你依据下面图框中的寻宝游戏规则,探究“寻宝游戏”的奥秘:(1)用树状图(或表格)表示出所有可能的寻宝情况;(2)求在寻宝游戏中胜出的概率.23.如图7, 某中学要在教学楼后面的空地上用40米长的竹篱笆围出一个矩形地块作生物园,矩形的一边用教学楼的外墙,其余三边用竹篱笆, 设矩形的宽为x ,面积为y .(1)求y与x的函数关系式,并求自变量x的取值范围;(2)生物园的面积能否达到210平方米,说明理由.24.某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的宜兴﹣我最喜爱的宜兴小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图.请根据所给信息解答以下问题(1)请补全条形统计图;(2)若全校有1000名同学,请估计全校同学中最喜爱“笋干”的同学有多少人?(3)在一个不透明的口袋中有4个元全相同的小球,把它们分别标号为四种小吃的序号A,B,C,D,随机地把四个小球分成两组,每组两个球,请用列表或画树状图的方法,求出A,B两球分在同一组的概率.25.在平面直角坐标系xOy中,抛物线y=a2x-4ax与x轴交于A,B两点(A在B的左侧).(1)求点A,B的坐标;(2)已知点C(2,1),P(1,-32a),点Q在直线PC上,且Q点的横坐标为4.①求Q点的纵坐标(用含a的式子表示);②若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A、是中心对称图形,故本选项正确;B 、不是中心对称图形,故本选项错误;C 、不是中心对称图形,故本选项错误;D 、不是中心对称图形,故本选项错误;故选:A .点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.2.A解析:A【解析】【分析】根据配方法,先提取二次项的系数-3,得到()232y x x =--,再将括号里的配成完全平方式即可得出结果.【详解】解:()()()222236=323211313y x x x x x x x =-+--=--+-=--+, 故选:A .【点睛】本题主要考查的是配方法,正确的掌握配方的步骤是解题的关键.3.D解析:D【解析】【分析】连接AO 、BO 、CO ,根据中心角度数=360°÷边数n ,分别计算出∠AOC 、∠BOC 的度数,根据角的和差则有∠AOB =30°,根据边数n =360°÷中心角度数即可求解.【详解】连接AO 、BO 、CO ,∵AC 是⊙O 内接正四边形的一边,∴∠AOC =360°÷4=90°,∵BC 是⊙O 内接正六边形的一边,∴∠BOC =360°÷6=60°,∴∠AOB =∠AOC ﹣∠BOC =90°﹣60°=30°,∴n =360°÷30°=12;故选:D .【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.4.A解析:A【解析】【分析】先确定抛物线y=x2的顶点坐标为(0,0),抛物线y=(x+3)2的顶点坐标为(-3,0),然后利用顶点的平移情况确定抛物线的平移情况.【详解】解:抛物线y=x2的顶点坐标为(0,0),抛物线y=(x+3)2的顶点坐标为(-3,0),因为点(0,0)向左平移3个单位长度后得到(-3,0),所以把抛物线y=x2向左平移3个单位得到抛物线y=(x+3)2.故选:A.【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.5.D解析:D【解析】试题分析:根据轴对称图形和中心对称图形的概念,可知:A既不是轴对称图形,也不是中心对称图形,故不正确;B不是轴对称图形,但是中心对称图形,故不正确;C是轴对称图形,但不是中心对称图形,故不正确;D即是轴对称图形,也是中心对称图形,故正确.故选D.考点:轴对称图形和中心对称图形识别6.A解析:A【解析】【分析】【详解】解:根据题意得:每人要赠送(x﹣1)张相片,有x个人,∴全班共送:(x﹣1)x=2070,故选A.【点睛】本题考查由实际问题抽象出一元二次方程.7.B解析:BA. y=3x−1是一次函数,故A错误;B. y=3x2−1是二次函数,故B正确;C. y=(x+1)2−x2不含二次项,故C错误;D. y=x3+2x−3是三次函数,故D错误;故选B.8.A解析:A【解析】【分析】让两个横坐标相加得0,纵坐标相加得0即可求得a,b的值.【详解】解:∵P(-b,2)与点Q(3,2a)关于原点对称点,∴-b+3=0,2+2a=0,解得a=-1,b=3,故选A.【点睛】用到的知识点为:两点关于原点对称,这两点的横纵坐标均互为相反数;互为相反数的两个数和为0.9.C解析:C【解析】【分析】根据对称轴的位置,分三种情况讨论求解即可.【详解】二次函数的对称轴为直线x=m,①m<﹣2时,x=﹣2时二次函数有最大值,此时﹣(﹣2﹣m)2+m2+1=4,解得m=74,与m<﹣2矛盾,故m值不存在;②当﹣2≤m≤1时,x=m时,二次函数有最大值,此时,m2+1=4,解得m=③当m>1时,x=1时二次函数有最大值,此时,﹣(1﹣m)2+m2+1=4,解得m=2,综上所述,m的值为2或﹣故选C.解析:D【解析】【分析】【详解】∵ab >0,∴a 、b 同号.当a >0,b >0时,抛物线开口向上,顶点在原点,一次函数过一、二、三象限,没有图象符合要求;当a <0,b <0时,抛物线开口向下,顶点在原点,一次函数过二、三、四象限,B 图象符合要求.故选B .11.B解析:B【解析】试题解析:连接AD ,∵BC 是切线,点D 是切点,∴AD ⊥BC ,∴∠EAF=2∠EPF=80°,∴S 扇形AEF =280?283609ππ=, S △ABC =12AD•BC=12×2×4=4, ∴S 阴影部分=S △ABC -S 扇形AEF =4-89π. 12.C解析:C【解析】【分析】观察图象:开口向下得到a <0;对称轴在y 轴的右侧得到a 、b 异号,则b >0;抛物线与y 轴的交点在x 轴的上方得到c >0,所以abc <0;由对称轴为x=2b a -=1,可得2a+b=0;当x=-1时图象在x 轴下方得到y=a-b+c <0,结合b=-2a 可得 3a+c <0;观察图象可知抛物线的顶点为(1,3),可得方程230ax bx c ++-=有两个相等的实数根,据此对各选项进行判断即可.【详解】观察图象:开口向下得到a <0;对称轴在y 轴的右侧得到a 、b 异号,则b >0;抛物线与y 轴的交点在x 轴的上方得到c >0,所以abc <0,故A 选项错误;∵对称轴x=2b a-=1,∴b=-2a ,即2a+b=0,故B 选项错误; 当x=-1时, y=a-b+c <0,又∵b=-2a ,∴ 3a+c <0,故C 选项正确;∵抛物线的顶点为(1,3),∴230ax bx c ++-=的解为x 1=x 2=1,即方程有两个相等的实数根,故D 选项错误, 故选C.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0)的图象,当a >0,开口向上,函数有最小值,a <0,开口向下,函数有最大值;对称轴为直线x=2b a-,a 与b 同号,对称轴在y 轴的左侧,a 与b 异号,对称轴在y 轴的右侧;当c >0,抛物线与y 轴的交点在x 轴的上方;当△=b 2-4ac >0,抛物线与x 轴有两个交点. 二、填空题13.6【解析】【分析】【详解】解:设方程另一根为x1把x =-2代入方程得(-2)2+2a -3a =0解得a =4∴原方程化为x2-4x -12=0∵x1+(-2)=4∴x 1=6故答案为6点睛:本题考查了一元二解析:6【解析】【分析】【详解】解:设方程另一根为x 1,把x =-2代入方程得(-2)2+2a -3a =0,解得a =4,∴原方程化为x 2-4x -12=0,∵x 1+(-2)=4,∴x 1=6.故答案为6.点睛:本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根与系数的关系:若方程的两根为x 1,x 2,则x 1+ x 2=b a -,x 1·x 2=c a.也考查了一元二次方程的解. 14.且k≠0【解析】【分析】根据直线与圆相交确定k 的取值利用面积法求出相切时k 的取值再利用相切与相交之间的关系得到k 的取值范围【详解】∵交x 轴于点A 交y 轴于点B 当故B 的坐标为(06k );当故A 的坐标为(解析:33-k k ≠0. 【解析】【分析】根据直线与圆相交确定k 的取值,利用面积法求出相切时k 的取值,再利用相切与相交之间的关系得到k 的取值范围.【详解】∵6y kx k =+交x 轴于点A ,交y 轴于点B ,当0,6x y k ==,故B 的坐标为(0,6k );当0,6y x ==-,故A 的坐标为(-6,0);当直线y=kx +6k 与⊙O 相交时, 设圆心到直线的距离为h,根据面积关系可得:116|6|=22k h ⨯⨯ 解得h = ;∵直线与圆相交,即,3h r r =< ,3 解得k 且直线中0k ≠,则k 的取值范围为:k k ≠0.故答案为:k k ≠0. 【点睛】 本题考查了直线与圆的位置关系,解题的关键在于根据相交确定圆的半径与圆心到直线距离的大小关系.15.﹣≤y≤1【解析】【分析】利用配方法转化二次函数求出对称轴根据二次函数的性质即可求解【详解】∵y =3x2+2x =3(x+)2﹣∴函数的对称轴为x =﹣∴当﹣1≤x≤0时函数有最小值﹣当x =﹣1时有最大解析:﹣13≤y ≤1 【解析】【分析】 利用配方法转化二次函数求出对称轴,根据二次函数的性质即可求解.【详解】∵y =3x 2+2x =3(x +13)2﹣13, ∴函数的对称轴为x =﹣13, ∴当﹣1≤x ≤0时,函数有最小值﹣13,当x =﹣1时,有最大值1, ∴y 的取值范围是﹣13≤y ≤1, 故答案为﹣13≤y ≤1.【点睛】本题考查二次函数的性质、一般式和顶点式之间的转化,解题的关键是熟练掌握二次函数的性质.16.13【解析】【分析】直接代入求值即可【详解】试题解析:把y=599代入y=﹣01x2+26x+43得599=-01x2+26x+43解得:x1=x2=13分钟即学生对概念的接受能力达到599时需要1解析:13 【解析】 【分析】直接代入求值即可. 【详解】试题解析:把y=59.9代入y=﹣0.1x 2+2.6x+43得,59.9=-0.1x 2+2.6x+43解得:x 1=x 2=13分钟.即学生对概念的接受能力达到59.9时需要13分钟.故答案为:13. 考点:二次函数的应用.17.【解析】【分析】由关于x 轴对称点的特点是:横坐标不变纵坐标变为相反数可求出抛物线关于x 轴对称的抛物线解析式【详解】∵∴关于x 轴对称的抛物线解析式为-即故答案为:【点睛】此题考查了二次函数的图象与几何 解析:()21243y x =-+- 【解析】 【分析】由关于x 轴对称点的特点是:横坐标不变,纵坐标变为相反数,可求出抛物线21(2)43y x =++关于x 轴对称的抛物线解析式.【详解】∵21(2)43y x =++, ∴关于x 轴对称的抛物线解析式为-21(2)43y x =++,即()21243y x =-+-, 故答案为:()21243y x =-+-. 【点睛】此题考查了二次函数的图象与几何变换,解题的关键是抓住关于x 轴、y 轴对称点的特点.18.【解析】【分析】先确定抛物线的对称轴和顶点坐标再根据抛物线的性质以对称轴为界分情况求解即得答案【详解】解:∵抛物线的解析式是∴抛物线的对称轴是直线:顶点坐标是(-1-3)抛物线的开口向上当x<-1时【解析】 【分析】先确定抛物线的对称轴和顶点坐标,再根据抛物线的性质以对称轴为界分情况求解即得答案. 【详解】解:∵抛物线的解析式是22(1)3y x =+-,∴抛物线的对称轴是直线:1x =-,顶点坐标是(-1,-3),抛物线的开口向上,当x <-1时,y 随x 的增大而减小,当x >-1时,y 随x 的增大而增大, 且当2x =-时,1y =-;当x =1时,y =5;∴当21x -<≤-时,31y -≤<-,当11x -<≤ 时,35y -<≤, ∴当21x -<≤时,y 的取值范围是:35y -≤≤. 故答案为:35y -≤≤. 【点睛】本题考查的是二次函数的图象和性质,属于基本题型,熟练掌握抛物线的性质是解题关键.19.15【解析】【分析】先解方程求出方程的根再确定等边三角形的边长然后求等边三角形的周长【详解】解:x2﹣3x ﹣10=0(x ﹣5)(x+2)=0即x ﹣5=0或x+2=0∴x1=5x2=﹣2因为方程x2﹣解析:15 【解析】 【分析】先解方程求出方程的根,再确定等边三角形的边长,然后求等边三角形的周长. 【详解】解:x 2﹣3x ﹣10=0, (x ﹣5)(x +2)=0, 即x ﹣5=0或x +2=0, ∴x 1=5,x 2=﹣2.因为方程x 2﹣3x ﹣10=0的根是等边三角形的边长, 所以等边三角形的边长为5. 所以该三角形的周长为:5×3=15. 故答案为:15. 【点睛】本题考查了一元二次方程的解法、等边三角形的周长等知识点.求出方程的解是解决本题的关键.20.x1=1x2=-1【解析】分析:方程整理后利用平方根定义开方即可求出解详解:方程整理得:x2=1开方得:x=±1解得:x1=1x2=﹣1故答案为x1=1x2=﹣1点睛:本题考查了解一元二次方程﹣直接【解析】分析:方程整理后,利用平方根定义开方即可求出解.详解:方程整理得:x2=1,开方得:x=±1,解得:x1=1,x2=﹣1.故答案为x1=1,x2=﹣1.点睛:本题考查了解一元二次方程﹣直接开平方法,熟练掌握直接开平方法是解答本题的关键.三、解答题21.(1)y=﹣10x+700;(2)销售单价为45元时,每天可获得最大利润,最大利润为6250元【解析】【分析】(1)由一次函数的图象可知过(30,400)和(40,300),利用待定系数法可求得y与x的关系式;(2)利用x可表示出p,再利用二次函数的性质可求得p的最大值.【详解】(1)设一次函数解析式为y=kx+b(k≠0),由图象可知一次函数的过(30,400)和(40,300),代入解析式可得30400 40300k bk b+=⎧⎨+=⎩,解得:10700kb=-⎧⎨=⎩,∴y与x的函数关系式为y=﹣10x+700;(2)设利润为p元,由(1)可知每天的销售量为y千克,∴p=y(x﹣20)=(﹣10x+700)(x﹣20)=﹣10x2+900x﹣14000=﹣10(x﹣45)2+6250.∵﹣10<0,∴p=﹣10(x﹣45)2+6250是开口向下的抛物线,∴当x=45时,p有最大值,最大值为6250元,即销售单价为45元时,每天可获得最大利润,最大利润为6250元.【点睛】本题考查了二次函数的应用,求得每天的销售量y与x的函数关系式是解答本题的关键,注意二次函数最值的求法.22.(1)答案见解析;(2)1 6【解析】【分析】列举出所有情况,让寻宝游戏中胜出的情况数除以总情况数即为所求的概率.【详解】(1)树状图如下:(2)由(1)中的树状图可知:P(胜出)【点睛】本题考查的是用画树状图法求概率,解答本题的关键是熟练掌握概率=所求情况数与总情况数之比.同时熟记用树状图或表格表达事件出现的可能性是求解概率的常用方法23.(1)y= -2x2+40x;0<x≤403;(2)不能,理由见解析.【解析】【分析】(1)设矩形的宽为x,则长为40-2x,根据矩形面积公式“面积=长×宽”列出函数的关系式;(2)令y=210,看函数方程有没有解.【详解】解:(1)设矩形的宽为x,则长为40-2x,y=x(40-2x)=-2x2+40x又要围成矩形,则40-2x≥x,x≤40 3x的取值范围:0<x≤40 3(2)令y=210,则-2x2+40x=210变形得:2x2-40x+210=0,即x2-20x+105=0,又∵△=b2-4ac=(-20)2-4×1×105<0,∴方程无实数解,∴生物园的面积达不到210平方米.【点睛】本题考查的是函数关系式的求法及最值的求法,同学们应该掌握.24.(1)详见解析;(2)280人;(3).【解析】【分析】(1) 由总人数以及条形统计图求出喜欢“豆腐干” 的人数,补全条形统计图即可; (2) 求出喜欢“笋干”的百分比, 乘以1000即可得到结果;(3) 列表得出所有等可能的情况数, 找出A ,B 两球分在同一组的情况数, 即可求出所求的概率. 【详解】解:(1)喜爱豆腐干的人数为50﹣14﹣21﹣5=10, 条形图如图所示:(2)根据题意得:1000××100%=280(人),所以估计全校同学中最喜爱“笋干”的同学有280人. (3)列表如下:A B C D AA ,BA ,C A ,DB B ,AB ,CB ,DC C ,A C ,BC ,DDD ,AD ,BD ,C∴A 、B 两球分在同一组的概率为=.【点睛】本题主要考查条形统计图、用样本估计总体及列表法或树状图求概率.25.(1)A (0,0),B (4,0);(2)①Q 点的纵坐标为3+3a ,②符合题意的a 的取值范围是 -1≤a <0. 【解析】 【分析】(1)令y =0,则a 2x -4ax =0,可求得A 、B 点坐标; (2)①设直线PC 的解析式为,将点P (1,-32a ),C (2,1)代入可解得31,13.2k a b a =+=--()3113.2y x a =+-- 由于Q 点的横坐标为4,可求得Q 点的纵坐标为3+3a②当a >0时,如图1,不合题意;当a <0时,由图2,图3可知,3+3a≥0,可求出a 的取值范围. 【详解】(1)令y =0,则a 2x -4ax =0. 解得 120, 4.x x == ∴ A (0,0),B (4,0)(2)①设直线PC 的解析式为.y kx b =+ 将点P (1,-32a ),C (2,1)代入上式, 解得31,13.2k a b a =+=-- ∴y=(1+32a)x-1-3a. ∵点Q 在直线PC 上,且Q 点的横坐标为4, ∴Q 点的纵坐标为3+3a②当a >0时,如图1,不合题意; 当a <0时,由图2,图3可知,3+3a≥0. ∴a≥-1.∴符合题意的a 的取值范围是 -1≤a <0.图1 图2 图3 【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征,数形结合讨论交点是解题的关键.。
2020-2021九年级数学上期末一模试卷带答案(4)
2020-2021九年级数学上期末一模试卷带答案(4)一、选择题1.下列图形中既是轴对称图形又是中心对称图形的是( )A .正三角形B .平行四边形C .正五边形D .正六边形 2.如图,已知二次函数()2y ax bx c a 0=++≠的图象如图所示,有下列5个结论abc 0>①;b a c ->②;4a 2b c 0++>③;3a c >-④;()a b m am b (m 1+>+≠⑤的实数).其中正确结论的有( )A .①②③B .②③⑤C .②③④D .③④⑤3.如图,在△ABC 中,∠CAB=65°,在同一平面内,将△ABC 绕点A 旋转到△AB′C′的位置,使得CC′∥AB ,则∠BAB′的度数为( )A .25°B .30°C .50°D .55°4.下列命题错误..的是 ( ) A .经过三个点一定可以作圆B .经过切点且垂直于切线的直线必经过圆心C .同圆或等圆中,相等的圆心角所对的弧相等D .三角形的外心到三角形各顶点的距离相等5.一元二次方程x 2+x ﹣14=0的根的情况是( ) A .有两个不等的实数根 B .有两个相等的实数根C .无实数根D .无法确定 6.下列说法正确的是( )A .“任意画出一个等边三角形,它是轴对称图形”是随机事件B .某种彩票的中奖率为11000,说明每买1000张彩票,一定有一张中奖 C .抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为13D .“概率为1的事件”是必然事件7.若抛物线y =kx 2﹣2x ﹣1与x 轴有两个不同的交点,则k 的取值范围为( ) A .k >﹣1 B .k ≥﹣1 C .k >﹣1且k ≠0 D .k ≥﹣1且k ≠08.二次函数2(0)y ax bx c a =++≠的图像如图所示,下列结论正确是( )A .0abc >B .20a b +<C .30a c +<D .230ax bx c ++-=有两个不相等的实数根 9.以394c x ±+=为根的一元二次方程可能是( ) A .230x x c --= B .230x x c +-= C .230-+=x x cD .230++=x x c 10.二次函数y=3(x –2)2–5与y 轴交点坐标为( ) A .(0,2) B .(0,–5) C .(0,7)D .(0,3) 11.关于y=2(x ﹣3)2+2的图象,下列叙述正确的是( ) A .顶点坐标为(﹣3,2) B .对称轴为直线y=3C .当x≥3时,y 随x 增大而增大D .当x≥3时,y 随x 增大而减小 12.如图,AOB V 中,30B ∠=︒.将AOB V 绕点O 顺时针旋转52︒得到A OB ''△,边A B ''与边OB 交于点C (A '不在OB 上),则A CO '∠的度数为( )A .22︒B .52︒C .60︒D .82︒二、填空题13.抛物线y=2(x −3)2+4的顶点坐标是__________________.14.“明天的太阳从西方升起”这个事件属于________事件(用“必然”、“不可能”、“不确定”填空).15.如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m ,水面下降2m ,水面宽度增加______m.16.半径为2的圆被四等分切割成四条相等的弧,将四个弧首尾顺次相连拼成如图所示的恒星图型,那么这个恒星的面积等于______.17.关于x 的一元二次方程2ax x 10+-=有两个不相等的实数根,则实数a 的取值范围是______.18.两块大小相同,含有30°角的三角板如图水平放置,将△CDE 绕点C 按逆时针方向旋转,当点E 的对应点E′恰好落在AB 上时,△CDE 旋转的角度是______度.19.如图,点A 是抛物线24y x x =-对称轴上的一点,连接OA ,以A 为旋转中心将AO 逆时针旋转90°得到AO ′,当O ′恰好落在抛物线上时,点A 的坐标为______________.20.如图,如果一只蚂蚁从圆锥底面上的点B 出发,沿表面爬到母线AC 的中点D 处,则最短路线长为_____.三、解答题21.为了创建国家级卫生城区,某社区在九月份购买了甲、乙两种绿色植物共1100盆,共花费了27000元.已知甲种绿色植物每盆20元,乙种绿色植物每盆30元.(1)该社区九月份购买甲、乙两种绿色植物各多少盆?(2)十月份,该社区决定再次购买甲、两种绿色植物.已知十月份甲种绿色植物每盆的价格比九月份的价格优惠5a 元()0a >,十月份乙种绿色植物每盆的价格比九月份的价格优惠2%5a .因创卫需要,该社区十月份购买甲种绿色植物的数量比九月份的数量增加了1%2a ,十为份购买乙种绿色植物的数量比九月份的数量增加了%a .若该社区十月份的总花费与九月份的总花费恰好相同,求a 的值.22.如图,四边形 ACDE 是证明勾股定理时用到的一个图形,a 、b 、c 是 Rt ∆ABC 和 Rt ∆BED 的边长,已知2=AE c ,这时我们把关于 x 的形如220++=ax cx b 二次方程称为“勾系一元二次方程”.请解决下列问题:(1)写出一个“勾系一元二次方程”;(2)求证:关于 x 的“勾系一元二次方程”220++=ax cx b ,必有实数根;(3)若 x = -1是“勾系一元二次方程” 220++=ax cx b 的一个根,且四边形 ACDE 的周长是62,求∆ABC 的面积.23.在四张编号为A ,B ,C ,D 的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张,不放回,再从剩下的卡片中随机抽取一张.(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A ,B ,C ,D 表示);(2)我们知道,满足a 2+b 2=c 2的三个正整数a ,b ,c 成为勾股数,求抽到的两张卡片上的数都是勾股数的概率.24.某同学报名参加校运动会,有以下5个项目可供选择:径赛项目:100m ,200m ,400m(分别用1A 、2A 、3A 表示);田赛项目:跳远,跳高(分别用1B 、2B 表示). ()1该同学从5个项目中任选一个,恰好是田赛项目的概率为______;()2该同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.25.如图,在ABC V 中,ACB 90∠=o ,AC BC =,D 是AB 边上一点(点D 与A ,B 不重合),连结CD ,将线段CD 绕点C 按逆时针方向旋转90o 得到线段CE ,连结DE 交BC 于点F ,连接BE .1()求证:ACD V ≌BCE V ;2()当AD BF =时,求BEF ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A. 是轴对称图形,不是中心对称图形,故错误;B. 不是轴对称图形,是中心对称图形,故错误;C. 是轴对称图形,不是中心对称图形,故错误;D. 是轴对称图形,也是中心对称图形,故正确.故答案选:D.【点睛】本题考查的知识点是中心对称图形, 轴对称图形,解题的关键是熟练的掌握中心对称图形, 轴对称图形.2.B解析:B【解析】【分析】由抛物线对称轴的位置判断ab 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所给结论进行判断即可.【详解】Q ①对称轴在y 轴的右侧,ab 0∴<,由图象可知:c 0>,abc 0∴<,故①不正确;②当x 1=-时,y a b c 0=-+<,b ac ∴->,故②正确;③由对称知,当x 2=时,函数值大于0,即y 4a 2b c 0=++>,故③正确; b x 12a=-=Q ④, b 2a ∴=-,a b c 0-+<Q ,a 2a c 0∴++<,3a c <-,故④不正确;⑤当x 1=时,y 的值最大.此时,y a b c =++,而当x m =时,2y am bm c =++,所以()2a b c am bm c m 1++>++≠, 故2a b am bm +>+,即()a b m am b +>+,故⑤正确,故②③⑤正确,故选B .【点睛】本题考查了图象与二次函数系数之间的关系,二次函数2y ax bx c =++系数符号由抛物线开口方向、对称轴和抛物线与y 轴的交点、抛物线与x 轴交点的个数确定,熟练掌握二次函数的性质是关键. 3.C解析:C【解析】试题解析:∵CC′∥AB ,∴∠ACC′=∠CAB=65°,∵△ABC 绕点A 旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,∴∠CAC′=∠BAB′=50°.故选C .4.A解析:A【解析】选项A ,经过不在同一直线上的三个点可以作圆;选项B ,经过切点且垂直于切线的直线必经过圆心,正确;选项C,同圆或等圆中,相等的圆心角所对的弧相等,正确;选项D,三角形的外心到三角形各顶点的距离相等,正确;故选A.5.A解析:A【解析】【分析】根据方程的系数结合根的判别式,可得出△=2>0,即可判断有两个不相等的实数根.【详解】∵△=12﹣4×1×(﹣14)=2>0,∴方程x2+x﹣14=0有两个不相等的实数根.故选:A.【点睛】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.6.D解析:D【解析】试题解析:A、“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误;B. 某种彩票的中奖概率为11000,说明每买1000张,有可能中奖,也有可能不中奖,故B错误;C. 抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为12.故C错误;D. “概率为1的事件”是必然事件,正确.故选D.7.C解析:C【解析】【分析】根据抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,得出b2﹣4ac>0,进而求出k的取值范围.【详解】∵二次函数y=kx2﹣2x﹣1的图象与x轴有两个交点,∴b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0,∴k>﹣1,∵抛物线y=kx2﹣2x﹣1为二次函数,∴k≠0,则k 的取值范围为k >﹣1且k ≠0,故选C.【点睛】本题考查了二次函数y =ax 2+bx +c 的图象与x 轴交点的个数的判断,熟练掌握抛物线与x 轴交点的个数与b 2-4ac 的关系是解题的关键.注意二次项系数不等于0.8.C解析:C【解析】【分析】观察图象:开口向下得到a <0;对称轴在y 轴的右侧得到a 、b 异号,则b >0;抛物线与y 轴的交点在x 轴的上方得到c >0,所以abc <0;由对称轴为x=2b a -=1,可得2a+b=0;当x=-1时图象在x 轴下方得到y=a-b+c <0,结合b=-2a 可得 3a+c <0;观察图象可知抛物线的顶点为(1,3),可得方程230ax bx c ++-=有两个相等的实数根,据此对各选项进行判断即可.【详解】观察图象:开口向下得到a <0;对称轴在y 轴的右侧得到a 、b 异号,则b >0;抛物线与y 轴的交点在x 轴的上方得到c >0,所以abc <0,故A 选项错误;∵对称轴x=2b a-=1,∴b=-2a ,即2a+b=0,故B 选项错误; 当x=-1时, y=a-b+c <0,又∵b=-2a ,∴ 3a+c <0,故C 选项正确;∵抛物线的顶点为(1,3),∴230ax bx c ++-=的解为x 1=x 2=1,即方程有两个相等的实数根,故D 选项错误, 故选C.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0)的图象,当a >0,开口向上,函数有最小值,a <0,开口向下,函数有最大值;对称轴为直线x=2b a-,a 与b 同号,对称轴在y 轴的左侧,a 与b 异号,对称轴在y 轴的右侧;当c >0,抛物线与y 轴的交点在x 轴的上方;当△=b 2-4ac >0,抛物线与x 轴有两个交点. 9.A解析:A【解析】【分析】根据一元二次方程根与系数的关系求解即可.【详解】设x 1,x 2是一元二次方程的两个根,∵x = ∴x 1+x 2=3,x 1∙x 2=-c ,∴该一元二次方程为:21212()0x x x x x x -++=,即230x x c --=故选A.【点睛】此题主要考查了根据一元二次方程的根与系数的关系列一元二次方程.10.C解析:C【解析】【分析】由题意使x=0,求出相应的y的值即可求解.【详解】∵y=3(x﹣2)2﹣5,∴当x=0时,y=7,∴二次函数y=3(x﹣2)2﹣5与y轴交点坐标为(0,7).故选C.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是二次函数图象上的点满足其解析式.11.C解析:C【解析】∵ y=2(x﹣3)2+2的图象开口向上,顶点坐标为(3,2),对称轴为直线x=3,x≥时,y随x的增大而增大.∴当3∴选项A、B、D中的说法都是错误的,只有选项C中的说法是正确的.故选C.12.D解析:D【解析】【分析】根据旋转的性质可得∠B′=∠B=30°,∠BOB′=52°,再由三角形外角的性质即可求得∠'的度数.A CO【详解】∵△A′OB′是由△AOB绕点O顺时针旋转得到,∠B=30°,∴∠B′=∠B=30°,∵△AOB绕点O顺时针旋转52°,∴∠BOB′=52°,∵∠A′CO是△B′OC的外角,∴∠A′CO=∠B′+∠BOB′=30°+52°=82°.故选D.【点睛】本题主要考查了旋转的性质,熟知旋转的性质是解决问题的关键.二、填空题13.(34)【解析】【分析】根据二次函数配方的图像与性质即可以求出答案【详解】在二次函数的配方形式下x-3是抛物线的对称轴取x=3则y=4因此顶点坐标为(34)【点睛】本题主要考查二次函数的图像与性质解析:(3,4)【解析】【分析】根据二次函数配方的图像与性质,即可以求出答案.【详解】在二次函数的配方形式下,x-3是抛物线的对称轴,取x=3,则y=4,因此,顶点坐标为(3,4).【点睛】本题主要考查二次函数的图像与性质.14.不可能【解析】根据所学知识可知太阳应该从东方升起所以明天的太阳从西方升起这个事件属于不可能事件故答案为:不可能解析:不可能【解析】根据所学知识可知太阳应该从东方升起,所以”明天的太阳从西方升起”这个事件属于不可能事件,故答案为:不可能.15.4-4【解析】【分析】根据已知建立平面直角坐标系进而求出二次函数解析式再通过把代入抛物线解析式得出水面宽度即可得出答案【详解】建立平面直角坐标系设横轴x通过AB纵轴y通过AB中点O且通过C点则通过画解析:-4【解析】【分析】y=-代入抛物线解根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把2析式得出水面宽度,即可得出答案.【详解】建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y 轴为对称轴,且经过A ,B 两点,OA 和OB 可求出为AB 的一半2米,抛物线顶点C 坐标为()0,2.通过以上条件可设顶点式22y ax =+,其中a 可通过代入A 点坐标()2,0.- 代入到抛物线解析式得出:0.5a =-,所以抛物线解析式为20.52y x =-+,当水面下降2米,通过抛物线在图上的观察可转化为:当2y =-时,对应的抛物线上两点之间的距离,也就是直线2y =-与抛物线相交的两点之间的距离,可以通过把2y =-代入抛物线解析式得出:220.52x -=-+,解得:22x =±, 所以水面宽度增加到42米,比原先的宽度当然是增加了42 4.-故答案是: 42 4.-【点睛】考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键. 16.16﹣4π【解析】【分析】恒星的面积=边长为4的正方形面积-半径为2的圆的面积依此列式计算即可【详解】解:如图2+2=4恒星的面积=4×4-4π=16-4π故答案为16-4π【点睛】本题考查了扇形面解析:16﹣4π【解析】【分析】恒星的面积=边长为4的正方形面积-半径为2的圆的面积,依此列式计算即可.【详解】解:如图.恒星的面积=4×4-4π=16-4π. 故答案为16-4π.【点睛】本题考查了扇形面积的计算,关键是理解恒星的面积=边长为4的正方形面积-半径为2的圆的面积.17.且【解析】【分析】由关于x 的一元二次方程有两个不相等的实数根即可得判别式继而可求得a 的范围【详解】关于x 的一元二次方程有两个不相等的实数根解得:方程是一元二次方程的范围是:且故答案为:且【点睛】本题 解析:1a 4>-且a 0≠ 【解析】【分析】由关于x 的一元二次方程2ax x 10++=有两个不相等的实数根,即可得判别式0V >,继而可求得a 的范围.【详解】 Q 关于x 的一元二次方程2ax x 10+-=有两个不相等的实数根,()22b 4ac 14a 114a 0∴=-=-⨯⨯-=+>V ,解得:1a 4>-, Q 方程2ax 2x 10-+=是一元二次方程,a 0∴≠,a ∴的范围是:1a 4>-且a 0≠, 故答案为:1a 4>-且a 0≠. 【点睛】本题考查了一元二次方程判别式以及一元二次方程的定义,一元二次方程ax 2+bx+c=0(a ≠0)的根与△=b 2-4ac 有如下关系:(1)△>0方程有两个不相等的实数根;(2)△=0方程有两个相等的实数根;(3)△<0方程没有实数根. 18.30【解析】【分析】根据含有30°角的直角三角形的性质可知CE′是△ACB 的中线可得△E′CB 是等边三角形从而得出∠ACE′的度数和CE′的长从而得出△CDE 旋转的度数【详解】解:∵三角板是两块大小解析:30【解析】【分析】根据含有30°角的直角三角形的性质可知CE′是△ACB 的中线,可得△E′CB 是等边三角形,从而得出∠ACE′的度数和CE′的长,从而得出△CDE 旋转的度数.解:∵三角板是两块大小一样且含有30°的角,∴CE′是△ACB 的中线,∴CE′=BC =BE′,∴△E′CB 是等边三角形,∴∠BCE′=60°,∴∠ACE′=90°﹣60°=30°,故答案为:30.【点睛】本题考查了含有30°角的直角三角形的性质,等边三角形的判定和性质,旋转的性质,本题关键是得到CE ´是△ABC 的中线.19.(22)或(2-1)【解析】∵抛物线y=x2-4x 对称轴为直线x=-∴设点A 坐标为(2m )如图所示作AP⊥y 轴于点P 作O′Q⊥直线x=2∴∠APO=∠AQO′=90°∴∠QAO′+∠AO′Q=90°解析:(2,2)或(2,-1)【解析】∵抛物线y=x 2-4x 对称轴为直线x=-422-= ∴设点A 坐标为(2,m ),如图所示,作AP ⊥y 轴于点P ,作O′Q ⊥直线x=2,∴∠APO=∠AQO ′=90°,∴∠QAO ′+∠AO ′Q=90°,∵∠QAO ′+∠OAQ=90°,∴∠AO ′Q=∠OAQ ,又∠OAQ=∠AOP ,∴∠AO ′Q=∠AOP ,在△AOP 和△AO′Q 中,APO AQO AOP AO QAO AO ∠∠'⎧⎪∠∠'⎨⎪'⎩===∴△AOP ≌△AO ′Q (AAS ),∴AP=AQ=2,PO=QO′=m ,则点O′坐标为(2+m,m-2),代入y=x2-4x得:m-2=(2+m)2-4(2+m),解得:m=-1或m=2,∴点A坐标为(2,-1)或(2,2),故答案是:(2,-1)或(2,2).【点睛】本题考查了坐标与图形的变换-旋转,全等三角形的判定与性质,函数图形上点的特征,根据全等三角形的判定与性质得出点O′的坐标是解题的关键.20.【解析】【分析】将圆锥侧面展开根据两点之间线段最短和勾股定理即可求得蚂蚁的最短路线长【详解】如图将圆锥侧面展开得到扇形ABB′则线段BF 为所求的最短路线设∠BAB′=n°∵∴n=120即∠BAB′=解析:3【解析】【分析】将圆锥侧面展开,根据“两点之间线段最短”和勾股定理,即可求得蚂蚁的最短路线长.【详解】如图将圆锥侧面展开,得到扇形ABB′,则线段BF为所求的最短路线.设∠BAB′=n°.∵64 180nππ⋅=,∴n=120,即∠BAB′=120°.∵E为弧BB′中点,∴∠AFB=90°,∠BAF=60°,Rt△AFB中,∠ABF=30°,AB=6∴AF=3,BF2263-=3,∴最短路线长为3.故答案为:3【点睛】本题考查“化曲面为平面”求最短路径问题,属中档题.三、解答题21.(1)该社区九月份购买甲、乙两种绿色植物分别为600,500盆;(2)a 的值为25【解析】【分析】(1)设该社区九月份购买甲、乙两种绿色植物分别为x ,y 盆,根据甲、乙两种绿色植物共1100盆和共花费了27000元列二元一次方程组即可;(2)结合(1)根据题意列出关于a 的方程,用换元法,设%t a =,化简方程, 求解即可.【详解】解:(1)设该社区九月份购买甲、乙两种绿色植物分别为x ,y 盆,由题意知,1100203027000x y x y +=⎧⎨+=⎩, 解得,600500x y =⎧⎨=⎩, 答:该社区九月份购买甲、乙两种绿色植物分别为600,500盆;(2)由题意知,12(20)600(1%)30(1%)500(1%)27000525aa a a -⨯++-⨯+=, 令%t a =,原式可化为240t t -=,解得,10t =(舍去),20.25t =,∴25a =,∴a 的值为25.【点睛】本题考查了二元一次方程组和一元二次方程在实际问题中的应用,根据题意正确列式是解题的关键.22.(1)2340x ++=(答案不唯一)(2)见解析(3)1.【解析】【分析】(1)直接找一组勾股数代入方程即可;(2)根据根的判别式即可求解;(3)根据方程的解代入求出a,b,c 的关系,再根据完全平方公式的变形进行求解.【详解】(1)当a=3,b=4,c=5时,勾系一元二次方程为2340x ++=;(2)依题意得△=)2-4ab=2c 2-4ab,∵a 2+b 2=c 2,∴2c 2-4ab=2(a 2+b 2)-4ab=2(a-b )2≥0,即△≥0,故方程必有实数根;(3)把x=-1代入得c∵四边形 ACDE 的周长是62,即2(a+b)+ 2c=62,故得到c=2,∴a2+b2=4,a+b=22∵(a+b)2= a2+b2+2ab∴ab=2,故∆ABC 的面积为12ab=1.【点睛】此题主要考查一元二次方程的应用,解题的关键是熟知勾股定理、根的判别式及完全平方公式的应用.23.(1)图形见解析(2)1 2【解析】【分析】(1)本题属于不放回的情况,画出树状图时要注意;(2)B、C、D三个卡片的上的数字是勾股数,选出选中B、C、D其中两个的即可【详解】(1)画树状图如下:(2)∵共有12种等可能的结果数,抽到的两张卡片上的数都是勾股数的结果数为6种,∴抽到的两张卡片上的数都是勾股数的概率61 122 ==.24.(1)25;(2)35.【解析】【分析】(1)由5个项目中田赛项目有2个,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好是一个田赛项目和一个径赛项目的情况,再利用概率公式即可求得答案.【详解】(1)∵5个项目中田赛项目有2个,∴该同学从5个项目中任选一个,恰好是田赛项目的概率为:25.故答案为25;(2)画树状图得:∵共有20种等可能的结果,恰好是一个田赛项目和一个径赛项目的有12种情况,∴恰好是一个田赛项目和一个径赛项目的概率为:123205=. 【点睛】本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.25.()1证明见解析;()2BEF 67.5∠=o . 【解析】【分析】()1由题意可知:CD CE =,DCE 90∠=o ,由于ACB 90∠=o ,从而可得ACD BCE ∠∠=,根据SAS 即可证明ACD V ≌BCE V ;()2由ACD V ≌()BCE SAS V 可知:A CBE 45∠∠==o ,BE BF =,从而可求出BEF ∠的度数.【详解】()1由题意可知:CD CE =,DCE 90∠=o ,ACB 90o Q ∠=,ACD ACB DCB ∠∠∠∴=-,BCE DCE DCB ∠∠∠=-,ACD BCE ∠∠∴=,在ACD V 与BCE V 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,ACD ∴V ≌()BCE SAS V ;()2ACB 90∠=o Q ,AC BC =,A 45∠∴=o ,由()1可知:A CBE 45∠∠==o ,AD BF =Q ,BE BF ∴=,BEF 67.5o ∠∴=.【点睛】本题考查了旋转的性质、全等三角形的判定与性质,解题的关键是熟练运用旋转的性质以及全等三角形的判定与性质.。
2020-2021九年级数学上期末一模试卷(及答案)(3)
2020-2021九年级数学上期末一模试卷(及答案)(3)一、选择题1.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,BC 与⊙O 交于点D ,连结OD .若50C ∠=︒,则∠AOD 的度数为( )A .40︒B .50︒C .80︒D .100︒2.已知二次函数y =ax 2+bx +c (a >0)的图象经过(0,1),(4,0),当该二次函数的自变量分别取x 1,x 2(0<x 1<x 2<4)时,对应的函数值是y 1,y 2,且y 1=y 2,设该函数图象的对称轴是x =m ,则m 的取值范围是( ) A .0<m <1B .1<m ≤2C .2<m <4D .0<m <43.下列四个图形中,既是轴对称图形,又是中心对称图形的是( ) A .B .C .D .4.二次函数236yx x =-+变形为()2y a x m n =++的形式,正确的是( )A .()2313y x =--+ B .()2313y x =--- C .()2313y x =-++D .()2313y x =-+-5.如图,在△ABC 中,BC =4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于点E ,交AC 于点F .P 是⊙A 上一点,且∠EPF =40°,则图中阴影部分的面积是( )A .4-9πB .4-89π C .8-49π D .8-89π 6.某同学在解关于x 的方程ax 2+bx +c =0时,只抄对了a =1,b =﹣8,解出其中一个根是x =﹣1.他核对时发现所抄的c 是原方程的c 的相反数,则原方程的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .有一个根是x =1D .不存在实数根7.二次函数2(0)y ax bx c a =++≠的图像如图所示,下列结论正确是( )A .0abc >B .20a b +<C .30a c +<D .230ax bx c ++-=有两个不相等的实数根8.下列对二次函数y=x 2﹣x 的图象的描述,正确的是( )A .开口向下B .对称轴是y 轴C .经过原点D .在对称轴右侧部分是下降的9.已知点P (﹣b ,2)与点Q (3,2a )关于原点对称点,则a 、b 的值分别是( ) A .﹣1、3 B .1、﹣3 C .﹣1、﹣3 D .1、3 10.正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是( ) A .36°B .54°C .72°D .108°11.天虹商场一月份鞋帽专柜的营业额为100万元,三月份鞋帽专柜的营业额为150万元.设一到三月每月平均增长率为x ,则下列方程正确的是( ) A .100(1+2x )=150B .100(1+x )2=150C .100(1+x )+100(1+x )2=150D .100+100(1+x )+100(1+x )2=15012.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为点P ,若CD =AP =8,则⊙O 的直径为( )A .10B .8C .5D .3二、填空题13.如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB =8,CD =2,则EC 的长为_______.14.如图,在直角坐标系中,已知点30A -(,)、04B (,),对OAB V 连续作旋转变换,依次得到1234V V V V 、、、,则2019V 的直角顶点的坐标为__________.15.一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是_____cm2.16.半径为2的圆被四等分切割成四条相等的弧,将四个弧首尾顺次相连拼成如图所示的恒星图型,那么这个恒星的面积等于______.17.点A(x1,y1)、B(x2,y2)在二次函数y=x2﹣4x﹣1的图象上,若当1<x1<2,3<x2<4时,则y1与y2的大小关系是y1_____y2.(用“>”、“<”、“=”填空)18.一个等边三角形边长的数值是方程x2﹣3x﹣10=0的根,那么这个三角形的周长为_____.19.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x2﹣6x﹣16,AB为半圆的直径,则这个“果圆”被y轴截得的线段CD的长为_____.20.已知扇形的面积为12πcm2,半径为12cm,则该扇形的圆心角是_______.三、解答题21.为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?22.某商场有一个可以自由转动的圆形转盘(如图).规定:顾客购物100元以上可以获得一次转动转盘的机会,当转盘停止时,指针落在哪一个区域就获得相应的奖品(指针指向两个扇形的交线时,当作指向右边的扇形).下表是活动进行中的一组统计数据:转动转盘的次数n 100 150 200 500 800 1000 落在“铅笔”的次数m68111136345546701落在“铅笔”的频率m n(结果保留小数点后两位)0.68 0.74 0.68 0.69 0.68 0.70(1)转动该转盘一次,获得铅笔的概率约为_______;(结果保留小数点后一位) (2)铅笔每只0.5元,饮料每瓶3元,经统计该商场每天约有4000名顾客参加抽奖活动,请计算该商场每天需要支出的奖品费用;(3)在(2)的条件下,该商场想把每天支出的奖品费用控制在3000元左右,则转盘上“一瓶饮料”区域的圆心角应调整为______度.23.在平面直角坐标系中,直线2y x =+与x 轴交于点A ,与y 轴交于点B ,抛物线()20y ax bx c a =++<经过点A 、B .(1)求a 、b 满足的关系式及c 的值.(2)当0x <时,若()20y ax bx c a =++<的函数值随x 的增大而增大,求a 的取值范围.(3)如图,当1a =-时,在抛物线上是否存在点P ,使PAB ∆的面积为1?若存在,请求出符合条件的所有点P 的坐标;若不存在,请说明理由.24.如图,某足球运动员站在点O 处练习射门.将足球从离地面0.5m 的A 处正对球门踢出(点A 在y 轴上),足球的飞行高度y (单位:m )与飞行时间t (单位:s )之间满足函数关系y =at 2+5t +c ,己知足球飞行0.8s 时,离地面的高度为3.5m . (1)a = ,c = ;(2)当足球飞行的时间为多少时,足球离地面最高?最大高度是多少?(3)若足球飞行的水平距离x (单位:m )与飞行时间t (单位:s )之间具有函数关系x =10t ,已知球门的高度为2.44m ,如果该运动员正对球门射门时,离球门的水平距离为28m ,他能否将球直接射入球门?25.已知如图,以Rt △ABC 的AC 边为直径作⊙O 交斜边AB 于点E ,连接EO 并延长交BC 的延长线于点D ,点F 为BC 的中点,连接EF .(1)求证:EF 是⊙O 的切线;(2)若⊙O 的半径为3,∠EAC =60°,求AD 的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】由AC 是⊙O 的切线可得∠CAB=90︒,又由50C ∠=︒,可得∠ABC=40︒;再由OD=OB ,则∠BDO=40︒最后由∠AOD=∠OBD+∠OBD 计算即可. 【详解】解:∵AC 是⊙O 的切线 ∴∠CAB=90︒, 又∵50C ∠=︒ ∴∠ABC=90︒-50︒=40︒ 又∵OD=OB∴∠BDO=∠ABC=40︒ 又∵∠AOD=∠OBD+∠OBD ∴∠AOD=40︒+40︒=80︒ 故答案为C. 【点睛】本题考查了圆的切线的性质、等腰三角形以及三角形外角的概念.其中解题关键是运用圆的切线垂直于半径的性质.2.C解析:C【解析】【分析】根据二次函数图象上点的坐标特征即可求得.【详解】解:当a>0时,抛物线开口向上,则点(0,1)的对称点为(x0,1),∴x0>4,∴对称轴为x=m中2<m<4,故选C.【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,画出草图更直观.3.D解析:D【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、既是轴对称图形,又是中心对称图形,故此选项正确.故选D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.A解析:A 【解析】 【分析】根据配方法,先提取二次项的系数-3,得到()232y x x =--,再将括号里的配成完全平方式即可得出结果. 【详解】解:()()()222236=323211313y x x x x x x x =-+--=--+-=--+,故选:A . 【点睛】本题主要考查的是配方法,正确的掌握配方的步骤是解题的关键.5.B解析:B 【解析】试题解析:连接AD ,∵BC 是切线,点D 是切点, ∴AD ⊥BC ,∴∠EAF=2∠EPF=80°,∴S 扇形AEF =280?283609ππ=, S △ABC =12AD•BC=12×2×4=4, ∴S 阴影部分=S △ABC -S 扇形AEF =4-89π. 6.A解析:A 【解析】 【分析】直接把已知数据代入进而得出c 的值,再解方程根据根的判别式分析即可. 【详解】∵x =﹣1为方程x 2﹣8x ﹣c =0的根, 1+8﹣c =0,解得c =9, ∴原方程为x 2-8x +9=0,∵24b ac ∆=-=(﹣8)2-4×9>0,∴方程有两个不相等的实数根. 故选:A . 【点睛】本题考查一元二次方程的解、一元二次方程根的判别式,解题的关键是掌握一元二次方程根的判别式,对于一元二次方程()200++=≠ax bx c a ,根的情况由24b ac ∆=-来判别,当24b ac ->0时,方程有两个不相等的实数根,当24b ac -=0时,方程有两个相等的实数根,当24b ac -<0时,方程没有实数根.7.C解析:C 【解析】【分析】观察图象:开口向下得到a <0;对称轴在y 轴的右侧得到a 、b 异号,则b >0;抛物线与y 轴的交点在x 轴的上方得到c >0,所以abc <0;由对称轴为x=2ba-=1,可得2a+b=0;当x=-1时图象在x 轴下方得到y=a-b+c <0,结合b=-2a 可得 3a+c <0;观察图象可知抛物线的顶点为(1,3),可得方程230ax bx c ++-=有两个相等的实数根,据此对各选项进行判断即可.【详解】观察图象:开口向下得到a <0;对称轴在y 轴的右侧得到a 、b 异号,则b >0;抛物线与y 轴的交点在x 轴的上方得到c >0,所以abc <0,故A 选项错误; ∵对称轴x=2ba-=1,∴b=-2a ,即2a+b=0,故B 选项错误; 当x=-1时, y=a-b+c <0,又∵b=-2a ,∴ 3a+c <0,故C 选项正确; ∵抛物线的顶点为(1,3),∴230ax bx c ++-=的解为x 1=x 2=1,即方程有两个相等的实数根,故D 选项错误, 故选C.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0)的图象,当a >0,开口向上,函数有最小值,a <0,开口向下,函数有最大值;对称轴为直线x=2ba-,a 与b 同号,对称轴在y 轴的左侧,a 与b 异号,对称轴在y 轴的右侧;当c >0,抛物线与y 轴的交点在x 轴的上方;当△=b 2-4ac >0,抛物线与x 轴有两个交点.8.C解析:C 【解析】【分析】根据抛物线的开口方向、对称轴公式以及二次函数性质逐项进行判断即可得答案. 【详解】A 、∵a=1>0,∴抛物线开口向上,选项A 不正确; B 、∵﹣122b a =,∴抛物线的对称轴为直线x=12,选项B 不正确; C 、当x=0时,y=x 2﹣x=0,∴抛物线经过原点,选项C 正确;D 、∵a >0,抛物线的对称轴为直线x=12, ∴当x >12时,y 随x 值的增大而增大,选项D 不正确, 故选C .【点睛】本题考查了二次函数的性质:二次函数y=ax 2+bx+c (a≠0),对称轴直线x=-2ba,当a >0时,抛物线y=ax 2+bx+c (a≠0)的开口向上,当a <0时,抛物线y=ax 2+bx+c (a≠0)的开口向下,c=0时抛物线经过原点,熟练掌握相关知识是解题的关键.9.A解析:A 【解析】 【分析】让两个横坐标相加得0,纵坐标相加得0即可求得a ,b 的值. 【详解】解:∵P (-b ,2)与点Q (3,2a )关于原点对称点, ∴-b+3=0,2+2a=0, 解得a=-1,b=3, 故选A . 【点睛】用到的知识点为:两点关于原点对称,这两点的横纵坐标均互为相反数;互为相反数的两个数和为0.10.C解析:C 【解析】正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是3605=72度, 故选C .11.B解析:B 【解析】 【分析】可设每月营业额平均增长率为x ,则二月份的营业额是100(1+x ),三月份的营业额是100(1+x )(1+x ),则可以得到方程即可. 【详解】设二、三两个月每月的平均增长率是x . 根据题意得:100(1+x )2=150, 故选:B . 【点睛】本题考查数量平均变化率问题.原来的数量为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到a×(1±x),再经过第二次调整就是a(1±x)(1±x)=a (1±x)2.增长用“+”,下降用“-”.12.A解析:A【解析】【分析】连接OC,先根据垂径定理求出PC的长,再根据勾股定理即可得出OC的长.【详解】连接OC,∵CD⊥AB,CD=8,∴PC=12CD=12×8=4,在Rt△OCP中,设OC=x,则OA=x,∵PC=4,OP=AP-OA=8-x,∴OC2=PC2+OP2,即x2=42+(8-x)2,解得x=5,∴⊙O的直径为10.故选A.【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.二、填空题13.【解析】【分析】设⊙O半径为r根据勾股定理列方程求出半径r由勾股定理依次求BE和EC的长【详解】连接BE设⊙O半径为r则OA=OD=rOC=r-2∵OD⊥AB∴∠ACO=90°AC=BC=AB=4在解析:13【解析】【分析】设⊙O半径为r,根据勾股定理列方程求出半径r,由勾股定理依次求BE和EC的长.【详解】连接BE,设⊙O半径为r,则OA=OD=r,OC=r-2,∵OD⊥AB,∴∠ACO=90°,AC=BC=12AB=4,在Rt△ACO中,由勾股定理得:r2=42+(r-2)2,r=5,∴AE=2r=10,∵AE为⊙O的直径,∴∠ABE=90°,由勾股定理得:BE=6,在Rt△ECB中,EC222264213BE BC+=+=.故答案是:13【点睛】考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.14.【解析】【分析】根据勾股定理列式求出AB的长再根据第四个三角形与第一个三角形的位置相同可知每三个三角形为一个循环组依次循环然后求出一个循环组旋转前进的长度再用2019除以3根据商为673可知第201解析:()8076,0【解析】【分析】根据勾股定理列式求出AB的长,再根据第四个三角形与第一个三角形的位置相同可知每三个三角形为一个循环组依次循环,然后求出一个循环组旋转前进的长度,再用2019除以3,根据商为673可知第2019个三角形的直角顶点为循环组的最后一个三角形的顶点,求出即可.【详解】解:∵点A(-3,0)、B(0,4),∴2234+,由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12,∵2019÷3=673,∴△2019的直角顶点是第673个循环组的最后一个三角形的直角顶点,∵673×12=8076,∴△2019的直角顶点的坐标为(8076,0).故答案为(8076,0).【点睛】本题主要考查了点的坐标变化规律,仔细观察图形得到每三个三角形为一个循环组依次循环是解题的关键,也是求解的难点.图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.15.【解析】分析:先求出扇形对应的圆的半径再根据扇形的面积公式求出面积即可详解:设扇形的半径为Rcm∵扇形的圆心角为135°弧长为3πcm∴=3π解得:R=4所以此扇形的面积为=6π(cm2)故答案为6解析:6π【解析】分析:先求出扇形对应的圆的半径,再根据扇形的面积公式求出面积即可.详解:设扇形的半径为Rcm,∵扇形的圆心角为135°,弧长为3πcm,∴135180Rπ⨯=3π,解得:R=4,所以此扇形的面积为21354180π⨯=6π(cm2),故答案为6π.点睛:本题考查了扇形的面积计算和弧长的面积计算,能熟记扇形的面积公式和弧长公式是解此题的关键.16.16﹣4π【解析】【分析】恒星的面积=边长为4的正方形面积-半径为2的圆的面积依此列式计算即可【详解】解:如图2+2=4恒星的面积=4×4-4π=16-4π故答案为16-4π【点睛】本题考查了扇形面解析:16﹣4π【解析】【分析】恒星的面积=边长为4的正方形面积-半径为2的圆的面积,依此列式计算即可.【详解】解:如图.2+2=4,恒星的面积=4×4-4π=16-4π.故答案为16-4π.【点睛】本题考查了扇形面积的计算,关键是理解恒星的面积=边长为4的正方形面积-半径为2的圆的面积.17.<【解析】【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小【详解】由二次函数y=x2-4x-1=(x-2)2-5可知其图象开口向上解析:<【解析】【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.【详解】由二次函数y=x2-4x-1=(x-2)2-5可知,其图象开口向上,且对称轴为x=2,∵1<x1<2,3<x2<4,∴A点横坐标离对称轴的距离小于B点横坐标离对称轴的距离,∴y1<y2.故答案为<.18.15【解析】【分析】先解方程求出方程的根再确定等边三角形的边长然后求等边三角形的周长【详解】解:x2﹣3x﹣10=0(x﹣5)(x+2)=0即x﹣5=0或x+2=0∴x1=5x2=﹣2因为方程x2﹣解析:15【解析】【分析】先解方程求出方程的根,再确定等边三角形的边长,然后求等边三角形的周长.【详解】解:x2﹣3x﹣10=0,(x﹣5)(x+2)=0,即x﹣5=0或x+2=0,∴x1=5,x2=﹣2.因为方程x2﹣3x﹣10=0的根是等边三角形的边长,所以等边三角形的边长为5.所以该三角形的周长为:5×3=15.故答案为:15.【点睛】本题考查了一元二次方程的解法、等边三角形的周长等知识点.求出方程的解是解决本题的关键.19.20【解析】【分析】抛物线的解析式为y=x2-6x-16可以求出AB=10;在Rt△COM中可以求出CO=4;则:CD=CO+OD=4+16=20【详解】抛物线的解析式为y=x2-6x-16则D (0解析:20【解析】【分析】抛物线的解析式为y=x 2-6x-16,可以求出AB=10;在Rt △COM 中可以求出CO=4;则:CD=CO+OD=4+16=20.【详解】抛物线的解析式为y=x 2-6x-16,则D (0,-16)令y=0,解得:x=-2或8,函数的对称轴x=-2b a=3,即M (3,0), 则A (-2,0)、B (8,0),则AB=10, 圆的半径为12AB=5, 在Rt △COM 中,OM=5,OM=3,则:CO=4,则:CD=CO+OD=4+16=20.故答案是:20.【点睛】考查的是抛物线与x 轴的交点,涉及到圆的垂径定理.20.30°【解析】设圆心角为n°由题意得:=12π解得:n=30故答案为30° 解析:30°【解析】设圆心角为n°,由题意得:212360n π⨯=12π, 解得:n=30,故答案为30°.三、解答题21.(1)y=﹣20x+1600;(2)当每盒售价定为60元时,每天销售的利润P (元)最大,最大利润是8000元; (3)超市每天至少销售粽子440盒.【解析】试题分析:(1)根据“当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量y (盒)与每盒售价x (元)之间的函数关系式;(2)根据利润=1盒粽子所获得的利润×销售量列式整理,再根据二次函数的最值问题解答;(3)先由(2)中所求得的P 与x 的函数关系式,根据这种粽子的每盒售价不得高于58元,且每天销售粽子的利润不低于6000元,求出x 的取值范围,再根据(1)中所求得的销售量y (盒)与每盒售价x (元)之间的函数关系式即可求解.试题解析:(1)由题意得,y =70020(45)x --=201600x -+;(2)P=(40)(201600)x x --+=220240064000x x -+-=220(60)8000x --+,∵x ≥45,a=﹣20<0,∴当x=60时,P 最大值=8000元,即当每盒售价定为60元时,每天销售的利润P (元)最大,最大利润是8000元;(3)由题意,得220(60)8000x --+=6000,解得150x =,270x =,∵抛物线P=220(60)8000x --+的开口向下,∴当50≤x≤70时,每天销售粽子的利润不低于6000元的利润,又∵x ≤58,∴50≤x ≤58,∵在201600y x =-+中,20k =-<0,∴y 随x 的增大而减小,∴当x=58时,y 最小值=﹣20×58+1600=440,即超市每天至少销售粽子440盒. 考点:二次函数的应用.22.(1)0.7;(2)该商场每天大致需要支出的奖品费用为5000元;(3)36【解析】【分析】(1)利用频率估计概率求解;(2)利用(1)得到获得铅笔的概率为0.7和获得饮料的概率为0.3,然后计算4000×0.5×0.7+4000×3×0.3即可;(3)设转盘上“一瓶饮料”区域的圆心角应调整为n 度,则4000×3×360n +4000×0.5(1-360n )=3000,然后解方程即可. 【详解】(1)转动该转盘一次,获得铅笔的概率约为0.7;故答案为 0.7(2)4000×0.5×0.7+4000×3×0.3=5000, 所以该商场每天大致需要支出的奖品费用为5000元;(3)设转盘上“一瓶饮料”区域的圆心角应调整为n 度,则4000×3×360n +4000×0.5(1﹣360n )=3000,解得n =36, 所以转盘上“一瓶饮料”区域的圆心角应调整为36度.故答案为36.【点睛】 本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.也考查了扇形统计图.23.(1)21b a =+;2c =;(2)102a -≤<;(3)存在,点()1,2P -或()1-+或(1--. 【解析】【分析】(1)求出点A 、B 的坐标,即可求解;(2)当0x <时,若()20y ax bx c a =++<的函数值随x 的增大而增大,则函数对称轴02b x a =-≥,而21b a =+,即:2102a a+-≥,即可求解; (3)过点P 作直线l AB P ,作PQ y P 轴交BA 于点Q ,作PH AB ⊥于点H ,11122PAB S AB PH PQ ∆=⨯⨯=⨯=,则1P Q y y -=,即可求解. 【详解】(1)2y x =+,令0x =,则2y =,令0y =,则2x =-,故点A 、B 的坐标分别为()2,0-、()0,2,则2c =,则函数表达式为:22y ax bx =++,将点A 坐标代入上式并整理得:21b a =+;(2)当0x <时,若()20y ax bx c a =++<的函数值随x 的增大而增大, 则函数对称轴02b x a =-≥,而21b a =+, 即:2102a a +-≥,解得:12a ≥-, 故:a 的取值范围为:102a -≤<; (3)当1a =-时,二次函数表达式为:22y x x =--+,过点P 作直线l AB P ,作PQ y P 轴交BA 于点Q ,作PH AB ⊥于点H ,∵OA OB =,∴45BAO PQH ∠=∠=︒,112221222PAB S AB PH PQ ∆=⨯⨯=⨯⨯=, 则1P Q y y -=,在直线AB 下方作直线m ,使直线m 和l 与直线AB 等距离,则直线m 与抛物线两个交点坐标,分别与点AB 组成的三角形的面积也为1, 故:1P Q y y -=,设点()2,2P x x x --+,则点(),2Q x x +, 即:2221x x x --+--=±,解得:1x =-或12-±故点()1,2P -或 ()12,1-或(12,2---.【点睛】主要考查二次函数和与几何图形.解题关键在于要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.24.(1)2516-,12;(2)当足球飞行的时间85s 时,足球离地面最高,最大高度是4.5m ;(3)能.【解析】【分析】(1)由题意得:函数y =at 2+5t +c 的图象经过(0,0.5)(0.8,3.5),代入函数的表达式即可求出a ,c 的值;(2)利用配方法即可求出足球飞行的时间以及足球离地面的最大高度;(3)把x =28代入x =10t 得t =2.8,把t =2.8代入解析式求出y 的值和2.44m 比较大小即可得到结论.【详解】(1)由题意得:函数y =at 2+5t +c 的图象经过(0,0.5)(0.8,3.5),∴20.53.50.850.8c a c =⎧⎨=+⨯+⎩,解得:251612ac⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的解析式为:y=﹣2516t2+5t+12,故答案为:﹣2516,12;(2)∵y=﹣2516t2+5t+12,∴y=﹣2516(t﹣85)2+92,∴当t=85时,y最大=4.5,∴当足球飞行的时间85s时,足球离地面最高,最大高度是4.5m;(3)把x=28代入x=10t得t=2.8,∴当t=2.8时,y=﹣2516×2.82+5×2.8+12=2.25<2.44,∴他能将球直接射入球门.【点睛】本题考查了待定系数法求二次函数的解析式,以及二次函数的应用,正确求得解析式是解题的关键.25.(1)证明见解析;(2)【解析】【分析】(1)连接FO,可根据三角形中位线的性质可判断易证OF∥AB,然后根据直径所对的圆周角是直角,可得CE⊥AE,进而知OF⊥CE,然后根据垂径定理可得∠FEC=∠FCE,∠OEC=∠OCE,再通过Rt△ABC可知∠OEC+∠FEC=90°,因此可证FE为⊙O的切线;(2)根据⊙O的半径为3,可知AO=CO=EO=3,再由∠EAC=60°可证得∠COD=∠EOA=60°,在Rt△OCD中,∠COD=60°,OC=3,可由勾股定理求得,最后根据Rt△ACD,用勾股定理求得结果.【详解】解:(1)连接FO易证OF∥AB∵AC⊙O的直径∴CE⊥AE∵OF∥AB∴OF⊥CE∴OF所在直线垂直平分CE∴FC=FE,OE=OC∴∠FEC=∠FCE,∠0EC=∠OCE∵Rt△ABC∴∠ACB=90°即:∠OCE+∠FCE=90°∴∠OEC+∠FEC=90°即:∠FEO=90°∴FE为⊙O的切线(2)∵⊙O的半径为3∴AO=CO=EO=3∵∠EAC=60°,OA=OE∴∠EOA=60°∴∠COD=∠EOA=60°∵在Rt△OCD中,∠COD=60°,OC=3∴CD=33∵在Rt△ACD中,∠ACD=90°,CD=33,AC=6∴AD=37【点睛】本题考查切线的判定,中位线的性质,以及特殊直角三角形的边角关系和勾股定理.。
2020-2021上海民办新北郊初级中学初三数学上期末一模试卷及答案
2020-2021上海民办新北郊初级中学初三数学上期末一模试卷及答案一、选择题1.如图,在5×5正方形网格中,一条圆弧经过A 、B 、C 三点,那么这条圆弧所在的圆的圆心为图中的( )A .MB .PC .QD .R2.二次函数236yx x =-+变形为()2y a x m n =++的形式,正确的是( )A .()2313y x =--+ B .()2313y x =--- C .()2313y x =-++ D .()2313y x =-+-3.下列命题错误..的是 ( ) A .经过三个点一定可以作圆B .经过切点且垂直于切线的直线必经过圆心C .同圆或等圆中,相等的圆心角所对的弧相等D .三角形的外心到三角形各顶点的距离相等4.如图,点O 是△ABC 的内切圆的圆心,若∠A =80°,则∠BOC 为( )A .100°B .130°C .50°D .65°5.抛物线2y x 2=-+的对称轴为 A .x 2=B .x 0=C .y 2=D .y 0=6.下列诗句所描述的事件中,是不可能事件的是( ) A .黄河入海流 B .锄禾日当午 C .大漠孤烟直 D .手可摘星辰7.若将抛物线y=x 2平移,得到新抛物线2(3)y x =+,则下列平移方法中,正确的是( ) A .向左平移3个单位 B .向右平移3个单位 C .向上平移3个单位D .向下平移3个单位8.如图,A 、D 是⊙O 上的两个点,BC 是直径,若∠D =34°,则∠OAC 等于( )A.68°B.58°C.72°D.56°9.下列函数中是二次函数的为()A.y=3x-1B.y=3x2-1C.y=(x+1)2-x2D.y=x3+2x-310.下列对二次函数y=x2﹣x的图象的描述,正确的是()A.开口向下B.对称轴是y轴C.经过原点D.在对称轴右侧部分是下降的11.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则在下列各式子:①abc>0;②a+b+c>0;③a+c>b;④2a+b=0;⑤ =b2-4ac<0中,成立的式子有( )A.②④⑤B.②③⑤C.①②④D.①③④12.已知二次函数y=ax2+bx+c中,y与x的部分对应值如下:x 1.1 1.2 1.3 1.4 1.5 1.6y ﹣1.59﹣1.16﹣0.71﹣0.240.250.76则一元二次方程ax2+bx+c=0的一个解x满足条件( )A.1.2<x<1.3B.1.3<x<1.4C.1.4<x<1.5D.1.5<x<1.6二、填空题13.小明把如图所示的3×3的正方形网格纸板挂在墙上玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域(四个全等的直角三角形的每个顶点都在格点上)的概率是______________.14.从五个数1,2,3,4,5中随机抽出1个数 ,则数3被抽中的概率为_________. 15.一个扇形的圆心角为135°,弧长为3πcm ,则此扇形的面积是_____cm 2. 16.对于实数,a b ,定义运算“◎”如下:a ◎b 22()()a b a b =+--.若()2m +◎()3m -24=,则m =_____.17.一个扇形的半径为6,弧长为3π,则此扇形的圆心角为___度.18.某市为了扎实落实脱贫攻坚中“两不愁、三保障”的住房保障工作,去年已投入5亿元资金,并计划投入资金逐年增长,明年将投入7.2亿元资金用于保障性住房建设,则这两年投入资金的年平均增长率为________.19.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A 、B 、C 、D 分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x 2﹣6x ﹣16,AB 为半圆的直径,则这个“果圆”被y 轴截得的线段CD 的长为_____.20.如图,P 是⊙O 的直径AB 延长线上的一点,PC 与⊙O 相切于点C ,若∠P=20°,则∠A=___________°.三、解答题21.如图,斜坡AB 长10米,按图中的直角坐标系可用35y x =+表示,点A ,B 分别在x 轴和y 轴上,且30OAB ︒∠=.在坡上的A 处有喷灌设备,喷出的水柱呈抛物线形落到B 处,抛物线可用213y x bx c =-++表示.(1)求抛物线的函数关系式(不必写自变量取值范围); (2)求水柱离坡面AB 的最大高度;(3)在斜坡上距离A 点2米的C 处有一颗3.5米高的树,水柱能否越过这棵树? 22.已知关于x 的方程x 2-2(k -1)x +k 2 =0有两个实数根x 1.x 2. (1)求实 数k 的取值范围; (2)若(x 1+1)(x 2+1)=2,试求k 的值.23.如图,已知二次函数y=-x 2+bx+c 的图象经过A (-2,-1),B (0,7)两点.(1)求该抛物线的解析式及对称轴; (2)当x 为何值时,y >0?(3)在x 轴上方作平行于x 轴的直线l ,与抛物线交于C ,D 两点(点C 在对称轴的左侧),过点C ,D 作x 轴的垂线,垂足分别为F ,E .当矩形CDEF 为正方形时,求C 点的坐标.24.2019年第六届世界互联网大会在乌镇召开,小南和小西参加了某分会场的志愿服务工作,本次志愿服务工作一共设置了三个岗位,分别是引导员、联络员和咨询员.请你用画树状图或列表法求出小南和小西恰好被分配到同一个岗位进行志愿服务的概率. 25.“六•一”前夕质监部门从某超市经销的儿童玩具、童车和童装中共抽查了300件儿童用品,以下是根据抽查结果绘制出的不完整的统计表和扇形图; 类别儿童玩具童车童装抽查件数90请根据上述统计表和扇形提供的信息,完成下列问题: (1)分别补全上述统计表和统计图;(2)已知所抽查的儿童玩具、童车、童装的合格率分别为90%、88%、80%,若从该超市的这三类儿童用品中随机购买一件,买到合格品的概率是多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据垂径定理的推论:弦的垂直平分线必过圆心,分别作AB ,BC 的垂直平分线即可得到答案. 【详解】解:作AB 的垂直平分线,作BC 的垂直平分线,如图, 它们都经过Q ,所以点Q 为这条圆弧所在圆的圆心. 故选:C . 【点睛】本题考查了垂径定理的推论:弦的垂直平分线必过圆心.这也常用来确定圆心的方法.2.A解析:A 【解析】 【分析】根据配方法,先提取二次项的系数-3,得到()232y x x =--,再将括号里的配成完全平方式即可得出结果. 【详解】解:()()()222236=323211313y x x x x x x x =-+--=--+-=--+,故选:A . 【点睛】本题主要考查的是配方法,正确的掌握配方的步骤是解题的关键.3.A解析:A 【解析】选项A ,经过不在同一直线上的三个点可以作圆;选项B ,经过切点且垂直于切线的直线必经过圆心,正确;选项C ,同圆或等圆中,相等的圆心角所对的弧相等,正确;选项D ,三角形的外心到三角形各顶点的距离相等,正确;故选A.4.B解析:B 【解析】 【分析】根据三角形的内切圆得出∠OBC =12∠ABC ,∠OCB =12∠ACB ,根据三角形的内角和定理求出∠ABC +∠ACB 的度数,进一步求出∠OBC +∠OCB 的度数,根据三角形的内角和定理求出即可. 【详解】∵点O 是△ABC 的内切圆的圆心,∴∠OBC =12∠ABC ,∠OCB =12∠ACB . ∵∠A =80°,∴∠ABC +∠ACB =180°﹣∠A =100°,∴∠OBC +∠OCB =12(∠ABC +∠ACB )=50°,∴∠BOC =180°﹣(∠OBC +∠OCB )=180°﹣50°=130°. 故选B . 【点睛】本题主要考查对三角形的内角和定理,三角形的内切圆与内心等知识点的理解和掌握,能求出∠OBC +∠OCB 的度数是解答此题的关键.5.B解析:B 【解析】 【分析】根据顶点式的坐标特点,直接写出对称轴即可. 【详解】解∵:抛物线y=-x 2+2是顶点式, ∴对称轴是直线x=0,即为y 轴. 故选:B . 【点睛】此题考查了二次函数的性质,二次函数y=a(x-h)2+k的顶点坐标为(h,k),对称轴为直线x=h.6.D解析:D【解析】【分析】不可能事件是指在一定条件下,一定不发生的事件.【详解】A、是必然事件,故选项错误;B、是随机事件,故选项错误;C、是随机事件,故选项错误;D、是不可能事件,故选项正确.故选D.【点睛】此题主要考查了必然事件,不可能事件,随机事件的概念.理解概念是解决这类基础题的主要方法.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.A解析:A【解析】【分析】先确定抛物线y=x2的顶点坐标为(0,0),抛物线y=(x+3)2的顶点坐标为(-3,0),然后利用顶点的平移情况确定抛物线的平移情况.【详解】解:抛物线y=x2的顶点坐标为(0,0),抛物线y=(x+3)2的顶点坐标为(-3,0),因为点(0,0)向左平移3个单位长度后得到(-3,0),所以把抛物线y=x2向左平移3个单位得到抛物线y=(x+3)2.故选:A.【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.8.D解析:D【解析】【分析】根据圆周角定理求出∠AOC,再根据等腰三角形的性质以及三角形的内角和定理即可解决问题.【详解】∵∠ADC =34°,∴∠AOC =2∠ADC =68°. ∵OA =OC ,∴∠OAC =∠OCA 12=(180°﹣68°)=56°. 故选D . 【点睛】本题考查了圆周角定理,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.B解析:B 【解析】A. y =3x −1是一次函数,故A 错误;B. y =3x 2−1是二次函数,故B 正确;C. y =(x +1)2−x 2不含二次项,故C 错误;D. y =x 3+2x −3是三次函数,故D 错误; 故选B.10.C解析:C 【解析】【分析】根据抛物线的开口方向、对称轴公式以及二次函数性质逐项进行判断即可得答案. 【详解】A 、∵a=1>0,∴抛物线开口向上,选项A 不正确; B 、∵﹣122b a =,∴抛物线的对称轴为直线x=12,选项B 不正确; C 、当x=0时,y=x 2﹣x=0,∴抛物线经过原点,选项C 正确; D 、∵a >0,抛物线的对称轴为直线x=12, ∴当x >12时,y 随x 值的增大而增大,选项D 不正确, 故选C .【点睛】本题考查了二次函数的性质:二次函数y=ax 2+bx+c (a≠0),对称轴直线x=-2ba,当a >0时,抛物线y=ax 2+bx+c (a≠0)的开口向上,当a <0时,抛物线y=ax 2+bx+c (a≠0)的开口向下,c=0时抛物线经过原点,熟练掌握相关知识是解题的关键.11.D解析:D 【解析】 【分析】根据二次函数的性质,利用数形结合的思想一一判断即可. 【详解】解:∵抛物线的开口向上,∴a>0,∵对称轴在y轴的右侧,∴a,b异号,∴b<0,∵抛物线交y轴于负半轴,∴c<0,∴abc>0,故①正确,∵x=1时,y<0,∴a+b+c<0,故②错误,∵x=-1时,y>0,∴a-b+c>0,∴a+c>b,故③正确,∵对称轴x=1,∴-b2a=1,∴2a+b=0,故④正确,∵抛物线与x轴有两个交点,∴△=b2-4ac>0,故⑤错误,故选D.【点睛】本题考查二次函数的性质,解题的关键是熟练掌握基本知识,学会利用数形结合的思想解决问题,属于中考常考题型.12.C解析:C【解析】【分析】仔细看表,可发现y的值-0.24和0.25最接近0,再看对应的x的值即可得.【详解】解:由表可以看出,当x取1.4与1.5之间的某个数时,y=0,即这个数是ax2+bx+c=0的一个根.ax2+bx+c=0的一个解x的取值范围为1.4<x<1.5.故选C.【点睛】本题考查了同学们的估算能力,对题目的正确估算是建立在对二次函数图象和一元二次方程关系正确理解的基础上的.二、填空题13.【解析】∵阴影部分的面积=4个小正方形的面积大正方形的面积=9个小正方形的面积∴阴影部分的面积占总面积的∴飞镖落在阴影区域(四个全等的直角三角形的每个顶点都在格点上)的概率是故答案为解析:4 9【解析】∵阴影部分的面积=4个小正方形的面积,大正方形的面积=9个小正方形的面积,∴阴影部分的面积占总面积的49,∴飞镖落在阴影区域(四个全等的直角三角形的每个顶点都在格点上)的概率是4 9 .故答案为4 9 .14.【解析】分析:直接利用概率公式求解即可求出答案详解:从12345中随机取出1个不同的数共有5种不同方法其中3被抽中的概率为故答案为点睛:本题考查了概率公式的应用用到的知识点为:概率=所求情况数与总情解析:1 5【解析】分析:直接利用概率公式求解即可求出答案.详解:从1,2,3,4,5中随机取出1个不同的数,共有5种不同方法,其中3被抽中的概率为15.故答案为15.点睛:本题考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比. 15.【解析】分析:先求出扇形对应的圆的半径再根据扇形的面积公式求出面积即可详解:设扇形的半径为Rcm∵扇形的圆心角为135°弧长为3πcm∴=3π解得:R=4所以此扇形的面积为=6π(cm2)故答案为6解析:6π【解析】分析:先求出扇形对应的圆的半径,再根据扇形的面积公式求出面积即可.详解:设扇形的半径为Rcm,∵扇形的圆心角为135°,弧长为3πcm,∴135180Rπ⨯=3π,解得:R=4,所以此扇形的面积为21354180π⨯=6π(cm2),故答案为6π.点睛:本题考查了扇形的面积计算和弧长的面积计算,能熟记扇形的面积公式和弧长公式是解此题的关键.16.-3或4【解析】【分析】利用新定义得到整理得到然后利用因式分解法解方程【详解】根据题意得或所以故答案为:或【点睛】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法这解析:-3或4 【解析】 【分析】利用新定义得到22[(2)(3)][(2)(3)]24m m m m ++--+--=,整理得到2(21)490m --=,然后利用因式分解法解方程.【详解】根据题意得,22[(2)(3)][(2)(3)]24m m m m ++--+--=,2(21)490m --=, (2 m-1+7)(2 m-1-7)=0,2 m-1+7=0或2 m-1-7=0,所以123,4m m =-=.故答案为:3-或4.【点睛】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.17.90【解析】【分析】根据弧长公式列式计算得到答案【详解】设这个扇形的圆心角为n°则=3π解得n =90故答案为:90【点睛】考核知识点:弧长的计算熟记公式是关键解析:90 【解析】 【分析】根据弧长公式列式计算,得到答案. 【详解】设这个扇形的圆心角为n °, 则6180n π⋅=3π, 解得,n =90, 故答案为:90. 【点睛】考核知识点: 弧长的计算.熟记公式是关键.18.20【解析】【分析】一般用增长后的量=增长前的量×(1+增长率)再根据题意列出方程5(1+x)2=72即可解答【详解】设这两年中投入资金的平均年增长率是x 由题意得:5(1+x)2=72解得:x1=0解析:20%. 【解析】 【分析】一般用增长后的量=增长前的量×(1+增长率),再根据题意列出方程5(1+x )2=7.2,即可解答. 【详解】设这两年中投入资金的平均年增长率是x ,由题意得: 5(1+x )2=7.2,解得:x 1=0.2=20%,x 2=﹣2.2(不合题意舍去). 答:这两年中投入资金的平均年增长率约是20%. 故答案是:20%. 【点睛】此题考查一元二次方程的应用,解题关键在于列出方程.19.20【解析】【分析】抛物线的解析式为y=x2-6x-16可以求出AB=10;在Rt△COM 中可以求出CO=4;则:CD=CO+OD=4+16=20【详解】抛物线的解析式为y=x2-6x-16则D (0解析:20 【解析】 【分析】抛物线的解析式为y=x 2-6x-16,可以求出AB=10;在Rt △COM 中可以求出CO=4;则:CD=CO+OD=4+16=20. 【详解】抛物线的解析式为y=x 2-6x-16, 则D (0,-16)令y=0,解得:x=-2或8,函数的对称轴x=-2ba=3,即M (3,0), 则A (-2,0)、B (8,0),则AB=10,圆的半径为12AB=5, 在Rt △COM 中,OM=5,OM=3,则:CO=4, 则:CD=CO+OD=4+16=20. 故答案是:20. 【点睛】考查的是抛物线与x 轴的交点,涉及到圆的垂径定理.20.35【解析】【分析】【详解】解:∵PC 与⊙O 相切∴∠OCP=90°∴∠COP=90°-∠P=90°-20°=70°∵OA=OC ∴∠A=∠ACO ∵∠A+∠ACO=∠COP ∴∠A=35°故答案为35解析:35 【解析】 【分析】 【详解】解:∵PC 与⊙O 相切,∴∠OCP=90°, ∴∠COP=90°-∠P=90°-20°=70°, ∵OA=OC ,∴∠A=∠ACO , ∵∠A+∠ACO=∠COP , ∴∠A=35°, 故答案为35.三、解答题21.(1)2143533y x x =-++;(2)254米;(3)水柱能越过树【解析】 【分析】(1)根据直角三角形的性质求出点A 、B 的坐标,再利用待定系数法求解可得; (2)水柱离坡面的距离d=-13x 2+33x+5-(-33x+5),整理成一般式,再配方成顶点式即可得;(3)先求出点C 的坐标为(31),再求出3y ,与1+3.5比较大小即可得.【详解】(1)∵AB=10、∠OAB=30°,∴OB=12AB=5、OA=ABcos∠OAB=10×32=53,则A(53,0)、B(0,5),将A、B坐标代入y=-13x2+bx+c,得:17553035b cc⎧-⨯++⎪⎨⎪⎩==,解得:435bc⎧⎪⎨⎪⎩==,∴抛物线解析式为y=-13x2+43x+5;(2)水柱离坡面的距离d=-13x2+43x+5-(-3x+5)=-13x2+533x=-13(x2-53x)=-13(x-53)2+254,∴当x=53时,水柱离坡面的距离最大,最大距离为254米;(3)如图,过点C作CD⊥OA于点D,∵AC=2、∠OAB=30°,∴CD=1、3则3当3y=-13×(3243×3>1+3.5,所以水柱能越过树.【点睛】本题主要考查二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式、直角三角形的性质、二次函数的图象与性质.22.(1)12k…;(2)k=-3.【解析】【分析】(1)根据一元二次方程的系数结合根的判别式△≥0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围;(2)根据根与系数可得出x1+x2=2(k-1),x1x2=k2,结合(x1+1)(x2+1)=2,即可得出关于k的一元二次方程,解之即可得出k值,结合(1)的结论即可得出结论.【详解】解:(1)∵关于x的方程x2-2(k-1)x+k2=0有两个实数根,∴△=[-2(k-1)]2-4×1×k2≥0,∴k≤12,∴实数k的取值范围为k≤12.(2)∵方程x2-2(k-1)x+k2=0的两根为x1和x2,∴x1+x2=2(k-1),x1x2=k2.∵(x1+1)(x2+1)=2,即x1x2+(x1+x2)+1=2,∴k2+2(k-1)+1=2,解得:k1=-3,k2=1.∵k≤12,∴k=-3.【点睛】本题考查了根的判别式以及根与系数关系,解题的关键是:(1)牢记“当△≥0时,方程有实数根”;(2)根据根与系数关系结合(x1+1)(x2+1)=2,找出关于k的一元二次方程.23.(1) y=-(x-1)2+8;对称轴为:直线x=1;(2)当<x<时,y>0;(3) C点坐标为:(-1,4).【解析】【分析】(1)根据待定系数法求二次函数解析式,再用配方法或公式法求出对称轴即可;(2)求出二次函数与x轴交点坐标即可,再利用函数图象得出x取值范围;(3)利用正方形的性质得出横纵坐标之间的关系即可得出答案.【详解】(1)∵二次函数y=-x2+bx+c的图象经过A(-2,-1),B(0,7)两点.∴1427b cc-=--+⎧⎨=⎩,解得:27bc=⎧⎨=⎩,∴y=-x2+2x+7,=-(x2-2x)+7,=-[(x2-2x+1)-1]+7,=-(x-1)2+8,∴对称轴为:直线x=1.(2)当y=0,0=-(x-1)2+8,∴x-1=±,x1x2,∴抛物线与x轴交点坐标为:(,0),(,0),∴当<x<时,y>0;(3)当矩形CDEF为正方形时,假设C点坐标为(x,-x2+2x+7),∴D点坐标为(-x2+2x+7+x,-x2+2x+7),即:(-x2+3x+7,-x2+2x+7),∵对称轴为:直线x=1,D到对称轴距离等于C到对称轴距离相等,∴-x2+3x+7-1=-x+1,解得:x1=-1,x2=5(不合题意舍去),x=-1时,-x2+2x+7=4,∴C点坐标为:(-1,4).【点睛】此题主要考查了待定系数法求二次函数解析式以及利用图象观察函数值和正方形性质等知识,根据题意得出C、D两点坐标之间的关系是解决问题的关键.24.1 3【解析】【分析】分别用字母A,B,C代替引导员、联络员和咨询员岗位,利用列表法求出所有等可能结果,再根据概率公式求解可得.【详解】分别用字母A,B,C代替引导员、联络员和咨询员岗位,用列表法列举所有可能出现的结果:A (A ,A ) (A ,B ) (A ,C ) B (B ,A ) (B ,B ) (B ,C ) C(C ,A )(C ,B )(C ,C )的结果中,小南和小西恰好被分配到同一个岗位的结果有3种,即AA ,BB ,CC , ∴小南和小西恰好被分配到同一个岗位进行志愿服务的概率=39=13. 【点睛】考查随机事件发生的概率,关键是用列表法或树状图表示出所有等可能出现的结果数,用列表法或树状图的前提是必须使每一种情况发生的可能性是均等的. 25.(1)详见解析(2)85% 【解析】 【分析】(1)根据童车的数量是300×25%,童装的数量是300-75-90,儿童玩具占得百分比是90÷300×100%,童装占得百分比1-30%-25%,即可补全统计表和统计图.(2)先分别求出儿童玩具、童车、童装中合格的数量之和,再根据概率公式计算即可. 【详解】解:(1)童车的数量是300×25%=75,童装的数量是300-75-90=135; 儿童玩具占得百分比是(90÷300)×100%=30%.童装占得百分比1-30%-25%=45%. 补全统计表和统计图如下: 类别儿童玩具童车童装抽查件数9075135(2)∵儿童玩具中合格的数量是90×90%=81,童车中合格的数量是75×88%=66,童装中合格的数量是135×80%=108, ∴从该超市的这三类儿童用品中随机购买一件,购买到合格品的概率是816610885%300++=.。
2020-2021学年上海市民办新北郊初级中学九年级(上)期末数学试卷(附答案详解)
2020-2021学年上海市民办新北郊初级中学九年级(上)期末数学试卷1.如果两个相似多边形的面积比为4:9,那么它们的周长比为()A. 4:9B. 2:3C. √2:√3D. 16:812.如图,已知AB为⊙O的直径,点C,D在⊙O上,若∠BCD=28°,则∠ABD=()A. 72°B. 56°C. 62°D. 52°3.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点M是AB上的一点,点N是CB上的一点,BMCN =43,当∠CAN与△CMB中的一个角相等时,则BM的值为()A. 3或4B. 83或4C. 83或6D. 4或64.在平面直角坐标系中,将抛物线y=2(x−1)2+1先向左平移2个单位,再向上平移3个单位,则平移后抛物线的表达式是()A. y=2(x+1)2+4B. y=2(x−1)2+4C. y=2(x+2)2+4D. y=2(x−3)2+45.某篮球队14名队员的年龄如表:年龄(岁)18192021人数5432则这14名队员年龄的众数和中位数分别是()A. 18,19B. 19,19C. 18,4D. 5,46.把二次函数y=2x2的图象向右平移3个单位,再向上平移2个单位后的函数关系式是()A. y=2(x−3)2+2B. y=2(x+3)2+2C. y=2(x−3)2−2D. y=2(x+3)2−27.抛物线y=x2先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是()A. y=(x+1)2+3B. y=(x+1)2−3C. y=(x−1)2−3D. y=(x−1)2+38.如图,在⊙O中,AB为直径,圆周角∠ACD=20°,则∠BAD等于()A. 20°B. 40°C. 70°D. 80°9.如图,点P(x,y)(x>0)是反比例函数y=kx(k>0)的图象上的一个动点,以点P为圆心,OP为半径的圆与x轴的正半轴交于点A.若△OPA的面积为S,则当x增大时,S的变化情况是()A. S的值增大B. S的值减小C. S的值先增大,后减小D. S的值不变10.袋中有 5 个白球,3 个黑球,除颜色外均相同,从中一次任摸出一个球,则摸到黑球的概率是()A. 35B. 38C. 58D. 3411.如图,已知在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,CM是它的中线,以C为圆心,5cm为半径作⊙C,则点M与⊙C 的位置关系为()A. 点M在⊙C上B. 点M在⊙C内C. 点M在⊙C外D. 点M不在⊙C内12.如图,在正方形ABCD中,E是BC的中点,F是CD上一点,AE⊥EF.有下列结论:CD;①∠BAE=30°;②射线FE是∠AFC的角平分线;③CF=13④AF=AB+CF.其中正确结论的个数为()A. 1 个B. 2 个C. 3 个D. 4 个13.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A. 3:2B. 3:1C. 1:1D. 1:214.如图,AB为⊙O的切线,切点为A.连接AO、BO,BO与⊙O交于点C,延长BO与⊙O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为()A. 54°B. 36°C. 32°D. 27°15.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac−b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠−1),其中正确结论的个数是()A. 4个B. 3个C. 2个D. 1个16.如图,△ABC周长为20cm,BC=6cm,圆O是△ABC的内切圆,圆O的切线MN与AB、CA相交于点M、N,则△AMN的周长为______cm.17.如图,若抛物线y=ax2+ℎ与直线y=kx+b交于A(3,m),B(−2,n)两点,则不等式ax2−b<kx−ℎ的解集是______.18.一个不透明的袋中原装有2个白球和1个红球,搅匀后从中任意摸出一个球,要使摸出红球的概率为23,则袋中应再添加红球______个(以上球除颜色外其他都相同).19.如图,AB⏜、CD⏜、EF⏜所在的圆的半径分别为r1、r2、r3,则r1、r2、r3的大小关系是______.(用“<”连接)20.当a≤x≤a+1时,函数y=x2−2x+1的最小值为1,则a的值为________.21.如图,D、E分别是△ABC的边AB,AC上的点,ADAB =AEAC,AE=2,EC=6,AB=12,则AD的长为______.22.抛物线y=(x−1)2+3的顶点坐标为______.23.已知⊙O半径为4,点A,B在⊙O上,∠BAC=90°,sin∠B=2√13,则线段OC的最大值为______.1324.二次函数y=−x2+bx+c的部分图象如图所示,要使函数值y>3,则自变量x的取值范围是______.25.甲、乙两同学近期6次数学单元测试成绩的平均分相同,甲同学成绩的方差S甲2=6.5分 2,乙同学成绩的方差S乙2=3.1分 2,则他们的数学测试成绩较稳定的是______(填“甲”或“乙”).26.如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船与观测站之间的距离(即OB的长)为______km.27.把函数y=2x2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,则新函数的表达式是______.28.如图,圆形纸片⊙O半径为5√2,先在其内剪出一个最大正方形,再在剩余部分剪出4个最大的小正方形,则4个小正方形的面积和为______ .29.若圆弧所在圆的半径为12,所对的圆心角为60°,则这条弧的长为______.30.如图,C、D是线段AB的两个黄金分割点,且CD=1,则线段AB的长为______.)−2+(2020−π)0.31.(1)计算:2cos60°+(12(2)若关于x的方程x2+2x+2m−1=0有两个相等的实数根,求m的值.32.在矩形ABCD中,AB=3,AD=5,E是射线DC上的点,连接AE,将△ADE沿直线AE翻折得△AFE.(1)如图①,点F恰好在BC上,求证:△ABF∽△FCE;(2)如图②,点F在矩形ABCD内,连接CF,若DE=1,求△EFC的面积;(3)若以点E、F、C为顶点的三角形是直角三角形,则DE的长为______.33.经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,求两辆车经过这个十字路口时,下列事件的概率:(1)两辆车中恰有一辆车向左转;(2)两辆车行驶方向相同.34.如图,已知二次函数y=−x2+2mx+3m2(m>0)的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为点D.(1)点B的坐标为______,点D的坐标为______;(用含有m的代数式表示)(2)连接CD,BC.①若CB平分∠OCD,求二次函数的表达式;②连接AC,若CB平分∠ACD,求二次函数的表达式.35.已知关于x的一元二次方程(a−1)x2−2x+1=0有两个不相等的实数根,求a的取值范围.36.(1)如图1,在△ABC中,AB=4√2,AC=6,∠BAC=135°,求△ABC的面积.(2)如图2,半圆O的直径AB=10,C是半圆AB⏜的中点,点D在BC⏜上,且CD⏜=2BD⏜,点P是AB上的动点,试求PC+PD的最小值.(3)如图3,扇形AOB的半径为20,∠AOB=45°,在AB⏜选点P,在边OA上选点E,在边OB上选点F,求PE+EF+FP的长度的最小值.37.如图,在矩形ABCD中,AB=20cm,BC=4cm,点P从A开始沿折线A−B−C−D以4cm/s的速度移动,点Q从C开始沿CD边以1cm/s的速度移动,如果点P、Q 分别从A、C同时出发,当其中一点到达D时,另一点也随之停止运动.设运动时间为t(s).(1)t为何值时,四边形APQD为矩形;(2)如图,如果⊙P和⊙Q的半径都是2cm,那么t为何值时,⊙P和⊙Q外切.38.如图,等边△ABC内接于⊙O,P是AB⏜上任一点(点P与点A、B重合),连接AP、BP,过点C作CM//BP交PA的延长线于点M.(1)求∠APC和∠BPC的度数;(2)求证:△ACM≌△BCP;(3)若PA=1,PB=2,求四边形PBCM的面积;(4)在(3)的条件下,求AB⏜的长度.39.如图,抛物线y=ax2−4ax+b交x轴正半轴于A、B两点,交y轴正半轴于C,且OB=OC=3.(1)求抛物线的解析式;(2)如图1,D为抛物线的顶点,P为对称轴左侧抛物线上一点,连OP交直线BC=√2?若存在,求点P的坐标;若不存在,请于G,连GD,是否存在点P,使GDGO说明理由;(3)如图2,将抛物线向上平移m个单位,交BC于点M、N,若∠MON=45°,求m的值.,O为坐标原点,A点在x轴的40.如图,在边长为5的菱形OABC中,sin∠AOC=45正半轴上,B,C两点都在第一象限.点P以每秒1个单位的速度沿O→A→B→C→O运动一周,设运动时间为t(秒).请解答下列问题:(1)当CP⊥OA时,求t的值;(2)当t<10时,求点P的坐标(结果用含t的代数式表示);(3)以点P为圆心,以OP为半径画圆,当⊙P与菱形OABC的一边所在直线相切时,请直接写出t的值.答案和解析1.【答案】B【解析】解:∵两个相似多边形面积的比为4:9,∴这两个相似多边形周长的比是2:3.故选:B.直接根据相似多边形周长的比等于相似比,面积的比等于相似比的平方进行解答即可.本题考查的是相似多边形的性质,即相似多边形周长的比等于相似比,面积的比等于相似比的平方.2.【答案】C【解析】解:连接AD.∵AB是⊙O的直径,∴∠ADB=90°,∵∠BCD=28°,∴∠BAD=28°,∴∠ABD=90°−∠BAD=62°,故选:C.根据直径所对的圆周角是直角得到∠ADB=90°,根据圆周角定理求出∠BAD,再利用直角三角形两锐角互余解答即可.本题考查的是圆周角定理的应用,掌握直径所对的圆周角是直角、同弧或等弧所对的圆周角相等是解题的关键.3.【答案】D【解析】解:∵∠CMB>∠CAB>∠CAN,∴∠CAN≠∠CAB,设CN=3k,BM=4k,①当∠CAN=∠B时,可得△CAN∽△CBA,∴CNAC =ACCB,∴3k6=68,∴k=32,∴BM=6.②当∠CAN=∠MCB时,如图2中,过点M作MH⊥CB,可得△BMH∽△BAC,∴MBAB =MHAC=BHBC,∴4k10=MH6=BH8,∴MH=125k,BH=165k,∴CH=8−165k,∵∠MCB=∠CAN,∠CHM=∠ACN=90°,∴△ACN∽△CHM,∴CNAC =MHCH,∴3k6=125k8−165k,∴k=1或0,∴BM=4.综上所述,BM=4或6.故选:D.可分两种情况:①当∠CAN=∠B时,△CAN∽△CBA,设CN=3k,BM=4k,可得CNAC =ACCB,解出k值即可;②当∠CAN=∠MCB时,过点M作MH⊥CB,可得△BMH∽△BAC,得出MH=125k,BH=165k,则CH=8−165k,证明△ACN∽△CHM,得出方程求解即可.本题考查了相似三角形的判定和性质,解一元二次方程等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造相似三角形解决问题.4.【答案】A【解析】解:原抛物线y=2(x−1)2+1的顶点为(1,1),先向左平移2个单位,再向上平移3个单位,新顶点为(−1,4).即所得抛物线的顶点坐标是(−1,4).所以,平移后抛物线的表达式是y=2(x+1)2+4,故选:A.只需看顶点坐标是如何平移得到的即可.考查了二次函数图象与几何变换,y=ax2(a≠0)的顶点坐标为(0,0);抛物线的平移,看顶点的平移即可;上下平移,只改变顶点的纵坐标,上加下减.5.【答案】A【解析】解:这14名队员年龄的众数是18岁,=19(岁),中位数是19+192故选:A.根据众数和中位数的定义求解可得.本题主要考查众数和中位数,解题的关键是掌握众数和中位数的概念.6.【答案】A【解析】解:把二次函数y=2x2的图象向右平移3个单位,再向上平移2个单位后的函数关系式是:y=2(x−3)2+2.故选:A.直接根据函数图象平移的法则即可得出结论.本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的法则是解答此题的关键.7.【答案】D【解析】解:由“左加右减”的原则可知,抛物线y=x2向右平移1个单位所得抛物线的解析式为:y=(x−1)2;由“上加下减”的原则可知,抛物线y=(x−1)2向上平移3个单位所得抛物线的解析式为:y=(x−1)2+3.故选:D.根据“上加下减,左加右减”的原则进行解答即可.本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.8.【答案】C【解析】解:连接OD.∵∠AOD=2∠ACD=40°,∵OA=OD,(180°−40°)=70°,∴∠BAD=∠ADO=12故选:C.连接OD,根据∠AOD=2∠ACD,求出∠AOD,利用等腰三角形的性质即可解决问题.本题考查圆周角定理、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.9.【答案】D【解析】【分析】图象中任取一点,过这本题考查了反比例函数系数k的几何意义:在反比例函数y=kx一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.作PB⊥OA于B,如图,根据垂径定理得到OB=AB,则S△POB=S△PAB,再根据反比例|k|,所以S=2k,为定值.函数k的几何意义得到S△POB=12【解答】解:作PB⊥OA于B,如图,根据OP=PA,则可得OB=AB,∴S△POB=S△PAB,∵S△POB=12|k|,∴S=2k,∴S的值为定值.故选D.10.【答案】B【解析】解:因为白球5个,黑球3个一共是8个球,所以从中随机摸出1个球,则摸出黑球的概率是38,故选:B.先求出球的总个数,根据概率公式解答即可.考查了概率公式,明确概率的意义是解答问题的关键,用到的知识点为:概率=所求情况数与总情况数之比.11.【答案】A【解析】解:∵由勾股定理得AB=√62+82=10cm,∵CM是AB的中线,∴CM=5cm,∴d=r,所以点M在⊙C上,故选:A.根据题意可求得CM的长,再根据点和圆的位置关系判断即可.本题考查了点和圆的位置关系,解决的根据是点在圆上⇔圆心到点的距离=圆的半径.12.【答案】B【解析】解:∵在正方形ABCD中,E是BC的中点,∴AB=BC,BE=12AB,∴tanA=BEAB =12,∵tan30°=√33,∴∠BAE≠30°,故①错误;∵∠B=∠C=90°,AE⊥EF,∴∠BAE+∠BEA=90°,∠BEA+∠CEF=90°,∴∠BAE=∠CEF,∴△ABE∽△ECF,∵AB=2BE=2CE,∴EC=2CF,设CF=a,则EC=BE=2a,AB=4a,∴AE=2√5a,EF=√5a,tan∠CFE=2,∴tan∠AFE=AE=2,EF∴∠AFE=∠CFE,即射线FE是∠AFC的角平分线,故②正确;∵BC=CD,BC=2CE=4CF,CD,故③错误;∴CF=14作EG⊥AF于点G,∵FE平分∠AFC,∠C=90°,∴EG=EC,∴EG=EB,∵∠B=∠AGE=90°,在Rt△ABE和Rt△AGE中{AE=AEEB=EG∴Rt△ABE≌Rt△AGE(HL)∴AB=AG,又∵CF=GF,AF=AG+GF,∴AF=AB+CF,故④正确,由上可得,②④正确,正确的个数为2,故选:B.①根据题目中的条件和正方形的性质,利用锐角三角函数可以得到∠BAE是否等于30°;②根据题目中的条件,可以求得∠AEB和∠CFE的正切值,从而可以得到射线FE是否为∠AFC的角平分线;CD是否成立;③根据前面的推论,可以得到CF和CD的关系,从而可以判断CF=13④根据题目中的条件和全等三角形的判定与性质,可以得到AF=AB+CF是否成立.本题考查正方形的性质、全等三角形的判定与性质、锐角三角函数,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.13.【答案】D【解析】【分析】此题主要考查了平行四边形的性质以及相似三角形的判定与性质等知识,得出△DEF∽△BCF是解题关键.根据题意得出△DEF∽△BCF,进而得出DEBC =EFFC,利用点E是边AD的中点得出答案即可.【解答】解:∵▱ABCD,∴AD//BC,∴△DEF∽△BCF,∴DEBC =EFFC,∵点E是边AD的中点,∴AE=DE=12AD,∴EFFC =12.故选D.14.【答案】D【解析】解:∵AB为⊙O的切线,∴∠OAB=90°,∵∠ABO=36°,∴∠AOB=90°−∠ABO=54°,∵OA=OD,∴∠ADC=∠OAD,∵∠AOB=∠ADC+∠OAD,∴∠ADC=1∠AOB=27°,2故选:D.由切线的性质得出∠OAB=90°,由直角三角形的性质得出∠AOB=90°−∠ABO=54°,由等腰三角形的性质得出∠ADC=∠OAD,再由三角形的外角性质即可得出答案.本题考查了切线的性质、直角三角形的性质、等腰三角形的性质以及三角形的外角性质;熟练掌握切线的性质和等腰三角形的性质是解题的关键.15.【答案】B【解析】解:∵抛物线和x轴有两个交点,∴b2−4ac>0,∴4ac−b2<0,∴①正确;∵对称轴是直线x=−1,和x轴的一个交点在点(0,0)和点(1,0)之间,∴抛物线和x轴的另一个交点在(−3,0)和(−2,0)之间,∴把(−2,0)代入抛物线得:y=4a−2b+c>0,∴4a+c>2b,∴②错误;∵把x=1代入抛物线得:y=a+b+c<0,∴2a+2b+2c<0,=−1,∵−b2a∴b=2a,∴3b+2c<0,∴③正确;∵抛物线的对称轴是直线x=−1,∴y=a−b+c的值最大,即把x=m(m≠−1)代入得:y=am2+bm+c<a−b+c,∴am2+bm+b<a,即m(am+b)+b<a,∴④正确;即正确的有3个,故选:B.利用二次函数图象的相关知识与函数系数的联系,需要根据图形,逐一判断.此题主要考查了二次函数图象与系数的关系,在解题时要注意二次函数的系数与其图象的形状,对称轴,特殊点的关系,也要掌握在图象上表示一元二次方程ax2+bx+c=0的解的方法,同时注意特殊点的运用.16.【答案】8【解析】解:∵圆O是△ABC的内切圆,圆O 的切线MN与AB、CA相交于点M、N,∴BF=BE,CF=CD,DN=NG,EM=GM,AD=AE,∵△ABC周长为20cm,BC=6cm,∴AE=AD=AB+AC−BC2=20−BC−BC2=20−122=4,∴△AMN的周长为AM+MG+NG+AN=AM+ME+AN+ND=AE+AD=4=4=8,故答案为:8.根据切线长定理得到BF=BE,CF=CD,DN=NG,EM=GM,AD=AE,然后利用三角形的周长和BC的长求得AE和AD的长,从而求得△AMN的周长.考查了三角形的内切圆与内心及切线的性质的知识,解题的关键是利用切线长定理求得AE和AD的长,难度不大.17.【答案】−2<x<3【解析】解:∵抛物线y=ax2+ℎ与直线y=kx+b交于A(3,m),B(−2,n)两点,∴不等式ax2−b<kx−ℎ的解集为−2<x<3,故答案为:−2<x<3.根据二次函数和一次函数的图象和性质即可求解.本题考查了二次函数和不等式、二次函数与一次函数的交点,解决本题的关键是利用图象解决问题.18.【答案】3【解析】【分析】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.首先设应在该盒子中再添加红球x个,根据题意得:x+1x+1+2=23,解此分式方程即可求得答案.【解答】解:设应在该盒子中再添加红球x个,根据题意得:x+1x+1+2=23,解得:x=3,经检验,x=3是原分式方程的解.故答案为:3.19.【答案】r2<r1<r3【解析】解:观察图象可知:r2<r1<r3故答案为r2<r1<r3.利用垂径定理,画出圆的圆心即可判断.本题考查垂径定理等知识,解题的关键是学会两条突发性解决问题,属于中考常考题型.20.【答案】2或−1【解析】【分析】本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当y=1时x的值是解题的关键.利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a≤x≤a+1时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:当y=1时,有x2−2x+1=1,解得:x1=0,x2=2.∵当a≤x≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=−1,故答案是2或−1.21.【答案】3【解析】解:∵ADAB =AEAC,AE=2,EC=6,AB=12,∴AD12=22+6,解得:AD=3,故答案为:3.把AE=2,EC=6,AB=12代入已知比例式,即可求出答案.本题考查了比例的性质和相似三角形的性质和判定,能正确进行计算是解此题的关键.22.【答案】(1,3)【解析】解:顶点坐标是(1,3).直接利用顶点式的特点可知顶点坐标.主要考查了求抛物线顶点坐标的方法.23.【答案】4√133+83【解析】解:如图,连接OA,OB,作AD⊥OA,使得∠ADO=∠ABC.在Rt△ABC中,∵∠BAC=90°,∴sin∠ABC=ACBC =2√1313,设AC=2√13k,BC=13k,则AB=3√13k,∵∠ADO=∠ABC,∠DAO=∠BAC=90°,∴△DAO∽△BAC,∴ADAB =AOAC,∵∠DAO=∠BAC,∴∠DAB=∠OAC,∴△DAB∽△OAC,∴BDOC =ABAC=√13k2√13k=32,∴OC=23BD,在Rt△ADO中,∵∠DAO=90°,∴sin∠ADO=OAOD =2√1313,∵OA=OB=4,∴OD=2√13,∵OD−OB≤BD≤OD+OB,∴2√13−4≤BD≤2√13+4,∴BD的最大值为2√13+4,∴OC的最大值=4√132+83,故答案为4√133+83.如图,连接OA,OB,作AD⊥OA,使得∠ADO=∠ABC.利用相似三角形的性质证明OC=23BD,求出BD的最大值即可解决问题.本题考查圆周角定理,解直角三角形,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用转化的思想思考问题,属于中考填空题中的压轴题.24.【答案】−2<x<0【解析】解:由图象可知,该函数的对称轴是直线x=−1,与y轴的交点是(0,3),则点(−2,3)也在该函数的图象上,故要使函数值y>3,则自变量x的取值范围是−2<x<0,故答案为:−2<x<0.根据题目中的函数图象和二次函数的图象具有对称性,可以求得y >3,自变量x 的取值范围.本题考查二次函数的性质、二次函数的图象,解答本题的关键是明确题意,利用二次函数的性质解答.25.【答案】乙【解析】解:∵甲同学成绩的方差S 甲2=6.5分 2,乙同学成绩的方差S 乙2=3.1分 2,∴S 甲2=3.5>S 乙2=3.1,∴它们的数学测试成绩较稳定的是乙;故答案为:乙.根据方差的定义,方差越小数据越稳定.本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.26.【答案】(2√3+2)【解析】解:如图所示,过点A 作AD ⊥OB 于点D ,由题意知,∠AOD =30°,OA =4km ,则∠OAD =60°,∴∠DAB =45°,在Rt △OAD 中,AD =OAsin∠AOD =4×sin30°=4×12=2(km),OD =OAcos∠AOD =4×cos30°=4×√32=2√3(km),在Rt △ABD 中,BD =AD =2km ,∴OB=OD+BD=2√3+2(km),故答案为:(2√3+2).作AD⊥OB于点D,根据题目条件得出∠OAD=60°、∠DAB=45°、OA=4km,再分别求出AD、OD、BD的长,从而得出答案.本题主要考查解直角三角形的应用−方向角问题,解题的关键是构建合适的直角三角形,并熟练运用三角函数进行求解.27.【答案】y=2(x−3)2−2【解析】解:由函数y=2x2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,得新函数的表达式是y=2(x−3)2−2,故答案为y=2(x−3)2−2.根据函数图象的平移规律,可得答案.本题考查了函数图象与几何变换,熟练掌握平移的规律”左加右减,上加下减”是解题的关键.28.【答案】16【解析】解:如图,点A为上面小正方形边的中点,点B为小正方形与圆的交点,D为小正方形和大正方形重合边的中点,∵⊙O的半径为5√2,根据垂径定理得:=5,OD=CD=√2√2x,设小正方形的边长为x,则AB=12在直角三角形OAB中,OA2+AB2=OB2,x)2=(5√2)2,即(x+5)2+(12解得:x =2,∴四个小正方形的面积和=4×4=16,故答案为:16.根据题意可知四个小正方形的面积相等,构造直角三角形,设小正方形的边长为x ,根据勾股定理得出x 的值,进而解答即可.此题考查正方形的性质,关键是根据勾股定理和垂径定理解答.29.【答案】4π【解析】解:l =60π×12180=4π,故答案为:4π.利用弧长的计算公式计算即可.本题考查了弧长公式:l =:nπr 180(弧长为l ,圆心角度数为n ,圆的半径为r).熟记公式是解题的关键.30.【答案】2+√5【解析】解:∵线段AB =x ,点C 是AB 黄金分割点,∴较小线段AD =BC =3−√52x ,则CD =AB −AD −BC =x −2×3−√52x =1,解得:x =2+√5.故答案为:2+√5 根据黄金分割点的定义,知较短的线段=原线段的3−√52倍,可得BC 的长,同理求得AD 的长,则AB 即可求得.本题考查了黄金分割,应该识记黄金分割的公式:较短的线段=原线段的3−√52倍,较长的线段=原线段的√5−12倍.31.【答案】解:(1)2cos60°+(12)−2+(2020−π)0=2×12+4+1=6;(2)∵x 2+2x +2m −1=0有两个相等的实数根,∴b2−4ac=22−4(2m−1)=0,∴m=1.【解析】(1)根据特殊角的锐角三角函数的值以及负整数指数幂、零指数幂指数幂的意义即可求出答案.(2)根据根的判别式即可求出答案.此题考查了根的判别式,掌握一元二次方程根的情况与判别式△的关系:(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根是本题的关键;也考查了实数的运算.32.【答案】5(√34−5)3或53或5或15,【解析】(1)解:在矩形ABCD中,∠B=∠C=∠D=90°,由折叠可得:∠D=∠EFA=90°,∵∠EFA=∠C=90°,∴∠CEF+∠CFE=∠CFE+∠AFB=90°,∴∠CEF=∠AFB,在△ABF和△FCE中∵∠AFB=∠CEF,∠B=∠C=90°,∴△ABF∽△FCE;(2)解:如图1,过点F作FG⊥DC交DC于点G,交AB于点H,则∠EGF=∠AHF=90°在矩形ABCD中,∠D=90°,由折叠可得:∠D=∠EFA=90°,DE=EF=1,AD=AF=5∵∠EGF=∠EFA=90°,∴∠GEF+∠GFE=∠AFH+∠GFE=90°,∴∠GEF=∠AFH,在△FGE和△AHF中,∵∠GEF=∠AFH,∠EGF=∠FHA=90°,∴△FGE∽△AHF,∴EFFA =GFAH,∴15=GFAH,∴AH=5GF,在Rt△AHF中,∠AHF=90°,∵AH2+FH2=AF2,∴(5GF)2+(5−GF)2=52,∴GF=513,∴△EFC的面积为12×513×2=513;(3)解:设DE=x,∵以点E、F、C为顶点的三角形是直角三角形,∴①当点E在线段CD上时,∠DAE<45°,∴∠AED>45°,由折叠知,∠AEF=∠AED>45°,∴∠DEF=∠AED+∠AEF>90°,∴∠CEF<90°,∴只有∠EFC=90°或∠ECF=90°,Ⅰ、当∠EFC=90°时,如图2,由折叠知,∠AFE=∠D=90°,∴∠AFE+∠EFC=90°,∴点A,F,C在同一条线上,即:点F在矩形的对角线AC上,在Rt△ACD中,AD=5,CD=AB=3,根据勾股定理得,AC=√34,由折叠知,EF=DE=x,AF=AD=5,∴CF=AC−AF=√34−5,在Rt△ECF中,EF2+CF2=CE2,∴x2+(√34−5)2=(3−x)2,∴x=5(√34−5)3,即:DE=5(√34−5)3;Ⅱ、当∠ECF=90°时,如图3,点F在BC上,由折叠知,EF=DE=x,AF=AD=5,在Rt△ABF中,根据勾股定理得,BF=√AF2−AB2=4,∴CF=BC−BF=1,在Rt△ECF中,根据勾股定理得,CE2+CF2=EF2,∴(3−x)2+12=x2,∴x=5,3;即:DE=53②当点E在DC延长线上时,CF在∠AFE内部,而∠AFE=90°,∴∠CFE<90°,∴只有∠CEF=90°或∠ECF=90°,Ⅰ、当∠CEF=90°时,如图4,由折叠知,AD=AF=5,∠AFE=90°=∠D=∠CEF,∴四边形AFED是正方形,∴DE=AF=5;Ⅱ、当∠DCF=90°时,如图5,∵∠ABC=∠BCD=90°,∴点F在CB的延长线上,∴∠ABF=90°,由折叠知,EF=DE=x,AF=AD=5,在Rt△ABF中,根据勾股定理得,BF=√AF2−AB2=4,∴CF=BC+BF=9,在Rt△ECF中,根据勾股定理得,CE2+CF2=EF2,∴(x−3)2+92=x2,∴x=15,即:DE=15,综上所述,DE 的长为5(√34−5)3或53或5或15, 故答案为5(√34−5)3或53或5或15,(1)先利用同角的余角相等,判断出∠CEF =∠AFB ,即可得出结论;(2)先判断出△FGE∽△AHF ,得出EF FA =GF AH ,进而得出AH =5GF ,在Rt △AHF 中,根据勾股定理求出GF =513,即可得出结论;(3)分点E 在线段CD 上和DC 的延长线上,再分别分两种情况,利用勾股定理直接计算或建立方程求解即可得出结论.此题是相似形综合题,主要考查了相似三角形的判定和性质,折叠的性质,勾股定理,三角形的面积,用分类讨论的思想,根据题意画出图形是解本题的关键,33.【答案】解:两辆车分别记为车1和车2,可以用下表列举出所有等可能的结果.可以看出,两辆车经过这个十字路口时,可能出现的结果有9种,并且它们出现的可能性相等;(1)两辆车中恰有一辆车向左转(记为事件A)的结果有4种,即(直,左)、(右,左)、(左,直)、(左,右),所以P (A)=49;(2)两辆车行驶方向相同(记为事件B)的结果有3种,即(直,直)、(左,左)、(右,右),所以P (B)=39=13;【解析】列表,列举出所有情况.(1)看两辆车中恰有一辆车向左转的情况占所有情况的多少即可;(2)看两辆车行驶方向相同的情况占所有情况的多少即可.此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解.34.【答案】(3m,0)(m,4m2)【解析】解:(1)在二次函数y =−x 2+2mx +3m 2中,当y =0时,x 1=3m ,x 2=−m ,∵点A 在点B 的左侧,m >0,∴A(−m,0),B(3m,0),∵y =−x 2+2mx +3m 2=−(x −m)2+4m 2,∴顶点D(m,4m 2),∴故答案为:(3m,0),(m,4m 2);(2)①如图1,过点D 作DH ⊥AB ,交BC 于点E ,则DH//OC ,∴∠DEC =∠OCE ,∵BC 平分∠OCD ,∴∠OCE =∠DCE ,∴∠DEC =∠DCE ,∴CD =DE ,由(1)知,C(0,3m 2),A(−m,0),B(3m,0),∴OC =3m 2,OB =3m ,∵tan∠ABC =3m 23m =m ,∴HE =2m 2,∴DE =DH −HE =4m 2−2m 2=2m 2,∵CD =DE ,∴CD 2=DE 2,∴m 2+m 4=4m 2,解得:m 1=√33,m 2=−√33(舍去), ∴二次函数的关系式为:y =−x 2+2√33x +1;②如图2,过点D 作DH ⊥AB ,交BC 于点E ,过点C 作y 轴的垂线CK ,过点B 作x 轴的垂线交CK 于点K ,连接AE ,∵tan∠DCG=DGCG =m,tan∠KCB=BKCK=m,∴∠DCG=∠KCB,∴CK//AB,∴∠KCB=∠EBA,由对称性知,DH垂直平分AB,∴EA=EB,∴∠EAB=∠EBA,∴∠DCG=∠KCB=∠EBA=∠EAB,∵∠AEC=∠EAB+∠EBA,∠DCB=∠DCG+∠KCB,CB平分∠ACD,∴∠DCB=∠AEC=∠ACE,∴AC=AE,∴AC2=AE2=EH2+AH2,∴m2+9m4=4m4+4m2,解得:m1=√155,m2=−√155(舍去),∴二次函数的关系式为:y=−x2+2√155x+95.(1)在二次函数y=−x2+2mx+3m2中,令y=0,即可求出A,B的坐标,将y=−x2+ 2mx+3m2化为顶点式即可写出点D的坐标;(2)①如图1,过点D作DH⊥AB,交BC于点E,证CD=DE,由(1)知OC=3m2,OB= 3m,求出HE=2m2,DE=2m2,由CD=DE可列出关于m的方程,求出m的值即可;②如图2,过点D作DH⊥AB,交BC于点E,过点C作y轴的垂线CK,过点B作x 轴的垂线交CK于点K,连接AE,证AC=AE,根据勾股定理列出关于m的方程,求出m的值即可.本题考查了二次函数的图象及性质,锐角三角函数,勾股定理等,解题关键是能够作出适当的辅助线构造等腰三角形或直角三角形等.35.【答案】解:根据题意得a−1≠0且△=(−2)2−4(a−1)>0,解得a<2且a≠1.【解析】根据一元二次方程的定义和判别式的意义得到a−1≠0且△=(−2)2−4(a−1)>0,然后解两个不等式得到它们的公共部分即可.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.36.【答案】解:(1)如图1中,过点B作BD⊥CA,交CA延长线于点D,∵∠BAC=135°,∴∠BAD=180°−∠BAC=180°−135°=45°,∵BD⊥CA,交CA延长线于点D,∴△BAD为等腰直角三角形,且∠BDA=90°,∴BD=AD,在△BAD中,BD=AD,∠BDA=90°,∴BD2+AD2=AB2,即2BD2=AB2,∵AB=4√2,∴2BD2=AB2=(4√2)2=32,解得:BD=4,∵AC=6,∴S△ABC=12⋅AC⋅BD=12×6×4=12.(2)如图2中,作点D关于AB的对称点Q,交AB于点H,连接CQ,交AB于点P,连接PD、OD、OC,过点Q作QM⊥CO,交CO延长线于点M,∵D关于AB的对称点Q,CQ交AB于点P,∴PD=PQ,∴PC+PD=PC+PQ=CQ,∵点P为AB上的动点,∴PC+PD≥CQ,∴当点P处于解图2中的位置,PC+PD取最小值,且最小值为CQ的长度,∵点C 为半圆AB⏜的中点, ∴∠COB =90°,∵∠BOD +∠COD =∠COB =90°,∴∠BOD =13∠COB =13×90°=30°, ∵AB =10, ∴OD =12AB =12×10=5,在Rt △ODH 中,由作图知,∠OHD =90°,且∠HOD =∠BOD =30°,∴DH =12OD =52,∴QH =DH =52,∴OH =√OD 2−DH 2=√52−(52)2=5√32, ∵由作图知,四边形OMQH 为矩形,∴OM =QH =52,MQ =OH =5√32, ∴CM =OM +OC =5+52=152,∴CQ =√CM 2+MQ 2=√(152)2+(5√32)2=5√3,∴PC +PD 的最小值为5√3.(3)如图3中,在AB⏜上这一点作点P 关于OA 的对称点S ,作点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,连接OS 、ON 、OP 、EP 、FP ,∵点P 关于OA 的对称点S ,点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,∴PE =SE ,FP =FN ,∠SOA =∠POA ,∠NOB =∠POB ,OS =OP =ON , ∴PE +EF +FP =SE +EF +FN =SN ,∠SOA +∠NOB =∠POA +∠POB , ∵E 为OA 上的点,F 为OB 上的点,∴PE +EF +FP ≥SN ,∴当点E 、F 处于解图3的位置时,PE +EF +FP 的长度取最小值,最小值为SN 的长度,。
沪科版2020-2021学年度第一学期九年级数学期末模拟测试卷(附答案)
沪科版2020-2021学年度第一学期九年级数学期末模拟测试卷(附答案)一、单选题1.如图,在△ABC 中,点O 是△ABC 的外心,点I 是△ABC 的内心,∠BOC=116°,则∠BIC=( )A .116°B .119°C .104°D .118°2.在同一坐标系中,一次函数2y mx n =-+与二次函数2y x m =+的图象可能是( ).A .B .C .D .3.已知二次函数223,y x x =--当03x ≤≤时,y 的取值范围是( )A .30y -≤≤B .40y -<≤C .30y -<<D .40y -≤≤4.下列图形中是轴对称图形,但不是中心对称图形的是( )A .平行四边形B .等腰三角形C .圆D .矩形5.在Rt ABC 中,C 90∠=,BC 4cm =,AC 3cm.=把ABC 绕点A 顺时针旋转90后,得到11AB C ,如图所示,则点B 所走过的路径长为( )A .52cmB .5πcm 4C .5πcm 2D .5πcm6.如图:在△ABC 中,∠ACB=90°,∠ABC=30°,AC=1,现将△ABC绕点C 逆时针旋转至△EFC ,使点E 恰巧落在AB 上,连接BF ,则BF的长度为( )A .3B .2C .1D .27.如图,平面直角坐标系中,P 与x 轴分别交于A 、B 两点,点P 的坐标为()3,1-,23AB =.将P 沿着与y 轴平行的方向平移多少距离时P 与x 轴相切 ( )A .1B .2C .3D .1或38.如图,AB 为⊙O 的直径,CD 切⊙O 于点C ,交AB 的延长线于点D ,且CO =CD ,则∠A 的度数为( )A .45°B .30°C .22.5°D .37.5°9.掷两枚硬币,则一枚硬币正面朝上,一枚硬币反面朝上的概率是( )A .1B .34 C .12 D .1410.下列函数:①y=-x ;②y=2x ;③1y x =-;④y=x 2 . 当x<0时,y 随x 的增大而减小的函数有( )A .1 个 B .2 个 C .3 个 D .4 个 11.一次函数y=x-1与反比例函数y2=2x 的图像交于点A (2,1),B (-1,-2), 则使y1>y2的x的取值范围是( )A .x>2B .x>2 或-1<x<0C .-1<x<2D .x>2 或x<-1二、填空题 12.如图,迎宾公园的喷水池边上有半圆形的石头(半径为1.12m )作为装饰,其中一块石头正前方5.88m 处有一彩灯,某一时刻,该灯柱落在此半圆形石头上的影长为0.56πm .如果同一时刻,一直立0.6m 的杆子的影长为1.8m ,则灯柱的高____m .13.如图,在4×4的方格纸中(共有16个小方格),每个小方格都是边长为1的正方形.O、A、B分别是小正方形的顶点,则扇形OAB周长等于_____.(结果保留根号及π).14.一个长方体木箱沿斜面下滑,当木箱滑至如图所示位置时,AB=3m,已知木箱高BD=1m,斜面坡角为30°,则木箱端点D距地面AC的高度为________.15.如图,在Rt ABC∆中,∠ACB=90°,F为△ABC的重心,AB=6,则EF=_______.16.公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了有关黄金矩形的问题.并建立起比例理论,他认为所谓黄金分割,指的是把长为L的线段分为两部分,使其中较长部分对于全部之比,等于较短部分对于较长部分之比.所谓黄金矩形指的就是矩形的宽与长的比适合这一比例.则在黄金矩形中宽与长的比值是______.17.如图,等边△OAB和等边△BCD的顶点A、C分别在双曲线kyx=的图象上,若OA=1,则点C的坐标为____________.18.公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”(如图3),它也是2002年在北京召开的国际数学家大会会标.这个会标的制作方法可以是把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的边长分别为5和1的正方形,则图1中tanα=______ .19.反比例函数kyx=的图象经过点(2,3),则这个反比例函数的解析式为_______________.三、解答题20.如图,E 为▱ABCD 的边BC 延长线上一点,AE 与BD 交于点F ,与DC 交于点G . (1)写出所有与△ABE 相似的三角形,并选择其中一对相似三角形加以证明; (2)若BC=2CE ,求DF FB 的值.21.在平面直角坐标系中,直线AB 与y 轴、x 轴分别交于点A 、点B ,与双曲线6y x=()0x >交于C 、D 两点,分别过点C 、点D 作CE x ⊥轴,DF x ⊥轴,垂足分别为点E 、点F ,1OE =(1)求线段CE 的长;(2)若13DF CE =. ①求直线AB 的解析式;②请你判断线段AC 与线段DB 的大小关系,并说明理由.22.如图,Rt △ABC 中,∠C=90o ,BE 是它的角平分线,D 在AB 边上,以DB 为直径的半圆O 经过点E .(1)试说明:AC 是圆O 的切线;(2)若∠A=30o ,圆O 的半径为4,求图中阴影部分的面积.23.(阅读理解)对于任意正实数a 、b ,∵2()0a b -≥,∴20a b ab +-≥∴2a b ab +≥,只有当a b =时,等号成立.(数学认识) 在2a b ab +≥(a 、b 均为正实数)中,若ab 为定值k ,则2a b k +≥,只有当a b =时,+a b 有最小值2k .(解决问题)(1)若0x >时,当x =_____________时,1x x +有最小值为_____________; (2)如图,已知点A 在反比例函数3(0)y x x=>的图像上,点B 在反比例函数1(0)y x x=->的图像上,//AB y 轴,过点A 作AD y ⊥轴于点D ,过点B 作BC y ⊥轴于点C .求四边形ABCD 周长的最小值.24.计算:()2019364260321tan +⋅︒--+-.25.已知:如图在Rt △ABC 中,斜边AB =5厘米,BC =a 厘米,AC =b 厘米,a >b ,且a 、b 是方程2(1)40x m x m --++=的两根. ⑴ 求a 和b 的值;⑵ A B C '''∆与ABC ∆开始时完全重合,然后让ABC ∆固定不动,将A B C '''∆以1厘米/秒的速度沿BC 所在的直线向左移动.① 设x 秒后A B C '''∆与ABC ∆的重叠部分的面积为y 平方厘米,求y 与x 之间的函数关系式,并写出x 的取值范围;② 几秒后重叠部分的面积等于38平方厘米?26.如图,△ABC 三个顶点的坐标分别为A (1,1),B (4,2),C (3,4).(1)请画出△ABC 向左平移5个单位长度后得到的△A 1B 1C 1;(2)请画出△ABC 关于原点对称的△A 2B 2C 2;(3)请直接判断四边形CBC 2B 2的形状.27.三、解答题12.已知二次函数y=2x2+4x-6.(1)将其化成y=a(x-h)2+k的形式;(2)写出开口方向,对称轴方程,顶点坐标;(3)求图象与两坐标轴的交点坐标;(4)画出函数图象;(5)说明其图象与抛物线y=x2的关系;(6)当x取何值时,y随x增大而减小;(7)当x取何值时,y>0,y=0,y<0;(8)当x取何值时,函数y有最值?其最值是多少?(9)当y取何值时,-4<x<0;(10)求函数图象与两坐标轴交点所围成的三角形面积.28.如图,在12×12正方形网格中建立直角坐标系,每个小正方形的边长为1个单位长度,△ABC的三个顶点A(0,2),B(3,5),C(2,2).(1)将△ABC以点A旋转中心旋转180°,得到△AB1C1,点B、C的对应点分别是点B1,C1,请在网格图中画出△AB1C1.(2)将△ABC平移至△A2B2C2,其中点A,B,C的对应点分别为点A2,B2,C2,且点C2的坐标为(2,﹣4),请在图中画出平移后的△A2B2C2.(3)在第(1)、(2)小题基础上,若将△AB1C1绕某一点旋转可得到△A2B2C2,则旋转中心点P的坐标为.(直接写出答案)29.如图,小明同学在东西方向的环海路A处,测得海中灯塔P在北偏东60°方向上,在A处正东500米的B处,测得海中灯塔P在北偏东30°方向上,则灯塔P到环海路的距离PC等于多少米?参考答案1.B【分析】利用圆周角定理得出∠A=58°,进而得出利用内心的知识得出∠IBC+∠ICB=61°,即可得出答案.【详解】解:∵点O 为△ABC 的外心,∠BOC=116°,∴∠A=58°,∴∠ABC+∠ACB=122°,∵点I 为△ABC 的内心,∴∠IBC+∠ICB=61°,∴∠BIC=119°.故答案为:119°.【点睛】此题主要考查了三角形的内心和外心,正确把握三角形内心的性质是解题关键.2.D【解析】试题分析:A .由直线与y 轴的交点在y 轴的负半轴上可知,2n <0,错误;B .由抛物线与y 轴的交点在y 轴的正半轴上可知,m >0,由直线可知,﹣m >0,错误;C .由抛物线y 轴的交点在y 轴的负半轴上可知,m <0,由直线可知,﹣m <0,错误;D .由抛物线y 轴的交点在y 轴的负半轴上可知,m <0,由直线可知,﹣m >0,正确, 故选D .考点:1.二次函数的图象;2.一次函数的图象.3.D【分析】将函数解析式化为顶点式,根据二次函数的性质结合自变量的取值范围即可求解.【详解】∵2223=(1)4y x x x =----∴抛物线对称轴为直线x=1,开口向上,又∵0≤x≤3,∴当x=1时,函数y有最小值为-4;x=3时,函数y有最大值为0,即,-4≤y≤0,故选::D.【点睛】本题考查了二次函数的性质及最值的求法,难度适中,把一般式转化为顶点式是解题的关键.4.B【分析】根据轴对称图形与中心对称图形的概念求解即可得到答案.【详解】解:A、平行四边形不是轴对称图形,是中心对称图形,故此选项错误;B、等腰三角形是轴对称图形,不是中心对称图形,故此选项正确;C、圆是轴对称图形,也是中心对称图形,故此选项错误;D、矩形是轴对称图形,也是中心对称图形,故此选项错误.故选:B.【点睛】本题主要考查中心对称图形与轴对称图形的概念.轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.5.C【分析】根据勾股定理可将AB的长求出,点B所经过的路程是以点A为圆心,以AB的长为半径,圆心角为90°的扇形.【详解】解:在Rt△ABC中,5==,l AB=225905. 3603602Rncm πππ⨯⨯==所以点B 经过的路程为52cm π.故选C.【点睛】解题关键是将点B 所走的路程转化为求弧长,使问题简化.6.A【解析】试题分析:由题意可知:∠A=60°,AC=EC ,所以△ACE 是等边三角形,所以∠CEA=∠ECA=60°,由旋转可知,∠CEF=∠A=60°,所以∠FEB=60°,因为∠ECF=∠ACB=90°,所以∠BCF=∠ACE=60°,因为CB=CF ,所以△CBF 是等边三角形,所以∠CBF=60°, ∠FBE=60°+30°=90°, △BEF 是30度角直角三角形,因为AE=AC=1,AB=2AC=2,所以BE=1,EF=2,BF=21213-=,故选A .考点:1.旋转性质;2.直角三角形性质.7.D【分析】作PC ⊥AB 于点C ,由垂径定理即可求得AC 的长,根据勾股定理即可求得PA 的长,再分点P 向上平移与向下平移两种情况进行讨论即可.【详解】连接PA ,作PC AB ⊥于点C ,由垂径定理得:11=23322AC AB =⨯= 在直角PAC ∆中,由勾股定理得:222PA PC AC =+,即222134PA =+=, ∴2PA =,∴P 的半径是2. 将P 向上平移,当P 与x 轴相切时,平移的距离123=+=; 将P 向下平移,当P 与x 轴相切时,平移的距离211=-=.故选D.【点睛】本题考查的是直线与圆的位置关系,通过垂径定理把求线段的长的问题转化为解直角三角形的问题是关键.8.C【分析】因为∠COD=∠A+∠OCA,∠A=∠COA,所以求出∠COD即可解决问题.【详解】∵CD切⊙O于C,∴OC⊥CD,∴∠OCD=90°,∵CO=CD,∴∠COD=∠D=45°,∵OA=CO,∴∠OAC=∠OCA,∵∠COD=∠OAC+∠OCA=45°,∴∠A=22.5°.故选C.【点睛】本题考查切线的性质,等腰直角三角形的性质,三角形的外角的性质,熟练掌握这些性质是解决问题的关键.9.C【解析】【分析】由列举法可得:掷两枚硬币,所有等可能的结果有:正正,正反,反正,反反,且一枚硬币正面朝上,一枚硬币反面朝上的有2种情况,然后利用概率公式求解即可求得答案.【详解】∵掷两枚硬币,所有等可能的结果有:正正,正反,反正,反反,又∵一枚硬币正面朝上,一枚硬币反面朝上的有2种情况,∴一枚硬币正面朝上,一枚硬币反面朝上的概率是:21 =42.故选C.【点睛】此题考查了列举法球概率的知识.注意概率=所求情况数与总情况数之比.10.B【解析】【分析】分别根据一次函数、反比例函数及二次函数的性质进行逐一判断即可.【详解】一次函数y=-x中k<0,∴y随x的增大而减小,故本选项正确;∵正比例函数y=2x中,k=2,∴当x<0时,y随x的增大而增大,故本选项错误;∵反比例函数1yx=中,k=-1<0,∴当x<0时函数的图像在第二象限,此时y随x的增大而增大,故本选项错误;∵二次函数y=x2,中a=1>0,∴此抛物线开口向上,当x<0时,y随x的增大而减小,故本选项正确.故选B.【点睛】本题考查的是一次函数、反比例函数及二次函数的性质,解题关键是根据题意判断出各函数的增减性.11.B【解析】如图,过点A且平行于y轴的直线、y轴、过点B且平行于y轴的直线将整个平面分为四部分,由图像不难看出,符合y1>y2的部分为②、④部分,对应的x的取值范围为:-1<x<0或x>2.故选B.点睛:掌握数形结合的方法解此类题目.12.259 75【解析】【分析】如图,OC=OD=1.12m,BD=5.88m,CD的弧长为0.56πm,先利用弧长公式计算出∠DOC=90°,则OC⊥OD,作CE⊥AB于E,则CE=OB=OD+BD=7m,BE=OC=1.12m,接着利用相似比得到70.6 1.8AE,解得AE=73,然后计算AE+BE即可.【详解】解:如图,OC=OD=1.12m,BD=5.88m,CD的弧长为0.56πm,设∠COD=n°,则π 1.12180n=0.65π,解得n=90,即∠DOC=90°,∴OC⊥OD,作CE⊥AB于E,则CE=OB=OD+BD=1.12m+5.88m=7m,BE=OC=1.12m,∵同一时刻,一直立0.6m的杆子的影长为1.8m,∴70.6 1.8AE=,,∴AE=73,∴AB=AE+BE=73+1.12=25975(m),即灯柱的高为25975(m)故答案为:25975(m).【点睛】本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影.也考查了弧长公式.13.2π+42【解析】根据正方形的性质,得扇形所在的圆心角是90°,扇形的半径是22.解:根据图形中正方形的性质,得∠AOB=90°,OA=OB=22.∴扇形OAB的弧长等于90222π⨯=π.14.33 2 +【解析】连接AD,∵∠A=30°,∴∠BOD=∠AOE=60°,则OD=BDsin BOD∠23,OB=BDtan BOD∠3∴OA=AB−OB=3则OE=12OA=32∴DE=OD+OE=32m ,故答案为15.1【解析】 解:∵∠ACB =90°,F 为△ABC 的重心,AB =6,∴CE =12AB =3,EF =13CE =1.故答案为1. 点睛:本题考查了三角形的重心.重心的性质:三角形顶点到重心的距离等于重心到对边中点距离的2倍.16.12【分析】根据黄金矩形指的就是矩形的宽与长的比适合黄金分割比例,所以求出黄金分割比例即可,设线段长为1,较长的部分为x ,则较短的部分为1-x ,根据较长部分对于全部之比,等于较短部分对于较长部分之比,求出x ,即可得到比值.【详解】解:设线段长为1,较长的部分为x ,则较短的部分为1-x ∴11x x x-=∴x 1,x 2(舍)∴黄金分割比例为:1x =12∴黄金矩形中宽与长的比值:12. 【点睛】 本题主要考查了黄金分割比例,读懂题意并且列出比例式正确求解是解决本题的关键.17.(12,2). 【解析】过A 作AE ⊥OB 于E ,过C 作CF ⊥BD 于F ,∵△OAB 是等边三角形,∴∠AOB =∠OAB =60°,OB=OA =1,∴OE =12,AE∴k =4,∴双曲线的解析式为y =4x , 设等边三角形CBD 的边长为2a ,∴BF=a ,CF a ,∴C (1+a a ),∴(1+a )a =4,∴a =12-+,(负值舍去),∴C (12).故答案为:C ).18.2 3【分析】根据图2和图3中正方形的边长得到数据解出菱形对角线一半的长,从而根据正切的定义可得结果.【详解】解:由图2和图3中正方形的边长可得:在菱形ABCD中,OA+OD=5,OD-OA=1,两式相加得:2OD=6,∴OD=3,解得:OA=2,∴tanα=23 OAOD=.故答案为:2 3 .【点睛】本题考查了正切的定义,菱形的性质,二元一次方程组,解题的关键是看懂图形的拼接方法,得到相应线段的长度.19.6 yx =【分析】利用待定系数法即可求出k 的值,可得答案.【详解】 ∵反比例函数k y x=的图象经过点(2,3), ∴3=2k , 解得:k=6, ∴这个反比例函数的解析式为:6y x =. 故答案为:6y x =【点睛】本题考查了待定系数法求反比例函数的解析式.熟练掌握反比例函数图象上点的坐标特征是解题关键.20.(1)①△ABE ∽△GCE ,②△ABE ∽△GDA (2)23 【分析】(1)根据“平行四边形的对边相互平行”可以推知AB ∥DC ,所以由平行线的性质得到,∠ABE=∠GCE ,∠BAE=∠CGE ,则△ABE ∽△GCE ;根据“平行四边形的对角相等.对边相互平行”可以推知:∠ABE=∠GDA ,AD ∥BE ,根据平行线的性质得到∠E=∠DAG ,则易证△ABE ∽△GDA ;(2)易证得△ADF ∽△EBF ,根据相似三角形的对应边成比例可得DF FB ,又由BC=2CE ,即可求得DF FB的值. 【详解】(1)①△ABE ∽△GCE ,②△ABE ∽△GDA .①证明:∵四边形ABCD 是平行四边形,∴AB ∥DC ,∴∠ABE=∠GCE ,∠BAE=∠CGE ,∴△ABE ∽△GCE .②证明:∵四边形ABCD 是平行四边形,∴∠ABE=∠GDA ,AD ∥BE ,∴∠E=∠DAG ,∴△ABE ∽△GDA .(2)∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC ,∴△ADF ∽△EBF , ∴DF FB =AD BE, ∵BC=2CE ,∴AD :BE=2:3, ∴DF FB =23. 【点睛】此题考查了相似三角形的判定与性质以及平行四边形的性质.此题难度一般,注意掌握数形结合思想的应用,注意掌握平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似与相似三角形的对应边成比例定理的应用.21.(1)6CE =;(2)直线AB 的解析式为28y x =-+;(3)AC DB =,理由见解析.【解析】分析:(1)求出点C 的横坐标,代入反比例函数解析式求得纵坐标即可求出CE 的长.(2) ①求出,C D 两点的坐标,用待定系数法即可求得直线AB 的解析式;②过点C 作CM y ⊥轴,垂足为点M ,证明AMC ∆≌()SAS DFB ∆,即可证明.详解:(1) ∵1OE =,∴点C 的横坐标是1,∵点C 在双曲线6y x =()0x >的图象上, ∴ 661y ==, ∴6CE = . (2) ∵13DF CE =, ∴ 1623DF =⨯=.①∵点D 在双曲线6y x =()0x >的图象上,2DF =, ∴62x= , ∴3x =,∴()3,2D设直线AB 的解析式为:y kx b =+ ()0k ≠,∵直线AB 过点()1,6C 、()3,2D ,∴632k b k b +=⎧⎨+=⎩, 解得:2,8k b =-⎧⎨=⎩ ∴直线AB 的解析式为:28y x =-+.②AC DB =.解法一:过点C 作CM y ⊥轴,垂足为点M ,∵直线AB 与y 轴交于点A ,∴令0x =,则8y =,∴()0,8A ,∵直线AB 与x 轴交于点B ,∴令0y =,则4x =,∴()4,0B ,∵()1,6C 、()3,2D ,∴2AM DF ==,1CM BF ==,∵CM y ⊥轴,DF x ⊥轴.,∴90AMC DFB ∠=∠=︒,∵AM DF =,CM BF = ,∴AMC ∆≌DFB ∆ ()SAS ,∴AC DB =.解法二:过点C 作CM x ⊥轴,垂足为点M ,根据勾股定理可得5AC =,5DB = ,∴AC DB =. 点睛:属于反比例函数的综合题,涉及待定系数法求反比例函数解析式,一次函数解析式,三角形全等的判定与性质等,难度适中.22.(1)见解析;(2)图中阴影部分的面积为8833-π. 【分析】(1)由OB=OE ,利用等边对等角得到一对角相等,再由BE 为角平分线得到一对角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行得到OE 与BC 平行,利用两直线平行同位角相等得到OE ⊥AC ,即可得证;(2)由∠A 的度数求出∠AOE 度数,利用30°直角三角形的性质求出OA 的长,利用勾股定理求出AE 的长,阴影部分面积=直角三角形AOE 面积-扇形OED 面积,求出即可.【详解】解:(1)∵OB=OE ,∴∠BEO=∠EBO ,∵BE 平分∠CBO ,∴∠EBO=∠CBE ,∴∠BEO=∠CBE ,∴EO ∥BC ,∵∠C=90°,∴∠AEO=∠C=90°,则AC 是圆O 的切线;(2)在Rt △AEO 中,∠A=30°,OE=4,∴OA=2OE=8,∠AOE=60°,根据勾股定理得:2243,OA OE -=则S 阴影=S △AOE -S 扇形EOD =2160484.23603ππ⨯⨯⨯= 【点睛】此题考查了切线的判定,以及扇形面积的计算,涉及的知识有:等腰三角形的性质,平行线的判定与性质,含30°直角三角形的性质,以及勾股定理,熟练掌握切线的判定方法是解本题的关键.23.(1)1,2;(2)8.【解析】【分析】(1)根据题意,利用完全平方式即可求解;(2)根据反比例函数的解析式,设出A 和B 的坐标,然后表示出周长,再根据上面的知识求解即可;【详解】解:(1)1,2.(2)解:设3(,)A a a ,则1(,)B a a -,∴四边形ABCD 周长42()a a=+ 22428a ⨯⋅=⨯=. ∴四边形ABCD 周长的最小值为8.【点睛】此题属于反比例函数综合题,考查了几何不等式的应用,理解在a b +≥ (a, b 均为正实数)中,若ab 为定值k ,则a b +≥a=b 时,a+b 有最小值.24.1+.【分析】根据立方根、特殊角三角函数值、绝对值和乘方的意义进行化简,然后计算即可.【详解】解:原式421=+-.【点睛】本题考查了实数的混合运算,掌握立方根、特殊角三角函数值、绝对值和乘方的意义是解题的关键.25.(1)a=4,b=3;(2)①y=38(4-x)2(0≤x≤4) ②x=3 【解析】【分析】(1)利用根与系数的关系及根的判别式、勾股定理列出有关m 的方程后求得m 的值,代入方程求得方程的两根后即可求得a 和b 的值;(2)x 秒后BB′=x ,得到B′C′=4-x ,利用C′M ∥AC 得到△BC′M ∽△BCA ,利用相似三角形对应边的比相等列出比例式后用x 表示出MC′后利用三角形的面积公式表示出函数关系式,最后代入y=38后求得x 的值即可. 【详解】解:(1)∵三角形ABC 是直角三角形,且AB =5厘米,BC =a 厘米,AC =b 厘米,a >b ,且a 、b 是方程2x −(m −1)x +m +4=0的两根,∴()222(1)440104025m m a b m ab m a b ⎧=--+>⎪+=+>⎪⎨=+>⎪⎪+=⎩∴2()a b +−2ab =25即:2(1)m -−2(m +4)=25因式分解得(m −8)(m +4)=0解得:m =8或m =−4(舍去)∴m =8∴方程为2x −7x +12=0解得:x =3或x =4∴a =4,b =3(2)①∵△A ′B ′C ′以1厘米/秒的速度沿BC 所在的直线向左移动,∴x 秒后BB ′=x则B ′C ′=4−x ,∵C′M∥AC∴△BC′M∽△BCA∴BCBC'=MCAC'∴MC′= 34(4−x)∴S△BCM=y= 12(4−x)×34(4−x)=382x-3x+6(0⩽x⩽4)②当y=38时,382x−3x+6=38解得:x=3或x=5(不合题意)∴3秒后重叠部分的面积等于38平方厘米.【点睛】本题考查了相似三角形的综合知识,特别是动点问题更是中考的热点考题之一,应加强训练.26.(1)如图△A1B1C1即为所求.见解析;(2)如图△A2B2C2即为所求.见解析;(3)四边形CBC2B2是平行四边形.【分析】(1)利用平移的性质得出对应顶点的位置进而得出答案;(2)利用关于原点对称点的性质得出对应点位置进而得出答案;(3)利用关于原点对称点的性质得出对应点位置进而得出答案.【详解】(1)如图△A1B1C1即为所求.(2)如图△A2B2C2即为所求.(3)四边形CBC2B2是平行四边形.【点睛】此题考查旋转变换,平移变换,得出对应点位置是解题关键.27.(1)y =2(x +1)2-8;(2)开口向上,直线x =-1,顶点(-1,-8);(3)与x 轴交点(-3,0)(1,0),与y 轴交点(0,-6);(4)图略;(5)将抛物线y =x 2向左平移1个单位,向下平移8个单位;然后图像上所有点横坐标扩大为原来的2倍,得到y =2x 2+4x -6的图象;(6)x ≤-1;(7)当x <-3或x >1时,y >0;当x =-3或x =1时,y =0;当-3<x <1时,y <0;(8)x =-1时,y 最小值=-8;(9)-8≤y <10;(10)S △=12.【解析】试题分析:(1)将函数表达式配方成顶点式形式,先将二次项、一次项分别提取a ,然后加上2()2b a ,再减去2b 4a即可得到y =2(x +1)2-8.(2)由a 值的正负,或图像可判断开口方向.顶点式可看出对称轴和顶点坐标.(3)分别让x=0,y=0可分别求出图像与y 轴的坐标,和x 轴的坐标.(4)可根据顶点坐标,图像与x 、y 轴交点坐标,简略画出函数图像.(5)将抛物线y =x 2经过一定的平移可得到y =2(x +1)2-8.(6)根据函数图像可判断函数的增减性,最值以及x 的取值与y .试题解析:(1)通过配方法可以将y=2x2+4x-6配方成y=2(x+1)2-8.(2)由图像可以看出开口向上,由顶点式得对称轴为直线x=-1,顶点坐标为(-1,-8);(3)当y=0时求得与x轴交点(-3,0)(1,0),可求得当x=0时与y轴交点(0,-6);(4)如图所示为抛物线图像;(5)函数图像与抛物线y=x2的关系:观察图可知,是由抛物线y=x2先向左平移一个单位,然后图像上所有点横坐标扩大为原来的2倍,然后再向下平移八个单位得到的;(6)观察图,在对称轴左边,即x≤-1时,y随x的增大而减小.(7)有图得,x<-3或x>1时,y>0;当x=-3或x=1时,y=0;当-3<x<1时,y<0;(8)由图得,当x=-1时,y有最小值,y最小=-8;(9)当x=-4时,y=10;当x=0时,y=-8;所以,当-8≤y≤10时,-4≤x≤0;(10)函数图像与坐标轴交点坐标分别为(-3,0)、(1,0)、(0,-6),所以围成的三角形面积S=(3+1)×6×12=12.28.(1)作图见解析;(2)作图见解析;(3)(0,﹣1).【分析】(1)延长CA至点C1,使得AC1=AC,延长BA至点B1,使得AB1=AB,然后连接B1C1,△AB1C1即为所求;(2)由点C和点C2的坐标可以得出三角形平移的方向和距离,据此即可画出图形;(3)连接AA2,B1B2,两直线相交于点P,则点P即为所求.【详解】(1)如图,△AB1C1即为所求;(2)如图,△A2B2C2即为所求;(3)旋转中心点P的坐标为(0,﹣1).故答案为:(0,﹣1).【点睛】本题考查了作图-旋转变换和平移变换,解决本题的关键是掌握旋转和平移的性质.29.2503米.【解析】解:如图,过P作PC⊥AB于C,则PC就是灯塔P到环海路的距离,依题意,有∠PAC=30°,∠PBC=60°,∴∠APB=60°-30°=30°,∴PB=AB=5,在Rt△PBC中,PC=PB·sin∠PBC=500×sin60°=,∴灯塔P到环海路的距离为m.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
类别
儿童玩具
童车
童装
抽查件数
90
请根据上述统计表和扇形提供的信息,完成下列问题: (1)分别补全上述统计表和统计图; (2)已知所抽查的儿童玩具、童车、童装的合格率分别为 90%、88%、80%,若从该超市 的这三类儿童用品中随机购买一件,买到合格品的概率是多少? 25.某商场今年“十一”期间举行购物摸奖活动,摸奖箱里有四个标号分别为 1,2,3,4 的质地,大小都相同的小球,任意摸出一个小球,记下小球标号后,放回箱里并摇匀,再 摸出一个小球,再记下小球标号.商场规定:两次摸出的小球之和为“8”或“6”时才算 中奖.请结合“树形图法”或“列表法”,求出顾客小彦参加此次摸奖活动时中奖的概 率.
C.y=﹣2(x﹣1)2﹣1
D.y=﹣2(x+1)2﹣1
5.等腰三角形一条边的边长为 3,它的另两条边的边长是关于 x 的一元二次方程 x2﹣
12x+k=0 的两个根,则 k 的值是( )
A.27
B.36
C.27 或 36
D.18
6.五粮液集团 2018 年净利润为 400 亿元,计划 2020 年净利润为 640 亿元,设这两年的年
y1)离直线 x=﹣1 的距离最远,C(﹣2,y3)点离直线 x=1 最近,∴ y1 y2 y3 .
故选 A. 【点睛】 本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考 查了二次函数的性质.
9.D
解析:D 【解析】 【分析】 连接 AO、BO、CO,根据中心角度数=360°÷边数 n,分别计算出∠AOC、∠BOC 的度 数,根据角的和差则有∠AOB=30°,根据边数 n=360°÷中心角度数即可求解. 【详解】 连接 AO、BO、CO, ∵AC 是⊙O 内接正四边形的一边, ∴∠AOC=360°÷4=90°, ∵BC 是⊙O 内接正六边形的一边, ∴∠BOC=360°÷6=60°, ∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°, ∴n=360°÷30°=12; 故选:D.
17.已知二次函数
,当 x_______________时, 随 的增大而减小.
18.如图,在△ABC 中,CA=CB,∠ACB=90°,AB=4,点 D 为 AB 的中点,以点 D 为圆
心作圆,半圆恰好经过三角形的直角顶点 C,以点 D 为顶点,作 90°的∠EDF,与半圆交
于点 E,F,则图中阴影部分的面积是____.
5.B
解析:B 【解析】 试题分析:由于等腰三角形的一边长 3 为底或为腰不能确定,故应分两种情况进行讨论: (1)当 3 为腰时,其他两条边中必有一个为 3,把 x=3 代入原方程可求出 k 的值,进而求 出方程的另一个根,再根据三角形的三边关系判断是否符合题意即可;(2)当 3 为底时, 则其他两条边相等,即方程有两个相等的实数根,由△=0 可求出 k 的值,再求出方程的两 个根进行判断即可. 试题解析:分两种情况: (1)当其他两条边中有一个为 3 时,将 x=3 代入原方程, 得:32-12×3+k=0 解得:k=27 将 k=27 代入原方程, 得:x2-12x+27=0 解得 x=3 或 9 3,3,9 不能组成三角形,不符合题意舍去; (2)当 3 为底时,则其他两边相等,即△=0, 此时:144-4k=0 解得:k=36 将 k=36 代入原方程, 得:x2-12x+36=0 解得:x=6 3,6,6 能够组成三角形,符合题意. 故 k 的值为 36. 故选 B. 考点:1.等腰三角形的性质;2.一元二次方程的解.
2020-2021 上海市北初级中学九年级数学上期末一模试题(含答案)
一、选择题
1.如图,在 5×5 正方形网格中,一条圆弧经过 A、B、C 三点,那么这条圆弧所在的圆的 圆心为图中的( )
A.M
B.P
C.Q
D.R
2.已知 a , b 是方程 x2 x 3 0 的两个实数根,则 a2 b 2019 的值是( )
最引人关注的变化之一是强调对传统文化经典著作的阅读.某校对 A 《三国演义》、 B 《红 楼梦》、 C 《西游记》、 D 《水浒》四大名著开展“最受欢迎的传统文化经典著作”调
查,随机调查了若干名学生(每名学生必选且只能选这四大名著中的一部)并将得到的信 息绘制了下面两幅不完整的统计图:
(1)本次一共调查了_________名学生; (2)请将条形统计图补充完整; (3)某班语文老师想从这四大名著中随机选取两部作为学生暑期必读书籍,请用树状图或 列表的方法求恰好选中《三国演义》和《红楼梦》的概率. 24.“六•一”前夕质监部门从某超市经销的儿童玩具、童车和童装中共抽查了 300 件儿童用 品,以下是根据抽查结果绘制出的不完整的统计表和扇形图;
9.如图,AC 是⊙O 的内接正四边形的一边,点 B 在弧 AC 上,且 BC 是⊙O 的内接正六边 形的一边.若 AB 是⊙O 的内接正 n 边形的一边,则 n 的值为( )
A.6
B.8
C.10
D.12
10.若将抛物线 y=x2 平移,得到新抛物线 y (x 3)2 ,则下列平移方法中,正确的是
2.A
解析:A 【解析】 【分析】 根据题意可知 b=3-b2,a+b=-1,ab=-3,所求式子化为 a2-b+2019=a2-3+b2+2019=(a+b)22ab+2016 即可求解. 【详解】
a , b 是方程 x2 x 3 0 的两个实数根, ∴ b 3 b2 , a b 1, ab -3,
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C 解析:C 【解析】 【分析】 根据垂径定理的推论:弦的垂直平分线必过圆心,分别作 AB,BC 的垂直平分线即可得到 答案. 【详解】
解:作 AB 的垂直平分线,作 BC 的垂直平分线,如图, 它们都经过 Q,所以点 Q 为这条圆弧所在圆的圆心. 故选:C. 【点睛】 本题考查了垂径定理的推论:弦的垂直平分线必过圆心.这也常用来确定圆心的方法.
A 2 {AB BD , 3 4
∴△ABG≌△DBH(ASA), ∴四边形 GBHD 的面积等于△ABD 的面积,
∴图中阴影部分的面积是:S 扇形 EBF-S△ABD= 60 22 1 2 3 360 2
= 2 3 . 3
故选 B.
8.A
解析:A 【解析】 【分析】 根据二次函数的性质得到抛物线 y=-(x+1)2+k(k 为常数)的开口向下,对称轴为直线 x=﹣1,然后根据三个点离对称轴的远近判断函数值的大小. 【详解】 解:∵抛物线 y=-(x+1)2+k(k 为常数)的开口向下,对称轴为直线 x=﹣1,而 A(2,
A.2023
B.2021
C.2020
D.2019
3.把抛物线 y=2(x﹣3)2+k 向下平移 1 个单位长度后经过点(2,3),则 k 的值是( )
A.2
B.1
C.0
D.﹣1
4.把抛物线 y=﹣2x2 向上平移 1 个单位,再向右平移 1 个单位,得到的抛物线是
()
A.y=﹣2(x+1)2+1
B.y=﹣2(x﹣1)2+1
∵四边形 ABCD 是菱形,∠A=60°, ∴∠ADC=120°, ∴∠1=∠2=60°, ∴△DAB 是等边三角形, ∵AB=2,
∴△ABD 的高为 3 ,
∵扇形 BEF 的半径为 2,圆心角为 60°, ∴∠4+∠5=60°,∠3+∠5=60°, ∴∠3=∠4, 设 AD、BE 相交于点 G,设 BF、DC 相交于点 H, 在△ABG 和△DBH 中,
C.经过原点
D.在对称轴右侧部分是下降的
二、填空题
13.如图,在矩形 ABCD 中,AD=3,将矩形 ABCD 绕点 A 逆时针旋转,得到矩形 AEFG,点 B 的对应点 E 落在 CD 上,且 DE=EF,则 AB 的长为_____.
14.若⊙O 的直径是 4,圆心 O 到直线 l 的距离为 3,则直线 l 与⊙O 的位置关系是 _________. 15.在平面直角坐标系中,已知点 P0 的坐标为(2,0),将点 P0 绕着原点 O 按逆时针方 向旋转 60°得点 P1,延长 OP1 到点 P2,使 OP2=2OP1,再将点 P2 绕着原点 O 按逆时针方向 旋转 60°得点 P3,则点 P3 的坐标是_____. 16.心理学家发现:学生对概念的接受能力 y 与提出概念的时间 x(分)之间的关系式为 y=﹣0.1x2+2.6x+43(0≤x≤30),若要达到最强接受能力 59.9,则需________ 分钟.
22.关于 x 的一元二次方程 x2 3x k 0 有实数根. (1)求 k 的取值范围;
(2)如果 k 是符合条件的最大整数,且一元二次方程 m 1 x2 x m 3 0 与方程
x2 3x k 0 有一个相同的根,求此时 m 的值.
23.我国中小学生迎来了新版“教育部统编义务教育语文教科书”,本次“统编本”教材
4.B
解析:B 【解析】 【详解】 ∵函数 y=-2x2 的顶点为(0,0), ∴向上平移 1 个单位,再向右平移 1 个单位的顶点为(1,1), ∴将函数 y=-2x2 的图象向上平移 1 个单位,再向右平移 1 个单位,得到抛物线的解析式为
y=-2(x-1)2+1, 故选 B. 【点睛】 二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移 改变顶点的横坐标得到新抛物线的顶点.
19.若二次函数 y=x2﹣3x+3﹣m 的图象经过原点,则 m=_____. 20.某校组织“优质课大赛”活动,经过评比有两名男教师和两名女教师获得一等奖,学校 将从这四名教师中随机挑选两位教师参加市教育局组织的决赛,挑选的两位教师恰好是一 男一女的概率为____. 三、解答题 21.如图,BC 是半圆 O 的直径,D 是弧 AC 的中点,四边形 ABCD 的对角线 AC、BD 交于 点 E. (1)求证:△DCE∽△DBC; (2)若 CE= 5 ,CD=2,求直径 BC 的长.