上海市北初级中学数学几何模型压轴题单元测试卷附答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海市北初级中学数学几何模型压轴题单元测试卷附答案
一、初三数学旋转易错题压轴题(难)
1.在Rt△ACB和Rt△AEF中,∠ACB=∠AEF=90°,若点P是BF的中点,连接PC,PE.
(1) 如图1,若点E,F分别落在边AB,AC上,求证:PC=PE;
(2) 如图2,把图1中的△AEF绕着点A顺时针旋转,当点E落在边CA的延长线上时,探索PC与PE的数量关系,并说明理由.
(3) 如图3,把图2中的△AEF绕着点A顺时针旋转,点F落在边AB上.其他条件不变,问题(2)中的结论是否发生变化?如果不变,请加以证明;如果变化,请说明理由.
【答案】(1)见解析;(2)PC=PE,理由见解析;(3)成立,理由见解析
【解析】
【分析】
(1)利用直角三角形斜边的中线等于斜边的一半,即可;
(2)先判断△CBP≌△HPF,再利用直角三角形斜边的中线等于斜边的一半;
(3)先判断△DAF≌△EAF,再判断△DAP≌△EAP,然后用比例式即可;
【详解】
解:(1)证明:如图:
∵∠ACB=∠AEF=90°,
∴△FCB和△BEF都为直角三角形.
∵点P是BF的中点,
∴CP=1
2BF,EP=
1
2
BF,
∴PC=PE.
(2)PC=PE理由如下:
如图2,延长CP,EF交于点H,
∵∠ACB=∠AEF=90°,
∴EH//CB,
∴∠CBP=∠PFH,∠H=∠BCP,
∵点P是BF的中点,
∴PF=PB,
∴△CBP≌△HFP(AAS),
∴PC=PH,
∵∠AEF=90°,
∴在Rt△CEH中,EP=1
2
CH,
∴PC=PE.
(3)(2)中的结论,仍然成立,即PC=PE,理由如下:
如图3,过点F作FD⊥AC于点D,过点P作PM⊥AC于点M,连接PD,
∵∠DAF=∠EAF,∠FDA=∠FEA=90°,
在△DAF和△EAF中,
DAF,
,
,
EAF
FDA FEA
AF AF
∠=∠
⎧
⎪
∠=∠
⎨
⎪=
⎩
∴△DAF≌△EAF(AAS),
∴AD=AE,
在△DAP≌△EAP中,
,
,
,
AD AE
DAP EAP
AP AP
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
∴△DAP≌△EAP (SAS),
∴PD=PF,
∵FD⊥AC,BC⊥AC,PM⊥AC,
∴FD//BC//PM,
∴DM FP
MC PB
=,
∵点P是BF的中点,
∴DM=MC,
又∵PM⊥AC,
∴PC=PD,
又∵PD=PE,
∴PC=PE.
【点睛】
此题是几何变换综合题,主要考查了直角三角形斜边的中线等于斜边一半,全等三角形的性质和判定,相似三角形的性质和判定,作出辅助线是解本题的关键也是难点.
2.在△ABC中,∠C=90°,AC=BC=6.
(1)如图1,若将线段AB绕点B逆时针旋转90°得到线段BD,连接AD,则△ABD的面积为.
(2)如图2,点P为CA延长线上一个动点,连接BP,以P为直角顶点,BP为直角边作等腰直角△BPQ,连接AQ,求证:AB⊥AQ;
(3)如图3,点E,F为线段BC上两点,且∠CAF=∠EAF=∠BAE,点M是线段AF上一个动点,点N是线段AC上一个动点,是否存在点M,N,使CM+NM的值最小,若存在,求出最小值:若不存在,说明理由.
【答案】(1)36;(2)详见解析;(3)存在,最小值为3.
【解析】
【分析】
(1)根据旋转的性质得到△ABD是等腰直角三角形,求得AD=2BC=12,根据三角形的面积公式即可得到结论;
(2)如图2,过Q作QH⊥CA交CA的延长线于H,根据等腰直角三角形的性质,得到PQ =PB,∠BPQ=90°,根据全等三角形的性质得到PH=BC,QH=CP,求得CP=AH,得到∠HAQ=45°,于是得到∠BAQ=180°﹣45°﹣45°=90°,即可得到结论;
(3)根据已知条件得到∠CAF=∠EAF=∠BAE=15°,求得∠EAC=30°,如图3,作点C关于AF的对称点D,过D作DN⊥AC于N交AF于M,则此时,CM+NM的值最小,且最小值=DN,求得AD=AC=6,根据直角三角形的性质即可得到结论.
【详解】
解:(1)∵将线段AB绕点B逆时针旋转90°得到线段BD,
∴△ABD是等腰直角三角形,
∵∠ACB=90°,∴BC⊥AD,
∴AD=2BC=12,
∴△ABD的面积=1
2
AD•BC=
1
2
12×6=36,
故答案为:36;
(2)如图,过Q作QH⊥CA交CA的延长线于H,
∴∠H=∠C=90°,
∵△BPQ是等腰直角三角形,
∴PQ=PB,∠BPQ=90°,
∴∠HPQ+∠BPC=∠QPH+∠PQH=90°,
∴∠PQH=∠BPC,
∴△PQH≌△BPC(AAS),
∴PH=BC,QH=CP,
∵AC=BC,
∴PH=AC,
∴CP=AH,
∴QH=AH,
∴∠HAQ=45°,
∵∠BAC=45°,
∴∠BAQ=180°﹣45°﹣45°=90°,
∴AB⊥AQ;
(3)如图,作点C关于AF的对称点D,过D作DN⊥AC于N交AF于M,
∵∠CAF=∠EAF=∠BAE,∠BAC=45°,
∴∠CAF=∠EAF=∠BAE=15°,
∴∠EAC=30°,
则此时,CM+NM的值最小,且最小值=DN,