应用回归分析_第6章课后习题答案 2

合集下载

《应用回归分析》课后题标准答案

《应用回归分析》课后题标准答案

3
(5)由于 1
N
(1,
2 Lxx
)
t
1 1 2 / Lxx
(1
)
Lxx
服从自由度为 n-2 的 t 分布。因而
P
|
(
1
)
Lxx
|
t
/
2
(n
2)
1
也即: p(1 t /2
Lxx
1 1 t /2
) =1 Lxx
可得
ቤተ መጻሕፍቲ ባይዱ
1
的置信度为95%的置信区间为(7-2.353
1 3
33,7+2.353 1 3
1
第二章 一元线性回归
2.14 解答:(1)散点图为:
(2)x 与 y 之间大致呈线性关系。
(3)设回归方程为 y 0 1 x
n
xi yi n x y
1=
i 1 n
7
xi2 n(x)2
i 1
0 y 1 x 20 7 3 1
可得回归方程为 y 1 7x
2
(4)
1 n-2
1.5 回归变量的设置理论根据是什么?在回归变量设置时应注意哪些问题? 答:理论判断某个变量应该作为解释变量,即便是不显著的,如果理论上无法判 断那么可以采用统计方法来判断,解释变量和被解释变量存在统计关系。应注意 的问题有:在选择变量时要注意与一些专门领域的专家合作,不要认为一个回归 模型所涉及的变量越多越好,回归变量的确定工作并不能一次完成,需要反复试 算,最终找出最合适的一些变量。
t /2
0
0
1 n
( x)2 Lxx
t
/
2
)
1
可得 1的置信度为95%的置信区间为( 7.77,5.77)

应用回归分析-课后习题答案-何晓群

应用回归分析-课后习题答案-何晓群

(11)当广告费 x0 =万元时,销售收入 y0 28.4万元,置信度为95%的 置信区间
近似为 y 2 ,即(,)
解答:
(1) 散点图为:
(2)x 与 y 之间大致呈线性关系。
(3)设回归方程为 y 0 1 x
n
1 =
i 1 n
xi yi n x y
xi2 n(x)2
(26370 21717) (7104300 5806440)
Mahal。 距离 Cook 的距离
.894 .000
极大值
均值
.000
.00000 .000
.486
标准 偏差 N
10 10
10 10 10
.816
10
10 10 10
10
.976
10
居中杠杆值 a. 因变量: y
.099
.642
.300
.173
10
所以置信区间为(,) (10)由于 x3 的回归系数显著性检验未通过,所以居民非商品支出对货运总量 影响不大,但是回归方程整体对数据拟合较好
即为:(,)
0
N
(0
,
(
1 n
(x)2 Lxx
)
2
)
t
0 0
0 0
(
1
(
x)2
)
2
1 (x)2
n Lxx
n Lxx
服从自由度为 n-2 的 t 分布。因而
P |
0 0
1 (x)2
| t /2 (n 2) 1
n Lxx
即 p(0
1 n
(x)2 Lxx
t /2
0
0
1 n

回归分析习题及答案.doc

回归分析习题及答案.doc

1.1回归分析的基本思想及其初步应用例题:1.在画两个变量的散点图时,下面哪个叙述是正确的()(A)预报变量在x轴上,解释变量在y轴上(B)解释变量在X轴上,预报变量在y轴上(0可以选择两个变量中任意一个变量在x轴上(D)可以选择两个变量中任意一个变量在y轴上解析:通常把自变量X称为解析变量,因变量y称为预报变量.选B2,若一组观测值(xi, yi) (x2, y2) ••- (x…, y n)之间满足 y-bxi+a+e;(i=l> 2. •••!!)若巳恒为0,则仁为_____________解析:e』亘为0,说明随机误差对方贡献为0.答案:1.3.假设关于某设备的使用年限x和所支出的维修费用y (万兀),有如下的统计资料:X 2 3 4 5 6y 22 38 55 65 70若由资料可知y对x呈线性相关关系试求:(1)线性回归方程;(2)估计使用年限为10年时,维修费用是多少?解:(1)列表如下:i 1 2 3 4 5X] 2 3 4 5 622 38 55 65 70时•44 114 220 325 420X; 4 9 16 25 36_ _ 5 5x = 4, y = 5,»;=9o, »,北=112.3z'=l z'=l5 ___况一5xy干旱,仃112.3-5x4x5 …c十正方= ------------- = ------------ -- = 1.23,S,厂2 90 —5x42小「- 5x<=|a = y -bx = 5-1.23x4 = 0.08线性回归方程为:y =bx + a = 1.23x + Q.QS ( 2 )当 x=10 时,y = 1.23x10 + 0.08 = 12.38 (万兀)即估计使用10年时维修费用是1238万元课后练习:1.一位母亲记录了儿子3~9岁的身高,由此建立的身高与年龄的回归模型为y=7. 19x+73.93 用这个模型预测这个孩子10岁时的身高,则正确的叙述是()A.身高一定是145. 83cm;B.身高在145. 83cm以上;C.身高在145. 83cm以下;D.身I W J在 145. 83cm 左右.2.两个变量y与x的回归模型中,分别选择了 4个不同模型,它们的相关指数人2如下,其中拟合效果最好的模型是()A.模型1的相关指数人2为0. 98B.模型2的相关指数R2为。

应用回归分析_第2章课后习题参考答案.

应用回归分析_第2章课后习题参考答案.

应用回归分析_第2章课后习题参考答案1. 简答题1.1 什么是回归分析?回归分析是一种统计建模方法,用于研究自变量与因变量之间的关系。

它通过建立数学模型,根据已知的自变量和因变量数据,预测因变量与自变量之间的关系,并进行相关的推断和预测。

1.2 什么是简单线性回归和多元线性回归?简单线性回归是指只包含一个自变量和一个因变量的回归模型,通过拟合一条直线来描述两者之间的关系。

多元线性回归是指包含多个自变量和一个因变量的回归模型,通过拟合一个超平面来描述多个自变量和因变量之间的关系。

1.3 什么是残差?残差是指回归模型中,观测值与模型预测值之间的差异。

在回归分析中,我们希望最小化残差,使得模型与观测数据的拟合效果更好。

1.4 什么是拟合优度?拟合优度是用来评估回归模型对观测数据的拟合程度的指标。

一般使用R方(Coefficient of Determination)来表示拟合优度,其值范围为0到1,值越接近1表示模型拟合效果越好。

2. 计算题2.1 简单线性回归假设我们有一组数据,其中X为自变量,Y为因变量,如下所示:X Y13253749511我们想要建立一个简单线性回归模型,计算X与Y之间的线性关系。

首先,我们需要计算拟合直线的斜率和截距。

根据简单线性回归模型的公式Y = β0 + β1*X,我们可以通过最小二乘法计算出斜率和截距的估计值。

首先,计算X和Y的均值:mean_x = (1 + 2 + 3 + 4 + 5) / 5 = 3mean_y = (3 + 5 + 7 + 9 + 11) / 5 = 7然后,计算X和Y的方差:var_x = ((1-3)^2 + (2-3)^2 + (3-3)^2 + (4-3)^2 + (5-3)^2) / 5 = 2var_y = ((3-7)^2 + (5-7)^2 + (7-7)^2 + (9-7)^2 + (11-7)^2) / 5 = 8接下来,计算X和Y的协方差:cov_xy = ((1-3) * (3-7) + (2-3) * (5-7) + (3-3) * (7-7) + (4-3) * (9-7) + (5-3) * (11-7)) / 5 = 4根据最小二乘法的公式:β1 = cov_xy / var_x = 4 / 2 = 2β0 = mean_y - β1 * mean_x = 7 - (2 * 3) = 1因此,拟合直线的方程为:Y = 1 + 2X。

《应用回归分析》课后题答案[整理版]

《应用回归分析》课后题答案[整理版]

《应用回归分析》课后题答案[整理版] 《应用回归分析》部分课后习题答案第一章回归分析概述 1.1 变量间统计关系和函数关系的区别是什么, 答:变量间的统计关系是指变量间具有密切关联而又不能由某一个或某一些变量唯一确定另外一个变量的关系,而变量间的函数关系是指由一个变量唯一确定另外一个变量的确定关系。

1.2 回归分析与相关分析的联系与区别是什么, 答:联系有回归分析和相关分析都是研究变量间关系的统计学课题。

区别有a.在回归分析中,变量y称为因变量,处在被解释的特殊地位。

在相关分析中,变量x和变量y处于平等的地位,即研究变量y与变量x的密切程度与研究变量x与变量y的密切程度是一回事。

b.相关分析中所涉及的变量y与变量x全是随机变量。

而在回归分析中,因变量y是随机变量,自变量x可以是随机变量也可以是非随机的确定变量。

C.相关分析的研究主要是为了刻画两类变量间线性相关的密切程度。

而回归分析不仅可以揭示变量x 对变量y的影响大小,还可以由回归方程进行预测和控制。

1.3 回归模型中随机误差项ε的意义是什么, 答:ε为随机误差项,正是由于随机误差项的引入,才将变量间的关系描述为一个随机方程,使得我们可以借助随机数学方法研究y与x1,x2…..xp的关系,由于客观经济现象是错综复杂的,一种经济现象很难用有限个因素来准确说明,随机误差项可以概括表示由于人们的认识以及其他客观原因的局限而没有考虑的种种偶然因素。

1.4 线性回归模型的基本假设是什么,答:线性回归模型的基本假设有:1.解释变量x1.x2….xp是非随机的,观测值xi1.xi2…..xip是常数。

2.等方差及不相关的假定条件为{E(εi)=0 i=1,2….Cov(εi,εj)=,σ^23.正态分布的假定条件为相互独立。

4.样本容量的个数要多于解释变量的个数,即n>p.1.5 回归变量的设置理论根据是什么,在回归变量设置时应注意哪些问题,答:理论判断某个变量应该作为解释变量,即便是不显著的,如果理论上无法判断那么可以采用统计方法来判断,解释变量和被解释变量存在统计关系。

应用回归分析_整理课后习题参考题答案

应用回归分析_整理课后习题参考题答案

第二章 一元线性回归分析思考与练习参考答案2.1 一元线性回归有哪些基本假定?答: 假设1、解释变量X 是确定性变量,Y 是随机变量;假设2、随机误差项ε具有零均值、同方差和不序列相关性: E(εi )=0 i=1,2, …,n Var (εi )=σ2 i=1,2, …,n Cov(εi, εj )=0 i≠j i,j= 1,2, …,n 假设3、随机误差项ε与解释变量X 之间不相关: Cov(X i , εi )=0 i=1,2, …,n 假设4、ε服从零均值、同方差、零协方差的正态分布 εi ~N(0, σ2 ) i=1,2, …,n 2.2 考虑过原点的线性回归模型 Y i =β1X i +εi i=1,2, …,n误差εi (i=1,2, …,n)仍满足基本假定。

求β1的最小二乘估计 解: 得:2.3 证明(2.27式),∑e i =0 ,∑e i X i =0 。

证明:其中:即: ∑e i =0 ,∑e i X i =0∑∑+-=-=nii i ni X Y Y Y Q 121021))ˆˆ(()ˆ(ββ21112)ˆ()ˆ(ini i ni i i e X Y Y Y Q β∑∑==-=-=01ˆˆˆˆi ii i iY X e Y Y ββ=+=-0100ˆˆQQββ∂∂==∂∂2.4回归方程E (Y )=β0+β1X 的参数β0,β1的最小二乘估计与最大似然估计在什么条件下等价?给出证明。

答:由于εi ~N(0, σ2 ) i=1,2, …,n所以Y i =β0 + β1X i + εi ~N (β0+β1X i , σ2 ) 最大似然函数:使得Ln (L )最大的0ˆβ,1ˆβ就是β0,β1的最大似然估计值。

同时发现使得Ln (L )最大就是使得下式最小,上式恰好就是最小二乘估计的目标函数相同。

值得注意的是:最大似然估计是在εi ~N (0, σ2 )的假设下求得,最小二乘估计则不要求分布假设。

最新应用回归分析-第6章课后习题参考答案

最新应用回归分析-第6章课后习题参考答案

第6章多重共线性的情形及其处理思考与练习参考答案6.1 试举一个产生多重共线性的经济实例。

答:例如有人建立某地区粮食产量回归模型,以粮食产量为因变量Y,化肥用量为X1,水浇地面积为X2,农业投入资金为X3。

由于农业投入资金X3与化肥用量X1,水浇地面积X2有很强的相关性,所以回归方程效果会很差。

再例如根据某行业企业数据资料拟合此行业的生产函数时,资本投入、劳动力投入、资金投入与能源供应都与企业的生产规模有关,往往出现高度相关情况,大企业二者都大,小企业都小。

6.2多重共线性对回归参数的估计有何影响?答:1、完全共线性下参数估计量不存在;2、近似共线性下OLS估计量非有效;3、参数估计量经济含义不合理;4、变量的显著性检验失去意义;5、模型的预测功能失效。

6.3 具有严重多重共线性的回归方程能不能用来做经济预测?答:虽然参数估计值方差的变大容易使区间预测的“区间”变大,使预测失去意义。

但如果利用模型去做经济预测,只要保证自变量的相关类型在未来期中一直保持不变,即使回归模型中包含严重多重共线性的变量,也可以得到较好预测结果;否则会对经济预测产生严重的影响。

6.4多重共线性的产生于样本容量的个数n、自变量的个数p有无关系?答:有关系,增加样本容量不能消除模型中的多重共线性,但能适当消除多重共线性造成的后果。

当自变量的个数p较大时,一般多重共线性容易发生,所以自变量应选择少而精。

6.5 自己找一个经济问题来建立多元线性回归模型,怎样选择变量和构造设计矩阵X才可能避免多重共线性的出现?答:请参考第三次上机实验题——机场吞吐量的多元线性回归模型,注意利用二手数据很难避免多重共线性的出现,所以一般利用逐步回归和主成分回归消除多重共线性。

如果进行自己进行试验设计如正交试验设计,并收集数据,选择向量使设计矩阵X 的列向量(即X 1,X 2, X p )不相关。

6.6对第5章习题9财政收入的数据分析多重共线性,并根据多重共线性剔除变量。

《应用回归分析》课后题答案解析

《应用回归分析》课后题答案解析

(8) t
1
2
/ Lxx
1
Lxx
2
其中
1 n2
n i1
ei 2
1 n2
n i1
( yi
2
yi )
0.0036 1297860 8.542 0.04801
t /2 1.895
t 8.542 t /2
接受原假设 H 0: 1 0, 认为 1 显著不为 0,因变量 y 对自变量 x 的一元线性回归成立。
( yi
2
yi )
1 n-2
n i=1
( yi
( 0 1
2
x))
=
1 3
( 10-(-1+71))2 (10-(-1+7 (20-(-1+7 4))2 (40-(-1+7
2))2 (20-(-1+7 5))2
3))2
1 16 9 0 49 36
3
110 / 3
1
330 6.1
《应用回归分析》部分课后习题答案
第一章 回归分析概述
变量间统计关系和函数关系的区别是什么 答:变量间的统计关系是指变量间具有密切关联而又不能由某一个或某一些变量 唯一确定另外一个变量的关系,而变量间的函数关系是指由一个变量唯一确定另 外一个变量的确定关系。
回归分析与相关分析的联系与区别是什么 答:联系有回归分析和相关分析都是研究变量间关系的统计学课题。区别有 a. 在回归分析中,变量 y 称为因变量,处在被解释的特殊地位。在相关分析中,变 量 x 和变量 y 处于平等的地位,即研究变量 y 与变量 x 的密切程度与研究变量 x 与变量 y 的密切程度是一回事。b.相关分析中所涉及的变量 y 与变量 x 全是随机 变量。而在回归分析中,因变量 y 是随机变量,自变量 x 可以是随机变量也可以 是非随机的确定变量。C.相关分析的研究主要是为了刻画两类变量间线性相关的 密切程度。而回归分析不仅可以揭示变量 x 对变量 y 的影响大小,还可以由回归 方程进行预测和控制。

应用回归分析_整理课后习题参考答案

应用回归分析_整理课后习题参考答案

第二章 一元线性回归分析思考与练习参考答案2.1 一元线性回归有哪些基本假定答: 假设1、解释变量X 是确定性变量,Y 是随机变量;假设2、随机误差项ε具有零均值、同方差和不序列相关性: E(εi )=0 i=1,2, …,n Var (εi )=?2 i=1,2, …,n Cov(εi, εj )=0 i≠j i,j= 1,2, …,n 假设3、随机误差项ε与解释变量X 之间不相关: Cov(X i , εi )=0 i=1,2, …,n假设4、ε服从零均值、同方差、零协方差的正态分布 εi ~N(0, ?2 ) i=1,2, …,n 2.2 考虑过原点的线性回归模型 Y i =β1X i +εi i=1,2, …,n误差εi (i=1,2, …,n )仍满足基本假定。

求β1的最小二乘估计 解: 得:2.3 证明(2.27式),?e i =0 ,?e i X i =0 。

证明:∑∑+-=-=nii i ni X Y Y Y Q 121021))ˆˆ(()ˆ(ββ其中: 即: ?e i =0 ,?e i X i =02.4回归方程E (Y )=β0+β1X 的参数β0,β1的最小二乘估计与最大似然估计在什么条件下等价给出证明。

答:由于εi ~N(0, ?2 ) i=1,2, …,n所以Y i =β0 + β1X i + εi ~N (β0+β1X i , ?2 ) 最大似然函数:21112)ˆ()ˆ(ini i ni i i e X Y Y Y Q β∑∑==-=-=01ˆˆˆˆi ii i iY X e Y Y ββ=+=-0100ˆˆQQββ∂∂==∂∂使得Ln (L )最大的0ˆβ,1ˆβ就是β0,β1的最大似然估计值。

同时发现使得Ln (L )最大就是使得下式最小,上式恰好就是最小二乘估计的目标函数相同。

值得注意的是:最大似然估计是在εi ~N (0, ?2 )的假设下求得,最小二乘估计则不要求分布假设。

应用回归分析(第三版)何晓群_刘文卿_课后习题答案_完整版

应用回归分析(第三版)何晓群_刘文卿_课后习题答案_完整版

第二章 一元线性回归分析思考与练习参考答案2.1 一元线性回归有哪些基本假定?答: 假设1、解释变量X 是确定性变量,Y 是随机变量;假设2、随机误差项ε具有零均值、同方差和不序列相关性: E(εi )=0 i=1,2, …,n Var (εi )=σ2 i=1,2, …,n Cov(εi, εj )=0 i≠j i,j= 1,2, …,n假设3、随机误差项ε与解释变量X 之间不相关: Cov(X i , εi )=0 i=1,2, …,n假设4、ε服从零均值、同方差、零协方差的正态分布 εi ~N(0, σ2 ) i=1,2, …,n 2.2 考虑过原点的线性回归模型 Y i =β1X i +εi i=1,2, …,n误差εi (i=1,2, …,n)仍满足基本假定。

求β1的最小二乘估计 解:21112)ˆ()ˆ(ini i ni i i e X Y Y Y Q β∑∑==-=-=得:2.3 证明(2.27式),∑e i =0 ,∑e i X i =0 。

证明:∑∑+-=-=nii i ni X Y Y Y Q 121021))ˆˆ(()ˆ(ββ其中:即: ∑e i =0 ,∑e i X i =02.4回归方程E (Y )=β0+β1X 的参数β0,β1的最小二乘估计与最大似然估计在什么条件下等价?给出证明。

答:由于εi ~N(0, σ2 ) i=1,2, …,n所以Y i =β0 + β1X i + εi ~N (β0+β1X i , σ2 ) 最大似然函数:)()(ˆ1211∑∑===ni ini ii XY X β01ˆˆˆˆi ii i iY X e Y Y ββ=+=-0100ˆˆQQββ∂∂==∂∂使得Ln (L )最大的0ˆβ,1ˆβ就是β0,β1的最大似然估计值。

同时发现使得Ln (L )最大就是使得下式最小,∑∑+-=-=nii i ni X Y Y Y Q 121021))ˆˆ(()ˆ(ββ上式恰好就是最小二乘估计的目标函数相同。

应用回归分析-第2章课后习题参考答案

应用回归分析-第2章课后习题参考答案

第二章 一元线性回归分析思考与练习参考答案2.1 一元线性回归有哪些基本假定?答: 假设1、解释变量X 是确定性变量,Y 是随机变量;假设2、随机误差项ε具有零均值、同方差和不序列相关性: E(εi )=0 i=1,2, …,n Var (εi )=σ2 i=1,2, …,n Cov(εi, εj )=0 i≠j i,j= 1,2, …,n 假设3、随机误差项ε与解释变量X 之间不相关: Cov(X i , εi )=0 i=1,2, …,n假设4、ε服从零均值、同方差、零协方差的正态分布 εi ~N(0, σ2 ) i=1,2, …,n 2.2 考虑过原点的线性回归模型 Y i =β1X i +εi i=1,2, …,n误差εi (i=1,2, …,n )仍满足基本假定。

求β1的最小二乘估计 解: 得:2.3 证明(2.27式),∑e i =0 ,∑e i X i =0 。

证明:∑∑+-=-=nii i ni X Y Y Y Q 121021))ˆˆ(()ˆ(ββ其中: 即: ∑e i =0 ,∑e i X i =02.4回归方程E (Y )=β0+β1X 的参数β0,β1的最小二乘估计与最大似然估计在什么条件下等价?给出证明。

答:由于εi ~N(0, σ2 ) i=1,2, …,n所以Y i =β0 + β1X i + εi ~N (β0+β1X i , σ2 ) 最大似然函数:使得Ln (L )最大的0ˆβ,1ˆβ就是β0,β1的最大似然估计值。

同时发现使得Ln (L )最大就是使得下式最小,上式恰好就是最小二乘估计的目标函数相同。

值得注意的是:最大似然估计是在εi ~N (0, σ2 )21112)ˆ()ˆ(i ni i ni ii e X Y Y Y Q β∑∑==-=-=01ˆˆˆˆi ii i iY X e Y Y ββ=+=-0100ˆˆQQββ∂∂==∂∂的假设下求得,最小二乘估计则不要求分布假设。

应用回归分析第四版答案

应用回归分析第四版答案

应用回归分析第四版答案【篇一:应用回归分析人大版前四章课后习题答案详解】应用回归分析(1-4章习题详解)(21世纪统计学系列教材,第二(三)版,何晓群,刘文卿编著中国人民大学出版社)目录1 回归分析概述 ....................................................................................................... (6)1.1 变量间统计关系和函数关系的区别是什么? (6)1.2 回归分析与相关分析的区别与联系是什么? (7)1.3回归模型中随机误差项?的意义是什么? (7)1.4线性回归模型的基本假设是什么? (7)1.5 回归模型的设置理论根据是什么?在回归变量设置中应该注意哪些问题? (8)1.6收集,整理数据包括哪些内容? (8)1.7构造回归理论模型的基本根据是什么? (9)1.8为什么要对回归模型进行检验? (9)1.9回归模型有哪几个方面的应用? (10)1.10为什么强调运用回归分析研究经济问题要定性分析和定量分析相结合? (10)2 一元线性回归 ....................................................................................................... . (10)2.1一元线性回归模型有哪些基本假定? (10)2.2考虑过原点的线性回归模型足基本假定,求ny??*x??i1ii,i?1,2,...n 误差?1,?2,...?n仍满?1的最小二乘估计。

.............................................................................. 11 n2.3证明?e?o,?xe?0. .................................................................................. . (11)i?1ii?1ii2.4回归方程e(y)????x的参数?,?o101的最小二乘估计与最大似然估计在什么条件下等价?给出理由? (12)2.5证明??0是??0的无偏估计。

《应用回归分析》课后习题部分答案何晓群版

《应用回归分析》课后习题部分答案何晓群版

第二章 一元线性回归2.14 解答:(1)散点图为:(2)x 与y 之间大致呈线性关系。

(3)设回归方程为01y x ββ∧∧∧=+1β∧=12217()ni ii nii x y n x yxn x --=-=-=-∑∑0120731y x ββ-∧-=-=-⨯=-17y x ∧∴=-+可得回归方程为(4)22ni=11()n-2i i y y σ∧∧=-∑ 2n 01i=11(())n-2i y x ββ∧∧=-+∑=2222213⎡⎤⨯+⨯+⨯⎢⎥+⨯+⨯⎣⎦(10-(-1+71))(10-(-1+72))(20-(-1+73))(20-(-1+74))(40-(-1+75)) []1169049363110/3=++++=6.1σ∧=≈ (5)由于211(,)xxN L σββ∧t σ∧==服从自由度为n-2的t 分布。

因而/2|(2)1P t n αασ⎡⎤⎢⎥<-=-⎢⎥⎣⎦也即:1/211/2(p t t ααβββ∧∧∧∧-<<+=1α-可得195%β∧的置信度为的置信区间为(7-2.3537+2.353 即为:(2.49,11.5)2201()(,())xxx Nn L ββσ-∧+t ∧∧==服从自由度为n-2的t 分布。

因而/2(2)1P t n αα∧⎡⎤⎢⎥⎢⎥<-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦即0/200/2()1p βσββσα∧∧∧∧-<<+=- 可得195%7.77,5.77β∧-的置信度为的置信区间为()(6)x 与y 的决定系数22121()490/6000.817()nii nii y y r y y ∧-=-=-==≈-∑∑(7)由于(1,3)F F α>,拒绝0H ,说明回归方程显著,x 与y 有显著的线性关系。

(8)t σ∧==其中2221111()22n ni i i i i e y y n n σ∧∧====---∑∑ 7 3.661==≈ /2 2.353t α= /23.66t t α=>∴接受原假设01:0,H β=认为1β显著不为0,因变量y 对自变量x 的一元线性回归成立。

应用回归分析第四版课后习题答案_全_何晓群_刘文卿

应用回归分析第四版课后习题答案_全_何晓群_刘文卿

实用回归分析第四版第一章回归分析概述1.3回归模型中随机误差项ε的意义是什么?答:ε为随机误差项,正是由于随机误差项的引入,才将变量间的关系描述为一个随机方程,使得我们可以借助随机数学方法研究y与x1,x2…..xp的关系,由于客观经济现象是错综复杂的,一种经济现象很难用有限个因素来准确说明,随机误差项可以概括表示由于人们的认识以及其他客观原因的局限而没有考虑的种种偶然因素。

1.4 线性回归模型的基本假设是什么?答:线性回归模型的基本假设有:1.解释变量x1.x2….xp是非随机的,观测值xi1.xi2…..xip是常数。

2.等方差及不相关的假定条件为{E(εi)=0 i=1,2…. Cov(εi,εj)={σ^23.正态分布的假定条件为相互独立。

4.样本容量的个数要多于解释变量的个数,即n>p.第二章一元线性回归分析思考与练习参考答案2.1一元线性回归有哪些基本假定?答:假设1、解释变量X是确定性变量,Y是随机变量;假设2、随机误差项ε具有零均值、同方差和不序列相关性:E(εi)=0 i=1,2, …,nVar (εi)=σ2i=1,2, …,nCov(εi,εj)=0 i≠j i,j= 1,2, …,n假设3、随机误差项ε与解释变量X之间不相关:Cov(X i, εi)=0 i=1,2, …,n假设4、ε服从零均值、同方差、零协方差的正态分布εi~N(0, σ2) i=1,2, …,n2.3 证明(2.27式),∑e i =0 ,∑e i X i=0 。

证明:∑∑+-=-=niiiniXYYYQ12121))ˆˆ(()ˆ(ββ其中:即: ∑e i =0 ,∑e i X i =02.5 证明0ˆβ是β0的无偏估计。

证明:)1[)ˆ()ˆ(1110∑∑==--=-=ni i xxi n i i Y L X X X Y n E X Y E E ββ )] )(1([])1([1011i i xx i n i i xx i ni X L X X X n E Y L X X X n E εββ++--=--=∑∑==1010)()1(])1([βεβεβ=--+=--+=∑∑==i xx i ni i xx i ni E L X X X nL X X X n E 2.6 证明 证明:)] ()1([])1([)ˆ(102110i i xxi ni ixx i ni X Var L X X X n Y L X X X n Var Var εβββ++--=--=∑∑== 222212]1[])(2)1[(σσxx xx i xx i ni L X n L X X X nL X X X n +=-+--=∑=2.7 证明平方和分解公式:SST=SSE+SSR证明:2.8 验证三种检验的关系,即验证: (1)21)2(r r n t --=;(2)2221ˆˆ)2/(1/t L n SSE SSR F xx ==-=σβ 01ˆˆˆˆi i i i iY X e Y Y ββ=+=-())1()1()ˆ(222122xx ni iL X n X XX nVar +=-+=∑=σσβ()()∑∑==-+-=-=n i ii i n i i Y Y Y Y Y Y SST 1212]ˆ()ˆ[()()()∑∑∑===-+--+-=ni ii ni i i i ni iY Y Y Y Y Y Y Y 12112)ˆˆ)(ˆ2ˆ()()SSESSR )Y ˆY Y Y ˆn1i 2ii n1i 2i +=-+-=∑∑==0100ˆˆQQββ∂∂==∂∂证明:(1)ˆt======(2)2222201111 1111ˆˆˆˆˆˆ()()(())(()) n n n ni i i i xxi i i iSSR y y x y y x x y x x Lβββββ=====-=+-=+--=-=∑∑∑∑2212ˆ/1ˆ/(2)xxLSSRF tSSE nβσ∴===-2.9 验证(2.63)式:2211σ)L)xx(n()e(Varxxii---=证明:0112222222ˆˆˆvar()var()var()var()2cov(,)ˆˆˆvar()var()2cov(,())()()11[]2[]()1[1]i i i i i i ii i i ii ixx xxixxe y y y y y yy x y y x xx x x xn L n Lx xn Lβββσσσσ=-=+-=++-+---=++-+-=--其中:222221111))(1()(1))(,()()1,())(ˆ,(),())(ˆ,(σσσββxxixxiniixxiiiniiiiiiiiLxxnLxxnyLxxyCovxxynyCovxxyCovyyCovxxyyCov-+=-+=--+=-+=-+∑∑==2.10 用第9题证明是σ2的无偏估计量证明:2221122112211ˆˆ()()()22()111var()[1]221(2)2n ni ii in niii i xxE E y y E en nx xen n n Lnnσσσσ=====-=---==----=-=-∑∑∑∑第三章2ˆ22-=∑neiσ1.一个回归方程的复相关系数R=0.99,样本决定系数R 2=0.9801,我们能判断这个回归方程就很理想吗? 答:不能断定这个回归方程理想。

应用回归分析_第2章课后习题参考答案

应用回归分析_第2章课后习题参考答案

第二章 一元线性回归分析思考与练习参考答案2.1 一元线性回归有哪些基本假定?答: 假设1、解释变量X 是确定性变量,Y 是随机变量;假设2、随机误差项ε具有零均值、同方差和不序列相关性: E(εi )=0 i=1,2, …,n Var (εi )=σ2 i=1,2, …,n Cov(εi, εj )=0 i≠j i,j= 1,2, …,n 假设3、随机误差项ε与解释变量X 之间不相关: Cov(X i , εi )=0 i=1,2, …,n假设4、ε服从零均值、同方差、零协方差的正态分布 εi ~N(0, σ2 ) i=1,2, …,n 2.2 考虑过原点的线性回归模型 Y i =β1X i +εi i=1,2, …,n误差εi (i=1,2, …,n )仍满足基本假定。

求β1的最小二乘估计 解: 得:2.3 证明(2.27式),∑e i =0 ,∑e i X i =0 。

证明:∑∑+-=-=nii i ni X Y Y Y Q 121021))ˆˆ(()ˆ(ββ其中:即: ∑e i =0 ,∑e i X i =021112)ˆ()ˆ(ini i ni i i e X Y Y Y Q β∑∑==-=-=0)ˆ(2ˆ111=--=∂∂∑=ii ni i eX X Y Q ββ)()(ˆ1211∑∑===ni i ni ii X Y X β01ˆˆˆˆi ii i iY X e Y Y ββ=+=-0100ˆˆQQββ∂∂==∂∂2.4回归方程E (Y )=β0+β1X 的参数β0,β1的最小二乘估计与最大似然估计在什么条件下等价?给出证明。

答:由于εi ~N(0, σ2 ) i=1,2, …,n所以Y i =β0 + β1X i + εi ~N (β0+β1X i , σ2 ) 最大似然函数:使得Ln (L )最大的0ˆβ,1ˆβ就是β0,β1的最大似然估计值。

同时发现使得Ln (L )最大就是使得下式最小,∑∑+-=-=nii i n i X Y Y Y Q 121021))ˆˆ(()ˆ(ββ上式恰好就是最小二乘估计的目标函数相同。

应用回归分析_第2章课后习题参考答案

应用回归分析_第2章课后习题参考答案

第二章 一元线性回归分析思考与练习参考答案2.1 一元线性回归有哪些基本假定?答: 假设1、解释变量X 是确定性变量,Y 是随机变量;假设2、随机误差项ε具有零均值、同方差和不序列相关性: E(εi )=0 i=1,2, …,n Var (εi )=σ2 i=1,2, …,n Cov(εi, εj )=0 i≠j i,j= 1,2, …,n 假设3、随机误差项ε与解释变量X 之间不相关: Cov(X i , εi )=0 i=1,2, …,n假设4、ε服从零均值、同方差、零协方差的正态分布 εi ~N(0, σ2 ) i=1,2, …,n 2.2 考虑过原点的线性回归模型 Y i =β1X i +εi i=1,2, …,n误差εi (i=1,2, …,n )仍满足基本假定。

求β1的最小二乘估计 解: 得:2.3 证明(2.27式),∑e i =0 ,∑e i X i =0 。

证明:∑∑+-=-=nii i ni X Y Y Y Q 121021))ˆˆ(()ˆ(ββ其中:即: ∑e i =0 ,∑e i X i =021112)ˆ()ˆ(ini i ni i i e X Y Y Y Q β∑∑==-=-=0)ˆ(2ˆ111=--=∂∂∑=ii ni i eX X Y Q ββ)()(ˆ1211∑∑===ni i ni ii X Y X β01ˆˆˆˆi ii i iY X e Y Y ββ=+=-0100ˆˆQQββ∂∂==∂∂2.4回归方程E (Y )=β0+β1X 的参数β0,β1的最小二乘估计与最大似然估计在什么条件下等价?给出证明。

答:由于εi ~N(0, σ2 ) i=1,2, …,n所以Y i =β0 + β1X i + εi ~N (β0+β1X i , σ2 ) 最大似然函数:使得Ln (L )最大的0ˆβ,1ˆβ就是β0,β1的最大似然估计值。

同时发现使得Ln (L )最大就是使得下式最小,∑∑+-=-=nii i n i X Y Y Y Q 121021))ˆˆ(()ˆ(ββ上式恰好就是最小二乘估计的目标函数相同。

应用回归分析,第6章课后习题参考答案

应用回归分析,第6章课后习题参考答案

第6章多重共线性的情形及其处理思考与练习参考答案6.1 试举一个产生多重共线性的经济实例。

答:例如有人建立某地区粮食产量回归模型,以粮食产量为因变量Y,化肥用量为X1,水浇地面积为X2,农业投入资金为X3。

由于农业投入资金X3与化肥用量X1,水浇地面积X2有很强的相关性,所以回归方程效果会很差。

再例如根据某行业企业数据资料拟合此行业的生产函数时,资本投入、劳动力投入、资金投入与能源供应都与企业的生产规模有关,往往出现高度相关情况,大企业二者都大,小企业都小。

6.2多重共线性对回归参数的估计有何影响?答:1、完全共线性下参数估计量不存在;2、近似共线性下OLS估计量非有效;3、参数估计量经济含义不合理;4、变量的显著性检验失去意义;5、模型的预测功能失效。

6.3 具有严重多重共线性的回归方程能不能用来做经济预测?答:虽然参数估计值方差的变大容易使区间预测的“区间”变大,使预测失去意义。

但如果利用模型去做经济预测,只要保证自变量的相关类型在未来期中一直保持不变,即使回归模型中包含严重多重共线性的变量,也可以得到较好预测结果;否则会对经济预测产生严重的影响。

6.4多重共线性的产生于样本容量的个数n、自变量的个数p有无关系?答:有关系,增加样本容量不能消除模型中的多重共线性,但能适当消除多重共线性造成的后果。

当自变量的个数p较大时,一般多重共线性容易发生,所以自变量应选择少而精。

6.5 自己找一个经济问题来建立多元线性回归模型,怎样选择变量和构造设计矩阵X才可能避免多重共线性的出现?答:请参考第三次上机实验题——机场吞吐量的多元线性回归模型,注意利用二手数据很难避免多重共线性的出现,所以一般利用逐步回归和主成分回归消除多重共线性。

如果进行自己进行试验设计如正交试验设计,并收集数据,选择向量使设计矩阵X的列向量(即X1,X2,X p)不相关。

6.6对第5章习题9财政收入的数据分析多重共线性,并根据多重共线性剔除变量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第6章
6.1 试举一个产生多重共线性的经济实例。

答:例如有人建立某地区粮食产量回归模型,以粮食产量为因变量Y,化肥用量为X1,水浇地面积为X2,农业投入资金为X3。

由于农业投入资金X3与化肥用量X1,水浇地面积X2有很强的相关性,所以回归方程效果会很差。

再例如根据某行业企业数据资料拟合此行业的生产函数时,资本投入、劳动力投入、资金投入与能源供应都与企业的生产规模有关,往往出现高度相关情况,大企业二者都大,小企业都小。

6.2多重共线性对回归参数的估计有何影响?
答:1、完全共线性下参数估计量不存在;
2、参数估计量经济含义不合理;
3、变量的显著性检验失去意义;
4、模型的预测功能失效。

6.3 具有严重多重共线性的回归方程能不能用来做经济预测?
答:虽然参数估计值方差的变大容易使区间预测的“区间”变大,使预测失去意义。

但如果利用模型去做经济预测,只要保证自变量的相关类型在未来期中一直保持不变,即使回归模型中包含严重多重共线性的变量,也可以得到较好预测结果;否则会对经济预测产生严重的影响。

6.4多重共线性的产生于样本容量的个数n、自变量的个数p有无关系?
答:有关系,增加样本容量不能消除模型中的多重共线性,但能适当消除多重共线性造成的后果。

当自变量的个数p较大时,一般多重共线性容易发生,所以自变量应选择少而精。

6.6对第5章习题9财政收入的数据分析多重共线性,并根据多重共线性剔除变量。

将所得结果与逐步回归法所得的选元结果相比较。

5.9 在研究国家财政收入时,我们把财政收入按收入形式分为:各项税收收入、企业收入、债务收入、国家能源交通重点建设收入、基本建设贷款归还收入、国家预算调节基金收入、其他收入等。

为了建立国家财政收入回归模型,我们以财政收入y(亿元)为因变量,自变量如下:x1为农业增加值(亿元),x2为工业增加值(亿元),x3为建筑业增加值(亿元),x4为人口数(万人),x5为社
会消费总额(亿元),x6为受灾面积(万公顷)。

据《中国统计年鉴》获得1978—1998年共21个年份的统计数据,见表5.4(P167)。

由定性分析知,所有自变量都与y有较强的相关性,分别用后退法和逐步回归法作自变量选元。

解:逐步回归法
回归方程为:
y=865.929—0.601x1-0.361x2+0.639x5
但是回归系数的解释不合理。

解:(1)分析数据的多重共线性。

直接进行Y与四个变量的线性回归方程,并做多重共线性的诊断,由SPSS分析得相应输出结果如下:
a方差扩大因子法,
由表1中VIF值, 可知x1,x2,x3,x5的方差扩大因子远大于10,这几个自变量之间存在很高的线性相关性,即回归方程存在严重的多重共线性。

b.特征根和条件数判定法。

输出结果如表2:
表1
表 2
其中最大的条件数k 7=290.443,说明自变量间存在严重的多重共线性,这与方差扩大因子法的结果一致。

其中x0,x2,x4,x5在第五行同时较大,表明其间存在多重共线性。

(2)消除多重共线性。

下面根据多重共线性剔除变量。

先剔除VIF 值最大的自变量2x ,得:
Coe fficients
a
-1503.1751546.931
-.972.347-.717.163-1.264-4.391.001.004
268.990-.801.467-.526-1.713.107.003305.769.029.017.102 1.695.111.08511.701.487.078 2.701 6.238.000.002609.067-.010.008
-.026
-1.177.258
.616
1.624
(Constant)x1x3x4x5x6
Model 1
B Std. E rror Unstandardized Coefficients Beta
Standardized
Coefficients
t
Sig.Tolerance VI F
Collinearity Statistics Dependent Variable: y
a.
从上表可以看出,VIF 的值中,除了6x 以外,其余的均大于10,故回归方程依然存在严重的多重共线性。

继续剔除VIF 值最大的自变量5x ,得:
从上表可以看出,VIF 的值中,除了6x 以外,其余的均大于10,故回归方程还存在严重的多重共线性。

继续剔除VIF 值最大的自变量1x ,得:
由上表可以看出,所有自变量的VIF 值都小于10,故回归方程的多重共线性已经被消除。

但自变量6x 没有通过T 检验,说明不显著,剔除6x 后再做回归分析得:
34ˆ 1.3510.0342358.809y
x x =+- 回归方程的多重共线性虽然被消除,但是模型的自变量4x 的t 检验P 值为0.068>0.05,说明在95%的置信度下4x 对y 的线性影响不显著。

模型只剩下x 3,
(3)所得结果与逐步回归结果比较。

对逐步回归选出的三个自变量做多重共线性的分析,得到:
从上表可以看出,尽管用逐步回归的方法选出的自变量为125,,x x x ,但是回归方程还是存在多重共线性。

但是根据多重共线性剔除变量后,模型只剩下x 3,损失了很多信息,得到的模型 国家财政收入只与x 3建筑业增加值有关,显然不符合建模的初衷。

相关文档
最新文档