应用回归分析课后答案
《应用回归分析》课后习题部分答案-何晓群版

第二章 一元线性回归2.14 解答:(1)散点图为:(2)x 与y 之间大致呈线性关系。
(3)设回归方程为01y x ββ∧∧∧=+1β∧=12217()ni ii nii x y n x yxn x --=-=-=-∑∑0120731y x ββ-∧-=-=-⨯=-17y x ∧∴=-+可得回归方程为(4)22ni=11()n-2i i y y σ∧∧=-∑ 2n 01i=11(())n-2i y x ββ∧∧=-+∑=2222213⎡⎤⨯+⨯+⨯⎢⎥+⨯+⨯⎣⎦(10-(-1+71))(10-(-1+72))(20-(-1+73))(20-(-1+74))(40-(-1+75)) []1169049363110/3=++++=6.1σ∧=(5)由于211(,)xxN L σββ∧t σ∧==服从自由度为n-2的t 分布。
因而/2||(2)1P t n αασ⎡⎤⎢⎥<-=-⎢⎥⎣⎦也即:1/211/2(p t t ααβββ∧∧∧∧-<<+=1α-可得195%β∧的置信度为的置信区间为(7-2.3537+2.353 即为:(2.49,11.5)2201()(,())xxx Nn L ββσ-∧+t ∧∧==服从自由度为n-2的t 分布。
因而/2|(2)1P t n αα∧⎡⎤⎢⎥⎢⎥<-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦即0/200/2()1p βσββσα∧∧∧∧-<<+=- 可得195%7.77,5.77β∧-的置信度为的置信区间为()(6)x 与y 的决定系数22121()490/6000.817()ni i nii y y r y y ∧-=-=-==≈-∑∑(7)由于(1,3)F F α>,拒绝0H ,说明回归方程显著,x 与y 有显著的线性关系。
(8)t σ∧==其中2221111()22n ni i i i i e y y n n σ∧∧====---∑∑ 7 3.661==≈/2 2.353t α= /23.66t t α=>∴接受原假设01:0,H β=认为1β显著不为0,因变量y 对自变量x 的一元线性回归成立。
《应用回归分析》课后题标准答案

3
(5)由于 1
N
(1,
2 Lxx
)
t
1 1 2 / Lxx
(1
)
Lxx
服从自由度为 n-2 的 t 分布。因而
P
|
(
1
)
Lxx
|
t
/
2
(n
2)
1
也即: p(1 t /2
Lxx
1 1 t /2
) =1 Lxx
可得
ቤተ መጻሕፍቲ ባይዱ
1
的置信度为95%的置信区间为(7-2.353
1 3
33,7+2.353 1 3
1
第二章 一元线性回归
2.14 解答:(1)散点图为:
(2)x 与 y 之间大致呈线性关系。
(3)设回归方程为 y 0 1 x
n
xi yi n x y
1=
i 1 n
7
xi2 n(x)2
i 1
0 y 1 x 20 7 3 1
可得回归方程为 y 1 7x
2
(4)
1 n-2
1.5 回归变量的设置理论根据是什么?在回归变量设置时应注意哪些问题? 答:理论判断某个变量应该作为解释变量,即便是不显著的,如果理论上无法判 断那么可以采用统计方法来判断,解释变量和被解释变量存在统计关系。应注意 的问题有:在选择变量时要注意与一些专门领域的专家合作,不要认为一个回归 模型所涉及的变量越多越好,回归变量的确定工作并不能一次完成,需要反复试 算,最终找出最合适的一些变量。
t /2
0
0
1 n
( x)2 Lxx
t
/
2
)
1
可得 1的置信度为95%的置信区间为( 7.77,5.77)
应用回归分析-第9章课后习题答案

应⽤回归分析-第9章课后习题答案第9章含定性变量的回归模型思考与练习参考答案9.1 ⼀个学⽣使⽤含有季节定性⾃变量的回归模型,对春夏秋冬四个季节引⼊4个0-1型⾃变量,⽤SPSS 软件计算的结果中总是⾃动删除了其中的⼀个⾃变量,他为此感到困惑不解。
出现这种情况的原因是什么?答:假如这个含有季节定性⾃变量的回归模型为:tt t t kt k t t D D D X X Y µαααβββ++++++=332211110其中含有k 个定量变量,记为x i 。
对春夏秋冬四个季节引⼊4个0-1型⾃变量,记为D i ,只取了6个观测值,其中春季与夏季取了两次,秋、冬各取到⼀次观测值,则样本设计矩阵为:=000110010110001010010010100011)(616515414313212111k k k k k k X X X X X X X X X X X XD X,显然,(X,D)中的第1列可表⽰成后4列的线性组合,从⽽(X,D)不满秩,参数⽆法唯⼀求出。
这就是所谓的“虚拟变量陷井”,应避免。
当某⾃变量x j 对其余p-1个⾃变量的复判定系数2j R 超过⼀定界限时,SPSS 软件将拒绝这个⾃变量x j 进⼊回归模型。
称Tol j =1-2j R 为⾃变量x j 的容忍度(Tolerance ),SPSS 软件的默认容忍度为0.0001。
也就是说,当2j R >0.9999时,⾃变量x j 将被⾃动拒绝在回归⽅程之外,除⾮我们修改容忍度的默认值。
=k βββ 10β=4321ααααα⽽在这个模型中出现了完全共线性,所以SPSS软件计算的结果中总是⾃动删除了其中的⼀个定性⾃变量。
9.2对⾃变量中含有定性变量的问题,为什么不对同⼀属性分别建⽴回归模型,⽽采取设虚拟变量的⽅法建⽴回归模型?答:原因有两个,以例9.1说明。
⼀是因为模型假设对每类家庭具有相同的斜率和误差⽅差,把两类家庭放在⼀起可以对公共斜率做出最佳估计;⼆是对于其他统计推断,⽤⼀个带有虚拟变量的回归模型来进⾏也会更加准确,这是均⽅误差的⾃由度更9.3 研究者想研究采取某项保险⾰新措施的速度y对保险公司的规模x1和保险公司类型的关系(参见参考⽂献【3】)。
应用回归分析第四版课后习题答案-全-何晓群-刘文卿

实用回归分析第四版 第一章 回归分析概述1.3 回归模型中随机误差项ε的意义是什么?答:ε为随机误差项,正是由于随机误差项的引入,才将变量间的关系描述为一个随机方程,使得我们可以借助随机数学方法研究y 与x1,x2…..xp 的关系,由于客观经济现象是错综复杂的,一种经济现象很难用有限个因素来准确说明,随机误差项可以概括表示由于人们的认识以及其他客观原因的局限而没有考虑的种种偶然因素。
1.4 线性回归模型的基本假设是什么?答:线性回归模型的基本假设有:1.解释变量x1.x2….xp 是非随机的,观测值xi1.xi2…..xip 是常数。
2.等方差及不相关的假定条件为{E(εi)=0 i=1,2…. Cov(εi,εj)={σ^23.正态分布的假定条件为相互独立。
4.样本容量的个数要多于解释变量的个数,即n>p.第二章 一元线性回归分析思考与练习参考答案2.1 一元线性回归有哪些基本假定?答: 假设1、解释变量X 是确定性变量,Y 是随机变量;假设2、随机误差项ε具有零均值、同方差和不序列相关性: E(εi )=0 i=1,2, …,n Var (εi )=σ2 i=1,2, …,n Cov(εi, εj )=0 i≠j i,j= 1,2, …,n 假设3、随机误差项ε与解释变量X 之间不相关: Cov(X i , εi )=0 i=1,2, …,n假设4、ε服从零均值、同方差、零协方差的正态分布 εi ~N(0, σ2 ) i=1,2, …,n 2.3 证明(2.27式),∑e i =0 ,∑e i X i =0 。
证明:其中:∑∑+-=-=nii i n i X Y Y Y Q 121021))ˆˆ(()ˆ(ββ01ˆˆˆˆi i i i iY X e Y Y ββ=+=-0100ˆˆQQββ∂∂==∂∂即: ∑e i =0 ,∑e i X i =02.5 证明0ˆβ是β0的无偏估计。
应用回归分析,第3章课后习题参考答案

第3章 多元线性回归思考与练习参考答案3.2 讨论样本容量n 与自变量个数p 的关系,它们对模型的参数估计有何影响?答:在多元线性回归模型中,样本容量n 与自变量个数p 的关系是:n>>p 。
如果n<=p 对模型的参数估计会带来很严重的影响。
因为: 1. 在多元线性回归模型中,有p+1个待估参数β,所以样本容量的个数应该大于解释变量的个数,否则参数无法估计。
2. 解释变量X 是确定性变量,要求()1rank p n =+<X ,表明设计矩阵X 中的自变量列之间不相关,即矩阵X 是一个满秩矩阵。
若()1rank p <+X ,则解释变量之间线性相关,1()X X -'是奇异阵,则β的估计不稳定。
3.3证明随机误差项ε的方差σ2的无偏估计。
证明:22122222111112221111ˆ(),111()()(1)(1)()(1)1ˆ()()1n i i n n nnnii ii iiii i i i i i ni i SSE e e e n p n p n p E e D e h h n h n p E E e n p σσσσσσσ======='===------∴==-=-=-=--∴==--∑∑∑∑∑∑∑3.4 一个回归方程的复相关系数R=0.99,样本决定系数R 2=0.9801,我们能判断这个回归方程就很理想吗? 答:不能断定这个回归方程理想。
因为:1. 在样本容量较少,变量个数较大时,决定系数的值容易接近1,而此时可能F 检验或者关于回归系数的t 检验,所建立的回归方()1ˆ2--=p n SSE σ程都没能通过。
2. 样本决定系数和复相关系数接近于1只能说明Y 与自变量X1,X2,…,Xp 整体上的线性关系成立,而不能判断回归方程和每个自变量是显著的,还需进行F 检验和t 检验。
3. 在应用过程中发现,在样本容量一定的情况下,如果在模型中增加解释变量必定使得自由度减少,使得 R 2往往增大,因此增加解释变量(尤其是不显著的解释变量)个数引起的R 2的增大与拟合好坏无关。
应用回归分析第5章课后习题答案

第5章自变量选择与逐步回归思考与练习参考答案5.1 自变量选择对回归参数的估计有何影响?答:回归自变量的选择是建立回归模型得一个极为重要的问题。
如果模型中丢掉了重要的自变量, 出现模型的设定偏误,这样模型容易出现异方差或自相关性,影响回归的效果;如果模型中增加了不必要的自变量, 或者数据质量很差的自变量, 不仅使得建模计算量增大, 自变量之间信息有重叠,而且得到的模型稳定性较差,影响回归模型的应用。
5.2自变量选择对回归预测有何影响?答:当全模型(m元)正确采用选模型(p元)时,我们舍弃了m-p个自变量,回归系数的最小二乘估计是全模型相应参数的有偏估计,使得用选模型的预测是有偏的,但由于选模型的参数估计、预测残差和预测均方误差具有较小的方差,所以全模型正确而误用选模型有利有弊。
当选模型(p元)正确采用全模型(m 元)时,全模型回归系数的最小二乘估计是相应参数的有偏估计,使得用模型的预测是有偏的,并且全模型的参数估计、预测残差和预测均方误差的方差都比选模型的大,所以回归自变量的选择应少而精。
5.3 如果所建模型主要用于预测,应该用哪个准则来衡量回归方程的优劣?C统计量达到最小的准则来衡量回答:如果所建模型主要用于预测,则应使用p归方程的优劣。
5.4 试述前进法的思想方法。
答:前进法的基本思想方法是:首先因变量Y对全部的自变量x1,x2,...,xm建立m个一元线性回归方程, 并计算F检验值,选择偏回归平方和显著的变量(F值最大且大于临界值)进入回归方程。
每一步只引入一个变量,同时建立m-1个二元线性回归方程,计算它们的F检验值,选择偏回归平方和显著的两变量变量(F值最大且大于临界值)进入回归方程。
在确定引入的两个自变量以后,再引入一个变量,建立m-2个三元线性回归方程,计算它们的F检验值,选择偏回归平方和显著的三个变量(F值最大)进入回归方程。
不断重复这一过程,直到无法再引入新的自变量时,即所有未被引入的自变量的F检验值均小于F检验临界值Fα(1,n-p-1),回归过程结束。
应用回归分析-第3章课后习题参考答案

应用回归分析-第3章课后习题参考答案一般来说,R2越接近1,即R2取值越大,说明回归拟合的效果越好。
但由于R2的大小与样本容量n和自变量个数p有关,当n与p的值接近时,R2容易接近1,说明R2中隐含着一些虚假成分。
而当样本容量n较小,自变量个数p较大时,尽管R2很大,但参数估计效果很不稳定。
所以该题中不能仅仅因为R2很大而断定回归方程很理想。
3.5 如何正确理解回归方程显著性检验拒绝H0,接受H0?答:一般来说,当接受假设H0时,认为在给定的显著性水平α之下,自变量x1,x2,…,x p对因变量y无显著性影响,则通过x1,x2,…,x p 去推断y就无多大意义。
此时,一方面可能该问题本应该用非线性模型描述,我们误用线性模型描述了,使得自变量对因变量无显著影响;另一方面可能是在考虑自变量时,由于认识上的局限性把一些影响因变量y的自变量漏掉了,这就从两个方面提醒我们去重新考虑建模问题。
当拒绝H0时,也不能过于相信该检验,认为该模型已经很完美。
其实当拒绝H时,我们只能认为该回归模型在一定程度上说明了自变量x1,x2,…,x p与因变量y的线性关系。
因为这时仍不能排除我们漏掉了一些重要自变量。
此检验只能用于辅助性的,事后验证性的目的。
(详细内容可参考课本P95~P96评注。
)3.6 数据中心化和标准化在回归分析中的意义是什么?答:原始数据由于自变量的单位往往不同,会给分析带来一定的困难;又由于设计的数据量较大,可能会以为舍入误差而使得计算结果并不理想。
中心化和标准化回归系数有利于消除由于量纲不同、数量级不同带来的影响,避免不必要的误差。
3.7 验证ˆˆ,1,2,,jj j j yy L j p L β*==证明:多元线性回归方程模型的一般形式为:01122p p y x x x ββββε=+++++其经验回归方程式为01122ˆˆˆˆˆp p y x x x ββββ=++++, 又01122ˆˆˆˆp py x x x ββββ=----, 故111222ˆˆˆˆ()()()p p py y x x x x x x βββ=+-+-++-, 中心化后,则有111222ˆˆˆˆ()()()i p p py y x x x x x x βββ-=-+-++-, 21()n yy i i L y y ==-∑ 令21(),1,2,,n jj ij j i L x x i n ==-=∑,1,2,,j p =11221122121122()ˆˆˆpp ip i i i p yy yy yy pp yyL x x L L y x x L L L L L L L βββ-=++ 样本数据标准化的公式为1,2,,i ij i jj yy x x y x y i n L L **-===,1,2,,j p =则上式可以记为112211221122ˆˆˆˆˆˆpp i i i p ip yy yy yy i i p ipL L L y x x x L L L x x x ββββββ**********=+++=⨯+⨯++⨯则有ˆˆ,1,2,,jj j j yy L j p L ββ*==3.8 验证3.9 验证决定系数R 2与F 值之间的关系式:p p n F FR /)1(2--+=3.10 验证决定系数R 2与F 值之间的关系式:pp n F F R /)1(2--+= 证明:2/,/(1)111(1)/1SSR p F SSE n p F SSE SSR p n p F SSE p SSR SSR F p F n p R F SSE SST SSR SSE F p n p F n p p p SSE n p =--⋅∴=⨯--⋅⨯⨯--∴=====⋅+⨯+--+--⨯+--。
应用回归分析_第2章课后习题参考答案.

应用回归分析_第2章课后习题参考答案1. 简答题1.1 什么是回归分析?回归分析是一种统计建模方法,用于研究自变量与因变量之间的关系。
它通过建立数学模型,根据已知的自变量和因变量数据,预测因变量与自变量之间的关系,并进行相关的推断和预测。
1.2 什么是简单线性回归和多元线性回归?简单线性回归是指只包含一个自变量和一个因变量的回归模型,通过拟合一条直线来描述两者之间的关系。
多元线性回归是指包含多个自变量和一个因变量的回归模型,通过拟合一个超平面来描述多个自变量和因变量之间的关系。
1.3 什么是残差?残差是指回归模型中,观测值与模型预测值之间的差异。
在回归分析中,我们希望最小化残差,使得模型与观测数据的拟合效果更好。
1.4 什么是拟合优度?拟合优度是用来评估回归模型对观测数据的拟合程度的指标。
一般使用R方(Coefficient of Determination)来表示拟合优度,其值范围为0到1,值越接近1表示模型拟合效果越好。
2. 计算题2.1 简单线性回归假设我们有一组数据,其中X为自变量,Y为因变量,如下所示:X Y13253749511我们想要建立一个简单线性回归模型,计算X与Y之间的线性关系。
首先,我们需要计算拟合直线的斜率和截距。
根据简单线性回归模型的公式Y = β0 + β1*X,我们可以通过最小二乘法计算出斜率和截距的估计值。
首先,计算X和Y的均值:mean_x = (1 + 2 + 3 + 4 + 5) / 5 = 3mean_y = (3 + 5 + 7 + 9 + 11) / 5 = 7然后,计算X和Y的方差:var_x = ((1-3)^2 + (2-3)^2 + (3-3)^2 + (4-3)^2 + (5-3)^2) / 5 = 2var_y = ((3-7)^2 + (5-7)^2 + (7-7)^2 + (9-7)^2 + (11-7)^2) / 5 = 8接下来,计算X和Y的协方差:cov_xy = ((1-3) * (3-7) + (2-3) * (5-7) + (3-3) * (7-7) + (4-3) * (9-7) + (5-3) * (11-7)) / 5 = 4根据最小二乘法的公式:β1 = cov_xy / var_x = 4 / 2 = 2β0 = mean_y - β1 * mean_x = 7 - (2 * 3) = 1因此,拟合直线的方程为:Y = 1 + 2X。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用回归分析课后答案第二章一元线性回归解答:EXCEL结果:SUMMARY OUTPUT回归统计Multiple RR SquareAdjusted R Square标准误差观测值5方差分析df SS MS F Significance F回归分析125残差3总计410Coefficients标准误差t Stat P-value Lower 95%Upper 95%下限%上限% InterceptX Variable 15RESIDUAL OUTPUT观测值预测Y残差12345SPSS结果:(1)散点图为:(2)x 与y 之间大致呈线性关系。
(3)设回归方程为01y x ββ∧∧∧=+1β∧=12217()ni ii nii x y n x yxn x --=-=-=-∑∑0120731y x ββ-∧-=-=-⨯=-17y x ∧∴=-+可得回归方程为(4)22ni=11()n-2i i y y σ∧∧=-∑2n01i=11(())n-2i y x ββ∧∧=-+∑ =2222213⎡⎤⨯+⨯+⨯⎢⎥+⨯+⨯⎣⎦(10-(-1+71))(10-(-1+72))(20-(-1+73))(20-(-1+74))(40-(-1+75)) []1169049363110/3=++++=1330 6.13σ∧=≈ (5)由于211(,)xxN L σββ∧tσ∧==服从自由度为n-2的t分布。
因而/2|(2)1P t nαασ⎡⎤⎢⎥<-=-⎢⎥⎣⎦也即:1/211/2(p t tααβββ∧∧∧∧-<<+=1α-可得195%β∧的置信度为的置信区间为(7-2.3537+2.353即为:(,)22001()(,())xxxNn Lββσ-∧+t∧∧==服从自由度为n-2的t分布。
因而/2(2)1P t nαα∧⎡⎤⎢⎥⎢⎥<-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦即0/200/2()1pβσββσα∧∧∧∧-<<+=-可得195%7.77,5.77β∧-的置信度为的置信区间为()(6)x与y的决定系数22121()490/6000.817()niiniiy yry y∧-=-=-==≈-∑∑(7)线性项加权的1.056偏差.8331.833.326组内2.500总数4由于(1,3)F Fα>,拒绝H,说明回归方程显着,x与y有显着的线性关系。
(8)tσ∧==其中2221111()22n ni i ii ie y yn nσ∧∧====---∑∑3.66==≈/22.353tα=/23.66t tα=>∴接受原假设01:0,Hβ=认为1β显着不为0,因变量y对自变量x的一元线性回归成立。
(9)相关系数()()ni ixyxx yyx x y yLrL L----==∑0.904=≈r小于表中1%α=的相应值同时大于表中5%α=的相应值,∴x与y有显着的线性关系.残差图为:从图上看,残差是围绕e=0随机波动,从而模型的基本假定是满足的。
(11)当广告费0x =万元时,销售收入028.4y =万元,95%置信度为的置信区间 y 2σ∧∧±近似为,即(,) 解答:(1) 散点图为:(2)x 与y 之间大致呈线性关系。
(3)设回归方程为01y x ββ∧∧∧=+1β∧=1221(2637021717)0.0036(71043005806440)()ni ii nii x y n x yxn x --=-=--==--∑∑01 2.850.00367620.1068y x ββ-∧-=-=-⨯=0.10680.0036y x ∧∴=+可得回归方程为(4) 22ni=11()n-2i i y y σ∧∧=-∑2n01i=11(())n-2i y x ββ∧∧=-+∑ =σ∧=(5) 由于211(,)xxN L σββ∧t σ∧==服从自由度为n-2的t 分布。
因而/2|(2)1P t n αασ⎡⎤⎢⎥<-=-⎢⎥⎣⎦也即:1/211/2(p t t ααβββ∧∧∧∧-<<+=1α-可得195%β∧的置信度为的置信区间为0.4801/0.4801/⨯⨯(0.0036-1.8600.0036+1.860即为:(,)22001()(,())xxx Nn L ββσ-∧+t ∧∧==服从自由度为n-2的t 分布。
因而/2(2)1P t n αα∧⎡⎤⎢⎥⎢⎥<-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦即0/200/2()1p βσββσα∧∧∧∧-<<+=- 可得195%0.3567,0.5703β∧-的置信度为的置信区间为()(6)x 与y 的决定系数 22121()()nii nii y y r y y ∧-=-=-==-∑∑16.8202718.525=(7)ANOVA x平方和df均方F显着性组间(组合)7.168线性项加权的1.027偏差6.315.885组内2总数9由于(1,9)F Fα>,拒绝H,说明回归方程显着,x与y有显着的线性关系。
(8) tσ∧==其中2221111()22n ni i ii ie y yn nσ∧∧====---∑∑8.542==/21.895tα=/28.542t tα=>∴接受原假设01:0,Hβ=认为1β显着不为0,因变量y对自变量x的一元线性回归成立。
(9) 相关系数()()ni ix x y yLr----==∑0.9489=r小于表中1%α=的相应值同时大于表中5%α=的相应值,∴x与y有显着的线性关系.8 325 9 670 3 1012155从图上看,残差是围绕e=0随机波动,从而模型的基本假定是满足的。
(11)001000 3.7x ∧==新保单时,需要加班的时间为y 小时。
(12)00/200y (2)1y t n h αα∧∧±-+的置信概率为1-的置信区间精确为, 即为(,)近似置信区间为:02y σ∧∧±,即(,)(13)可得置信水平为α1-的置信区间为0/200(2)y t n h α∧∧±-,即为(,).可以用直线回归描述y 与x 之间的关系. (2)回归方程为:12112.629 3.314y x ∧=+(3)从图上可看出,检验误差项服从正态分布。
第三章多元线性回归初始数据:编号y x1x2x3116070351226075403210654024265744235240723862206845727578424816066362927570441025065423解:(1)用SPSS算出y,x1,x2,x3相关系数矩阵:相关性y x1x2x3 Pearson 相关性y.556.731.724x1.556.113.398x2.731.113.547x3.724.398.547y..048.008.009x1.048..378.127x2.008.378..051x3.009.127.051. N y10101010x110101010x210101010x310101010所以r~=系数a模型非标准化系数标准系数t Sig.B 的% 置信区间相关性共线性统计量B标准误差试用版下限上限零阶偏部分容差VIF 1(常量).096(2)所以三元线性回归方程为3447.122101.71754.328.348ˆx x x y+++-=由于决定系数R 方= R=较大所以认为拟合度较高(4)因为F= P=<所以认为回归方程在整体上拟合的好(5)(6)可以看到P 值最大的是x3为,所以x3的回归系数没有通过显着检验,应去除。
由表知通过F 检验 继续做回归系数检验此时,我们发现x1,x2的显着性大大提高。
(7)x1:, x2:, x3:,(8)****3277.02535.01385.0ˆx x x y++= (9)残差统计量a极小值极大值均值标准 偏差N预测值 10 标准 预测值 .00010 预测值的标准误差 10 调整的预测值 10 残差 .00000 10 标准 残差 .000.81610 Student 化 残差 10 已删除的残差10 Student 化 已删除的残差 10 Mahal 。
距离 .894 10 Cook 的距离.000.486.97610所以置信区间为(,)(10)由于x3的回归系数显着性检验未通过,所以居民非商品支出对货运总量影响不大,但是回归方程整体对数据拟合较好解:在固定第二产业增加值,考虑第三产业增加值影响的情况下,第一产业每增加一个单位,GDP就增加个单位。
在固定第一产业增加值,考虑第三产业增加值影响的情况下,第二产业每增加一个单位,GDP就增加个单位。
第四章违背基本假设的情况初始数据:用户序号x y167922923101244935582611567997821899109710207811181812170013747142030151643164141735418127619745204352154022874231543241029257104261434278372817482913813014283112553217773337034231635113036463377703872439808407904178342406431242446584517464646847111448413491787503560511495522221531526由SPSS计算得:yˆ=+残差散点图为:(2)由残差散点图可知存在异方差性再用等级相关系数分析:P= 所以方差与自变量的相关性是显着的。
(3)模型描述因变量y自变量1x权重源x幂值模型描述因变量y自变量1x权重源x幂值模型: MOD_1.M=时可以建立最优权函数,此时得到:所以:yˆ+初始数据:序号x y121303451356789101112132514151617181920172解:yˆ=+d=DW= 查DW分布表知:Ld,故误差项存在正相关。
所以DW<L残差图为:e随t的变化逐次变化并不频繁的改变符号,说明误差项存在正相关。
t(3) ˆ=*DW= 计算得:Y’x’得回归方程'ˆy=+’即:t yˆ=+1-t y +(t x —1-t x ) (4)△t y =+△t x即:t yˆ=+1-t y +(t x -1-t x ) (5)差分法的DW 值最大为消除相关性最彻底,但是迭代法的σˆ值最小为,拟合的较好。
系数a模型非标准化系数 标准系数 tSig. B标准 误差试用版1(常量).107 x1 .345 .012 x2.911.297.029系数a模型非标准化系数标准系数B标准误差试用版t Sig.1(常量).107 x1.345.012x2.911.297.029 a. 因变量: y回归方程为:yˆ=++DW=<Dl 所以误差项存在正相关残差图为:(2) ˆ=*DW=系数a模型非标准化系数标准系数t Sig.此时得方程:t yˆ’=+1’+2’ 所以回归方程为:)26275.02(434.1)16275.01(77.2116275.0668.179ˆ1?11----+-++-=t t t t t t x x x x y y(3)系数a模型非标准化系数 标准系数 t Sig. B标准 误差试用版1(常量).194.847 x13 .544 .000 x23.583.274.020a. 因变量: y3此时得方程:△2399.11891.209698.7ˆx x yt ∆+∆+= 所以回归方程为:)22(399.1)(891.209698.7ˆ11---+-+=t t t t t x x x x y第五章 自变量选择与逐步回归初始数据:年份农业x1工业x2建筑业x3人口x4最终消费x5受灾面积x6财政收入y19789625950760 19799754239370 19809870544530 198110007239790 198210165433130 198310300834710 198410435731890 198510585144370 198610750747140 198710930042090 198811102650870 198911270446990 199011433338470 199111582355470 199211717151330 199311851748830 199411985055040 199512112145821 199612238946989 199712362653429 199812481050145c. 预测变量: (常量), 受灾面积x6, 农业x1, 最终消费x5, 工业x2。