2019年黑龙江省大庆市中考数学试卷答案解析版
2019年黑龙江省大庆市中考数学试题(含分析解答)
MAB=( )
A.30° B.35° C.45° D.60° 10.(3.00 分)如图,二次函数 y=ax2+bx+c 的图象经过点 A(﹣1,0)、点 B(3,0)、点 C(4,y1),若点 D(x2,y2)是抛物线上任意一点,有下列结论: ①二次函数 y=ax2+bx+c 的最小值为﹣4a; ②若﹣1≤x2≤4,则 0≤y2≤5a; ③若 y2>y1,则 x2>4; ④一元二次方程 cx2+bx+a=0 的两个根为﹣1 和
其中正确结论的个数是( )
A.1 B.2 C.3 D.4
第 2 页(共 28 页)
二、填空题(共 8 小题,每小题 3 分,共 24 分)
11 . (3.00 分 ) 已 知 圆 柱 的 底 面 积 为 60cm2, 高 为 4cm, 则 这 个 圆 柱 体 积 为
cm3.
12.(3.00 分)函数 y= 的自变量 x 取值范围是
.
13.(3.00 分)在平面直角坐标系中,点 A 的坐标为(a,3),点 B 的坐标是(4,b),若点 A
与点 B 关于原点 O 对称,则 ab=
.
14.(3.00 分)在△ABC 中,∠C=90°,AB=10,且 AC=6,则这个三角形的内切圆半径
为
.
15.(3.00 分)若 2x=5,2y=3,则 22x+y=
第 1 页(共 28 页)
A.
B.
C.
D.
8.(3.00 分)已知一组数据:92,94,98,91,95 的中位数为 a,方差为 b,则 a+b=( )
A.98 B.99 C.100 D.102
9.(3.00 分)如图,∠B=∠C=90°,M 是 BC 的中点,DM 平分∠ADC,且∠ADC=110°,则∠
2019年黑龙江省大庆中考数学试卷-答案
黑龙江省大庆市2019年中考数学试卷数学答案解析2.【答案】D【解析】A .是轴对称图形,不是中心对称图形,故此选项错误;B .是轴对称图形,不是中心对称图形,故此选项错误;C .不是轴对称图形,是中心对称图形,故此选项错误;D .是轴对称图形,也是中心对称图形,故此选项正确;答案:D .3.【答案】B【解析】608 000,这个数用科学记数法表示为560810⨯..答案:B .4.【答案】C【解析】因为m 、n 都是负数,且m n <,m n <,A .m n >是错误的;B .n m ->是错误的;C .m n ->是正确的;D .m n <是错误的.答案:C .5.【答案】A【解析】Q 正比例函数()0y kx k =≠的函数值y 随x 的增大而减小,0k ∴<,Q 一次函数y x k =+的一次项系数大于0,常数项小于0,∴一次函数y x k =+的图象经过第一、三象限,且与y 轴的负半轴相交.答案:A .6.【答案】C【解析】A .四边相等的四边形是菱形;正确;B .对角线垂直的平行四边形是菱形;正确;C .菱形的对角线互相垂直且相等;不正确;D .菱形的邻边相等;正确;答案:C .7.【答案】D【解析】A .1—6月份利润的众数是120万元;故本选项错误;B .1—6月份利润的中位数是125万元,故本选项错误;C .1—6月份利润的平均数是1335(110120130120140150)63+++++=万元,故本选项错误; D .1—6月份利润的极差是15011040-=万元,故本选项正确.答案:D .8.【答案】B【解析】BE Q 是ABC ∠的平分线,12EBM ABC ∴∠=∠, CE Q 是外角ACM ∠的平分线,12ECM ACM ∴∠∠=, 则11()3022BEC ECM EBM ACM ABC A -∠=∠∠=⨯∠-∠=∠=︒, 答案:B .9.【答案】C 【解析】观察发现该几何体为圆锥和圆柱的结合体,其体积为:22313π43π345πm 3⨯+⨯⨯=,答案:C . 【考点】10.【答案】B【解析】Q 将正方形ABCD 绕点A 按逆时针方向旋转180︒至正方形AB 1C 1D 1,122CC AC ∴===∴线段CD 扫过的面积2111πππ222=⨯-⨯=g , 答案:B .二、填空题11.【答案】3a【解析】523a a a ÷=.故答案为:3a .12.【答案】()()1ab a b -+【解析】22()()(1)()a b ab a b ab a b a b ab a b +--=+-+=-+,故答案为:()()1ab a b -+.13.【答案】25【解析】袋子中球的总数为855220+++=,而白球有8个, 则从中任意摸一球,恰为白球的概率为82205=. 故答案为25. 14.【答案】3【解析】D E Q 、分别是BC ,AC 的中点,∴点G 为ABC △的重心,22AG DG ∴==,213AD AG DG ∴=+=+=.故答案为3.15.【答案】32n +【解析】由图可得,图①中棋子的个数为:325+=,图②中棋子的个数为:538+=,图③中棋子的个数为:7411+=,……则第n 个“T ”字形需要的棋子个数为:21132n n n +++=+()(),故答案为:32n +.16.【答案】1【解析】根据勾股定理可得2213a b +=, 四个直角三角形的面积是:14131122ab ⨯=-=,即:212ab =, 则222()213121a b a ab b -=-+=-=.故答案为:1.17.【答案】1a -≤【解析】4x =Q 是不等式310ax a --<的解,4310a a ∴--<,解得:1a <,2x =Q 不是这个不等式的解,2310a a ∴--≥,解得:1a -≤,1a ∴-≤,故答案为:1a -≤.18.【答案】14ab【解析】1AA AF =Q ,1B B BF =,11AFA AA F ∴∠=∠,11BFB BB F ∠=∠,1AA l ⊥Q ,1BB l ⊥,11AA BB ∴∥,11180BAA ABB ∴∠+∠=︒,111802180180AFA BFB ∴︒-∠+︒-∠=︒,1190AFA BFB ∴∠+∠=︒,1190A FB ∴∠=︒,11AOB ∴△的面积1112A FB =△的面积14ab ; 故答案为14ab .三、解答题19.【答案】解:原式112=+-2=.20.【答案】1ab =Q ,21b a =-,21b a ∴-=-,12a b ∴-2b a ab-= 11-=1=-.21.【答案】设该工厂原来平均每天生产x 台机器,则现在平均每天生产50x +()台机器. 根据题意得:60045050x x=+, 解得:150x =.经检验知,150x =是原方程的根.答:该工厂原来平均每天生产150台机器.22.【答案】(1)由题意可得,30PBC ∠=︒,60MAB ∠=︒,60CBQ ∴∠=︒,30BAN ∠=︒,30ABQ ∴∠=︒,90ABC ∴∠=︒.10AB BC ==Q ,14.1AC ∴==≈.答:A 、C 两地之间的距离为14.1 km .(2)由(1)知,ABC △为等腰直角三角形,45BAC ∴∠=︒,604515CAM ∴∠=︒-︒=︒,∴C 港在A 港北偏东15︒的方向上.23.【答案】(1)①100②20③144(2)被抽取同学的平均体重为:1(40104520504055206010)50100⨯+⨯+⨯+⨯+⨯=(千克). 答:被抽取同学的平均体重为50千克.(3)100030%300⨯=(人).答:七年级学生体重低于47.5千克的学生大约有300人.【解析】(1)①2020%100m =÷=,②1001040201020n =----=, ③40360144100c ︒=⨯=︒; 故答案为100,20,144.24.【答案】(1)2A m m Q (,)在反比例函数图象上, 22m m m∴=, 1m ∴=,12A ∴(,). 又12A Q (,)在一次函数1y kx =-的图象上, 21k ∴=-,即3k =,∴一次函数的表达式为:31y x =-.(2)由231y x y x ⎧=⎪⎨⎪=-⎩解得12x y =⎧⎨=⎩或233x y ⎧=-⎪⎨⎪=-⎩, 2,33B ⎛⎫∴-- ⎪⎝⎭, ∴由图象知满足不等式21m kx x -<的x 的取值范围为203x -<<或1x >. 25.【答案】(1)证明Q 四边形ABCD 是矩形,AB CD ∴∥,MAB NCD ∴∠∠=.在ABM △和CDN △中,AB CD MAB NCD AM CN =⎧⎪∠=∠⎨⎪=⎩,()ABM CDN SAS ∴△≌△;(2)如图,连接EF ,交AC 于点O .在AEO △和CFO △中,AE CF EOA FOC EAO FCO =⎧⎪∠=∠⎨⎪∠=∠⎩,()AEO CFO AAS ∴△≌△,EO FO ∴=,AO CO =,∴O 为EF 、AC 中点.90EGF ∠=︒Q ,1322OG EF ==, 1AG OA OG ∴=-=或4AG OA OG =+=,∴AG 的长为1或4.26.【答案】(1)动点D 运动x 秒后,2BD x =.又8AB =Q ,82AD x ∴=-.DE BC Q ∥,AD AE AB AC∴=, 6(82)3682x AB x -∴==-, ∴y 关于x 的函数关系式为36(04)2y x x =-+<<. (2)21133266(04)2222BDE S BD AE x x x x x ⎛⎫==⨯-+=-+<< ⎪⎝⎭g g △. 当62322x =-=⎛⎫⨯- ⎪⎝⎭时,BDE S △最大,最大值为6 cm 2. 27.【答案】(1)证明:Q D 是弦AC 中点,OD AC ∴⊥,∴PD 是AC 的中垂线,PA PC ∴=,PAC PCA ∴∠=∠.Q AB 是O e 的直径,90ACB ∴∠=︒,90CAB CBA ∴∠+∠=︒.又PCA ABC ∠=∠Q ,90PCA CAB ∴∠+∠=︒,90CAB PAC ∴∠+∠=︒,即AB PA ⊥,∴P A 是O e 的切线;(2)证明:由(1)知90ODA OAP ∠=∠=︒,Rt Rt AOD POA ∴△∽△,AO DO PO AO∴=, 2OA OP OD ∴=g . 又12OA EF =, 21=4EF OP OD ∴g ,即24EF OP OD =g . (3)在Rt ADF △中,设AD a =,则3DF a =.142OD BC ==,34AO OF a ==-. 222OD AD AO +Q =,即()222434a a +=-,解得245a =, 32385DE OE OD a ∴=-=-=. 28.【答案】(1)抛物线的对称轴是2x =,且过点()10A -,点, 2210b bc ⎧-=⎪∴⎨⎪-+=⎩,解得:45b c =⎧⎨=-⎩, ∴抛物线的函数表达式为:245y x x =--;(2)224529y x x x =--=--(), 则x 轴下方图象翻折后得到的部分函数解析式为:22(2)945y x x x =--+=-++,()15x -<<,其顶点为()29,. Q 新图象与直线y t =恒有四个交点,09t ∴<<,设()11,E x y ,()22,F x y .由245y t y x x =⎧⎨=-++⎩解得:2x = Q 以EF 为直径的圆过点()21Q ,,212|1|EF t x x ∴=-=-,即2|1|t -,解得t =又09t Q <<,∴t ;(3)①当m 、n 在函数对称轴左侧时,2m n ≤≤,由题意得:x m =时,7y ≤,x n =时,y m ≥,即:2245457n n m m m ⎧--⎨--⎩≥≤,解得:22x -≤≤;②当m 、n 在对称轴两侧时,2x =时,y 的最小值为9,不合题意;③当m 、n 在对称轴右侧时,6x ≤;故x 的取值范围是:22x -≤≤6x ≤.。
黑龙江大庆2019中考试题数学卷解析版
分)3分,共30一、选择题(本大题共10小题,每小题) 361 000 000用科学记数法表示为(地球上的海洋面积为1.361 000 000平方千米,数字787 9.36.1×10AC.3.61×10B.0.361×10D.3.61×10C. 【答案】【解析】n为整数.∴n|a|<10,试题分析:科学记数法的表示形式为a×10的形式,其中1≤8C. 10,故选361000000=3.61×.考点:科学计数法)2.已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是(0>b<|b| D.a﹣0 CA.a?b>0 B.a+b<.|a|D.【答案】.考点:数轴)3.下列说法正确的是(.对角线互相垂直的四边形是菱形A .矩形的对角线互相垂直B .一组对边平行的四边形是平行四边形C .四边相等的四边形是菱形DD. 【答案】【解析】:矩形的A:对角线互相垂直的四边形可能是筝形,故此选项错误;选项B试题分析:选项:一组对边平行的四边形也可能是梯形,故此选对角线不互相垂直,故此选项错误;选项CD. .故选项错误;选项D:四边相等的四边形是菱形,此选项正确. 平行四边形的判定菱形的判定;2矩形的性质;3考点:112)、x1x04.当<<时,、x的大小顺序是(x 111112222?x?x?x?xx?x?x?x?. C.. DA. B xxxx A. 【答案】【解析】1111112??222?x??x,∵=,.x=试题分析:取故选,∴A. ,则x4242xx考点:有理数的大小比较.5.一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为()2233 B..A C. D.53510【答案】C.【解析】考点:列表法或树状图求概率.6.由若干边长相等的小正方体构成的几何体的主视图、左视图、俯视图如图所示,则构成这个几何体的小正方体有()个.A.5 B.6 C.7 D.8B. 【答案】【解析】试题分析:结合主视图、左视图,在俯视图中各个位置小正方体个数见下图: 2 11121B. ,故选1+2+1+1+1=6(个)故共有.考点:三视图)个. 7.下列图形中是中心对称图形的有(4..3 D.1 B.2 CAB.【答案】.考点:中心对称图形③∠A=∠F 三个条件中选出两个作为已知条件,另一个作②∠C=∠D 8.如图,从①∠1=∠2)为结论所组成的命题中,正确命题的个数为(3.1 C.2 DA.0 B.D. 【答案】【解析】①②为条试题分析:三个条件中选出两个作为已知条件,另一个作为结论一共有三种可能:当①②为条件③为结论时,∵∠件③为结论;①③为条件②为结论;②③为条件①为结论.,∴,∴4AC∥DF∵∠D=∠4.C=∠D,∴∠C=∠∴∠,∴,∴∠,∠1=∠21=∠33=∠2BD∥CE.,∴∠2∠,1=∠3,∴∠3=1=F.∠A=∠即①②可推出③.当①③为条件②为结论时,∵∠∠2C4=∠,∴∠,∴∵∠D=∠4.A=∠FAC∥DF∴∠∥BDCE.4=∥,∴∠当②③为条件②为结论时,∵∠即①③可推出②∠,∴∠C=D..A=FACDF. ∴∠3即②③为条2.1=∠1=∠3,∴∠,∴BD∥CE,∴∠2=∠3,∵∠∠C,∵∠C=∠D,∴∠4=∠DD..件①为结论故选.考点:平行线的性质与判定2y?x上的三点,若)是反比例函数C(x,yx<B9.已知A(x,y)、(x,y)、21321231x)<x,y<y<y,则下列关系式不正确的是(32130 <xx?<0 C.x?x<0D.x+x?xA.x<0 B.21312312A.【答案】.考点:反比例函数图像与性质22的大与)N,则M+1+2x+c=0(a≠0)的一个根,设M=1﹣ac,N=(ax若10.x是方程ax00)小关系正确的为(.不确定.M<N D>A.MN B.M=N CB. 【答案】【解析】222)N﹣M=(ax+1+2x+2xax+2x+c=0的一个根,∴ax+c=0,∴ax=﹣c,则x试题分析:∵是方程0000002222.ac+ac=0+2x)+ac=﹣,∴M=N,故选:B(+1=a1﹣(﹣ac)x+2ax﹣1+ac=aax0000.一元二次方程;2做差法比较大小考点:124分)二、填空题(本大题共8小题,每小题3分,共1?2y?x. 11.函数x的自变量的取值范围是1. x【答案】≥24考点:函数自变量范围.mnm+n.,a=8,则a= 若12.a=216. 【答案】【解析】nm+nm8=16. ×试题分析:a=a?a=2.考点:同底数幂的乘法次,所得平均环数相等,其中甲所得环数的方差为甲乙两人进行飞镖比赛,每人各投13.5 (填“甲”或“乙”).那么成绩较稳定的是,乙所得环数如下:0,1,5,9,10, 15. 【答案】甲【解析】0?1?5?9?10?5.试题分析:乙的平均数为乙的方差为5??1????????22224??59?5160?5.???15?10.16.4,∴甲成绩较稳定,∵5<5.考点:方差角平分线的交点,则和∠ACB如图,在△ABC14.中,∠A=40°,D点是∠ABC .∠BDC=. 110°【答案】【解析】11ACB.∠ABCCBD=和∠ACB角平分线的交点,∴∠,∠BCD=∠试题分析:∵D点是∠ABC22∠∠DBC+°.∵∠D+°∠ABC+ACB=180°,∴∠ABC+∠ACB=180°﹣40=140∵∠A+∠1-°DCB)=180DCB=180°-(∠DBC+∠∠°DCB=180°,∴∠D=180-)∠(∠ABC+ACB ∠DBC-21. =110°×140°-=180°2.角平分线性质1三角形内角和定理;2考点:如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三15.个图形中共有三角形的个数角形三边的中点得到图③,按这样的方法进行下去,第n .为54n-3.【答案】.考点:探索规律小时后B16.一艘轮船在小岛A的北偏东60°方向距小岛80海里的处,沿正西方向航行3 海里小时./ 到达小岛的北偏西45°的C处,则该船行驶的速度为3?4040. 【答案】3【解析】处,由题C3小时后到达小岛的北偏西45°的x试题分析:设该船行驶的速度为海里/时,°,∴60°=30△意得:AB=80海里,BC=3x海里,在RtABQ 中,∠BAQ=60°,∴∠B=90°﹣133 AB=40BQ=,AQ=40AQ=,23?40403?x.即,解得:BC=40+40CQ=AQ=40AQC在Rt△中,∠CAQ=45°,∴,∴=3x33?4040. 时该船行驶的速度为海里/3.考点:解直角三角形的应用3BC?10相切,则图ADB,一圆弧过点和点CAB=5ABCD17.如图,在矩形中,,,且与中阴影部分面积为. 6?100?753. 【答案】3【解析】. 矩形性质2勾股定理;3考点:1扇形面积;12xy?时,直线y)两点,当OA⊥OBy)、18.直线y=kx+b与抛物线B(x,交于A(x,21124.恒过一个定点,该定点坐标为 AB. 4)(【答案】0,【解析】yy21x?xyy?与,∵直线的解析式为y=kx+b,直线OB的解析式为试题分析:直线OA xx2111222xy?⊥4b.∵OA==4k,x?x﹣有交点,∴kx+b=x+x,∴x﹣4kx﹣4b=0,∴抛物线x221144yy211??? OB,∴,xx211122x?xxxb4? 21441??211????1,故直线恒过,∴y=kx+4即直线,∴,∴∴b=4.xx161621.,4)顶点(0.3一次函数图形性质;2二次函数;一元二次方程根与系数的关系1考点: 6610三、解答题(本大题共小题,共分)7??20?2?2?1?1?计算19.3?2【答案】.考点:1有理数混合运算;2绝对值;3零指数幂.3223的值.ab=2,求代数式ab+2ab+ab20.已知a+b=3,18. 【答案】【解析】3232.ab表示,再代入用a+b与 +ab试题分析:此题用整体代入法求值即可,把ab+2ab22223223=18.3=2(=aba+2ab+b)=ab(a+b)×试题解析:a+abb+2ab. 2考点:1整体代入;因式分解3x?a?1与②1﹣3x>0 21.关于x的两个不等式①2(1)若两个不等式的解集相同,求a的值;(2)若不等式①的解都是②的解,求a的取值范围.【答案】(1)a=1;(2)a≥1.【解析】试题分析:(1)分别解两个不等式,根据解集相同可求出a的值;(2)分别解两个不等式,根据不等式①的解都是②的解,求出a的范围即可.2?a1x?x?,∵两个不等式的解集相)解不等式①得:1,解不等式②得试题解析:(332?a12?a1??,解得:a)∵不等式①的解都是②的解,∴a=1.(2≥,解得同,∴33331..考点:不等式的解集个零件,由于技术上的改进,提高了工作效率,每天比原计划多加某车间计划加工22.360 天完成任务,求原计划每天能加工多少个零件?10,结果提前20%工 6【答案】原计划每天能加工个零件.8.考点:分式方程的应用为了了解某学校初四年纪学生每周平均课外阅读时间的情况,随机抽查了该学校初四年23.(图一)和扇形对其每周平均课外阅读时间进行统计,绘制了如下条形统计图名同学,级m 统计图(图二):(1)根据以上信息回答下列问题: m值.①求 5小时的扇形圆心角的度数.②求扇形统计图中阅读时间为③补全条形统计图.)直接写出这组数据的众数、中位数,求出这组数据的平均数.(2小时,平均数:小时,中位数:2)众数:33(30601【答案】()①,②度,③图形见解析;. 2.92小时【解析】9小时;平均数为:3)众数为:小时;中位数为:3(25?5??3?10?410?1?15?2?2092?2..(小时)60.5平均数频率与频数;3众数;4中位数;1考点:统计图;2于,交AD并延长交BA的延长线于点F是24.如图,在菱形ABCD中,GBD上一点,连接CG E.点.1()求证:AG=CG2 2)求证:AG=GE?GF.(. (2)证明见解析)证明见解析;【答案】(1 【解析】;从而AG=CGGAC,根据菱形对角线互相垂直平分,在AC的中垂线上,试题分析:(1)连接.FGA,利用对应边成比例可得到结论(2)易证△AEG∽△BD是垂直平分AC.∵G、1)连接AC,在菱形ABCD中,ACBD为对角线,∴BD(试题解析:AG=CG.上一点,∴,即∠GCADAC-∴∠∠GAC=∠DCA-DAC=∵∴∠2()∵AG=GC,GAC=∠GCA.AD=CD,∴∠∠DCA.,∽△∴△AGEAGF=DAG.F=,∠∴∠CDAB,∠∠DCG=DAG.∵∥,DCG=F∴∠∠又∵∠∠,AEGFGA 10 EGAG2? ?∴GF..∴AG=GE AGFG. 线段垂直平分线相似三角形;考点:1菱形的性质;23k?y,(k>0)在第一象限图象上的两点,点A的坐标为、25.如图,PP是反比例函数(4 112x).若△P为直角顶点.、P均为等腰直角三角形,其中点OA与△PAAP02122111 1)求反比例函数的解析式.( P的坐标.(2)①求2的一次函数的函数值PPx满足什么条件时,经过点、②根据图象直接写出在第一象限内当21k?y大于反比例函数的函数值.x??422?x?2?22?,2222?2?y ,(;2②)①.)(【答案】1x4?a,解得Pa),将的坐标代入反比例函数的解析式,得,P则的坐标为(4+a224a?2?22?2222?a?22?2?22a?②在第,,P2.(舍去)∴的坐标为().21222x2???时,一次函数的函数值大于反比例函数的值.一象限内,当11.3等腰直角三角形1反比例函数;2一次函数;考点:(万已知原有蓄水量y26.由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,13天开所示,针对这种干旱情况,从第20)与干旱持续时间x(天)的关系如图中线段ml13所示(不考虑其它因(天)的关系如图中线段l)与时间x(万始向水库注水,注水量ym22素).3时的水库总蓄水(天)的函数关系式,并求当x=20)与时间x(1)求原有蓄水量y(万m1量.3x(天)的函数关系式(注明)与时间x(万2)求当0≤x≤60时,水库的总蓄水量ym(3的范围.为严重干旱,直接写出发生严重干旱时x的范围),若总蓄水量不多于900万m2020x+1200,当≤20时,y=﹣;x=20时,y=800(2)当0≤x﹣【答案】(1)y=20x+1200,11y=5x+700. 60时,<x≤40.x≤15≤b?1200?代入到,0)y=kx+b得:,1200y试题解析:(1)设=kx+b,把(0,)和(60?11bk0??60?k?20??,解得?b1200??,和)(60=kx+by,把(20,0)20+1200=800=x=20﹣∴y=20x+1200,当时,y﹣20×,(2设211bkk??25?0?20?,当﹣500=25x解得, =kx+by1000)代入到中得:,∴y??22kbb500???100060??? 120≤x≤20时,y=﹣20x+1200,当20<x≤60时,y=y1+y2=﹣20x+1200+25x﹣500=5x+700,y≤900,则5x+700≤900,x≤40,当y=900时,900=﹣20x+1200,x=15,∴发生严重干旱时x的范围为:15≤x≤40.1考点:1一次函数的应用;2二元一次方程组.27.如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交斜边AB于点M,若H是AC的中点,连接MH.(1)求证:MH为⊙O的切线.33,tan∠ABC=,求⊙O)若MH=的半径.(224(3)在(2)的条件下分别过点A、B作⊙O的切线,两切线交于点D,AD与⊙O相切于N点,过N点作NQ⊥BC,垂足为E,且交⊙O于Q点,求线段NQ的长度.48. 3)2)2;(【答案】(1)证明见解析;(13∠COH=∥AB,∴∠是AC的中点,OBC的中点,∴OH是、(试题解析: 1)连接OHOM,∵H≌COH,又∵MOHOH=OH,∴△,∴∠,∴∠∠MOH=OMB,又∵OB=OMOMB=∠MBOCOH=∠,∠ABC °,∠),∴∠HCO=HMO=90SASMOH△(的切线;是⊙∴MHO 13.4三角函数2考点:1圆;勾股定理;3全等三角形;2与2x:y=﹣+4x+2若两条抛物线的顶点相同,则称它们为“友好抛物线”,抛物线28.C112﹣x为“友好抛物线”.+mx+n=C:u221)求抛物线C的解析式.(2的最大为垂足,求AQ+OQ作是抛物线C上在第一象限的动点,过AAQ⊥x轴,Q2()点A2值.,C的对称轴上是否存在点M,,点C(3)设抛物线的顶点为CB的坐标为(﹣14),问在22上?若存在求且点B′恰好落在抛物线CMB′,逆时针旋转绕点使线段MBM90°得到线段2出点M的坐标,不存在说明理由.14212. )1,5(1,2+2x+3;(2))或(;(3)M1【答案】()u=﹣x24【解析】的顶点式,再CC顶点,再根据它们是“友好抛物线”,可直接得出试题分析:(1)先求出21化成一般式即可;C1的顶点坐标为(1,4+4x+2=﹣2(x﹣1)+4,∴抛物线试题解析:(1)∵y=﹣2x122﹣= 22.∵)的解析式为u﹣1)+4=﹣x+2x+3,∴抛物线C顶点相同,∴抛物线C与C u=﹣(x22212222AQ+OQ=,∴OQ=a﹣a+2a+3,A如图1,设点的坐标为(a,﹣a+2a+3).∴AQ=(x+2x+3.2)213222?)?(a? +3a+3=.﹣a+2a+3+a=﹣a42213,CM′D⊥BC,过点B′作B如图时,AQ+OQ有最大值,最大值为.(3)2,连接∴当a=42.垂足为D°,=90BMB′⊥CM,BC=2.∵∠1,C(,4),抛物线的对称轴为x=1,∴BC(﹣∵B1,4)°.′MD=90∴∠BMC+∠B∴MDB′.∴△BCM ≌△∵∠BMC.BM=B′M,°.∴∠B′D⊥MC,MB′D+∠B′MD=90∴∠MB′D=∵ D.,CM=B′BC=MD ∴.2)3,a﹣aaD=CM=4﹣,MD=CB=2.∴点B′的坐标为(﹣Ba的坐标为设点M(1,).则′2a=5,当)M的坐标为(1,2.当,.解得)(3)+2a﹣3+3=a﹣2a=2a=5a=2时,﹣﹣(a21 5,).M时,的坐标为(1 上.′恰好落在抛物线)时,,)或(,的坐标为(综上所述当点M1215BC2 15. 勾股定理全等三角形;二次函数综合应用;考点:12316。
2019年黑龙江大庆中考数学试卷及答案
【导语】⽆忧考中考频道⼩编提醒参加2019中考的所有考⽣,⿊龙江⼤庆2019年中考将于6⽉中旬陆续开始举⾏,⿊龙江⼤庆中考时间具体安排考⽣可点击进⼊“”栏⽬查询,请⼴⼤考⽣提前准备好准考证及考试需要的⽤品,然后顺顺利利参加本届初中学业⽔平考试,具体如下:为⽅便考⽣及时估分,⽆忧考中考频道将在本次中考结束后陆续公布2019年⿊龙江⼤庆中考数学试卷及答案信息。
考⽣可点击进⼊⿊龙江⼤庆中考频道《、》栏⽬查看⿊龙江⼤庆中考数学试卷及答案信息。
中考科⽬语⽂、数学、英语、物理、化学、政治、历史、地理、⽣物、体育(各地区有所不同,具体以地区教育考试院公布为准。
)考试必读可以在中考前⼀天下午去考场看看,熟悉⼀下考场环境。
确定去考场的⽅式,是坐公共汽车、出租车还是骑⾃⾏车等;确定去考场的⾏车路线。
在校内去考场的路上,⼀旦发⽣意外,要及时求助于监考⽼师或警察。
中考所⽤的2B铅笔、0.5mm⿊⾊墨⽔签字笔、橡⽪、垫板、圆规、尺⼦以及准考证等,都应归纳在⼀起,在前⼀天晚上就准备好,放⼊⼀个透明的塑料袋或⽂件袋中。
涂答题卡的2B铅笔要提前削好(如果是⾃动笔,要防⽌买到假冒产品)。
不要⾃⼰夹带草稿纸,不要把⼿机、⼩灵通等通讯⼯具带⼊考场,如果带了的话⼀定要关机(以免对⾃⼰造成影响)。
有些地区禁⽌携带⼿机等通讯⼯具进⼊考场,否则将以作弊论处。
中考数学⽆忧考为了能让⼴⼤考⽣及时⽅便获取⿊龙江⼤庆中考数学试卷答案信息,特别整理了《2019⿊龙江⼤庆中考数学试卷及答案》发布⼊⼝供⼴⼤考⽣查阅。
数学真题/答案[解析]专题推荐参加2019中考的考⽣可直接查阅各科2019年⿊龙江⼤庆中考试题及答案信息!考试须知⼀、考⽣凭《准考证》(社会⼈员须持准考证及⾝份证)提前15分钟进⼊指定试室(英语科提前20分钟)对号⼊座,并将《准考证》放在桌⼦左上⾓,以便查对。
考⽣除带必要的⽂具,如2B铅笔、⿊⾊字迹的钢笔或签字笔、直尺、圆规、三⾓板、橡⽪外,禁⽌携带任何书籍、笔记、资料、报刊、草稿纸以及各种⽆线通讯⼯具(如寻呼机、移动电话)、电⼦笔记本等与考试⽆关的物品(数学科考试可带指定型号的计算器)。
黑龙江省大庆市2019年中考数学真题试题含答案
一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上) 1.有理数-8的立方根为( )A .-2B .2C .±2D .±4【答案】A2.在下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D . 【答案】D3.小明同学在“百度”搜索引擎中输入“中国梦,我的梦”,搜索到与之相关的结果条数为608000,这个数用科学记数法表示为( )A .60.8×104B .6.08×105C .0.608×106D .6.08×107【答案】B4.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .n m >B .||m n >-C .||n m >-D .||||n m <【答案】C5.正比例函数y =kx (k ≠0)的函数值y 随着x 增大而减小,则一次函数y =x +k 的图象大致是( )A .B .C .D .【答案】A6.下列说法中不正确的是( )A .四边相等的四边形是菱形B .对角线垂直的平行四边形是菱形C .菱形的对角线互相垂直且相等D .菱形的邻边相等【答案】C7.某企业1-6月份利润的变化情况如图所示,以下说法与图中反映的信息相符的是( )A .1-6月份利润的众数是130万元B .1-6月份利润的中位数是130万元C .1-6月份利润的平均数是130万元D .1-6月份利润的极差是40万元 【答案】D7题图 8题图8.如图,在△ABC 中,BE 是∠ABC 的平分线,CE 是外角∠ACM 的平分线,BE 与CE 相交于点E ,若∠A =60°,则∠BEC 是( )A .15°B .30°C .45°D .60°【答案】B9.—个“粮仓”的三视图如图所示(单位:m ),则它的体积是( )A .21πm 3B .30πm3C .45πm3D .63πm 3【答案】C10.如图,在正方形ABCD 中,边长AB =1,将正方形ABCD 绕点A 按逆时针方向旋转180°至正方形AB 1C 1D 1,则线段CD 扫过的面积为( )A .4πB .2π C .π D .π2【答案】B俯视图119题图 10题图二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.=÷35a a _____. 【答案】2a12.分解因式:=--+b a ab b a 22_______________. 【答案】))(1(b a ab +-13.一个不透明的口袋中共有8个白球、5个黄球、5个绿球、2个红球,这些球除颜色外都相同.从口袋中随机摸出一个球,这个球是白球的概率是____. 【答案】52 14.如图,在△ABC 中,D 、E 分别是BC ,AC 的中点,AD 与BE 相交于点G ,若DG =1,则AD =__________. 【答案】3③②①14题图 15题图15.归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n 个“T”字形需要的棋子个数为_________.【答案】3n +216.我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a 、b ,那么2)(b a -的值是_________. 【答案】117.已知x =4是不等式ax -3a -1<0的解,x =2不是不等式ax -3a -1<0的解,则实数a 的取值范围是_________. 【答案】a ≤-1 18.如图,抛物线241x py =(p >0),点F (0,p ),直线l :y =-p ,已知抛物线上的点到点F 的距离与到直线l 的距离相等,过点F 的直线与抛物线交于A ,B 两点,AA 1⊥l ,BB 1⊥l ,垂足分别为A 1、B 1,连接A 1F ,B 1F ,A 1O ,B 1O .若A 1F =a ,B 1F =b 、则△A 1OB 1的面积=__________.(只用a ,b 表示). 【答案】4ab ba16题图 18题图三、解答题(本大题共10小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题4分)计算:︒--+-60sin |31|)2019(0π.解:︒--+-60sin 31)2019(0π:23131--+=23=. 20.(本题4分)已知:ab =1,b =2a -1,求代数式ba 21-的值.解:∵ab =1,b =2a -1,∴b -2a =-1,∴ab a b b a 221-=-111-=-=. 21.(本题5分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450机器所需时间相同,求该工厂原来平均每天生产多少台机器?解:设该工厂原来平均每天生产x 台机器,则现在平均每天生产(x +50)台机器. 根据题意得xx 45050600=+,解得x =150. 经检验知x =150是原方程的根.答:该工厂原来平均每天生产150台机器. 22.(本题6分)如图,一艘船由A 港沿北偏东60°方向航行10km 至B 港,然后再沿北偏西30°方向航行10km 至C 港. (1)求A ,C 两港之间的距离(结果保留到0.1km ,参考数据:2≈1.414,3≈1.732); (2)确定C 港在A 港的什么方向.东北解:(1)由题意可得,∠PBC =30°,∠MBB =60°,∴∠CBQ =60°,∠BAN =30°,∴∠ABQ =30°,∴∠ABC =90°. ∵AB =BC =10,∴AC =22BC AB +=210≈14.1.答:A 、C 两地之间的距离为14.1km .(2)由(1)知,△ABC 为等腰直角三角形,∴∠BAC =45°,∴∠CAM =15°, ∴C 港在A 港北偏东15°的方向上. 23.(本题7分)某校为了解七年级学生的体重情况,随机抽取了七年级m 名学生进行调查,将抽取学生的体重情况绘制如下不完整的频数分布表和扇形统计图.请根据图表信息回答下列问题:(1)填空:①m =_____,②n =_____,③在扇形统计图中,C 组所在扇形的圆心角的度数等于__________度;(2)若把每组中各个体重值用这组数据的中间值代替(例如:A 组数据中间值为40千克),则被调查学生的平均体重是多少千克?(3)如果该校七年级有1000名学生,请估算七年级体重低于47.5千克的学生大约有多少人? 解:(1)①100,②20,③144; (2)被抽取同学的平均体重为:5010010602055405020451040=⨯+⨯+⨯+⨯+⨯.答:被抽取同学的平均体重为50千克. (3)300100301000=⨯. 答:七年级学生体重低于47.5千克的学生大约有300人. 24.(本题7分) 如图,反比例函数xmy 2=和一次函数y =kx -1的图象相交于A (m ,2m ),B 两点. (1)求一次函数的表达式;(2)求出点B 的坐标,并根据图象直接写出满足不等式12-<kx xm的x 的取值范围.解:(1)∵A (m ,2m )在反比例函数图象上,∴mmm 22=,∴m =1,∴A (1,2). 又∵A (1,2)在一次函数y =kx -1的图象上,∴2=k -1,即k =3, ∴一次函数的表达式为:y =3x -1.(2)由⎪⎩⎪⎨⎧-==132x y xy 解得B (32-,-3) ∴由图象知满足12-<kx x m 的x 取值范围为032<<-x 或x >1. 25.(本题7分)如图,在矩形ABCD 中,AB =3,BC =4.M 、N 在对角线AC 上,且AM =CN ,E 、F 分别是AD 、BC 的中点. (1)求证:△ABM ≌△CDN ;(2)点G 是对角线AC 上的点,∠EGF =90°,求AG 的长.(1)证明∵四边形ABCD 是矩形,∴AB ∥CD ,∴∠MAB = ∠NCD . 在△ABM 和△CDN 中,⎪⎩⎪⎨⎧=∠=∠=CN AM NCD MAB CDAB ∴△ABM ≌△CDN ;(2)解:如图,连接EF ,交AC 于点O .在△AEO 和△CFO 中,⎪⎩⎪⎨⎧∠=∠∠=∠=FCO EAO FOC EOA CF AE ∴△AEO ≌△CFO ,∴EO =FO ,AO =CO ,∴O 为EF 、AC 中点. ∵∠EGF =90°,2321==EF OG ,∴AG =OA -OG =1或AG =OA +OG =4, ∴AG 的长为1或4.26.(本题8分)如图,在Rt△ABC 中,∠A =90°.AB =8cm ,AC =6cm ,若动点D 从B 出发,沿线段BA 运动到点A 为止(不考虑D 与B ,A 重合的情况),运动速度为2cm/s ,过点D 作DE ∥BC 交AC 于点E ,连接BE ,设动点D 运动的时间为x (s ),AE 的长为y (cm ).(1)求y 关于x 的函数表达式,并写出自变量x 的取值范围; (2)当x为何值时,△BDE 的面积S 有最大值?最大值为多少?解:(1)动点D 运动x 秒后,BD =2x . 又∵AB =8,∴AD =8-2x .∵DE ∥BC ,∴AC AE AB AD =,∴x x AE 2368)28(6-=-=, ∴y 关于x 的函数关系式为623+-=x y (0<x <4).(2)解:S △BDE =AE BD ⋅⋅21)623(221--⨯=x x =x x 6232+-(0<x <4).当2)23(26=-⨯-=x 时,S △BDE 最大,最大值为6cm 2.27.(本题9分)如图,⊙O 是△ABC 的外接圆,AB 是直径,D 是AC 中点,直线OD 与⊙O 相交于E ,F 两点,P 是⊙O 外一点,P 在直线OD 上,连接PA ,PC ,AF ,且满足∠PCA =∠ABC .(1)求证:PA 是⊙O 的切线; (2)证明:OP OD EF ⋅=42; (3)若BC =8,tan∠AFP =32,求DE 的长.27题图 27题备用图(1)证明∵D 是弦AC 中点,∴OD ⊥AC ,∴PD 是AC 的中垂线,∴PA =PC ,∴∠PAC =∠PCA . ∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠CAB +∠CBA =90°.又∵∠PCA =∠ABC ,∴∠PCA +∠CAB =90°,∴∠CAB +∠PAC =90°,即AB ⊥PA ,∴PA 是⊙O 的切线; (2)证明:由(1)知∠ODA =∠OAP =90°, ∴Rt△AOD ∽Rt△POA ,∴AODO PO AO =,∴OD OP OA ⋅=2. 又EF OA 21=,∴OD OP EF ⋅=241,即OD OP EF ⋅=42. (3)解:在Rt△ADF 中,设AD =a ,则DF =3a .421==BC OD ,AO =OF =3a -4.∵222AO AD OD =+,即222)43(4-=+a a ,解得524=a ,∴DE =OE -OD =3a -8=532.28.(本题9分)如图,抛物线c bx x y ++=2的对称轴为直线x =2,抛物线与x 轴交于点A 和点B ,与y 轴交于点C ,且点A 的坐标为(-1,0).(1)求抛物线的函数表达式;(2)将抛物线c bx x y ++=2图象x 轴下方部分沿x 轴向上翻折,保留抛物线在x 轴上的点和x 轴上方图象,得到的新图象与直线y =t 恒有四个交点,从左到右四个交点依次记为D ,E ,F ,G .当以EF 为直径的圆过点Q (2,1)时,求t 的值;(3)在抛物线c bx x y ++=2上,当m ≤x ≤n 时,y 的取值范围是m ≤y ≤7,请直接写出x 的取值范围.28题图 28题备用图解:(1)抛物线的对称轴是x =2,且过点A (-1,0)点,∴⎪⎩⎪⎨⎧=+-⨯+-=-0)1()1(222c b b,∴⎩⎨⎧-==54c b ,∴抛物线的函数表达式为:542--=x x y ;(2)解:∵9)2(5422--=--=x x x y ,∴x 轴下方图象翻折后得到的部分函数解析式为:542++-=x x y =9)2(2+--x (-1<x <5),其顶点为(2,9).∵新图象与直线y =t 恒有四个交点,∴0<t <9. 设E (x 1,y 1),F (x 2,y 2). 由⎩⎨⎧++-==542x x y ty 得0542=-+-t x x ,解得t x --=921,t x -+=922∵以EF 为直径的圆过点Q (2,1),∴1212x x t EF -=-=,即|1|292-=-t t ,解得2331±=t . 又∵0<t <9,∴t 的值为2331+;(3)x 的取值范围是:722-≤≤-x 或62535≤≤+x .。
【2019年中考真题系列】2019年黑龙江省大庆市数学真题试卷含答案
2019年大庆市初中升学统一考试数学试题一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上) 1.有理数-8的立方根为( )A .-2B .2C .±2D .±4 【答案】A2.在下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D . 【答案】D3.小明同学在“百度”搜索引擎中输入“中国梦,我的梦”,搜索到与之相关的结果条数为608000,这个数用科学记数法表示为( )A .60.8×104B .6.08×105C .0.608×106D .6.08×107 【答案】B4.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .n m >B .||m n >-C .||n m >-D .||||n m <【答案】C5.正比例函数y =kx (k ≠0)的函数值y 随着x 增大而减小,则一次函数y =x +k 的图象大致是( )A .B .C .D .【答案】A6.下列说法中不正确的是( )A .四边相等的四边形是菱形B .对角线垂直的平行四边形是菱形C .菱形的对角线互相垂直且相等D .菱形的邻边相等 【答案】C7.某企业1-6月份利润的变化情况如图所示,以下说法与图中反映的信息相符的是( )A .1-6月份利润的众数是130万元B .1-6月份利润的中位数是130万元C .1-6月份利润的平均数是130万元D .1-6月份利润的极差是40万元 【答案】D7题图 8题图8.如图,在△ABC 中,BE 是∠ABC 的平分线,CE 是外角∠ACM 的平分线,BE 与CE 相交于点E ,若∠A =60°,则∠BEC 是( )A .15°B .30°C .45°D .60° 【答案】B9.—个“粮仓”的三视图如图所示(单位:m ),则它的体积是( )A .21πm 3B .30πm 3C .45πm 3D .63πm 3 【答案】C10.如图,在正方形ABCD 中,边长AB =1,将正方形ABCD 绕点A 按逆时针方向旋转180°至正方形AB 1C 1D 1,则线段CD 扫过的面积为( )A .4π B .2π C .πD .π2【答案】B俯视图119题图 10题图二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程,请把答案直接填写在答题卡相应位置上) 11.=÷35a a _____.【答案】2a12.分解因式:=--+b a ab b a 22_______________. 【答案】))(1(b a ab +-13.一个不透明的口袋中共有8个白球、5个黄球、5个绿球、2个红球,这些球除颜色外都相同.从口袋中随机摸出一个球,这个球是白球的概率是____. 【答案】52 14.如图,在△ABC 中,D 、E 分别是BC ,AC 的中点,AD 与BE 相交于点G ,若DG =1,则AD =__________. 【答案】3③②①14题图 15题图15.归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n 个“T”字形需要的棋子个数为_________. 【答案】3n +2 16.我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a 、b ,那么2)(b a -的值是_________.【答案】117.已知x =4是不等式ax -3a -1<0的解,x =2不是不等式ax -3a -1<0的解,则实数a 的取值范围是_________. 【答案】a ≤-1 18.如图,抛物线241x py =(p >0),点F (0,p ),直线l :y =-p ,已知抛物线上的点到点F 的距离与到直线l 的距离相等,过点F 的直线与抛物线交于A ,B 两点,AA 1⊥l ,BB 1⊥l ,垂足分别为A 1、B 1,连接A 1F ,B 1F ,A 1O ,B 1O .若A 1F =a ,B 1F =b 、则△A 1OB 1的面积=__________.(只用a ,b 表示). 【答案】4abba16题图 18题图三、解答题(本大题共10小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题4分)计算:︒--+-60sin |31|)2019(0π.解:︒--+-60sin 31)2019(0π:23131--+=23=. 20.(本题4分)已知:ab =1,b =2a -1,求代数式ba 21-的值. 解:∵ab =1,b =2a -1,∴b -2a =-1,∴ab a b b a 221-=-111-=-=.21.(本题5分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450机器所需时间相同,求该工厂原来平均每天生产多少台机器?解:设该工厂原来平均每天生产x 台机器,则现在平均每天生产(x +50)台机器. 根据题意得xx 45050600=+,解得x =150. 经检验知x =150是原方程的根.答:该工厂原来平均每天生产150台机器. 22.(本题6分) 如图,一艘船由A 港沿北偏东60°方向航行10km 至B 港,然后再沿北偏西30°方向航行10km 至C 港.(1)求A ,C 两港之间的距离(结果保留到0.1km ,参考数据:2≈1.414,3≈1.732); (2)确定C 港在A 港的什么方向.东北解:(1)由题意可得,∠PBC =30°,∠MBB =60°,∴∠CBQ =60°,∠BAN =30°,∴∠ABQ =30°,∴∠ABC =90°. ∵AB =BC =10,∴AC =22BC AB +=210≈14.1.答:A 、C 两地之间的距离为14.1km .(2)由(1)知,△ABC 为等腰直角三角形,∴∠BAC =45°,∴∠CAM =15°, ∴C 港在A 港北偏东15°的方向上. 23.(本题7分)某校为了解七年级学生的体重情况,随机抽取了七年级m 名学生进行调查,将抽取学生的请根据图表信息回答下列问题:(1)填空:①m =_____,②n =_____,③在扇形统计图中,C 组所在扇形的圆心角的度数等于__________度;(2)若把每组中各个体重值用这组数据的中间值代替(例如:A 组数据中间值为40千克),则被调查学生的平均体重是多少千克?(3)如果该校七年级有1000名学生,请估算七年级体重低于47.5千克的学生大约有多少人? 解:(1)①100,②20,③144; (2)被抽取同学的平均体重为:5010010602055405020451040=⨯+⨯+⨯+⨯+⨯.答:被抽取同学的平均体重为50千克. (3)300100301000=⨯. 答:七年级学生体重低于47.5千克的学生大约有300人. 24.(本题7分) 如图,反比例函数xmy 2=和一次函数y =kx -1的图象相交于A (m ,2m ),B 两点. (1)求一次函数的表达式;(2)求出点B 的坐标,并根据图象直接写出满足不等式12-<kx xm的x 的取值范围.解:(1)∵A (m ,2m )在反比例函数图象上,∴mmm 22=,∴m =1,∴A (1,2). 又∵A (1,2)在一次函数y =kx -1的图象上,∴2=k -1,即k =3, ∴一次函数的表达式为:y =3x -1.(2)由⎪⎩⎪⎨⎧-==132x y xy 解得B (32-,-3) ∴由图象知满足12-<kx x m 的x 取值范围为032<<-x 或x >1. 25.(本题7分)如图,在矩形ABCD 中,AB =3,BC =4.M 、N 在对角线AC 上,且AM =CN ,E 、F 分别是AD 、BC 的中点.(1)求证:△ABM ≌△CDN ;(2)点G 是对角线AC 上的点,∠EGF =90°,求AG 的长.(1)证明∵四边形ABCD 是矩形,∴AB ∥CD ,∴∠MAB = ∠NCD . 在△ABM 和△CDN 中,⎪⎩⎪⎨⎧=∠=∠=CN AM NCD MAB CD AB ∴△ABM ≌△CDN ;(2)解:如图,连接EF ,交AC 于点O . 在△AEO 和△CFO 中,⎪⎩⎪⎨⎧∠=∠∠=∠=FCO EAO FOC EOA CF AE ∴△AEO ≌△CFO ,∴EO =FO ,AO =CO ,∴O 为EF 、AC 中点. ∵∠EGF =90°,2321==EF OG ,∴AG =OA -OG =1或AG =OA +OG =4, ∴AG 的长为1或4.26.(本题8分)如图,在Rt △ABC 中,∠A =90°.AB =8cm ,AC =6cm ,若动点D 从B 出发,沿线段BA 运动到点A 为止(不考虑D 与B ,A 重合的情况),运动速度为2cm/s ,过点D 作DE ∥BC 交AC 于点E ,连接BE ,设动点D 运动的时间为x (s ),AE 的长为y (cm ). (1)求y 关于x 的函数表达式,并写出自变量x 的取值范围; (2)当x为何值时,△BDE 的面积S 有最大值?最大值为多少?解:(1)动点D 运动x 秒后,BD =2x . 又∵AB =8,∴AD =8-2x .∵DE ∥BC ,∴AC AE AB AD =,∴x x AE 2368)28(6-=-=, ∴y 关于x 的函数关系式为623+-=x y (0<x <4).(2)解:S △BDE =AE BD ⋅⋅21)623(221--⨯=x x =x x 6232+-(0<x <4).当2)23(26=-⨯-=x 时,S △BDE 最大,最大值为6cm 2.27.(本题9分)如图,⊙O 是△ABC 的外接圆,AB 是直径,D 是AC 中点,直线OD 与⊙O 相交于E ,F 两点,P 是⊙O 外一点,P 在直线OD 上,连接PA ,PC ,AF ,且满足∠PCA =∠ABC . (1)求证:PA 是⊙O 的切线; (2)证明:OP OD EF ⋅=42; (3)若BC =8,tan ∠AFP =32,求DE 的长.27题图 27题备用图(1)证明∵D 是弦AC 中点,∴OD ⊥AC ,∴PD 是AC 的中垂线,∴PA =PC ,∴∠PAC =∠PCA . ∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠CAB +∠CBA =90°.又∵∠PCA =∠ABC ,∴∠PCA +∠CAB =90°,∴∠CAB +∠PAC =90°,即AB ⊥PA ,∴PA 是⊙O 的切线;(2)证明:由(1)知∠ODA =∠OAP =90°, ∴Rt △AOD ∽Rt △POA ,∴AODO PO AO =,∴OD OP OA ⋅=2. 又EF OA 21=,∴OD OP EF ⋅=241,即OD OP EF ⋅=42. (3)解:在Rt △ADF 中,设AD =a ,则DF =3a .421==BC OD ,AO =OF =3a -4.∵222AO AD OD =+,即222)43(4-=+a a ,解得524=a ,∴DE =OE -OD =3a -8=532.28.(本题9分)如图,抛物线c bx x y ++=2的对称轴为直线x =2,抛物线与x 轴交于点A 和点B ,与y 轴交于点C ,且点A 的坐标为(-1,0).(1)求抛物线的函数表达式;(2)将抛物线c bx x y ++=2图象x 轴下方部分沿x 轴向上翻折,保留抛物线在x 轴上的点和x 轴上方图象,得到的新图象与直线y =t 恒有四个交点,从左到右四个交点依次记为D ,E ,F ,G .当以EF 为直径的圆过点Q (2,1)时,求t 的值;(3)在抛物线c bx x y ++=2上,当m ≤x ≤n 时,y 的取值范围是m ≤y ≤7,请直接写出x 的取值范围.28题图 28题备用图解:(1)抛物线的对称轴是x =2,且过点A (-1,0)点,∴⎪⎩⎪⎨⎧=+-⨯+-=-0)1()1(222c b b,∴⎩⎨⎧-==54c b ,∴抛物线的函数表达式为:542--=x x y ;(2)解:∵9)2(5422--=--=x x x y ,∴x 轴下方图象翻折后得到的部分函数解析式为:542++-=x x y =9)2(2+--x (-1<x <5),其顶点为(2,9).∵新图象与直线y =t 恒有四个交点,∴0<t <9. 设E (x 1,y 1),F (x 2,y 2). 由⎩⎨⎧++-==542x x y ty 得0542=-+-t x x ,解得t x --=921,t x -+=922∵以EF 为直径的圆过点Q (2,1),∴1212x x t EF -=-=, 即|1|292-=-t t ,解得2331±=t .又∵0<t <9,∴t 的值为2331+;(3)x 的取值范围是:722-≤≤-x 或62535≤≤+x .。
2019年黑龙江省大庆市中考数学试卷以及解析版
m) ,则它的体积是 (
)
第 2 页(共 26 页)
A . 21 m3
B . 30 m3
C. 45 m3
D. 63 m3
10.( 3 分)如图,在正方形 ABCD 中,边长 AB 1 ,将正方形 ABCD 绕点 A 按逆时针方向
旋转 180 至正方形 AB1C1 D1 ,则线段 CD 扫过的面积为 (
请根据图表信息回答下列问题:
( 1)填空: ① m
,②n
,③ 在扇形统计图中, C 组所在扇形的圆心角的度数
等于 度;
(2)若把每组中各个体重值用这组数据的中间值代替 (例如: A 组数据中间值为 40 千克),
第 5 页(共 26 页)
则被调查学生的平均体重是多少千克? (3)如果该校七年级有 1000 名学生,请估算七年级体重低于 人?
当 k 0 ,图象经过第一、 三象限, y 随 x 的增大而增大; 当 k 0 ,图象经过第二、 四象限,
y 随 x 的增大而减小;图象与 y 轴的交点坐标为 (0, b) .
6.( 3 分) 【分析】 由菱形的判定与性质即可得出
A 、 B 、 D 正确, C 不正确.
【解答】 解: A .四边相等的四边形是菱形;正确;
27.( 9 分)如图, O 是 ABC 的外接圆, AB 是直径, D 是 AC 中点,直线 OD 与 O 相 交于 E , F 两点, P 是 O 外一点, P 在直线 OD 上,连接 PA , PC , AF ,且满足
PCA ABC.
(1)求证: PA 是 O 的切线;
(2)证明:
2
EF
4OD OP ;
(
)
A.m n
B. n | m|
13. 中考数学专题分式与二次根式数学母题题源系列(解析版)
【母题来源一】【2019•在实数范围内有意义,则x 的取值范围是 A .x ≥1且x ≠2B .x ≤1C .x >1且x ≠2D .x <1【答案】A【解析】依题意,得x -1≥0且x -200,解得x ≥1且x ≠2.故选A . 【母题来源二】【2019•北京】如果m +n =1,那么代数式22221()()m n m n m mn m++⋅--的值为 A .-3B .-1C .1D .3【答案】D【解析】原式=2()m n m n m m n ++--·(m +n )(m -n )=3()mm m n -·(m +n )(m -n )=3(m +n ),当m +n =1时,原式=3.故选D .【母题来源三】【2019•河北】如图,若x 为正整数,则表示22(2)1441x x x x +-+++的值的点落在A .段①B .段②C .段③D .段④【答案】B【解析】∵2222(2)1(2)111441(2)111x x xx x x x x x x ++-=-=-=+++++++,又∵x 为正整数,∴12≤x <1,故表示22(2)1441x x x x +-+++的值的点落在②,故选B . 【母题来源四】【2019·天津】计算2211a a a +++的结果是专题03 分式与二次根式A .2B .22a +C .1D .41aa + 【答案】A 【解析】原式=222(1)211a a a a ++==++,故选A . 【母题来源五】【2019·南充】计算:2111x x x+=--__________.【答案】x +1【解析】2111x x x +--=2111x x x ---211x x -=-()()111x x x +-=-1x =+,故答案为:x +1. 【母题来源六】【2019·扬州】化简:2111a a a +--. 【解析】2111a a a +-- =2111a a a --- =211a a -- =(1)(1)1a a a +--=a +1.【母题来源七】【2019·重庆A 卷】计算: 2949()22a a a a a --+÷--. 【解析】原式=222949()222a a a a a a a ---+÷--- 2269229a a a a a -+-=⨯-- 2(3)22(3)(3)a a a a a --=⨯-+-33a a -=+.【母题来源八】【2019•益阳】化简:2244(4)2x x x x+--÷. 【解析】原式=2(2)2(2)(2)x xx x x -⋅+- =242x x -+. 【母题来源九】【2019•河南】先化简,再求值:2212(1)244x x xx x x +--÷--+,其中x【解析】原式=212(2)()22(2)x x x x x x x +---÷--- =322x x x -⋅- =3x, 当x. 【母题来源十】【2019•安顺】先化简2221(1)369x x x x -+÷--+,再从不等式组24324x x x -<⎧⎨<+⎩的整数解中选一个合适的x 的值代入求值.【解析】原式232(3)3(1)(1)x x x x x -+-=⨯-+-=31x x -+,解不等式组24324x x x -<⎧⎨<+⎩①②得-2<x <4,∴其整数解为-1,0,1,2,3, ∵要使原分式有意义,∴x 可取0,2. ∴当x =0时,原式=-3, (或当x =2时,原式=13-).【命题意图】这类试题主要考查分式的有关知识,包括分式有意义的条件、分式的加减乘除运算、分式的化简求值等.【方法总结】1.分式的定义(1)一般地,整式A除以整式B,可以表示成AB的形式,如果除式B中含有字母,那么称AB为分式.(2)分式AB中,A叫做分子,B叫做分母.【注意】①若B≠0,则AB有意义;②若B=0,则AB无意义;③若A=0且B≠0,则AB=0.2.分式的基本性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示为(0)A A CCB B C⋅=≠⋅或(0)A A CCB B C÷=≠÷,其中A,B,C均为整式.3.分式的运算(1)分式的加减①同分母的分式相加减法则:分母不变,分子相加减.用式子表示为:a c a cb b b±±=.②异分母的分式相加减法则:先通分,变为同分母的分式,然后再加减.用式子表示为:a c ad bc ad bcb d bd bd bd±±=±=.(2)分式的乘法乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用式子表示为:a c a cb d b d⋅⋅=⋅.(3)分式的除法除法法则:分式除以分式,把除式的分子、分母颠倒位置后与被除式相乘.用式子表示为:a c a d a db d bc b c⋅÷=⋅=⋅.(4)分式的乘方乘方法则:分式的乘方,把分子、分母分别乘方.用式子表示为:()(nn n a a n b b=为正整数,0)b ≠.(5)分式的混合运算含有分式的乘方、乘除、加减的多种运算叫做分式的混合运算.混合运算顺序:先算乘方,再算乘除,最后算加减.有括号的,先算括号里的.【母题来源十一】【2019·重庆A 卷】估计 A .4和5之间 B .5和6之间 C .6和7之间D .7和8之间【答案】C【解析】,又因为,所以,故选C . 【母题来源十二】【2019•山西】下列二次根式是最简二次根式的是A BCD【答案】D【解析】A 2=,故A 不符合题意;B 7=,故B 不符合题意;C =C 不符合题意;D D 符合题意.故选D . 【母题来源十三】【2019·济宁】下列计算正确的是A 3=-B =C 6±D .0.6=-【答案】D【解析】A3=,故此选项错误;B=,故此选项错误; C6=,故此选项错误;D.0.6=-,正确.故选D . 【母题来源十四】【2019的结果是__________. 【答案】3,故答案为:3.【母题来源十五】【2019•=__________.【答案】【解析】原式==.故答案为:【母题来源十六】【2019·天津】计算1)的结果等于__________. 【答案】2【解析】原式=3-1=2.故答案为:2.【命题意图】这类试题主要考查二次根式有意义的条件、二次根式值为0的条件、最简二次根式、二次根式的运算和化简等. 【方法总结】 1.二次根式的性质 (1)a ≥ 0(a ≥0); (2))0()(2≥=a a a ;(3(0)0(0)(0)a a a a a a >⎧⎪===⎨⎪-<⎩;(40,0)a b =≥≥;(50,0)a b ≥>.2.二次根式的运算 (1)二次根式的加减合并同类二次根式:在二次根式的加减运算中,把几个二次根式化为最简二次根式后,若有同类二次根式,可把同类二次根式合并成一个二次根式. (2)二次根式的乘除0,0)a b =≥≥;0,0)a b ≥>. (3)二次根式的混合运算二次根式的混合运算顺序与实数的运算顺序一样,先乘方,后乘除,最后加减,有括号的先算括号内的. 在运算过程中,乘法公式和有理数的运算律在二次根式的运算中仍然适用.1.【北京市房山区2018年中考二模数学试题】若代数式22x x -有意义,则实数x 的取值范围是A .x =0B .x =2C .x ≠0D .x ≠2【答案】D【解析】∵代数式22x x -有意义,∴x -2≠0,即x ≠2, 故选D .【名师点睛】本题考查了分式有意义的条件,属于简单题,熟悉分式有意义的条件是解题关键.2.【四川省成都市都江堰市2019x 的取值范围是 A .10x ≥B .10x ≤C .10x >D .10x ≠【答案】A 【解析】x -10≥0, 解得:x ≥10, 故选A .【名师点睛】本题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.3.【北京市通州区2019届九年级中考数学3月份模拟】化简22a bb a+-的结果是 A .1a b- B .1b a- C .a -bD .b -a【答案】B 【解析】原式=()()a b b a b a ++-=1b a-,故选B .【名师点睛】本题考查的知识点是约分,解题的关键是熟练的掌握约分.4.【天津市滨海新区2019届中考一模数学试题】计算2231366x x x x x+-⋅-+的结果为 A .6x x+ B .6x x - C .6x x +D .6x +【答案】A【解析】2231366x x x x x+-⋅-+ =221(6)(6)6(1)x x x x x x ++-⋅-+ =6x x+, 故选A .【名师点睛】本题考查分式的乘法,熟练掌握分式乘法的运算法则是解题关键. 5.【河北省唐山市路北区2019届九年级下学期第三次模拟数学试题】在化简分式23311x x x-+--的过程中,开始出现错误的步骤是 A .33(1)(1)(1)(1)(1)x x x x x x -+-+-+-B .331(1)(1)x x x x --++-C .22(1)(1)x x x --+-D .21x -- 【答案】B【解析】∵正确的解题步骤是:23311x x x-+-- 33(1)(1)(1)(1)(1)x x x x x x -+=-+-+-333(1)(1)x x x x ---=+-,∴开始出现错误的步骤是331(1)(1)x x x x --++-.去括号是漏乘了.故选B .【名师点睛】本题主要考查分式的加减法,比较简单.6.【2019年浙江省杭州市拱墅区中考数学二模试卷】下列变形正确的是 A .a b =22a b ++ B .0.220.1a b a bb b++=C .a b -1=1a b-D .a b =22(1)(1)a mb m ++ 【答案】D【解析】A .a b ≠22a b ++,故A 错误; B .0.20.1a b b +=210a b b +,故B 错误;C .a b -1=a b b-,故C 错误;故选D .【名师点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型. 7.【2019年山东省潍坊市中考数学一模试卷】化简341()(1)32a a a a -+---的结果等于 A .-a -2 B .23a a -- C .a +2D .32a a -- 【答案】A【解析】原式=233412()()3322a a a a a a a a ---+-----24332a a a a --+=⋅-- (2)(2)(3)32a a a a a -+--=⋅--=-(a +2) =-a -2. 故选A .【名师点睛】本题考查了分式的化简,熟练掌握分式混合运算法则是解题的关键.8.【江苏省淮安市清江浦区2019届九年级质量调研一数学试题】运算正确的是A=1B=C=D【答案】D【解析】A、C被开方数不同,不能进行减法、加法运算;B、原式B选项不正确;D、原式=2,所以D选项正确.故选D.【名师点睛】本题考查二次根式的化简和计算:先把各二次根式化为最简二次根式,再进行二次根式的加减乘除运算,然后合并同类二次根式.9.【2019年山东省潍坊市中考数学一模试卷】实数a在数轴上的位置如图所示,化简后为A.7 B.-7 C.2a-15 D.无法确定【答案】C【解析】根据数轴上点的位置得:5<a<10,∴a-4>0,a-11<0,则原式=|a-4|-|a-11|=a-4+a-11=2a-15,故选C.【名师点睛】此题考查了二次根式的性质与化简,以及实数与数轴,熟练掌握运算法则是解本题的关键.10.【广东省汕头市潮南区2019有意义,则x的取值范围为__________.【答案】x≥-1且x≠2【解析】由题意得:x+1≥0,且x-2≠0,解得:x≥-1且x≠2,故答案为:x≥-1且x≠2.【名师点睛】本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.11.【海南省海口市2019届中考数学5月份模拟试卷】化简22669a a a -=-+__________. 【答案】23a - 【解析】原式=()()2233a a --=23a -, 故答案为:23a -. 【名师点睛】本题考查了约分的定义与方法.约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.12.【江苏常州市2019届九年级教学情况调研测试第二次模拟测试数学试题】已知分式3x x y+的值为2,且1y ≠-,则分式21x y ++的值为__________. 【答案】2 【解析】∵3x x y +=2, ∴x =2y ,把x =2y 代入21x y ++得,222(1)211y y y y ++==++. 故答案为:2. 【名师点睛】本题考查了分式的运算,把3x x y+=2化为x =2y 是解题关键.13.【天津市五区2019届中考一模数学试题】计算__________.【答案】4-【解析】原式=4故答案为:4.【名师点睛】本题主要考查二次根式的除法运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.14.【2019的结果是__________.【答案】【解析】原式-12×.故答案为:. 【名师点睛】本题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.15.【2019年山西省百校联考中考数学模拟试卷二】计算(-2)(-2)的结果是__________.【答案】-16【解析】原式=-()(2)=-(20-4)=-16.故答案为:-16.【名师点睛】本题考查了二次根式的混合运算和平方差公式,在二次根式的混合运算中,如能结合题目特点,选择恰当的解题途径,往往能事半功倍.16.【2019年广西河池市中考数学三模试卷】计算:6. 【答案】6 【解析】原式=6.故答案为:6. 【名师点睛】此题主要考查了二次根式的乘除运算,正确掌握运算法则是解题关键.17.【2019年黑龙江省大庆市初中毕业升学考试数学模拟测试卷二】已知2310x x -+=,求221x x +的值. 【解析】由2310x x -+=得130x x -+=,即13x x +=, ∴221x x +=21()2x x+-=9-2=7. 【名师点睛】本题考查了完全平方公式的应用,解题的关键是对等式和代数式进行变形,寻找联系.18.【2019年广东省湛江市霞山区中考数学一模试卷】先化简,再求值:21(1)211a a a a ÷-+++,其中1a =. 【解析】21(1)211a a a a ÷-+++ =211(1)1a a a a +-÷++ =21(1)a a a a+⋅+ =1+1a ,当a 时,原式=2. 【名师点睛】此题考查分式的化简求值,关键在于约分.19.【甘肃省定西市2019届九年级下学期第一次诊断考试数学试题】先化简,再求值:221)21x x x x x x+2÷(--+-1,从13x -≤<的范围内选取一个你喜欢的整数作为x 的值.【解析】原式=2(1)2(1)(1)(1)x x x x x x x +--÷-- =2(1)(1)x x x +-·(1)1x x x -+ =21x x -. ∵x ≠0,x ≠±1,∴x =2,当x =2时,原式=2221-=4. 【名师点睛】本题考查了分式的运算及分式有意义的条件,要使分式有意义,分母不为0,熟练掌握运算法则是解题关键.20.【2019年河南省许昌市中考二模数学试题】先化简,再求值:2443(1)11m m m m m -+÷----,其中1m =.【解析】2443(1)11m m m m m -+÷---- =()()()2231111m m m m m --+-÷--=()()()221122m m m m m --⋅-+- =22m m-+,当m -1时,原式()315===. 【名师点睛】本题考查分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.注意分母有理化的运算.21.【2019年上海市杨浦区中考数学三模试卷】先化简,再计算:2221222x x x x x x x--+⋅--+,其中x 1+. 【解析】原式=(1)(2)12(1)2(1)x x x x x x x +-+⋅--+ 12x x x+=- 1x x-=,当x +1时,原式2=. 【名师点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.。
2019年黑龙江省大庆市中考数学试卷附分析答案
D,E,F,G.当以 EF 为直径的圆过点 Q(2,1)时,求 t 的值;
(3)在抛物线 y=x2+bx+c 上,当 m≤x≤n 时,y 的取值范围是 m≤y≤7,请直接写出 x
的取值范围.
第 7页(共 24页)
第 8页(共 24页)
2019 年黑龙江省大庆市中考数学试卷
参考答案与试题解析
一、选择题(本大题共 10 小题,每小题 3 分,共 30 分.在每小题所给出的四个选项中, 只有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上)
C.菱形的对角线互相垂直且相等 D.菱形的邻边相等 7.(3 分)某企业 1﹣6 月份利润的变化情况如图所示,以下说法与图中反映的信息相符的
是( ) A.1﹣6 月份利润的众数是 130 万元 B.1﹣6 月份利润的中位数是 130 万元 C.1﹣6 月份利润的平均数是 130 万元 D.1﹣6 月份利润的极差是 40 万元 8.(3 分)如图,在△ABC 中,BE 是∠ABC 的平分线,CE 是外角∠ACM 的平分线,BE 与 CE 相交于点 E,若∠A=60°,则∠BEC 是( )
A.
B.
C.
D.3.(3 分)小明同学在“”搜索引擎中输入“中国梦,我的梦”,搜索到与之相关的结
果条数为 608000,这个数用科学记数法表示为( )
A.60.8×104
B.6.08×105
C.0.608×106
D.6.08×107
4.(3 分)实数 m,n 在数轴上的对应点如图所示,则下列各式子正确的是( )
颜色外都相同.从口袋中随机摸出一个球,这个球是白球的概率是
.
14.(3 分)如图,在△ABC 中,D、E 分别是 BC,AC 的中点,AD 与 BE 相交于点 G,若
2019年黑龙江省大庆市中考数学试卷(含解析)完美打印版
2019年黑龙江省大庆市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上)1.(3分)有理数﹣8的立方根为()A.﹣2B.2C.±2D.±42.(3分)在下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)小明同学在“百度”搜索引擎中输入“中国梦,我的梦”,搜索到与之相关的结果条数为608000,这个数用科学记数法表示为()A.60.8×104B.6.08×105C.0.608×106D.6.08×1074.(3分)实数m,n在数轴上的对应点如图所示,则下列各式子正确的是()A.m>n B.﹣n>|m|C.﹣m>|n|D.|m|<|n|5.(3分)正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k的图象大致是()A.B.C.D.6.(3分)下列说法中不正确的是()A.四边相等的四边形是菱形B.对角线垂直的平行四边形是菱形C.菱形的对角线互相垂直且相等D.菱形的邻边相等7.(3分)某企业1﹣6月份利润的变化情况如图所示,以下说法与图中反映的信息相符的是()A.1﹣6月份利润的众数是130万元B.1﹣6月份利润的中位数是130万元C.1﹣6月份利润的平均数是130万元D.1﹣6月份利润的极差是40万元8.(3分)如图,在△ABC中,BE是∠ABC的平分线,CE是外角∠ACM的平分线,BE与CE相交于点E,若∠A=60°,则∠BEC是()A.15°B.30°C.45°D.60°9.(3分)一个“粮仓”的三视图如图所示(单位:m),则它的体积是()A.21πm3B.30πm3C.45πm3D.63πm310.(3分)如图,在正方形ABCD中,边长AB=1,将正方形ABCD绕点A按逆时针方向旋转180°至正方形AB1C1D1,则线段CD扫过的面积为()A.B.C.πD.2π二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.(3分)a5÷a3=.12.(3分)分解因式:a2b+ab2﹣a﹣b=.13.(3分)一个不透明的口袋中共有8个白球、5个黄球、5个绿球、2个红球,这些球除颜色外都相同.从口袋中随机摸出一个球,这个球是白球的概率是.14.(3分)如图,在△ABC中,D、E分别是BC,AC的中点,AD与BE相交于点G,若DG=1,则AD =.15.(3分)归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n个“T”字形需要的棋子个数为.16.(3分)我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a、b,那么(a﹣b)2的值是.17.(3分)已知x=4是不等式ax﹣3a﹣1<0的解,x=2不是不等式ax﹣3a﹣1<0的解,则实数a的取值范围是.18.(3分)如图,抛物线y=x2(p>0),点F(0,p),直线l:y=﹣p,已知抛物线上的点到点F的距离与到直线l的距离相等,过点F的直线与抛物线交于A,B两点,AA1⊥l,BB1⊥l,垂足分别为A1、B1,连接A1F,B1F,A1O,B1O.若A1F=a,B1F=b、则△A1OB1的面积=.(只用a,b表示).三、解答题(本大题共10小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(4分)计算:(2019﹣π)0+|1﹣|﹣sin60°.20.(4分)已知:ab=1,b=2a﹣1,求代数式﹣的值.21.(5分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450机器所需时间相同,求该工厂原来平均每天生产多少台机器?22.(6分)如图,一艘船由A港沿北偏东60°方向航行10km至B港,然后再沿北偏西30°方向航行10km 至C港.(1)求A,C两港之间的距离(结果保留到0.1km,参考数据:≈1.414,≈1.732);(2)确定C港在A港的什么方向.23.(7分)某校为了解七年级学生的体重情况,随机抽取了七年级m名学生进行调查,将抽取学生的体重情况绘制如下不完整的频数分布表和扇形统计图.请根据图表信息回答下列问题:(1)填空:①m=,②n=,③在扇形统计图中,C组所在扇形的圆心角的度数等于度;(2)若把每组中各个体重值用这组数据的中间值代替(例如:A组数据中间值为40千克),则被调查学生的平均体重是多少千克?(3)如果该校七年级有1000名学生,请估算七年级体重低于47.5千克的学生大约有多少人?24.(7分)如图,反比例函数y=和一次函数y=kx﹣1的图象相交于A(m,2m),B两点.(1)求一次函数的表达式;(2)求出点B的坐标,并根据图象直接写出满足不等式<kx﹣1的x的取值范围.25.(7分)如图,在矩形ABCD中,AB=3,BC=4.M、N在对角线AC上,且AM=CN,E、F分别是AD、BC的中点.(1)求证:△ABM≌△CDN;(2)点G是对角线AC上的点,∠EGF=90°,求AG的长.26.(8分)如图,在Rt△ABC中,∠A=90°.AB=8cm,AC=6cm,若动点D从B出发,沿线段BA运动到点A为止(不考虑D与B,A重合的情况),运动速度为2cm/s,过点D作DE∥BC交AC于点E,连接BE,设动点D运动的时间为x(s),AE的长为y(cm).(1)求y关于x的函数表达式,并写出自变量x的取值范围;(2)当x为何值时,△BDE的面积S有最大值?最大值为多少?27.(9分)如图,⊙O是△ABC的外接圆,AB是直径,D是AC中点,直线OD与⊙O相交于E,F两点,P是⊙O外一点,P在直线OD上,连接P A,PC,AF,且满足∠PCA=∠ABC.(1)求证:P A是⊙O的切线;(2)证明:EF2=4OD•OP;(3)若BC=8,tan∠AFP=,求DE的长.28.(9分)如图,抛物线y=x2+bx+c的对称轴为直线x=2,抛物线与x轴交于点A和点B,与y轴交于点C,且点A的坐标为(﹣1,0).(1)求抛物线的函数表达式;(2)将抛物线y=x2+bx+c图象x轴下方部分沿x轴向上翻折,保留抛物线在x轴上的点和x轴上方图象,得到的新图象与直线y=t恒有四个交点,从左到右四个交点依次记为D,E,F,G.当以EF为直径的圆过点Q(2,1)时,求t的值;(3)在抛物线y=x2+bx+c上,当m≤x≤n时,y的取值范围是m≤y≤7,请直接写出x的取值范围.2019年黑龙江省大庆市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上)1.(3分)有理数﹣8的立方根为()A.﹣2B.2C.±2D.±4【分析】利用立方根定义计算即可得到结果.【解答】解:有理数﹣8的立方根为.故选:A.2.(3分)在下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确;故选:D.3.(3分)小明同学在“百度”搜索引擎中输入“中国梦,我的梦”,搜索到与之相关的结果条数为608000,这个数用科学记数法表示为()A.60.8×104B.6.08×105C.0.608×106D.6.08×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:608000,这个数用科学记数法表示为6.08×105.故选:B.4.(3分)实数m,n在数轴上的对应点如图所示,则下列各式子正确的是()A.m>n B.﹣n>|m|C.﹣m>|n|D.|m|<|n|【分析】从数轴上可以看出m、n都是负数,且m<n,由此逐项分析得出结论即可.【解答】解:因为m、n都是负数,且m<n,|m|<|n|,A、m>n是错误的;B、﹣n>|m|是错误的;C、﹣m>|n|是正确的;D、|m|<|n|是错误的.故选:C.5.(3分)正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k的图象大致是()A.B.C.D.【分析】根据自正比例函数的性质得到k<0,然后根据一次函数的性质得到一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.【解答】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∵一次函数y=x+k的一次项系数大于0,常数项小于0,∴一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.故选:A.6.(3分)下列说法中不正确的是()A.四边相等的四边形是菱形B.对角线垂直的平行四边形是菱形C.菱形的对角线互相垂直且相等D.菱形的邻边相等【分析】由菱形的判定与性质即可得出A、B、D正确,C不正确.【解答】解:A.四边相等的四边形是菱形;正确;B.对角线垂直的平行四边形是菱形;正确;C.菱形的对角线互相垂直且相等;不正确;D.菱形的邻边相等;正确;故选:C.7.(3分)某企业1﹣6月份利润的变化情况如图所示,以下说法与图中反映的信息相符的是()A.1﹣6月份利润的众数是130万元B.1﹣6月份利润的中位数是130万元C.1﹣6月份利润的平均数是130万元D.1﹣6月份利润的极差是40万元【分析】先从统计图获取信息,再对选项一一分析,选择正确结果.【解答】解:A、1﹣6月份利润的众数是120万元;故本选项错误;B、1﹣6月份利润的中位数是125万元,故本选项错误;C、1﹣6月份利润的平均数是(110+120+130+120+140+150)=万元,故本选项错误;D、1﹣6月份利润的极差是150﹣110=40万元,故本选项正确.故选:D.8.(3分)如图,在△ABC中,BE是∠ABC的平分线,CE是外角∠ACM的平分线,BE与CE相交于点E,若∠A=60°,则∠BEC是()A.15°B.30°C.45°D.60°【分析】根据角平分线的定义得到∠EBM=∠ABC、∠ECM=∠ACM,根据三角形的外角性质计算即可.【解答】解:∵BE是∠ABC的平分线,∴∠EBM=∠ABC,∵CE是外角∠ACM的平分线,∴∠ECM=∠ACM,则∠BEC=∠ECM﹣∠EBM=×(∠ACM﹣∠ABC)=∠A=30°,故选:B.9.(3分)一个“粮仓”的三视图如图所示(单位:m),则它的体积是()A.21πm3B.30πm3C.45πm3D.63πm3【分析】首先判断该几何体的形状,然后根据其体积计算公式计算即可.【解答】解:观察发现该几何体为圆锥和圆柱的结合体,其体积为:32π×4+×32π×3=45πm3,故选:C.10.(3分)如图,在正方形ABCD中,边长AB=1,将正方形ABCD绕点A按逆时针方向旋转180°至正方形AB1C1D1,则线段CD扫过的面积为()A.B.C.πD.2π【分析】根据中心对称的性质得到CC1=2AC=2×AB=2,根据扇形的面积公式即可得到结论.【解答】解:∵将正方形ABCD绕点A按逆时针方向旋转180°至正方形AB1C1D1,∴CC1=2AC=2×AB=2,∴线段CD扫过的面积=×()2•π﹣×π=,故选:B.二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.(3分)a5÷a3=a2.【分析】根据同底数幂的除法法则解答即可.【解答】解:a5÷a3=a2.故答案为:a212.(3分)分解因式:a2b+ab2﹣a﹣b=(ab﹣1)(a+b).【分析】先分组,再利用提公因式法分解因式即可.【解答】解:a2b+ab2﹣a﹣b=ab(a+b)﹣(a+b)=(ab﹣1)(a+b)故答案为:(ab﹣1)(a+b)13.(3分)一个不透明的口袋中共有8个白球、5个黄球、5个绿球、2个红球,这些球除颜色外都相同.从口袋中随机摸出一个球,这个球是白球的概率是.【分析】先求出袋子中球的总个数及确定白球的个数,再根据概率公式解答即可.【解答】解:袋子中球的总数为8+5+5+2=20,而白球有8个,则从中任摸一球,恰为白球的概率为=.故答案为.14.(3分)如图,在△ABC中,D、E分别是BC,AC的中点,AD与BE相交于点G,若DG=1,则AD =3.【分析】先判断点G为△ABC的重心,然后利用三角形重心的性质求出AG,从而得到AD的长.【解答】解:∵D、E分别是BC,AC的中点,∴点G为△ABC的重心,∴AG=2DG=2,∴AD=AG+DG=2+1=3.故答案为3.15.(3分)归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n个“T”字形需要的棋子个数为3n+2.【分析】根据题意和图形,可以发现图形中棋子的变化规律,从而可以求得第n个“T”字形需要的棋子个数.【解答】解:由图可得,图①中棋子的个数为:3+2=5,图②中棋子的个数为:5+3=8,图③中棋子的个数为:7+4=11,……则第n个“T”字形需要的棋子个数为:(2n+1)+(n+1)=3n+2,故答案为:3n+2.16.(3分)我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a、b,那么(a﹣b)2的值是1.【分析】根据勾股定理可以求得a2+b2等于大正方形的面积,然后求四个直角三角形的面积,即可得到ab的值,然后根据(a﹣b)2=a2﹣2ab+b2即可求解.【解答】解:根据勾股定理可得a2+b2=13,四个直角三角形的面积是:ab×4=13﹣1=12,即:2ab=12,则(a﹣b)2=a2﹣2ab+b2=13﹣12=1.故答案为:1.17.(3分)已知x=4是不等式ax﹣3a﹣1<0的解,x=2不是不等式ax﹣3a﹣1<0的解,则实数a的取值范围是a≤﹣1.【分析】根据x=4是不等式ax﹣3a﹣1<0的解,x=2不是不等式ax﹣3a﹣1<0的解,列出不等式,求出解集,即可解答.【解答】解:∵x=4是不等式ax﹣3a﹣1<0的解,∴4a﹣3a﹣1<0,解得:a<1,∵x=2不是这个不等式的解,∴2a﹣3a﹣1≥0,解得:a≤﹣1,∴a≤﹣1,故答案为:a≤﹣1.18.(3分)如图,抛物线y=x2(p>0),点F(0,p),直线l:y=﹣p,已知抛物线上的点到点F的距离与到直线l的距离相等,过点F的直线与抛物线交于A,B两点,AA1⊥l,BB1⊥l,垂足分别为A1、B1,连接A1F,B1F,A1O,B1O.若A1F=a,B1F=b、则△A1OB1的面积=.(只用a,b表示).【分析】利用AA1⊥l,BB1⊥l可得AA1∥BB1,证明∠AF A1+∠BFB1=90°,确定△∠A1FB1是直角三角形,则可求△A1OB1的面积=△A1FB1的面积=ab;【解答】解:∵AA1=AF,B1B=BF,∴∠AF A1=∠AA1F,∠BFB1=∠BB1F,∵AA1⊥l,BB1⊥l,∴AA1∥BB1,∴∠BAA1+∠ABB1=180°,∴180°﹣2∠AF A1+180°﹣∠BFB1=180°,∴∠AF A1+∠BFB1=90°,∴∠A1FB1=90°,∴△A1OB1的面积=△A1FB1的面积=ab;故答案为ab.三、解答题(本大题共10小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(4分)计算:(2019﹣π)0+|1﹣|﹣sin60°.【分析】直接利用特殊角的三角函数值以及零指数幂的性质和绝对值的性质分别化简得出答案.【解答】解:原式=1+﹣1﹣=.20.(4分)已知:ab=1,b=2a﹣1,求代数式﹣的值.【分析】根据ab=1,b=2a﹣1,可以求得b﹣2a的值,从而可以求得所求式子的值.【解答】解:∵ab=1,b=2a﹣1,∴b﹣2a=﹣1,∴﹣===﹣1.21.(5分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450机器所需时间相同,求该工厂原来平均每天生产多少台机器?【分析】设原计划平均每天生产x台机器,则现在平均每天生产(x+50)台机器,根据工作时间=工作总量÷工作效率结合现在生产600台机器所需要时间与原计划生产450台机器所需时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设该工厂原来平均每天生产x台机器,则现在平均每天生产(x+50)台机器.根据题意得:=,解得:x=150.经检验知,x=150是原方程的根.答:该工厂原来平均每天生产150台机器.22.(6分)如图,一艘船由A港沿北偏东60°方向航行10km至B港,然后再沿北偏西30°方向航行10km 至C港.(1)求A,C两港之间的距离(结果保留到0.1km,参考数据:≈1.414,≈1.732);(2)确定C港在A港的什么方向.【分析】(1)由题意得∠ABC=90°,由勾股定理,从而得出AC的长;(2)由∠CAM=60°﹣45°=15°,则C点在A点北偏东15°的方向上.【解答】解:(1)由题意可得,∠PBC=30°,∠MAB=60°,∴∠CBQ=60°,∠BAN=30°,∴∠ABQ=30°,∴∠ABC=90°.∵AB=BC=10,∴AC==10≈14.1.答:A、C两地之间的距离为14.1km.(2)由(1)知,△ABC为等腰直角三角形,∴∠BAC=45°,∴∠CAM=60°﹣45°=15°,∴C港在A港北偏东15°的方向上.23.(7分)某校为了解七年级学生的体重情况,随机抽取了七年级m名学生进行调查,将抽取学生的体重情况绘制如下不完整的频数分布表和扇形统计图.请根据图表信息回答下列问题:(1)填空:①m=100,②n=20,③在扇形统计图中,C组所在扇形的圆心角的度数等于144度;(2)若把每组中各个体重值用这组数据的中间值代替(例如:A组数据中间值为40千克),则被调查学生的平均体重是多少千克?(3)如果该校七年级有1000名学生,请估算七年级体重低于47.5千克的学生大约有多少人?【分析】(1)①m=20÷20%=100,②n=100﹣10﹣40﹣20﹣10=20,③c==144°;(2)被抽取同学的平均体重为:(40×10+45×20+50×40+55×20+60×10)=50(千克);(3)七年级学生体重低于47.5千克的学生1000×30%=300(人).【解答】解:(1)①m=20÷20%=100,②n=100﹣10﹣40﹣20﹣10=20,③c==144°;故答案为100,20,144(2)被抽取同学的平均体重为:(40×10+45×20+50×40+55×20+60×10)=50(千克).答:被抽取同学的平均体重为50千克.(3)1000×30%=300(人).答:七年级学生体重低于47.5千克的学生大约有300人.24.(7分)如图,反比例函数y=和一次函数y=kx﹣1的图象相交于A(m,2m),B两点.(1)求一次函数的表达式;(2)求出点B的坐标,并根据图象直接写出满足不等式<kx﹣1的x的取值范围.【分析】(1)把A(m,2m)代入y=,求得A的坐标为(1,2),然后代入一次函数y=kx﹣1中即可得出其解析式;(2)联立方程求得交点B的坐标,然后根据函数图象即可得出结论.【解答】解:(1)∵A(m,2m)在反比例函数图象上,∴2m=,∴m=1,∴A(1,2).又∵A(1,2)在一次函数y=kx﹣1的图象上,∴2=k﹣1,即k=3,∴一次函数的表达式为:y=3x﹣1.(2)由解得或,∴B(﹣,﹣3)∴由图象知满足不等式<kx﹣1的x的取值范围为﹣<x<0或x>1.25.(7分)如图,在矩形ABCD中,AB=3,BC=4.M、N在对角线AC上,且AM=CN,E、F分别是AD、BC的中点.(1)求证:△ABM≌△CDN;(2)点G是对角线AC上的点,∠EGF=90°,求AG的长.【分析】(1)根据四边形的性质得到AB∥CD,求得∠MAB=∠NCD.根据全等三角形的判定定理得到结论;(2)连接EF,交AC于点O.根据全等三角形的性质得到EO=FO,AO=CO,于是得到结论.【解答】(1)证明∵四边形ABCD是矩形,∴AB∥CD,∴∠MAB=∠NCD.在△ABM和△CDN中,,∴△ABM≌△CDN(SAS);(2)解:如图,连接EF,交AC于点O.在△AEO和△CFO中,,∴△AEO≌△CFO(AAS),∴EO=FO,AO=CO,∴O为EF、AC中点.∵∠EGF=90°,OG=EF=,∴AG=OA﹣OG=1或AG=OA+OG=4,∴AG的长为1或4.26.(8分)如图,在Rt△ABC中,∠A=90°.AB=8cm,AC=6cm,若动点D从B出发,沿线段BA运动到点A为止(不考虑D与B,A重合的情况),运动速度为2cm/s,过点D作DE∥BC交AC于点E,连接BE,设动点D运动的时间为x(s),AE的长为y(cm).(1)求y关于x的函数表达式,并写出自变量x的取值范围;(2)当x为何值时,△BDE的面积S有最大值?最大值为多少?【分析】(1)由平行线得△ABC∽△ADE,根据相似形的性质得关系式;(2)由S=•BD•AE;得到函数解析式,然后运用函数性质求解.【解答】解:(1)动点D运动x秒后,BD=2x.又∵AB=8,∴AD=8﹣2x.∵DE∥BC,∴,∴,∴y关于x的函数关系式为y=(0<x<4).(2)解:S△BDE===(0<x<4).当时,S△BDE最大,最大值为6cm2.27.(9分)如图,⊙O是△ABC的外接圆,AB是直径,D是AC中点,直线OD与⊙O相交于E,F两点,P是⊙O外一点,P在直线OD上,连接P A,PC,AF,且满足∠PCA=∠ABC.(1)求证:P A是⊙O的切线;(2)证明:EF2=4OD•OP;(3)若BC=8,tan∠AFP=,求DE的长.【分析】(1)先判断出P A=PC,得出∠P AC=∠PCA,再判断出∠ACB=90°,得出∠CAB+∠CBA=90°,再判断出∠PCA+∠CAB=90°,得出∠CAB+∠P AC=90°,即可得出结论;(2)先判断出Rt△AOD∽Rt△POA,得出OA2=OP•OD,进而得出EF2=OP•OD,即可得出结论;(3)在Rt△ADF中,设AD=2a,得出DF=3a.OD=BC=4,AO=OF=3a﹣4,最后用勾股定理得出OD2+AD2=AO2,即可得出结论.【解答】(1)证明∵D是弦AC中点,∴OD⊥AC,∴PD是AC的中垂线,∴P A=PC,∴∠P AC=∠PCA.∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB+∠CBA=90°.又∵∠PCA=∠ABC,∴∠PCA+∠CAB=90°,∴∠CAB+∠P AC=90°,即AB⊥P A,∴P A是⊙O的切线;(2)证明:由(1)知∠ODA=∠OAP=90°,∴Rt△AOD∽Rt△POA,∴,∴OA2=OP•OD.又OA=EF,∴EF2=OP•OD,即EF2=4OP•OD.(3)解:在Rt△ADF中,设AD=2a,则DF=3a.OD=BC=4,AO=OF=3a﹣4.∵OD2+AD2=AO2,即42+4a2=(3a﹣4)2,解得a=,∴DE=OE﹣OD=3a﹣8=.28.(9分)如图,抛物线y=x2+bx+c的对称轴为直线x=2,抛物线与x轴交于点A和点B,与y轴交于点C,且点A的坐标为(﹣1,0).(1)求抛物线的函数表达式;(2)将抛物线y=x2+bx+c图象x轴下方部分沿x轴向上翻折,保留抛物线在x轴上的点和x轴上方图象,得到的新图象与直线y=t恒有四个交点,从左到右四个交点依次记为D,E,F,G.当以EF为直径的圆过点Q(2,1)时,求t的值;(3)在抛物线y=x2+bx+c上,当m≤x≤n时,y的取值范围是m≤y≤7,请直接写出x的取值范围.【分析】(1)抛物线的对称轴是x=2,且过点A(﹣1,0)点,∴,即可求解;(2)翻折后得到的部分函数解析式为:y=﹣(x﹣2)2+9=﹣x2+4x+5,(﹣1<x<5),新图象与直线y =t恒有四个交点,则0<t<9,由解得:x=2,即可求解;(3)分m、n在函数对称轴左侧、m、n在对称轴两侧、m、n在对称轴右侧时,三种情况分别求解即可.【解答】解:(1)抛物线的对称轴是x=2,且过点A(﹣1,0)点,∴,解得:,∴抛物线的函数表达式为:y=x2﹣4x﹣5;(2)y=x2﹣4x﹣5=(x﹣2)2﹣9,则x轴下方图象翻折后得到的部分函数解析式为:y=﹣(x﹣2)2+9=﹣x2+4x+5,(﹣1<x<5),其顶点为(2,9).∵新图象与直线y=t恒有四个交点,∴0<t<9,设E(x1,y1),F(x2,y2).由解得:x=2,∵以EF为直径的圆过点Q(2,1),∴EF=2|t﹣1|=x2﹣x1,即2=2|t﹣1|,解得t=,又∵0<t<9,∴t的值为;(3)①当m、n在函数对称轴左侧时,m≤n≤2,由题意得:x=m时,y≤7,x=n时,y≥m,即:,解得:﹣2≤x;②当m、n在对称轴两侧时,x=2时,y的最小值为﹣9,不合题意;③当m、n在对称轴右侧时,同理可得:≤x≤6;故x的取值范围是:﹣2≤x或≤x≤6.。
2019年黑龙江省大庆市中考数学试卷和答案
2019年黑龙江省大庆市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上)1.(3分)有理数﹣8的立方根为()A.﹣2B.2C.±2D.±42.(3分)在下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)小明同学在“百度”搜索引擎中输入“中国梦,我的梦”,搜索到与之相关的结果条数为608000,这个数用科学记数法表示为()A.60.8×104B.6.08×105C.0.608×106D.6.08×107 4.(3分)实数m,n在数轴上的对应点如图所示,则下列各式子正确的是()A.m>n B.﹣n>|m|C.﹣m>|n|D.|m|<|n| 5.(3分)正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k的图象大致是()A.B.C.D.6.(3分)下列说法中不正确的是()A.四边相等的四边形是菱形B.对角线垂直的平行四边形是菱形C.菱形的对角线互相垂直且相等D.菱形的邻边相等7.(3分)某企业1﹣6月份利润的变化情况如图所示,以下说法与图中反映的信息相符的是()A.1﹣6月份利润的众数是130万元B.1﹣6月份利润的中位数是130万元C.1﹣6月份利润的平均数是130万元D.1﹣6月份利润的极差是40万元8.(3分)如图,在△ABC中,BE是∠ABC的平分线,CE是外角∠ACM的平分线,BE与CE相交于点E,若∠A=60°,则∠BEC是()A.15°B.30°C.45°D.60°9.(3分)一个“粮仓”的三视图如图所示(单位:m),则它的体积是()A.21πm3B.30πm3C.45πm3D.63πm3 10.(3分)如图,在正方形ABCD中,边长AB=1,将正方形ABCD 绕点A按逆时针方向旋转180°至正方形AB1C1D1,则线段CD 扫过的面积为()A.B.C.πD.2π二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.(3分)a5÷a3=.12.(3分)分解因式:a2b+ab2﹣a﹣b=.13.(3分)一个不透明的口袋中共有8个白球、5个黄球、5个绿球、2个红球,这些球除颜色外都相同.从口袋中随机摸出一个球,这个球是白球的概率是.14.(3分)如图,在△ABC中,D、E分别是BC,AC的中点,AD 与BE相交于点G,若DG=1,则AD=.15.(3分)归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n个“T”字形需要的棋子个数为.16.(3分)我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a、b,那么(a﹣b)2的值是.17.(3分)已知x=4是不等式ax﹣3a﹣1<0的解,x=2不是不等式ax﹣3a﹣1<0的解,则实数a的取值范围是.18.(3分)如图,抛物线y=x2(p>0),点F(0,p),直线l:y =﹣p,已知抛物线上的点到点F的距离与到直线l的距离相等,过点F的直线与抛物线交于A,B两点,AA1⊥l,BB1⊥l,垂足分别为A1、B1,连接A1F,B1F,A1O,B1O.若A1F=a,B1F=b、则△A1OB1的面积=.(只用a,b表示).三、解答题(本大题共10小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(4分)计算:(2019﹣π)0+|1﹣|﹣sin60°.20.(4分)已知:ab=1,b=2a﹣1,求代数式﹣的值.21.(5分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450机器所需时间相同,求该工厂原来平均每天生产多少台机器?22.(6分)如图,一艘船由A港沿北偏东60°方向航行10km至B 港,然后再沿北偏西30°方向航行10km至C港.(1)求A,C两港之间的距离(结果保留到0.1km,参考数据:≈1.414,≈1.732);(2)确定C港在A港的什么方向.23.(7分)某校为了解七年级学生的体重情况,随机抽取了七年级m名学生进行调查,将抽取学生的体重情况绘制如下不完整的频数分布表和扇形统计图.组别体重(千克)人数10A37.5≤x<42.5nB42.5≤x<47.5C47.5≤x<52.540D52.5≤x<57.520E57.5≤x<62.510请根据图表信息回答下列问题:(1)填空:①m=,②n=,③在扇形统计图中,C组所在扇形的圆心角的度数等于度;(2)若把每组中各个体重值用这组数据的中间值代替(例如:A 组数据中间值为40千克),则被调查学生的平均体重是多少千克?(3)如果该校七年级有1000名学生,请估算七年级体重低于47.5千克的学生大约有多少人?24.(7分)如图,反比例函数y=和一次函数y=kx﹣1的图象相交于A(m,2m),B两点.(1)求一次函数的表达式;(2)求出点B的坐标,并根据图象直接写出满足不等式<kx ﹣1的x的取值范围.25.(7分)如图,在矩形ABCD中,AB=3,BC=4.M、N在对角线AC上,且AM=CN,E、F分别是AD、BC的中点.(1)求证:△ABM≌△CDN;(2)点G是对角线AC上的点,∠EGF=90°,求AG的长.26.(8分)如图,在Rt△ABC中,∠A=90°.AB=8cm,AC=6cm,若动点D从B出发,沿线段BA运动到点A为止(不考虑D与B,A重合的情况),运动速度为2cm/s,过点D作DE∥BC 交AC于点E,连接BE,设动点D运动的时间为x(s),AE的长为y(cm).(1)求y关于x的函数表达式,并写出自变量x的取值范围;(2)当x为何值时,△BDE的面积S有最大值?最大值为多少?27.(9分)如图,⊙O是△ABC的外接圆,AB是直径,D是AC 中点,直线OD与⊙O相交于E,F两点,P是⊙O外一点,P在直线OD上,连接PA,PC,AF,且满足∠PCA=∠ABC.(1)求证:PA是⊙O的切线;(2)证明:EF2=4OD•OP;(3)若BC=8,tan∠AFP=,求DE的长.28.(9分)如图,抛物线y=x2+bx+c的对称轴为直线x=2,抛物线与x轴交于点A和点B,与y轴交于点C,且点A的坐标为(﹣1,0).(1)求抛物线的函数表达式;(2)将抛物线y=x2+bx+c图象x轴下方部分沿x轴向上翻折,保留抛物线在x轴上的点和x轴上方图象,得到的新图象与直线y=t恒有四个交点,从左到右四个交点依次记为D,E,F,G.当以EF为直径的圆过点Q(2,1)时,求t的值;(3)在抛物线y=x2+bx+c上,当m≤x≤n时,y的取值范围是m ≤y≤7,请直接写出x的取值范围.2019年黑龙江省大庆市中考数学试卷答案与解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上)1.【分析】利用立方根定义计算即可得到结果.【解答】解:有理数﹣8的立方根为.故选:A.2.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确;故选:D.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:608000,这个数用科学记数法表示为6.08×105.故选:B.4.【分析】从数轴上可以看出m、n都是负数,且m<n,由此逐项分析得出结论即可.【解答】解:因为m、n都是负数,且m<n,|m|>|n|,A、m>n是错误的;B、﹣n>|m|是错误的;C、﹣m>|n|是正确的;D、|m|<|n|是错误的.故选:C.5.【分析】根据自正比例函数的性质得到k<0,然后根据一次函数的性质得到一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.【解答】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∵一次函数y=x+k的一次项系数大于0,常数项小于0,∴一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.故选:A.6.【分析】由菱形的判定与性质即可得出A、B、D正确,C不正确.【解答】解:A.四边相等的四边形是菱形;正确;B.对角线垂直的平行四边形是菱形;正确;C.菱形的对角线互相垂直且相等;不正确;D.菱形的邻边相等;正确;故选:C.7.【分析】先从统计图获取信息,再对选项一一分析,选择正确结果.【解答】解:A、1﹣6月份利润的众数是120万元;故本选项错误;B、1﹣6月份利润的中位数是125万元,故本选项错误;C、1﹣6月份利润的平均数是(110+120+130+120+140+150)=万元,故本选项错误;D、1﹣6月份利润的极差是150﹣110=40万元,故本选项正确.故选:D.8.【分析】根据角平分线的定义得到∠EBM=∠ABC、∠ECM=∠ACM,根据三角形的外角性质计算即可.【解答】解:∵BE是∠ABC的平分线,∴∠EBM=∠ABC,∵CE是外角∠ACM的平分线,∴∠ECM=∠ACM,则∠BEC=∠ECM﹣∠EBM=×(∠ACM﹣∠ABC)=∠A =30°,故选:B.9.【分析】首先判断该几何体的形状,然后根据其体积计算公式计算即可.【解答】解:观察发现该几何体为圆锥和圆柱的结合体,其体积为:32π×4+×32π×3=45πm3,故选:C.10.【分析】根据中心对称的性质得到CC 1=2AC=2×AB=2,根据扇形的面积公式即可得到结论.【解答】解:∵将正方形ABCD绕点A按逆时针方向旋转180°至正方形AB1C1D1,∴CC 1=2AC=2×AB=2,∴线段CD扫过的面积=×()2•π﹣×π=,故选:B.二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.【分析】根据同底数幂的除法法则解答即可.【解答】解:a5÷a3=a2.故答案为:a212.【分析】先分组,再利用提公因式法分解因式即可.【解答】解:a2b+ab2﹣a﹣b=ab(a+b)﹣(a+b)=(ab﹣1)(a+b)故答案为:(ab﹣1)(a+b)13.【分析】先求出袋子中球的总个数及确定白球的个数,再根据概率公式解答即可.【解答】解:袋子中球的总数为8+5+5+2=20,而白球有8个,则从中任摸一球,恰为白球的概率为=.故答案为:.14.【分析】先判断点G为△ABC的重心,然后利用三角形重心的性质求出AG,从而得到AD的长.【解答】解:∵D、E分别是BC,AC的中点,∴点G为△ABC的重心,∴AG=2DG=2,∴AD=AG+DG=2+1=3.故答案为3.15.【分析】根据题意和图形,可以发现图形中棋子的变化规律,从而可以求得第n个“T”字形需要的棋子个数.【解答】解:由图可得,图①中棋子的个数为:3+2=5,图②中棋子的个数为:5+3=8,图③中棋子的个数为:7+4=11,……则第n个“T”字形需要的棋子个数为:(2n+1)+(n+1)=3n+2,故答案为:3n+2.16.【分析】根据勾股定理可以求得a2+b2等于大正方形的面积,然后求四个直角三角形的面积,即可得到ab的值,然后根据(a﹣b)2=a2﹣2ab+b2即可求解.【解答】解:根据勾股定理可得a2+b2=13,四个直角三角形的面积是:ab×4=13﹣1=12,即:2ab=12,则(a﹣b)2=a2﹣2ab+b2=13﹣12=1.故答案为:1.17.【分析】根据x=4是不等式ax﹣3a﹣1<0的解,x=2不是不等式ax﹣3a﹣1<0的解,列出不等式,求出解集,即可解答.【解答】解:∵x=4是不等式ax﹣3a﹣1<0的解,∴4a﹣3a﹣1<0,解得:a<1,∵x=2不是这个不等式的解,∴2a﹣3a﹣1≥0,解得:a≤﹣1,∴a≤﹣1,故答案为:a≤﹣1.18.【分析】利用AA1⊥l,BB1⊥l可得AA1∥BB1,证明∠AFA1+∠BFB1=90°,确定△∠A1FB1是直角三角形,则可求△A1OB1的面积=△A1FB1的面积=ab;【解答】解:∵AA1=AF,B1B=BF,∴∠AFA1=∠AA1F,∠BFB1=∠BB1F,∵AA1⊥l,BB1⊥l,∴AA1∥BB1,∴∠BAA1+∠ABB1=180°,∴180°﹣2∠AFA1+180°﹣2∠BFB1=180°,∴∠AFA1+∠BFB1=90°,∴∠A1FB1=90°,∴△A1OB1的面积=△A1FB1的面积=ab;故答案为ab.三、解答题(本大题共10小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.【分析】直接利用特殊角的三角函数值以及零指数幂的性质和绝对值的性质分别化简得出答案.【解答】解:原式=1+﹣1﹣=.20.【分析】根据ab=1,b=2a﹣1,可以求得b﹣2a的值,从而可以求得所求式子的值.【解答】解:∵ab=1,b=2a﹣1,∴b﹣2a=﹣1,∴﹣===﹣1.21.【分析】设原计划平均每天生产x台机器,则现在平均每天生产(x+50)台机器,根据工作时间=工作总量÷工作效率结合现在生产600台机器所需要时间与原计划生产450台机器所需时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设该工厂原来平均每天生产x台机器,则现在平均每天生产(x+50)台机器.根据题意得:=,解得:x=150.经检验知,x=150是原方程的根.答:该工厂原来平均每天生产150台机器.22.【分析】(1)由题意得∠ABC=90°,由勾股定理,从而得出AC的长;(2)由∠CAM=60°﹣45°=15°,则C点在A点北偏东15°的方向上.【解答】解:(1)由题意可得,∠PBC=30°,∠MAB=60°,∴∠CBQ=60°,∠BAN=30°,∴∠ABQ=30°,∴∠ABC=90°.∵AB=BC=10,∴AC==10≈14.1.答:A、C两地之间的距离为14.1km.(2)由(1)知,△ABC为等腰直角三角形,∴∠BAC=45°,∴∠CAM=60°﹣45°=15°,∴C港在A港北偏东15°的方向上.23.【分析】(1)①m=20÷20%=100,②n=100﹣10﹣40﹣20﹣10=20,③c==144°;(2)被抽取同学的平均体重为:(40×10+45×20+50×40+55×20+60×10)=50(千克);(3)七年级学生体重低于47.5千克的学生1000×30%=300(人).【解答】解:(1)①m=20÷20%=100,②n=100﹣10﹣40﹣20﹣10=20,③c==144°;故答案为100,20,144(2)被抽取同学的平均体重为:(40×10+45×20+50×40+55×20+60×10)=50(千克).答:被抽取同学的平均体重为50千克.(3)1000×30%=300(人).答:七年级学生体重低于47.5千克的学生大约有300人.24.【分析】(1)把A(m,2m)代入y=,求得A的坐标为(1,2),然后代入一次函数y=kx﹣1中即可得出其解析式;(2)联立方程求得交点B的坐标,然后根据函数图象即可得出结论.【解答】解:(1)∵A(m,2m)在反比例函数图象上,∴2m=,∴m=1,∴A(1,2).又∵A(1,2)在一次函数y=kx﹣1的图象上,∴2=k﹣1,即k=3,∴一次函数的表达式为:y=3x﹣1.(2)由解得或,∴B(﹣,﹣3)∴由图象知满足不等式<kx﹣1的x的取值范围为﹣<x<0或x>1.25.【分析】(1)根据四边形的性质得到AB∥CD,求得∠MAB=∠NCD.根据全等三角形的判定定理得到结论;(2)连接EF,交AC于点O.根据全等三角形的性质得到EO=FO,AO=CO,于是得到结论.【解答】(1)证明∵四边形ABCD是矩形,∴AB∥CD,∴∠MAB=∠NCD.在△ABM和△CDN中,,∴△ABM≌△CDN(SAS);(2)解:如图,连接EF,交AC于点O.∵四边形ABCD是矩形,∴AD=BC,∠ABC=90°,∴AC==5,∵E、F分别是AD、BC的中点,∴AE=BF,∴四边形ABFE是矩形,∴EF=AB=3,在△AEO和△CFO中,,∴△AEO≌△CFO(AAS),∴EO=FO,AO=CO,∴O为EF、AC中点.∵∠EGF=90°,OG=EF=,∴AG=OA﹣OG=1或AG=OA+OG=4,∴AG的长为1或4.26.【分析】(1)由平行线得△ABC∽△ADE,根据相似形的性质得关系式;(2)由S=•BD•AE;得到函数解析式,然后运用函数性质求解.【解答】解:(1)动点D运动x秒后,BD=2x.又∵AB=8,∴AD=8﹣2x.∵DE∥BC,∴,∴,∴y关于x的函数关系式为y=(0<x<4).(2)解:S△BDE===(0<x<4).当时,S△BDE最大,最大值为6cm2.27.【分析】(1)先判断出PA=PC,得出∠PAC=∠PCA,再判断出∠ACB=90°,得出∠CAB+∠CBA=90°,再判断出∠PCA+∠CAB=90°,得出∠CAB+∠PAC=90°,即可得出结论;(2)先判断出Rt△AOD∽Rt△POA,得出OA2=OP•OD,进而得出EF2=OP•OD,即可得出结论;(3)在Rt△ADF中,设AD=2a,得出DF=3a.OD=BC=4,AO=OF=3a﹣4,最后用勾股定理得出OD2+AD2=AO2,即可得出结论.【解答】(1)证明∵D是弦AC中点,∴OD⊥AC,∴PD是AC的中垂线,∴PA=PC,∴∠PAC=∠PCA.∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB+∠CBA=90°.又∵∠PCA=∠ABC,∴∠PCA+∠CAB=90°,∴∠CAB+∠PAC=90°,即AB⊥PA,∴PA是⊙O的切线;(2)证明:由(1)知∠ODA=∠OAP=90°,∴Rt△AOD∽Rt△POA,∴,∴OA2=OP•OD.又OA=EF,∴EF2=OP•OD,即EF2=4OP•OD.(3)解:在Rt△ADF中,设AD=2a,则DF=3a.OD=BC=4,AO=OF=3a﹣4.∵OD2+AD2=AO2,即42+4a2=(3a﹣4)2,解得a=,∴DE=OE﹣OD=3a﹣8=.28.【分析】(1)抛物线的对称轴是x=2,且过点A(﹣1,0)点,∴,即可求解;(2)翻折后得到的部分函数解析式为:y=﹣(x﹣2)2+9=﹣x2+4x+5,(﹣1<x<5),新图象与直线y=t恒有四个交点,则0<t<9,由解得:x=2,即可求解;(3)分m、n在函数对称轴左侧、m、n在对称轴两侧、m、n在对称轴右侧时,三种情况分别求解即可.【解答】解:(1)抛物线的对称轴是x=2,且过点A(﹣1,0)点,∴,解得:,∴抛物线的函数表达式为:y=x2﹣4x﹣5;(2)y=x2﹣4x﹣5=(x﹣2)2﹣9,则x轴下方图象翻折后得到的部分函数解析式为:y=﹣(x﹣2)2+9=﹣x2+4x+5,(﹣1<x<5),其顶点为(2,9).∵新图象与直线y=t恒有四个交点,∴0<t<9,设E(x1,y1),F(x2,y2).由解得:x=2,∵以EF为直径的圆过点Q(2,1),∴EF=2|t﹣1|=x2﹣x1,即2=2|t﹣1|,解得t=,又∵0<t<9,∴t的值为;(3)①当m、n在函数对称轴左侧时,m≤n≤2,由题意得:x=m时,y=7,x=n时,y=m,即:m2﹣4m﹣5=7,解得m=﹣2或m=6(舍),n2﹣4n﹣5=m,解得n=2﹣或m=2+(舍),解得:﹣2≤x≤2﹣;②当m、n在对称轴两侧时,x=2时,y的最小值为﹣9,不合题意;③当m、n在对称轴右侧时,同理可得:≤x≤6;故x的取值范围是:﹣2≤x或≤x≤6.。
2019年黑龙江省大庆市中考数学试题(Word版,含解析)
2019年黑龙江省大庆市中考数学试题一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上)1.有理数﹣8的立方根为()A.﹣2 B.2 C.±2 D.±42.在下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.3.小明同学在“百度”搜索引擎中输入“中国梦,我的梦”,搜索到与之相关的结果条数为608000,这个数用科学记数法表示为()A.60.8×104 B.6.08×105 C.0.608×106 D.6.08×1074.实数m,n在数轴上的对应点如图所示,则下列各式子正确的是()A.m>n B.﹣n>|m| C.﹣m>|n| D.|m|<|n|5.正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k的图象大致是()A. B.C. D.6.下列说法中不正确的是()A.四边相等的四边形是菱形B.对角线垂直的平行四边形是菱形C.菱形的对角线互相垂直且相等D.菱形的邻边相等7.某企业1﹣6月份利润的变化情况如图所示,以下说法与图中反映的信息相符的是()A.1﹣6月份利润的众数是130万元B.1﹣6月份利润的中位数是130万元C.1﹣6月份利润的平均数是130万元D.1﹣6月份利润的极差是40万元8.如图,在△ABC中,BE是∠ABC的平分线,CE是外角∠ACM的平分线,BE与CE相交于点E,若∠A=60°,则∠BEC是()A.15° B.30° C.45° D.60°9.一个“粮仓”的三视图如图所示(单位:m),则它的体积是()A.21πm3 B.30πm3 C.45πm3 D.63πm310.如图,在正方形ABCD中,边长AB=1,将正方形ABCD绕点A按逆时针方向旋转180°至正方形AB1C1D1,则线段CD扫过的面积为()A. B. C.π D.2π二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.a5÷a3=.12.分解因式:a2b+ab2﹣a﹣b=.13.一个不透明的口袋中共有8个白球、5个黄球、5个绿球、2个红球,这些球除颜色外都相同.从口袋中随机摸出一个球,这个球是白球的概率是.14.如图,在△ABC中,D、E分别是BC,AC的中点,AD与BE相交于点G,若DG=1,则AD =.15.归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n个“T”字形需要的棋子个数为.16.我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a、b,那么(a﹣b)2的值是.17.已知x=4是不等式ax﹣3a﹣1<0的解,x=2不是不等式ax﹣3a﹣1<0的解,则实数a的取值范围是.18.如图,抛物线y=x2(p>0),点F(0,p),直线l:y=﹣p,已知抛物线上的点到点F的距离与到直线l的距离相等,过点F的直线与抛物线交于A,B两点,AA1⊥l,BB1⊥l,垂足分别为A1、B1,连接A1F,B1F,A1O,B1O.若A1F=a,B1F=b、则△A1OB1的面积=.(只用a,b表示).三、解答题(本大题共10小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(2019﹣π)0+|1﹣|﹣sin60°.20.已知:ab=1,b=2a﹣1,求代数式﹣的值.21.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450机器所需时间相同,求该工厂原来平均每天生产多少台机器?22.如图,一艘船由A港沿北偏东60°方向航行10km至B港,然后再沿北偏西30°方向航行10km至C港.(1)求A,C两港之间的距离(结果保留到0.1km,参考数据:≈1.414,≈1.732);(2)确定C港在A港的什么方向.23.某校为了解七年级学生的体重情况,随机抽取了七年级m名学生进行调查,将抽取学生的体重情况绘制如下不完整的频数分布表和扇形统计图.请根据图表信息回答下列问题:(1)填空:①m=,②n=,③在扇形统计图中,C组所在扇形的圆心角的度数等于度;(2)若把每组中各个体重值用这组数据的中间值代替(例如:A组数据中间值为40千克),则被调查学生的平均体重是多少千克?(3)如果该校七年级有1000名学生,请估算七年级体重低于47.5千克的学生大约有多少人?24.如图,反比例函数y=和一次函数y=kx﹣1的图象相交于A(m,2m),B两点.(1)求一次函数的表达式;(2)求出点B的坐标,并根据图象直接写出满足不等式<kx﹣1的x的取值范围.25.如图,在矩形ABCD中,AB=3,BC=4.M、N在对角线AC上,且AM=CN,E、F分别是AD、BC的中点.(1)求证:△ABM≌△CDN;(2)点G是对角线AC上的点,∠EGF=90°,求AG的长.26.(8分)如图,在Rt△ABC中,∠A=90°.AB=8cm,AC=6cm,若动点D从B出发,沿线段BA运动到点A为止(不考虑D与B,A重合的情况),运动速度为2cm/s,过点D作DE∥BC交AC于点E,连接BE,设动点D运动的时间为x(s),AE的长为y(cm).(1)求y关于x的函数表达式,并写出自变量x的取值范围;(2)当x为何值时,△BDE的面积S有最大值?最大值为多少?27.如图,⊙O是△ABC的外接圆,AB是直径,D是AC中点,直线OD与⊙O相交于E,F两点,P是⊙O外一点,P在直线OD上,连接PA,PC,AF,且满足∠PCA=∠ABC.(1)求证:PA是⊙O的切线;(2)证明:EF2=4OD•OP;(3)若BC=8,tan∠AFP=,求DE的长.28.如图,抛物线y=x2+bx+c的对称轴为直线x=2,抛物线与x轴交于点A和点B,与y 轴交于点C,且点A的坐标为(﹣1,0).(1)求抛物线的函数表达式;(2)将抛物线y=x2+bx+c图象x轴下方部分沿x轴向上翻折,保留抛物线在x轴上的点和x轴上方图象,得到的新图象与直线y=t恒有四个交点,从左到右四个交点依次记为D,E,F,G.当以EF为直径的圆过点Q(2,1)时,求t的值;(3)在抛物线y=x2+bx+c上,当m≤x≤n时,y的取值范围是m≤y≤7,请直接写出x 的取值范围.一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上)1.有理数﹣8的立方根为.答案:A.2.A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确;答案:D.3.608000,这个数用科学记数法表示为6.08×105.答案:B.4.因为m、n都是负数,且m<n,|m|<|n|,A、m>n是错误的;B、﹣n>|m|是错误的;C、﹣m>|n|是正确的;D、|m|<|n|是错误的.答案:C.5.∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∵一次函数y=x+k的一次项系数大于0,常数项小于0,∴一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.答案:A.6.A.四边相等的四边形是菱形;正确;B.对角线垂直的平行四边形是菱形;正确;C.菱形的对角线互相垂直且相等;不正确;D.菱形的邻边相等;正确;答案:C.7.A、1﹣6月份利润的众数是120万元;故本选项错误;B、1﹣6月份利润的中位数是125万元,故本选项错误;C、1﹣6月份利润的平均数是(110+120+130+120+140+150)=万元,故本选项错误;D、1﹣6月份利润的极差是150﹣110=40万元,故本选项正确.答案:D.8.∵BE是∠ABC的平分线,∴∠EBM=∠ABC,∵CE是外角∠ACM的平分线,∴∠ECM=∠ACM,则∠BEC=∠ECM﹣∠EBM=×(∠ACM﹣∠ABC)=∠A=30°,答案:B.9.观察发现该几何体为圆锥和圆柱的结合体,其体积为:32π×4+×32π×3=45πm3,答案:C.10.∵将正方形ABCD绕点A按逆时针方向旋转180°至正方形AB1C1D1,∴CC1=2AC=2×AB=2,∴线段CD扫过的面积=×()2•π﹣×π=,答案:B.二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.a5÷a2=a3.故答案为:a312.a2b+ab2﹣a﹣b=ab(a+b)﹣(a+b)=(ab﹣1)(a+b)故答案为:(ab﹣1)(a+b)13.袋子中球的总数为8+5+5+2=20,而白球有8个,则从中任摸一球,恰为白球的概率为=.故答案为.14.∵D、E分别是BC,AC的中点,∴点G为△ABC的重心,∴AG=2DG=2,∴AD=AG+DG=2+1=3.故答案为3.15.由图可得,图①中棋子的个数为:3+2=5,图②中棋子的个数为:5+3=8,图③中棋子的个数为:7+4=11,……则第n个“T”字形需要的棋子个数为:(2n+1)+(n+1)=3n+2,故答案为:3n+2.16.根据勾股定理可得a2+b2=13,四个直角三角形的面积是:ab×4=13﹣1=12,即:2ab=12,则(a﹣b)2=a2﹣2ab+b2=13﹣12=1.故答案为:1.17.∵x=4是不等式ax﹣3a﹣1<0的解,∴4a﹣3a﹣1<0,解得:a<1,∵x=2不是这个不等式的解,∴2a﹣3a﹣1≥0,解得:a≤﹣1,∴a≤﹣1,故答案为:a≤﹣1.18.∵AA1=AF,B1B=BF,∴∠AFA1=∠AA1F,∠BFB1=∠BB1F,∵AA1⊥l,BB1⊥l,∴AA1∥BB1,∴∠BAA1+∠ABB1=180°,∴180°﹣2∠AFA1+180°﹣∠BFB1=180°,∴∠AFA1+∠BFB1=90°,∴∠A1FB1=90°,∴△A1OB1的面积=△A1FB1的面积=ab;故答案为ab.三、解答题(本大题共10小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.原式=1+﹣1﹣=.20.∵ab=1,b=2a﹣1,∴b﹣2a=﹣1,∴﹣===﹣1.21.设该工厂原来平均每天生产x台机器,则现在平均每天生产(x+50)台机器.根据题意得:=,解得:x=150.经检验知,x=150是原方程的根.答:该工厂原来平均每天生产150台机器.22.(1)由题意可得,∠PBC=30°,∠MAB=60°,∴∠CBQ=60°,∠BAN=30°,∴∠ABQ=30°,∴∠ABC=90°.∵AB=BC=10,∴AC==10≈14.1.答:A、C两地之间的距离为14.1km.(2)由(1)知,△ABC为等腰直角三角形,∴∠BAC=45°,∴∠CAM=60°﹣45°=15°,∴C港在A港北偏东15°的方向上.23.(1)①m=20÷20%=100,②n=100﹣10﹣40﹣20﹣10=20,③c==144°;故答案为100,20,144(2)被抽取同学的平均体重为:(40×10+45×20+50×40+55×20+60×10)=50(千克).答:被抽取同学的平均体重为50千克.(3)1000×30%=300(人).答:七年级学生体重低于47.5千克的学生大约有300人.24.(1)∵A(m,2m)在反比例函数图象上,∴2m=,∴m=1,∴A(1,2).又∵A(1,2)在一次函数y=kx﹣1的图象上,∴2=k﹣1,即k=3,∴一次函数的表达式为:y=3x﹣1.(2)由解得或,∴B(﹣,﹣3)∴由图象知满足不等式<kx﹣1的x的取值范围为﹣<x<0或x>1.25.(1)证明∵四边形ABCD是矩形,∴AB∥CD,∴∠MAB=∠NCD.在△ABM和△CDN中,,∴△ABM≌△CDN(SAS);(2)如图,连接EF,交AC于点O.在△AEO和△CFO中,,∴△AEO≌△CFO(AAS),∴EO=FO,AO=CO,∴O为EF、AC中点.∵∠EGF=90°,OG=EF=,∴AG=OA﹣OG=1或AG=OA+OG=4,∴AG的长为1或4.26.(1)动点D运动x秒后,BD=2x.又∵AB=8,∴AD=8﹣2x.∵DE∥BC,∴,∴,∴y关于x的函数关系式为y=(0<x<4).(2)S△BDE===(0<x<4).当时,S△BDE最大,最大值为6cm2.27.(1)证明∵D是弦AC中点,∴OD⊥AC,∴PD是AC的中垂线,∴PA=PC,∴∠PAC=∠PCA.∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB+∠CBA=90°.又∵∠PCA=∠ABC,∴∠PCA+∠CAB=90°,∴∠CAB+∠PAC=90°,即AB⊥PA,∴PA是⊙O的切线;(2)证明:由(1)知∠ODA=∠OAP=90°,∴Rt△AOD∽Rt△POA,∴,∴OA2=OP•OD.又OA=EF,∴EF2=OP•OD,即EF2=4OP•OD.(3)在Rt△ADF中,设AD=a,则DF=3a.OD=BC=4,AO=OF=3a﹣4.∵OD2+AD2=AO2,即42+a2=(3a﹣4)2,解得a=,∴DE=OE﹣OD=3a﹣8=.28.(1)抛物线的对称轴是x=2,且过点A(﹣1,0)点,∴,解得:,∴抛物线的函数表达式为:y=x2﹣4x﹣5;(2)y=x2﹣4x﹣5=(x﹣2)2﹣9,则x轴下方图象翻折后得到的部分函数解析式为:y=﹣(x﹣2)2+9=﹣x2+4x+5,(﹣1<x<5),其顶点为(2,9).∵新图象与直线y=t恒有四个交点,∴0<t<9,设E(x1,y1),F(x2,y2).由解得:x=2,∵以EF为直径的圆过点Q(2,1),∴EF=2|t﹣1|=x2﹣x1,即2=2|t﹣1|,解得t=,又∵0<t<9,∴t的值为;(3)①当m、n在函数对称轴左侧时,m≤n≤2,由题意得:x=m时,y≤7,x=n时,y≥m,即:,解得:﹣2≤x;②当m、n在对称轴两侧时,x=2时,y的最小值为9,不合题意;③当m、n在对称轴右侧时,同理可得:≤x≤6;故x的取值范围是:﹣2≤x或≤x≤6.。
2019年黑龙江省大庆市中考数学考前最后一卷(解析版)
2019年黑龙江省大庆市中考数学考前最后一卷一.选择题(满分30分,每小题3分)1.﹣27的立方根是()A.3 B.﹣3 C.±3 D.﹣32.下列图形中,即是轴对称图形又是中心对称图形的是()#ZZZA.B.C.D.3.12月2日,2018年第十三届南宁国际马拉松比赛开跑,2.6万名跑者继续刷新南宁马拉松的参与人数纪录!把2.6万用科学记数法表示为()A.0.26×103B.2.6×103C.0.26×104D.2.6×1044.有理数a、b在数轴上的对应点的位置如图,下列结论中,错误的是()A.a﹣b>0 B.|a|>|b| C.<0 D.a+b<05.正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=x﹣k的图象大致是()A.B.C.D.6.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F.若BF=12,AB=10,则AE的长为()A.10 B.12 C.16 D.187.某学校足球队23人年龄情况如下表:则下列结论正确的是()A.极差为3 B.众数为15 C.中位数为14 D.平均数为148.如图,在△ABC中,∠A=78°,∠ACD是△ABC的一个外角,∠EBC=∠ABC,∠ECD=∠ACD,则∠E为()A.22°B.26°C.28°D.30°9.如图所示的是由几个相同小立方体组成的几何体从上面所看到的图形,正方形中的数字表示在该位置的小立方体的个数,则从左面看这个几何体所得到的图形是()A.B.C.D.10.如图,圆P的半径为10,A、B是圆上任意两点,且AB=12,以AB为边作正方形ABCD (点D、P在直线AB的两侧),若AB边绕点P旋转一周,则CD边扫过的面积为()A.0 B.36πC.D.6π二.填空题(满分24分,每小题3分)11.计算:m3÷(﹣m)2=.12.4x2﹣6x﹣12xy+18y=.13.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有个.14.已知△ABC的两条中线AD和BE相交于点G,BG=8,则BE=.15.如图所示,摆第一个“小屋子”要5枚棋子,摆第二个要11枚棋子,摆第三个要17枚棋子,则摆第30个“小屋子”要枚棋子.16.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式后人借助这种分割方法所得的图形证明了勾股定理如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为.17.已知关于x的不等式2x﹣m+3>0的最小整数解为1,则实数m的取值范围是.18.在直角坐标系中,已知直线y=﹣x+经过点M(﹣1,m)和点N(2,n),抛物线y =ax2﹣x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是.三.解答题19.(4分)计算: +﹣|1﹣|+2cos30°.20.(4分)先化简,再求值(1﹣)÷,其中x=4.21.(5分)某八年级计划用360元购买笔记本奖励优秀学生,在购买时发现,每本笔记本可以打九折,结果买得的笔记本比打折前多10本.(1)请利用分式方程求出每本笔记本的原来标价;(2)恰逢文具店周年志庆,每本笔记本可以按原价打8折,这样该校最多可购入本笔记本?22.(6分)如图,A城气象台测得台风中心在A城正西方向240km的O处,以每小时30km 的速度向南偏东60°的OB方向移动,距台风中心150km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到台风的影响,求出受台风影响的时间有多长?23.(7分)环境检测中心在京津冀、长三角、珠三角等城市群以及直辖市和省会城市进行PM2.5[1]检测,某日随机抽取25个监测点的数据,并绘制成统计表和扇形统计图如下:[1]“PM2.5”是指大气中危害健康的直径小于2.5微米的颗粒物,它造成的雾霾天气对人体健康的危害甚至要比沙尘暴更大.根据图表中提供的信息解答下列问题:(1)统计表中的a=,b=,c=;(2)在扇形统计图中,A类所对应的圆心角是度;(3)我国PM2.5安全值的标准采用世卫组织(WHO)设定的最宽限值:日平均浓度小于75微克/立方米.请你估计当日环保监测中心在检测100个城市中,PM2.5日平均浓度值符合安全值的城市约有多少个?24.(7分)如图,一次函数y=kx+b与反比例函数y=的图象交于A(1,4),B(4,n)两点.(1)求反比例函数和一次函数的解析式;(2)直接写出当x>0时,kx+b<的解集.(3)点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.25.(7分)如图,在矩形ABCD中,AB=3cm,AD=4cm,EF经过对角线BD的中点O,分别交AD,BC于点E,F.(1)求证:△BOF≌△DOE;(2)当EF⊥BD时,求AE的长.26.(8分)如图,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC 上由B向C匀速运动,设运动时间为t秒(0<t<5).(1)求证:△ACD∽△BAC;(2)求DC的长;(3)设四边形AFEC的面积为y,求y关于t的函数关系式,并求出y的最小值.27.(9分)如图,已知AB是圆O的直径,F是圆O上一点,∠BAF的平分线交⊙O于点E,交⊙O的切线BC于点C,过点E作ED⊥AF,交AF的延长线于点D.(1)求证:DE是⊙O的切线;(2)若DE=3,CE=2,①求的值;②若点G为AE上一点,求OG+EG最小值.28.(9分)已知O 为坐标原点,抛物线y 1=ax 2+bx +c (a ≠0)与x 轴相交于点A (x 1,0),B (x 2,0),与y 轴交于点C ,且O ,C 两点间的距离为3,x 1•x 2<0,|x 1|+|x 2|=4,点A ,C 在直线y 2=﹣3x +t 上.(1)求点C 的坐标;(2)当y 1随着x 的增大而增大时,求自变量x 的取值范围;(3)将抛物线y 1向左平移n (n >0)个单位,记平移后y 随着x 的增大而增大的部分为P ,直线y 2向下平移n 个单位,当平移后的直线与P 有公共点时,直接写出2n 2﹣5n 的最小值.参考答案一.选择题1.解:﹣27的立方根是﹣3,故选:B.2.解:A、是轴对称图形,是中心对称图形;B、不是轴对称图形,是中心对称图形;C、是轴对称图形,不中心对称图形;D、是轴对称图形,不是中心对称图形.故选:A.3.解:2.6万用科学记数法表示为:2.6×104,故选:D.4.解:由数轴知a<0<b,且|a|>|b|.A、∵a<0<b,∴a﹣b<0,故本选项错误;B、|a|>|b|,故本选项正确;C、∵a<0<b,∴a÷b<0,故本选项正确;D、∵a<0<b,∴a+b<0,故本选项正确.故选:A.5.解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∵一次函数y=x﹣k的一次项系数大于0,常数项大于0,∴一次函数y=x+k的图象经过第一、三象限,且与y轴的正半轴相交.故选:A.6.解:如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵∠BAD的平分线交BC于点E,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE,同理可得AB=AF,∴AF=BE,∴四边形ABEF是平行四边形,∵AB=AF,∴四边形ABEF是菱形,∴AE⊥BF,OA=OE,OB=OF=BF=6,∴OA===8,∴AE=2OA=16;故选:C.7.解:年龄最大的有16岁,最小的有12岁,所以极差为16﹣12=4岁;15岁的有8人,最多,所以众数为15岁;共23人,排序后第12人的岁数是中位数,所以中位数15岁;平均年龄为:(12×1+13×3+14×6+15×8+16×5)÷23≈14.57 故选:B.8.解:∵∠1+∠E=∠2,∴∠E=∠2﹣∠1,∵∠A+3∠1=∠ACD=3∠2,∴∠A=3∠2﹣3∠1=3(∠2﹣∠1)=3∠E=78°,∴∠E=26°.故选:B.9.解:如图,左视图如下:故选:D.10.解:连接PA、PD,过点P作PE垂直AB于点E,延长PE交CD于点F,如图所示.∵AB是⊙P上一弦,且PE⊥AB,∴AE=BE=AB=6,∵四边形ABCD是正方形,∴∠DAE=∠ADF=∠DFE=90°,∴四边形AEFD是矩形,∴DF=AE=6,∵若AB边绕点P旋转一周,则CD边扫过的图形为以PF为内圆半径、以PD为外圆半径的圆环.∴S=π•PD2﹣πPF2=π(PD2﹣PF2)=πDF2=36π,故选:B.二.填空题(共8小题,满分24分,每小题3分)11.解:m3÷(﹣m)2=m3÷m2=m.故答案为m.12.解:4x2﹣6x﹣12xy+18y=(4x2﹣12xy)﹣(6x﹣18y)=4x(x﹣3y)﹣6(x﹣3y)=2(x﹣3y)(2x﹣3),故答案为:2(x﹣3y)(2x﹣3).13.解:∵袋中装有6个黑球和n个白球,∴袋中一共有球(6+n)个,∵从中任摸一个球,恰好是黑球的概率为,∴=,解得:n=2.故答案为:2.14.解:∵△ABC的两条中线AD和BE相交于点G,∴G点为△ABC的重心,∴BG=2GE,∴GE=BG=4,∴BE=8+4=12.故答案为12.15.解:根据题意分析可得:第1个图案中棋子的个数5个.第2个图案中棋子的个数5+6=11个.….每个图形都比前一个图形多用6个.∴第30个图案中棋子的个数为5+29×6=179个.故答案为:179.16.解:设小正方形的边长为x,∵a=3,b=4,∴AB=3+4=7,在Rt△ABC中,AC2+BC2=AB2,即(3+x)2+(x+4)2=72,整理得,x2+7x﹣12=0,∴x2+7x=12,∴该矩形的面积=(3+x)(x+4)=x2+7x+12=12+12=24.故答案为:24.17.解:解不等式2x﹣m+3>0,得:x>,∵不等式有最小整数解1,∴0≤<1,解得:3≤m<5,故答案为3≤m<5.18.解:∵直线y=﹣x+经过点M(﹣1,m)和点N(2,n),∴m=﹣×(﹣1)+=2,n=﹣×2+=1∴M(﹣1,2),N(2,1)∵抛物线y=ax2﹣x+2(a≠0)与线段MN有两个不同的交点,∴﹣x+=ax2﹣x+2∴△=﹣>0∴a<当a<0时,解得:a≤﹣1∴a≤﹣1当a>0时,解得:a≥∴≤a<综上所述:a≤﹣1或≤a∠故答案为:a≤﹣1或≤a∠三.解答题(共10小题,满分66分)19.解:原式=1﹣3﹣+1+2×=﹣1.20.解:原式=(﹣)÷=•=,当x=4时,原式==.21.解:(1)设笔打折前售价为x元,则打折后售价为0.9x元,由题意得: +10=,解得:x=4,经检验,x=4是原方程的根.答:打折前每支笔的售价是4元;(2)购入笔记本的数量为:360÷(4×0.8)=112.5(本).故该校最多可购入112本笔记本.22.解:(1)如图,作AH⊥OB于H.在Rt△AOH中,∵∠AHO=90°,OA=240km,∠AOH=30°,∴AH=OA=120km,∵120<150,∴A城受到这次台风的影响.(2)如图,设AR=AT=150km,则易知:RH=HT==90(km),∴RT=180km,∴受台风影响的时间有180÷30=6小时.23.解:(1)由题意可得,a=25﹣(2+3+5+6+4)=25﹣20=5,b==20%,c==24%,故答案为:5,20%,24%;(2)在扇形统计图中,A类所对应的圆心角是:360°×(8%+12%)=72°,故答案为:72;(3)由题意可得,PM2.5日平均浓度值符合安全值的城市约有:100×(8%+12%+20%+20%)=60(天),即PM2.5日平均浓度值符合安全值的城市约有60天.24.解:(1)把A(1,4)代入y=,得:m=4,∴反比例函数的解析式为y=;把B(4,n)代入y=,得:n=1,∴B(4,1),把A(1,4)、(4,1)代入y=kx+b,得:,解得:,∴一次函数的解析式为y=﹣x+5;(2)根据图象得当0<x<1或x>4,一次函数y=﹣x+5的图象在反比例函数y=的下方;∴当x>0时,kx+b<的解集为0<x<1或x>4;(3)如图,作B关于x轴的对称点B′,连接AB′,交x轴于P,此时PA+PB=AB′最小,∵B(4,1),∴B′(4,﹣1),设直线AB′的解析式为y=px+q,∴,解得,∴直线AB′的解析式为y=﹣x+,令y=0,得﹣x+=0,解得x=,∴点P的坐标为(,0).25.(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠BFO=∠DEO,∠FBO=∠EDO,又∵O是BD中点,∴OB=OD,∴△BOF≌△DOE(ASA).(2)连接BE.∵EF⊥BD,O为BD中点,∴EB=ED,设AE=xcm,由EB=ED=AD﹣AE=(4﹣x)cm,在Rt△ABE中,AB=3cm,根据勾股定理得:AB2+AE=BE2,即9+x2=(4﹣x)2,解得:x=,∴AE的长是cm.26.解:(1)∵CD∥AB,∴∠BAC=∠DCA又∵AC⊥BC,∠ACB=90°,∴∠D=∠ACB=90°,∴△ACD∽△BAC.(2)Rt△ABC中,AC==8cm,∵△ACD∽△BAC,∴=,即,解得:DC=6.4cm.(3)过点E作AB的垂线,垂足为G,∵∠ACB=∠EGB=90°,∠B公共,∴△ACB∽△EGB,∴,即,故;y=S△ABC ﹣S△BEF==;故当t=时,y的最小值为19.27.(1)证明:连接OE∵OA=OE∴∠OAE=∠OEA∵AE平分∠BAF∴∠OAE=∠EAF∴∠OEA=∠E AF∴OE∥AD∵ED⊥AF∴∠D=90°∴∠OED=180°﹣∠D=90°∴OE⊥DE∴DE是⊙O的切线(2)解:①连接BE∵AB是⊙O直径∴∠AEB=90°∴∠BED=∠D=90°,∠BAE+∠ABE=90°∵BC是⊙O的切线∴∠ABC=∠ABE+∠CBE=90°∴∠BAE=∠CBE∵∠DAE=∠BAE∴∠DAE=∠CBE∴△ADE∽△BEC∴∵DE=3,CE=2∴②过点E 作EH ⊥AB 于H ,过点G 作GP ∥AB 交EH 于P ,过点P 作PQ ∥OG 交AB 于Q ∴EP ⊥PG ,四边形OGPQ 是平行四边形∴∠EPG =90°,PQ =OG∵∴设BC =2x ,AE =3x∴AC =AE +CE =3x +2∵∠BEC =∠ABC =90°,∠C =∠C∴△BEC ∽△ABC∴∴BC 2=AC •CE 即(2x )2=2(3x +2)解得:x 1=2,x 2=﹣(舍去)∴BC =4,AE =6,AC =8∴sin ∠BAC =,∴∠BAC =30°∴∠EGP =∠BAC =30°∴PE =EG∴OG +EG =PQ +PE∴当E 、P 、Q 在同一直线上(即H 、Q 重合)时,PQ +PE =EH 最短∵EH =AE =3∴OG +EG 的最小值为328.解:(1)令x =0,则y =c ,故点C (0,c ),∵且O ,C 两点间的距离为3,则|c |=3,解得:c =±3, 故点C (0,3)或(0,﹣3);(2)∵x 1•x 2<0,①如点C (0,3),把点C 代入y 2=﹣3x +t ,即t =3, y 2=﹣3x +3,把点A (x 1,0)代入y 2=﹣3x +3解得:x 1=1, 故点A (1,0),∵|x 1|+|x 2|=4,x 1、x 2异号,则1﹣x 2=4,则x 2=﹣3, 则点B (﹣3,0),把点A 、B 的坐标代入二次函数表达式得:,解得:,故y 1=﹣x 2﹣2x +3=﹣(x +1)2+4,当x ≤﹣1,y 1随x 最大而最大;②若点C (0,﹣3)同理可得:y 1=﹣(x ﹣1)2﹣4,当x ≥1,y 1随x 最大而最大;综上,若c =3,当x ≤﹣1,y 1随x 最大而最大;若c =﹣3,当x ≥1,y 1随x 最大而最大;(3)①如点C (0,3), y 1=﹣(x +1)2+4,y 2=﹣3x +3,y 1、y 2平移后对应函数y 3、y 4的表达式为:y 3=﹣(x +1+n )2+4,y 4=﹣3x +3﹣n ,当x ≤﹣1﹣n 时,y 3随x 增大而增大,y 3、y 4有公共点,即:x =﹣1﹣n 时,y 3≥y 4,﹣(﹣1﹣n+1+n)2≥﹣3(﹣1﹣n)+3﹣n,解得:n≤﹣1(舍去);②若点C(0,﹣3)同理可得:(1﹣n﹣1+n)2﹣4≤﹣3(1﹣n)﹣3﹣n,解得:n≥1,故:n≥1时,2n2﹣5n=2(n﹣)2﹣,∵2>0,故2n2﹣5n有最小值为﹣.。
2019大庆中考数学word版
2019年大庆市升学统一考试数学试题一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上)1.有理数-8的立方根为()A.-2 B.2 C.±2 D.±42.在下列图形中,既是轴对称图形又是中心对称图形的是()A B C D3.小明同学在“百度”搜索引擎中输入“中国梦,我的梦”,搜索到与之相关的结果条数约为608000,这个数用科学记数法表示为()A.60.8×104 B.6.08×105 C.0.608×106 D.6.08×1074.实数m、n在数轴上的对应点如图所示,则下列式子正确的是()A.m>n B.-n>|m| C.-m>|n| D.|m|<|n|5.正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=x+k的图象大致是()A B C D6.下列说法中不正确的是()A.四边相等的四边形是菱形B.对角线垂直的平行四边形是菱形C.菱形的对角线互相垂直且相等D.菱形的邻边相等7.某企业1-6月份利润的变化情况如图所示,以下说法与图中反映的信息相符的是()A.1~6月份利润的众数是130万元B.1~6月份利润的中位数是130万元C.1~6月份利润的平均数是130万元D.1~6月份利润的极差是40万元8.如图,在△ABC 中,BE 是∠ABC 的平分线,CE 是外角∠ACM 的平分线,BE 与CE 相交于点E ,若∠A=60︒,则∠BEC 是( )A .15︒B .30︒C .45︒D .60︒9.一个“粮仓”的三视图如图所示(单位:m),则它的体积(单位:m 3)是( )A .21πB .30πC .45πD .63π10.如图,在正方形ABCD 中,边长AB=1,将正方形ABCD 绕点A 按逆时针方向旋转180︒至正方形AB 1C 1D 1,则线段CD 扫过的面积为( )A .4πB .2π C .π D .2π 二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.a 5÷a 3=________.12.分解因式:a 2b+ab 2-a-b=________13.一个不透明的口袋中共有8个白球、5个黄球、5个绿球、2个红球,每个球除颜色外都相同,搅匀后从口袋中随机摸出一球,这个球是白球的概率是___14.如图,在△ABC 中,D 、E 分别是BC,AC 的中点,AD 与BE 相交于点G ,若DG=1,则AD=__________15.归纳T 字形,用棋子摆成的T 字形如图所示,按照图①、图②、图③的规律摆下去,摆成第n 个T 字形需要的棋子个数为________.16.我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B. 对角线垂直的平行四边形是菱形 D. 菱形的邻边相等
7. 某企业 1-6 月份利润的变化情况如图所示,以下说法与图中反映的信息相符的是 ( )
A. 1−6月份利润的众数是 130 万元 C. 1−6月份利润的平均数是 130 万元
B. 1−6月份利润的中位数是 130 万元 D. 1−6月份利润的极差是 40 万元
8. 如图,在△ABC 中,BE 是∠ABC 的平分线,CE 是外角∠ACM 的平分线,BE 与 CE 相交于点 E,若∠A=60°,则∠BEC 是( )
A. 15 ∘
B. 30 ∘
C. 45 ∘
D. 60 ∘
9. 一个“粮仓”的三视图如图所示(单位:m),则它的体积是( )
A. 21������������3
18.
如图,抛物线 y= 1 x2(p>0),点 F(0,p),直线 l:y=-p,已知抛物线上的点到
4������
点 F 的距离与到直线 l 的距离相等,过点 F 的直线与抛物线交于 A,B 两点, AA1⊥l,BB1⊥l,垂足分别为 A1、B1,连接 A1F,B1F,A1O,B1O.若 A1F=a, B1F=b、则△A1OB1 的面积=______.(只用 a,b 表示).
2019 年黑龙江省大庆市中考数学试卷
题号 得分
一
二
三
四
总分
一、选择题(本大题共 10 小题,共 30.0 分)
1. 有理数-8 的立方根为( )
A. −2
B. 2
C. ± 2
D. ± 4
2. 在下列图形中,既是轴对称图形又是中心对称图形的是( )
A.
B.
C到与之相关的结果 条数为 608000,这个数用科学记数法表示为( )
10
请根据图表信息回答下列问题: (1)填空:①m=______,②n=______,③在扇形统计图中,C 组所在扇形的圆心 角的度数等于______度; (2)若把每组中各个体重值用这组数据的中间值代替(例如:A 组数据中间值为 40 千克),则被调查学生的平均体重是多少千克? (3)如果该校七年级有 1000 名学生,请估算七年级体重低于 47.5 千克的学生大 约有多少人?
第 3 页,共 21 页
三、计算题(本大题共 1 小题,共 4.0 分)
19.
已知:ab=1,b=2a-1,求代数式1-2的值.
������ ������
四、解答题(本大题共 9 小题,共 62.0 分) 20. 计算:(2019-π)0+|1- 3|-sin60°.
21. 某工厂现在平均每天比原计划多生产 50 台机器,现在生产 600 台机器所需时间与 原计划生产 450 机器所需时间相同,求该工厂原来平均每天生产多少台机器?
23. 某校为了解七年级学生的体重情况,随机抽取了七 年级 m 名学生进行调查,将抽取学生的体重情况绘 制如下不完整的频数分布表和扇形统计图.
组别 体重(千克) 人数
A
3.5
n
C
47.5≤x<52.5
40
D
52.5≤x<57.5
20
E
57.5≤x<62.5
A. 60.8 × 104
B. 6.08 × 105
C. 0.608 × 106
D. 6.08 × 107
4. 实数 m,n 在数轴上的对应点如图所示,则下列各式子正确的是( )
A. ������ > ������
B. −������ > |������|
C. −������ > |������|
16. 我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角 形与中间的一个小正方形拼成的一个大正方形(如图所 示).如果大正方形的面积是 13,小正方形的面积是 1,直角三 角形的两直角边长分别为 a、b,那么(a-b)2 的值是______.
17. 已知 x=4 是不等式 ax-3a-1<0 的解,x=2 不是不等式 ax-3a-1<0 的解,则实数 a 的取值范围是______.
第 5 页,共 21 页
24. 如图,反比例函数 y=2������������和一次函数 y=kx-1 的图象相交于 A(m,2m),B 两点. (1)求一次函数的表达式; (2)求出点 B 的坐标,并根据图象直接写出满足不等式2������������<kx-1 的 x 的取值范 围.
A.
������ 4
B.
������ 2
C. ������ D. 2������
二、填空题(本大题共 8 小题,共 24.0 分) 11. a5÷a3=______. 12. 分解因式:a2b+ab2-a-b=______. 13. 一个不透明的口袋中共有 8 个白球、5 个黄球、5 个绿球、2 个红球,这些球除颜
22. 如图,一艘船由 A 港沿北偏东 60°方向航行 10km 至 B 港,然后再沿北偏西 30°方 向航行 10km 至 C 港. (1)求 A,C 两港之间的距离(结果保留到 0.1km,参考数据: 2≈1.414, 3 ≈1.732); (2)确定 C 港在 A 港的什么方向.
第 4 页,共 21 页
色外都相同.从口袋中随机摸出一个球,这个球是白球的概率是______. 14. 如图,在△ABC 中,D、E 分别是 BC,AC 的中点,AD
与 BE 相交于点 G,若 DG=1,则 AD=______.
15. 归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律 摆下去,摆成第 n 个“T”字形需要的棋子个数为______.
D. |������| < |������|
5. 正比例函数 y=kx(k≠0)的函数值 y 随着 x 增大而减小,则一次函数 y=x+k 的图象 大致是( )
A.
B.
C.
D.
第 1 页,共 21 页
6. 下列说法中不正确的是( )
A. 四边相等的四边形是菱形 C. 菱形的对角线互相垂直且相等
B. 30������������3
C. 45������������3
第 2 页,共 21 页
D. 63������������3
10. 如图,在正方形 ABCD 中,边长 AB=1,将正方形 ABCD 绕 点 A 按逆时针方向旋转 180°至正方形 AB1C1D则1,线段 CD 扫过的面积为( )