2019高考数学总复习 优编增分练:压轴大题突破练(三)函数与导数(1)文

合集下载

高三数学 高考大题专项训练 全套 (15个专项)(典型例题)(含答案)

高三数学 高考大题专项训练 全套 (15个专项)(典型例题)(含答案)

1、函数与导数(1)2、三角函数与解三角形3、函数与导数(2)4、立体几何5、数列(1)6、应用题7、解析几何8、数列(2)9、矩阵与变换10、坐标系与参数方程11、空间向量与立体几何12、曲线与方程、抛物线13、计数原理与二项式分布14、随机变量及其概率分布15、数学归纳法高考压轴大题突破练(一)函数与导数(1)1.已知函数f (x )=a e x x+x . (1)若函数f (x )的图象在(1,f (1))处的切线经过点(0,-1),求a 的值;(2)是否存在负整数a ,使函数f (x )的极大值为正值?若存在,求出所有负整数a 的值;若不存在,请说明理由.解 (1)∵f ′(x )=a e x (x -1)+x 2x 2, ∴f ′(1)=1,f (1)=a e +1.∴函数f (x )在(1,f (1))处的切线方程为y -(a e +1)=x -1,又直线过点(0,-1),∴-1-(a e +1)=-1,解得a =-1e. (2)若a <0,f ′(x )=a e x (x -1)+x 2x 2, 当x ∈(-∞,0)时,f ′(x )>0恒成立,函数在(-∞,0)上无极值;当x ∈(0,1)时,f ′(x )>0恒成立,函数在(0,1)上无极值.方法一 当x ∈(1,+∞)时,若f (x )在x 0处取得符合条件的极大值f (x 0),则⎩⎪⎨⎪⎧ x 0>1,f (x 0)>0,f ′(x 0)=0,则00000200201,e 0,e (1)0,x x x a x x a x x x ⎛ > +> -+ = ⎝①②③ 由③得0e x a =-x 20x 0-1,代入②得-x 0x 0-1+x 0>0, 结合①可解得x 0>2,再由f (x 0)=0e x a x +x 0>0,得a >-020e x x , 设h (x )=-x 2e x ,则h ′(x )=x (x -2)e x, 当x >2时,h ′(x )>0,即h (x )是增函数,∴a >h (x 0)>h (2)=-4e 2.又a <0,故当极大值为正数时,a ∈⎝⎛⎭⎫-4e 2,0, 从而不存在负整数a 满足条件.方法二 当x ∈(1,+∞)时,令H (x )=a e x (x -1)+x 2,则H ′(x )=(a e x +2)x ,∵x ∈(1,+∞),∴e x ∈(e ,+∞),∵a 为负整数,∴a ≤-1,∴a e x ≤a e ≤-e ,∴a e x +2<0,∴H ′(x )<0,∴H (x )在(1,+∞)上单调递减.又H (1)=1>0,H (2)=a e 2+4≤-e 2+4<0,∴∃x 0∈(1,2),使得H (x 0)=0,且当1<x <x 0时,H (x )>0,即f ′(x )>0;当x >x 0时,H (x )<0,即f ′(x )<0.∴f (x )在x 0处取得极大值f (x 0)=0e x a x +x 0.(*) 又H (x 0)=0e x a (x 0-1)+x 20=0, ∴00e x a x =-x 0x 0-1,代入(*)得f (x 0)=-x 0x 0-1+x 0=x 0(x 0-2)x 0-1<0, ∴不存在负整数a 满足条件.2.已知f (x )=ax 3-3x 2+1(a >0),定义h (x )=max{f (x ),g (x )}=⎩⎪⎨⎪⎧f (x ),f (x )≥g (x ),g (x ),f (x )<g (x ). (1)求函数f (x )的极值;(2)若g (x )=xf ′(x ),且∃x ∈[1,2]使h (x )=f (x ),求实数a 的取值范围.解 (1)∵函数f (x )=ax 3-3x 2+1,∴f ′(x )=3ax 2-6x =3x (ax -2),令f ′(x )=0,得x 1=0或x 2=2a, ∵a >0,∴x 1<x 2,当x 变化时,f ′(x ),f (x )的变化情况如下表:∴f (x )的极大值为f (0)=1,极小值为f ⎝⎛⎭⎫2a =8a 2-12a 2+1=1-4a 2. (2)g (x )=xf ′(x )=3ax 3-6x 2,∵∃x ∈[1,2],使h (x )=f (x ),∴f (x )≥g (x )在[1,2]上有解,即ax 3-3x 2+1≥3ax 3-6x 2在[1,2]上有解,即不等式2a ≤1x 3+3x在[1,2]上有解, 设y =1x 3+3x =3x 2+1x3(x ∈[1,2]), ∵y ′=-3x 2-3x 4<0对x ∈[1,2]恒成立, ∴y =1x 3+3x在[1,2]上单调递减, ∴当x =1时,y =1x 3+3x的最大值为4, ∴2a ≤4,即a ≤2.高考中档大题规范练(一)三角函数与解三角形1.(2017·江苏宿迁中学质检)已知函数f (x )=sin 2x +23sin x cos x +sin ⎝⎛⎭⎫x +π4sin ⎝⎛⎭⎫x -π4,x ∈R . (1)求f (x )的最小正周期和值域;(2)若x =x 0⎝⎛⎭⎫0≤x 0≤π2为f (x )的一个零点,求sin 2x 0的值. 解 (1)易得f (x )=sin 2x +3sin 2x +12(sin 2x -cos 2x ) =1-cos 2x 2+3sin 2x -12cos 2x =3sin 2x -cos 2x +12=2sin ⎝⎛⎭⎫2x -π6+12, 所以f (x )的最小正周期为π,值域为⎣⎡⎦⎤-32,52. (2)由f (x 0)=2sin ⎝⎛⎭⎫2x 0-π6+12=0,得 sin ⎝⎛⎭⎫2x 0-π6=-14<0,又由0≤x 0≤π2,得-π6≤2x 0-π6≤5π6, 所以-π6≤2x 0-π6<0,故cos ⎝⎛⎭⎫2x 0-π6=154, 此时sin 2x 0=sin ⎣⎡⎦⎤⎝⎛⎭⎫2x 0-π6+π6 =sin ⎝⎛⎭⎫2x 0-π6cos π6+cos ⎝⎛⎭⎫2x 0-π6sin π6=-14×32+154×12=15-38. 2.(2017·江苏南通四模)已知向量m =⎝⎛⎭⎫sin x 2,1,n =⎝⎛⎭⎫1,3cos x 2,函数f (x )=m ·n . (1)求函数f (x )的最小正周期;(2)若f ⎝⎛⎭⎫α-2π3=23,求f ⎝⎛⎭⎫2α+π3的值. 解 (1)f (x )=m ·n =sin x 2+3cos x 2=2⎝⎛⎭⎫12sin x 2+32cos x 2 =2⎝⎛⎭⎫sin x 2cos π3+cos x 2sin π3 =2sin ⎝⎛⎭⎫x 2+π3,所以函数f (x )的最小正周期为T =2π12=4π. (2)由f ⎝⎛⎭⎫α-2π3=23,得2sin α2=23,即sin α2=13. 所以f ⎝⎛⎭⎫2α+π3=2sin ⎝⎛⎭⎫α+π2=2cos α =2⎝⎛⎭⎫1-2sin 2α2=149. 3.(2017·江苏南师大考前模拟)已知△ABC 为锐角三角形,向量m =⎝⎛⎭⎫cos ⎝⎛⎭⎫A +π3,sin ⎝⎛⎭⎫A +π3,n =(cos B ,sin B ),并且m ⊥n .(1)求A -B ; (2)若cos B =35,AC =8,求BC 的长. 解 (1)因为m ⊥n ,所以m ·n =cos ⎝⎛⎭⎫A +π3cos B +sin ⎝⎛⎭⎫A +π3sin B=cos ⎝⎛⎭⎫A +π3-B =0. 因为0<A ,B <π2,所以-π6<A +π3-B <5π6, 所以A +π3-B =π2,即A -B =π6. (2)因为cos B =35,B ∈⎝⎛⎭⎫0,π2,所以sin B =45, 所以sin A =sin ⎝⎛⎭⎫B +π6=sin B cos π6+cos B sin π6=45×32+35×12=43+310, 由正弦定理可得BC =sin A sin B×AC =43+3. 4.(2017·江苏镇江三模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且(a -c )(sin A +sin C )=(b -3c )sin B .(1)求角A ;(2)若f (x )=cos 2(x +A )-sin 2(x -A ),求f (x )的单调递增区间.解 (1)由(a -c )(sin A +sin C )=(b -3c )sin B 及正弦定理,得(a -c )(a +c )=(b -3c )b ,即a 2=b 2+c 2-3bc . 由余弦定理,得cos A =32, 因为0<A <π,所以A =π6. (2)f (x )=cos 2(x +A )-sin 2(x -A )=cos 2⎝⎛⎭⎫x +π6-sin 2⎝⎛⎭⎫x -π6 =1+cos ⎝⎛⎭⎫2x +π32-1-cos ⎝⎛⎭⎫2x -π32=12cos 2x , 令π+2k π≤2x ≤2π+2k π,k ∈Z ,得π2+k π≤x ≤π+k π,k ∈Z . 则f (x )的单调增区间为⎣⎡⎦⎤π2+k π,π+k π,k ∈Z .(二)函数与导数(2)1.设函数f (x )=2(a +1)x (a ∈R ),g (x )=ln x +bx (b ∈R ),直线y =x +1是曲线y =f (x )的一条切线.(1)求a 的值;(2)若函数y =f (x )-g (x )有两个极值点x 1,x 2.①试求b 的取值范围;②证明:g (x 1)+g (x 2)f (x 1)+f (x 2)≤1e 2+12. 解 (1)设直线y =x +1与函数y =f (x )的图象相切于点(x 0,y 0),则y 0=x 0+1,y 0=2(a +1)x 0,a +1x 0=1,解得a =0. (2)记h (x )=f (x )-g (x ),则h (x )=2x -ln x -bx .①函数y =f (x )-g (x )有两个极值点的必要条件是h ′(x )有两个正零点.h ′(x )=1x -1x-b =-bx +x -1x , 令h ′(x )=0,得bx -x +1=0(x >0).令x =t ,则t >0.问题转化为bt 2-t +1=0有两个不等的正实根t 1,t 2,等价于⎩⎪⎨⎪⎧ Δ=1-4b >0,t 1t 2=1b >0,t 1+t 2=1b >0,解得0<b <14. 当0<b <14时,设h ′(x )=0的两正根为x 1,x 2,且x 1<x 2, 则h ′(x )=-bx +x -1x =-b (x -x 1)(x -x 2)x =-b (x -x 1)(x -x 2)x (x +x 1)(x +x 2). 当x ∈(0,x 1)时,h ′(x )<0;当x ∈(x 1,x 2)时,h ′(x )>0;当x ∈(x 2,+∞)时,h ′(x )<0. 所以x 1,x 2是h (x )=f (x )-g (x )的极值点,∴b 的取值范围是⎝⎛⎭⎫0,14. ②由①知x 1x 2=x 1+x 2=1b.可得g (x 1)+g (x 2)=-2ln b +1b -2,f (x 1)+f (x 2)=2b, 所以g (x 1)+g (x 2)f (x 1)+f (x 2)=12-b ln b -b . 记k (b )=12-b ln b -b ⎝⎛⎭⎫0<b <14, 则k ′(b )=-ln b -2,令k ′(b )=0,得b =1e 2∈⎝⎛⎭⎫0,14, 且当b ∈⎝⎛⎭⎫0,1e 2时,k ′(b )>0,k (b )单调递增; 当b ∈⎝⎛⎭⎫1e 2,14时,k ′(b )<0,k (b )单调递减,且当b =1e 2时,k (b )取最大值1e 2+12, 所以g (x 1)+g (x 2)f (x 1)+f (x 2)≤1e 2+12. 2.设函数f (x )=2ax +b x+c ln x . (1)当b =0,c =1时,讨论函数f (x )的单调区间;(2)若函数f (x )在x =1处的切线为y =3x +3a -6且函数f (x )有两个极值点x 1,x 2,x 1<x 2. ①求a 的取值范围;②求f (x 2)的取值范围.解 (1)f (x )=2ax +b x+c ln x ,x >0, f ′(x )=2a -b x 2+c x =2ax 2+cx -b x 2. 当b =0,c =1时,f ′(x )=2ax +1x. 当a ≥0时,由x >0,得f ′(x )=2ax +1x>0恒成立, 所以函数f (x )在(0,+∞)上单调递增.当a <0时,令f ′(x )=2ax +1x >0,解得x <-12a; 令f ′(x )=2ax +1x <0,解得x >-12a, 所以,函数f (x )在⎝⎛⎭⎫0,-12a 上单调递增,在⎝⎛⎭⎫-12a ,+∞上单调递减. 综上所述,①当a ≥0时,函数f (x )在(0,+∞)上单调递增;②当a <0时,函数f (x )在⎝⎛⎭⎫0,-12a上单调递增,在⎝⎛⎭⎫-12a ,+∞上单调递减. (2)①函数f (x )在x =1处的切线为y =3x +3a -6,所以f (1)=2a +b =3a -3,f ′(1)=2a +c -b =3,所以b =a -3,c =-a ,f ′(x )=2a -b x 2+c x =2ax 2-ax +3-a x 2, 函数f (x )有两个极值点x 1,x 2,x 1<x 2,则方程2ax 2-ax +3-a =0有两个大于0的解,⎩⎨⎧ Δ=(-a )2-8a (3-a )>0,a 2a >0,3-a 2a >0,解得83<a <3. 所以a 的取值范围是⎝⎛⎭⎫83,3.②2ax 22-ax 2+3-a =0,x 2=a +9a 2-24a 4a =14⎝⎛⎭⎫1+ 9-24a , 由83<a <3,得x 2∈⎝⎛⎭⎫14,12, 由2ax 22-ax 2+3-a =0,得a =-32x 22-x 2-1. f (x 2)=2ax 2+a -3x 2-a ln x 2 =a ⎝⎛⎭⎫2x 2+1x 2-ln x 2-3x 2=-32x 2+1x 2-ln x 22x 22-x 2-1-3x 2. 设φ(t )=-32t +1t -ln t 2t 2-t -1-3t ,t ∈⎝⎛⎭⎫14,12, φ′(t )=-3⎝⎛⎭⎫2-1t 2-1t (2t 2-t -1)-⎝⎛⎭⎫2t +1t -ln t (4t -1)(2t 2-t -1)2+3t2 =-31t 2(2t 2-t -1)2+3⎝⎛⎭⎫2t +1t -ln t (4t -1)(2t 2-t -1)2+3t 2=3⎝⎛⎭⎫2t +1t -ln t (4t -1)(2t 2-t -1)2. 当t ∈⎝⎛⎭⎫14,12时,2t +1t-ln t >0,4t -1>0,φ′(t )>0,所以φ(t )在⎝⎛⎭⎫14,12上单调递增,φ(t )∈⎝⎛⎭⎫163ln 2,3+3ln 2, 所以f (x 2)的取值范围是⎝⎛⎭⎫163ln 2,3+3ln 2. (二)立体几何1.(2017·江苏扬州调研)如图,在四棱锥P -ABCD 中,底面ABCD 为梯形,CD ∥AB ,AB =2CD ,AC 交BD 于O ,锐角△P AD 所在平面⊥底面ABCD ,P A ⊥BD ,点Q 在侧棱PC 上,且PQ =2QC .求证:(1)P A ∥平面QBD ;(2)BD ⊥AD .证明 (1)如图,连结OQ ,因为AB∥CD,AB=2CD,所以AO=2OC.又PQ=2QC,所以P A∥OQ.又OQ⊂平面QBD,P A⊄平面QBD,所以P A∥平面QBD.(2)在平面P AD内过P作PH⊥AD于点H,因为侧面P AD⊥底面ABCD,平面P AD∩平面ABCD=AD,PH⊂平面P AD,所以PH⊥平面ABCD.又BD⊂平面ABCD,所以PH⊥BD.又P A⊥BD,P A∩PH=P,所以BD⊥平面P AD.又AD⊂平面P AD,所以BD⊥AD.2.如图,在四棱锥P-ABCD中,底面ABCD是正方形,AC与BD交于点O,PC⊥底面ABCD,E为PB上一点,G为PO的中点.(1)若PD∥平面ACE,求证:E为PB的中点;(2)若AB=2PC,求证:CG⊥平面PBD.证明(1)连结OE,由四边形ABCD是正方形知,O为BD的中点,因为PD∥平面ACE,PD⊂平面PBD,平面PBD∩平面ACE=OE,所以PD∥OE.因为O为BD的中点,所以E为PB的中点.(2)在四棱锥P-ABCD中,AB=2PC,因为四边形ABCD是正方形,所以OC=22AB,所以PC=OC.因为G为PO的中点,所以CG⊥PO.又因为PC⊥底面ABCD,BD⊂底面ABCD,所以PC⊥BD.而四边形ABCD是正方形,所以AC⊥BD,因为AC,PC⊂平面P AC,AC∩PC=C,所以BD⊥平面P AC,因为CG⊂平面P AC,所以BD⊥CG.因为PO,BD⊂平面PBD,PO∩BD=O,所以CG⊥平面PBD.3.(2017·江苏怀仁中学模拟)如图,在四棱锥E-ABCD中,△ABD为正三角形,EB=ED,CB=CD.(1)求证:EC⊥BD;(2)若AB⊥BC,M,N分别为线段AE,AB的中点,求证:平面DMN∥平面BCE.证明(1)取BD的中点O,连结EO,CO.∵CD=CB,EB=ED,∴CO⊥BD,EO⊥BD.又CO∩EO=O,CO,EO⊂平面EOC,∴BD⊥平面EOC.又EC⊂平面EOC,∴BD⊥EC.(2)∵N是AB的中点,△ABD为正三角形,∴DN⊥AB,∵BC⊥AB,∴DN∥BC.又BC⊂平面BCE,DN⊄平面BCE,∴DN∥平面BCE.∵M为AE的中点,N为AB的中点,∴MN∥BE,又MN⊄平面BCE,BE⊂平面BCE,∴MN∥平面BCE.∵MN∩DN=N,∴平面DMN∥平面BCE.4.(2017·江苏楚水中学质检)如图,在三棱锥P-ABC中,点E,F分别是棱PC,AC的中点.(1)求证:P A∥平面BEF;(2)若平面P AB⊥平面ABC,PB⊥BC,求证:BC⊥P A.证明(1)在△P AC中,E,F分别是棱PC,AC的中点,所以P A∥EF.又P A⊄平面BEF,EF⊂平面BEF,所以P A∥平面BEF.(2)在平面P AB内过点P作PD⊥AB,垂足为D.因为平面P AB ⊥平面ABC ,平面P AB ∩平面ABC =AB ,PD ⊂平面P AB ,所以PD ⊥平面ABC , 因为BC ⊂平面ABC ,所以PD ⊥BC ,又PB ⊥BC ,PD ∩PB =P ,PD ⊂平面P AB ,PB ⊂平面P AB ,所以BC ⊥平面P AB , 又P A ⊂平面P AB ,所以BC ⊥P A .(三)数 列(1)1.已知数列{a n }的前n 项和为S n ,且S n +a n =4,n ∈N *. (1)求数列{a n }的通项公式;(2)已知c n =2n +3(n ∈N *),记d n =c n +log C a n (C >0且C ≠1),是否存在这样的常数C ,使得数列{d n }是常数列,若存在,求出C 的值;若不存在,请说明理由.(3)若数列{b n },对于任意的正整数n ,均有b 1a n +b 2a n -1+b 3a n -2+…+b n a 1=⎝⎛⎭⎫12n -n +22成立,求证:数列{b n }是等差数列. (1)解 a 1=4-a 1,所以a 1=2,由S n +a n =4,得当n ≥2时,S n -1+a n -1=4, 两式相减,得2a n =a n -1,所以a n a n -1=12,数列{a n }是以2为首项,公比为12的等比数列,所以a n =22-n (n ∈N *). (2)解 由于数列{d n }是常数列, d n =c n +log C a n =2n +3+(2-n )log C 2 =2n +3+2log C 2-n log C 2=(2-log C 2)n +3+2log C 2为常数, 则2-log C 2=0, 解得C =2,此时d n =7.(3)证明 b 1a n +b 2a n -1+b 3a n -2+…+b n a 1 =⎝⎛⎭⎫12n -n +22,①当n =1时,b 1a 1=12-32=-1,其中a 1=2,所以b 1=-12.当n ≥2时,b 1a n -1+b 2a n -2+b 3a n -3+…+b n -1a 1=⎝⎛⎭⎫12n -1-n +12,② ②式两边同时乘以12,得b 1a n +b 2a n -1+b 3a n -2+…+b n -1a 2=⎝⎛⎭⎫12n -n +14,③ 由①-③,得b n a 1=-n -34,所以b n =-n 8-38(n ∈N *,n ≥2),且b n +1-b n =-18,又b 1=-12=-18-38,所以数列{b n }是以-12为首项,公差为-18的等差数列.2.在数列{a n }中,已知a 1=13,a n +1=13a n -23n +1,n ∈N *,设S n 为{a n }的前n 项和.(1)求证:数列{3n a n }是等差数列; (2)求S n ;(3)是否存在正整数p ,q ,r (p <q <r ),使S p ,S q ,S r 成等差数列?若存在,求出p ,q ,r 的值;若不存在,说明理由.(1)证明 因为a n +1=13a n -23n +1,所以3n +1a n +1-3n a n =-2. 又因为a 1=13,所以31·a 1=1,所以{3n a n }是首项为1,公差为-2的等差数列. (2)解 由(1)知3n a n =1+(n -1)·(-2)=3-2n ,所以a n =(3-2n )⎝⎛⎭⎫13n,所以S n =1·⎝⎛⎭⎫131+(-1)·⎝⎛⎭⎫132+(-3)·⎝⎛⎭⎫133+…+(3-2n )·⎝⎛⎭⎫13n , 所以13S n =1·⎝⎛⎭⎫132+(-1)·⎝⎛⎭⎫133+…+(5-2n )·⎝⎛⎭⎫13n +(3-2n )·⎝⎛⎭⎫13n +1, 两式相减,得23S n =13-2⎣⎡⎦⎤⎝⎛⎭⎫132+⎝⎛⎭⎫133+…+⎝⎛⎭⎫13n -(3-2n )·⎝⎛⎭⎫13n +1=13-2⎣⎢⎡⎦⎥⎤19×1-⎝⎛⎭⎫13n -11-13+(2n -3)·⎝⎛⎭⎫13n +1=2n ·⎝⎛⎭⎫13n +1, 所以S n =n 3n .(3)解 假设存在正整数p ,q ,r (p <q <r ),使S p ,S q ,S r 成等差数列,则2S q =S p +S r ,即2q3q =p 3p +r 3r. 当n ≥2时,a n =(3-2n )⎝⎛⎭⎫13n<0,所以数列{S n }单调递减. 又p <q ,所以p ≤q -1且q 至少为2, 所以p 3p ≥q -13q -1,q -13q -1-2q 3q =q -33q .①当q ≥3时,p 3p ≥q -13q -1≥2q 3q ,又r 3r >0,所以p 3p +r 3r >2q3q ,等式不成立. ②当q =2时,p =1,所以49=13+r 3r ,所以r 3r =19,所以r =3({S n }单调递减,解惟一确定). 综上可知,p ,q ,r 的值为1,2,3.(三)应用题1.已知某食品厂需要定期购买食品配料,该厂每天需要食品配料200千克,配料的价格为1.8元/千克,每次购买配料需支付运费236元.每次购买来的配料还需支付保管费用,其标准如下:7天以内(含7天),无论重量多少,均按10元/天支付;超出7天以外的天数,根据实际剩余配料的重量,以每天0.03元/千克支付.(1)当9天购买一次配料时,求该厂用于配料的保管费用P 是多少元?(2)设该厂x 天购买一次配料,求该厂在这x 天中用于配料的总费用y (元)关于x 的函数关系式,并求该厂多少天购买一次配料才能使平均每天支付的费用最少? 解 (1)当9天购买一次时,该厂用于配料的保管费用 P =70+0.03×200×(1+2)=88(元).(2)①当x ≤7时,y =360x +10x +236=370x +236,②当x >7时,y =360x +236+70+6[(x -7)+(x -6)+…+2+1]=3x 2+321x +432,∴y =⎩⎪⎨⎪⎧370x +236,x ≤7,3x 2+321x +432,x >7,∴设该厂x 天购买一次配料平均每天支付的费用为f (x )元.f (x )=⎩⎨⎧370x +236x,x ≤7,3x 2+321x +432x,x >7.当x ≤7时,f (x )=370+236x ,当且仅当x =7时,f (x )有最小值2 8267≈404(元);当x >7时,f (x )=3x 2+321x +432x =3⎝⎛⎭⎫x +144x +321≥393.当且仅当x =12时取等号.∵393<404,∴当x =12时f (x )有最小值393元.2.南半球某地区冰川的体积每年中随时间而变化,现用t 表示时间,以月为单位,年初为起点,根据历年的数据,冰川的体积(亿立方米)关于t 的近似函数的关系式为V (t )=⎩⎪⎨⎪⎧-t 3+11t 2-24t +100,0<t ≤10,4(t -10)(3t -41)+100,10<t ≤12.(1)该冰川的体积小于100亿立方米的时期称为衰退期.以i -1<t <i 表示第i 月份(i =1,2,…,12),问一年内哪几个月是衰退期? (2)求一年内该地区冰川的最大体积.解 (1)当0<t ≤10时,V (t )=-t 3+11t 2-24t +100<100,化简得t 2-11t +24>0,解得t <3或t >8.又0<t ≤10,故0<t <3或8<t ≤10,当10<t ≤12时,V (t )=4(t -10)(3t -41)+100<100, 解得10<t <413,又10<t ≤12,故10<t ≤12.综上得0<t <3或8<t ≤12.所以衰退期为1月,2月,3月,9月,10月,11月,12月共7个月. (2)由(1)知,V (t )的最大值只能在(3,9)内取到.由V ′(t )=(-t 3+11t 2-24t +100)′=-3t 2+22t -24, 令V ′(t )=0,解得t =6或t =43(舍去).当t 变化时,V ′(t )与V (t )的变化情况如下表:由上表,V (t )在t =6时取得最大值V (6)=136(亿立方米). 故该冰川的最大体积为136亿立方米.3.如图,某城市有一条公路从正西方AO 通过市中心O 后转向东偏北α角方向的OB .位于该市的某大学M 与市中心O 的距离OM =313 km ,且∠AOM =β.现要修筑一条铁路L ,L 在OA 上设一站A ,在OB 上设一站B ,铁路在AB 部分为直线段,且经过大学M .其中tan α=2,cos β=313,AO =15 km.(1)求大学M 与站A 的距离AM ; (2)求铁路AB 段的长AB .解 (1)在△AOM 中,AO =15,∠AOM =β且cos β=313,OM =313, 由余弦定理,得AM 2=OA 2+OM 2-2OA ·OM ·cos ∠AOM =152+(313)2-2×15×313×313=13×9+15×15-2×3×15×3=72.∴AM =62,即大学M 与站A 的距离(2)∵cos β=313,且β为锐角,∴sin β=213, 在△AOM 中,由正弦定理,得AM sin β=OMsin ∠MAO ,即62213=313sin ∠MAO ,sin ∠MAO =22, ∴∠MAO =π4,∴∠ABO =α-π4,∵tan α=2,∴sin α=25,cos α=15, ∴sin ∠ABO =sin ⎝⎛⎭⎫α-π4=110, 又∠AOB =π-α,∴sin ∠AOB =sin(π-α)=25. 在△AOB 中,OA =15,由正弦定理,得 AB sin ∠AOB =OA sin ∠ABO,即AB 25=15110,∴AB =302,即铁路AB 段的长为30 2 km.4.(2017·江苏苏州大学指导卷)如图,某地区有一块长方形植物园ABCD ,AB =8(百米),BC =4(百米).植物园西侧有一块荒地,现计划利用该荒地扩大植物园面积,使得新的植物园为HBCEFG ,满足下列要求:E 在CD 的延长线上,H 在BA 的延长线上,DE =0.5(百米),AH =4(百米),N 为AH 的中点,FN ⊥AH ,EF 为曲线段,它上面的任意一点到AD 与AH 的距离的乘积为定值,FG ,GH 均为线段,GH ⊥HA ,GH =0.5(百米).(1)求四边形FGHN 的面积;(2)已知音乐广场M 在AB 上,AM =2(百米),若计划在EFG 的某一处P 开一个植物园大门,在原植物园ABCD 内选一点Q 为中心建一个休息区,使得QM =PM ,且∠QMP =90°,问点P 在何处时,AQ 最小.解 (1)以A 为坐标原点,AB 所在直线为x 轴,AD 所在直线为y 轴,建立平面直角坐标系如图所示.则E ⎝⎛⎭⎫-12,4,因为E 到AD 与AH 距离的乘积为2, 所以曲线EF 上的任意一点都在函数y =-2x 的图象上.由题意,N (-2,0),所以F (-2,1).四边形FGHN 的面积为12×⎝⎛⎭⎫12+1×2=32(平方百米). (2)设P (x ,y ),则MP →=(x -2,y ),MQ →=(y ,-x +2),AQ →=(y +2,-x +2),因为点Q 在原植物园内,所以⎩⎪⎨⎪⎧0≤y +2≤8,0≤2-x ≤4,即-2≤x ≤2.又点P 在曲线EFG 上,x ∈⎣⎡⎦⎤-4,-12, 所以-2≤x ≤-12,则点P 在曲线段EF 上,AQ =(y +2)2+(2-x )2, 因为y =-2x ,所以AQ =⎝⎛⎭⎫-2x +22+(2-x )2= x 2+4x 2-4x -8x+8=⎝⎛⎭⎫x +2x 2-4⎝⎛⎭⎫x +2x +4=⎝⎛⎭⎫x +2x -22=-x +2-x+2≥22+2. 当且仅当-x =-2x,即x =-2时等号成立.此时点P (-2,2),即点P 在距离AD 与AH 均为2百米时,AQ 最小.(四)解析几何1.已知点A (x 1,y 1),B (x 2,y 2)(x 1x 2≠0),O 是坐标原点,P 是线段AB 的中点,若C 是点A 关于原点的对称点,Q 是线段BC 的中点,且OP =OQ ,设圆P 的方程为x 2+y 2-(x 1+x 2)x -(y 1+y 2)y =0.(1)证明:线段AB 是圆P 的直径;(2)若存在正数p 使得2p (x 1+x 2)=y 21+y 22+8p 2+2y 1y 2成立,当圆P 的圆心到直线x -2y =0的距离的最小值为255时,求p 的值.(1)证明 由题意知,点P 的坐标为⎝⎛⎭⎫x 1+x 22,y 1+y 22,点A (x 1,y 1)关于原点的对称点为C (-x 1,-y 1),那么点Q 的坐标为⎝⎛⎭⎫-x 1+x 22,-y 1+y 22,由OP =OQ ,得OP 2=OQ 2, 即⎝⎛⎭⎫x 1+x 222+⎝⎛⎭⎫y 1+y 222=⎝⎛⎭⎫-x 1+x 222+⎝⎛⎭⎫-y 1+y 222,得(x 1+x 2)2+(y 1+y 2)2=(x 1-x 2)2+(y 1-y 2)2, 从而x 1x 2+y 1y 2=0,由此得OA ⊥OB ,由方程x 2+y 2-(x 1+x 2)x -(y 1+y 2)y =0知,圆P 过原点,且点A ,B 在圆P 上, 故线段AB 是圆P 的直径.(2)解 由2p (x 1+x 2)=y 21+y 22+8p 2+2y 1y 2,得x 1+x 2=12p [(y 1+y 2)2+8p 2],又圆心P ⎝⎛⎭⎫x 1+x 22,y 1+y 22到直线x -2y =0的距离为d =⎪⎪⎪⎪x 1+x 22-(y 1+y 2)5=⎪⎪⎪⎪14p [(y 1+y 2)2+8p 2]-(y 1+y 2)5=[(y 1+y 2)-2p ]2+4p 245p ≥4p 245p,当且仅当y 1+y 2=2p 时,等号成立,所以4p 245p =255,从而得p =2.2.如图,F 是椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点,O 是坐标原点,OF =5,过点F 作OF 的垂线交椭圆C 于P 0,Q 0两点,△OP 0Q 0的面积为453.(1)求椭圆的标准方程;(2)若过点M (-5,0)的直线l 与上、下半椭圆分别交于点P ,Q ,且PM =2MQ ,求直线l 的方程.解 (1)由题设条件,P 0F =00OP Q S OF∆=4535=43.易知P 0F =b 2a ,所以b 2a =43.又c =OF =5,即a 2-b 2=5,因此a 2-43a -5=0,解得a =3或a =-53,又a >0,所以a =3,从而b =2. 故所求椭圆的标准方程为x 29+y 24=1.(2)设P (x 1,y 1),Q (x 2,y 2),由题意y 1>0,y 2<0, 并可设直线l :x =ty -5, 代入椭圆方程得(ty -5)29+y 24=1,即(4t 2+9)y 2-85ty -16=0. 从而y 1+y 2=85t 4t 2+9,y 1y 2=-164t 2+9.又由PM =2MQ ,得y 1-y 2=PMMQ=2,即y 1=-2y 2.因此y 1+y 2=-y 2,y 1y 2=-2y 22, 故-164t 2+9=-2⎝ ⎛⎭⎪⎫-85t 4t 2+92,可解得t 2=14.注意到y 2=-85t 4t 2+9且y 2<0,知t >0,因此t =12.故满足题意的直线l 的方程为2x -y +25=0.3.如图,在平面直角坐标系xOy 中,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,直线l :y =-12x 与椭圆E 相交于A ,B 两点,AB =210,C ,D 是椭圆E 上异于A ,B 的两点,且直线AC ,BD 相交于点P ,直线AD ,BC 相交于点Q .(1)求椭圆E 的标准方程; (2)求证:直线PQ 的斜率为定值. (1)解 因为e =c a =32,所以c 2=34a 2,即a 2-b 2=34a 2,所以a =2b .所以椭圆方程为x 24b 2+y 2b2=1.由题意不妨设点A 在第二象限,点B 在第四象限,由⎩⎨⎧y =-12x ,x 24b 2+y2b 2=1,得A (-2b ,22b ). 又AB =210,所以OA =10, 则2b 2+12b 2=52b 2=10,得b =2,a =4.所以椭圆E 的标准方程为x 216+y 24=1.(2)证明 由(1)知,椭圆E 的方程为x 216+y 24=1,A (-22,2),B (22,-2).①当直线CA ,CB ,DA ,DB 的斜率都存在,且不为零时,设直线CA ,DA 的斜率分别为k 1,k 2,C (x 0,y 0),显然k 1≠k 2.从而k 1·k CB =y 0-2x 0+22·y 0+2x 0-22=y 20-2x 20-8=4⎝⎛⎭⎫1-x 2016-2x 20-8=2-x 204x 20-8=-14,所以k CB =-14k 1.同理k DB =-14k 2.所以直线AD 的方程为y -2=k 2(x +22),直线BC 的方程为y +2=-14k 1(x -22), 由⎩⎪⎨⎪⎧y +2=-14k 1(x -22),y -2=k 2(x +22), 解得⎩⎪⎨⎪⎧x =22(-4k 1k 2-4k 1+1)4k 1k 2+1,y =2(-4k 1k 2+4k 2+1)4k 1k 2+1,从而点Q 的坐标为⎝ ⎛⎭⎪⎫22(-4k 1k 2-4k 1+1)4k 1k 2+1,2(-4k 1k 2+4k 2+1)4k 1k 2+1.用k 2代替k 1,k 1代替k 2得点P 的坐标为⎝ ⎛⎭⎪⎫22(-4k 1k 2-4k 2+1)4k 1k 2+1,2(-4k 1k 2+4k 1+1)4k 1k 2+1.所以k PQ =2(-4k 1k 2+4k 2+1)4k 1k 2+1-2(-4k 1k 2+4k 1+1)4k 1k 2+122(-4k 1k 2-4k 1+1)4k 1k 2+1-22(-4k 1k 2-4k 2+1)4k 1k 2+1=42(k 2-k 1)82(k 2-k 1)=12.即直线PQ 的斜率为定值,其定值为12.②当直线CA ,CB ,DA ,DB 中,有直线的斜率不存在时,由题意得,至多有一条直线的斜率不存在,不妨设直线CA 的斜率不存在,从而C (-22,-2). 设DA 的斜率为k ,由①知,k DB =-14k.因为直线CA :x =-22,直线DB :y +2=-14k (x -22),得P ⎝⎛⎭⎫-22,-2+2k . 又直线BC :y =-2,直线AD :y -2=k (x +22), 得Q ⎝⎛⎭⎫-22-22k ,-2, 所以k PQ =12.由①②可知,直线PQ 的斜率为定值,其定值为12.4.(2017·江苏预测卷)平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率是32,右准线的方程为x =433.(1)求椭圆C 的方程;(2)已知点P ⎝⎛⎭⎫12,2,过x 轴上的一个定点M 作直线l 与椭圆C 交于A ,B 两点,若三条直线P A ,PM ,PB 的斜率成等差数列,求点M 的坐标. 解 (1)因为椭圆的离心率为32,右准线的方程为x =433, 所以e =c a =32,a 2c =433,则a =2,c =3,b =1,椭圆C 的方程为x 24+y 2=1.(2)设M (m,0),当直线l 为y =0时,A (-2,0),B (2,0), P A ,PM ,PB 的斜率分别为 k P A =45,k PM =41-2m,k PB =-43,因为直线P A ,PM ,PB 的斜率成等差数列, 所以81-2m =45-43,m =8.证明如下:当M (8,0)时,直线P A ,PM ,PB 的斜率构成等差数列, 设AB :y =k (x -8),代入椭圆方程x 2+4y 2-4=0, 得x 2+4k 2(x -8)2-4=0,即(1+4k 2)x 2-64k 2x +256k 2-4=0, 设A (x 1,y 1),B (x 2,y 2),则 x 1+x 2=64k 21+4k 2,x 1x 2=256k 2-41+4k 2,又k PM =0-28-12=-415, 所以k P A +k PB =y 1-2x 1-12+y 2-2x 2-12=kx 1-8k -2x 1-12+kx 2-8k -2x 2-12=2k +⎝⎛⎭⎫-152k -2⎝ ⎛⎭⎪⎫1x 1-12+1x 2-12 =2k +⎝⎛⎭⎫-152k -2(x 1+x 2)-1x 1x 2-12(x 1+x 2)+14=2k +⎝⎛⎭⎫-152k -264k 21+4k 2-1256k 2-41+4k 2-12×64k 21+4k 2+14=2k +⎝⎛⎭⎫-152k -260k 2-1154(60k 2-1)=-815=2k PM ,即证. (四)数 列(2)1.已知{a n },{b n },{c n }都是各项不为零的数列,且满足a 1b 1+a 2b 2+…+a n b n =c n S n ,n ∈N *,其中S n 是数列{a n }的前n 项和,{c n }是公差为d (d ≠0)的等差数列. (1)若数列{a n }是常数列,d =2,c 2=3,求数列{b n }的通项公式; (2)若a n =λn (λ是不为零的常数),求证:数列{b n }是等差数列;(3)若a 1=c 1=d =k (k 为常数,k ∈N *),b n =c n +k (n ≥2,n ∈N *),求证:对任意的n ≥2,n ∈N *,数列⎩⎨⎧⎭⎬⎫b n a n 单调递减.(1)解 因为d =2,c 2=3,所以c n =2n -1. 因为数列{a n }是各项不为零的常数列, 所以a 1=a 2=…=a n ,S n =na 1.则由c n S n =a 1b 1+a 2b 2+…+a n b n 及c n =2n -1,得 n (2n -1)=b 1+b 2+…+b n ,当n ≥2时,(n -1)(2n -3)=b 1+b 2+…+b n -1, 两式相减得b n =4n -3.当n =1时,b 1=1也满足b n =4n -3. 故b n =4n -3(n ∈N *).(2)证明 因为a 1b 1+a 2b 2+…+a n b n =c n S n , 当n ≥2时,c n -1S n -1=a 1b 1+a 2b 2+…+a n -1b n -1, 两式相减得c n S n -c n -1S n -1=a n b n , 即(S n -1+a n )c n -S n -1c n -1=a n b n , S n -1(c n -c n -1)+a n c n =a n b n , 所以S n -1d +λnc n =λnb n .又S n -1=λ+λ(n -1)2(n -1)=λn (n -1)2,所以λn (n -1)2d +λnc n =λnb n ,即(n -1)2d +c n =b n ,(*) 所以当n ≥3时,(n -2)2d +c n -1=b n -1,两式相减得b n -b n -1=32d (n ≥3),所以数列{b n }从第二项起是公差为32d 的等差数列.又当n =1时,由c 1S 1=a 1b 1,得c 1=b 1. 当n =2时,由(*)得b 2=(2-1)2d +c 2=12d +(c 1+d )=b 1+32d ,得b 2-b 1=32d .故数列{b n }是公差为32d 的等差数列.(3)证明 由(2)得当n ≥2时,S n -1(c n -c n -1)+a n c n =a n b n ,即S n -1d =a n (b n -c n ). 因为b n =c n +k ,所以b n =c n +kd , 即b n -c n =kd , 所以S n -1d =a n ·kd , 即S n -1=ka n ,所以S n =S n -1+a n =(k +1)a n . 当n ≥3时,S n -1=(k +1)a n -1, 两式相减得a n =(k +1)a n -(k +1)a n -1, 即a n =k +1k a n -1,故从第二项起数列{a n }是等比数列, 所以当n ≥2时,a n =a 2⎝⎛⎭⎫k +1k n -2,b n =c n +k =c n +kd =c 1+(n -1)k +k 2=k +(n -1)k +k 2=k (n +k ), 另外由已知条件得(a 1+a 2)c 2=a 1b 1+a 2b 2. 又c 2=2k ,b 1=k ,b 2=k (2+k ), 所以a 2=1,因而a n =⎝⎛⎭⎫k +1k n -2.令d n =b na n ,则d n +1d n =b n +1a n a n +1b n =(n +k +1)k (n +k )(k +1).因为(n +k +1)k -(n +k )(k +1)=-n <0, 所以d n +1d n<1,所以对任意的n ≥2,n ∈N *,数列⎩⎨⎧⎭⎬⎫b n a n 单调递减.2.已知数列{a n }的前n 项和为S n ,且a 1=1,a 2=2,设b n =a n +a n +1,c n =a n ·a n +1(n ∈N *). (1)若数列{b 2n -1}是公比为3的等比数列,求S 2n ; (2)若数列{b n }是公差为3的等差数列,求S n ;(3)是否存在这样的数列{a n },使得{b n }成等差数列和{c n }成等比数列同时成立,若存在,求出{a n }的通项公式;若不存在,请说明理由. 解 (1)b 1=a 1+a 2=1+2=3,S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n -1+a 2n )=b 1+b 3+…+b 2n -1=3(1-3n )1-3=3n +1-32.(2)∵b n +1-b n =a n +2-a n =3,∴{a 2k -1},{a 2k }均是公差为3的等差数列,a 2k -1=a 1+(k -1)·3=3k -2,a 2k =a 2+(k -1)·3=3k -1,当n =2k (k ∈N *)时,S n =S 2k =(a 1+a 3+…+a 2k -1)+(a 2+a 4+…+a 2k )=k (1+3k -2)2+k (2+3k -1)2=3k 2=3n 24;当n =2k -1(k ∈N *)时,Sn =S 2k -1=S 2k -a 2k =3k 2-3k +1=3×⎝⎛⎭⎫n +122-3·n +12+1=3n 2+14.综上可知,S n=⎩⎨⎧3n 24,n =2k ,k ∈N *,3n 2+14,n =2k -1,k ∈N *.(3)∵{b n }成等差数列,∴2b 2=b 1+b 3,即2(a 2+a 3)=(a 1+a 2)+(a 3+a 4),a 2+a 3=a 1+a 4,① ∵{c n }成等比数列,∴c 22=c 1c 3. 即(a 2a 3)2=(a 1a 2)·(a 3a 4), ∵c 2=a 2a 3≠0,∴a 2a 3=a 1a 4,②由①②及a 1=1,a 2=2,得a 3=1,a 4=2,设{b n }的公差为d ,则b n +1-b n =(a n +1+a n +2)-(a n +a n +1)=d ,即a n +2-a n =d ,即数列{a n }的奇数项和偶数项都构成公差为d 的等差数列, 又d =a 3-a 1=a 4-a 2=0, ∴数列{a n }=1,2,1,2,1,2,…,即a n =⎩⎪⎨⎪⎧1,n =2k -1,k ∈N *,2,n =2k ,k ∈N *.此时c n =2,{c n }是公比为1的等比数列,满足题意.∴存在数列{a n },a n =⎩⎪⎨⎪⎧1,n =2k -1,k ∈N *,2,n =2k ,k ∈N *, 使得{b n }成等差数列和{c n }成等比数列同时成立.高考附加题加分练 1.矩阵与变换1.已知矩阵M =⎣⎢⎡⎦⎥⎤a 1b 0,点A (1,0)在矩阵M 对应的变换作用下变为A ′(1,2),求矩阵M 的逆矩阵M -1. 解 ∵⎣⎢⎡⎦⎥⎤a 1b0 ⎣⎢⎡⎦⎥⎤10=⎣⎢⎡⎦⎥⎤12, ∴a =1,b =2.∴M =⎣⎢⎡⎦⎥⎤1 120,∴M -1=⎣⎢⎡⎦⎥⎤0 121 -12.2.(2017·江苏徐州一中检测)已知曲线C :y 2=12x ,在矩阵M =⎣⎢⎡⎦⎥⎤1 00 -2对应的变换作用下得到曲线C 1,C 1在矩阵N =⎣⎢⎡⎦⎥⎤0110对应的变换作用下得到曲线C 2,求曲线C 2的方程.解 设A =NM ,则A =⎣⎢⎡⎦⎥⎤0 11 0 ⎣⎢⎡⎦⎥⎤1 00 -2=⎣⎢⎡⎦⎥⎤0 -21 0, 设P (x ′,y ′)是曲线C 上任一点,在两次变换下,在曲线C 2上对应的点为P (x ,y ), 则⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤0 -21 0 ⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤-2y ′ x ′, 即⎩⎪⎨⎪⎧x =-2y ′,y =x ′,∴⎩⎪⎨⎪⎧x ′=y ,y ′=-12x .又点P (x ′,y ′)在曲线C :y 2=12x 上,∴⎝⎛⎭⎫-12x 2=12y ,即x 2=2y .3.已知矩阵M =⎣⎢⎡⎦⎥⎤1 22x 的一个特征值为3,求M 的另一个特征值及其对应的一个特征向量. 解 矩阵M 的特征多项式为f (λ)=⎣⎢⎡⎦⎥⎤λ-1 -2-2 λ-x =(λ-1)(λ-x )-4.因为λ1=3是方程f (λ)=0的一根,所以x =1. 由(λ-1)(λ-1)-4=0,得λ2=-1. 设λ2=-1对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤x y , 则⎩⎪⎨⎪⎧-2x -2y =0,-2x -2y =0,得x =-y . 令x =1,则y =-1,所以矩阵M 的另一个特征值为-1,对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤ 1-1.4.(2017·江苏江阴中学质检)若点A (2,2)在矩阵M =⎣⎢⎡⎦⎥⎤cos α -sin αsin α cos α对应变换的作用下得到的点为B (-2,2),求矩阵M 的逆矩阵.解 M ⎣⎢⎡⎦⎥⎤22=⎣⎢⎡⎦⎥⎤-2 2,即⎣⎢⎡⎦⎥⎤2cos α-2sin α2sin α+2cos α=⎣⎢⎡⎦⎥⎤-2 2, 所以⎩⎪⎨⎪⎧cos α-sin α=-1,sin α+cos α=1,解得⎩⎪⎨⎪⎧cos α=0,sin α=1.所以M =⎣⎢⎡⎦⎥⎤0 -11 0.由M -1M =⎣⎢⎡⎦⎥⎤1 001,得M -1=⎣⎢⎡⎦⎥⎤1-10. 2.坐标系与参数方程1.(2017·江苏兴化中学调研)已知曲线C 1的极坐标方程为ρcos ⎝⎛⎭⎫θ-π3=-1,曲线C 2的极坐标方程为ρ=22cos ⎝⎛⎭⎫θ-π4,判断两曲线的位置关系. 解 将曲线C 1,C 2化为直角坐标方程,得 C 1:x +3y +2=0,C 2:x 2+y 2-2x -2y =0, 即C 2:(x -1)2+(y -1)2=2. 圆心到直线的距离d =|1+3+2|12+(3)2=∴曲线C 1与C 2相离.2.(2017·江苏金坛一中期中)已知在极坐标系下,圆C :ρ=2cos ⎝⎛⎭⎫θ+π2与直线l :ρsin ⎝⎛⎭⎫θ+π4=2,点M 为圆C 上的动点,求点M 到直线l 的距离的最大值. 解 圆C 化为直角坐标方程,得x 2+(y +1)2=1. 直线l 化为直角坐标方程,得x +y =2. 圆心C 到直线l 的距离d =|-1-2|2=322,所以点M 到直线l 的距离的最大值为1+322.3.已知直线l :⎩⎪⎨⎪⎧ x =1+t ,y =-t (t 为参数)与圆C :⎩⎪⎨⎪⎧x =2cos θ,y =m +2sin θ(θ为参数)相交于A ,B 两点,m 为常数. (1)当m =0时,求线段AB 的长;(2)当圆C 上恰有三点到直线的距离为1时,求m 的值. 解 (1)直线l :x +y -1=0,曲线C :x 2+y 2=4, 圆心到直线的距离d =12, 故AB =2r 2-d 2=14.(2)圆C 的直角坐标方程为x 2+(y -m )2=4, 直线l :x +y -1=0,由题意,知圆心到直线的距离d =|m -1|2=1,∴m =1± 2.4.(2017·江苏昆山中学质检)已知极坐标系的极点在直角坐标系的原点,极轴与x 轴的正半轴重合.曲线C 的极坐标方程为ρ2cos 2θ+3ρ2sin 2θ=3,直线l 的参数方程为⎩⎨⎧x =-3t ,y =1+t(t 为参数,t ∈R ).试在曲线C 上求一点M ,使它到直线l 的距离最大. 解 曲线C 的普通方程是x 23+y 2=1,直线l 的普通方程是x +3y -3=0.设点M 的直角坐标是(3cos θ,sin θ),则点M 到直线l 的距离是d =|3cos θ+3sin θ-3|2=3⎪⎪⎪⎪2sin ⎝⎛⎭⎫θ+π4-12.因为-2≤2sin ⎝⎛⎭⎫θ+π4≤2,所以当sin ⎝⎛⎭⎫ θ+π4=-1,即θ=2k π-3π4(k ∈Z )时,d 取得最大值.此时3cos θ=-62,sin θ=-22. 设点M 的极角为φ,则⎩⎨⎧ρcos φ=-62,ρsin φ=-22,所以⎩⎪⎨⎪⎧ρ=2,φ=7π6. 综上,当点M 的极坐标为⎝⎛⎭⎫2,7π6时,该点到直线l 的距离最大. 3.空间向量与立体几何1.(2017·江苏南通中学月考)如图,已知三棱锥O -ABC 的侧棱OA ,OB ,OC 两两垂直,且OA =1,OB =OC =2,E 是OC 的中点.(1)求异面直线BE 与AC 所成角的余弦值; (2)求二面角A -BE -C 的正弦值.解 (1)以O 为原点,分别以OB ,OC ,OA 为x 轴,y 轴,z 轴建立空间直角坐标系,则A (0,0,1),B (2,0,0),C (0,2,0),E (0,1,0). EB →=(2,-1,0),AC →=(0,2,-1), ∴cos 〈EB →,AC →〉=-25,即异面直线BE 与AC 所成角的余弦值为25.(2)AB →=(2,0,-1),AE →=(0,1,-1), 设平面ABE 的法向量为n 1=(x ,y ,z ), 则由n 1⊥AB →,n 1⊥AE →,得⎩⎪⎨⎪⎧2x -z =0,y -z =0,取n 1=(1,2,2), 平面BEC 的法向量为n 2=(0,0,1), ∴cos 〈n 1,n 2〉=23,∴二面角A -BE -C 的余弦值cos θ=23,∴sin θ=53, 即二面角A -BE -C 的正弦值为53.2.(2017·江苏宜兴中学质检)三棱柱ABC -A 1B 1C 1在如图所示的空间直角坐标系中,已知AB =2,AC =4,AA 1=3,D 是BC 的中点.(1)求直线DB 1与平面A 1C 1D 所成角的正弦值; (2)求二面角B 1-A 1D -C 1的正弦值.解 (1)由题意知,B (2,0,0),C (0,4,0),D (1,2,0),A 1(0,0,3),B 1(2,0,3),C 1(0,4,3),则A 1D →=(1,2,-3),A 1C 1→=(0,4,0),DB 1→=(1,-2,3). 设平面A 1C 1D 的一个法向量为n =(x ,y ,z ). 由n ·A 1D →=x +2y -3z =0,n ·A 1C 1→=4y =0, 得y =0,x =3z ,令z =1,得x =3,n =(3,0,1).设直线DB 1与平面A 1C 1D 所成的角为θ, 则sin θ=|cos 〈DB 1→,n 〉|=|3+3|10×14=33535.(2)设平面A 1B 1D 的一个法向量为m =(a ,b ,c ),A 1B 1→=(2,0,0). 由m ·A 1D →=a +2b -3c =0,m ·A 1B 1→=2a =0, 得a =0,2b =3c ,令c =2,得b =3,m =(0,3,2). 设二面角B 1-A 1D -C 1的大小为α, |cos α|=|cos 〈m ,n 〉|=|m ·n ||m ||n |=265, sin α=3765=345565.所以二面角B 1-A 1D -C 13.(2017·江苏运河中学质检)PCD ⊥底面ABCD ,PD ⊥CD ,底面ABCD 是直角梯形,AB ∥CD ,∠ADC =π2,AB =AD =PD =1,CD =2.设Q 为侧棱PC 上一点,PQ →=λPC →.试确定λ的值,使得二面角Q -BD -P 为π4.解 因为侧面PCD ⊥底面ABCD , 平面PCD ∩平面ABCD =CD ,PD ⊥CD , 所以PD ⊥平面ABCD ,所以PD ⊥AD , 又∠ADC =π2,故DA ,DC ,DP 两两互相垂直.如图,以D 为坐标原点,DA ,DC ,DP 分别为x 轴,y 轴,z 轴建立直角坐标系,A (1,0,0),B (1,1,0),C (0,2,0),P (0,0,1),则平面PBD 的一个法向量为n =(-1,1,0),PC →=(0,2,-1),PQ →=λPC →,λ∈(0,1), 所以Q (0,2λ,1-λ).设平面QBD 的一个法向量为m =(a ,b ,c ), 由m ·BD →=0,m ·DQ →=0,得⎩⎪⎨⎪⎧a +b =0,2λb +(1-λ)c =0, 所以取b =1,得m =⎝⎛⎭⎫-1,1,2λλ-1,所以cos π4=|m ·n ||m ||n |,即22·2+⎝⎛⎭⎫2λλ-12=22. 注意到λ∈(0,1),解得λ=2-1.4.在三棱锥S -ABC 中,底面是边长为23的正三角形,点S 在底面ABC 上的射影O 是AC 的中点,侧棱SB 和底面成45°角.(1)若D 为棱SB 上一点,当SDDB为何值时,CD ⊥AB ; (2)求二面角S -BC -A 的余弦值的大小.解 以O 点为原点,OB 为x 轴,OC 为y 轴,OS 为z 轴建立空间直角坐标系. 由题意知∠SBO =45°,SO =3.。

函数与导数压轴题题型与解题方法(高考必备)

函数与导数压轴题题型与解题方法(高考必备)

函数与导数压轴题题型与解题方法(高考必备)题型与方法(选择、填空题)一、函数与导数1、抽象函数与性质主要知识点:定义域、值域(最值)、单调性、奇偶性、周期性、对称性、趋势线(渐近线)对策与方法:赋值法、特例法、数形结合例1:已知定义在$[0,+\infty)$上的函数$f(x)$,当$x\in[0,1]$时,$f(x)=\frac{2}{3}-4x$;当$x>1$时,$f(x)=af(x-1)$,$a\in R$,$a$为常数。

下列有关函数$f(x)$的描述:①当$a=2$时,$f(\frac{3}{2})=4$;②当$a<\frac{1}{2}$时,函数$f(x)$的值域为$[-2,2]$;③当$a>\frac{1}{2}$时,不等式$f(x)\leq 2a$恒成立;④当$-\frac{1}{2}<a<\frac{1}{2}$时,函数$f(x)$的图像与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$。

其中描述正确的个数有(。

)【答案】C分析:根据题意,当$x>1$时,$f(x)$的值由$f(x-1)$决定,因此可以考虑特例法。

当$a=2$时,$f(x)$的值域为$[0,4]$,因此①正确。

当$a\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此不等式$f(x)\leq 2a$恒成立,③正确。

当$-\frac{1}{2}<a<\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此$f(x)$与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$,④正确。

因此,答案为$\boxed{\textbf{(C) }2}$。

专题12、函数与导数大题-冲刺高考最后一个月之2019高考数学(文)名师押题高端精品

专题12、函数与导数大题-冲刺高考最后一个月之2019高考数学(文)名师押题高端精品

(一)命题特点和预测:分析近8年的全国新课标1的函数与导数大题,发现8年8考,每年1题,第1小题主要考查函数的切线、函数的单调性、极值、最值,第2小题主要考查零点个数、方程解得个数、切线的条数、极值点个数、不等式的证明、函数能成立与恒成立问题、范围问题,考查分类整合思想与分析解决问题的能力,第1小题是基础题,第2小题是压轴题,为难题.2019年函数与导数大题仍为压轴题,主要考查导数的几何意义、常见函数的导数及导数的运算法则、利用导数研究函数的图象与性质,进而研究零点个数、方程解得个数、切线的条数、极值点个数、不等式的证明、函数能成立与恒成立问题、范围问题,考查分类整合思想与分析解决问题的能力,难度为难题.(二)历年试题比较: 年份 题目2020年【2018新课标1,文21】已知函数.(1)设是的极值点.求,并求的单调区间;(2)证明:当时,.2020年【2017新课标1,文21】已知函数. (1)讨论()f x 的单调性;(2)若()0f x …,求a 的取值范围. 2020年【2016新课标1,文21】已知函数.(I )讨论()f x 的单调性;(Ⅱ)若()f x 有两个零点,求a 的取值范围.2020年【2015高考新课标1,文21】(本小题满分12分)设函数.(I )讨论()f x 的导函数()f x '的零点的个数; (II )证明:当0a >时.2020年【2014全国1,文21】设函数,曲线处的切线斜率为0(1)求b;(2)若存在01,x ≥使得,求a 的取值范围。

2013年【2013课标全国Ⅰ,文20】(本小题满分12分)已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4. (1)求a ,b 的值;(2)讨论f (x )的单调性,并求f (x )的极大值.2012年【2012新课标全国1,文21】设函数f (x )= e x -ax -2 (Ⅰ)求f (x )的单调区间;(Ⅱ)若a =1,k 为整数,且当x >0时,(x -k ) f´(x )+x +1>0,求k 的最大值2011年【2011新课标全国1,文21】已知函数()f x =ln 1a x bx x++,曲线y =()f x 在点(1,(1)f )处的切线方程为.(Ⅰ)求a ,b 的值;(Ⅱ)证明:当x >0,且x ≠1时,()f x >ln 1xx -. (2020年)【解析】(1)f (x )的定义域为,f ′(x )=a e x –.由题设知,f ′(2)=0,所以a =.从而f (x )=,f ′(x )=.当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.所以f (x )在(0,2)单调递减,在(2,+∞)单调递增. (2)当a ≥时,f (x )≥.设g (x )=,则当0<x <1时,g′(x )<0;当x >1时,g′(x )>0.所以x =1是g (x )的最小值点. 故当x >0时,g (x )≥g (1)=0. 因此,当时,.(2020年)【解析】(1),①当0a =时,恒成立,所以()f x 在R 上单调递增;②当0a >时,2e 0x a +>恒成立,令()0f x '>,则e 0x a ->,故ln x a >,所以()f x 在()ln ,a +∞上单调递增,同理在(),ln a -∞上单调递减. ③当0a <时,e 0x a ->恒成立,令()0f x '>,则2e 0x a +>,即,所以,所以()f x 在上单调递增,同理在上单调递减.(2)①当0a =时,恒成立,符合题意;②当0a >时,,故,即01a <…;③当0a <时,,从而,故34e 2a -…,所以34e 20a -<….综上所述:a 的取值范围为34e ,12-⎡⎤⎢⎥⎣⎦. 【名师点睛】本题主要考查导数两大方面的应用:(1)函数单调性的讨论:运用导数知识来讨论函数单调性时,首先考虑函数的定义域,再求出()f x ',由()f x '的正负,得出函数()f x 的单调区间;(2)函数的最值(极值)的求法:由确认的单调区间,结合极值点的定义及自变量的取值范围,得出函数()f x 的极值或最值.(2020年)【解析】 (I)(i)设0a ≥,则当(),1x ∈-∞时,()'0f x <;当()1,x ∈+∞时,()'0f x >. 所以在(),1-∞单调递减,在()1,+∞单调递增. (ii)设0a <,由()'0f x =得x=1或x=ln(-2a). ①若2ea =-,则,所以()f x 在(),-∞+∞单调递增.②若2ea >-,则ln(-2a)<1,故当时,()'0f x >;当时,()'0f x <,所以()f x 在单调递增,在单调递减. ③若2ea <-,则()21ln a ->,故当时,()'0f x >,当时,()'0f x <,所以()f x 在单调递增,在()()1,ln 2a -单调递减.(II)(i)设0a >,则由(I)知,()f x 在(),1-∞单调递减,在()1,+∞单调递增.又,取b 满足b <0且ln 22b a <, 则,所以()f x 有两个零点.(ii)设a =0,则所以()f x 有一个零点.(iii)设a <0,若2ea ≥-,则由(I)知,()f x 在()1,+∞单调递增. 又当1x ≤时,()f x <0,故()f x 不存在两个零点;若2ea <-,则由(I)知,()f x 在()()1,ln 2a -单调递减,在单调递增.又当1x ≤时()f x <0,故()f x 不存在两个零点.综上,a 的取值范围为()0,+∞.【名师点睛】本题第(I)问是用导数研究函数单调性,对含有参数的函数单调性的确定,通常要根据参数进行分类讨论,要注意分类讨论的原则:互斥、无漏、最简;第(II)问是求参数取值范围,由于这类问题常涉及导数、函数、不等式等知识,越来越受到高考命题者的青睐,解决此类问题的思路是构造适当的函数,利用导数研究函数的单调性或极值破解.(2020年)【解析】(I )()f x 的定义域为()0+¥,,.当0a £时,()0f x ¢>,()f x ¢没有零点; 当0a >时,因为2x e 单调递增,ax-单调递增,所以()f x ¢在()0+¥,单调递增.又()0f a ¢>,当b 满足04a b <<且14b <时,(b)0f ¢<,故当0a >时,()f x ¢存在唯一零点. (II )由(I ),可设()f x ¢在()0+¥,的唯一零点为0x,当()00x x Î,时,()0f x ¢<;当时,()0f x ¢>. 故()f x 在()00x ,单调递减,在()0+x ¥,单调递增,所以当0x x=时,()f x 取得最小值,最小值为0()f x . 由于,所以.故当0a >时,.(2020年)【解析】(1)∵()f x '=,由题设知,(1)f '=1b -=0,∴b =1.……4分(2)()f x 的定义域为(0,+∞),由(I )知,()f x =,∴()f x '===,①当a <12时,1a ->0,1a a-<1,当 x >1时,()f x '>0,则()f x 在(1,+∞)是增函数,当要使存在01x ≥使得,则(1)f =112a --<1aa -,解得12--<a <12-+;②当a =12时,()f x '=2(1)2x x-≥0,故()f x 在(1,+∞)是增函数,存在01x ≥使得,则(1)f =112a --=34-<1aa -=1,适合; ③当12<a <1时,1a ->0,1a a ->1,当x >1a a -时,()f x '>0,则()f x 在(1a a-,+∞)是增函数,当1<x <1a a -时,()f x '<0,则()f x 在(1,1aa-)上是减函数,要使存在01x ≥使得,则()1af a -<1a a -,而()1a f a -=>1aa -,∴不合题意 ④当a >1时,1a -<0,1aa-<1,当x >1时,()f x '<0,则()f x 在(1,+∞)是减函数,∵(1)f =112a --=12a +-<0<1a a -,适合; 综上所述,a 的取值范围为(12--,(2013年)【解析】(1)()f x '=.由已知得(0)f =4,(0)f '=4,故4b =,a b +=8,从而a =4,4b =; (2)由(Ⅰ)知,()f x =,()f x '==,令()f x '=0得,x =ln 2-或x =-2, ∴当时,()f x '>0,当x ∈(-2,ln 2-)时,()f x '<0,∴()f x 在(-∞,-2),(ln 2-,+∞)单调递增,在(-2,ln 2-)上单调递减. 当x =-2时,函数()f x 取得极大值,极大值为.(2012年)【解析】(Ⅰ)()f x 的定义域为(),-∞+∞,.若0a ≤,则()0f x '>,所以()f x 的增区间为(),-∞+∞,无减区间; 若0a >,则当时,()0f x '<; 当时,()0f x '>,所以在减区间为(),ln a -∞,增区间为()ln ,a +∞. (Ⅱ)由于a =1,所以.故当0x >时,(x -k ) f´(x )+x +1>0等价于 ()0x >,令,则.由(Ⅰ)知,函数在()0,+∞上单调递增,而,所以()h x 在()0,+∞上存在唯一的零点,故()g x '在()0,+∞上存在唯一零点.设此零点为α,则()1,2α∈.当()0,x α∈时,()0g x '<;当(),x α∈+∞时,()0g x '>.所以()g x 在()0,+∞上的最小值为()g α.又由()g α',可得2e αα=+,所以.由于()0x >等价于()k g α<,故整数k 的最大值为2.(2011年)【解析】(Ⅰ)由于直线的斜率为12-,且过点(1,1),故即解得1a =,1b =。

2019高考数学优编增分练5套

2019高考数学优编增分练5套

高考数学优编增分练目录(一)三角函数与解三角形 (2)(二)立体几何 (5)(三)数列 (10)(四)解析几何 (15)(五)函数与导数 (21)(一)三角函数与解三角形1.(2018·浙江省教育绿色评价联盟月考)已知函数f (x )=sin x ·(cos x +3sin x ).(1)求f (x )的最小正周期;(2)若关于x 的方程f (x )=t 在区间⎣⎡⎦⎤0,π2内有两个不相等的实数解,求实数t 的取值范围. 解 (1)f (x )=sin x cos x +3sin 2x=12sin 2x +32(1-cos 2x ) =12sin 2x -32cos 2x +32=sin ⎝⎛⎭⎫2x -π3+32. 所以f (x )的最小正周期T =2π2=π. (2)因为x ∈⎣⎡⎦⎤0,π2,所以2x -π3∈⎣⎡⎦⎤-π3,2π3. 令u =2x -π3,因为y =sin u 在⎣⎡⎦⎤-π3,π2上是增函数,在⎣⎡⎦⎤π2,2π3上是减函数, 令u =2x -π3=π2,则x =5π12,所以f (x )在⎣⎡⎦⎤0,5π12上是增函数,在⎣⎡⎦⎤5π12,π2上是减函数. 由题意知,关于x 的方程f (x )=t 在区间⎣⎡⎦⎤0,π2内有两个不相等的实数解,等价于y =f (x )与y =t 的图象(图略)在区间⎣⎡⎦⎤0,π2内有两个不同的交点, 又因为f (0)=0,f ⎝⎛⎭⎫5π12=1+32,f ⎝⎛⎭⎫π2=3, 所以3≤t <1+32,即t 的取值范围是⎣⎡⎭⎫3,1+32. 2. (2018·湖州、衢州、丽水三地市模拟)已知函数f (x )=3sin ⎝⎛⎭⎫2x +π6-2sin x cos x . (1)求函数f (x )的最小正周期;(2)当x ∈⎣⎡⎦⎤-π4,π4时,求函数f (x )的最大值和最小值. 解 (1)f (x )=3⎝⎛⎭⎫sin 2x cos π6+cos 2x sin π6-sin 2x =32cos 2x +12sin 2x =sin ⎝⎛⎭⎫2x +π3, 因此函数f (x )的最小正周期T =π.(2)因为-π4≤x ≤π4,所以-π6≤2x +π3≤5π6,所以-12≤sin ⎝⎛⎭⎫2x +π3≤1, 因此当x =π12时,f (x )的最大值为1, 当x =-π4时,f (x )的最小值为-12. 3.(2018·浙江省台州中学模拟)在△ABC 中,cos B =-513,cos C =45. (1)求sin A 的值;(2)设△ABC 的面积S △ABC =332,求BC 的长. 解 (1)由cos B =-513,得sin B =1213, 由cos C =45,得sin C =35, sin A =sin(B +C )=sin B cos C +cos B sin C =3365. (2)由S △ABC =332,得12AB ·AC ·sin A =332, ∴AB ·AC =65.又AC =AB ·sin B sin C =2013AB , ∴AB =132,BC =AB ·sin A sin C =112. 4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足23a sin C sin B =a sin A +b sin B -c sin C .(1)求角C 的大小;(2)若a cos ⎝⎛⎭⎫π2-B =b cos(2k π+A )(k ∈Z )且a =2,求△ABC 的面积. 解 (1)由23a sin C sin B =a sin A +b sin B -c sin C 及正弦定理得,23ab sin C =a 2+b 2-c 2, ∴3sin C =a 2+b 2-c 22ab ,∴3sin C =cos C , ∴tan C =33,又0<C <π,∴C =π6. (2)由a cos ⎝⎛⎭⎫π2-B =b cos(2k π+A )(k ∈Z ),得a sin B =b cos A .由正弦定理得sin A sin B =sin B cos A ,又sin B ≠0,∴sin A =cos A ,∴A =π4, 根据正弦定理可得2sin π4=c sin π6,解得c =2, ∴S △ABC =12ac sin B =12×2×2sin(π-A -C ) =2sin ⎝⎛⎭⎫π4+π6=3+12.5.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知sin A +sin B =3sin C .(1)若cos 2A =sin 2B +cos 2C +sin A sin B ,求sin A +sin B 的值;(2)若c =2,求△ABC 面积的最大值.解 (1)∵cos 2A =sin 2B +cos 2C +sin A sin B ,∴1-sin 2A =sin 2B +1-sin 2C +sin A sin B ,∴sin 2A +sin 2B -sin 2C =-sin A sin B ,∴由正弦定理,得a 2+b 2-c 2=-ab ,∴由余弦定理,得cos C =a 2+b 2-c 22ab =-12, 又0<C <π,∴C =2π3, ∴sin A +sin B =3sin C =3sin2π3=32. (2)当c =2,a +b =3c =23,∴cos C =a 2+b 2-c 22ab =(a +b )2-2ab -c 22ab =4ab-1, ∴sin C =1-cos 2C =1-⎝⎛⎭⎫4ab -12 =-⎝⎛⎭⎫4ab 2+8ab ,∴S =12ab sin C =12ab -⎝⎛⎭⎫4ab 2+8ab =12-16+8ab . ∵a +b =23≥2ab ,即0<ab ≤3,当且仅当a =b =3时等号成立,∴S =12-16+8ab ≤12-16+8×3=2, ∴△ABC 面积的最大值为 2.6.已知m =(3sin ωx ,cos ωx ),n =(cos ωx ,-cos ωx )(ω>0,x ∈R ),f (x )=m·n -12且f (x )的图象上相邻两条对称轴之间的距离为π2. (1)求函数f (x )的单调递增区间;(2)若△ABC 中内角A ,B ,C 的对边分别为a ,b ,c 且b =7,f (B )=0,sin A =3sin C ,求a ,c 的值及△ABC 的面积. 解 (1)f (x )=m·n -12=3sin ωx cos ωx -cos 2ωx -12 =32sin 2ωx -12cos 2ωx -1=sin ⎝⎛⎭⎫2ωx -π6-1. ∵相邻两条对称轴之间的距离为π2, ∴T =2π2ω=π,∴ω=1,∴f (x )=sin ⎝⎛⎭⎫2x -π6-1, 令2k π-π2≤2x -π6≤2k π+π2,k ∈Z , 则k π-π6≤x ≤k π+π3,k ∈Z , ∴f (x )的单调递增区间为⎣⎡⎦⎤k π-π6,k π+π3,k ∈Z . (2)由(1)知,f (B )=sin ⎝⎛⎭⎫2B -π6-1=0, ∵0<B <π,∴-π6<2B -π6<11π6, ∴2B -π6=π2,∴B =π3, 由sin A =3sin C 及正弦定理,得a =3c ,在△ABC 中,由余弦定理,可得cos B =a 2+c 2-b 22ac =9c 2+c 2-76c 2=10c 2-76c 2=12, ∴c =1,a =3,∴S △ABC =12ac sin B =12×3×1×32=334. (二)立体几何1.(2018·浙江省金丽衢十二校联考)如图,四棱锥S -ABCD 的底面是边长为1的正方形,侧棱SB 垂直于底面.(1)求证:平面SBD ⊥平面SAC ;(2)若SA 与平面SCD 所成的角为30°,求SB 的长.(1)证明 连接AC ,BD ,因为四边形ABCD 为正方形,所以AC ⊥BD .又因为SB ⊥底面ABCD ,所以AC ⊥SB ,因为BD ∩SB =B ,BD ,SB ⊂平面SBD ,所以AC ⊥平面SBD .又因为AC ⊂平面SAC ,所以平面SAC ⊥平面SBD .(2)解 将四棱锥补形成正四棱柱ABCD -A ′SC ′D ′,连接A ′D ,作AE ⊥A ′D ,垂足为点E ,连接SE .由SA ′∥CD 可知,平面SCD 即为平面SCDA ′.因为CD ⊥侧面ADD ′A ′,AE ⊂侧面ADD ′A ′,所以CD ⊥AE ,又因为AE ⊥A ′D ,A ′D ∩CD =D ,A ′D ,CD ⊂平面SCD ,所以AE ⊥平面SCD ,于是∠ASE 即为SA 与平面SCD 所成的角.设SB =x ,在Rt △ABS 中,SA =1+x 2,在Rt △DAA ′中,AE =x 1+x 2 . 因为∠ASE =30°,所以1+x 2=2x 1+x 2, 解得x =1,即SB 的长为1.2.(2018·浙江省金华十校模拟)如图,在几何体ABCDE 中,CD ∥AE ,∠EAC =90°,平面EACD ⊥平面ABC ,CD =2EA =2,AB =AC =2,BC =23,F 为BD 的中点.(1)证明:EF ∥平面ABC ;(2)求直线AB 与平面BDE 所成角的正弦值.(1)证明 取BC 的中点G ,连接FG ,AG ,∵F 为BD 的中点,CD =2EA ,CD ∥AE ,∴FG =12CD =EA ,且FG ∥AE , ∴四边形AGFE 是平行四边形,∴EF ∥AG ,∵EF ⊄平面ABC ,AG ⊂平面ABC ,∴EF ∥平面ABC .(2)解 ∵∠EAC =90°,平面EACD ⊥平面ABC ,且平面EACD ∩平面ABC =AC ,EA ⊂平面EACD , ∴EA ⊥平面ABC ,由(1)知FG ∥AE ,∴FG ⊥平面ABC ,又∵AB =AC ,G 为BC 的中点,∴AG ⊥BC ,如图,以G 为坐标原点,分别以GA ,GB ,GF 所在直线为x ,y ,z 轴建立空间直角坐标系,则A (1,0,0),B (0,3,0),D (0,-3,2),E (1,0,1), ∴AB →=(-1,3,0),BD →=(0,-23,2),BE →=(1,-3,1),设平面BDE 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·BD →=0,n ·BE →=0,即⎩⎨⎧z -3y =0,x -3y +z =0, 令y =1,得n =(0,1,3),∴直线AB 与平面BDE 所成角的正弦值为|AB →·n ||AB →||n |=34. 3.在三棱锥D —ABC 中,DA =DB =DC ,D 在底面ABC 上的射影为E ,AB ⊥BC ,DF ⊥AB 于F .(1)求证:平面ABD ⊥平面DEF ;(2)若AD ⊥DC ,AC =4,∠BAC =60°,求直线BE 与平面DAB 所成角的正弦值.(1)证明 由题意知DE ⊥平面ABC ,所以AB ⊥DE ,又AB ⊥DF ,且DE ∩DF =D ,所以AB ⊥平面DEF ,又AB ⊂平面ABD ,所以平面ABD ⊥平面DEF .(2)解 方法一 由DA =DB =DC ,知EA =EB =EC ,所以E 是△ABC 的外心.又AB ⊥BC ,所以E 为AC 的中点,如图所示.过E 作EH ⊥DF 于H ,连接BH ,则由(1)知EH ⊥平面DAB ,所以∠EBH 即为BE 与平面DAB 所成的角.由AC =4,∠BAC =60°,得AB =AE =BE =2,所以EF =3,又DE =2,所以DF =DE 2+EF 2=7,EH =237,所以sin ∠EBH =EH BE =217.方法二 如图建系,则A (0,-2,0),D (0,0,2),B (3,-1,0),所以DA →=(0,-2,-2),DB →=(3,-1,-2).设平面DAB 的法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ·DA →=0,n ·DB →=0,得⎩⎨⎧ -2y -2z =0,3x -y -2z =0,取z =1,得n =⎝⎛⎭⎫33,-1,1.设EB →与n 的夹角为θ,则cos θ=EB →·n |EB →|·|n |=2273=217,所以BE 与平面DAB 所成角的正弦值为217. 4.如图,在矩形ABCD 中,已知AB =2,AD =4,点E ,F 分别在AD ,BC 上,且AE =1,BF =3,将四边形AEFB 沿EF 折起,使点B 在平面CDEF 上的射影H 在直线DE 上.(1)求证:CD ⊥BE ;(2)求线段BH 的长度;(3)求直线AF 与平面EFCD 所成角的正弦值.(1)证明 ∵BH ⊥平面CDEF ,∴BH ⊥CD ,又CD ⊥DE ,BH ∩DE =H ,BH ,DE ⊂平面DBE ,∴CD ⊥平面DBE ,∴CD ⊥BE .(2)解 方法一 设BH =h ,EH =k ,过F 作FG 垂直ED 于点G ,∵线段BE ,BF 在翻折过程中长度不变,根据勾股定理得⎩⎪⎨⎪⎧ BE 2=BH 2+EH 2,BF 2=BH 2+FH 2=BH 2+FG 2+GH 2, 即⎩⎪⎨⎪⎧ 5=h 2+k 2,9=22+h 2+(2-k )2,解得⎩⎪⎨⎪⎧h =2,k =1, ∴线段BH 的长度为2.方法二 如图,过点E 作ER ∥DC ,过点E 作ES ⊥平面EFCD ,以点E 为坐标原点,分别以ER ,ED ,ES 所在直线为x ,y ,z 轴建立空间直角坐标系,设点B (0,y ,z )(y >0,z >0),由于F (2,2,0),BE =5,BF =3,∴⎩⎪⎨⎪⎧y 2+z 2=5,4+(y -2)2+z 2=9, 解得⎩⎪⎨⎪⎧y =1,z =2,于是B (0,1,2), ∴线段BH 的长度为2.(3)解 方法一 延长BA 交EF 于点M ,∵AE ∶BF =MA ∶MB =1∶3,∴点A 到平面EFCD 的距离为点B 到平面EFCD 距离的13, ∴点A 到平面EFCD 的距离为23,而AF =13, 故直线AF 与平面EFCD 所成角的正弦值为21339. 方法二 由(2)方法二知FB →=(-2,-1,2), 故EA →=13FB →=⎝⎛⎭⎫-23,-13,23, F A →=FE →+EA →=⎝⎛⎭⎫-83,-73,23,设平面EFCD 的一个法向量为n =(0,0,1),直线AF 与平面EFCD 所成角的大小为θ,则sin θ=|F A →·n ||F A →||n |=21339. 5.在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC ⊥BC ,且AC =BC =BD =2AE ,M 是AB 的中点.(1)求证:CM ⊥EM ;(2)求CM 与平面CDE 所成的角.方法一 (1)证明 因为AC =BC ,M 是AB 的中点,所以CM ⊥AB .又EA ⊥平面ABC ,CM ⊂平面ABC ,所以EA ⊥CM ,因为AB ∩EA =A ,AB ,EA ⊂平面ABDE ,所以CM ⊥平面ABDE ,又因为EM ⊂平面ABDE ,所以CM ⊥EM .(2)解 过点M 作MH ⊥平面CDE ,垂足为H ,连接CH 并延长交ED 于点F ,连接MF ,MD ,∠FCM 是直线CM 和平面CDE 所成的角.因为MH ⊥平面CDE ,ED ⊂平面CDE ,所以MH ⊥ED ,又因为CM ⊥平面EDM ,ED ⊂平面EDM ,所以CM ⊥ED ,因为MH ∩CM =M ,MH ,CM ⊂平面CMF ,所以ED ⊥平面CMF ,因为MF ⊂平面CMF ,所以ED ⊥MF .设EA =a ,BD =BC =AC =2a ,在直角梯形ABDE 中,AB =22a ,M 是AB 的中点,所以DE =3a ,EM =3a ,MD =6a ,所以EM 2+MD 2=ED 2,所以△EMD 是直角三角形,其中∠EMD =90°,所以MF =EM ·MD DE=2a . 在Rt △CMF 中,tan ∠FCM =MF MC=1, 又因为∠FCM ∈(0°,90°),所以∠FCM =45°,故CM 与平面CDE 所成的角是45°.方法二 如图,以点C 为坐标原点,CA ,CB 所在直线分别作为x 轴和y 轴,过点C 作与平面ABC 垂直的直线为z 轴,建立直角坐标系,设EA =a ,则A (2a,0,0),B (0,2a,0),E (2a,0,a ),D (0,2a,2a ),M (a ,a,0).(1)证明 因为EM →=(-a ,a ,-a ),CM →=(a ,a,0),所以EM →·CM →=0,故EM ⊥CM .(2)解 设向量n =(1,y 0,z 0)为平面CDE 的一个法向量,则n ⊥CE →,n ⊥CD →,即n ·CE →=0,n ·CD →=0.因为CE →=(2a,0,a ),CD →=(0,2a,2a ),所以⎩⎪⎨⎪⎧ 2a +az 0=0,2ay 0+2az 0=0,解得⎩⎪⎨⎪⎧y 0=2,z 0=-2, 即n =(1,2,-2),cos 〈n ,CM →〉=CM →·n |CM →|·|n |=22, 因为〈n ,CM →〉∈[0°,180°],所以〈n ,CM →〉=45°.直线CM 与平面CDE 所成的角θ是n 与CM →夹角的余角,所以θ=45°,因此直线CM 与平面CDE 所成的角是45°.6.如图,在三棱台ABCDEF 中,平面BCFE ⊥平面ABC ,∠ACB =90°,BE =EF =FC =1,BC =2,AC =3.(1)求证:BF ⊥平面ACFD ;(2)求直线BD 与平面ACFD 所成角的余弦值.(1)证明 延长AD ,BE ,CF 相交于一点K ,如图所示,因为平面BCFE ⊥平面ABC ,且AC ⊥BC ,所以AC ⊥平面BCK ,因此BF ⊥AC .又因为EF ∥BC ,BE =EF =FC =1,BC =2,所以△BCK 为等边三角形,且F 为CK 的中点,则BF ⊥CK .所以BF ⊥平面ACFD .(2)解 因为BF ⊥平面ACK ,所以∠BDF 是直线BD 与平面ACFD 所成的角.在Rt △BFD 中,BF =3,DF =32, 得cos ∠BDF =217. 所以直线BD 与平面ACFD 所成角的余弦值为217. (三)数 列1.已知正项数列{a n }的前n 项和为S n ,a 1=1,且(t +1)S n =a 2n +3a n +2(t ∈R ).(1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1=1,b n +1-b n =a n +1,求数列⎩⎨⎧⎭⎬⎫12b n +7n 的前n 项和T n . 解 (1)因为a 1=S 1=1,且(t +1)S n =a 2n +3a n+2,所以(t +1)S 1=a 21+3a 1+2,所以t =5.所以6S n =a 2n +3a n +2.①当n ≥2时,有6S n -1=a 2n -1+3a n -1+2,②①-②得6a n =a 2n +3a n -a 2n -1-3a n -1,所以(a n +a n -1)(a n -a n -1-3)=0,因为a n >0,所以a n -a n -1=3,又因为a 1=1,所以{a n }是首项a 1=1,公差d =3的等差数列,所以a n =3n -2(n ∈N *).(2)因为b n +1-b n =a n +1,b 1=1,所以b n -b n -1=a n (n ≥2,n ∈N *),所以当n ≥2时,b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1=a n +a n -1+…+a 2+b 1=3n 2-n 2. 又b 1=1也适合上式,所以b n =3n 2-n 2(n ∈N *). 所以12b n +7n =13n 2-n +7n=13·1n (n +2)=16·⎝⎛⎭⎫1n -1n +2, 所以T n =16·⎝⎛⎭⎫1-13+12-14+…+1n -1n +2 =16·⎝⎛⎭⎫32-1n +1-1n +2=3n 2+5n 12(n +1)(n +2).2.设等差数列{a n }的前n 项和为S n ,且S 3,S 52,S 4成等差数列,a 5=3a 2+2a 1-2. (1)求数列{a n }的通项公式;(2)设b n =2n -1,求数列⎩⎨⎧⎭⎬⎫a n b n 的前n 项和T n . 解 (1)设等差数列{a n }的首项为a 1,公差为d ,由S 3,S 52,S 4成等差数列, 可知S 3+S 4=S 5,得2a 1-d =0,①由a 5=3a 2+2a 1-2,②得4a 1-d -2=0,由①②,解得a 1=1,d =2,因此,a n =2n -1(n ∈N *).(2)令c n =a n b n=(2n -1)⎝⎛⎭⎫12n -1,则T n =c 1+c 2+…+c n ,∴T n =1·1+3·12+5·⎝⎛⎭⎫122+…+(2n -1)·⎝⎛⎭⎫12n -1,③ 12T n =1·12+3·⎝⎛⎭⎫122+5·⎝⎛⎭⎫123+…+(2n -1)·⎝⎛⎭⎫12n ,④ ③-④,得12T n =1+2⎣⎡⎦⎤12+⎝⎛⎭⎫122+…+⎝⎛⎭⎫12n -1-(2n -1)·⎝⎛⎭⎫12n =1+2⎣⎡⎦⎤1-⎝⎛⎭⎫12n -1 -(2n -1)·⎝⎛⎭⎫12n = 3-2n +32n , ∴T n =6-2n +32n -1(n ∈N *). 3.已知等差数列{a n }满足(n +1)a n =2n 2+n +k ,k ∈R .(1)求数列{a n }的通项公式;(2)设b n =4n 2a n a n +1,求数列{b n }的前n 项和S n . 解 (1)方法一 由(n +1)a n =2n 2+n +k ,令n =1,2,3,得到a 1=3+k 2,a 2=10+k 3,a 3=21+k 4, ∵{a n }是等差数列,∴2a 2=a 1+a 3,即20+2k 3=3+k 2+21+k 4, 解得k =-1.由于(n +1)a n =2n 2+n -1=(2n -1)(n +1),又∵n +1≠0,∴a n =2n -1(n ∈N *).方法二 ∵{a n }是等差数列,设公差为d ,则a n =a 1+d (n -1)=dn +(a 1-d ),∴(n +1)a n =(n +1)(dn +a 1-d )=dn 2+a 1n +a 1-d ,∴dn 2+a 1n +a 1-d =2n 2+n +k 对于任意n ∈N *均成立,则⎩⎪⎨⎪⎧ d =2,a 1=1,a 1-d =k ,解得k =-1,∴a n =2n -1(n ∈N *).(2)由b n =4n 2a n a n +1=4n 2(2n -1)(2n +1)=4n 24n 2-1=1+14n 2-1=1+1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1+1, 得S n =b 1+b 2+b 3+…+b n=12⎝⎛⎭⎫1-13+1+12⎝⎛⎭⎫13-15+1+12⎝⎛⎭⎫15-17+1+…+12⎝⎛⎭⎫12n -1-12n +1+1 =12⎝⎛⎭⎫1-13+13-15+15-17+…+12n -1-12n +1+n =12⎝⎛⎭⎫1-12n +1+n =n 2n +1+n =2n 2+2n 2n +1(n ∈N *). 4.(2018·绍兴市柯桥区模拟)已知数列{a n }满足:x 1=1,x n =x n +1+1en x +-1,证明:当n ∈N *时, (1)0<x n +1<x n ;(2)x n x n +1>x n -2x n +1;(3)⎝⎛⎭⎫12n ≤x n ≤⎝⎛⎭⎫12n -1. 证明 (1)用数学归纳法证明x n >0,当n =1时,x 1=1>0,假设x k >0,k ∈N *,k ≥1,成立,当n =k +1时,若x k +1≤0,则x k =x k +1+1e k x +-1≤0,矛盾,故x k +1>0,因此x n >0(n ∈N *),所以x n =x n +1+1e n x +-1>x n +1+e 0-1=x n +1,综上,x n >x n +1>0.(2)x n +1x n +2x n +1-x n =x n +1(x n +1+1en x +-1)+2x n +1-x n +1-1e n x ++1=x 2n +1+1e n x +(x n +1-1)+1, 设f (x )=x 2+e x (x -1)+1(x ≥0),则f ′(x )=2x +e x ·x ≥0,所以f (x )在[0,+∞)上单调递增,因此f (x )≥f (0)=0,因此x 2n +1+1e n x +(x n +1-1)+1=f (x n +1)>f (0)=0,故x n x n +1>x n -2x n +1.(3)由(2)得1x n +1+1<2⎝⎛⎭⎫1x n +1,所以当n >1时, 1x n +1<2⎝⎛⎭⎫1x n -1+1<…<2n -1⎝⎛⎭⎫1x 1+1=2n , 当n =1时,1x n +1=2n ,所以1x n ≤2n ,即x n ≥12n , 又由于x n =x n +1+1e n x +-1≥x n +1+(x n +1+1)-1=2x n +1,x n +1≤12x n ,所以易知x n ≤12n -1, 综上,⎝⎛⎭⎫12n ≤x n ≤⎝⎛⎭⎫12n -1.5.(2018·浙江省台州中学模拟)已知数列{a n }的首项a 1=35,a n +1=3a n 2a n +1,n =1,2,…. (1)求{a n }的通项公式;(2)证明:对任意的x >0,a n ≥11+x -1(1+x )2·⎝⎛⎭⎫23n -x ,n =1,2,…; (3)证明:a 1+a 2+…+a n >n 2n +1. (1)解 ∵a n +1=3a n 2a n +1,∴1a n +1-1=13⎝⎛⎭⎫1a n -1, ∴1a n -1=23·13n 1=23,∴a n =3n3n +2(n ∈N *). (2)证明 由(1)知a n =3n3n +2>0, 11+x -1(1+x )2⎝⎛⎭⎫23n -x =11+x -1(1+x )2⎝⎛⎭⎫23n +1-1-x =11+x -1(1+x )2⎣⎡⎦⎤1a n -(1+x ) =-1a n ·1(1+x )2+21+x =-1a n ⎝⎛⎭⎫11+x -a n 2+a n ≤a n , ∴原不等式成立.(3)证明 由(2)知,对任意的x >0,有a 1+a 2+…a n ≥11+x -1(1+x )2⎝⎛⎭⎫23-x +11+x -1(1+x )2⎝⎛⎭⎫23-x +…+11+x -1(1+x )2⎝⎛⎭⎫23-x =n 1+x -1(1+x )2⎝⎛⎭⎫23+232+…+23n -nx , ∴取x =1n ⎝⎛⎭⎫23+23+…+23=1n ⎝⎛⎭⎫1-13, 则a 1+a 2…+a n ≥n1+1n ⎝⎛⎭⎫1-13n =n 2n +1-13n >n 2n +1, ∴原不等式成立.6.已知在数列{a n }中,满足a 1=12,a n +1=a n +12,记S n 为a n 的前n 项和. (1)证明:a n +1>a n ;(2)证明:a n =cos π3·2n -1; (3)证明:S n >n -27+π254. 证明 (1)由题意知{a n }的各项均为正数,因为2a 2n +1-2a 2n =a n +1-2a 2n =(1-a n )(1+2a n). 所以,要证a n +1>a n ,只需要证明a n <1即可.下面用数学归纳法证明a n <1.①当n =1时,a 1=12<1成立, ②假设当n =k 时,a k <1成立,那么当n =k +1时,a k +1=a k +12<1+12=1. 综上所述,a n <1成立,所以a n +1>a n .(2)用数学归纳法证明a n =cos π3·2n -1. ①当n =1时,a 1=12=cos π3成立, ②假设当n =k 时,a k =cos π3·2k -1. 那么当n =k +1时,a k +1=a k +12=cos π3·2k -1+12=cos π3·2k , 综上所述,a n =cosπ3·2n -1. (3)由题意及(2)知, 1-a n -12=1-a n -1+12=1-a 2n =1-cos 2π3·2n 1=sin 2π3·2n -1<⎝⎛⎭⎫π3·2n -12(n ≥2), 得a n -1>1-2π29·4n -1(n ≥2), 故当n =1时,S 1=12>1-27+π254; 当n ≥2时,S n >∑n i =2 ⎝⎛⎭⎫1-2π29·4i +12 =n -12-2π29×43×116⎝⎛⎭⎫1-14n -1 >n -27+π254. 综上所述,S n >n -27+π254. (四)解析几何1.(2018·浙江省台州中学模拟)过抛物线E :x 2=2py (p >0)的焦点F 作斜率分别为k 1,k 2的两条不同直线l 1,l 2且k 1+k 2=2,l 1与E 相交于点A ,B ,l 2与E 相交于点C ,D ,以AB ,CD 为直径的圆M ,圆N (M ,N 为圆心)的公共弦所在直线记为l .(1)若k 1>0,k 2>0,证明:FM →·FN →<2p 2;(2)若点M 到直线l 的距离的最小值为755,求抛物线E 的方程. (1)证明 由题意知,抛物线E 的焦点为F ⎝⎛⎭⎫0,p 2, 直线l 1的方程为y =k 1x +p 2. 由⎩⎪⎨⎪⎧y =k 1x +p 2,x 2=2py ,得x 2-2pk 1x -p 2=0. 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则x 1,x 2是上述方程的两个实数根,从而x 1+x 2=2pk 1,y 1+y 2=2pk 21+p ,∴点M 的坐标为⎝⎛⎭⎫pk 1,pk 21+p 2,FM →=(pk 1,pk 21). 同理可得点N 的坐标为⎝⎛⎫pk 2,pk 22+p 2, FN →=(pk 2,pk 22),于是FM →·FN →=p 2(k 1k 2+k 21k 22).∵k 1+k 2=2,k 1>0,k 2>0,k 1≠k 2,∴0<k 1k 2<1,故FM →·FN →<p 2(1+1)=2p 2.(2)解 由抛物线的定义得|F A |=y 1+p 2,|FB |=y 2+p 2, ∴|AB |=y 1+y 2+p =2pk 21+2p ,从而圆M 的半径r 1=pk 21+p .故圆M 的方程为x 2+y 2-2pk 1x -p (2k 21+1)y -34p 2=0, 同理可得圆N 的方程为x 2+y 2-2pk 2x -p (2k 22+1)y -34p 2=0, ∴直线l 的方程为(k 2-k 1)x +(k 22-k 21)y =0, 即x +2y =0.∴点M 到直线l 的距离为d =p |2k 21+k 1+1|5. 故当k 1=-14时,d 取最小值7p 85. 由已知得7p 85=755,解得p =8. 故所求抛物线E 的方程为x 2=16y .2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两焦点分别是F 1()-2,0,F 2()2,0,点E ⎝⎛⎭⎫2,322在椭圆C 上. (1)求椭圆C 的方程;(2)设P 是y 轴上的一点,若椭圆C 上存在两点M ,N ,使得MP →=2PN →,求以F 1P 为直径的圆面积的取值范围.解 (1)由已知,得半焦距c =2,2a =|EF 1|+|EF 2|=8+92+322=42, 所以a =22,所以b 2=a 2-c 2=8-2=6, 所以椭圆C 的方程是x 28+y 26=1. (2)设点P 的坐标为(0,t ),当直线MN 斜率不存在时,可得M ,N 分别是短轴的两端点,得到t =±63,t 2=23. 当直线MN 斜率存在时,设直线MN 的方程为y =kx +t ,M (x 1,y 1),N (x 2,y 2),则由MP →=2PN →得x 1=-2x 2,①联立⎩⎪⎨⎪⎧y =kx +t ,x 28+y 26=1, 得(3+4k 2)x 2+8ktx +4t 2-24=0,由题意,得Δ=64k 2t 2-4(3+4k 2)(4t 2-24)>0,整理得t 2<8k 2+6,由根与系数的关系得x 1+x 2=-8kt 3+4k 2, x 1·x 2=4t 2-243+4k 2,② 由①②,消去x 1,x 2得k 2=-t 2+612t 2-8, 由⎩⎪⎨⎪⎧ -t 2+612t 2-8≥0,t 2<8·-t 2+612t 2-8+6,解得23<t 2<6, 综上23≤t 2<6, 又因为以F 1P 为直径的圆面积S =π·2+t 24,所以S 的取值范围是⎣⎡⎭⎫2π3,2π. 3.(2018·浙江“超级全能生”联考)如图,已知直线y =-2mx -2m 2+m 与抛物线C :x 2=y 相交于A ,B 两点,定点M ⎝⎛⎭⎫-12,1. (1)证明:线段AB 被直线y =-x 平分;(2)求△MAB 面积取得最大值时m 的值.(1)证明 设A (x 1,y 1),B (x 2,y 2),联立方程组⎩⎪⎨⎪⎧y =-2mx -2m 2+m ,y =x 2, 得x 2+2mx +2m 2-m =0,∴x 1+x 2=-2m ,x 1·x 2=2m 2-m ,则x 1+x 22=-m , y 1+y 22=x 21+x 222=(x 1+x 2)2-2x 1x 22=m , ∴线段AB 的中点坐标为(-m ,m ),∴线段AB 被直线y =-x 平分.(2)解 ∵|AB |=(x 1-x 2)2+(y 1-y 2)2 =1+4m 2-4m 2+4m (0<m <1),点M 到直线AB 的距离为d =|1+2m 2-2m |1+4m 2, ∴△MAB 的面积S =12|AB |d =-m 2+m |1-2(-m 2+m )|(0<m <1),令-m 2+m =t ,则S =t |1-2t 2|,又∵0<t ≤12,∴S =t -2t 3⎝⎛⎭⎫0<t ≤12, 令f (t )=t -2t 3⎝⎛⎭⎫0<t ≤12,则f ′(t )=1-6t 2, 则f (t )在⎝⎛⎭⎫0,66上单调递增,在⎝⎛⎦⎤66,12上单调递减,故当t =66时,f (t )取得最大值,即△MAB 面积取得最大值,此时有-m 2+m =66,解得m =3±36. 4.已知椭圆C :x 2a 2+y 2b2=1(a >b >0),A ,B 是椭圆与x 轴的两个交点,M 为椭圆C 的上顶点,设直线MA 的斜率为k 1,直线MB 的斜率为k 2,k 1k 2=-23. (1)求椭圆C 的离心率;(2)设直线l 与x 轴交于点D (-3,0),交椭圆于P ,Q 两点,且满足DP →=3QD →,当△OPQ 的面积最大时,求椭圆C 的方程.解 (1)M (0,b ),A (-a,0),B (a,0),k 1=b a ,k 2=-b a, k 1k 2=-b a ·b a =-b 2a 2=-23,e =c a =33. (2)由(1)知e =c a =33, 得a 2=3c 2,b 2=2c 2,可设椭圆C 的方程为2x 2+3y 2=6c 2,设直线l 的方程为x =my -3,由⎩⎨⎧2x 2+3y 2=6c 2,x =my -3,得(2m 2+3)y 2-43my +6-6c 2=0,因为直线l 与椭圆C 相交于P (x 1,y 1),Q (x 2,y 2)两点,所以Δ=48m 2-4(2m 2+3)(6-6c 2)>0,由根与系数的关系得,y 1+y 2=43m 2m 2+3,y 1y 2=6-6c 22m 2+3. 又DP →=3QD →,所以y 1=-3y 2,代入上述两式得6-6c 2=-36m 22m 2+3, 所以S △OPQ =12|OD ||y 1-y 2|=32⎪⎪⎪⎪⎪⎪83m 2m 2+3 =12|m |2|m |2+3=122|m |+3|m |≤6, 当且仅当m 2=32时,等号成立,此时c 2=52, 代入Δ,此时Δ>0成立,所以椭圆C 的方程为2x 215+y 25=1. 5.已知在平面直角坐标系中,动点P (x ,y )(x ≥0)到点N (1,0)的距离比到y 轴的距离大1.(1)求动点P 的轨迹C 的方程;(2)若过点M (2,0)的直线与轨迹C 相交于A ,B 两点,设点Q 在直线x +y -1=0上,且满足OA →+OB →=tOQ→(O 为坐标原点),求实数t 的最小值.解 (1)方法一 因为点P (x ,y )(x ≥0)到点N (1,0)的距离比到y 轴的距离大1,所以|PN |-1=|x |,将点N 的坐标代入,并整理得y 2=4x .故点P 的轨迹C 的方程是y 2=4x .方法二 因为平面上动点P 到点N (1,0)的距离比到y 轴的距离大1,所以点P 到点N (1,0)的距离与点P 到直线x =-1的距离相等,即点P 的轨迹是以原点为顶点,焦点到准线的距离为2,并且为开口向右的抛物线,所以点P 的轨迹C 的方程为y 2=4x .(2)由题意知直线AB 的斜率存在且斜率不为0且与抛物线y 2=4x 有两个交点,设直线AB :y =k (x -2),A (x 1,y 1),B (x 2,y 2),Q (x ,y ),由⎩⎪⎨⎪⎧y =k (x -2),y 2=4x ,得k 2x 2-4(k 2+1)x +4k 2=0(k ≠0). Δ=16(2k 2+1)>0恒成立,所以x 1+x 2=4(k 2+1)k 2,x 1·x 2=4, 因为OA →+OB →=tOQ →,所以(x 1+x 2,y 1+y 2)=t (x ,y ),即x =x 1+x 2t =4(k 2+1)k 2t ,y =y 1+y 2t =k (x 1-2)+k (x 2-2)t =k (x 1+x 2)-4k t =4tk, 又点Q 在x +y -1=0上,所以4(k 2+1)k 2t +4tk-1=0. 所以t =4⎝⎛⎭⎫1k 2+1k +1=4⎝⎛⎭⎫1k +122+3≥3.故实数t 的最小值为3.6.如图,过椭圆M :x 22+y 2=1的右焦点F 作直线交椭圆于A ,C 两点.(1)当A ,C 变化时,在x 轴上求定点Q ,使得∠AQF =∠CQF ;(2)设直线QA 交椭圆M 的另一个交点为B ,连接BF 并延长交椭圆于点D ,当四边形ABCD 的面积取得最大值时,求直线AC 的方程.解 (1)设A (x 1,y 1),C (x 2,y 2),Q (q,0),当A ,C 不在x 轴上时,设直线AC 的方程为x =ty +1,代入椭圆M 的方程,可得(2+t 2)y 2+2ty -1=0.则y 1+y 2=-2t 2+t 2,y 1y 2=-12+t 2, 由意题知k AQ +k CQ =y 1x 1-q +y 2x 2-q=y 1(x 2-q )+y 2(x 1-q )(x 1-q )(x 2-q ) =y 1(ty 2+1-q )+y 2(ty 1+1-q )(x 1-q )(x 2-q ) =2ty 1y 2+(1-q )(y 1+y 2)(x 1-q )(x 2-q )=0, 即2ty 1y 2+(1-q )(y 1+y 2)=0,整理得-2t -2t (1-q )=0,由题知无论t 取何值,上式恒成立,则q =2,当A ,C 在x 轴上时,定点Q (2,0)依然可使∠AQF =∠CQF 成立,所以点Q 的坐标是(2,0).(2)由(1)知∠AQF =∠CQF ,∠BQF =∠DQF .所以B ,C 关于x 轴对称,A ,D 关于x 轴对称,所以四边形ABCD 是一个等腰梯形.则四边形ABCD 的面积S (t )=|x 1-x 2|·|y 1-y 2|=|t |·|y 1-y 2|2=8·(t 2+1)|t |(t 2+2)2. 由对称性不妨设t >0,求导可得S ′(t )=-8·t 4-3t 2-2(t 2+2)3, 令S ′(t )=0,可得t 2=3+172, 由于S (t )在⎝ ⎛⎭⎪⎫0,3+172上单调递增, 在⎝ ⎛⎭⎪⎫3+172,+∞上单调递减,所以当t 2=3+172时,四边形ABCD 的面积S 取得最大值. 此时,直线AC 的方程是x =±3+172y +1. (五)函数与导数1.(2018·浙江省台州中学模拟)设函数f (x )=ax 2+bx +c (a ≠0),曲线y =f (x )过点(0,2a +3),且在点(-1,f (-1))处的切线垂直于y 轴.(1)用a 分别表示b 和c ;(2)当bc 取得最小值时,求函数g (x )=-f (x )e -x 的单调区间.解 (1)f ′(x )=2ax +b ,由题意得⎩⎪⎨⎪⎧2a +3=c ,2a ·(-1)+b =0,则b =2a ,c =2a +3. (2)由(1)得bc =2a (2a +3)=4⎝⎛⎭⎫a +342-94, 故当a =-34时,bc 取得最小值-94, 此时有b =-32,c =32, 从而f (x )=-34x 2-32x +32,f ′(x )=-32x -32, g (x )=-f (x )e -x =⎝⎛⎭⎫34x 2+32x -32e -x ,所以g ′(x )=-34(x 2-4)e -x , 令g ′(x )=0,解得x 1=-2,x 2=2.当x ∈(-∞,-2)时,g ′(x )<0,故g (x )在(-∞,-2)上为减函数;当x ∈(-2,2)时,g ′(x )>0,故g (x )在(-2,2)上为增函数;当x ∈(2,+∞)时,g ′(x )<0,故g (x )在(2,+∞)上为减函数.由此可见,函数g (x )的单调递减区间为(-∞,-2),(2,+∞),单调递增区间为(-2,2).2.(2018·浙江省温州六校协作体联考)已知函数f (x )=e kx (k -x )(k ≠0).(1)当k =2时,求y =f (x )在x =1处的切线方程;(2)对任意x ∈R ,f (x )≤1k恒成立,求实数k 的取值范围. 解 (1)当k =2时,f (x )=e 2x (2-x ).∵f ′(x )=2e 2x (2-x )-e 2x =e 2x (3-2x ),∴f ′(1)=e 2,又∵f (1)=e 2,∴所求的切线方程为y -e 2=e 2(x -1).即y =e 2x .(2)方法一 ∵e kx (k -x )≤1k, ∴当x =k 时,0≤1k,即k >0, ∴对任意x ∈R ,k (k -x )≤e-kx 恒成立, 设g (x )=e -kx +kx -k 2,g ′(x )=-k e -kx +k =k (1-e -kx ),当x <0时,g ′(x )<0,当x >0时,g ′(x )>0,∴g (x )在(-∞,0)上是减函数,在(0,+∞)上是增函数,∴g (x )min =g (0)=1-k 2≥0,又k >0,∴0<k ≤1.方法二 对任意x ∈R ,f (x )≤1k 恒成立⇔f (x )max ≤1k,x ∈R . ∵f ′(x )=k e kx (k -x )-e kx =e kx (k 2-kx -1),当k <0,x ≥k -1k 时,f ′(x )≥0;x <k -1k时,f ′(x )<0, ∴f (x )在⎝⎛⎭⎫-∞,k -1k 上是减函数,在⎣⎡⎭⎫k -1k ,+∞上是增函数. 又当x →-∞时,f (x )→+∞,而1k<0, ∴与f (x )≤1k恒成立矛盾,∴k <0不满足条件; 当k >0,x ≤k -1k 时,f ′(x )≥0;x >k -1k时,f ′(x )<0, ∴f (x )在⎝⎛⎦⎤-∞,k -1k 上是增函数,在⎝⎛⎭⎫k -1k ,+∞上是减函数. ∴f (x )max =f ⎝⎛⎭⎫k -1k =21e k -·1k ≤1k,∴k 2-1≤0,即-1≤k ≤1,又k >0,∴0<k ≤1,综上所述,实数k 的取值范围是(0,1].3.设函数f (x )=x ln x -ax 2+(b -1)x ,g (x )=e x -e x .(1)当b =0时,函数f (x )有两个极值点,求实数a 的取值范围;(2)若y =f (x )在点(1,f (1))处的切线与x 轴平行,且函数h (x )=f (x )+g (x )在x ∈(1,+∞)时,其图象上每一点处切线的倾斜角均为锐角,求实数a 的取值范围.解 (1)当b =0时,f (x )=x ln x -ax 2-x ,f ′(x )=ln x -2ax ,∴f (x )=x ln x -ax 2-x 有2个极值点就是方程ln x -2ax =0有2个不同的解,即y =2a 与m (x )=ln x x的图象的交点有2个. ∵m ′(x )=1-ln x x 2, 当x ∈(0,e)时,m ′(x )>0,m (x )单调递增;当x ∈(e ,+∞)时,m ′(x )<0,m (x )单调递减.∴m (x )有极大值1e, 又∵x ∈(0,1]时,m (x )≤0;当x ∈(1,+∞)时,0<m (x )<1e. 当a ∈⎝⎛⎭⎫12e ,+∞时,y =2a 与m (x )=ln x x的图象的交点有0个; 当a ∈(-∞,0]或a =12e 时,y =2a 与m (x )=ln x x的图象的交点有1个; 当a ∈⎝⎛⎭⎫0,12e 时,y =2a 与m (x )=ln x x的图象的交点有2个. 综上,实数a 的取值范围为⎝⎛⎭⎫0,12e . (2)函数y =f (x )在点(1,f (1))处的切线与x 轴平行,∴f ′(1)=0且f (1)≠0,∵f ′(x )=ln x -2ax +b ,∴b =2a 且a ≠1.h (x )=x ln x -ax 2+(b -1)x +e x -e x 在x ∈(1,+∞)时,其图象的每一点处的切线的倾斜角均为锐角,即当x >1时,h ′(x )=f ′(x )+g ′(x )>0恒成立,即ln x +e x -2ax +2a -e>0恒成立,令t (x )=ln x +e x -2ax +2a -e ,∴t ′(x )=1x+e x -2a ,设φ(x )=1x +e x -2a ,φ′(x )=e x -1x 2, ∵x >1,∴e x >e ,1x 2<1, ∴φ′(x )>0,∴φ(x )在(1,+∞)上单调递增,即t ′(x )在(1,+∞)上单调递增,∴t ′(x )>t ′(1)=1+e -2a ,当a ≤1+e 2且a ≠1时,t ′(x )≥0, ∴t (x )=ln x +e x -2ax +2a -e 在(1,+∞)上单调递增,∴t (x )>t (1)=0成立,当a >1+e 2时, ∵t ′(1)=1+e -2a <0,t ′(ln 2a )=1ln 2a+2a -2a >0, ∴存在x 0∈(1,ln 2a ),满足t ′(x 0)=0.∵t ′(x )在(1,+∞)上单调递增,∴当x ∈(1,x 0)时,t ′(x )<0,t (x )单调递减,∴t (x 0)<t (1)=0,t (x )>0不恒成立.∴实数a 的取值范围为(-∞,1)∪⎝⎛⎦⎤1,1+e 2. 4.已知函数f (x )=x -1+a e x .(1)讨论f (x )的单调性;(2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2>4.(1)解 f ′(x )=1+a e x ,当a ≥0时,f ′(x )>0,则f (x )在R 上单调递增.当a <0时,令f ′(x )>0,得x <ln ⎝⎛⎭⎫-1a , 则f (x )的单调递增区间为⎝⎛⎭⎫-∞,ln ⎝⎛⎭⎫-1a , 令f ′(x )<0,得x >ln ⎝⎛⎭⎫-1a , 则f (x )的单调递减区间为⎝⎛⎭⎫ln ⎝⎛⎭⎫-1a ,+∞. (2)证明 由f (x )=0得a =1-x e x , 设g (x )=1-x e x ,则g ′(x )=x -2e x . 由g ′(x )<0,得x <2;由g ′(x )>0,得x >2.故g (x )min =g (2)=-1e 2<0. 当x >1时,g (x )<0,当x <1时,g (x )>0,不妨设x 1<x 2,则x 1∈(1,2),x 2∈(2,+∞),x 1+x 2>4等价于x 2>4-x 1,∵4-x 1>2且g (x )在(2,+∞)上单调递增,∴要证x 1+x 2>4,只需证g (x 2)>g (4-x 1),∵g (x 1)=g (x 2)=a ,∴只需证g (x 1)>g (4-x 1),即1-x 11e x >x 1-314e x −, 即证124e x −(x 1-3)+x 1-1<0;设h (x )=e 2x -4(x -3)+x -1,x ∈(1,2),则h ′(x )=e 2x -4(2x -5)+1,令m (x )=h ′(x ),则m ′(x )=4e 2x -4(x -2),∵x ∈(1,2),∴m ′(x )<0,∴m (x )在(1,2)上单调递减,即h ′(x )在(1,2)上单调递减,∴h ′(x )>h ′(2)=0,∴h (x )在(1,2)上单调递增,∴h (x )<h (2)=0,∴124e x −()x 1-3+x 1-1<0,从而x 1+x 2>4得证.5.已知函数f (x )=a +ln x x,g (x )=mx . (1)求函数f (x )的单调区间;(2)当a =0时,f (x )≤g (x )恒成立,求实数m 的取值范围;(3)当a =1时,求证:当x >1时,(x +1)⎝⎛⎭⎫x +1e x f (x )>2⎝⎛⎭⎫1+1e . (1)解 f (x )=a +ln x x的定义域为(0,+∞), 且f ′(x )=1-(a +ln x )x 2=1-ln x -a x 2. 由f ′(x )>0得1-ln x -a >0,即ln x <1-a ,解得0<x <e 1-a ,∴f (x )在(0,e 1-a )上单调递增,在(e 1-a ,+∞)上单调递减.(2)解 a =0,f (x )=ln x x,∴f (x )≤g (x )⇔ln x x ≤mx ⇔m ≥ln x x 2, 令u (x )=ln x x 2,∴u ′(x )=1-2ln x x 3, 由u ′(x )>0得0<x <e ,∴u (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,∴u (x )max =u (e)=ln e e =12e ,∴m ≥12e. (3)证明 (x +1)⎝⎛⎭⎫x +1e x f (x )>2⎝⎛⎭⎫1+1e , 等价于1e +1·(x +1)(ln x +1)x >2e x -1x e x +1. 令p (x )=(x +1)(ln x +1)x ,则p ′(x )=x -ln x x 2, 令φ(x )=x -ln x ,则φ′(x )=1-1x =x -1x, ∵x >1,∴φ′(x )>0,∴φ(x )在(1,+∞)上单调递增,φ(x )>φ(1)=1>0,p ′(x )>0,∴p (x )在(1,+∞)上单调递增,∴p (x )>p (1)=2,∴p (x )e +1>2e +1, 令h (x )=2e x -1x e x +1, 则h ′(x )=2e x -1(1-e x )(x e x +1)2, ∵x >1,∴1-e x <0,∴h ′(x )<0,h (x )在(1,+∞)上单调递减,∴当x >1时,h (x )<h (1)=2e +1, ∴p (x )e +1>2e +1>h (x ), 即(x +1)⎝⎛⎭⎫x +1e x f (x )>2⎝⎛⎭⎫1+1e ,x >1. 6.已知函数f (x )=x 3+|ax -3|-2,a >0.(1)求函数y =f (x )的单调区间;(2)当a ∈(0,5)时,对于任意x 1∈[0,1],总存在x 2∈[0,1],使得f (x 1)+f (x 2)=0,求实数a 的值. 解 (1)f (x )=x 3+|ax -3|-2(a >0)=⎩⎨⎧ x 3+ax -5,x ≥3a ,x 3-ax +1,x <3a .则f ′(x )=⎩⎨⎧ 3x 2+a ,x ≥3a ,3x 2-a ,x <3a . 当a 3≥3a,即a ≥3时, 函数y =f (x )的单调递减区间为⎝⎛⎭⎫-a 3,3a ,单调递增区间为⎝⎛⎭⎫-∞,-a 3,⎝⎛⎭⎫3a ,+∞; 当a 3<3a,即0<a <3时, 函数y =f (x )的单调递减区间为⎝⎛⎭⎫-a 3,a 3, 单调递增区间为⎝⎛⎭⎫-∞,-a 3,⎝⎛⎭⎫a 3,+∞. (2)由题意知,对于任意x 1∈[0,1],总存在x 2∈[0,1],使得f (x 1)+f (x 2)=0,等价于当x ∈[0,1]时,f (x )min +f (x )max =0,由(1)得当3≤a <5时,y =f (x )在⎣⎡⎭⎫0,3a 上单调递减,在⎝⎛⎦⎤3a ,1上单调递增, 所以f (x )min =f ⎝⎛⎭⎫3a =27a 3-2,f (x )max =max{f (0),f (1)}=max{1,a -4}=1,所以27a3-2+1=0,解得a =3; 当0<a <3时,y =f (x )在⎣⎡⎭⎫0,a 3上单调递减, 在⎝⎛⎦⎤a 3,1上单调递增, 所以f (x )min =f ⎝⎛⎭⎫a 3=1-2a 3a 3, f (x )max =max{f (0),f (1)}=max{1,2-a },当1<a <3时,f (x )max =1,则1-2a 3a 3+1=0,得a =3(舍去); 当0<a ≤1时,f (x )max =2-a ,则1-2a 3a 3+2-a =0, 即3-a =2a 3a 3,其中3-a ≥2,而2a 3a 3<2,所以无解,舍去. 综上所述,a =3.。

(京津专用)2019高考数学总复习 优编增分练:压轴大题突破练(四)函数与导数(2)理

(京津专用)2019高考数学总复习 优编增分练:压轴大题突破练(四)函数与导数(2)理

(四)函数与导数(2)1.(2018·江西省重点中学协作体联考)已知f (x )=e x ,g (x )=x 2+ax -2x sin x +1.(1)证明:1+x ≤e x ≤11-x (x ∈[0,1));(2)若x ∈[0,1)时,f (x )≥g (x )恒成立,求实数a 的取值范围.(1)证明 设h (x )=e x -1-x ,则h ′(x )=e x -1,故h (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增.从而h (x )≥h (0)=0,即e x ≥1+x .而当x ∈[0,1)时,e -x ≥1-x ,即e x ≤11-x .(2)解 设F (x )=f (x )-g (x )=e x -(x 2+ax -2x sin x +1),则F (0)=0,F ′(x )=e x -(2x +a -2x cos x -2sin x ).要求F (x )≥0在[0,1)上恒成立,必须有F ′(0)≥0.即a ≤1.以下证明:当a ≤1时,f (x )≥g (x ).只要证1+x ≥x 2+x -2x sin x +1,只要证2sin x ≥x 在[0,1)上恒成立.令φ(x )=2sin x -x ,则φ′(x )=2cos x -1>0对x ∈[0,1)恒成立,又φ(0)=0,所以2sin x ≥x ,从而不等式得证.2.(2018·宿州质检)设函数f (x )=x +ax ln x (a ∈R ).(1)讨论函数f (x )的单调性;(2)若函数f (x )的极大值点为x =1,证明:f (x )≤e -x +x 2.(1)解 f (x )的定义域为(0,+∞),f ′(x )=1+a ln x +a ,当a =0时,f (x )=x ,则函数f (x )在区间(0,+∞)上单调递增;当a >0时,由f ′(x )>0得x >1e a a +-,由f ′(x )<0得0<x <1e a a +-.所以f (x )在区间⎝⎛⎭⎫0,1e a a +-上单调递减,在区间⎝⎛⎭⎫1e a a +-,+∞上单调递增;当a <0时,由f ′(x )>0得0<x <1e a a +-,由f ′(x )<0得x >1e aa +-,所以函数f (x )在区间⎝⎛⎭⎫0,1e a a +-上单调递增,在区间⎝⎛⎭⎫1e a a +-,+∞上单调递减.综上所述,当a =0时,函数f (x )在区间(0,+∞)上单调递增;当a >0时,函数f (x )在区间⎝⎛⎭⎫0,1e a a +-上单调递减,在区间⎝⎛⎭⎫1e a a +-,+∞上单调递增;当a <0时,函数f (x )在区间⎝⎛⎭⎫0,1e a a +-上单调递增,在区间⎝⎛⎭⎫1e a a +-,+∞上单调递减.(2)证明 由(1)知a <0且1e a a +-=1,解得a =-1,f (x )=x -x ln x .要证f (x )≤e -x +x 2,即证x -x ln x ≤e -x +x 2,即证1-ln x ≤e-x x +x .令F (x )=ln x +e-x x +x -1(x >0),则F ′(x )=1x +-e -x x -e-xx 2+1=(x +1)(x -e -x)x 2.令g (x )=x -e -x ,得函数g (x )在区间(0,+∞)上单调递增.而g (1)=1-1e >0,g (0)=-1<0,所以在区间(0,+∞)上存在唯一的实数x 0,使得g (x 0)=x 0-0e x -=0,即x 0=0e x -,且x ∈(0,x 0)时,g (x )<0,x ∈(x 0,+∞)时,g (x )>0.故F (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增.∴F (x )min =F (x 0)=ln x 0 +0e x -x 0+x 0-1.又0e x -=x 0,∴F (x )min =ln x 0+0e x -x 0+x 0-1=-x 0+1+x 0-1=0.∴F (x )≥F (x 0)=0成立,即f (x )≤e -x +x 2成立.3.(2018·皖江八校联考)已知函数f (x )=ax 2+x +a2e x .(1)若a ≥0,函数f (x )的极大值为52e ,求实数a 的值;(2)若对任意的a ≤0,f (x )≤b ln (x +1)2在x ∈[0,+∞)上恒成立,求实数b 的取值范围.解 (1)由题意,f ′(x )=12[(2ax +1)e -x -(ax 2+x +a )e -x ]=-12e -x [ax 2+(1-2a )x +a -1]=-12e -x(x -1)(ax +1-a ).①当a =0时,f ′(x )=-12e -x(x -1),令f ′(x )>0,得x <1;令f ′(x )<0,得x >1,所以f (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减.所以f (x )的极大值为f (1)=12e ≠52e ,不合题意.②当a >0时,1-1a <1,令f ′(x )>0,得1-1a <x <1;令f ′(x )<0,得x <1-1a 或x >1,所以f (x )在⎝ ⎛⎭⎪⎫1-1a ,1上单调递增,在⎝ ⎛⎭⎪⎫-∞,1-1a ,(1,+∞)上单调递减.所以f (x )的极大值为f (1)=2a +12e =52e ,得a =2.综上所述a =2.(2)令g (a )=(x 2+1)a 2e x +x2e x ,a ∈(-∞,0],当x ∈[0,+∞)时,x 2+12e x >0,则g (a )≤b ln (x +1)2对∀a ∈(-∞,0]恒成立等价于g (a )≤g (0)≤b ln (x +1)2,即xe x ≤b ln(x +1)对x ∈[0,+∞)恒成立.①当b =0时,显然xe x ≤b ln(x +1)在[0,+∞)上不恒成立.②当b <0时,∀x ∈(0,+∞),b ln(x +1)<0,xe x >0,此时xe x >b ln(x +1),不合题意.③当b >0时,令h (x )=b ln(x +1)-xe x ,x ∈[0,+∞),则h ′(x )=b x +1-(e -x -x e -x )=b e x +x 2-1(x +1)e x ,其中(x +1)e x >0,∀x ∈[0,+∞),令p (x )=b e x +x 2-1,x ∈[0,+∞),则p (x )在区间[0,+∞)上单调递增,b ≥1时,p (x )≥p (0)=b -1≥0,所以对∀x ∈[0,+∞),h ′(x )≥0,从而h (x )在[0,+∞)上单调递增,所以对任意x ∈[0,+∞),h (x )≥h (0)=0,即不等式b ln(x +1)≥x e -x 在[0,+∞)上恒成立.0<b <1时,由p (0)=b -1<0,p (1)=b e>0及p (x )在区间[0,+∞)上单调递增,所以存在唯一的x 0∈(0,1),使得p (x 0)=0,且x ∈(0,x 0)时,p (x )<0.从而x ∈(0,x 0)时,h ′(x )<0,所以h (x )在区间(0,x 0)上单调递减,则x ∈(0,x 0)时,h (x )<h (0)=0,即b ln(x +1)<x e -x ,不符合题意.综上所述,b 的取值范围为[1,+∞).4.(2018·合肥模拟)已知函数f (x )=ln xx -ax .(1)讨论函数f (x )的零点个数;(2)已知g (x )=(2-x )e x ,证明:当x ∈(0,1)时,g (x )-f (x )-ax -2>0.(1)解 xf (x )=ln x -a x ·x .令32x =t ,∴x =23t (t >0).令h (t )=ln t -32at ,则函数y =h (t )与y =f (x )的零点个数情况一致.h ′(t )=1t -32a .(ⅰ)当a ≤0时,h ′(t )>0,∴h (t )在(0,+∞)上单调递增. 又h (1)=-32a ≥0,1e a a h +⎛⎫ ⎪⎝⎭=a +1a -32a e 1a a +≤a +1a -32a ·1e 2=⎝ ⎛⎭⎪⎫1-32e 2a +1a <0,∴此时有1个零点.(ⅱ)当a >0时,h (t )在⎝ ⎛⎭⎪⎫0,23a 上单调递增,在⎝ ⎛⎭⎪⎫23a ,+∞上单调递减.∴h (t )max =h ⎝ ⎛⎭⎪⎫23a =ln 23a -1.①当ln 23a <1即a >23e 时,h ⎝ ⎛⎭⎪⎫23a <0,无零点.②当ln 23a =1即a =23e 时,h ⎝ ⎛⎭⎪⎫23a =0,1个零点.③当ln 23a >1即0<a <23e 时,h ⎝ ⎛⎭⎪⎫23a >0,又23a >e>1,h (1)=-32a <0.又23a -49a 2=23a ⎝ ⎛⎭⎪⎫1-23a <23a (1-e)<0,h ⎝ ⎛⎭⎪⎫49a 2=ln ⎝ ⎛⎭⎪⎫23a 2-32a ·49a 2=2ln 23a -23a ,令φ(a )=2ln 23a -23a ,φ′(a )=2·3a 2⎝ ⎛⎭⎪⎫-23·1a 2+23a 2=2-6a3a 2>0,∴φ(a )在⎝ ⎛⎭⎪⎫0,23e 上单调递增,∴φ(a )<φ⎝ ⎛⎭⎪⎫23e =2-e<0,∴此时有两个零点.综上,当a ≤0或a =23e 时,有1个零点;当0<a <23e 时,有2个零点;当a >23e 时,无零点.(2)要证g (x )-f (x )-ax -2>0, 只需证ln x x +2<(2-x )e x.令x =m ∈(0,1),只需证2ln mm +2<(2-m 2)e m .令l (m )=(2-m 2)e m ,l ′(m )=(-m 2-2m +2)e m ,∴l (m )在(0,3-1)上单调递增,在(3-1,1)上单调递减,又∵l (1)=e ,l (0)=2,∴l (m )>2.令t (m )=ln mm ,t ′(m )=1-ln mm 2>0,∴t (m )在(0,1)上单调递增,∴t (m )<t (1)=0,∴2ln mm +2<2,故g (x )-f (x )-ax -2>0.5.(2018·洛阳模拟)已知函数f (x )=(x -1)e x -t 2x 2,其中t ∈R .(1)讨论函数f (x )的单调性;(2)当t =3时,证明:不等式f (x 1+x 2)-f (x 1-x 2)>-2x 2恒成立(其中x 1∈R ,x 2>0).(1)解 由于f ′(x )=x e x -tx =x (e x -t ).(ⅰ)当t ≤0时,e x -t >0,当x >0时,f ′(x )>0,f (x )单调递增,当x <0时,f ′(x )<0,f (x )单调递减;(ⅱ)当t >0时,由f ′(x )=0得x =0或x =ln t .①当0<t <1时,ln t <0,当x >0时,f ′(x )>0,f (x )单调递增,当ln t <x <0时,f ′(x )<0,f (x )单调递减,当x <ln t 时,f ′(x )>0,f (x )单调递增;②当t =1时,f ′(x )≥0,f (x )单调递增;③当t >1时,ln t >0.当x >ln t 时,f ′(x )>0,f (x )单调递增,当0<x <ln t 时,f ′(x )<0,f (x )单调递减,当x <0时,f ′(x )>0,f (x )单调递增.综上,当t ≤0时,f (x )在(-∞,0)上是减函数,在(0,+∞)上是增函数;当0<t <1时,f (x )在(-∞,ln t ),(0,+∞)上是增函数,在(ln t,0)上是减函数;当t =1时,f (x )在(-∞,+∞)上是增函数;当t >1时,f (x )在(-∞,0),(ln t ,+∞)上是增函数,在(0,ln t )上是减函数.(2)证明 依题意f (x 1+x 2)-f (x 1-x 2)>(x 1-x 2)-(x 1+x 2)⇔f (x 1+x 2)+(x 1+x 2)>f (x 1-x 2)+(x 1-x 2)恒成立.设g (x )=f (x )+x ,则上式等价于g (x 1+x 2)>g (x 1-x 2),要证明g (x 1+x 2)>g (x 1-x 2)对任意x 1∈R ,x 2∈(0,+∞)恒成立,即证明g (x )=(x -1)e x -32x 2+x 在R 上单调递增, 又g ′(x )=x e x -3x +1,只需证明x e x -3x +1≥0即可.令h (x )=e x -x -1,则h ′(x )=e x -1,当x <0时,h ′(x )<0,当x >0时,h ′(x )>0,∴h (x )min =h (0)=0,即∀x ∈R ,e x≥x +1,那么,当x ≥0时,x e x ≥x 2+x ,∴x e x -3x +1≥ x 2-2x +1=(x -1)2≥0;当x <0时,e x <1,x e x -3x +1=x ⎝ ⎛⎭⎪⎫e x -3+1x >0, ∴x e x -3x +1>0恒成立.从而原不等式成立.6.已知函数f (x )=ax 2+cos x (a ∈R ),记f (x )的导函数为g (x ).(1)证明:当a =12时,g (x )在R 上为单调函数; (2)若f (x )在x =0处取得极小值,求a 的取值范围;(3)设函数h (x )的定义域为D ,区间(m ,+∞)⊆D .若h (x )在(m ,+∞)上是单调函数,则称h (x )在D 上广义单调.试证明函数y =f (x )-x ln x 在(0,+∞)上广义单调.(1)证明 当a =12时,f (x )=12x 2+cos x , 所以f ′(x )=x -sin x ,即g (x )=x -sin x ,所以g ′(x )=1-cos x ≥0,所以g (x )在R 上单调递增.(2)解 因为g (x )=f ′(x )=2ax -sin x ,所以g ′(x )=2a -cos x .①当a ≥12时,g ′(x )≥1-cos x ≥0, 所以函数f ′(x )在R 上单调递增.若x >0,则f ′(x )>f ′(0)=0;若x <0,则f ′(x )<f ′(0)=0,所以函数f (x )的单调递增区间是(0,+∞),单调递减区间是(-∞,0),所以f (x )在x =0处取得极小值,符合题意.②当a ≤-12时,g ′(x )≤-1-cos x ≤0, 所以函数f ′(x )在R 上单调递减.若x >0,则f ′(x )<f ′(0)=0;若x <0,则f ′(x )>f ′(0)=0,所以f (x )的单调递减区间是(0,+∞),单调递增区间是(-∞,0),所以f (x )在x =0处取得极大值,不符合题意.③当-12<a <12时,∃x 0∈(0,π),使得cos x 0=2a ,即g ′(x 0)=0,但当x ∈(0,x 0)时,cos x >2a ,即g ′(x )<0,所以函数f ′(x )在(0,x 0)上单调递减,所以f ′(x )<f ′(0)=0,即函数f (x )在(0,x 0)上单调递减,不符合题意. 综上所述,a 的取值范围是⎣⎢⎡⎭⎪⎫12,+∞.(3)证明 记h (x )=ax 2+cos x -x ln x (x >0).①若a >0,注意到ln x <x ,则ln x 12<x 12,即ln x <2x ,h ′(x )=2ax -sin x -1-ln x >2ax -2x -2=2a ⎝ ⎛⎭⎪⎫x -1-4a +12a ⎝ ⎛⎭⎪⎫x -1+4a +12a .当x >⎝ ⎛⎭⎪⎫1+4a +12a 2时,h ′(x )>0,所以当m =⎝ ⎛⎭⎪⎫1+4a +12a 2时,函数h (x )在(m ,+∞)上单调递增.②若a ≤0,当x >1时,h ′(x )=2ax -sin x -1-ln x ≤-sin x -1-ln x <0, 所以当m =1时,函数h (x )在(m ,+∞)上单调递减.综上所述,函数y =f (x )-x ln x 在区间(0,+∞)上广义单调.。

2019高考数学总复习优编增分练:压轴大题突破练(四)函数与导数(2)文

2019高考数学总复习优编增分练:压轴大题突破练(四)函数与导数(2)文

最新中小学教案、试题、试卷(四)函数与导数(2)1.(2018·成都模拟)已知f (x )=ln x -ax +1(a ∈R ).(1)讨论函数的单调性;(2)证明:当a =2,且x ≥1时,f (x )≤e x -1-2恒成立.(1)解 ∵ f (x )=ln x -ax +1,a ∈R ,∴f ′(x )=1x -a =-ax +1x ,当a ≤0时,f (x )的增区间为(0,+∞),无减区间,当a >0时,增区间为⎝ ⎛⎭⎪⎫0,1a ,减区间为⎝ ⎛⎭⎪⎫1a ,+∞.(2)证明 当x ∈[1,+∞)时,由(1)可知当a =2时,f (x )在[1,+∞)上单调递减, f (x )≤f (1)=-1,再令G (x )=e x -1-2,在x ∈[1,+∞)上,G ′(x )=e x -1>0,G (x )单调递增,所以G (x )≥G (1)=-1,所以G (x )≥f (x )恒成立,当x =1时取等号,所以原不等式恒成立.2.(2018·合肥模拟)已知函数f (x )=x ln x ,g (x )=λ(x 2-1)(λ为常数).(1)若函数y =f (x )与函数y =g (x )在x =1处有相同的切线,求实数λ的值;(2)当x ≥1时,f (x )≤g (x ),求实数λ的取值范围.解 (1)由题意得f ′(x )=ln x +1,g ′(x )=2λx ,又f (1)=g (1)=0,且函数y =f (x )与y =g (x )在x =1处有相同的切线,∴f ′(1)=g ′(1),则2λ=1,即λ=12.(2)设h (x )=x ln x -λ(x 2-1),则h (x )≤0对∀x ∈[1,+∞)恒成立.∵h ′(x )=1+ln x -2λx ,且h (1)=0,∴h ′(1)≤0,即1-2λ≤0,∴λ≥12.最新中小学教案、试题、试卷 另一方面,当λ≥12时,记φ(x )=h ′(x ),则φ′(x )=1x -2λ=1-2λx x .当x ∈[1,+∞)时,φ′(x )≤0,∴φ(x )在[1,+∞)内为减函数,∴当x ∈[1,+∞)时,φ(x )≤φ(1)=1-2λ≤0,即h ′(x )≤0,∴h (x )在[1,+∞)内为减函数,∴当x ∈[1,+∞)时,h (x )≤h (1)=0恒成立,符合题意.当λ<12时,①若λ≤0,则h ′(x )=1+ln x -2λx ≥0对∀x ∈[1,+∞)恒成立,∴h (x )在[1,+∞)内为增函数,∴当x ∈[1,+∞)时,h (x )≥h (1)=0恒成立,不符合题意.②若0<λ<12,令φ′(x )>0,则1<x <12λ,∴φ(x )在⎝ ⎛⎭⎪⎫1,12λ内为增函数,∴当x ∈⎝ ⎛⎭⎪⎫1,12λ时,φ(x )>φ(1)=1-2λ>0,即h ′(x )>0,∴h (x )在⎝ ⎛⎭⎪⎫1,12λ内为增函数,∴当x ∈⎝ ⎛⎭⎪⎫1,12λ时,h (x )>h (1)=0,不符合题意,综上所述,λ的取值范围是⎣⎢⎡⎭⎪⎫12,+∞.3.(2018·山东省名校联盟模拟)已知f (x )=x e x +a (x +1)2+1e .(1)若函数f (x )在x =1处取得极值,求a 的值;(2)当x >-2时,f (x )≥0,求a 的取值范围.解 (1)f ′(x )=(x +1)e x +2a (x +1)=(x +1)(e x +2a ),若函数f (x )在x =1处取得极值,则f ′(1)=0,所以a =-e 2,经检验,当a =-e 2时,函数f (x )在x =1处取得极值.(2)f ′(x )=(x +1)e x +2a (x +1)=(x +1)(e x +2a ),①a ≥0时,当-2<x <-1时,f ′(x )<0,f (x )为减函数,当x >-1时,f ′(x )>0,f (x )为增函数;又f (-1)=0,∴当x >-2时,f (x )≥0成立.②a <0时,令e x +2a =0,得x =ln(-2a ),当ln(-2a )>-1,即a <-12e 时,当-2<x <-1或x >ln(-2a )时,f ′(x )>0;当-1<x <ln(-2a )时,f ′(x )<0,则f (x )在(-2,-1),(ln(-2a ),+∞)上为增函数,在(-1,ln(-2a ))上为减函数,又f (-1)=0,∴f (x )在(-1,ln(-2a ))上小于零,不符合题意,舍去.当ln(-2a )=-1,即a =-12e 时,当-2<x <-1或x >-1时,f ′(x )>0,∴f (x )在(-2,+∞)上单调递增,又f (-1)=0,当x ∈(-2,-1)时,f (x )<0,不符合题意,舍去;当-2<ln(-2a )<-1,即-12e <a <-12e 2时,当-2<x <ln(-2a )或x >-1时,f ′(x )>0,当ln(-2a )<x <-1时,f ′(x )<0,则f (x )在(-2,ln(-2a )),(-1,+∞)上为增函数,在(ln(-2a ),-1)上为减函数,又f (-1)=0,要使f (x )≥0恒成立,则f (-2)≥0,则a ≥2-ee 2,又∵-12e <a <-12e 2,∴2-ee 2≤a <-12e 2.当ln(-2a )≤-2,即-12e 2≤a <0时,当x >-1时,f ′(x )>0,当-2<x <-1时,f ′(x )<0,则f (x )在(-2,-1)上为减函数,在(-1,+∞)上为增函数,又f (-1)=0,满足题意,综上所述,a 的取值范围为⎣⎢⎡⎭⎪⎫2-ee 2,+∞.4.(2018·威海模拟)已知函数f (x )=12x 2+ax -a e x,g (x )为f (x )的导函数.(1)求函数g (x )的单调区间;(2)若函数g (x )在R 上存在最大值0,求函数f (x )在[0,+∞)上的最大值;(3)求证:当x >0时,x e x -eln x >12x 3+x 2.(1)解 由题意可知,g (x )= f ′(x )=x +a -a e x ,则g ′(x )=1-a e x ,当a ≤0时,g ′(x )>0,∴g (x )在(-∞,+∞)上单调递增;当a >0时,当x <-ln a 时,g ′(x )>0,当x >-ln a 时,g ′(x )<0,∴g (x )在(-∞,-ln a )上单调递增,在(-ln a ,+∞)上单调递减,综上,当a ≤0时,g (x )的单调递增区间为(-∞,+∞),无递减区间;当a >0时,g (x )的单调递增区间为(-∞,-ln a ),单调递减区间为(-ln a ,+∞).(2)解 由(1)可知,a >0,且g (x )在x =-ln a 处取得最大值,g (-ln a )=-ln a +a -a ·e 1ln a =a -ln a -1,即a -ln a -1=0,观察可得当a =1时,方程成立,令h (a )=a -ln a -1(a >0),h ′(a )=1-1a =a -1a ,当a ∈(0,1)时,h ′(a )<0,当a ∈(1,+∞)时,h ′(a )>0,∴h (a )在(0,1)上单调递减,在(1,+∞)上单调递增,∴h (a )≥h (1)=0,∴当且仅当a =1时,a -ln a -1=0,∴f (x )=12x 2+x -e x,由题意可知f ′(x )=g (x )≤0,f (x )在[0,+∞)上单调递减, ∴f (x )在x =0处取得最大值f (0)=-1.(3)证明 由(2)知,若a =1,当x >0时,f (x )<-1,即12x 2+x -e x <-1,∴12x 3+x 2-x e x <-x ,∴12x 3+x 2-x e x +eln x <eln x -x ,令F (x )=eln x -x ,F ′(x )=e x -1=e -x x ,当0<x <e 时,F ′(x )>0;当x >e 时,F ′(x )<0,∴F (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,∴F (x )≤F (e)=0,即eln x -x ≤0,∴12x 3+x 2-x e x +eln x <0,∴当x >0时,x e x -eln x >12x 3+x 2.5.(2018·四省名校大联考)已知函数f (x )=a (x +1)2-e x (a ∈R ).(1)当a =12时,判断函数f (x )的单调性;(2)若f (x )有两个极值点x 1,x 2(x 1<x 2).①求实数a 的取值范围;②证明:-12<f (x 1)<-1e .(1)解 当a =12时,f (x )=12(x +1)2-e x ,f ′(x )=x +1-e x ,。

专题 函数与导数复习特训(3)(练习及答案)高三数学总复习

专题 函数与导数复习特训(3)(练习及答案)高三数学总复习

函数与导数(3)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数f (x )=1-2x +1x +3 的定义域为( )A .(-∞,-3)∪(-3,0]B .(-∞,-3)∪(-3,1]C .(-3,0]D .(-3,1]2.下列函数中,在其定义域上是减函数的是( )A .y =-1x B .y =x 2+2xC .y =-⎝⎛⎭⎫12 x D .y =⎩⎪⎨⎪⎧-x +2,x ≤0-x -2,x >03.已知函数f (x )=⎩⎪⎨⎪⎧log 12x ,x >03x ,x ≤0,则f (f (2))的值为( )A .13 B .3C .-13 D .-34.若a =log 20.5,b =20.5,c =0.52,则a ,b ,c 三个数的大小关系是() A .a <b <c B .b <c <aC .a <c <bD .c <a <b5.函数f (x )=7x 3e x +e -x 在[-6,6]上的大致图象为( )6.已知f (x )是R 上的奇函数,且对x ∈R ,有f (x +2)=-f (x ),当x ∈(0,1)时,f (x )=2x -1,则f (log 241)=( )A .40B .2516C .2341D .41237.已知函数f (x )=|lg x |,若f (a )=f (b )且a <b ,则不等式log a x +log b (2x -1)>0的解集为( )A .(1,+∞)B .(0,1)C .⎝⎛⎭⎫12,+∞D .⎝⎛⎭⎫12,18. “m >1”是“函数f (x )=2ln x -mx +1x单调递减”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.已知定义在R 上的函数f (x )满足f (x +6)=f (x ),y =f (x +3)为偶函数,若f (x )在(0,3)上单调递减,则下面结论正确的是( )A .f ⎝⎛⎭⎫192 <f (e 12 )<f (ln 2)B .f (e 12 )<f (ln 2)<f ⎝⎛⎭⎫192C .f (ln 2)<f ⎝⎛⎭⎫192 <f (e 12 )D .f (ln 2)<f ⎝⎛⎭⎫e 12 <f ⎝⎛⎭⎫19210.已知函数f (x )=⎩⎪⎨⎪⎧ln x ,x >0,e x -1,x ≤0, g (x )=f (x )+x -a ,若g (x )恰有一个零点,则a 的取值范围是( )A .(0,+∞)B .(-∞,0)C .[1,+∞)D .(0,1]11.已知函数f (x )=⎩⎪⎨⎪⎧x +1x ,x <0,ln x ,x >0,则方程f (f (x ))+3=0的解的个数为( ) A .3B .4C .5D .612.设函数f (x )=⎩⎪⎨⎪⎧|ln x |,x >0e x (x +1),x ≤0 ,若函数g (x )=f (x )-b 有三个零点,则实数b 不可能取的值是( )A .0B .13C .12D .1 二、填空题(本题共4小题,每小题5分,共20分)13.函数f (x )=⎩⎪⎨⎪⎧2x -1,-1≤x <3f (x -4),x ≥3 ,则f (9)=________. 14.若f (x )为偶函数,满足f (x )·f (x +3)=2 020,f (-1)=1,则f (2 020)的值为________.15.已知函数f (x )定义域为R ,满足 f (x )=f (2-x ),且对任意1≤x 1<x 2,均有x 1-x 2f (x 1)-f (x 2)>0,则不等式f (2x -1)-f (3-x )≥0的解集为________________. 16.已知函数f (x )=⎩⎪⎨⎪⎧x e x +1(x ≥0),x 2+2x +1(x <0),则方程f (x )=2 0212 020 的实根的个数为____;若函数y =f (f (x )-a )-1有3个零点,则a 的取值范围是________.1.C 2.D3.A 4.C5.B 6.C7.A 8.A 9.A10.A11.C12.A13. 114.:2 02015.(-∞,0]∪⎣⎡⎭⎫43,+∞16. 3 ⎝⎛⎭⎫1,1+1e ∪(2,3]∪⎩⎨⎧⎭⎬⎫3+1e。

2019年【浙江】高考数学(文)二轮:压轴大题突破练函数与导数(1)(含答案)

2019年【浙江】高考数学(文)二轮:压轴大题突破练函数与导数(1)(含答案)

高考数学精品复习资料2019.5压轴大题突破练——函数与导数(一)1. (20xx·北京)设l 为曲线C :y =ln x x在点(1,0)处的切线. (1)求l 的方程;(2)证明:除切点(1,0)之外,曲线C 在直线l 的下方.(1)解 由y =ln x x ,得y ′=1-ln x x 2,x >0. ∴k =y ′|x =1=1-ln 112=1. ∴直线l 的方程为y =x -1,即x -y -1=0.(2)证明 要证明,除切点(1,0)外,曲线C 在直线l 下方.只要证明,对∀x >0且x ≠1时,x -1>ln x x. 设f (x )=x (x -1)-ln x ,x >0,则f ′(x )=2x -1-1x =(2x +1)(x -1)x. 因此f (x )在(0,1)上单调递减,在(1,+∞)上单调递增.∴f (x )>f (1)=0,即x (x -1)>ln x .故当x >0且x ≠1时,x -1>ln x x成立. 因此原命题成立.2. 已知f (x )=x 3+ax 2-a 2x +2.(1)若a =1,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)若a ≠0,求函数f (x )的单调区间;(3)若不等式2x ln x ≤f ′(x )+a 2+1恒成立,求实数a 的取值范围.解 (1)∵a =1,∴f (x )=x 3+x 2-x +2,∴f ′(x )=3x 2+2x -1,∴k =f ′(1)=4,又f (1)=3,∴切点坐标为(1,3),∴所求切线方程为y -3=4(x -1),即4x -y -1=0.(2)f ′(x )=3x 2+2ax -a 2=(x +a )(3x -a ),由f ′(x )=0得x =-a 或x =a 3. ①当a >0时,由f ′(x )<0,得-a <x <a 3. 由f ′(x )>0,得x <-a 或x >a 3, 此时f (x )的单调递减区间为(-a ,a 3),单调递增区间为(-∞,-a )和(a 3,+∞).②当a <0时,由f ′(x )<0,得a 3<x <-a . 由f ′(x )>0,得x <a 3或x >-a , 此时f (x )的单调递减区间为(a 3,-a ), 单调递增区间为(-∞,a 3)和(-a ,+∞). 综上:当a >0时,f (x )的单调递减区间为(-a ,a 3), 单调递增区间为(-∞,-a )和(a 3,+∞). 当a <0时,f (x )的单调递减区间为(a 3,-a ), 单调递增区间为(-∞,a 3)和(-a ,+∞). (3)依题意x ∈(0,+∞),不等式2x ln x ≤f ′(x )+a 2+1恒成立,等价于2x ln x ≤3x 2+2ax +1在(0,+∞)上恒成立,可得a ≥ln x -32x -12x在(0,+∞)上恒成立, 设h (x )=ln x -3x 2-12x ,则h ′(x )=1x -32+12x 2 =-(x -1)(3x +1)2x 2. 令h ′(x )=0,得x =1,x =-13(舍), 当0<x <1时,h ′(x )>0;当x >1时,h ′(x )<0.当x 变化时,h∴当x =1时,h (x )取得最大值,h (x )max =-2,∴a ≥-2,∴a 的取值范围是[-2,+∞).3. 如图所示,四边形ABCD 表示一正方形空地,边长为30 m ,电源在点P 处,点P 到边AD ,AB 的距离分别为9 m ,3m.某广告公司在此空地上竖一块长方形液晶广告屏幕MNEF ,MN ∶NE =16∶9,线段MN 必须过点P ,端点M ,N 分别在边AD ,AB 上,设AN =x (m),液晶广告屏幕MNEF 的面积为S (m 2).(1)用x 的代数式表示AM ;(2)求S 关于x 的函数关系式及该函数的定义域;(3)当x 取何值时,液晶广告屏幕MNEF 的面积S 最小?解 (1)因为点P 到边AD ,AB 的距离分别为9 m,3 m ,所以由平面几何知识,得AM -3AM =9x, 解得AM =3x x -9(10≤x ≤30). (2)由勾股定理,得MN 2=AN 2+AM 2=x 2+9x 2(x -9)2. 因为MN ∶NE =16∶9,所以NE =916MN . 所以S =MN ·NE =916MN 2=916⎣⎡⎦⎤x 2+9x 2(x -9)2, 定义域为[10,30].(3)S ′=916⎣⎢⎡⎦⎥⎤2x +18x (x -9)2-9x 2(2x -18)(x -9)4 =98·x [(x -9)3-81](x -9)3, 令S ′=0,得x 1=0(舍),x 2=9+333.当10≤x ≤9+333时,S ′<0,S 为减函数;当9+333<x ≤30时,S ′>0,S 为增函数.所以当x =9+333时,S 取得最小值.4. 已知函数f (x )=x 2-a ln x (a ∈R ).(1)若a =2,求证:f (x )在(1,+∞)上是增函数;(2)求f (x )在[1,e]上的最小值.(1)证明 当a =2时,f (x )=x 2-2ln x ,当x ∈(1,+∞)时,f ′(x )=2(x 2-1)x>0,所以f (x )在(1,+∞)上是增函数.(2)解 f ′(x )=2x 2-a x(x >0), 当x ∈[1,e]时,2x 2-a ∈[2-a,2e 2-a ].若a ≤2,则当x ∈[1,e]时,f ′(x )≥0,所以f (x )在[1,e]上是增函数,又f (1)=1,故函数f (x )在[1,e]上的最小值为1.若a ≥2e 2,则当x ∈[1,e]时,f ′(x )≤0,所以f (x )在[1,e]上是减函数,且最小值为e 2-a .若2<a <2e 2,则当1≤x < a 2时,f ′(x )<0,此时f (x )是减函数;当 a 2<x ≤e 时,f ′(x )>0,此时f (x )是增函数.又f ⎝⎛⎭⎫a 2=a 2-a 2ln a 2, 所以f (x )在[1,e]上的最小值为a 2-a 2ln a 2;综上可知,当a≤2时,f(x)在[1,e]上的最小值为1;当a≥2e2时,f(x)在[1,e]上的最小值为e2-a;当2<a<2e2时,f(x)在[1,e]上的最小值为a2-a2lna2.。

函数与导数经典常考压轴大题

函数与导数经典常考压轴大题

函数与导数经典常考压轴大题命题预测本节内容在高考中通常以压轴题形式出现,常见的有函数零点个数问题、不等式证明问题、不等式存在性问题等,综合性较强,难度较大.在求解导数综合问题时,通常要综合利用分类讨论、构造函数、等价转化、设而不求等思想方法,同时联系不等式、方程等知识,思维难度大,运算量不低.可以说,只要考生啃下本节这个硬骨头,就具有了强大的逻辑推理、数学运算、数据分析、直观想象等核心素养.预计预测2024年高考,函数与导数是高中数学的重要考查内容,同时也是高等数学的基础,其试题的难度呈逐年上升趋势,通过对近十年的高考数学试题,分析并归纳出五大考点:(1)含参函数的单调性、极值与最值;(2)函数的零点问题;(3)不等式恒成立与存在性问题;(4)函数不等式的证明.(5)导数中含三角函数形式的问题其中,对于函数不等式证明中极值点偏移、隐零点问题、含三角函数形式的问题探究和不等式的放缩应用这四类问题是目前高考函数与导数压轴题的热点.高频考法(1)双变量问题(2)证明不等式(3)不等式恒成立与有解问题(4)零点问题(5)导数与三角函数结合问题01双变量问题破解双参数不等式的方法:一是转化,即由已知条件入手,寻找双参数满足的关系式,并把含双参数的不等式转化为含单参数的不等式;二是巧构函数,再借用导数,判断函数的单调性,从而求其最值;三是回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果.1(2024·广东·二模)已知f x =12ax 2+1-2a x -2ln x ,a >0.(1)求f x 的单调区间;(2)函数f x 的图象上是否存在两点A x 1,y 1 ,B x 2,y 2 (其中x 1≠x 2),使得直线AB 与函数f x 的图象在x 0=x 1+x 22处的切线平行?若存在,请求出直线AB ;若不存在,请说明理由.2(2024·四川·模拟预测)已知函数f x =a +1 e x -12x 2+1a ∈R .(1)当a =1时,求曲线y =f x 在点0,f 0 处的切线方程;(2)设x 1,x 2x 1<x 2 是函数y =f x 的两个零点,求证:x 1+x 2>2.3(2024·四川德阳·二模)已知函数f x =ln x +x 2-2ax ,a ∈R ,(1)当a >0时,讨论f x 的单调性;(2)若函数f x 有两个极值点x 1,x 2x 1<x 2 ,求2f x 1 -f x 2 的最小值.02证明不等式利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式f x >g x (或f x <g x )转化为证明f x -g x >0(或f x -g x <0),进而构造辅助函数h x =f x -g x ;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.(4)对数单身狗,指数找基友(5)凹凸反转,转化为最值问题(6)同构变形1(2024·青海·模拟预测)已知质数f x =me x -x 2+mx -m ,且曲线y =f x 在点2,f 2 处的切线方程为4e 2x -y -4e 2=0.(1)求m 的值;(2)证明:对一切x ≥0,都有f x ≥e 2x 2.2(2024·山西晋城·二模)已知函数f (x )=(x -a )e x +x +a (a ∈R ).(1)若a =4,求f (x )的图象在x =0处的切线方程;(2)若f x ≥0对于任意的x ∈0,+∞ 恒成立,求a 的取值范围;(3)若数列a n 满足a 1=1且a n +1=2a n a n +2(n ∈N *),记数列a n 的前n 项和为S n ,求证:S n +13<ln (n +1)(n +2) .3(2024·上海松江·二模)已知函数y =x ⋅ln x +a (a 为常数),记y =f (x )=x ⋅g (x ).(1)若函数y =g (x )在x =1处的切线过原点,求实数a 的值;(2)对于正实数t ,求证:f (x )+f (t -x )≥f (t )-t ln2+a ;(3)当a =1时,求证:g (x )+cos x <e x x.03不等式恒成立与有解问题1、利用导数研究不等式恒成立问题的求解策略:(1)通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;(2)利用可分离变量,构造新函数,直接把问题转化为函数的最值问题;(3)根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.2、利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解:(1)∀x ∈D ,m ≤f x ⇔m ≤f x min ;(2)∀x ∈D ,m ≥f x ⇔m ≥f x max ;(3)∃x ∈D ,m ≤f x ⇔m ≤f x max ;(4)∃x ∈D ,m ≥f x ⇔m ≥f x min .3、不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数y =f x ,x ∈a ,b ,y =g x ,x ∈c ,d .(1)若∀x 1∈a ,b ,∀x 2∈c ,d ,有f x 1 <g x 2 成立,则f x max <g x min ;(2)若∀x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 <g x 2 成立,则f x max <g x max ;(3)若∃x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 <g x 2 成立,则f x min <g x max ;(4)若∀x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 =g x 2 成立,则f x 的值域是g x 的值域的子集.1(2024·北京朝阳·一模)已知函数f x =1-axe x a∈R.(1)讨论f x 的单调性;(2)若关于x的不等式f x >a1-x无整数解,求a的取值范围.2(2024·黑龙江哈尔滨·一模)已知函数f x =xe x-ae x,a∈R.(1)当a=0时,求f x 在x=1处的切线方程;(2)当a=1时,求f x 的单调区间和极值;(3)若对任意x∈R,有f x ≤e x-1恒成立,求a的取值范围.3(2024·陕西安康·模拟预测)已知函数f x =ln x+1,g x =e x-1.(1)求曲线y=f x 与y=g x 的公切线的条数;(2)若a>0,∀x∈-1,+∞,f x+1≤a2g x +a2-a+1,求a的取值范围.04零点问题函数零点问题的常见题型:判断函数是否存在零点或者求零点的个数;根据含参函数零点情况,求参数的值或取值范围.求解步骤:第一步:将问题转化为函数的零点问题,进而转化为函数的图像与x轴(或直线y=k)在某区间上的交点问题;第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图像;第三步:结合图像判断零点或根据零点分析参数.1(2024·四川泸州·三模)设函数f x =e x-1,g x =ln x+b.(1)求函数F x =x-1f x 的单调区间;(2)若总存在两条直线和曲线y=f x 与y=g x 都相切,求b的取值范围.2(2024·北京房山·一模)已知函数f(x)=e ax+1 x.(1)当a=0时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)设g(x)=f (x)⋅x2,求函数g(x)的极大值;(3)若a<-e,求函数f(x)的零点个数.3(2024·浙江·二模)定义max a,b=a,a≥bb,a<b,已知函数f x =max ln x,-4x3+mx-1,其中m∈R.(1)当m=5时,求过原点的切线方程;(2)若函数f x 只有一个零点,求实数m的取值范围.05导数与三角函数结合问题分段分析法1(2024·全国·模拟预测)已知函数f x =13x3-12a x2+2cos x+x cos x-sin x.(1)讨论f x 的单调性(2)若a>0,求证:①函数f x 在0,+∞上只有1个零点;②f x >1-16a3-12a2-2sin a+π4.2(2024·河北沧州·一模)已知函数f x =x a e2x ,a >0.(1)当a =2时,求函数f x 的单调区间和极值;(2)当x >0时,不等式f x -cos ln f x ≥a ln x 2-4x 恒成立,求a 的取值范围.3(2024·全国·模拟预测)已知函数f (x )=e x -sin x .(1)若f (x )≥ax 2+1对于任意x ∈[0,+∞)恒成立,求a 的取值范围;(2)若函数f (x )的零点按照从大到小的顺序构成数列x n ,n ∈N *,证明:2ni =1x i <-2n 2+n π;(3)对于任意正实数x 1,x 2,证明:e x 2-x 2-1 e x 1>sin x 1+x 2 -sin x 1-x 2cos x 1.1已知函数f x =ax -ln x x ,a >0.(1)若f x 存在零点,求a 的取值范围;(2)若x 1,x 2为f x 的零点,且x 1<x 2,证明:a x 1+x 2 2>2.2已知函数f x =3ln x -ax .(1)讨论f x 的单调性.(2)已知x 1,x 2是函数f x 的两个零点x 1<x 2 .(ⅰ)求实数a 的取值范围.(ⅱ)λ∈0,12 ,f x 是f x 的导函数.证明:f λx 1+1-λ x 2 <0.3如图,对于曲线Γ,存在圆C 满足如下条件:①圆C 与曲线Γ有公共点A ,且圆心在曲线Γ凹的一侧;②圆C 与曲线Γ在点A 处有相同的切线;③曲线Γ的导函数在点A 处的导数(即曲线Γ的二阶导数)等于圆C 在点A 处的二阶导数(已知圆x -a 2+y -b 2=r 2在点A x 0,y 0 处的二阶导数等于r 2b -y 0 3);则称圆C 为曲线Γ在A 点处的曲率圆,其半径r 称为曲率半径.(1)求抛物线y =x 2在原点的曲率圆的方程;(2)求曲线y =1x的曲率半径的最小值;(3)若曲线y =e x 在x 1,e x 1 和x 2,e x 2x 1≠x 2 处有相同的曲率半径,求证:x 1+x 2<-ln2.4已知函数f x =ax2+x-ln x-a.(1)若a=1,求f x 的最小值;(2)若f x 有2个零点x1,x2,证明:a x1+x22+x1+x2>2.5已知函数f x =12e2x+a-2e x-2ax.(1)若曲线y=f x 在0,a-32处的切线方程为4ax+2y+1=0,求a的值及f x 的单调区间.(2)若f x 的极大值为f ln2,求a的取值范围.(3)当a=0时,求证:f x +5e x-52>32x2+x ln x.6已知函数f x =12x2+x+a ln x+1,a∈R.(1)讨论f x 的单调性;(2)证明:当a<-1时,a2+f x >1.7已知函数f x =x ln x+ax+1a∈R.(1)若f x ≥0恒成立,求a的取值范围;(2)当x>1时,证明:e x ln x>e(x-1).(1)判断函数f(x)的单调性(2)证明:①当a≥0时,f(x)≤0;②sin1n+1+sin1n+2+⋯+sin12n<ln2,n∈N*.9牛顿迭代法是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法.比如,我们可以先猜想某个方程f x =0的其中一个根r在x=x0的附近,如图6所示,然后在点x0,f x0处作f x 的切线,切线与x轴交点的横坐标就是x1,用x1代替x0重复上面的过程得到x2;一直继续下去,得到x0,x1,x2,⋯,x n.从图形上我们可以看到x1较x0接近r,x2较x1接近r,等等.显然,它们会越来越逼近r.于是,求r近似解的过程转化为求x n,若设精度为ε,则把首次满足x n-x n-1<ε的x n称为r的近似解.已知函数f x =x3-x+1,a∈R.(1)试用牛顿迭代法求方程f x =0满足精度ε=0.5的近似解(取x0=-1,且结果保留小数点后第二位);(2)若f x +3x2+6x+5+ae x≤0对任意x∈R都成立,求整数a的最大值.(计算参考数值:e≈2.72,e1.35≈3.86,e1.5≈4.48,1.353≈2.46,1.352≈1.82)(1)讨论f x 的单调性;(2)若∀x>0,f x ≤xe2x-2ax恒成立,求实数a的取值范围.11已知函数f x =x2-2a ln x-2(a∈R).(1)讨论f x 的单调性;(2)若不等式f x ≤2ln x2+x2-2x在区间(1,+∞)上有解,求实数a的取值范围.12已知函数f x =xe x,其中e=2.71828⋯为自然对数的底数.(1)求函数f x 的单调区间;(2)证明:f x ≤e x-1;(3)设g x =f x -e2x+2ae x-4a2+1a∈R,若存在实数x0使得g x0≥0,求a的最大值.13已知函数f x =e x-1-ax a∈R.(1)若函数f x 在点1,f1处的切线与直线x+2ey+1=0垂直,求a的值;(2)当x∈0,2时,讨论函数F x =f x -x ln x零点的个数.14已知函数f(x)=e2x-(2a-1)e x-ax.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.15已知函数f x =e x-x2+a,x∈R,φx =f x +x2-x.(1)若φx 的最小值为0,求a的值;(2)当a<0.25时,证明:方程f x =2x在0,+∞上有解.16已知f (x )=x ex,g (x )=ln x x .(1)求函数y =f (x )、y =g (x )的单调区间和极值;(2)请严格证明曲线y =f (x )、y =g (x )有唯一交点;(3)对于常数a ∈0,1e,若直线y =a 和曲线y =f (x )、y =g (x )共有三个不同交点x 1,a 、x 2,a 、x 3,a ,其中x 1<x 2<x 3,求证:x 1、x 2、x 3成等比数列.17已知函数f x =sin x -ax ⋅cos x ,a ∈R .(1)当a =1时,求函数f x 在x =π2处的切线方程;(2)x ∈0,π2时;(ⅰ)若f x +sin2x >0,求a 的取值范围;(ⅱ)证明:sin 2x ⋅tan x >x 3.18f(x)=2sin(x+φ)-a+e-x,φ∈0,π2,已知f(x)的图象在(0,f(0))处的切线与x轴平行或重合.(1)求φ的值;(2)若对∀x≥0,f(x)≤0恒成立,求a的取值范围;(3)利用如表数据证明:157k=1sinkπ314<106.eπ314e-π314e78π314e-78π314e79π314e-79π314 1.0100.990 2.1820.458 2.2040.45419数值线性代数又称矩阵计算,是计算数学的一个重要分支,其主要研究对象包括向量和矩阵.对于平面向量a =(x ,y ),其模定义为|a |=x 2+y 2.类似地,对于n 行n 列的矩阵A nn =a 11a 12a 13⋯a 1n a 21a 22a 23⋯a 2n a 31a 32a 33⋯a 3n ⋮⋮⋮⋮,其模可由向量模拓展为A =∑ni =1∑nj =1a 2ij12(其中a ij为矩阵中第i 行第j 列的数,∑为求和符号),记作A F,我们称这样的矩阵模为弗罗贝尼乌斯范数,例如对于矩阵A 22=a 11a 12a21a 22=2435,其矩阵模A F =∑n i =1∑nj =1a 2ij12=22+42+32+52=3 6.弗罗贝尼乌斯范数在机器学习等前沿领域有重要的应用.(1)∀n ∈N *,n ≥3,矩阵B nn =100⋯0020⋯0003⋯0⋮⋮⋮⋮00⋯n,求使B F >35的n 的最小值.(2)∀n ∈N *,n ≥3,,矩阵C nn =1cos θcos θcos θ⋯cos θcos θ0-sin θ-sin θcos θ-sin θcos θ⋯-sin θcos θ-sin θcos θ00sin 2θsin 2θcos θ⋯sin 2θcos θsin 2θcos θ⋮⋮⋮⋮⋮⋮0000⋯(-1)n -2sin n -2θ(-1)n -2sin n -2θcos θ0000⋯0(-1)n -1sin n -1θ求C F.(3)矩阵D mn =ln n +2n +100⋅⋅⋅0ln n +1n 22ln n +1n 220⋅⋅⋅0⋮ln 43n -1n -1ln 43 n -1n -1ln 43 n -1n -1⋅⋅⋅0ln 32 n n ln 32 n n ln 32 nn ⋅⋅⋅ln 32nn,证明:∀n ∈N *,n ≥3,D F >n 3n +9.20已知函数f x =sin x -ln 1+ax .(1)若x ∈0,π2时,f x ≥0,求实数a 的取值范围;(2)设n ∈N *,证明:sin 13+ln 32-ln n +2n +1<nk =1sin 1k k +2 <34.1函数与导数经典常考压轴大题命题预测本节内容在高考中通常以压轴题形式出现,常见的有函数零点个数问题、不等式证明问题、不等式存在性问题等,综合性较强,难度较大.在求解导数综合问题时,通常要综合利用分类讨论、构造函数、等价转化、设而不求等思想方法,同时联系不等式、方程等知识,思维难度大,运算量不低.可以说,只要考生啃下本节这个硬骨头,就具有了强大的逻辑推理、数学运算、数据分析、直观想象等核心素养.预计预测2024年高考,函数与导数是高中数学的重要考查内容,同时也是高等数学的基础,其试题的难度呈逐年上升趋势,通过对近十年的高考数学试题,分析并归纳出五大考点:(1)含参函数的单调性、极值与最值;(2)函数的零点问题;(3)不等式恒成立与存在性问题;(4)函数不等式的证明.(5)导数中含三角函数形式的问题其中,对于函数不等式证明中极值点偏移、隐零点问题、含三角函数形式的问题探究和不等式的放缩应用这四类问题是目前高考函数与导数压轴题的热点.高频考法(1)双变量问题(2)证明不等式(3)不等式恒成立与有解问题(4)零点问题(5)导数与三角函数结合问题01双变量问题破解双参数不等式的方法:一是转化,即由已知条件入手,寻找双参数满足的关系式,并把含双参数的不等式转化为含单参数的不等式;二是巧构函数,再借用导数,判断函数的单调性,从而求其最值;三是回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果.1(2024·广东·二模)已知f x =12ax 2+1-2a x -2ln x ,a >0.(1)求f x 的单调区间;2(2)函数f x 的图象上是否存在两点A x 1,y 1 ,B x 2,y 2 (其中x 1≠x 2),使得直线AB 与函数f x 的图象在x 0=x 1+x22处的切线平行?若存在,请求出直线AB ;若不存在,请说明理由.【解析】(1)由题可得f(x )=ax +1-2a -2x =ax 2+(1-2a )x -2x =(ax +1)(x -2)x(x >0)因为a >0,所以ax +1>0,所以当x ∈(0,2)时,f (x )<0,f (x )在(0,2)上单调递减,当x ∈(2,+∞)时,f (x )>0,f (x )在(2,+∞)上单调递增.综上,f (x )在(0,2)上单调递减,在(2,+∞)上单调递增.(2)由题意得,斜率k =y 2-y 1x 2-x 1=12ax 22+(1-2a )x 2-2ln x 2 -12ax 21+(1-2a )x 1-2ln x 1 x 2-x 1=12a (x 22-x 21)+(1-2a )(x 2-x 1)-2ln x 2x 1x 2-x 1=a 2(x 1+x 2)+1-2a -2ln x2x 1x 2-x 1,f x 1+x 22 =a (x 1+x 2)2+1-2a -4x 1+x 2,由k =f x 1+x22 得,ln x2x 1x 2-x 1=2x 1+x 2,即ln x 2x 1=2(x 2-x 1)x 1+x 2,即ln x 2x 1-2x2x 1-1 x 2x1+1=0令t =x 2x 1,不妨设x 2>x 1,则t >1,记g (t )=ln t -2(t -1)t +1=ln t +4t +1-2(t >1)所以g(t )=1t -4(t +1)2=(t -1)2t (t +1)>0,所以g (t )在(1,+∞)上是增函数,所以g (t )>g (1)=0,所以方程g (t )=0无解,则满足条件的两点A ,B 不存在.2(2024·四川·模拟预测)已知函数f x =a +1 e x -12x 2+1a ∈R .(1)当a =1时,求曲线y =f x 在点0,f 0 处的切线方程;(2)设x 1,x 2x 1<x 2 是函数y =f x 的两个零点,求证:x 1+x 2>2.【解析】(1)当a =1时,f x =2e x -12x 2+1,f x =2e x -x ,则f 0 =3,f 0 =2,则切线方程为y -3=2x ,因此曲线y =f x 在点0,f 0 处的切线方程为2x -y +3=0.(2)证明:函数f x =a +1 e x -x ,x 1,x 2是y =f x 的两个零点,所以x 1=a +1 e x 1,x 2=a +1 e x 2,则有x 1+x 2=a +1 e x 1+e x 2,且x 2-x 1=a +1 e x 2-e x1,由x 1<x 2,得a +1=x 2-x 1e x 2-ex 1.要证x 1+x 2>2,只要证明a +1 e x 1+e x 2>2,即证x 2-x 1 e x 2+ex1e x 2-ex 1>2.记t =x 2-x 1,则t >0,e t >1,因此只要证明t ⋅e t +1e t -1>2,即t -2 e t +t +2>0.记h t =t -2 e t +t +2(t >0),则h t =t -1 e t +1,令φt =t -1 e t +1,则φ t =te t ,当t >0时,φ t =te t >0,3所以函数φt =t -1 e t +1在0,+∞ 上递增,则φt >φ0 =0,即h t >h 0 =0,则h t 在0,+∞ 上单调递增,∴h t >h 0 =0,即t -2 e t +t +2>0成立.3(2024·四川德阳·二模)已知函数f x =ln x +x 2-2ax ,a ∈R ,(1)当a >0时,讨论f x 的单调性;(2)若函数f x 有两个极值点x 1,x 2x 1<x 2 ,求2f x 1 -f x 2 的最小值.【解析】(1)因为f x =ln x +x 2-2ax ,x >0,所以f(x )=1x +2x -2a =2x 2-2ax +1x,令g (x )=2x 2-2ax +1,则Δ=4a 2-8=4a 2-2 ,因为a >0,当0<a ≤2时,Δ≤0,则g (x )≥0,即f (x )≥0,此时f (x )在(0,+∞)上单调递增,当a >2时,Δ>0,由g (x )=0,得x 3=a -a 2-22,x 4=a +a 2-22,且x 3<x 4,当0<x <x 3或x >x 4时,g (x )>0,即f (x )>0;当x 3<x <x 4时,g (x )<0,即f (x )<0,所以f (x )在0,x 3 ,x 4,+∞ 上单调递增,在x 3,x 4 上单调递减;综上,当0<a ≤2时,f (x )在(0,+∞)上单调递增,当a >2时,f (x )在0,x 3 ,x 4,+∞ 上单调递增,在x 3,x 4 上单调递减,其中x 3=a -a 2-22,x 4=a +a 2-22.(2)由(1)可知,x 3,x 4为f (x )的两个极值点,且x 3<x 4,所以x 1=x 3,x 2=x 4,且x 1,x 2是方程2x 2-2ax +1=0的两不等正根,此时a >2,x 1+x 2=a >0,x 1⋅x 2=12,所以x 1∈0,22 ,x 2∈22,+∞ ,且有2ax 1=2x 21+1,2ax 2=2x 22+1,则2f x 1 -f x 2 =2ln x 1+x 21-2ax 1 -ln x 2+x 22-2ax 2=2ln x 1+x 21-2x 21-1 -ln x 2+x 22-2x 22-1 =-2x 21+2ln x 1-ln x 2+x 22-1=x 22-212x 22+2ln12x 2-ln x 2-1=x 22-12x 22-32ln x 22-2ln2-1令t =x 22,则t ∈12,+∞ ,令g t =t -12t -32ln t -2ln2-1,则g t =1+12t 2-32t =2t -1 t -1 2t 2,当t ∈12,1 时,g t <0,则g t 单调递减,当t ∈1,+∞ 时,g t >0,则g t 单调递增,所以g t min =g 1 =-1+4ln22,所以2f x 1 -f x 2 的最小值为-1+4ln22.402证明不等式利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式f x >g x (或f x <g x )转化为证明f x -g x >0(或f x -g x <0),进而构造辅助函数h x =f x -g x ;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.(4)对数单身狗,指数找基友(5)凹凸反转,转化为最值问题(6)同构变形1(2024·青海·模拟预测)已知质数f x =me x -x 2+mx -m ,且曲线y =f x 在点2,f 2 处的切线方程为4e 2x -y -4e 2=0.(1)求m 的值;(2)证明:对一切x ≥0,都有f x ≥e 2x 2.【解析】(1)f x =me x -2x +m ,f 2 =me 2-4+m ,f 2 =me 2-4+m ,则有4e 2=me 2-4+m ,4e 2×2-me 2-4+m -4e 2=0,解得m =4;(2)由m =4,故f x =4e x -x 2+4x -4,要证对一切x ≥0,都有f x ≥e 2x 2,即证4e x ≥e 2+1 x 2-4x +4对一切x ≥0恒成立,即证e 2+1 x 2-4x +4e x ≤4对一切x ≥0恒成立,令g x =e 2+1 x 2-4x +4e x,gx =2e 2+1 x -4-e 2+1 x 2+4x -4e x =-e 2+1 x 2+2e 2+3 x -8e x=-e 2+1 x -4 x -2 e x ,则当x ∈0,4e 2+1 ∪2,+∞ 时,g x <0,则当x ∈4e 2+1,2时,g x >0,即g x 在0,4e 2+1 、2,+∞ 上单调递减,在4e 2+1,2上单调递增,又g 0 =4e 0=4,g 2 =4e 2+1 -4×2+4e 2=4e 2+4-8+4e 2=4,故g x ≤4对一切x ≥0恒成立,即得证.2(2024·山西晋城·二模)已知函数f (x )=(x -a )e x +x +a (a ∈R ).(1)若a =4,求f (x )的图象在x =0处的切线方程;(2)若f x ≥0对于任意的x ∈0,+∞ 恒成立,求a 的取值范围;(3)若数列a n 满足a 1=1且a n +1=2a n a n +2(n ∈N *),记数列a n 的前n 项和为S n ,求证:S n +13<ln (n +1)(n +2) .【解析】(1)当a =4时,f (x )=(x -4)e x +x +4,则f (x)=(x-3)e x+1,得f (0)=-2,又f(0)=0,所以f(x)在x=0处的切线为y=-2x;(2)f(x)=(x-a)e x+x+a≥0对∀x∈[0,+∞)恒成立,f (x)=(x+1-a)e x+1,设g(x)=(x+1-a)e x+1(x≥0),则g (x)=(x+2-a)e x,当2-a≥0即a≤2时,g (x)≥0,g(x)在[0,+∞)上单调递增,且g(0)=2-a≥0,所以g(x)≥0,即f (x)≥0,此时f(x)在[0,+∞)上单调递增,且f(0)=0,所以f(x)≥0对∀x∈[0,+∞)恒成立.当2-a<0即a>2时,令g (x)<0⇒0<x<a-2,g (x)>0⇒x>a-2,所以函数g(x)在(0,a-2)上单调递减,在(a-2,+∞)上单调递增,则g(x)min=g(a-2)=1-e a-2<0,又g(0)=2-a<0,所以在(0,a-2)上恒有g(x)<0,即f (x)<0,函数f(x)在(0,a-2)上单调递减,且f(0)=0,则在(0,a-2)上有f(x)<0,不符合题意.综上,a≤2,即实数a的取值范围为(-∞,2](3)由a n+1=2a na n+2,得1a n+1-1a n=12,又1a1=1,所以数列1a n是以1为首项,以12为公差的等差数列,故1a n=1+12(n-1)=n+12,所以a n=2n+1.当n=1时,S1+13=a1+13=43<ln6恒成立;当n≥2时,先证:2n+1<ln n+2n,即证2n+1<ln n+1+1n+1-1=ln1+1n+11-1n+1,设x=1n+1,则0<x<1,即证2x<ln1+x1-x(0<x<1),令h(x)=2x-ln 1+x1-x(0<x<1),则h (x)=2-1x+1-11-x=-2x21-x2<0,所以h(x)在(0,1)上单调递减,故h(x)<h(0)=0,即2x<ln 1+x1-x,即2n+1<ln n+2n.所以当n≥2时,S n+13=13+23+24+⋯+2n+1<ln6+ln42+ln53+⋯+ln n+2n=ln6×4×5×⋯×n(n+1)(n+2)2×3×4×5×⋯×n=ln[(n+1)(n+2)].综上,S n+13<ln[(n+1)(n+2)].3(2024·上海松江·二模)已知函数y=x⋅ln x+a(a为常数),记y=f(x)=x⋅g(x).(1)若函数y=g(x)在x=1处的切线过原点,求实数a的值;(2)对于正实数t,求证:f(x)+f(t-x)≥f(t)-t ln2+a;(3)当a=1时,求证:g(x)+cos x<e xx.【解析】(1)由题意,函数y=x⋅ln x+a,且y=f(x)=x⋅g(x),可得g(x)=f(x)x=ln x+ax,x>0,则g (x)=1x-ax2=x-ax2,5所以g (1)=1-a,又因为g(1)=ln1+a=a,所以g x 在x=1处的切线方程为y=(1-a)(x-1)+a,又因为函数y=g(x)在x=1处的切线过原点,可得0=(1-a)⋅(0-1)+a,解得a=1 2 .(2)设函数h x =f x +f t-x,t>0,可得h x =x ln x+(t-x)ln(t-x)+2a,其中0<x<t,则h x =ln x+1-ln(t-x)-1=lnxt-x,令h x >0,可得xt-x>1,即2x-tt-x>0,即2x-tx-t<0,解得t2<x<t,令h x <0,可得0<xt-x<1,解得0<x<t2,所以h x 在t2,t上单调递增,在0,t2上单调递减,可得h x 的最小值为ht2,所以h x ≥h t2 ,又由ht2=f t2 +f t-t2=t ln t2+2a=f t -t ln2+a,所以f x +f t-x≥f t -t ln2+a.(3)当a=1时,即证ln x+1x <e xx-cos x,由于cos x∈[-1,1],所以e xx-cos x≥e xx-1,只需证ln x+1x<e xx-1,令k x =ln x+1x-e xx+1,x>0,只需证明k x <0,又由k x =1x-1x2-e x(x-1)x2=(1-e x)(x-1)x2,因为x>0,可得1-e x<0,令k x >0,解得0<x<1;令k x <0,解得x>1,所以k x 在(0,1)上单调递增,在(1,+∞)上单调递减,所以k x 在x=1处取得极大值,也时最大值,所以k x max=k1 =2-e<0,即k x <0,即a=1时,不等式g(x)+cos x<e xx恒成立.03不等式恒成立与有解问题1、利用导数研究不等式恒成立问题的求解策略:(1)通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;(2)利用可分离变量,构造新函数,直接把问题转化为函数的最值问题;(3)根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.2、利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解:(1)∀x∈D,m≤f x ⇔m≤f x min;(2)∀x∈D,m≥f x ⇔m≥f x max;(3)∃x∈D,m≤f x ⇔m≤f x max;(4)∃x∈D,m≥f x ⇔m≥f x min.673、不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数y =f x ,x ∈a ,b ,y =g x ,x ∈c ,d .(1)若∀x 1∈a ,b ,∀x 2∈c ,d ,有f x 1 <g x 2 成立,则f x max <g x min ;(2)若∀x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 <g x 2 成立,则f x max <g x max ;(3)若∃x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 <g x 2 成立,则f x min <g x max ;(4)若∀x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 =g x 2 成立,则f x 的值域是g x 的值域的子集.1(2024·北京朝阳·一模)已知函数f x =1-ax e x a ∈R .(1)讨论f x 的单调性;(2)若关于x 的不等式f x >a 1-x 无整数解,求a 的取值范围.【解析】(1)f x =1-a -ax e x ,当f x =0,得x =1-aa ,当a >0时,x ∈-∞,1-a a时,fx >0,f x 单调递增,x ∈1-a a,+∞ 时,f x <0,f x 单调递减,当a <0时,x ∈-∞,1-aa时,f x <0,f x 单调递减,x ∈1-a a,+∞ 时,f x >0,f x 单调递增,当a =0时,f x =e x ,函数f x 在R 上单调递增,综上可知,a >0时,函数f x 的单调递增区间是-∞,1-a a,单调递减区间是1-aa ,+∞ ,a <0时,函数f x 的单调递减区间是-∞,1-a a ,单调递增区间是1-aa ,+∞ ,a =0时,函数f x 的增区间是-∞,+∞ ,无减区间.(2)不等式1-ax e x >a 1-x ,即a x -x -1e x<1,设h x =x -x -1e x ,h x =1-2-x e x =e x +x -2e x,设t x =e x +x -2,t x =e x +1>0,所以t x 单调递增,且t 0 =-1,t 1 =e -2>0,所以存在x 0∈0,1 ,使t x 0 =0,即h x 0 =0,当x ∈-∞,x 0 时,h x <0,h x 单调递减,当x ∈x 0,+∞ 时,h x >0,h x 单调递增,所以h x ≥h x 0 =x 0e x-x 0+1ex,因为e x≥x +1,所以h x ≥h x 0 =x 0e x-x 0+1e x 0≥x 0x 0+1 -x 0+1e x 0=x 20+1ex>0,当x ≤0时,h x ≥h 0 =1,当x ≥1时,h x ≥h 1 =1,不等式1-ax e x >a 1-x 无整数解,即a x -x -1e x<1无整数解,若a ≤0时,不等式恒成立,有无穷多个整数解,不符合题意,若a ≥1时,即1a≤1,因为函数h x 在-∞,0 上单调递减,在1,+∞ 上单调递增,所以x ∈Z 时,h x ≥min h 0 ,h 1 =1≥1a ,所以h x <1a 无整数解,符合题意,当0<a <1时,因为h 0 =h 1 =1<1a ,显然0,1是a ⋅h x <1的两个整数解,不符合题意,8综上可知,a ≥1.2(2024·黑龙江哈尔滨·一模)已知函数f x =xex -ae x ,a ∈R .(1)当a =0时,求f x 在x =1处的切线方程;(2)当a =1时,求f x 的单调区间和极值;(3)若对任意x ∈R ,有f x ≤e x -1恒成立,求a 的取值范围.【解析】(1)当a =0时,f x =xex ,则f x =1-x ex,f 1 =0,f 1 =1e ,所以切线方程为y =1e.(2)当a =1时,f x =xe -x -e x ,f x =1-x e -x -e x =1-x -e 2xex.令g x =1-x -e 2x ,g x =-1-2e 2x<0,故g x 在R 上单调递减,而g 0 =0,因此0是g x 在R 上的唯一零点即:0是f x 在R 上的唯一零点当x 变化时,f x ,f x 的变化情况如下表:x-∞,0 00,+∞f x +0-f x↗极大值↘f x 的单调递减区间为:0,+∞ ;递增区间为:-∞,0 f x 的极大值为f 0 =-1,无极小值(3)由题意知xe -x-ae x≤e x -1,即a ≥xe -x -e x -1e x,即a ≥x e2x -1e ,设m x =x e 2x -1e ,则mx =e 2x -2xe 2x e 2x2=1-2x e 2x ,令m x =0,解得x =12,当x ∈-∞,12 ,m x >0,m x 单调递增,当x ∈12,+∞ ,m x <0,m x 单调递减,所以m x max =m 12 =12e -1e =-12e,所以a ≥-12e3(2024·陕西安康·模拟预测)已知函数f x =ln x +1,g x =e x -1.(1)求曲线y =f x 与y =g x 的公切线的条数;(2)若a >0,∀x ∈-1,+∞ ,f x +1 ≤a 2g x +a 2-a +1,求a 的取值范围.【解析】(1)设f x =ln x +1,g x =e x -1的切点分别为x 1,f x 1 ,x 2,g x 2 ,则f x =1x,g (x )=e x ,故f x =ln x +1,g x =e x -1在切点处的切线方程分别为y =1x 1x -x 1 +ln x 1+1⇒y =1x 1x +ln x 1,y =e x 2x -x 2 +e x 2-1⇒y =e x 2x -x 2e x 2+e x2-1则需满足;91x 1=ex 2ln x 1=-x 2ex 2+e x 2-1,故ln1ex 2=-x 2e x 2+e x 2-1⇒e x 2-1 x 2-1 =0,解得x 2=0或x 2=1,因此曲线y =f x 与y =g x 有两条不同的公切线,(2)由f x +1 ≤a 2g x +a 2-a +1可得ln x +1 +1≤a 2e x -1 +a 2-a +1,即ln x +1 ≤a 2e x -a 对于∀x ∈-1,+∞ 恒成立,ln 0+1 ≤a 2e 0-a ,结合a >0,解得a ≥1设m (x )=ln x -x +1,,则当x >1时m (x )=1x-1<0,m x 单调递减,当0<x <1时,m (x )>0,m x 单调递增,故当m (x )≤m 1 =0,故ln x ≤x -1,因此ln x +1 ≤x ,x >-1 ,令F x =x -a 2e x +a ,x >-1 ,则F x =1-a 2e x ,令F x =1-a 2e x =0,得x =-2ln a ,当-2ln a ≤-1时,此时a ≥e ,F x =1-a 2e x <0,故F x 在x >-1上单调递减,所以F x <F -1 =-1-a 2e +a =-a 2+ea -e e =-a -e 2 2+e 24-e e≤-e -e 22+e 24+ee=e -2<0,所以F x =x -a 2e x +a <0,由于ln x +1 ≤x 进而ln (x +1)-a 2e x +a <0,满足题意,当-2ln a >-1时,此时1<a <e ,令F x =1-a 2e x >0,解得-1<x <-2ln a ,F x 单调递增,令F x =1-a 2e x <0,解得x >-2ln a ,F x 单调递减,故F x ≤F x max =F -2ln a =-2ln a -1+a ,令p a =-2ln a -1+a ,则p a =-2a +1=a -2a ,由于1<a <e ,所以p a =-2a +1=a -2a<0,故p a 在1<a <e 单调递减,故p a <p 1 ,即可p a <0,因此F x ≤F x max =F -2ln a =-2ln a -1+a <0⇒F x <0所以F x =x -a 2e x +a <0,由于ln x +1 ≤x 进而ln (x +1)-a 2e x +a <0,满足题意,综上可得a ≥104零点问题函数零点问题的常见题型:判断函数是否存在零点或者求零点的个数;根据含参函数零点情况,求参数的值或取值范围.求解步骤:第一步:将问题转化为函数的零点问题,进而转化为函数的图像与x 轴(或直线y =k )在某区间上的交点问题;第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图像;第三步:结合图像判断零点或根据零点分析参数.1(2024·四川泸州·三模)设函数f x =e x -1,g x =ln x +b .(1)求函数F x =x -1 f x 的单调区间;10(2)若总存在两条直线和曲线y =f x 与y =g x 都相切,求b 的取值范围.【解析】(1)F x =x -1 f x =x -1 e x -1,F x =xe x -1,令F x >0,得x >0,令F x <0,得x <0,所以函数F x 的单调递增区间为0,+∞ ,单调递减区间为-∞,0 ;(2)∵f x =e x -1∴f x =e x -1在m ,e m -1 处的切线方程为y =e m -1x +1-m e m -1,∵g x =1x,∴g x =ln x +b 在点n ,ln n +b 处的切线方程为y =1nx +ln n +b -1,由题意得e m -1=1n(1-m )e m -1=ln n +b -1,则m -1 e m -1-m +b =0,令h m =m -1 e m -1-m +b ,则h (x )=me m -1-1,令φm =me m -1-1,则φ m =m +1 e m -1,当m <-1时,φ m <0,当m >-1时,φ m >0,所以函数φm 在-∞,-1 上单调递减,在-1,+∞ 上单调递增,即函数h m 在-∞,-1 上单调递减,在-1,+∞ 上单调递增,又h 1 =0,且当m ≤0时,h m <0,所以m <1时,h m <0,h (m )单调递减;当m >1时,h (m )>0,h (m )单调递增,所以h m min =h 1 =b -1,若总存在两条直线和曲线y =f x 与y =g x 都相切,则曲线y =h m 与x 轴有两个不同的交点,则h 1 =b -1<0,所以b <1,此时h b -1 =b -2 e b -2+1>-1e+1>0,h 3-b =2-b e 2-b +2b -3>2-b 3-b =b -322+34>0,所以b 的取值范围为-∞,1 .2(2024·北京房山·一模)已知函数f (x )=e ax +1x.(1)当a =0时,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)设g (x )=f (x )⋅x 2,求函数g (x )的极大值;(3)若a <-e ,求函数f (x )的零点个数.【解析】(1)当a =0时,f (x )=1+1x ,f x =-1x 2,则f 1 =-1,f 1 =2,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -2=-x -1 ,即y =-x +3;(2)f (x )=ae ax -1x2,则g (x )=f (x )⋅x 2=ax 2e ax -1x ≠0 ,则g x =2axe ax +a 2x 2e ax =ax ax +2 e ax x ≠0 ,当a =0时,g x =-1,此时函数g x 无极值;当a >0时,令g x <0,则x >0或x <-2a ,令g x <0,则-2a<x <0,所以函数g x 在-∞,-2a ,0,+∞ 上单调递增,在-2a ,0 上单调递减,所以g x 的极大值为g -2a =4ae2-1;当a<0时,令g x <0,则x<0或x>-2a,令gx <0,则0<x<-2a,所以函数g x 在-∞,0,-2a,+∞上单调递增,在0,-2a上单调递减,而函数g x 的定义域为-∞,0∪0,+∞,所以此时函数g x 无极值.综上所述,当a≤0时,函数g x 无极大值;当a>0时,g x 的极大值为4ae2-1;(3)令f(x)=e ax+1x =0,则e ax=-1x,当x>0时,e ax>0,-1x<0,所以x>0时,函数f x 无零点;当x<0时,由e ax=-1x,得ax=ln-1x,所以a=-ln-xx,则x<0时,函数f x 零点的个数即为函数y=a,y=-ln-xx图象交点的个数,令h x =-ln-xxx<0,则h x =ln-x-1x2,当x<-e时,h x >0,当-e<x<0时,h x <0,所以函数h x 在-∞,-e上单调递增,在-e,0上单调递减,所以h x max=h-e=1 e,又当x→-∞时,h x >0且h x →0,当x→0时,h x →-∞,如图,作出函数h x 的大致图象,又a<-e,由图可知,所以函数y=a,h x =-ln-xx的图象只有1个交点,即当x<0时,函数f x 只有1个零点;综上所述,若a<-e,函数f(x)有1个零点.3(2024·浙江·二模)定义max a,b=a,a≥bb,a<b,已知函数f x =max ln x,-4x3+mx-1,其中m∈R.(1)当m=5时,求过原点的切线方程;(2)若函数f x 只有一个零点,求实数m的取值范围.【解析】(1)由题意知f x 定义域0,+∞,当m=5时,f x =-4x3+5x-1,-4x3+5x-1≥ln xln x,-4x3+5x-1<ln x ,令g x =-4x3+5x-1,g x =-12x 2+5>0⇒0<x <6012,⇒g x 在0,6012 单调递增,6012,+∞ 单调递减,且g 1 =0,令h x =ln x ,则在0,+∞ 单调递增,而f 1 =0=h 1 ,又g 14 =316,h 14 =ln 14<-1,而g 0 =-1,所以当0<x <14时,g x >h x ,当14≤x <1时,g x >0>h x ,所以当0<x <1时,f x =g x ,当x ≥1时,f x =h x ,所以f x =-4x 3+5x -1,0<x <1ln x ,x ≥1,所以f x 在0,6012和1,+∞ 单调递增,在6012,1 单调递减.(ⅰ)当0<x <1时,f x =-12x 2+5,设切点M x 0,-4x 30+5x 0-1 ,则此切线方程为y =-12x 20+5 x -x 0 -4x 30+5x 0-1,又此切线过原点,所以0=-12x 20+5 0-x 0 -4x 30+5x 0-1,解得x 0=12,即此时切线方程是2x -y =0;(ⅱ)当x ≥1时,f x =ln x ,所以f x =1x,设切点为x 0,ln x 0 ,此时切线方程y =1x 0x -x 0 +ln x 0,又此切线过原点,所以0=1x 00-x 0 +ln x 0,解得x 0=e ,所以此时切线方程x -ey =0,综上所述,所求切线方程是:x -ey =0或2x -y =0;(2)(ⅰ)当m =5时,由(1)知,f x 在0,6012 和1,+∞ 单调递增,6012,1单调递减,且f 0 =1,f 14 =316>0,f 1 =0,此时f x 有两个零点;(ⅱ)当m >5时,当0<x <1时,-4x 3+5x -1<-4x 3+mx -1,由(1)知:g x =-4x 3+5x -1在0,6012 递增,6012,1递减,且g 1 =0,所以x ∈6012,+∞ 时,f x >0,而f 0 =-1,所以f x 在0,6012 只有一个零点,6012,+∞ 没有零点;(ⅲ)当0<m <5时,y =-4x 3+mx -1,此时y =-12x 2+m >0得0<x <m 12<6012,由(1)知,当x ≥1时,f x =ln x 只有一个零点x =1,要保证f x 只有一个零点,只需要当0<x <1时,f x =-4x 3+mx -1没有零点,f m12=-4m123+m m 12-1=m 3m 9-1<00<m<1 ,得0<m <3;(ⅳ)当m≤0时,当x∈0,+∞时,g x =-4x3+mx-1<0,此时f x 只有一个零点x=1,综上,f x 只有一个零点时,m<3或m>5 .05导数与三角函数结合问题分段分析法1(2024·全国·模拟预测)已知函数f x =13x3-12a x2+2cos x+x cos x-sin x.(1)讨论f x 的单调性(2)若a>0,求证:①函数f x 在0,+∞上只有1个零点;②f x >1-16a3-12a2-2sin a+π4.【解析】(1)因为f x =13x3-12a x2+2cos x+x cos x-sin x,所以f x =x2-ax+a sin x-x sin x=x-ax-sin x.设g x =x-sin x,则g x =1-cos x≥0,所以g x 在R上单调递增,且g0 =0,所以当x>0时,x-sin x>0;当x<0时,x-sin x<0.当a=0时,f x =x x-sin x≥0,所以f x 在R上单调递增.当a>0时,若x∈0,a,则f x <0,所以f x 单调递减;若x∈-∞,0或x∈a,+∞,则f x >0,所以f x 单调递增.当a<0时,若x∈a,0,则f x <0,所以f x 单调递减;若x∈-∞,a或x∈0,+∞,则f x >0,所以f x 单调递增.综上所述,当a=0时,f x 在R上单调递增;当a>0时,f x 在0,a上单调递减,在-∞,0,a,+∞上单调递增;当a<0时,f x 在a,0上单调递减,在-∞,a,0,+∞上单调递增. (2)①由(1)知,当a>0时,f x 在0,a上单调递减,在a,+∞上单调递增,又f0 =-a<0,所以f a <f0 <0,所以f x 在0,a上没有零点.因为x>0,所以f(x)=13x3-12a x2+2cos x+x cos x-sin x>13x3-12a x2+2-x-1=19x2x-92a+19x x2-9+19x3-a+1所以当x>92ax>3x>39a+9时,f x >0,此时f x 在a,+∞上只有1个零点.综上可得,f x 在0,+∞上只有1个零点.②由a>0,知f x 在0,a上单调递减,在a,+∞上单调递增,所以f x ≥f a =-16a3-sin a,所以f a +16a 3+12a 2+2sin a +π4 -1=12a 2+cos a -1.设h a =12a 2+cos a -1,则h a =a -sin a .由(1)知,当a >0时,a -sin a >0,所以当a >0时,h a >0,所以h a >0在0,+∞ 上单调递增,所以h a >h 0 =0,即f a >1-16a 3-12a 2-2sin a +π4 ,所以f x >1-16a 3-12a 2-2sin a +π4.2(2024·河北沧州·一模)已知函数f x =x ae2x ,a >0.(1)当a =2时,求函数f x 的单调区间和极值;(2)当x >0时,不等式f x -cos ln f x ≥a ln x 2-4x 恒成立,求a 的取值范围.【解析】(1)当a =2时,f x =x 2e 2xfx =2x ⋅e 2x -x 2⋅e 2x ⋅2e 2x 2=-2x (x -1)e 2x 令f x =0,解得x =0或x =1,所以x 、f (x )、f (x )的关系如下表:x (-∞,0)0(0,1)1(1,+∞)f (x )-0+-f (x )单调递减单调递增1e 2单调递减所以函数f x 的单调递增区间为:(0,1),单调递减区间为:(-∞,0)和(1,+∞);极大值f (1)=1e2,极小值f (0)=0;(2)f (x )-cos ln f (x ) ≥a ln x 2-4x ⇔x a e 2x -cos ln x a e2x≥2a ln x -4x⇔e a ln x -2x -2(a ln x -2x )-cos (a ln x -2x )≥0令g (t )=e t -2t -cos t ,其中t =a ln x -2x ,设F (x )=a ln x -2x ,a >0F (x )=a x -2=a -2xx 令F (x )>0,解得:0<x <a2,所以函数F (x )在0,a 2上单调递增,在a2,+∞ 上单调递减,F (x )max =F a 2 =a ln a2-a ,且当x →0+时,F (x )→-∞,所以函数F (x )的值域为-∞,a ln a2-a ;又g (t )=e t -2+sin t ,设h (t )=e t -2+sin t ,t ∈-∞,a ln a2-a ,则h (t )=e t +cos t ,当t ≤0时,e t ≤1,sin t ≤1,且等号不同时成立,即g (t )<0恒成立;t。

2019高考数学总复习优编增分练压轴大题突破练(三)函数与导数(1)理

2019高考数学总复习优编增分练压轴大题突破练(三)函数与导数(1)理

(三)函数与导数().(·江南十校模拟)设()=-+(-).()若()=′()在[]上单调,求的取值范围;()已知()在=处取得极小值,求的取值范围.解()由′()=-+,即()=-+,∈(,+∞),′()=-,①()在[]上单调递增,∴-≥对∈[]恒成立,即≤对∈[]恒成立,得≤;②()在[]上单调递减,∴-≤对∈[]恒成立,即≥对∈[]恒成立,得≥,由①②可得的取值范围为∪.()由()知,①当≤时,′()在(,+∞)上单调递增,∴∈()时,′()<,()单调递减,∈(,+∞)时,′()>,()单调递增,∴()在=处取得极小值,符合题意;②当<<时,>,又′()在上单调递增,∴∈()时,′()<,∈时,′()>,∴()在()上单调递减,在上单调递增,()在=处取得极小值,符合题意;③当=时,=,′()在()上单调递增,在(,+∞)上单调递减,∴∈(,+∞)时,′()≤,()单调递减,不合题意;④当>时,<<,当∈时,′()>,()单调递增,当∈(,+∞)时,′()<,()单调递减,∴()在=处取得极大值,不符合题意.综上所述,可得的取值范围为..(·河南省郑州外国语学校调研)已知函数()=-. ()讨论()的极值点的个数;()若∈*,且()<恒成立,求的最大值.参考数据:解()根据题意可得′()=-=(>),当≤时,′()<,函数是减函数,无极值点;当>时,令′()=得-=,即=,又=在(,+∞)上是增函数,且当→+∞时,→+∞,所以=在(,+∞)上存在一解,不妨设为,所以函数=()在(,)上单调递增,在(,+∞)上单调递减,所以函数=()有一个极大值点,无极小值点.综上,当≤时,无极值点;当>时,函数=()有一个极大值点,无极小值点.()因为∈* >,由()知,()有极大值(),且满足=,①。

19届高考数学一轮复习 高考大题增分专项1 高考中的函数与导数 文

19届高考数学一轮复习 高考大题增分专项1 高考中的函数与导数 文
(2)要证f(x)≥h(x),可证f(x)min≥h(x)max;要证f(x)>m,可将该不等式转 化为g(x)>h(x)的形式,然后再证明g(x)min>h(x)max.这一方法不常用, 只是用(1)的方法难求最值时才用.
-10-
题型一 题型二 题型三
策略一 策略二 策略三
例 2(2016 河北唐山高三二模)已知函数 f(x)=ln������������-1.
-8-
题型一 题型二 题型三
策略一 策略二 策略三
(2)证明 当 a=0 时,f(x)=ln x,令 φ(x)=g(x)-f(x)-2,即 φ(x)=ex-ln x-2,
则 φ'(x)=ex-1,且 φ'(x)在(0,+∞)上是增加的.
������
设 φ'(x)=0 的根为 x=t,则 et=1������,即 t=e-t. 因为当 x∈(0,t)时,φ'(x)<0,φ(x)在(0,t)上是减少的;
当 x∈[t,+∞)时,φ'(x)>0,φ(x)在[t,+∞)上是增加的,
故 φ(x)min=φ(t)=et-ln t-2=et-ln e-t-2=et+t-2.
பைடு நூலகம்
因为 φ'(1)=e-1>0,φ'
1 2
=
e-2<0,所以 t∈
1 2
,1
.
因为 φ(t)=et+t-2 在 t∈ 1 ,1 上是增加的,
-3-
题型一 题型二 题型三
策略一 策略二 策略三
题型一 利用求导的方法证明函数不等式
突破策略一 差函数法 证明函数不等式f(x)>g(x),可证f(x)-g(x)>0,令h(x)=f(x)-g(x),或令h(x) 为f(x)-g(x)表达式的某一部分,利用导数证明h(x)min>0;如果h(x)没有 最小值,那么可利用导数确定出h(x)的单调性,例如h'(x)>0,则h(x)在 (a,b)上是增函数,同时若h(a)≥0,则当x∈(a,b)时,有h(x)>0,即

浙江省2019高考数学优编增分练:解答题突破练三数列

浙江省2019高考数学优编增分练:解答题突破练三数列

(三)数 列1.已知正项数列{a n }的前n 项和为S n ,a 1=1,且(t +1)S n =a 2n +3a n +2(t ∈R ). (1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1=1,b n +1-b n =a n +1,求数列⎩⎨⎧⎭⎬⎫12b n +7n 的前n 项和T n .解 (1)因为a 1=S 1=1,且(t +1)S n =a 2n +3a n +2, 所以(t +1)S 1=a 21+3a 1+2,所以t =5. 所以6S n =a 2n +3a n +2.①当n ≥2时,有6S n -1=a 2n -1+3a n -1+2,② ①-②得6a n =a 2n +3a n -a 2n -1-3a n -1, 所以(a n +a n -1)(a n -a n -1-3)=0, 因为a n >0,所以a n -a n -1=3, 又因为a 1=1,所以{a n }是首项a 1=1,公差d =3的等差数列, 所以a n =3n -2(n ∈N *). (2)因为b n +1-b n =a n +1,b 1=1, 所以b n -b n -1=a n (n ≥2,n ∈N *), 所以当n ≥2时,b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1=a n +a n -1+…+a 2+b 1=3n 2-n2.又b 1=1也适合上式,所以b n =3n 2-n 2(n ∈N *).所以12b n +7n =13n 2-n +7n=13·1n (n +2)=16·⎝ ⎛⎭⎪⎫1n -1n +2, 所以T n =16·⎝ ⎛⎭⎪⎫1-13+12-14+…+1n -1n +2=16·⎝ ⎛⎭⎪⎫32-1n +1-1n +2=3n 2+5n 12(n +1)(n +2). 2.设等差数列{a n }的前n 项和为S n ,且S 3,S 52,S 4成等差数列,a 5=3a 2+2a 1-2.(1)求数列{a n }的通项公式;(2)设b n =2n -1,求数列⎩⎨⎧⎭⎬⎫a nb n 的前n 项和T n .解 (1)设等差数列{a n }的首项为a 1,公差为d , 由S 3,S 52,S 4成等差数列,可知S 3+S 4=S 5,得2a 1-d =0,① 由a 5=3a 2+2a 1-2,② 得4a 1-d -2=0,由①②,解得a 1=1,d =2, 因此,a n =2n -1(n ∈N *).(2)令c n =a n b n =(2n -1)⎝ ⎛⎭⎪⎫12n -1,则T n =c 1+c 2+…+c n ,∴T n =1·1+3·12+5·⎝ ⎛⎭⎪⎫122+…+(2n -1)·⎝ ⎛⎭⎪⎫12n -1,③12T n =1·12+3·⎝ ⎛⎭⎪⎫122+5·⎝ ⎛⎭⎪⎫123+…+(2n -1)·⎝ ⎛⎭⎪⎫12n ,④③-④,得12T n =1+2⎣⎢⎡⎦⎥⎤12+⎝ ⎛⎭⎪⎫122+…+⎝ ⎛⎭⎪⎫12n -1-(2n -1)·⎝ ⎛⎭⎪⎫12n =1+2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -1 -(2n -1)·⎝ ⎛⎭⎪⎫12n= 3-2n +32n ,∴T n =6-2n +32n -1(n ∈N *).3.已知等差数列{a n }满足(n +1)a n =2n 2+n +k ,k ∈R . (1)求数列{a n }的通项公式; (2)设b n =4n2a n a n +1,求数列{b n }的前n 项和S n .解 (1)方法一 由(n +1)a n =2n 2+n +k , 令n =1,2,3,得到a 1=3+k 2,a 2=10+k 3,a 3=21+k4,∵{a n }是等差数列,∴2a 2=a 1+a 3, 即20+2k 3=3+k 2+21+k 4,解得k =-1.由于(n +1)a n =2n 2+n -1=(2n -1)(n +1), 又∵n +1≠0,∴a n =2n -1(n ∈N *). 方法二 ∵{a n }是等差数列,设公差为d , 则a n =a 1+d (n -1)=dn +(a 1-d ), ∴(n +1)a n =(n +1)(dn +a 1-d ) =dn 2+a 1n +a 1-d ,∴dn 2+a 1n +a 1-d =2n 2+n +k 对于任意n ∈N *均成立,则⎩⎪⎨⎪⎧d =2,a 1=1,a 1-d =k ,解得k =-1,∴a n =2n -1(n ∈N *).(2)由b n =4n2a n a n +1=4n 2(2n -1)(2n +1)=4n 24n 2-1=1+14n 2-1=1+1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1+1,得S n =b 1+b 2+b 3+…+b n=12⎝ ⎛⎭⎪⎫1-13+1+12⎝ ⎛⎭⎪⎫13-15+1+12⎝ ⎛⎭⎪⎫15-17+1+…+12⎝ ⎛⎭⎪⎫12n -1-12n +1+1=12⎝ ⎛⎭⎪⎫1-13+13-15+15-17+…+12n -1-12n +1+n=12⎝ ⎛⎭⎪⎫1-12n +1+n=n 2n +1+n =2n 2+2n 2n +1(n ∈N *). 4.(2018·绍兴市柯桥区模拟)已知数列{a n }满足:x 1=1,x n =x n +1+1e n x +-1,证明:当n ∈N*时,(1)0<x n +1<x n ; (2)x n x n +1>x n -2x n +1;(3)⎝ ⎛⎭⎪⎫12n ≤x n ≤⎝ ⎛⎭⎪⎫12n -1. 证明 (1)用数学归纳法证明x n >0, 当n =1时,x 1=1>0,假设x k >0,k ∈N *,k ≥1,成立, 当n =k +1时,若x k +1≤0,则x k =x k +1+1ek x +-1≤0,矛盾,故x k +1>0,因此x n >0(n ∈N *), 所以x n =x n +1+1en x +-1>x n +1+e 0-1=x n +1,综上,x n >x n +1>0.(2)x n +1x n +2x n +1-x n =x n +1(x n +1+1en x +-1)+2x n +1-x n +1-1en x ++1=x 2n +1+1en x +(x n +1-1)+1,设f (x )=x 2+e x(x -1)+1(x ≥0), 则f ′(x )=2x +e x·x ≥0, 所以f (x )在[0,+∞)上单调递增, 因此f (x )≥f (0)=0, 因此x 2n +1+1en x +(x n +1-1)+1=f (x n +1)>f (0)=0,故x n x n +1>x n -2x n +1. (3)由(2)得1x n +1+1<2⎝ ⎛⎭⎪⎫1x n+1,所以当n >1时,1x n+1<2⎝⎛⎭⎪⎫1x n -1+1<…<2n -1⎝ ⎛⎭⎪⎫1x 1+1=2n , 当n =1时,1x n +1=2n ,所以1x n ≤2n,即x n ≥12n ,又由于x n =x n +1+1en x +-1≥x n +1+(x n +1+1)-1=2x n +1,x n +1≤12x n ,所以易知x n ≤12n -1,综上,⎝ ⎛⎭⎪⎫12n ≤x n ≤⎝ ⎛⎭⎪⎫12n -1.5.(2018·浙江省台州中学模拟)已知数列{a n }的首项a 1=35,a n +1=3a n2a n +1,n =1,2,….(1)求{a n }的通项公式; (2)证明:对任意的x >0,a n ≥11+x -1(1+x )2·⎝ ⎛⎭⎪⎫23n -x ,n =1,2,…;(3)证明:a 1+a 2+…+a n >n 2n +1.(1)解 ∵a n +1=3a n 2a n +1,∴1a n +1-1=13⎝ ⎛⎭⎪⎫1a n -1,∴1a n -1=23·13n -1=23n ,∴a n =3n3n +2(n ∈N *). (2)证明 由(1)知a n =3n3n +2>0,11+x -1(1+x )2⎝ ⎛⎭⎪⎫23n -x =11+x -1(1+x )2⎝ ⎛⎭⎪⎫23n +1-1-x =11+x -1(1+x )2⎣⎢⎡⎦⎥⎤1a n -(1+x )=-1a n ·1(1+x )2+21+x =-1a n ⎝ ⎛⎭⎪⎫11+x -a n 2+a n ≤a n , ∴原不等式成立.(3)证明 由(2)知,对任意的x >0, 有a 1+a 2+…a n ≥11+x -1(1+x )2⎝ ⎛⎭⎪⎫23-x +11+x -1(1+x )2⎝ ⎛⎭⎪⎫232-x +…+11+x -1(1+x )2⎝ ⎛⎭⎪⎫23n -x =n1+x-1(1+x )2⎝ ⎛⎭⎪⎫23+232+…+23n -nx , ∴取x =1n ⎝ ⎛⎭⎪⎫23+232+…+23n =1n ⎝ ⎛⎭⎪⎫1-13n ,则a 1+a 2…+a n ≥n 1+1n ⎝ ⎛⎭⎪⎫1-13n =n 2n +1-13n>n 2n +1,∴原不等式成立.6.已知在数列{a n }中,满足a 1=12,a n +1=a n +12,记S n 为a n 的前n 项和.(1)证明:a n +1>a n ; (2)证明:a n =cos π3·2n -1;(3)证明:S n >n -27+π254.证明 (1)由题意知{a n }的各项均为正数, 因为2a 2n +1-2a 2n =a n +1-2a 2n =(1-a n )(1+2a n ). 所以,要证a n +1>a n ,只需要证明a n <1即可. 下面用数学归纳法证明a n <1. ①当n =1时,a 1=12<1成立,②假设当n =k 时,a k <1成立, 那么当n =k +1时,a k +1=a k +12<1+12=1. 综上所述,a n <1成立,所以a n +1>a n . (2)用数学归纳法证明a n =cos π3·2n -1.①当n =1时,a 1=12=cos π3成立,②假设当n =k 时,a k =cos π3·2k -1. 那么当n =k +1时,a k +1=a k +12=cos π3·2k -1+12=cos π3·2k ,综上所述,a n =cos π3·2n -1.(3)由题意及(2)知, 1-a n -12=1-a n -1+12 =1-a 2n =1-cos 2π3·2n -1 =sin2π3·2n -1<⎝ ⎛⎭⎪⎫π3·2n -12(n ≥2),得a n -1>1-2π29·4n -1(n ≥2),故当n =1时,S 1=12>1-27+π254;当n ≥2时,S n >∑ni =2 ⎝ ⎛⎭⎪⎫1-2π29·4i +12=n -12-2π29×43×116⎝ ⎛⎭⎪⎫1-14n -1>n -27+π254.综上所述,S n >n -27+π254.。

(京津专用)2019高考数学总复习 优编增分练:压轴大题突破练(二)直线与圆锥曲线(2)文

(京津专用)2019高考数学总复习 优编增分练:压轴大题突破练(二)直线与圆锥曲线(2)文

(二)直线与圆锥曲线(2)1.(2018·威海模拟)已知抛物线C :y 2=2px (p >0)的焦点F ,直线y =4与y 轴的交点为P ,与抛物线C 的交点为Q ,且|QF |=2|PQ |.(1)求p 的值;(2)已知点T (t ,-2)为C 上一点,M ,N 是C 上异于点T 的两点,且满足直线TM 和直线TN 的斜率之和为-83,证明直线MN 恒过定点,并求出定点的坐标.解 (1)设Q (x 0,4),由抛物线定义知|QF |=x 0+p 2,又|QF |=2|PQ |,即2x 0=x 0+p 2,解得x 0=p 2,将点Q ⎝ ⎛⎭⎪⎫p 2,4代入抛物线方程,解得p =4.(2)由(1)知,C 的方程为y 2=8x ,所以点T 坐标为⎝ ⎛⎭⎪⎫12,-2,设直线MN 的方程为x =my +n ,点M ⎝ ⎛⎭⎪⎫y 218,y 1,N ⎝ ⎛⎭⎪⎫y 228,y 2,由⎩⎪⎨⎪⎧x =my +n ,y 2=8x , 得y 2-8my -8n =0,Δ=64m 2+32n >0.所以y 1+y 2=8m ,y 1y 2=-8n ,所以k MT +k NT =y 1+2y 218-12+y 2+2y 228-12=8y 1-2+8y 2-2=8(y 1+y 2)-32y 1y 2-2(y 1+y 2)+4=64m -32-8n -16m +4=-83,解得n =m -1,所以直线MN 的方程为x +1=m (y +1),恒过定点(-1,-1).2.(2018·南昌模拟)已知动圆C 过点F (1,0),且与直线x =-1相切.(1)求动圆圆心C 的轨迹方程E ;(2)已知点P (4,-4),Q (8,4),过点Q 的直线l 交曲线E 于点A ,B ,设直线PA ,PB 的斜率分别为k 1,k 2,求证:k 1k 2为定值,并求出此定值.解 (1)设C (x ,y ),由(x -1)2+y 2=||x +1, 得动圆圆心C 的轨迹方程E 为y 2=4x ,(2)依题意知直线AB 的斜率不为0,设AB 方程为x -8=m (y -4),即x =my -4m +8,设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧ y 2=4x ,x =my -4m +8, 得y 2-4my +16m -32=0,且Δ>0恒成立,∴y 1+y 2=4m ,y 1y 2=16m -32,∴k PA ·k PB =y 1+4x 1-4·y 2+4x 2-4 =y 1+4y 214-4·y 2+4y 224-4=16(y 1-4)(y 2-4)=16y 1y 2-4(y 1+y 2)+16=1616m -32-16m +16=-1(定值). 3.(2018·四省名校大联考)如图,在平面直角坐标系中,已知点F (1,0),过直线l :x =4左侧的动点P 作PH ⊥l 于点H ,∠HPF 的角平分线交x 轴于点M ,且|PH |=2|MF |,记动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)过点F 作直线l ′交曲线C 于A ,B 两点,设AF →=λFB →,若λ∈⎣⎢⎡⎦⎥⎤12,2,求|AB |的取值范围.解 (1)设P (x ,y ),由题意可知|MF |=|PF |,所以|PF ||PH |=|MF ||PH |=12, 即(x -1)2+y 2|x -4|=12,化简整理得x 24+y 23=1,即曲线C 的方程为x 24+y 23=1. (2)由题意,得直线l ′的斜率k ≠0,设直线l ′的方程为x =my +1, 由⎩⎪⎨⎪⎧ x =my +1,x 24+y 23=1, 得(3m 2+4)y 2+6my -9=0.设A (x 1,y 1),B (x 2,y 2),所以Δ=(6m )2+36(3m 2+4)=144(m 2+1)>0恒成立,且y 1+y 2=-6m 3m 2+4,y 1y 2=-93m 2+4,① 又因为AF →=λFB →,所以-y 1=λy 2,②联立①②,消去y 1,y 2,得4m 23m 2+4=(λ-1)2λ, 因为(λ-1)2λ=λ+1λ-2∈⎣⎢⎡⎦⎥⎤0,12, 所以0≤4m 23m 2+4≤12, 解得0≤m 2≤45. 又|AB |=m 2+1|y 1-y 2| =m 2+1(y 1+y 2)2-4y 1y 2=12m 2+123m 2+4 =4-43m +4, 因为4≤3m 2+4≤325, 所以|AB |=4-43m 2+4∈⎣⎢⎡⎦⎥⎤3,278. 所以|AB |的取值范围是⎣⎢⎡⎦⎥⎤3,278. 4.(2018·合肥模拟)如图所示,在平面直角坐标系xOy 中,已知椭圆C :x 2a +y 2b=1(a >b >0)的离心率为22,短轴长为4 2.(1)求椭圆C 的标准方程;(2)设A 为椭圆C 的左顶点,P 为椭圆C 上位于x 轴上方的点,直线PA 交y 轴于点M ,点N 在y 轴上,且MF →·FN →=0,设直线AN 交椭圆C 于另一点Q ,求△APQ 面积的最大值.解 (1)由题意得⎩⎪⎨⎪⎧ c a =22,2b =42,a 2=b 2+c 2,解得⎩⎨⎧ a =4,b =22,c =22,所以椭圆C 的标准方程为x 216+y 28=1.(2)由题意可设直线PA 的方程为y =k (x +4),k >0,则M (0,4k ),又F (22,0),且MF →·FN →=0,所以MF ⊥FN ,所以直线FN 的方程为y =224k (x -22),则N ⎝ ⎛⎭⎪⎫0,-2k ,联立⎩⎪⎨⎪⎧ y =k (x +4),x 2+2y 2=16,消去y 并整理得(1+2k 2)x 2+16k 2x +32k 2-16=0,解得x 1=-4,x 2=4-8k21+2k 2,则P ⎝ ⎛⎭⎪⎫4-8k 21+2k 2,8k1+2k 2,直线AN 的方程为y =-12k (x +4),同理可得Q ⎝ ⎛⎭⎪⎫8k 2-41+2k 2,-8k1+2k 2,所以P ,Q 关于原点对称,即PQ 过原点, 所以△APQ 的面积S =12OA ·|y P -y Q |=2·16k1+2k 2=322k +1k≤82,当且仅当2k =1k ,即k =22时,等号成立, 所以△APQ 面积的最大值为8 2.5.(2018·峨眉山模拟)如图,圆C 与x 轴相切于点T (2,0),与y 轴正半轴相交于两点M ,N (点M 在点N 的下方),且|MN |=3.(1)求圆C 的方程;(2)过点M 任作一条直线与椭圆x 28+y 24=1相交于两点A ,B ,连接AN ,BN ,求证:∠ANM =∠BNM . (1)解 由题意可知圆心的坐标为()2,r .∵|MN |=3,∴r 2=⎝ ⎛⎭⎪⎫322+22=254,r =52, ∴圆C 的方程为(x -2)2+⎝ ⎛⎭⎪⎫y -522=254. (2)证明 由圆C 方程可得M (0,1),N (0,4),①当AB 斜率不存在时,∠ANM =∠BNM =0°;②当AB 斜率存在时,设直线AB 方程为y =kx +1.设A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧ y =kx +1,x 28+y 24=1,得(1+2k 2)x 2+4kx -6=0, x 1+x 2=-4k 1+2k 2,x 1x 2=-61+2k2, ∴k AN +k BN =y 1-4x 1+y 2-4x 2 =2kx 1x 2-3(x 1+x 2)x 1x 2=2k ⎝ ⎛⎭⎪⎫-61+2k 2-3⎝ ⎛⎭⎪⎫-4k 1+2k 2-61+2k 2=0,∴k AN +k BN =0,综上所述,∠ANM=∠BNM.。

(京津专用)2019高考数学总复习 优编增分练:压轴大题突破练(三)函数与导数(1)文

(京津专用)2019高考数学总复习 优编增分练:压轴大题突破练(三)函数与导数(1)文

...(三)函数与导数(1)1.(2018·咸阳模拟)已知函数f (x )=a (x +1)ln x -x +1(a ∈R ).(1)当a =2时,求函数f (x )在点(1,f (1))处的切线方程;(2)当a ≥12时,求证:对任意的x ≥1,f (x )≥0恒成立.(1)解 由f (x )=2(x +1)ln x -x +1,得f ′(x )=2ln x +2x +1,切点为(1,0),斜率为f ′(1)=3,所求切线方程为y =3(x -1),即3x -y -3=0.(2)证明 当a =12时,f (x )=12(x +1)ln x -x +1(x ≥1),欲证:f (x )≥0,注意到f (1)=0,只要f (x )≥f (1)即可,f ′(x )=a ⎝ ⎛⎭⎪⎫ln x +1x +1-1(x ≥1),令g (x )=ln x +1x +1(x ≥1),则g ′(x )=1x -1x 2=x -1x 2≥0(x ≥1),知g (x )在[1,+∞)上单调递增,有g (x )≥g (1)=2,所以f ′(x )≥2a -1≥0⎝ ⎛⎭⎪⎫a ≥12,可知f (x )在[1,+∞)上单调递增,所以f (x )≥f (1)=0,综上,当a ≥12时,对任意的x ≥1,f (x )≥0恒成立.2.(2018·潍坊模拟)已知函数f (x )=ln x +12x 2+ax (a ∈R ),g (x )=e x +32x 2.(1)讨论函数f (x )极值点的个数;(2)若对∀x >0,不等式f (x )≤g (x )恒成立,求实数a 的取值范围.解 (1)f ′(x )=1x +x +a =x 2+ax +1x (x >0),令f ′(x )=0,即x 2+ax +1=0,Δ=a 2-4,... ①当a 2-4≤0,即-2≤a ≤2时,x 2+ax +1≥0恒成立,即f ′(x )≥0,此时f (x )在(0,+∞)上单调递增,无极值点,②当a 2-4>0,即a <-2或a >2时,若a <-2,设方程x 2+ax +1=0的两根为x 1,x 2,且x 1<x 2,由根与系数的关系得⎩⎪⎨⎪⎧ x 1+x 2=-a >0,x 1x 2=1>0,故x 1>0,x 2>0,此时x ∈(0,x 1),f ′(x )>0,f (x )单调递增,x ∈(x 1,x 2),f ′(x )<0,f (x )单调递减,x ∈(x 2,+∞),f ′(x )>0,f (x )单调递增,故x 1,x 2分别为f (x )的极大值点和极小值点,因此a <-2时,f (x )有两个极值点;若a >2,设方程x 2+ax +1=0的两根为x 1,x 2,且x 1<x 2,由根与系数的关系得⎩⎪⎨⎪⎧x 1+x 2=-a <0,x 1x 2=1>0, 故x 1<0,x 2<0,此时f (x )无极值点,综上,当-2≤a ≤2时,f (x )无极值点,当a <-2时,f (x )有两个极值点,当a ≥-2时,f (x )无极值点.(2)f (x )≤g (x )等价于ln x +12x 2+ax ≤e x +32x 2,即e x -ln x +x 2≥ax ,因此a ≤e x -ln x +x2x 对∀x >0恒成立.设h (x )=e x -ln x +x2x ,h ′(x )=⎝ ⎛⎭⎪⎫e x -1x +2x x -e x +ln x -x 2x 2=e x(x -1)+ln x +x 2-1x 2,当x ∈(0,1)时,e x (x -1)+ln x +x 2-1<0,即h ′(x )<0,h (x )单调递减,... 当x ∈(1,+∞)时,e x (x -1)+ln x +x 2-1>0,即h ′(x )>0,h (x )单调递增,因此x =1为h (x )的极小值点,即h (x )≥h (1)=e +1,故a ≤e+1.3.(2018·亳州模拟)已知函数f (x )=a +ln x x 在x =1处取得极值.(1)求a 的值,并讨论函数f (x )的单调性;(2)当x ∈[1,+∞)时,f (x )≥m1+x 恒成立,求实数m 的取值范围.解 (1)由题意知f ′(x )=1-a -ln xx 2,又f ′(1)=1-a =0,即a =1,∴ f ′(x )=-ln xx 2(x >0),令f ′(x )>0,得0<x <1;令f ′(x )<0,得x >1,∴函数f (x )在(0,1)上单调递增,在(1,+∞)上单调递减.(2)依题意知,当x ∈[1,+∞)时,f (x )≥m1+x 恒成立,即m ≤(1+x )(1+ln x )x 恒成立,令g (x )=(1+x )(1+ln x )x (x ≥1),只需g (x )min ≥m 即可,又g ′(x )=x -ln xx 2,令h (x )=x -ln x ,h ′(x )=1-1x ≥0(x ≥1),∴h (x )在[1,+∞)上单调递增,∴ h (x )≥h (1)=1>0,∴ g ′(x )>0,∴g (x )在[1,+∞)上单调递增,∴g (x )min =g (1)=2,故m ≤2.4.(2018·福建省百校模拟)已知函数f (x )=x -1+a e x .(1)讨论f (x )的单调性;(2)当a =-1时,设-1<x 1<0,x 2>0且f (x 1)+f (x 2)=-5,证明:x 1-2x 2>-4+1e .(1)解 f ′(x )=1+a e x ,当a ≥0时,f ′(x )>0,... 则f (x )在R 上单调递增.当a <0时,令f ′(x )>0,得x <ln ⎝ ⎛⎭⎪⎫-1a ,则f (x )的单调递增区间为⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-1a ,令f ′(x )<0,得x >ln ⎝ ⎛⎭⎪⎫-1a ,则f (x )的单调递减区间为⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-1a ,+∞.(2)证明 方法一 设g (x )=f (x )+2x =-e x +3x -1,则g ′(x )=-e x +3,由g ′(x )<0得x >ln 3;由g ′(x )>0得x <ln 3,故g (x )max =g (ln 3)=3ln 3-4<0,从而得g (x )=f (x )+2x <0,∵f (x 1)+f (x 2)=-5,∴f (x 2)+2x 2=-5-f (x 1)+2x 2<0,即x 1-2x 2>-4+1e .方法二 ∵f (x 1)+f (x 2)=-5,∴x 1=12e e x x +-x 2-3,∴x 1-2x 2=12e e x x +-3x 2-3,设g (x )=e x -3x ,则g ′(x )=e x -3,由g ′(x )<0得x <ln 3,由g ′(x )>0得x >ln 3,故g (x )min =g (ln 3)=3-3ln 3.∵-1<x 1<0,x 2>0,∴x 1-2x 2>e -1+3-3ln 3-3=1e -3ln 3,∵3ln 3=ln 27<4,∴x 1-2x 2>-4+1e .5.(2018·江南十校模拟)已知函数f (x )=a +ln x x ,g (x )=mx .(1)求函数f (x )的单调区间;(2)当a =0时,f (x )≤g (x )恒成立,求实数m 的取值范围;(3)当a =1时,求证:当x >1时,(x +1)⎝ ⎛⎭⎪⎫x +1e xf (x )>2⎝ ⎛⎭⎪⎫1+1e .... (1)解 f (x )=a +ln x x 的定义域为(0,+∞),且f ′(x )=1-(a +ln x )x 2=1-ln x -ax 2.由f ′(x )>0得1-ln x -a >0,即ln x <1-a ,解得0<x <e 1-a ,∴f (x )在(0,e 1-a )上单调递增,在(e 1-a ,+∞)上单调递减.(2)解 a =0,f (x )=ln x x ,∴f (x )≤g (x )⇔ln x x ≤mx ⇔m ≥ln xx 2,令u (x )=ln x x 2,∴u ′(x )=1-2ln xx 3,由u ′(x )>0得0<x <e ,∴u (x )在(0,e)上单调递增,在(e ,+∞)上单调递减, ∴u (x )max =u (e)=ln ee =12e ,∴m ≥12e .(3)证明 (x +1)⎝ ⎛⎭⎪⎫x +1e xf (x )>2⎝ ⎛⎭⎪⎫1+1e ,等价于1e +1·(x +1)(ln x +1)x >2ex -1x e x +1.令p (x )=(x +1)(ln x +1)x ,则p ′(x )=x -ln xx 2,令φ(x )=x -ln x ,则φ′(x )=1-1x =x -1x ,∵x >1,∴φ′(x )>0,∴φ(x )在(1,+∞)上单调递增, φ(x )>φ(1)=1>0,p ′(x )>0,∴p (x )在(1,+∞)上单调递增,∴p (x )>p (1)=2,∴p (x )e +1>2e +1,令h (x )=2e x -1x e x +1,则h ′(x )=2e x-1(1-e x )(x e x +1)2,∵x >1,∴1-e x <0,∴h ′(x )<0,h (x )在(1,+∞)上单调递减,∴当x >1时,h (x )<h (1)=2e +1,∴p (x )e +1>2e +1>h (x ),即(x +1)⎝ ⎛⎭⎪⎫x +1e xf (x )>2⎝ ⎛⎭⎪⎫1+1e ,x >1....。

【数学】高考数学三轮增分练高考压轴大题突破练三函数与导数1理

【数学】高考数学三轮增分练高考压轴大题突破练三函数与导数1理

【关键字】数学(三)函数与导数(1)1.已知函数f(x)=x2+(x≠0,a∈R).(1)判断函数f(x)的奇偶性,并说明理由;(2)若f(x)在区间[2,+∞)上是增函数,求实数a的取值范围.解(1)当a=0时,f(x)=x2,对任意x∈(-∞,0)∪(0,+∞),f(-x)=(-x)2=x2=f(x),∴f(x)为偶函数.当a≠0时,f(x)=x2+ (a≠0,x≠0),令x=-1,得f(-1)=1-a.令x=1,得f(1)=1+a.∴f(-1)+f(1)=2≠0,f(-1)-f(1)=-2a≠0,∴f(-1)≠-f(1),f(-1)≠f(1).∴函数f(x)既不是奇函数,也不是偶函数.综上,当a=0时,f(x)为偶函数;当a≠0时,f(x)既不是奇函数,也不是偶函数.(2)若函数f(x)在[2,+∞)上为增函数,则f′(x)≥0在[2,+∞)上恒成立,即2x-≥0在[2,+∞)上恒成立,即a≤2x3在[2,+∞)上恒成立,只需a≤(2x3)min,x∈[2,+∞),∴a≤16,∴a的取值范围是(-∞,16].2.(2016·课标全国乙)已知函数f(x)=(x-2)ex+a(x-1)2.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.解(1)f′(x)=(x-1)ex+2a(x-1)=(x-1)(ex+2a).(ⅰ)设a≥0,则当x∈(-∞,1)时,f′(x)<0;当x∈(1,+∞)时,f′(x)>0.所以f(x)在(-∞,1)上单调递减,在(1,+∞)上单调递加.(ⅱ)设a<0,由f′(x)=0得x=1或x=ln(-2a).①若a=-,则f′(x)=(x-1)(ex-e),所以f(x)在(-∞,+∞)上单调递加.②若a>-,则ln(-2a)<1,故当x∈(-∞,ln(-2a))∪(1,+∞)时,f′(x)>0;当x ∈(ln(-2a),1)时,f ′(x)<0.所以f(x)在(-∞,ln(-2a)),(1,+∞)上单调递加,在(ln(-2a),1)上单调递减. ③若a<-,则ln(-2a)>1,故当x ∈(-∞,1)∪(ln(-2a),+∞)时,f ′(x)>0;当x ∈(1,ln(-2a))时,f ′(x)<0.所以f(x)在(-∞,1),(ln(-2a),+∞)上单调递加,在(1,ln(-2a))上单调递减.(2)(ⅰ)设a>0,则由(1)知,f(x)在(-∞,1)上单调递减,在(1,+∞)上单调递加. 又f(1)=-e ,f(2)=a ,取b 满足b<0且b<ln ,则f(b)>(b -2)+a(b -1)2=a>0,所以f(x)有两个零点.(ⅱ)设a =0,则f(x)=(x -2)ex ,所以f(x)只有一个零点.(ⅲ)设a<0,若a ≥-,则由(1)知,f(x)在(1,+∞)上单调递加.又当x ≤1时,f(x)<0,故f(x)不存在两个零点;若a<-,则由(1)知,f(x)在(1,ln(-2a))上单调递减,在(ln(-2a),+∞)上单调递加.又当x ≤1时,f(x)<0,故f(x)不存在两个零点.综上,a 的取值范围为(0,+∞).3.(2016·山东)设f(x)=xln x -ax2+(2a -1)x ,a ∈R.(1)令g(x)=f ′(x),求g(x)的单调区间;(2)已知f(x)在x =1处取得极大值,求实数a 的取值范围.解 (1)由f ′(x)=ln x -2ax +2a ,可得g (x )=ln x -2ax +2a ,x ∈(0,+∞),所以g ′(x )=1x -2a =1-2ax x. 当a ≤0,x ∈(0,+∞)时,g ′(x )>0,函数g (x )单调递增;当a >0,x ∈⎝ ⎛⎭⎪⎫0,12a 时,g ′(x )>0,函数g (x )单调递增,x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,g ′(x )<0,函数g (x )单调递减.所以当a ≤0时,g (x )的单调增区间为(0,+∞);当a >0时,g (x )的单调增区间为⎝ ⎛⎭⎪⎫0,12a ,单调减区间为⎝ ⎛⎭⎪⎫12a ,+∞. (2)由(1)知,f ′(1)=0.①当a ≤0时,f ′(x )单调递增,所以当x ∈(0,1)时,f ′(x )<0,f (x )单调递减,当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增,所以f (x )在x =1处取得极小值,不合题意.②当0<a <12时,12a >1,由(1)知f ′(x )在⎝ ⎛⎭⎪⎫0,12a 内单调递增. 可得当x ∈(0,1)时,f ′(x )<0,当x ∈⎝ ⎛⎭⎪⎫1,12a 时,f ′(x )>0. 所以f (x )在(0,1)内单调递减,在⎝ ⎛⎭⎪⎫1,12a 内单调递增. 所以f (x )在x =1处取得极小值,不合题意.③当a =12时,12a=1,f ′(x )在(0,1)内单调递增, 在(1,+∞)内单调递减,所以当x ∈(0,+∞)时,f ′(x )≤0,f (x )单调递减,不合题意.④当a >12时,0<12a <1,当x ∈⎝ ⎛⎭⎪⎫12a ,1时,f ′(x )>0,f (x )单调递增, 当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.所以f (x )在x =1处取得极大值,符合题意 .综上可知,实数a 的取值范围为a >12. 4.已知函数f (x )=a ln x -x +1x. (1)判断函数f (x )的单调性;(2)证明:当x >0时,ln(1+1x )<1x 2+x .(1)解 f ′(x )=a x -1-1x 2=-x 2+ax -1x 2(x >0). 记g (x )=-x 2+ax -1,对称轴为x =a 2,Δ=a 2-4, 而g (0)=-1<0,且开口方向向下,则①当Δ=a 2-4≤0,即-2≤a ≤2时,g (x )≤0,f ′(x )≤0,∴f (x )在(0,+∞)上单调递减.②当Δ=a 2-4>0,即a >2或a <-2时,若a >2,则a2>1,方程g (x )=0的两根 x 1=a +a 2-42>0,x 2=a -a 2-42>0,当0<x <a -a 2-42或x >a +a 2-42时,f ′(x )<0; 当a -a 2-42<x <a +a 2-42时,f ′(x )>0. 则f (x )在区间(0,a -a 2-42),(a +a 2-42,+∞)上单调递减, 在区间(a -a 2-42,a +a 2-42)上单调递增.若a <-2,则a 2<-1,g (x )<0, ∴f (x )在(0,+∞)上单调递减.综上所述,当a ≤2时,f (x )在(0,+∞)上单调递减;当a >2时,f (x )在区间(0,a -a 2-42),(a +a 2-42,+∞)上单调递减, 在区间(a -a 2-42,a +a 2-42)上单调递增.(2)证明 原不等式可化为ln(1+1x )< 1x1+1x = 1+1x-1 1+1x . 令t = 1+1x, ∵x >0,∴t >1,则原不等式等价于2ln t <t -1t. 令φ(t )=2ln t -t +1t, 由(1)可知,函数φ(t )在(1,+∞)上单调递减,∴φ(t )<φ(1)=0,∴2ln t <t -1t,故原不等式成立.此文档是由网络收集并进行重新排版整理.word 可编辑版本!。

江苏省2019高考数学总复习 优编增分练:高考解答题分项练(五)函数与导数(A)

江苏省2019高考数学总复习 优编增分练:高考解答题分项练(五)函数与导数(A)

(五)函数与导数(A)1.(2018·宿迁期末)已知函数f (x )=a ⎝⎛⎭⎪⎪⎫1-2a x+a 2(a >0,且a ≠1)是定义在R 上的奇函数. (1)求a 的值;(2)求函数f (x )的值域;(3)若存在x ∈[1,2],使得4+mf (x )-2x +1≥0成立,求实数m 的取值范围.解 (1)∵f (x )是R 上的奇函数,∴f (0)=a ⎝⎛⎭⎪⎪⎫1-21+a 2=0,可得a =2. 经检验a =2符合题意.(2)由(1)可得f (x )=2⎝ ⎛⎭⎪⎫1-22x +1,∴函数f (x )在R 上单调递增, 又2x+1>1,∴-2<-22x +1<0,∴-2<2⎝⎛⎭⎪⎫1-22x+1<2. ∴函数f (x )的值域为(-2,2).(3)当x ∈[1,2]时,f (x )=2⎝ ⎛⎭⎪⎫2x-12x +1>0. 由题意知,存在x ∈[1,2],使得mf (x )=2m ·2x-12x +1≥2x +1-4成立,即存在x ∈[1,2],使得m ≥(2x +1)(2x-2)2x-1成立. 令t =2x-1(1≤t ≤3),则有m ≥(t +2)(t -1)t =t -2t+1,∵当1≤t ≤3时,函数y =t -2t+1为增函数,∴⎝⎛⎭⎪⎫t -2t+1min =0. ∴m ≥0.故实数m 的取值范围为[0,+∞).2.已知函数f (x )=a e xx+x .(1)若函数f (x )的图象在(1,f (1))处的切线经过点(0,-1),求a 的值;(2)是否存在负整数a ,使函数f (x )的极大值为正值?若存在,求出所有负整数a 的值;若不存在,请说明理由.解 (1)∵f ′(x )=a e x (x -1)+x 2x 2,∴f ′(1)=1,f (1)=a e +1.∴函数f (x )在(1,f (1))处的切线方程为y -(a e +1)=x -1,又直线过点(0,-1),∴-1-(a e +1)=-1, 解得a =-1e.(2)若a <0,f ′(x )=a e x (x -1)+x 2x 2,当x ∈(-∞,0)时,f ′(x )>0恒成立,函数在(-∞,0)上无极值;当x ∈(0,1)时,f ′(x )>0恒成立,函数在(0,1)上无极值.方法一 当x ∈(1,+∞)时,若f (x )在x 0处取得符合条件的极大值f (x 0),则⎩⎪⎨⎪⎧x 0>1,f (x 0)>0,f ′(x 0)=0,则⎩⎪⎨⎪⎧x 0>1, ①e x a x+x 0>0, ②e x a (x 0-1)+x 2x 20=0, ③由③得0e x a =-x 20x 0-1,代入②得-x 0x 0-1+x 0>0,结合①可解得x 0>2,再由f (x 0)=0e x a x +x 0>0,得a >-020e x x ,设h (x )=-x 2e,则h ′(x )=x (x -2)e,当x >2时,h ′(x )>0,即h (x )是增函数, ∴a >h (x 0)>h (2)=-4e2.又a <0,故当极大值为正数时,a ∈⎝ ⎛⎭⎪⎫-4e 2,0, 从而不存在负整数a 满足条件.方法二 当x ∈(1,+∞)时,令H (x )=a e x (x -1)+x 2, 则H ′(x )=(a e x+2)x ,∵x ∈(1,+∞),∴e x∈(e,+∞), ∵a 为负整数,∴a ≤-1,∴a e x<a e≤-e , ∴a e x+2<0,∴H ′(x )<0, ∴H (x )在(1,+∞)上单调递减.又H (1)=1>0,H (2)=a e 2+4≤-e 2+4<0, ∴∃x 0∈(1,2),使得H (x 0)=0, 且当1<x <x 0时,H (x )>0,即f ′(x )>0; 当x >x 0时,H (x )<0,即f ′(x )<0.∴f (x )在x 0处取得极大值f (x 0)=0e x a x +x 0.(*)又H (x 0)=0e xa (x 0-1)+x 20=0,∴e x a x 0=-x 0x 0-1,代入(*)得f (x 0)=-x 0x 0-1+x 0=x 0(x 0-2)x 0-1<0,∴不存在负整数a 满足条件.3.(2018·南通模拟)已知函数f (x )=12ax 2-ax +ln x +54a ,其中a ∈R .(1)当a =1时,求函数f (x )在x =1处的切线方程;(2)若函数f (x )存在两个极值点x 1,x 2,求f (x 1)+f (x 2)的取值范围;(3)若不等式f (x )≥ax -a4对任意的实数x ∈(1,+∞)恒成立,求实数a 的取值范围.解 (1)当a =1时,f (x )=12x 2-x +ln x +54,故f (1)=34,且f ′(x )=x -1+1x,故f ′(1)=1,所以函数f (x )在x =1处的切线方程为y -34=x -1,即4x -4y -1=0.(2)由f (x )=12ax 2-ax +ln x +54a ,x >0,可得f ′(x )=ax -a +1x =ax 2-ax +1x,因为函数f (x )存在两个极值点x 1,x 2, 所以x 1,x 2是方程f ′(x )=0的两个正根, 即ax 2-ax +1=0的两个正根为x 1,x 2,所以⎩⎪⎨⎪⎧Δ=a 2-4a >0,x 1+x 2=1,x 1x 2=1a>0,即⎩⎪⎨⎪⎧a >4,x 1+x 2=1,x 1x 2=1a,所以f (x 1)+f (x 2)=12ax 21-ax 1+ln x 1+54a +12ax 22-ax 2+ln x 2+54a=12a [(x 1+x 2)2-2x 1x 2]-a (x 1+x 2)+ln(x 1x 2)+52a =2a -ln a -1,令g (a )=2a -ln a -1,a >4,故g ′(a )=2-1a>0,g (a )在(4,+∞)上单调递增,所以g (a )>g (4)=7-ln 4,故f (x 1)+f (x 2)的取值范围是(7-ln 4,+∞).(3)由题意知,f (x )≥ax -a4对任意的实数x ∈(1,+∞)恒成立,即2ln x +ax 2-4ax +3a ≥0对任意的实数x ∈(1,+∞)恒成立. 令h (x )=2ln x +ax 2-4ax +3a ,x >1, 则h ′(x )=2x +2ax -4a =2·ax 2-2ax +1x,①若a =0,当x >1时,h (x )=2ln x >0, 故a =0符合题意; ②若a >0,(ⅰ)若4a 2-4a ≤0,即0<a ≤1,则h ′(x )>0,h (x )在(1,+∞)上单调递增, 所以当x >1时,h (x )>h (1)=0,故0<a ≤1符合题意; (ⅱ)若4a 2-4a >0,即a >1,令h ′(x )=0,得x 1=1-a 2-aa <1(舍去),x 2=1+a 2-aa>1,当x ∈(1,x 2)时,h ′(x )<0,h (x )在(1,x 2)上单调递减; 当x ∈(x 2,+∞)时,h ′(x )>0,h (x )在(x 2,+∞)上单调递增, 所以存在x =x 2>1,使得h (x 2)<h (1)=0,与题意矛盾, 所以a >1不符合题意. ③若a <0,令h ′(x )=0,得x 0=1-a 2-aa=1+1-1a>1.当x ∈(1,x 0)时,h ′(x )>0,h (x )在(1,x 0)上单调递增; 当x ∈(x 0,+∞)时,h ′(x )<0,h (x )在(x 0,+∞)上单调递减.首先证明:4-2a>x 0.要证4-2a>x 0,即要证4-2a >1-a 2-aa,只要证2-3a >a 2-a , 因为a <0,所以(2-3a )2-(a 2-a )2=8a 2-11a +4>0, 故2-3a >a 2-a ,所以4-2a>x 0.其次证明,当a <0时,ln x <x -32a 对任意的x ∈(1,+∞)都成立,令t (x )=ln x -x +32a ,x >1,则t ′(x )=1x -1<0,故t (x )在(1,+∞)上单调递减,所以t (x )<t (1)=32a -1<0,则ln x -x +32a <0,所以当a <0时,ln x <x -32a 对任意的x ∈(1,+∞)都成立,所以当x >4-2a 时,h (x )=2ln x +ax 2-4ax +3a <2⎝ ⎛⎭⎪⎫x -32a +ax 2-4ax +3a ,即h (x )<ax ⎣⎢⎡⎦⎥⎤x -⎝⎛⎭⎪⎫4-2a <0,与题意矛盾,故a <0不符合题意.综上所述,实数a 的取值范围是[0,1].。

2019高考大题专项突破,导数函数,方程不等式

2019高考大题专项突破,导数函数,方程不等式

-6-
突破2 题型一 题型二 题型三 题型四
突破3
解: (1)函数 f(x)的定义域为(-∞,+∞),f'(x)=2e2x-aex-a2=(2ex+a)· (ex-a). ①若 a=0,则 f(x)=e2x,在(-∞,+∞)单调递增. ②若 a>0,则由 f'(x)=0 得 x=ln a. 当 x∈(-∞,ln a)时,f'(x)<0;当 x∈(ln a,+∞)时,f'(x)>0.故 f(x)在(-∞,ln a) 单调递减,在(ln a,+∞)单调递增.
1 ②求证: ∑ g(k) ������ =2
������
>
3n2 -n-2 ,其中 n(n+1)
n∈N, n≥2.(参考数据 ln 2≈0.693 1)
-17-
突破2 题型一 题型二 题型三 题型四
突破3
思路导引(1)求出函数f(x)的导数,通过讨论a的范围求出函数的单 调区间即可; (2)将a=-1代入f(x),①求出函数的导数,根据函数的单调性求出函 数的值域即可;
解: (1)因为 f(x)=xea-x+bx, 所以 f'(x)=(1-x)ea-x+b. ������(2) = 2e + 2, 由题意得, ������'(2) = e-1, 即 2e������ -2 + 2������ = 2e + 2, -e������ -2 + ������ = e-1, 解得 a=2,b=e.
必备知识
突破2
突破3
-3-
1.常见恒成立不等式 (1)ln x<x-1;(2)ex>x+1. 2.构造辅助函数的四种方法 (1)移项法:证明不等式f(x)>g(x)(f(x)<g(x))的问题转化为证明f(x)g(x)>0(f(x)-g(x)<0),进而构造辅助函数h(x)=f(x)-g(x); (2)构造“形似”函数:对原不等式同解变形,如移项、通分、取对 数等,把不等式两边变成具有相同结构的式子,根据“相同结构”构造 辅助函数; (3)主元法:对于(或可化为)f(x1,x2)≥A的不等式,可选x1(或x2)为主 元,构造函数f(x,x2)(或f(x1,x)); (4)放缩法:若所构造函数的最值不易求解,可将所证明的不等式 进行放缩,再重新构造函数.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(三)函数与导数(1)1.(2018·咸阳模拟)已知函数f (x )=a (x +1)ln x -x +1(a ∈R ).(1)当a =2时,求函数f (x )在点(1,f (1))处的切线方程;(2)当a ≥12时,求证:对任意的x ≥1,f (x )≥0恒成立. (1)解 由f (x )=2(x +1)ln x -x +1,得f ′(x )=2ln x +2x+1, 切点为(1,0),斜率为f ′(1)=3,所求切线方程为y =3(x -1),即3x -y -3=0.(2)证明 当a =12时, f (x )=12(x +1)ln x -x +1(x ≥1),欲证:f (x )≥0,注意到f (1)=0,只要f (x )≥f (1)即可, f ′(x )=a ⎝⎛⎭⎪⎫ln x +1x +1-1(x ≥1), 令g (x )=ln x +1x+1(x ≥1), 则g ′(x )=1x -1x 2=x -1x 2≥0(x ≥1), 知g (x )在[1,+∞)上单调递增,有g (x )≥g (1)=2,所以f ′(x )≥2a -1≥0⎝ ⎛⎭⎪⎫a ≥12, 可知f (x )在[1,+∞)上单调递增,所以f (x )≥f (1)=0,综上,当a ≥12时,对任意的x ≥1,f (x )≥0恒成立. 2.(2018·潍坊模拟)已知函数f (x )=ln x +12x 2+ax (a ∈R ),g (x )=e x +32x 2. (1)讨论函数f (x )极值点的个数;(2)若对∀x >0,不等式f (x )≤g (x )恒成立,求实数a 的取值范围.解 (1)f ′(x )=1x +x +a =x 2+ax +1x(x >0),令f ′(x )=0,即x 2+ax +1=0,Δ=a 2-4,①当a 2-4≤0,即-2≤a ≤2时, x 2+ax +1≥0恒成立,即f ′(x )≥0,此时f (x )在(0,+∞)上单调递增,无极值点,②当a 2-4>0,即a <-2或a >2时,若a <-2,设方程x 2+ax +1=0的两根为x 1,x 2,且x 1<x 2,由根与系数的关系得⎩⎪⎨⎪⎧ x 1+x 2=-a >0,x 1x 2=1>0,故x 1>0,x 2>0,此时x ∈(0,x 1),f ′(x )>0,f (x )单调递增,x ∈(x 1,x 2),f ′(x )<0,f (x )单调递减,x ∈(x 2,+∞),f ′(x )>0,f (x )单调递增,故x 1,x 2分别为f (x )的极大值点和极小值点,因此a <-2时,f (x )有两个极值点;若a >2,设方程x 2+ax +1=0的两根为x 1,x 2,且x 1<x 2,由根与系数的关系得⎩⎪⎨⎪⎧ x 1+x 2=-a <0,x 1x 2=1>0, 故x 1<0,x 2<0,此时f (x )无极值点,综上,当-2≤a ≤2时,f (x )无极值点,当a <-2时,f (x )有两个极值点,当a ≥-2时,f (x )无极值点.(2)f (x )≤g (x )等价于ln x +12x 2+ax ≤e x +32x 2, 即e x -ln x +x 2≥ax ,因此a ≤e x -ln x +x 2x对∀x >0恒成立. 设h (x )=e x -ln x +x 2x, h ′(x )=⎝ ⎛⎭⎪⎫e x -1x +2x x -e x +ln x -x 2x 2=e x (x -1)+ln x +x 2-1x 2, 当x ∈(0,1)时,e x (x -1)+ln x +x 2-1<0,即h ′(x )<0,h (x )单调递减,当x ∈(1,+∞)时,e x (x -1)+ln x +x 2-1>0,即h ′(x )>0,h (x )单调递增,因此x =1为h (x )的极小值点,即h (x )≥h (1)=e +1,故a ≤e+1.3.(2018·亳州模拟)已知函数f (x )=a +ln x x在x =1处取得极值. (1)求a 的值,并讨论函数f (x )的单调性;(2)当x ∈[1,+∞)时,f (x )≥m 1+x恒成立,求实数m 的取值范围. 解 (1)由题意知f ′(x )=1-a -ln x x 2, 又f ′(1)=1-a =0,即a =1,∴ f ′(x )=-ln x x 2(x >0), 令f ′(x )>0,得0<x <1;令f ′(x )<0,得x >1,∴函数f (x )在(0,1)上单调递增,在(1,+∞)上单调递减.(2)依题意知,当x ∈[1,+∞)时,f (x )≥m 1+x恒成立, 即m ≤(1+x )(1+ln x )x恒成立, 令g (x )=(1+x )(1+ln x )x(x ≥1), 只需g (x )min ≥m 即可,又g ′(x )=x -ln x x 2, 令h (x )=x -ln x ,h ′(x )=1-1x ≥0(x ≥1),∴h (x )在[1,+∞)上单调递增,∴ h (x )≥h (1)=1>0,∴ g ′(x )>0,∴g (x )在[1,+∞)上单调递增,∴g (x )min =g (1)=2,故m ≤2.4.(2018·福建省百校模拟)已知函数f (x )=x -1+a e x.(1)讨论f (x )的单调性;(2)当a =-1时,设-1<x 1<0,x 2>0且f (x 1)+f (x 2)=-5,证明:x 1-2x 2>-4+1e. (1)解 f ′(x )=1+a e x,当a ≥0时,f ′(x )>0,则f (x )在R 上单调递增. 当a <0时,令f ′(x )>0,得x <ln ⎝ ⎛⎭⎪⎫-1a , 则f (x )的单调递增区间为⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-1a , 令f ′(x )<0,得x >ln ⎝ ⎛⎭⎪⎫-1a , 则f (x )的单调递减区间为⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-1a ,+∞. (2)证明 方法一 设g (x )=f (x )+2x =-e x +3x -1,则g ′(x )=-e x +3, 由g ′(x )<0得x >ln 3;由g ′(x )>0得x <ln 3,故g (x )max =g (ln 3)=3ln 3-4<0,从而得g (x )=f (x )+2x <0,∵f (x 1)+f (x 2)=-5,∴f (x 2)+2x 2=-5-f (x 1)+2x 2<0,即x 1-2x 2>-4+1e. 方法二 ∵f (x 1)+f (x 2)=-5,∴x 1=12e e x x +-x 2-3,∴x 1-2x 2=12e e x x+-3x 2-3,设g (x )=e x -3x ,则g ′(x )=e x -3,由g ′(x )<0得x <ln 3,由g ′(x )>0得x >ln 3,故g (x )min =g (ln 3)=3-3ln 3.∵-1<x 1<0,x 2>0,∴x 1-2x 2>e -1+3-3ln 3-3=1e-3ln 3, ∵3ln 3=ln 27<4,∴x 1-2x 2>-4+1e.5.(2018·江南十校模拟)已知函数f (x )=a +ln x x,g (x )=mx . (1)求函数f (x )的单调区间; (2)当a =0时,f (x )≤g (x )恒成立,求实数m 的取值范围;(3)当a =1时,求证:当x >1时,(x +1)⎝ ⎛⎭⎪⎫x +1e x f (x )>2⎝ ⎛⎭⎪⎫1+1e . (1)解 f (x )=a +ln x x的定义域为(0,+∞), 且f ′(x )=1-(a +ln x )x 2=1-ln x -a x 2. 由f ′(x )>0得1-ln x -a >0,即ln x <1-a ,解得0<x <e1-a , ∴f (x )在(0,e 1-a )上单调递增,在(e 1-a ,+∞)上单调递减.(2)解 a =0,f (x )=ln x x, ∴f (x )≤g (x )⇔ln x x ≤mx ⇔m ≥ln x x 2, 令u (x )=ln x x 2,∴u ′(x )=1-2ln x x 3, 由u ′(x )>0得0<x <e ,∴u (x )在(0,e)上单调递增,在(e ,+∞)上单调递减, ∴u (x )max =u (e)=ln e e =12e ,∴m ≥12e. (3)证明 (x +1)⎝ ⎛⎭⎪⎫x +1e x f (x )>2⎝ ⎛⎭⎪⎫1+1e , 等价于1e +1·(x +1)(ln x +1)x >2e x -1x e x +1. 令p (x )=(x +1)(ln x +1)x ,则p ′(x )=x -ln x x2, 令φ(x )=x -ln x ,则φ′(x )=1-1x =x -1x, ∵x >1,∴φ′(x )>0,∴φ(x )在(1,+∞)上单调递增, φ(x )>φ(1)=1>0,p ′(x )>0,∴p (x )在(1,+∞)上单调递增,∴p (x )>p (1)=2,∴p (x )e +1>2e +1, 令h (x )=2e x -1x e x +1,则h ′(x )=2e x -1(1-e x )(x e x +1)2,∵x >1,∴1-e x <0,∴h ′(x )<0,h (x )在(1,+∞)上单调递减,∴当x >1时,h (x )<h (1)=2e +1, ∴p (x )e +1>2e +1>h (x ), 即(x +1)⎝ ⎛⎭⎪⎫x +1e xf (x )>2⎝ ⎛⎭⎪⎫1+1e ,x >1.。

相关文档
最新文档