第十一章三角形单元测试3
人教版八年级数学上册《第十一章三角形》单元测试卷-附含答案
人教版八年级数学上册《第十一章三角形》单元测试卷-附含答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列长度的各组线段能组成一个三角形的是()A.1cm,2cm,3cm B.3cm,8cm,5cmC.4cm,5cm,10cm D.4cm,5cm,6cm2.以下四个图片中的物品,没有利用到三角形的稳定性的是()A.B.C.D.3.在△ABC中,若∠A=80°,∠B=20°则∠C=()A.80°B.70°C.60°D.100°4.如图,△ABC的面积为8,AD为BC边上的中线,E为AD上任意一点,连接BE,CE,图中阴影部分的面积为()A.2 B.3 C.4 D.55.如图AB∥CD,AE交CD于点F,连接DE,若∠D=28°,∠E=112°则∠A的度数为()A.48°B.46°C.42°D.40°6.如图∠A=100°,∠B=20°则∠ACD的度数是()A.100°B.110°C.120°D.140°7.小明观察“抖空竹”时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB∥CD,∠BAE= 91°∠DCE=124°,则∠AEC的度数是( )A.29°B.30°C.31°D.33°8.如图,小明从点A出发沿直线前进10米到达点B,向左转45°后又沿直线前进10米到达点C,再向左转45°后沿直线前进10米到达点D……照这样走下去,小明第一次回到出发点A时所走的路程为()A.100米B.80米C.60米D.40米二、填空题9.如图,A\B为池塘岸边两点,小丽在池塘的一侧取一点O,得到△OAB,测得OA=16米OB=12米,A\B 间最大的整数距离为米.10.正n形的每个内角都是120°,这个正n边形的对角线条数为条.11.如图,BD是△ABC的中线,DE⊥BC于点E,已知△ABD的面积是3,BC的长是4,则DE的长是.12.如图AB∥CD,若∠A=65°.∠E=38°,则∠C=.13.如图,△ABC中,AD\AE分别为角平分线和高∠B=46°,∠C=64°则∠DAE=.三、解答题14.若一个多边形的内角和比它的外角和的3倍多180°,求这个多边形的边数和对角线的条数.15.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.16.如图,AD是△ABC的高,BE平分∠ABC交AD于E,若∠C=60°,∠BED=70°,求∠BAC的度数.17.如图,在△BCD中BC=3,BD=5.(1)若CD的长是偶数,直接写出CD的值;(2)若点A在CB的延长线上,点E、F在CD的延长线上,且AE∥BD,∠A=55°,∠BDE=125°,求∠C 的度数.18.如图,在五边形ABCDE中AE∥CD,∠A=100°,∠B=120°.(1)若∠D=110°,请求∠E的度数;(2)试求出∠C的度数.参考答案1.【答案】D2.【答案】D3.【答案】A4.【答案】C5.【答案】D6.【答案】C7.【答案】D8.【答案】B9.【答案】2710.【答案】911.【答案】3212.【答案】27°13.【答案】9°14.【答案】解:设这个多边形的边数为n,则内角和为180°(n−2),依题意得:180(n−2)=360×3+180解得n=9=27对角线条数:9×(9−3)2答:这个多边形的边数是9,对角线有27条15.【答案】解:∵∠C=∠ABC=2∠A∴∠C+∠ABC+∠A=5∠A=180°∴∠A=36°则∠C=∠ABC=2∠A=72°又BD是AC边上的高则∠DBC=90°-∠C=18°16.【答案】解:∵AD是△ABC的高.即AD⊥BC∴∠ADB=90°∵在Rt△EBD中∠BED=70°∴∠DBE=20°∵BE平分∠ABC∴∠ABE=∠DBE=20°∴∠ABD=40°∴∠BAC=180°−∠ABD−∠C=180°−40°−60°=80°17.【答案】(1)解:在△BCD中BC=3,BD=5∴2<CD<8∵CD的长是偶数∴CD的长为4或6故答案为:4或6;(2)解:∵AE∥BD∴∠CBD=∠A=55°∵∠BDE=∠C+∠CBD=125°∴∠C=∠BDE−∠CBD=125°−55°=70°18.【答案】(1)解:∵AE∥CD∴∠D+∠E=180°∴∠E=180°−∠D=180°−110°=70°(2)解:五边形ABCDE中∵∠D+∠E=180°,∠A=100°∴∠C=540°−(∠D+∠E)−∠A−∠B=140°。
人教版八年级数学第十一章《三角形》单元测试题(含答案)
人教版八年级数学第十一章《三角形》单元测试题(含答案)时间:120分钟满分:120分一、选择题(共10小题,满分30分,每小题3分)1.(3分)如图,在四边形ABCD中,AB>AD,对角线AC平分∠BAD,下列结论正确的是()A.AB﹣AD>|CB﹣CD|B.AB﹣AD=|CB﹣CD|C.AB﹣AD<|CB﹣CD|D.AB﹣AD与|CB﹣CD|的大小关系不确定2.(3分)有两条高在三角形外部的三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不确定3.(3分)如图,为了估计池塘两岸A,B间的距离,在池塘的一侧选取点P,测得P A=15米,PB=11米那么A,B间的距离不可能是()A.5米B.8.7米C.27米D.18米4.(3分)一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是()A.11B.12C.13D.145.(3分)如图,在△ABC中,AF平分∠BAC交BC于点F、BE平分∠ABC交AC于点E,AF与BE相交于点O,AD是BC边上的高,若∠C=50°,BE⊥AC,则∠DAF的度数为()A.10°B.12°C.15°D.20°6.(3分)如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF,以下结论:①AD∥BC,②∠ACB=∠ADB,③∠ADC+∠ABD=90°,④∠ADB=45°﹣∠CDB,其中正确的结论有()A.1个B.2个C.3个D.4个7.(3分)如图,在三角形ABC中,AH⊥BC,BF平分∠ABC,BE⊥BF,EF∥BC,以下四个结论:①AH⊥EF;②∠ABF=∠EFB;③AC∥BE;④∠E=∠ABE.其中正确的结论有()A.4个B.3个C.2个D.1个8.(3分)如图,四边形ABCD为一长方形纸带,AD∥BC,将四边形ABCD沿EF折叠,C、D两点分别与C′、D′对应,若∠1=2∠2,则∠3的度数为()A.50°B.54°C.58°D.62°9.(3分)若n边形的内角和与外角和相加为1800°,则n的值为()A.7B.8.C.9D.1010.(3分)如图,大建从A点出发沿直线前进8米到达B点后向左旋转的角度为α,再沿直线前进8米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了72米,则每次旋转的角度α为()A.30°B.40°C.45°D.60°二、填空题(共5小题,满分15分,每小题3分)11.(3分)如图,正六边形ABCDEF的顶点A、F分别在正方形BMGH的边BH、GH上.若正方形BMGH的边长为6,则正六边形ABCDEF的边长为.12.(3分)如图,在△ABC中,∠B=80°,∠C=42°,AD⊥BC于点D,AE平分∠BAC,则∠DAE=.13.(3分)如图,在△ABC中,∠A=65°,则∠1+∠2=°.14.(3分)如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC是半高三角形,且斜边AB=10,则它的周长等于.15.(3分)如图,在△ABC中,AD是中线,DE⊥AB于E,DF⊥AC于F,若AB=6cm,AC=4cm,则.三、解答题(共10小题,满分75分)16.(7分)如图所示,已知AD,AE分别是△ABC的高和中线,AB=6cm,AC=8cm,BC =10cm,∠CAB=90°.试求:(1)AD的长;(2)△ABE的面积;(3)△ACE和△ABE的周长的差.17.(7分)如图,P为△ABC内任意一点,求证:AB+AC>PB+PC.18.(7分)已知a,b,c分别为△ABC的三边,且满足a+b=3c﹣2,a﹣b=2c﹣6.(1)求c的取值范围;(2)若△ABC的周长为12,求c的值.19.(7分)如图所示,在△ABC中,CD⊥AB于点D,EF⊥CD于点G,∠ADE=∠EFC.(1)证明AB∥EF.(2)请说明∠AED=∠ACB的理由.(3)若∠BDE=2∠B+36°,求∠DEF的度数.20.(7分)已知:在△ABC中,AE平分∠BAC,BF平分∠ABC,AE、BF交于点G.(1)如图1:若∠C=60°,求∠AGB的度数;(2)如图2:点D是AE延长线上一点,连接BD、CD,∠ADC=∠ABG+∠BAG,求证:CD∥BF;(3)如图3:在(2)的条件下,过点G作GK∥AB,交BD于点K,点M在线段DC 的延长线上,连接KM,若∠ACB=∠BDA,∠ABC+∠BAE=2∠DKM,∠M=16°,求∠BAC的度数.21.(7分)如图所示,在△ABC中,AD平分∠BAC交BC于点D,BE平分∠ABC交AD 于点E.(1)若∠C=60°,∠BAC=80°,求∠ADB的度数;(2)若∠BED=60°,求∠C的度数.22.(7分)如图,在三角形ABC中,点D是BC上一点,点F是AC上一点,连接AD、DF,点E是AD上一点,连接EF,且∠1+∠2=180°,∠B=∠3.(1)求证:AB∥DF;(2)若FD平分∠CFE,∠BAD=50°,∠3=70°,求∠CAD的度数.23.(8分)如图,四边形ABCD中,∠A=75°,∠C=105°,BE平分∠ABC,DF平分∠ADC.求:(1)∠ABC+∠ADC的值;(2)∠BED+∠BFD的值.24.(9分)已知如图1,线段AB,CD相交于O点,连接AD,CB,我们把如图1的图形称之为“8字形”.那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:(1)在图1中,请写出∠A,∠B,∠C,∠D之间的数量关系,并说明理由;(2)如图2,计算∠A+∠B+∠C+∠D+∠E+∠F的度数.25.(9分)△ABC中,AD是∠BAC的角平分线,AE是△ABC的高.(1)如图1,若∠B=40°,∠C=60°,求∠DAE的度数;(2)如图2(∠B<∠C),试说明∠DAE与∠B、∠C的数量关系;(3)拓展:如图3,四边形ABDC中,AE是∠BAC的角平分线,DA是∠BDC的角平分线,猜想:∠DAE与∠B、∠C的数量关系是否改变.说明理由.参考答案一、选择题(共10小题,满分30分,每小题3分)1.A;2.C;3.C;4.C;5.C;6.B;7.B;8.B;9.D;10.B;二、填空题(共5小题,满分15分,每小题3分)11.4;12.19°;13.245;14.10+10或610;15.;三、解答题(共10小题,满分75分)16.解:∵∠BAC=90°,AD是边BC上的高,∴AB•AC BC•AD,∴AD 4.8(cm),即AD的长度为4.8cm;(2)方法一:如图,∵△ABC是直角三角形,∠BAC=90°,AB=6cm,AC=8cm,∴S△ABC AB•AC6×8=24(cm2).又∵AE是边BC的中线,∴BE=EC,∴BE•AD EC•AD,即S△ABE=S△AEC,∴S△ABE S△ABC=12(cm2).∴△ABE的面积是12cm2.方法二:因为BE BC=5,由(1)知AD=4.8,所以S△ABE BE•AD5×4.8=12(cm2).∴△ABE的面积是12cm2.(3)∵AE为BC边上的中线,∴BE=CE,∴△ACE的周长﹣△ABE的周长=AC+AE+CE﹣(AB+BE+AE)=AC﹣AB=8﹣6=2(cm),即△ACE和△ABE的周长的差是2cm.17.证明:延长BP交AC于点D,在△ABD中,PB+PD<AB+AD①在△PCD中,PC<PD+CD②①+②得PB+PD+PC<AB+AD+PD+CD,即PB+PC<AB+AC,即:AB+AC>PB+PC.18.解:(1)∵a,b,c分别为△ABC的三边,a+b=3c﹣2,a﹣b=2c﹣6,∴,解得:1<c<6.故c的取值范围为1<c<6;(2)∵△ABC的周长为12,a+b=3c﹣2,∴a+b+c=4c﹣2=12,解得c=3.5.故c的值是3.5.19.解:(1)证明:∵CD⊥AB于点D,EF⊥CD于点G,∴∠BDC=∠FGC,=90°,∴AB∥EF(同位角相等,两直线平行).(2)证明:由(1)得AB∥EF,∴∠B=∠EFC(两直线平行,同位角相等),又∵∠ADE=∠EFC.∴∠B=∠ADE;(3)由(2)得∠B=∠ADE,∴DE∥BC,由(1)得AB∥EF,∴四边形BDEF是平行四边形(两组对边平行的四边形是平行四边形),∴∠DEF=∠B(平行四边形对角相等),∵∠B=∠ADE,∠BDE=2∠B+36°,∴180°﹣∠B=2∠B+36°,∴∠B=48°,∴∠DEF=48°.20.(1)证明:如图1,∵AE、BF分别平分∠BAC与∠ABC,∴,,在△ABC中,∠ABC+∠ACB+∠C=180°,∠C=60°,∴∠ABC+∠BAC=180°﹣60°=120°,∴∠ABF+∠BAE∠ABC∠BAC(∠ABC+∠BAC)120°=60°,∴∠AGB=180°﹣60°=120°;(2)证明:如图2,∵∠BGD是△ABG得一个外角,∴∠BGD=∠BAG+∠ABG,∵∠ADC=∠BAG+∠ABG,∴∠BGD=∠ADC,∴CD∥BF;(3)解:如图3,∵∠BED=∠AEC,∠ACB=∠BDA,∴∠CAE=∠DBE,∵AE平分∠BAC,BF平分∠ABC,设∠ABF=∠CBF=α,∠BAD=∠CAD=∠DBC=β,∴∠AEC=2α+β,∵∠ABC+∠BAE=2∠DKM,∴,∵GK∥AB,∴∠BGK=∠ABG=α,∴∠GKD=∠GBK+∠BGK=2α+β,∴,∵GB∥DM,∠M=16°,∴∠GBK+∠MDK=180°,∵∠GBK+∠GKB+∠BGK+∠MKD+∠KDM+∠M=360°,∠BKG+∠MKD=180°﹣∠GKM,∴180°+180°﹣∠GKM+∠BGK+∠M=360°,∴∠GKM=∠BGK+∠M,∴,∴β=32°,∴∠BAC=2×32°=64°.21.解:(1)∵AD平分∠BAC,∠BAC=80°,∴∠DAC∠BAC=40°,∵∠ADB是△ADC的外角,∠C=60°,∴∠ADB=∠C+∠DAC=100°;(2)∵∠BED是△ABE的外角,∠BED=60°,∴∠BAD+∠ABE=∠BED=60°,∵AD平分∠BAC,BE平分∠ABC,∴∠BAC=2∠BAD,∠ABC=2∠ABE,∴∠BAC+∠ABC=2(∠BAD+∠ABE)=120°,∵∠BAC+∠ABC+∠C=180°,∴∠C=180°﹣(∠BAC+∠ABC)=60°.22.(1)证明:∵∠1+∠2=180°,∠1+∠DEF=180°,∴∠DEF=∠2.∴EF∥BC.∴∠3=∠FDC.∵∠B=∠3,∴∠B=∠FDC.∴AB∥DF.(2)解:∵AB∥DF,∴∠BAD=∠EDF=50°.∵FD平分∠CFE,∴∠EFC=2∠3=140°.∴∠AFE=180°﹣∠EFC=40°,∠1=∠3+∠EDF=70°+50°=120°.∴∠CAD=180°﹣∠1﹣∠AFE=20°.23.解:(1)∵四边形ABCD中,∠A=75°,∠C=105°,∴∠ABC+∠ADC=360°﹣75°﹣105°=180°;(2)如图,∵BE平分∠ABC,DF平分∠ADC,∴∠1∠ABC,∠2∠ADC,∴∠1+∠2(∠ABC+∠ADC)=90°,由三角形外角的性质可得,∠BED=∠1+∠A,∠BFD=∠2+∠A,∴∠BED+∠BFD=∠1+∠A+∠2+∠A=∠1+∠2+2∠A=90°+150°=240°.24.解:(1)在△AOD中,∠AOD=180°﹣∠A﹣∠D,在△BOC中,∠BOC=180°﹣∠B﹣∠C,∵∠AOD=∠BOC(对顶角相等),∴180°﹣∠A﹣∠D=180°﹣∠B﹣∠C,∴∠A+∠D=∠B+∠C;(2)如图3,连接AD,则∠BAD+∠B+∠C+∠ADC=360°,根据“8字形”数量关系,∠E+∠F=∠EDA+∠F AD,所以,∠A+∠B+∠C+∠D+∠E+∠F=360°.25.解:(1)∵∠B=40°,∠C=60°,∠BAC+∠B+∠C=180°,∴∠BAC=80°,∵AD是∠BAC的角平分线,∴∠CAD=∠BAD∠BAC=40°,∵AE是△ABC的高,∴∠AEC=90°,∵∠C=60°,∴∠CAE=90°﹣60°=30°,∴∠DAE=∠CAD﹣∠CAE=10°;(2)∵∠BAC+∠B+∠C=180°,∴∠BAC=180°﹣∠B﹣∠C,∵AD是∠BAC的角平分线,∴∠CAD=∠BAD∠BAC,∵AE是△ABC的高,∴∠AEC=90°,∴∠CAE=90°﹣∠C,∴∠DAE=∠CAD﹣∠CAE∠BAC﹣(90°﹣∠C)(180°﹣∠B﹣∠C)﹣90°+∠C∠C∠B,即∠DAE∠C∠B;(3)不变,理由:连接BC交AD于F,过点A作AM⊥BC于M,过点D作DN⊥BC于N,∵AE是∠BAC的角平分线,AM是高,∴∠EAM(∠ACB﹣∠ABC),同理,∠ADN(∠BCD﹣∠CBD),∵∠AFM=∠DFN,∠AMF=∠DNF=90°,∴∠MAD=∠ADN,∴∠DAE=∠EAM+∠MAD=∠EAM+∠ADN(∠ACB﹣∠ABC)(∠BCD﹣∠CBD)(∠ACD﹣∠ABD).。
【精品】人教版八年级数学上册第11章三角形单元检测题(有答案)【3套】试题
人教版八年级数学上册第11章三角形单元检测题(有答案)一.选择题(共10小题,每小题3分,满分30分)1.将一个三角形纸片剪开分成两个三角形,这两个三角形不可能()A.都是直角三角形B.都是钝角三角形C.都是锐角三角形D.是一个直角三角形和一个钝角三角形2.若线段AM、AN分别是△ABC中BC边上的高线和中线,则()A.AM>AN B.AM>AN或AM=ANC.AM<AN D.AM<AN或AM=AN3.下列图形具有稳定性的是()A.B.C.D.4.下列各组数可能是一个三角形的边长的是()A.4,4,9 B.2,6,8 C.3,4,5 D.1,2,3 5.如图,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC外,若∠2=18°,则∠1的度数为()A.50°B.98°C.75°D.80°6.在△ABC中,∠A==∠C,则这个三角形是()A.锐角三角形B.等腰三角形C.钝角三角形D.含30°角的直角三角形7.在△ABC中,若满足下列条件,则一定不是直角三角形的是()A.∠A=∠B+∠CB.∠A=∠C﹣∠BC.一个外角等于与它相邻的内角D.∠A:∠B:∠C=1:3:58.如图所示,在△ABC中,∠C=90°,则∠B为()A.15°B.30°C.50°D.60°9.将一个多边形纸片沿一条直线剪下一个三角形后,变成一个六边形,则原多边形纸片的边数不可能是()A.5 B.6 C.7 D.810.设BF交AC于点P,AE交DF于点Q.若∠APB=126°,∠AQF=100°,则∠A ﹣∠F=()A.60°B.46°C.26°D.45°二.填空题(共8小题,每小题3分,满分24分)11.三角形的三边之比是3:4:5,周长是36cm,则最长边比最短边长.12.如图,已知BD是△ABC的中线,AB=5,BC=3,且△ABD的周长为11,则△BCD 的周长是.13.空调安装在墙上时,一般都会采用如图所示的方法固定,这种方法应用的几何原理是.14.若△ABC的周长为18,其中一条边长为4,则△ABC中的最长边x的取值范围为.15.如图,在△ABC中,∠B=60°,∠BAC与∠BCA的三等分线分别交于点D、E两点,则∠ADC的度数是.16.如图,CE平分∠ACD,∠A=40°,∠B=30°,∠D=104°,则∠BEC=.17.如图,直线a∥b,Rt△ABC的直角顶点C在直线b上,∠2=70°,∠1=.18.如果一个多边形的边数增加1,它的内角和就增加十分之一,那么这个多边形的边数,三.解答题(共8小题,满分66分)19.(6分)“五一”黄金周,小梦一家计划从家B出发,到景点C旅游,由于BC之间是条湖,无法通过,如图所示只有B﹣A﹣C和B﹣P﹣C两条路线,哪一条比较近?为什么?(提示:延长BP交AC于点D)20.(6分)若三角形的三边长分别是2,x,10,且x是不等式的正偶数解,试求第三边的长x.21.(6分)如图,已知,在△ABC中,∠C=∠ABC,BE⊥AC,∠DBE=60°,求∠C 的度数.22.(6分)如图∠A=∠B,∠C=α,DE⊥AC于点E,FD⊥AB于点D.(1)若∠EDA=25°,则∠EDF=°;(2)若∠A=65°,则∠EDF=°;(3)若α=50°,则∠EDF=°;(4)若∠EDF=65°,则α=°;(5)∠EDF与α的关系为.23.(8分)如图,在四边形ABCD中,∠B=50°,∠C=110°,∠D=90°,AE⊥BC,AF是∠BAD的平分线,与边BC交于点F.求∠EAF的度数.24.(10分)如图,已知六边形ABCDEF的每个内角都相等,连接AD.(1)若∠1=48°,求∠2的度数;(2)求证:AB∥DE.25.(12分)已知△ABC中,∠A=60°,∠ACB=40°,D为BC边延长线上一点,BM 平分∠ABC,E为射线BM上一点.如图1,连接CE,①若CE∥AB,求∠BEC的度数;②若CE平分∠ACB,求∠BEC的度数.26.(12分)如图1,已知两条直线AB,CD被直线EF所截,分别交于点E,点F,EM 平分∠AEF交CD于点M,且∠FEM=∠FME.(1)直线AB与直线CD是否平行,说明你的理由;(2)如图2,点G是射线MD上一动点(不与点M,F重合),EH平分∠FEG交CD 于点H,过点H作HN⊥EM于点N,设∠EHN=α,∠EGF=β.①当点G在点F的右侧时,若β=60°,求α的度数;②当点G在运动过程中,α和β之间有怎样的数量关系?请写出你的猜想,并加以证明.参考答案一.选择题1.解:如图,沿三角形一边上的高剪开即可得到两个直角三角形.如图,钝角三角形沿虚线剪开即可得到两个钝角三角形.如图,直角三角形沿虚线剪开即可得到一个直角三角形和一个钝角三角形.因为剪开的边上的两个角互补,故这两个三角形不可能都是锐角三角形.故选:C.2.解:如图,∵AM⊥BC,∴根据垂线段最短可知:AM≤AN,故选:D.3.解:∵三角形具有稳定性,∴A选项符合题意而B,C,D选项不合题意.故选:A.4.解:A、因为4+4<9,所以本组数不能构成三角形.故本选项错误;B、因为2+6=8,所以本组数不能构成三角形.故本选项错误;C、因为3+4>5,所以本组数可以构成三角形.故本选项正确;D、因为1+2=3,所以本组数不能构成三角形.故本选项错误;故选:C.5.解:∵∠A=65°,∠B=75°,∴∠C=180°﹣∠A﹣∠B=180°﹣65°﹣75°=40°;又∵将三角形纸片的一角折叠,使点C落在△ABC外,∴∠C′=∠C=40°,∵∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,∠2=18°,∴∠3+18°+∠4+40°+40°=180°,∴∠3+∠4=82°,∴∠1=180°﹣82°=98°.故选:B.6.解:∵∠A==∠C,∴∠B=2∠A,∠C=3∠A,又∵∠A+∠B+∠C=180°,∴∠A+2∠A+3∠A=180°,解得:∠A=30°,∴∠C=3∠A=3×30°=90°,故选:D.7.解:A、∵∠A=∠B+∠C,∠A+∠B+∠C=180°,∴∠A=90°,∴△ABC是直角三角形,故本选项不符合题意.B、∵∠A=∠C﹣∠B,∠A+∠B+∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故本选项不符合题意.C、∵一个外角等于与它相邻的内角,又这两个角互补,∴相邻的内角是90°,∴三角形是直角三角形,故本选项不符合题意.D、∵∠A:∠B:∠C=1:3:5,∴∠A=20°,∠B=60°,∠C=100°,∴△ABC是钝角三角形,故本选项符合题意,故选:D.8.解:如图所示,在△ABC中,∠C=90°,则x+2x=90°.x=30°.所以2x=60°,即∠B为60°.故选:D.9.解:如图可知,原来多边形的边数可能是5,6,7.不可能是8.故选:D.10.解:如图:∵∠1=∠APB﹣∠A=126°﹣∠A,∠2=180°﹣∠AQF﹣∠F=180°﹣100°﹣∠F =80°﹣∠F;∵∠1=∠2,∴126°﹣∠A=80°﹣∠F;∴∠A﹣∠F=46°.故选:B.二.填空题11.解:由题意,设三边分别为3xcm,4xcm,5xcm,则3x+4x+5x=36,解得x=3,三边分别为9cm,12cm,15cm.故最长的边长比最短的边长长6cm.故答案是:6cm.12.解:∵BD是△ABC的中线,∴AD=CD,∵△ABD的周长为11,AB=5,BC=3,∴△BCD的周长是11﹣(5﹣3)=9,故答案为9.13.解:这种方法应用的数学知识是:三角形的稳定性,故答案为:三角形具有稳定性.14.解:∵△ABC的周长为18,其中一条边长为4,这个三角形的最大边长为x,∴第三边的长为:18﹣4﹣x=14﹣x,∴x>4且x>14﹣x,∴x>7,根据三角形的三边关系,得:x<14﹣x+4,解得:x<9;∴7<x<9,故答案为:7<x<9.15.解:∵在△ABC中,∠B=60°,∴∠BAC+∠BCA=180°﹣∠B=120°.∵∠BAC与∠BCA的三等分线分别交于点D、E两点,∴∠DAC=∠BAC,∠DCA=∠BCA,∴∠DAC+∠DCA=(∠BAC+∠BCA)=80°,∴∠ADC=180°﹣(∠DAC+∠DCA)=180°﹣80°=100°.故答案为:100°.16.解:延长CD交AB于F,∠BDC是△BDF的一个外角,则∠BFD=∠BDC﹣∠B=104°﹣30°=74°,同理,∠ACF=∠BFD﹣∠A=74°﹣40°=34°,∵CE平分∠ACD,∴∠ECA=∠ACF=17°,∴∠BEC=∠A+∠ECA=40°+17°=57°,故答案为:57°.17.解:∵a∥b,∴∠3=∠2=70°,∴∠1=180°﹣90°﹣70°=20°,故答案为:20°.18.解:设多边形的边数是n,根据题意得:180(n+1﹣2)=180(n﹣2)(1+),解得:n=12.故答案是:12.三.解答题19.解:如图,延长BP交AC于点D.∵△ABD中,AB+AD>BD=BP+PD,△CDP中,PD+CD>CP,∴AB+AD+PD+CD>BP+PD+CP,即AB+AD+CD>BP+CP,∴AB+AC>BP+CP,∴B﹣P﹣C路线较近.20.解:原不等式可化为5(x+1)>20﹣4(1﹣x),解得x<11,∵x是它的正整数解,∴根据三角形第三边的取值范围,得8<x<12,∵x是正偶数,∴x=10.∴第三边的长为10.21.解:∵BE⊥AC,∴∠AEB=90°,∵∠DBE=60°,∴∠A=90°﹣60°=30°,∴∠C=∠ABC=(180°﹣30°)=75°.22.解:(1)∵DF⊥AB,∴∠ADF=90°,∴∠EDF=90°﹣∠EDA=65°.(2)∵DE⊥AC,∴∠AED=90°,∴∠ADE=90°﹣65°=25°,∴∠EDF=65°.(3)∵α=50°,∴∠A=∠B=(180°﹣50°)=65°,∴∠DEF=65°.(4)∵∠EDF=65°,∴∠ADE=90°﹣65°=25°,∴∠A=∠B=65°,∴α=180°﹣130°=50°(5)∵∠A=∠B,∠C=α∴∠A=∠B=(180°﹣α)=90°﹣α,∵DE⊥AC于点E,FD⊥AB于点D,∴∠AED=∠FDB=90°∴∠EDA=∠BFD=90°﹣(90°﹣α)=α,∴∠EDF=90°﹣∠EDA=90°﹣α.故答案为(1)65°;(2)25°;(3)65°;(4)50°;(5)90°﹣0.5a;23.解:∵AE⊥BC,∴∠AEC=∠AEB=90°,∵∠B=50°,∴∠BAE=180°﹣90°﹣50°=40°,∵∠C=110°,∠D=90°,∴∠DAE=360°﹣∠D﹣∠C﹣∠AEC=70°,∴∠DAB=∠BAE+∠DAE=40°+70°=110°,∵AF平分∠DAB,∴∠FAB=∠DAB=110°=55°,∴∠EAF=∠FAB﹣∠BAE=55°﹣40°=15°.24.解:(1)∵六边形ABCDEF的各内角相等,∴一个内角的大小为,∴∠E=∠F=∠BAF=120°.∵∠FAB=120°,∠1=48°,∴∠FAD=∠FAB﹣∠DAB=120°﹣48°=72°.∵∠2+∠FAD+∠F+∠E=360°,∠F=∠E=120°,∴∠ADE=360°﹣∠FAD﹣∠F﹣∠E=360°﹣72°﹣120°﹣120°=48°.(2)证明:∵∠1=120°﹣∠DAF,∠2=360°﹣120°﹣120°﹣∠DAF=120°﹣∠DAF,∴∠1=∠2,∴AB∥DE.25.解:①如图1,∵∠A=60°,∠ACB=40°,∴∠ABC=80°,∵BM平分∠ABC,∴∠ABE=∠ABC=40°,∵CE∥AB,∴∠BEC=∠ABE=40°;②如图2,∵∠A=60°,∠ACB=40°,∴∠ABC=80°,∵BM平分∠ABC,CE平分∠ACD,∴∠CBE=∠ABC=40°,∠ECB=∠ACB=20°,∴∠BEC=180°﹣∠ECB﹣∠CBE=180°﹣20°﹣40°=120°.26.解:(1)结论:AB∥CD.理由:如图1中,∵EM平分∠AEF交CD于点M,∴∠AEM=∠MEF,∵∠FEM=∠FME.∴∠AEM=∠FME,∴AB∥CD.(2)①如图2中,∵AB∥CD,∴∠BEG=∠EGH=β=60°,∴∠AEG=120°,∵∠AEM=∠EMF,∠HEF=∠HEG,∴∠HEN=∠MEF+∠HEF=∠AEG=60°,∵HN⊥EM,∴∠HNE=90°,∴∠EHN=90°﹣∠HEN=30°.②猜想:α=β.理由:∵AB∥CD,∴∠BEG=∠EGH=β,∴∠AEG=180°﹣β,∵∠AEM=∠EMF,∠HEF=∠HEG,∴∠HEN=∠MEF+∠HEF=∠AEG=90°﹣β,∵HN⊥EM,∴∠HNE=90°,∴α=∠EHN=90°﹣∠HEN=β.人教版八年级上册第十一章三角形单元测试(3)一、选择题(每题3分,共30分)1.如图,∠1的大小等于()A.40°B.50°C.60°D.70°(第1题)(第4题)2.下列长度的三条线段,能组成三角形的是()A.2 cm,3 cm,4 cm B.2 cm,3 cm,5 cmC.2 cm,5 cm,10 cm D.8 cm,4 cm,4 cm3.在△ABC中,能说明△ABC是直角三角形的是()A.∠A:∠B :∠C=1 :2 :2 B.∠A :∠B :∠C=3 :4 :5 C.∠A :∠B :∠C=1 :2 :3 D.∠A :∠B :∠C=2 :3 :4 4.如图,在△ABC中,∠A=80°,∠B=40°,D,E分别是AB,AC上的点,且DE∥BC,则∠AED的度数是()A.40°B.60°C.80°D.120°5.在下列各图形中,分别画出了△ABC中BC边上的高AD,其中正确的是()6.如图,△ABC的角平分线BE,CF相交于点O,且∠FOE=121°,则∠A的度数是()A.52°B.62°C.64°D.72°(第6题) (第7题)(第9题) (第10题)7.如图,在△ABC中,∠C=90°,D,E是AC上两点,且AE=DE,BD平分∠EBC.下列说法不正确...的是()A.BE是△ABD的中线B.BD是△BCE的角平分线C.∠1=∠2=∠3 D.BC是△ABE的高8.一个多边形的内角和比它的外角和的3倍少180°,这个多边形的边数是()A.8 B.7 C.6 D.59.如图,在△ABC中,∠C=75°,若沿图中虚线截去∠C,则∠1+∠2=()A.360°B.180°C.255°D.145°10.如图,∠A,∠B,∠C,∠D,∠E五个角的和等于()A.90°B.180°C.360°D.540°二、填空题(每题3分,共24分)11.人站在晃动的公交车上,若分开两腿站立,还需伸出一只手抓住栏杆才能站稳,这是利用了___________________________________________________.12.正十边形每个外角的度数是________.13.已知三角形三边长分别为1,x,5,则整数x=________.14.将一副三角尺按如图所示放置,则∠1=________.(第14题)(第16题)(第18题)15.一个多边形从一个顶点出发可以画9条对角线,则这个多边形的内角和为________.16.如图,在△ABC中,AD是BC边上的中线,BE是△ABD中AD边上的中线,若△ABC的面积是24,则△ABE的面积是________.17.当三角形中一个内角α是另一个内角β的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”.若一个“半角三角形”的“半角”为20°,则这个“半角三角形”最大内角的度数为________. 18.已知△ABC ,有下列说法:(1)如图①,若P 是∠ABC 和∠ACB 的平分线的交点,则∠P =90°+12∠A ; (2)如图②,若P 是∠ABC 和外角∠ACE 的平分线的交点,则∠P =90°-∠A ; (3)如图③,若P 是外角∠CBF 和∠BCE 的平分线的交点,则∠P =90°-12∠A . 其中正确的有______个.三、解答题(23题12分,24题14分,其余每题10分,共66分)19.如图,一艘轮船在A 处看见巡逻艇C 在其北偏东62°的方向上,此时一艘客船在B 处看见巡逻艇C 在其北偏东13°的方向上.试求此时在巡逻艇上看这两艘船的视角∠ACB 的度数.(第19题)20.如图,BD ,CE 是△ABC 的两条高,它们交于O 点. (1)∠1和∠2的大小关系如何?并说明理由. (2)若∠A =50°,∠ABC =70°,求∠3和∠4的度数.(第20题)21.如图,已知AD是△ABC的角平分线,CE是△ABC的高,AD,CE相交于点P,∠BAC=66°,∠BCE=40°.求∠ADC和∠APC的度数.(第21题)22.如图,六边形ABCDEF的内角都相等,CF∥AB.(1)求∠FCD的度数;(2)求证AF∥CD.(第22题)23.如图,在△ABC中,∠A=30°,一块直角三角尺XYZ放置在△ABC上,恰好三角尺XYZ的两条直角边XY,XZ分别经过点B,C.(1)∠ABC+∠ACB=________,∠XBC+∠XCB=________,∠ABX+∠ACX=________.(2)若改变直角三角尺XYZ的位置,但三角尺XYZ的两条直角边XY,XZ仍然分别经过点B,C,则∠ABX+∠ACX的大小是否变化?请说明理由.(第23题)24.已知∠MON=40°,OE平分∠MON,点A,B,C分别是射线OM,OE,ON上的动点(点A,B,C均不与点O重合),连接AC交射线OE于点D,设∠OAC=x°.(1)如图①,若AB∥ON,则①∠ABO的度数是________.②当∠BAD=∠ABD时,x=________;当∠BAD=∠BDA时,x=________.(2)如图②,若AB⊥OM,是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.(第24题)答案一、1.D 2.A 3.C 4.B 5.B 6.B7.C8.B9.C10.B二、11.三角形具有稳定性12.36°13.514.105°15.1 800°16.617.120°18.2三、19.解:由题意可得AD∥BF,∴∠BEA=∠DAC=62°.∵∠BEA是△CBE的一个外角,∴∠BEA=∠ACB+∠CBE.∴∠ACB=∠BEA-∠CBE=62°-13°=49°.答:此时在巡逻艇上看这两艘船的视角∠ACB的度数为49°.20.解:(1)∠1=∠2.理由如下:∵BD,CE是△ABC的两条高,∴∠AEC=∠ADB=90°.∵∠A+∠1+∠ADB=180°,∠2+∠A+∠AEC=180°,∴∠1=∠2.(2)∵∠A=50°,∠ABC=70°,∠A+∠ABC+∠ACB=180°,∴∠ACB=60°.∵在△AEC中,∠A+∠AEC+∠2=180°,∴∠2=40°.∴∠3=∠ACB-∠2=20°.∵在四边形AE O D中,∠A+∠AE O+∠4+∠AD O=360°,∠A=50°,∠AE O=∠AD O=90°,∴∠4=130°.21.解:∵CE是△ABC的高,∴∠AEC=90°.∴∠ACE=180°-∠BAC-∠AEC=24°.∵AD是△ABC的角平分线,∴∠DAC=12∠BAC=33°.∵∠BCE=40°,∴∠ACB=40°+24°=64°.∴∠ADC=180°-∠DAC-∠ACB=83°.∴∠A P C=∠ADC+∠BCE=83°+40°=123°.22.(1)解:∵六边形ABCDEF的内角都相等,内角和为(6-2)×180°=720°,∴∠B=∠A=∠BCD=720°÷6=120°.∵CF∥AB,∴∠B+∠BCF=180°.∴∠BCF=60°.∴∠FCD=∠BCD-∠BCF=60°.(2)证明:∵CF∥AB,∴∠A+∠AFC=180°.∴∠AFC=180°-120°=60°.∴∠AFC=∠FCD.∴AF∥CD.23.解:(1)150°;90°;60°(2)∠ABX+∠ACX的大小不变.理由:在△ABC中,∠A+∠ABC+∠ACB=180°,∠A=30°,∴∠ABC+∠ACB=180°-30°=150°.∵∠YXZ=90°,∴∠X BC+∠X CB=90°.∴∠AB X+∠AC X=(∠ABC-∠X BC)+(∠ACB-∠X CB)=(∠ABC+∠ACB)-(∠X BC+∠X CB)=150°-90°=60°.∴∠AB X+∠AC X的大小不变.24.解:(1)①20°②120;60(2)存在.①当点D在线段O B上时,若∠BAD=∠ABD,则x=20;若∠BAD=∠BDA,则x=35;若∠ADB=∠ABD,则x=50.②当点D在射线BE上时,易知∠ABE=110°,又三角形的内角和为180°,∴只有∠BAD=∠BDA,此时x=125.综上可知,存在这样的x的值,使得△ADB中有两个相等的角,且x=20,35,50或125.人教版八年级上册第十一章三角形单元测试(2)一、选择题(每题3分,共30分)1.三角形的三条高所在的直线相交于一点,这个交点的位置在()(A)三角形内(B)三角形外(C)三角形边上(D)要根据三角形的形状才能定2.下列长度的各组线段中,能组成三角形的是()(A)1、2、3(B)1、4、2(C)2、3、4(D)6、2、33.将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为()A.60°B.65°C.75°D.85°4.一个多边形只有27条对角线,则这个多边形的边数为()(A)8(B)9(C)10(D)115.若正多边形的内角和是540°,则该正多边形的一个外角为()A.45°B.60°C.72°D.90°6.已知一个多边形的内角和为540°,则这个多边形为A.三角形 B.四边形 C.五边形 D.六边形7.如图为矩形ABCD,一条直线将该矩形分割成两个多边形,若这两个多边形的内角和分别为a和b,则a+b不可能是()A.360°B.540°C.630°D.720°8.一个三角形的两边的长分别为3和8,第三边的长为奇数,则第三边的长为()(A) ①5或7 (B) 7 (C) 9 (D) 7或99.如果一个多边形的内角和是外角和的5倍,那么这个多边形的边数是()A.10 B.11 C.12 D.1310.如图,AB∥CD,AD,BC相交于O,∠BAD=35°,∠BOD=76°,则∠C的度数是( )(A) 31° (B) 35° (C) 41° (D) 76°二、填空题(每题3分,共30分)11.如果三条线段a、b、c,可组成三角形,且a=3,b=5,c是偶数,则c的值为.第10题12.△ABC中,已知∠A=800,∠B=700,则∠C= .13.有四条线段,长分别为3cm、5cm、7cm、9cm,如果用这些线段组成三角形,可以组成个三角形.14.如果一个三角形的三个内角的度数比为1∶2∶3,则这个三角形是三角形.15.一个直角三角形两锐角的平分线所夹的钝角为.16.在△ABC中,∠A=50°,∠B=30°,点D在AB边上,连接CD,若△ACD为直角三角形,则∠BCD的度数为度.17.一个多边形的每一个外角都等于360,则该多边形的内角和等于18.用7根火柴棒首尾顺次连接摆成一个三角形,能摆成不同的三角形的个数为_____.19.如图2,将一副直角三角板叠在一起,使直角顶点重合于点O ,则 ∠AOB+∠DOC= .20.如图,在图1中,互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10则在第nn 的代数式表示).三、解答题(共60分) 21.(本题6分)如图所示,小明欲从A 地去B 地,有三条路可走:①A →B ;②A →D →B ;③A →C →B .(1)在没有其它因素的情况下,我们可以肯定小明是走①,理由是______.(2)小明绝对不会走③,因为③路程最长,即AC +BC >AD +DB ,你能说明其原因吗?22.(本题6分)正在修建的中山路有一形状如图13所示的三角形空地需要绿化,拟从点A出发,将ABC △分成面积相等的四个三角形,以便种上不同的花草,请你帮助规划出图案.23.(本题7分)一个多边形的内角和比外角和多360度,这是几边形? 24.(本题7分)如图,在△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O BAC =50°,∠C =70°.求∠DAC 和∠BOA 的度数.DABCPIO图1 第20题图 图3 第21题图 DE AB C图1325.(本题8分)如图,求:∠A+∠B+∠C+∠D+∠E+∠F的度数.26.(本题8分)分别测量如图所示的△ABC 和△DEF 的内角 (1)你发现了什么?(2)你有何猜想? (3)通过什么途径说明你的猜想?27.(本题9分)如图,△ABC 中,∠C=90°,∠A=30°. (1)作图:作AB 边上的高CD ,垂足为D ; (2)求∠ACD ,∠BCD ,∠B 的度数;(3)用刻度尺测量BC 和AB ,CD 和AC ,DB 和BC ,将三组线段分别相除(即将BC •的长度除以AB 的长度,CD 的长度除以AC 的长度,DB 的长度除以BC 的长度),你发现了什么规律?28.(本题9分)一块三角形优良品种试验田,现引进四种不同的种子进行对比试验,需要将这块地分成面积相等的四块,请你设计出两种划分方案供选择,画图说明。
第11章 三角形单元测试(含答案)
第十一章三角形单元测试度的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。
姓名:时间:90分钟满分:100分评分:一、选择题(本大题共10小题,每小题3分,共30分.•在每小题所给出的四个选项中,只有一项是符合题目要求的)1.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cm B.5cm,6cm,10cmC.1cm,1cm,3cm D.3cm,4cm,9cm2.等腰三角形的一边长等于4,一边长等于9,则它的周长是()A.17 B.22 C.17或22 D.133.适合条件∠A=12∠B=13∠C的△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形4.已知等腰三角形的一个角为75°,则其顶角为()A.30°B.75°C.105°D.30°或75°5.一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是()A.5 B.6 C.7 D.86.三角形的一个外角是锐角,则此三角形的形状是()A.锐角三角形B.钝角三角形C.直角三角形D.无法确定7.下列命题正确的是()A.三角形的角平分线、中线、高均在三角形内部B.三角形中至少有一个内角不小于60°C.直角三角形仅有一条高D.直角三角形斜边上的高等于斜边的一半8.能构成如图所示的基本图形是()(A) (B) (C) (D)9.已知等腰△ABC的底边BC=8cm,│AC-BC│=2cm,则腰AC的长为()A.10cm或6cm B.10cm C.6cm D.8cm或6cm10.如图1,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是(• )A.∠A=∠1+∠2 B.2∠A=∠1+∠2 C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)(1) (2) (3)二、填空题(本大题共8小题,每小题3分,共24分.把答案填在题中横线上)11.三角形的三边长分别为5,1+2x,8,则x的取值范围是________.12.四条线段的长分别为5cm、6cm、8cm、13cm,•以其中任意三条线段为边可以构成________个三角形.13.如下图2:∠A+∠B+∠C+∠D+∠E+∠F等于________.14.如果一个正多边形的内角和是900°,则这个正多边形是正______边形.15.n边形的每个外角都等于45°,则n=________.16.乘火车从A站出发,沿途经过3个车站方可到达B站,那么A、B两站之间需要安排______种不同的车票.17.将一个正六边形纸片对折,并完全重合,那么,得到的图形是________边形,•它的内角和(按一层计算)是_______度.18.如图3,已知∠1=20°,∠2=25°,∠A=55°,则∠BOC的度数是_____.三、解答题(本大题共6小题,共46分,解答应写出文字说明,•证明过程或演算步骤)19.(6分)如图,BD平分∠ABC,DA⊥AB,∠1=60°,∠BDC=80°,求∠C的度数.20.(8分)如图:(1)画△ABC的外角∠BCD,再画∠BCD的平分线CE.(2)若∠A=∠B,请完成下面的证明:已知:△ABC中,∠A=∠B,CE是外角∠BCD的平分线.求证:CE∥AB.21.(8分)(1)如图4,有一块直角三角形XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY、XZ分别经过点B、C.△ABC中,∠A=30°,则∠ABC+∠ACB=_______,∠XBC+∠XCB=_______.(4) (5)(2)如图5,改变直角三角板XYZ的位置,使三角板XYZ的两条直角边XY、XZ•仍然分别经过B、C,那么∠ABX+∠ACX的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX的大小.22.(8分)引人入胜的火柴问题,成年人和少年儿童都很熟悉.如图是由火柴搭成的图形,拿去其中的4根火柴,使之留下5个正方形,•且留下的每根火柴都是正方形的边或边的一部分,请你给出两种方案,并将它们分别画在图(1)、(2)中.23.(8分)在平面内,分别用3根、5根、6根……火柴首尾..依次相接,•能搭成什么形状的三角形呢?通过尝试,列表如下所示:问:(1)4根火柴能拾成三角形吗?(2)8根、12根火柴能搭成几种不同形状的三角形?并画出它们的示意图.24.(8分)如图,BC⊥CD,∠1=∠2=∠3,∠4=60°,∠5=∠6.(1)CO是△BCD的高吗?为什么?(2)∠5的度数是多少?(3)求四边形ABCD各内角的度数.参考答案1.B2.B点拨:由题意知,三角形的三边长可能为4,4,9或4,9,9.但4+4<9,说明以4,4,9为边长构不成三角形.所以,这个等腰三角形的周长为22.故选B.3.B点拨:设∠A=x°,则∠B=2x°,∠C=3x°,由三角形内角和定理,•得x+•2x+3x=180.解得x=30.∴3x=3×30=90.故选B.4.D点拨:分顶角为75°和底角为75°两种情况讨论.5.C点拨:据题意,得(n-2)·180=2×360+180.解得n=7.故选C.6.B7.B点拨:若三角形中三个内角都小于60°,则三个内角的和小于180°,•与内角和定理矛盾.所以,三角形中至少有一个内角不小于60°.8.B9.A点拨:∵BC=8cm,│AC-BC│=2cm,∴AC=10cm或6cm.•经检验以10cm,•10cm,8cm,或6cm,6cm,8cm为边长均能构成三角形.故选A.10.B点拨:可根据三角形、四边形内角和定理推证.11.1<x<6 点拨:8-5<1+2x<8+5,解得1<x<6.12.2 点拨:以5cm、6cm、8cm或6cm、8cm、13cm为边长均可构成三角形.13.360°点拨:∵图中正好有两个三角形:△AEC,△BDF,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.14.七15.8 点拨:n=36045︒︒=8.16.10 17.四;36018.100°点拨:连接AO并延长,易知∠BOC=∠BAC+∠1+∠2=55°+20°+25•°=100°.19.解:在△ABD中,∵∠A=90°,∠1=60°,∴∠ABD=90°-∠1=30°.∵BD平分∠ABC,∴∠CBD=∠ABD=30°.在△BDC中,∠C=180°-(∠BDC+∠CBD)=180°-(80°+30°)=70°.20.(1)如答图(2)证明:∵∠A=∠B,∠BCD是△ABC的外角,∴∠BCD=∠A+•∠B=2∠B,∵CE是外角∠BCD的平分线,∴∠BCE=12∠BCD=12×2∠B=∠B,∴CE∥AB(•内错角相等,两直线平行)点拨:如答图所示,要证明两直线平行,只需证内错角∠B=∠BCE即可.21.(1)150°;90°(2)不变化.∵∠A=30°,∴∠ABC+∠ACB=150°,∵∠X=•90°,∴∠XBC+∠XCB=90°,∴∠ABX+∠ACX=(∠ABC-∠XBC)+(∠ACB-∠XCB)=(∠ABC+•∠ACB)-(∠XBC+∠XCB)=150°-90°=60°.点拨:此题注意运用整体法计算.22.如答图.23.解:(1)4根火柴不能搭成三角形;(2)8根火柴能搭成一种三角形(3,3,2);12根火柴能搭成三种不同的三角形(4,4,4;5,5,2;3,4,5).图略.24.解:(1)CO是△BCD的高.理由:在△BDC中,∵∠BCD=90°,∠1=∠2,∴∠1=∠2=90°÷2=45°.又∵∠1=∠3,∴∠3=45°.∴∠DOC=180°-(∠1+∠3)=180°-2×45°=90°,∴CO⊥DB.∴CO是△BCD的高.(2)∠5=90°-∠4=90°-60°=30°.(3)∠CDA=∠1+∠4=45°+60°=105°,∠DCB=90°,∠DAB=∠5+∠6=30°+30°=60°,∠ABC=105°.可以编辑的试卷(可以删除)。
(名师整理)数学八年级上册 《第11章 三角形》单元检测试题(含答案解析)
第十一章《三角形》单元测试题一、选择题(每小题只有一个正确答案)1.三角形是()A.由三条线段组成的图形B.由不在同一条直线上的三条线段首尾顺次相接所成的图形C.连接任意三点组成的图形D.以上说法都不对2.已知三角形的两边长分别是4和7,则这个三角形的第三条边的长可能是()A. 12B. 11C. 8D. 33.已知一个三角形三个内角度数的比是1:5:6,则其最大内角的度数为()A.60°B.75°C.90°D.120°4.取一张长方形纸片,按图中所示的方法折叠一角,得到折痕EF,若∠BEF=54°,则∠BFC等于()A.100°B.108°C.118°D.120°5.如图,在△ABC中,∠A=60度,点D,E分别在AB,AC上,则∠1+∠2的大小为()度.A. 140B. 190C. 320D. 2406.如图,△ABC中,∠C=90°,AC=3cm,点P是边BC上的动点,则AP长不可能是()A. 2.5cmB. 3cmC. 4cmD. 5cm7.如果一个三角形两边上的高的交点在三角形的内部,那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形8.自行车采用三角形架结构比较牢固,而能够自由拉开,关闭的活动门采用四边形结构,其原因说法正确的全面的是()A.三角形和四边形都具有稳定性B.三角形的稳定性C.四边形的不稳定性D.三角形的稳定性和四边形的不稳定性9.线段BC上有3个点P1、P2、P3,线段BC外有一点A,把A和B、P1、P2、P3、C 连接起来,可以得到的三角形个数为()A. 8个B. 10个C. 12个D. 20个10.至少有两边相等的三角形是()A.等边三角形B.等腰三角形C.等腰直角三角形D.锐角三角形11.如图,在四边形ABCD中,对角线BD平分∠ABC,若∠ABD=31°,则∠ABC的度数是()A.31°B.61°C.60°D.62°12.如图,已知AB⊥BD,AC⊥CD,∠A=40°,则∠D的度数为()A.40°B.50°C.60°D.70°二、填空题13.观察以下图形,回答问题:(1)图②有个三角形;图③有个三角形;图④有个三角形;…猜测第七个图形中共有个三角形.(2)按上面的方法继续下去,第n个图形中有个三角形(用n的式子表示结论).14.如图,在Rt△ABC中,AC⊥BC,CD⊥AB,∠1=∠2,有下列结论:(1)AC∥DE;(2)∠A=∠3;(3)∠B=∠1;(4)∠B与∠2互余;(5)∠A=∠2.其中正确的有(填写所有正确的序号).15.如图,△ABC中.AE⊥BC于E,AD为BC边上的中线.DF为△ABD中AB边上的中线.已知AB=8cm,AC=5cm,△ABC的面积为8cm2,则(1)△ABD与△ACD的周长之差是;(2)△ABD的面积是;(3)△ADF的面积是.16.如图,一副三角板△AOC和△BCD如图摆放,则∠AOB= .17.如图,已知在△ABC中,∠B与∠C的平分线交于点P.当∠A=70°时,则∠BPC的度数为 .三、解答题18.如图,你能比较∠1与∠2的大小吗?请说明理由.19.在直角三角形中,一个锐角比另一个锐角的3倍还多10°,求这两个锐角的度数.20.如图,(1)写出所有以E为顶点的小于平角的角;(2)写出所有以AE为边的三角形.21.如图所示,D是BA延长线上的点,E是BC延长线上的点,连接CD,∠1=∠2,求证:∠BAC>∠B.22.已知:如图,AB∥CD,求图形中的x的值.23.如图,在△AB C中,点E在AC上,∠AEB=∠ABC.(1)图1中,作∠BAC的角平分线AD,分别交CB、BE于D、F两点,求证:∠EFD=∠ADC;(2)图2中,作△ABC的外角∠BAG的角平分线AD,分别交CB、BE的延长线于D、F两点,试探究(1)中结论是否仍成立?为什么?答案解析1.【答案】B【解析】由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形,所以答案为B.2.【答案】C【解析】设第三边的长为x cm,根据三角形的三边关系得:7﹣4<x<7+4,即3<x<11,故选C.3.【答案】C【解析】已知三角形三个内角的度数之比,可以设一份为k°,根据三角形的内角和等于180°列方程求三个内角的度数,确定最大的内角的度数.设一份为k°,则三个内角的度数分别为k°,5k°,6k°,根据三角形内角和定理,可知k+5k+6k=180,解得k=15.所以6k=90,即最大的内角是90°.4.【答案】B【解析】∵∠BEF=54°,纸片是长方形,∴∠BFE=90°-54°=36°,由翻折的性质得,∠BFE=∠B′FE=36°,∴∠BFC=180°-2×36°=108°.故选B.5.【答案】D【解析】∵∠A+∠ADE=∠1,∠A+∠AED=∠2,∴∠A+(∠A+∠ADE+∠AED)=∠1+∠2,∵∠A+∠ADE+∠AED=180°,∠A=60°,∴∠1+∠2=60°+180°=240°.故选D.6.【答案】A【解析】已知,在△ABC中,∠C=90°,AC=3cm,根据垂线段最短,可知AP的长不可小于3cm,当P和C重合时,AP=3cm.7.【答案】A【解析】利用三角形高线的位置关系得出:如果一个三角形两边上的高的交点在三角形的内部,那么这个三角形是锐角三角形.故选A.8.【答案】D【解析】根据三角形的三边一旦确定,则形状大小完全确定,即三角形的稳定性;四边形的四边确定,形状大小不一定确定,即四边形的不稳定性.9.【答案】B【解析】能够把组合三角形转换为组合线段的问题,可得到所有的三角形,即在B、P1、P2、P3、C中,任意选两个点和点B组合.从5个点中,任意选2个点组合,组合情况有BP1、BP2、BP3、BC、P1P2、P1P3、P1C、P2P3、P2C、P3C,显然有10种情况.10.【答案】B【解析】本题需要分类讨论:两边相等的三角形称为等腰三角形,该等腰三角形可以是等腰直角三角形,该等腰三角形有可能是锐角三角形,也有可能是钝角三角形;当有三边相等时,该三角形是等边三角形.等边三角形是一特殊的等腰三角形.故选B.11.【答案】D【解析】∵BD平分∠ABC∴∠ABC=2∠ABD,∵∠ABD=31°∴∠ABC=62°.12.【答案】A【解析】∵AB⊥BD,∠A=40°,∴∠AEB=50°,∴∠DEC=50°,又AC⊥CD,∴∠D=40°,故选A.13.【答案】(1)3;5;7;13(2)2n-1【解析】(1)图②有3个三角形;图③有5个三角形;图④有7个三角形;…猜测第七个图形中共有13个三角形.(2)∵图②有3个三角形,3=2×2-1;图③有5个三角形,5=2×3-1;图④有7个三角形,7=2×4-1;∴第n个图形中有(2n-1)个三角形.14.【答案】(1)(2)(3)【解析】∵AC⊥BC,CD⊥AB,∴△ACD与△AC B都为直角三角形,∴∠A+∠1=90°,∠A+∠B=90°,∴∠1=∠B,选项(3)正确;∵∠1=∠2,∴AC ∥DE,选项(1)正确;∴∠A=∠3,选项(2)正确;∵∠1=∠B,∠1=∠2,∴∠2=∠B,即∠2与∠B不互余,选项(4)错误;∠2不一定等于∠A,选项(5)错误;则正确的选项有(1)(2)(3),故答案为:(1)(2)(3).15.【答案】(1)3cm;(2)4cm2;(3)2cm2.【解析】(1)∵AD为BC边上的中线,∴BD=CD,∴△ABD与△ACD的周长之差=(AB+AD+BD)-(AC+AD+CD)=AB-AC=3cm;(2)∵AD为BC边上的中线,∴△ABD的面积=×△ABC的面积=4cm2;(3)∵DF为BC边上的中线,∴△ADF的面积=×△ABD的面积=2cm2,16.【答案】165°【解析】∵∠BDC=60°,∴∠ADO=180°-∠BDC=120°,∴∠OAD=45°,∴∠AOB=∠OAD+∠ADO=165°.故答案为:165°.17.【答案】125°【解析】∵△ABC中,∠A=70°,∴∠ABC+∠ACB=180°-∠A=180°-70°=110°,∴BP,CP分别为∠ABC与∠ACP的平分线,∴∠2+∠4=(∠ABC+∠ACB)=×110°=55°,∴∠P=180°-(∠2+∠4)=180°-55°=125°.故答案为:125°.18.【答案】解:∠1>∠2.理由如下:在△ABC中,∠1>∠ACB,在△CED中,∠ACB>∠2,∴∠1>∠2.【解析】根据三角形的外角大于任何一个和它不相邻的内角进行比较.19.【答案】解:设另一个锐角为x°,则一个锐角为(3x+10)°,由题意得,x+(3x+10)=90,解得x=20,3x+10=3×20+10=70,所以,这两个锐角的度数分别为20°,70°.【解析】设另一个锐角为x°,表示出一个锐角,然后根据直角三角形两锐角互余列方程求解即可.20.【答案】(1) ∠AEF,∠AED,∠DEB,∠DEF,∠AEB.(2)△ABE;△ADE;△AEF.【解析】(1)以E为顶点的角是∠AEF,∠AED,∠DEB,∠DEF,∠AEB.(2)以AE为边的三角形有△ABE;△ADE;△AEF.21.【答案】证明:∵∠B+∠D=∠2,∠1=∠2,∴∠B+∠D=∠1,∴∠1>∠B,∵∠1+∠D=∠BAC,∴∠BAC>∠1,∴∠BA C>∠B.【解析】根据三角形内角和外角的关系可得∠B+∠D=∠2=∠1,进而得到∠1>∠B,再根据∠1+∠D=∠BAC,可得∠BAC>∠1,进而得到∠BAC>∠B.22.【答案】解:∵AB∥CD,∠C=60°,∴∠B=180°-60°=120°,∴(5-2)×180°=x+150°+125°+60°+120°,∴x=85°.【解析】根据平行线的性质先求∠B的度数,再根据五边形的内角和公式求x的值.23.【答案】解:(1)∵AD平分∠BAC,∴∠BAD=∠DAC,∵∠EFD=∠DAC+∠AEB,∠ADC=∠ABC+∠BAD,又∵∠AEB=∠ABC,∴∠EFD=∠ADC;(2)探究(1)中结论仍成立;理由:∵AD平分∠BAG,∴∠BAD=∠GAD,∵∠FAE=∠GAD,∴∠FAE=∠BAD,∵∠EFD=∠AEB-∠FAE,∠ADC=∠ABC-∠BAD,又∵∠AEB=∠ABC,∴∠EFD=∠ADC.【解析】(1)首先根据角平分线的性质可得∠BAD=∠DAC,再根据内角与外角的性质可得∠EFD=∠DAC+∠AEB,∠ADC=∠ABC+∠BAD,进而得到∠EFD=∠ADC;(2)首先根据角平分线的性质可得∠BAD=∠DAG,再根据等量代换可得∠FAE=∠BAD,然后再根据内角与外角的性质可得∠EFD=∠AEB-∠FAE,∠ADC=∠ABC-∠BAD,进而得∠EFD=∠ADC.。
(完整版)第十一章《三角形》单元测试题及答案
精品word完整版-行业资料分享2017—2018学年度上学期八年级数学学科试卷(检测内容:第十一章三角形)一、选择题(每小题3分,共30分)1.如图,图中三角形的个数为( )A.3个 B.4个 C.5个 D.6个第1题图) ,第5题图) ,第10题图)2.内角和等于外角和的多边形是( )A.三角形 B.四边形 C.五边形 D.六边形3.一个多边形的内角和是720°,则这个多边形的边数是( )A.4条 B.5条 C.6条 D.7条4.已知三角形的三边长分别为4,5,x,则x不可能是( )A.3 B.5 C.7 D.95.如图,在△ABC中,下列有关说法错误的是( )A.∠ADB=∠1+∠2+∠3 B.∠ADE>∠BC.∠AED=∠1+∠2 D.∠AEC<∠B6.下列长方形中,能使图形不易变形的是( )7.不一定在三角形内部的线段是( )A.三角形的角平分线B.三角形的中线C.三角形的高D.三角形的中位线8.等腰三角形一腰上的高与另一腰的夹角为45°,则其顶角为( )A.45° B.135° C.45°或67.5° D.45°或135°9.一个六边形共有n条对角线,则n的值为( )A.7 B.8 C.9 D.1010.如图,在正方形网格中,每个小方格都是边长为1的正方形,A,B两点在小方格的顶点上,位置如图所示,点C也在小方格的顶点上,且以点A,B,C为顶点的三角形面积为1,则点C的个数有( )A.3个 B.4个 C.5个 D.6个二、填空题(每小题3分,共24分)11.等腰三角形的边长分别为6和8,则周长为___________________.12.已知在四边形ABCD中,∠A+∠C=180°,∠B∶∠C∶∠D=1∶2∶3,则∠C=__________________.13.如图,∠1+∠2+∠3+∠4=________________.14.一个三角形的两边长为8和10,则它的最短边a的取值范围是________,它的最长边b 的取值范围是________.15.下列命题:①顺次连接四条线段所得的图形叫做四边形;②三角形的三个内角可以都是锐角;③四边形的四个内角可以都是锐角;④三角形的角平分线都是射线;⑤四边形中有一组对角是直角,则另一组对角必互补,其中正确的有________.(填序号)16.如图,AD是△ABC的角平分线,BE是△ABC的高,∠BAC=40°,则∠AFE的度数为__________________.第13题图第16题图第17题图第18题图17.如图,小亮从A点出发前进10 m,向右转15°,再前进10 m,又右转15°……这样一直走下去,他第一次回到出发点A时,一共走了________________m.18.如图,已知BD为△ABC中∠ABC的平分线,CD为△ABC中的外角∠ACE的平分线,与BD 交于点D,若∠D=∠α,试用∠α表示∠A,∠A=________________.三、解答题(共66分)19.(8分)如图,一个宽度相等的纸条,如图折叠,则∠1的度数是多少?20.(8分)一块三角形的实验田,平均分成四份,由甲、乙、丙、丁四人种植,你有几种方法?(至少要用三种方法)21.(8分)如图,五个半径为2的圆,圆心分别是点A,B,C,D,E,则图中阴影部分的面积和是多少?(S扇形=nπR2 360°)22.(8分)如图,在六边形ABCDEF中,AF∥CD,AB∥DE,BC∥EF,且∠A=120°,∠B=80°,求∠C及∠D的度数.精品word完整版-行业资料分享23.(8分)如图,已知△ABC中,∠B>∠C,AD为∠BAC的平分线,AE⊥BC,垂足为E,试说明∠DAE=12(∠B-∠C).24.(8分)有两个各内角相等的多边形,它们的边数之比为1∶2,且第二个多边形的内角比第一个多边形的内角大15°,求这两个多边形的边数.25.(8分)如图,∠A=∠C=90°,BE,DF分别为∠ABC与∠ADC的平分线,能判断BE∥DF 吗?试说明理由.26.(10分)(1)如图①,△ABC是锐角三角形,高BD,CE相交于点H.找出∠BHC和∠A之间存在何种等量关系;(2)如图②,若△ABC是钝角三角形,∠A>90°,高BD,CE所在的直线相交于点H,把图②补充完整,并指出此时(1)中的等量关系是否仍然成立?参考答案1.C ;2.B ;3.C ;4.D ;5.D ;6.B ;7.C ;8.D ;9.C ;10.D ;11.20或22;12.60;13.360;14.1810,82 b a ≤≤;15.②⑤;16.70;17.240;18.α2; 19.40; 20.21.π6; 22. 分析:连接AC ,根据平行线的性质以及三角形的内角和定理,可以求得∠BCD 的度数;连接BD ,根据平行线的性质和三角形的内角和定理可以求得∠CDE 的度数.解答:解:连接AC .∵AF ∥CD ,∴∠ACD=180°-∠CAF ,又∠ACB=180°-∠B-∠BAC ,∴∠BCD=∠ACD+∠ACB=180°-∠CAF+180°-∠B-∠BAC=360°-120°-80°=160°. 连接BD .∵AB ∥DE ,∴∠BDE=180°-∠ABD .又∵∠BDC=180°-∠BCD-∠CBD ,∴∠CDE=∠BDC+∠BDE=180°-∠ABD+180°-∠BCD-∠CBD=360°-80°-160°=120°. 23解:∵AD 为∠BAC 的平分线∴∠DAC=21∠BAC又∵∠BAC=180°-(∠B+∠C )∴∠DAC=90°-21(∠B+∠C )又∵AE ⊥BC∴∠DAE+∠ADE=90°精品word 完整版-行业资料分享又∵∠ADE=∠DAC+∠C24. 设一个多边形的边数是n ,则另一个多边形的边数是2n ,因而这两个多边形的外角是n360和n 2360 , 第二个多边形的内角比第一个多边形的内角大15°,即是第一个多边形的外角比第二个多边形的外角大15°,就得到方程:n 360-n2360=15°, 解得n=12, 故这两个多边形的边数分别为12,24. 25. 能判断BE ∥DF因为BE ,DF 平分∠ABC 和∠ADC ,又因为∠A=∠C=90°,所以∠ABC+∠ADC=180°所以∠ABE+∠AEB=90°所以∠AEB=∠ADF 所以BE//DF 。
八年级上册数学第十一章 三角形 单元测试题 (3)200809(含答案解析)
第十一章三角形单元测试题 (3)一、单选题1.如图,AD,CE为△ABC的角平分线且交于O点,∠DAC=30°,∠ECA=35°,则∠ABO等于()A.25°B.30°C.35°D.40°2.如图△ABC中,∠B=30º,∠BAC=80º,AD平分∠BAC,则∠ADC的度数为()A.30º B.40º C.70º D.80º3.如图①,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形.如图②,将四边形ACBD折叠,使D与C重合,EF为折痕,则∠ACE的正弦值为()A.B.C.D.4.一个多边形截去一个角(不过顶点)后,形成的多边形的内角和是2520°,那么原多边形的边数是()A.13 B.14 C.15 D.13或155.等腰三角形的两个角的比是1:2,则该三角形的形状不可能是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形6.△ABC中,∠A=∠B+∠C,则对△ABC的形状判断正确的是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等边三角形的度数7.将一副直角三角板按如图所示的位置摆放,使得它们的直角边互相垂直,则1是()A .95︒B .100︒C .105︒D .110︒ 8.△ABC 中,∠C=80°,∠B-∠A=20°,则∠B 的度数是( ) A .60°B .40°C .30°D .20° 9.如图,//AB CD ,AD 和BC 相交于点O ,35A ∠=︒,75AOB ∠=︒,则C ∠等于( )A .35︒B .75︒C .70︒D .80︒ 10.一个多边形的外角和等于其内角和的29,则它的边数为( ) A .12B .11C .10D .9 11.三个内角之比是1:5:6的三角形是( ) A .锐角三角形B .直角三角形C .钝角三角形D .等腰直角三角形 12.若一个多边形的每个内角都相等,且内角是其外角的4倍,则从此多边形的一个顶点出发的对角线的条数是( )A .5B .6C .7D .8二、填空题13.不能构成三角形的三条整数长度的线段的长度和的最小值为1+1+2=4;若四条整数长度的线段中,任意三条不能构成三角形,则该四条线段的长度和的最小值为1+1+2+3=7;……,依此规律,若八条整数长度的线段中,任意三条不能构成三角形,则该八条线段的长度和的最小值为________.14.已知30AON ︒∠=,点P 是射线ON 上一动点,点B 是射线OA 上一动点,点B ,P 均不与点O 重合,当B ∠=_____时,BOP △为直角三角形;如果使得BOP △为钝角三角形,则B 的取值范围是_____.15.如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I+∠J=_____°.16.如图,以正方形ABCD 的AB 边向外作正六边形ABEFGH ,连接DH ,则∠ADH=____________°17.如图,在△ABC 中,∠A=36°,∠B=60°,EF ∥BC ,FG 平分∠AFE ,则∠AFG 的度数为_______.18.如图,直线//MN PQ ,点A 、B 分别在MN PQ 、上,033MAB ∠=.过线段AB 上的点C 作CD AB ⊥交PQ 于点D ,则CDB ∠的大小为_____度.三、解答题19.(概念学习)在平面中,我们把大于180°且小于360°的角称为优角.如果两个角相加等于360°,那么称这两个角互为组角,简称互组.(1)若1∠、2∠互为组角,且1135∠=,则2∠= °.(理解应用)习惯上,我们把有一个内角大于180°的四边形俗称为镖形.(2)如图甲,在镖形ABCD 中,优角BCD ∠与钝角BCD ∠互为组角,试探索A ∠、B 、D ∠与钝角BCD ∠之间的数量关系,并说明理由.(拓展延伸)(3)如图乙,已知四边形ABCD 中,延长AD BC 、交于点Q ,延长AB DC 、交于点P ,APD AQB ∠∠、的平分线交于点M ,180A QCP ∠+∠=.①写出图中一对互组的角 (两个平角除外);②直接运用(2)中的结论,试说明:PM QM ⊥.20.求出图形中x 的值.21.一个正多边形的每一个内角为140°,求它的边数。
人教版八年级数学上册《第11章三角形》单元测试题含答案
第十一章三角形测试题一、选择题(每小题3分,共30分)1.三角形按边分类可分为( )A.不等边三角形、等边三角形B.等腰三角形、等边三角形C.不等边三角形、等腰三角形、等边三角形D.不等边三角形、等腰三角形2.如图1,图中三角形的个数是( )图1A.6 B.7 C.8 D.93.如图2,AD⊥BC于点D,GC⊥BC于点C,CF⊥AB于点F,下列关于高的说法中错误的是( )图2A.△AGC中,CF是AG边上的高B.△GBC中,CF是BG边上的高C.△ABC中,GC是BC边上的高D.△GBC中,GC是BC边上的高4.如图3,小明做了一个长方形框架,发现很容易变形,请你帮他选择一个最好的加固方案( )图3图45.如图5,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC的度数为( )图5A.118° B.119° C.120° D.121°6.如图6是六边形ABCDEF,则该图形的对角线的条数是( )图6A.6 B.9 C.12 D.187.如图7,考古学家发现在地下A处有一座古墓,古墓上方是煤气管道,为了不影响管道,准备在B,C处开工挖出“V”字型通道.如果∠DBA=130°,∠ECA=135°,那么∠A的度数是( )图7A.75° B.80° C.85° D.90°8.如图8,在△ABC中,BC边不动,点A竖直向上运动,∠A越来越小,∠B,∠C越来越大.若∠A减小x°,∠B增加y°,∠C增加z°,则x,y,z之间的关系是( )图8A.x=y+z B.x=y-zC.x=z-y D.x+y+z=1809.如图9,已知长方形ABCD,一条直线将该长方形ABCD分割成两个多边形(含三角形).若这两个多边形的内角和分别为M和N,则M+N不可能是( )图9A.360° B.540° C.720° D.630°10.某木材市场上木棒规格与对应价格如下表:规格 1 m 2 m 3 m 4 m 5 m 6 m价格(元/根)101520253035小明的爷爷要做一个三角形的木架养鱼用,现有两根长度分别为3 m和5 m的木棒,还需要到该木材市场上购买一根木棒.则小明的爷爷至少带的钱数应为( )A.10元 B.15元 C.20元 D.25元请将选择题答案填入下表:题号12345678910总分答案第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11.已知一个等腰三角形两边的长分别为3和6,则该等腰三角形的周长是________.12.如图10,AD是△ABC的中线,已知△ABD的周长为25 cm,AB比AC长6 cm,则△ACD的周长为________cm.图1013.如图11,直角三角形的两条直角边AC,BC分别经过正九边形的两个顶点,则图中∠1+∠2的度数是________.1114.有一张直角三角形纸片,记作△ABC,其中∠B=90°.按如图12方式剪去它的一个角(虚线部分),在剩下的四边形ADEC中,若∠1=165°,则∠2的度数为________.图1215.有一程序,如果机器人在平地上按如图13所示的步骤行走,那么机器人回到A点处行走的路程是________.图1316.如图14所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,D,E分别为垂足.若∠AFD=158°,则∠EDF=________°.图14三、解答题(共52分)17.(6分)如图15,佳佳和音音住在同一小区(A点),每天一块去学校(B点)上学.一天,佳佳要先去文具店(C点)买练习本再去学校,音音要先去书店(D点)买书再去学校.这天两人从家到学校谁走的路远?为什么?图1518.(6分)已知一个多边形的内角和与外角和之比为11∶2.(1)求这个多边形的内角和;(2)求这个多边形的边数.19.(6分)如图16,在△ABC中,BD是∠ABC的平分线,CE是AB边上的高,且∠ACB =60°,∠ADB=97°,求∠A和∠ACE的度数.图1620.(6分)如图17,用钉子把木棒AB,BC和CD分别在端点B,C处连接起来,AB,CD 可以转动,用橡皮筋把AD连接起来,设橡皮筋AD的长是x cm.(1)若AB=5 cm,CD=3 cm,BC=11 cm,求x的最大值和最小值;(2)在(1)的条件下要围成一个四边形,你能求出橡皮筋长x的取值范围吗?图1721.(6分)如图18,它是一个大型模板,设计要求BA与CD相交成20°角,DA与CB 相交成40°角,现测得∠A=145°,∠B=75°,∠C=85°,∠D=55°,就断定这块模板是合格的,这是为什么?图1822.(7分)已知△ABC的周长是20,三边分别为a,b,c.(1)若b是最大边,求b的取值范围;(2)若△ABC是三边均不相等的三角形,b是最大边,c是最小边,且b=3c,a,b,c 均为整数,求△ABC的三边长.23.(7分)如图19,在△ABC中,点E在AC上,∠AEB=∠ABC.(1)如图①,作∠BAC的平分线AD,分别交CB,BE于点D,F.求证:∠EFD=∠ADC;(2)如图②,作△ABC的外角∠BAG的平分线AD,交CB的延长线于点D,反向延长AD 交BE的延长线于点F,则(1)中的结论是否仍然成立?为什么?图1924.(8分)已知:如图20,在四边形ABCD中,∠D=90°,∠ABC=∠BCD,点E在直线BC上,点F在直线CD上,且∠AEB=∠CEF.(1)如图20①,若AE平分∠BAD,求证:EF⊥AE;(2)如图20②,若AE平分四边形ABCD的外角,其余条件不变,则(1)中的结论是否仍然成立?并说明理由.图20答案1.D 2.C 3.C . 4.B . 5.C 6.B . 7.C 8.A . 9.D 10.C 11.15 12.19 13.190° 14.105° . 15.30米 16.68 .17.解:佳佳从家到学校走的路远. 理由:佳佳从家到学校走的路是AC +CD +BD ,音音从家到学校走的路是AD +BD.∵在△ACD 中,AC +CD >AD ,∴AC +CD +BD >AD +BD ,即佳佳从家到学校走的路远.18.解:(1)360°×112=1980°.即这个多边形的内角和为1980°.(2)设该多边形的边数为n,则(n-2)×180°=1980°,解得n=13.即这个多边形的边数为13.19.解:∵∠ADB=∠DBC+∠ACB,∴∠DBC=∠ADB-∠ACB=97°-60°=37°.∵BD是∠ABC的平分线,∴∠ABC=74°,∴∠A=180°-∠ABC-∠ACB=46°.∵CE是AB边上的高,∴∠AEC=90°,∴∠ACE=90°-∠A=44°.20.解:(1)x的最大值是5+3+11=19,最小值是11-3-5=3.(2)由(1)得橡皮筋长x的取值范围为3<x<19.21.解:如图,延长DA,CB相交于点F,延长BA,CD相交于点E.∵∠C+∠ADC=85°+55°=140°,∴∠F=180°-140°=40°.∵∠C+∠ABC=85°+75°=160°,∴∠E=180°-160°=20°.符合设计要求,故这块模板是合格的.22.解:(1)依题意有b≥a,b≥c.∵a +c >b ,∴a +b +c ≤3b 且a +b +c >2b ,则2b <20≤3b ,解得203≤b <10. (2)∵203≤b <10,b 为整数, ∴b =7,8,9.∵b =3c ,且c 为整数,∴b =9,c =3,∴a =20-b -c =8.故△ABC 的三边长分别为a =8,b =9,c =3.23.解:(1)证明:∵AD 平分∠BAC ,∴∠BAD =∠DAC.∵∠EFD =∠DAC +∠AEB ,∠ADC =∠ABC +∠BAD ,且∠AEB =∠ABC ,∴∠EFD =∠ADC.(2)∠EFD =∠ADC 仍然成立.理由:∵AD 平分∠BAG ,∴∠BAD =∠GAD.∵∠FAE =∠GAD ,∴∠FAE =∠BAD.∵∠EFD =∠AEB -∠FAE ,∠ADC =∠ABC -∠BAD ,且∠AEB =∠ABC ,∴∠EFD =∠ADC.24.解:(1)证明:∵∠BAE =180°-∠ABC -∠AEB ,∠EFC =180°-∠BCD -∠CEF ,且∠ABC =∠BCD ,∠AEB =∠CEF ,∴∠BAE =∠EFC.∵AE 平分∠BAD ,∴∠BAE=∠DAE,∴∠EFC=∠DAE.∵∠EFC+∠EFD=180°,∴∠DAE+∠EFD=180°,∴∠AEF+∠D=360°-(∠DAE+∠EFD)=180°.∵∠D=90°,∴∠AEF=90°,∴EF⊥AE.(2)EF⊥AE仍成立.理由如下:如图.∵∠1=∠ABC-∠AEB,∠F=∠BCD-∠CEF,且∠ABC=∠BCD,∠AEB=∠CEF,∴∠1=∠F.∵AE平分四边形ABCD的外角,∴∠1=∠2,∴∠F=∠2.∵∠2+∠EAD=180°,∴∠F+∠EAD=180°,∴∠AEF+∠D=360°-(∠F+∠EAD)=180°.∵∠D=90°,∴∠AEF=90°,∴EF⊥AE.。
《第十一章 三角形》单元测试卷含答案(共5套)
《第十一章三角形》单元测试卷(一)时间:120分钟满分:120分一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.以下列每组长度的三条线段为边能组成三角形的是( )A.2、3、6 B.2、4、6C.2、2、4 D.6、6、62.如图,图中∠1的大小等于( )A.40° B.50° C.60° D.70°第2题图第4题图第6题图3.一个多边形的每一个内角都等于140°,则它的边数是( )A.7 B.8 C.9 D.104.如图,△ABC中,∠A=46°,∠C=74°,BD平分∠ABC交AC于点D,那么∠BDC的度数是( )A.76° B.81° C.92° D.104°5.用五根木棒钉成如下四个图形,具有稳定性的有( )A.1个 B.2个 C.3个 D.4个6.如图,点A,B,C,D,E,F是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F的度数是( )A.180° B.360°C.540° D.720°二、填空题(本大题共6小题,每小题3分,共18分)7.已知三角形两条边长分别为3和6,第三边的长为奇数,则第三边的长为________.8.若n边形内角和为900°,则边数n为________.9.将一副三角板按如图所示的方式叠放,则∠α的度数为________.第9题图第10题图第11题图10.如图,在△ABC中,∠ACB=90°,∠A=20°.若将△ABC沿CD所在直线折叠,使点B落在AC边上的点E处,则∠CDE的度数是________.11.如图,在△ABC中,E、D、F分别是AD、BF、CE的中点.若△DEF的面积是1cm2,则S△ABC=________cm2.12.当三角形中一个内角β是另一个内角α的12时,我们称此三角形为“希望三角形”,其中角α称为“希望角”.如果一个“希望三角形”中有一个内角为54°,那么这个“希望三角形”的“希望角”的度数为______________.三、(本大题共5小题,每小题6分,共30分)13.在△ABC中,∠A=30°,∠C=2∠B,求∠B的度数.14.如图:(1)在△ABC中,BC边上的高是________;(2)在△AEC中,AE边上的高是________;(3)若AB=CD=2cm,AE=3cm,求△AEC的面积及CE的长.15.如图,在△BCD中,BC=4,BD=5.(1)求CD的取值范围;(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.16.如果一个多边形的内角和是外角和的3倍还多180°,那么这个多边形的边数是多少?17.如图,在△ABC中,BD是AC边上的高,∠A=70°.(1)求∠ABD的度数;(2)若CE平分∠ACB交BD于点E,∠BEC=118°,求∠ABC的度数.四、(本大题共3小题,每小题8分,共24分)18.已知a,b,c为三角形三边的长,化简:|a-b-c|-|b-c-a|+|c-a-b|.19.如图,六边形ABCDEF的内角都相等,CF∥AB.(1)求∠FCD的度数;(2)求证:AF∥CD.20.在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分为24和18两部分,求三角形三边的长.五、(本大题共2小题,每小题9分,共18分)21.如图,△ABC中,AD⊥BC于点D,BE平分∠ABC,若∠ABC=64°,∠AEB=70°.(1)求∠CAD的度数;(2)若点F为线段BC上的任意一点,当△EFC为直角三角形时,求∠BEF的度数.22.如图,在△ABC中,AD⊥BC于D,AE平分∠BAC.(1)若∠C=70°,∠B=40°,求∠DAE的度数;(2)若∠C-∠B=30°,求∠DAE的度数;(3)若∠C-∠B=α(∠C>∠B),求∠DAE的度数(用含α的代数式表示).六、(本大题共12分)23.如图①,在平面直角坐标系中,A(0,1),B(4,1),C为x轴正半轴上一点,且AC平分∠OAB.(1)求证:∠OAC=∠OCA;(2)如图②,若分别作∠AOC的三等分线及∠OCA的外角的三等分线交于点P,即满足∠POC=13∠AOC,∠PCE=13∠ACE,求∠P的大小;(3)如图③,在(2)中,若射线OP、CP满足∠POC=1n∠AOC,∠PCE=1n∠ACE,猜想∠P的大小,并证明你的结论(用含n的式子表示).参考答案与解析1.D 2.D 3.C 4.A 5.D6.B 解析:如图,∵∠BMQ=∠A+∠B,∠DQF=∠C+∠D,∠FNM=∠E+∠F,∴∠BMQ+∠DQF+∠FNM=∠A+∠B+∠C+∠D+∠E+∠F.∵∠BMQ+∠DQF+∠FNM=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°,故选B.7.5或7 8.7 9.75°10.65°11.712.54°或84°或108°解析:①54°角是α,则希望角度数为54°;②54°角是β,则12α=β=54°,所以希望角α=108°;③54°角既不是α也不是β,则α+β+54°=180°,所以α+12α+54°=180°,解得α=84°.综上所述,希望角的度数为54°或84°或108°.13.解:∵∠A=30°,∴∠B+∠C=180°-∠A=150°.(3分)∵∠C=2∠B,∴3∠B=150°,∴∠B=50°.(6分)14.解:(1)AB(1分) (2)CD(2分)(3)∵AE=3cm,CD=2cm,∴S△AEC=12AE·CD=12×3×2=3(cm2).(4分)∵S△AEC=12CE·AB=3cm2,AB=2cm,∴CE=3cm.(6分)15.解:(1)∵在△BCD中,BC=4,BD=5,∴1<DC<9.(3分)(2)∵AE∥BD,∠BDE=125°,∴∠AEC=180°-125°=55°.(4分)又∵∠A=55°,∴∠C=180°-∠A-∠AEC=180°-55°-55°=70°.(6分) 16.解:设这个多边形的边数为n.根据题意,得(n-2)·180°=360°×3+180°,(3分)解得n=9.(5分)答:这个多边形的边数是9.(6分)17.解:(1)在△ABC中,∵BD是AC边上的高,∴∠ADB=∠BDC=90°.∵∠A =70°,∴∠ABD=180°-∠BDA-∠A=20°.(3分)(2)在△EDC中,∵∠BEC=∠BDC+∠DCE,且∠BEC=118°,∠BDC=90°,∴∠DCE=28°.∵CE平分∠ACB,∴∠DCB=2∠DCE=56°,∴∠DBC=180°-∠BDC-∠DCB=34°,∴∠ABC=∠ABD+∠DBC=54°.(6分)18.解:∵a,b,c为三角形三边的长,∴a+b>c,a+c>b,b+c>a,(4分)∴原式=|a-(b+c)|-|b-(c+a)|+|c-(a+b)|=b+c-a-a-c+b+a+b-c=-a+3b-c.(8分)19.(1)解:∵六边形ABCDEF的内角都相等,∴∠B=∠A=∠BCD=120°.(1分)∵CF∥AB,∴∠B+∠BCF=180°,∴∠BCF=180°-120°=60°,∴∠FCD =120°-60°=60°.(4分)(2)证明:∵CF∥AB,∴∠AFC=180°-∠A=60°,∴∠AFC=∠FCD,∴AF∥CD.(8分)20.解:如图,设AB=AC=a,BC=b,则AD=CD=12a.根据题意,有a+12a=24且12a +b =18,或a +12a =18且12a +b =24,(4分)解得a =16,b =10或a =12,b =18,两种情况下都能构成三角形.(6分)综上所述,三角形的三边长分别为16,16,10或12,12,18.(8分)21.解:(1)∵BE 平分∠ABC ,∴∠ABC =2∠EBC =64°,∴∠EBC =32°.∵AD ⊥BC ,∴∠ADC =90°.(2分)∵∠C =∠AEB -∠EBC =70°-32°=38°,∴∠CAD =90°-38°=52°.(4分)(2)分两种情况:①当∠EFC =90°时,如图①所示,则∠BFE =90°,∴∠BEF =90°-∠EBC =90°-32°=58°;(6分)②当∠FEC =90°时,如图②所示,则∠EFC =90°-38°=52°,∴∠BEF =∠EFC -∠EBC =52°-32°=20°.(8分)综上所述,∠BEF 的度数为58°或20°.(9分)22.解:(1)由题意可得∠BAC =180°-∠B -∠C =180°-40°-70°=70°.∵AD ⊥BC ,∴∠ADC =90°,∴∠CAD =90°-∠C =90°-70°=20°.∵AE 平分∠BAC ,∴∠CAE =12∠BAC =35°,∴∠DAE =∠CAE -∠CAD =35°-20°=15°.(3分)(2)由(1)中可得∠CAE =12∠BAC =12(180°-∠B -∠C )=90°-12(∠B +∠C ).∵AD ⊥BC ,∴∠ADC =90°,∴∠CAD =90°-∠C .(5分)∴∠DAE =∠CAE -∠CAD =90°-12(∠B +∠C )-(90°-∠C )=12(∠C -∠B )=12×30°=15°.(7分)(3)由(2)中可知∠DAE =12(∠C -∠B ),∴∠C -∠B =α,∴∠DAE =12α.(9分)23.(1)证明:∵A (0,1),B (4,1),∴AB ∥CO ,∴∠OAB =90°.(1分)∵AC 平分∠OAB ,∴∠OAC =45°,∴∠OCA =90°-45°=45°,∴∠OAC =∠OCA .(3分)(2)解:∵∠POC =13∠AOC ,∴∠POC =13×90°=30°.∵∠PCE =13∠ACE ,∴∠PCE=13(180°-45°)=45°.∵∠P +∠POC =∠PCE ,∴∠P =∠PCE -∠POC =15°.(7分) (3)解:∠P =45°n.(8分)证明如下:∵∠POC =1n ∠AOC ,∴∠POC =1n×90°=90°n .∵∠PCE =1n ∠ACE ,∴∠PCE =1n (180°-45°)=135°n.(10分)∵∠P +∠POC =∠PCE ,∴∠P =∠PCE -∠POC =45°n.(12分)《第十一章 三角形》单元测试卷(二) 时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.以下列各组线段为边,能组成三角形的是( ) A .2、2、4 B .8、6、3 C .2、6、3 D .11、4、6 2.如图,∠1的度数是( ) A .40° B.50° C .60° D.70°3.下列实际情景运用了三角形稳定性的是( )A.人能直立在地面上B.校门口的自动伸缩栅栏门C.古建筑中的三角形屋架D.三轮车能在地面上运动而不会倒4.如图,已知BD是△ABC的中线,AB=5,BC=3,且△ABD的周长为11,则△BCD 的周长是( )A.9 B.14C.16 D.不能确定5.如图,在△ABC中,∠A=46°,∠C=74°,BD平分∠ABC,交AC于点D,则∠BDC的度数是( )A.76° B.81°C.92° D.104°6.在下列条件中:①∠A+∠B=∠C;②∠A=∠B=2∠C;③∠A∶∠B∶∠C=1∶2∶3.能确定△ABC为直角三角形的条件有( )A.1个 B.2个C.3个 D.0个7.一个正多边形的内角和为540°,则这个正多边形的每一个外角的度数是( )A.108° B.90° C.72° D.60°8.若a、b、c是△ABC三边的长,则化简|a-b-c|-|b-c-a|+|a+b-c|的结果是( )A.a+b+c B.-a+3b-cC.a+b-c D.2b-2c9.小明同学在用计算器计算某n边形的内角和时,不小心多输入一个内角,得到和为2016°,则n的值为( )A.11 B.12 C.13 D.1410.在四边形ABCD中,∠A=∠B=∠C,点E在边AB上,∠AED=60°,则一定有( )A.∠ADE=20° B.∠ADE=30°C.∠ADE=12∠ADC D.∠ADE=13∠ADC二、填空题(每小题3分,共24分)11.如图,以∠E为内角的三角形共有________个.12.若n边形的内角和为900°,则边数n的值为________.13.一个三角形的两边长分别是3和8,若周长是偶数,则第三边的长是________.14.将一副三角板按如图所示的方式叠放,则∠α的度数是________.15.如图,在△ABC中,CD是AB边上的中线,E是AC的中点,已知△DEC的面积是4cm2,则△ABC的面积是________.16.如图,把三角形纸片ABC沿DE折叠,使点A落在四边形BCDE的内部.已知∠1+∠2=80°,则∠A的度数是________.17.如图,一束平行太阳光照射到正五边形上,若∠1=44°,则∠2的度数是________.18.如图,已知在△ABC中,∠A=155°.第一步:在△ABC的上方确定点A1,使∠A1BA=∠ABC,∠A1CA=∠ACB;第二步:在△A1BC的上方确定点A2,使∠A2BA1=∠A1BA,∠A2CA1=∠A1CA……则∠A1的度数是________,照此继续,最多能进行________步.三、解答题(共66分)19.(8分)如图:(1)在△ABC中,BC边上的高是________;(2)在△AEC中,AE边上的高是________;(3)若AB=CD=2cm,AE=3cm,求△AEC的面积及CE的长.20.(8分)如图,在△BCD中,BC=4,BD=5,在CB的延长线上取点A,在CD 的延长线上取两点E,F,连接AE.(1)求CD的取值范围;(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.21.(8分)如图,六边形ABCDEF的内角都相等,CF∥AB.(1)求∠FCD的度数;(2)求证:AF∥CD.22.(10分)如图,点E在AC上,点F在AB上,BE,CF交于点O,且∠C=2∠B,∠BFC-∠BEC=20°,求∠C的度数.23.(10分)如果多边形的每个内角都比与它相邻的外角的4倍多30°,求这个多边形的内角和及对角线的总条数.24.(10分)如图,在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分成12cm和15cm两部分,求△ABC各边的长.25.(12分)如图①,在平面直角坐标系中,A(0,1),B(4,1),C为x轴正半轴上一点,且AC平分∠OAB.(1)求证:∠OAC=∠OCA;(2)如图②,若分别作∠AOC的三等分线及∠OCA的外角的三等分线交于点P,即满足∠POC=13∠AOC,∠PCE=13∠ACE,求∠P的大小;(3)如图③,若射线OP、CP满足∠POC=1n∠AOC,∠PCE=1n∠ACE,猜想∠P的大小,并证明你的结论(用含n的式子表示).参考答案与解析1.B 2.D 3.C 4.A 5.A 6.B 7.C 8.B9.C 解析:n边形的内角和为(n-2)·180°,并且每一个内角的度数都小于180°.∵(13-2)×180°=1980°,(14-2)×180°=2160°,1980°<2016°<2160°,∴n=13.故选C.10.D 解析:如图,在△AED中,∠AED=60°,∴∠ADE=180°-∠A-∠AED =120°-∠A.在四边形ABCD中,∵∠A=∠B=∠C,∴∠ADC=360°-∠A-∠B-∠C=360°-3∠A=3(120°-∠A),∴∠ADC=3∠ADE.∴∠ADE=13∠ADC.故选D.11.3 12.7 13.7或9 14.75°15.16cm216.40°17.28°18.130° 6 解析:∵在△ABC中,∠A=155°,∴∠ABC+∠ACB=25°.又∵∠A1BA=∠ABC,∠A1CA=∠ACB,∴∠A1BC+∠A1CB=50°,∴在△A1BC中,∠A1=180°-50°=130°.∵25°+25°×6=175°<180°,25°+25°×7=200°>180°,∴最多能进行6步.19.解:(1)AB(1分) (2)CD(2分)(3)∵AE=3cm,CD=2cm,∴S△AEC=12AE·CD=12×3×2=3(cm2).(5分)∵S△AEC=12CE·AB=3cm2,AB=2cm,∴CE=3cm.(8分)20.解:(1)∵在△BCD中,BC=4,BD=5,∴1<CD<9.(4分)(2)∵AE∥BD,∠BDE=125°,∴∠AEC=180°-∠BDE=55°.又∵∠A=55°,∴∠C=180°-∠A-∠AEC=70°.(8分)21.(1)解:∵六边形ABCDEF的内角都相等,内角和为(6-2)×180°=720°,∴∠B=∠A=∠BCD=720°÷6=120°.(1分)∵CF∥AB,∴∠B+∠BCF=180°,∴∠BCF=60°,∴∠FCD=∠BCD-∠BCF=60°.(4分)(2)证明:∵CF∥AB,∴∠A+∠AFC=180°,∴∠AFC=180°-120°=60°,∴∠AFC=∠FCD,∴AF∥CD.(8分)22.解:由三角形外角的性质,得∠BFC=∠A+∠C,∠BEC=∠A+∠B.(2分)∵∠BFC-∠BEC=20°,∴(∠A+∠C)-(∠A+∠B)=20°,即∠C-∠B=20°.(5分)∵∠C=2∠B,∴∠B=20°,∠C=40°.(10分)23.解:设这个多边形的一个外角为x°.依题意有x+4x+30=180,解得x=30.(3分)∴这个多边形的边数为360°÷30°=12,(5分)∴这个多边形的内角和为(12-2)×180°=1800°,(7分)对角线的总条数为(12-3)×122=54(条).(10分)24.解:设AB =x cm ,BC =y cm ,则AD =CD =12x cm.有以下两种情况:(1)当AB +AD =12cm ,BC +CD =15cm 时,⎩⎪⎨⎪⎧x +12x =12,y +12x =15,解得⎩⎨⎧x =8,y =11.即AB =AC =8cm ,BC =11cm ,符合三角形的三边关系;(5分)(2)当AB +AD =15cm ,BC +CD =12cm 时,⎩⎪⎨⎪⎧x +12x =15,y +12x =12,解得⎩⎨⎧x =10,y =7.即AB =AC =10cm ,BC =7cm ,符合三角形的三边关系.(9分)综上所述,AB =AC =8cm ,BC =11cm 或AB =AC =10cm ,BC =7cm.(10分)25.(1)证明:∵A (0,1),B (4,1),∴AB ∥CO ,∴∠OAB =180°-∠AOC =90°.(1分)∵AC 平分∠OAB ,∴∠OAC =45°,∴∠OCA =90°-45°=45°,∴∠OAC =∠OCA .(3分)(2)解:∵∠POC =13∠AOC ,∴∠POC =13×90°=30°.∵∠PCE =13∠ACE ,∴∠PCE=13×(180°-45°)=45°.∴∠P =∠PCE -∠POC =15°.(7分) (3)解:∠P =45°n .(8分)证明如下:∵∠POC =1n ∠AOC ,∴∠POC =1n·90°=90°n .∵∠PCE =1n ∠ACE ,∴∠PCE =1n (180°-45°)=135°n.(10分)∴∠P =∠PCE -∠POC =45°n.(12分)《第十一章 三角形》单元测试卷(三)一、相信你的选择(每题5分,共35分) 1.三角形三条高的交点一定在( ) (A )三角形的内部 (B )三角形的外部(C )三角形的内部或外部. (D )三角形的内部、外部或顶点 2.一个多边形的边数每增加一条,这个多边形的( ) (A )内角和增加 (B )外角和增加 (C )对角线增加一条 (D )内角和增加3.已知一个三角形的周长为 厘米,且其中两边都等于第三边的倍,那么这个三角形的最短边为( )厘米(A ) (B ) (C ) (D )4.如图,工人师傅砌门时,常用木条固定长方形门框,使其不变形,这种做法的数学根据是 ( )(A )两点之间线段最短 (B )长方形的四个角都是直角 (C )三角形的稳定性 (D 长方形的对称性(第4题图) (第5题图)5.为估计池塘岸边、的距离,小方在池塘的一侧选取点,测得米,米,、间的距离不可能是( ) (A )米 (B )米 (C )米 (D )米6.若线段、、 能组成三角形,则它们的长度比可能是( ) (A ) (B ) (C ) (D )︒360︒360︒1801521234EFABCD A B O 15=OA 10=OB A B 2015105a b c 4:2:14:3:17:4:34:3:2二、试试你的身手(每小题5分,共35分)8.在中,,那么长的取值范围是_______.9.一个多边形的内角和是外角和的倍,该多边形是_______边形.10.有四条线段,长分别是厘米,厘米,厘米,厘米,如果用这些线段组成三角形,可以组成不同的三角形的个数为____个.11.一个三角形三边的长度之比为,周长为,则此三角形最短边的长为______.12.在中,是中线,则的面积________的面积(填“>”“<”或“=”).(第13题图)13.将一副直角三角板如图所示摆放,则的度数为_______度.14.如图,已知点是射线上一动点(即可在射线上运动),,当___________时,为直角三角形.(第14题图)三、挑战你的技能(共30分)15.(7分)如图所示,平分,平分,.请判断直线、的位置关系,并给出理由.ABC∆5==ACAB BC335794:3:2cm36cmABC∆AD ABD∆ACD∆1∠P ON P ON︒=∠30AON=∠A AOP∆BE ABD∠DE BDC∠︒=∠+∠9021AB CDABD C(第12题图)BACFEDBA C16.(4分)有人说,自己步子大,一步能走三米多,你相信吗?写出理由.17.(7分)如图所示,一块模板中要求、的延长线相交成角,因交点不在模板上,不便测量,测得,此时,、的延长线相交成的角是否符合规定?请说明理由.18.(12分)如图,在中: (1)画出边上的高和中线(2)若 求和的度数。
八年级数学上册《第十一章 三角形》单元测试卷及答案-人教版
八年级数学上册《第十一章三角形》单元测试卷及答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题1.给出下列长度的三条线段,不能构成三角形的是()A.10,8,6 B.4,8,7 C.2,3,4 D.3,4,72.把一副三角板按如图所示平放在桌面上,点E恰好落在CB的延长线上FE⊥CE,则∠BDE的大小为()A.10°B.15°C.20°D.25°3.一个正多边形的每个内角都等于135°,那么它是()A.正六边形B.正十边形C.正八边形D.正十二边形4.如图,点D、E分别是△ABC边BC、AC上一点BD=2CD,AE=CE连接AD、BE交于点F,若△ABC 的面积为12,则△BDF与△AEF的面积之差S△BDF−S△AEF等于()A.1 B.2 C.3 D.45.如图,足球的表面是由正五边形和正六边形拼接而成,其中黑皮的正五边形有12块,白皮的正六边形有20块.如图,足球图片中的一块黑皮正五边形的内角和是()A.180°B.360°C.540°D.720°6.如图AD,AE,AF分别是△ABC的中线、角平分线、高线,下列结论中错误的是()BC B.2∠BAE=∠BACA.CD=12C.∠C+∠CAF=90°D.AE=AC7.如图,在直角三角形ABC中∠BAC=90°,∠B=56°,AD⊥BC,DE//AC则∠ADE的度数为( )A.56°B.46°C.44°D.34°8.某市为了方便市民绿色出行,推出了共享单车服务,图①是某品牌共享单车放在水平地面的实物图,图②是其示意图,其中AB,CD都与地面l平行∠BCD=62°,∠BAC=54°当∠MAC为()度时,AM与CB平行.A.54 B.64 C.74 D.114二、填空题9.若一个三角形两边的长分别为8cm和9cm(三边长均为整厘米数),则这个三角形第三边最长可以是cm.10.已知一个正多边形的一个外角为36°,则这个正多边形的边数是.11.将一副三角板按如图所示的位置摆放,图中∠2−∠1=°.12.如图,将一把直尺摆放在含30°角的三角尺(∠A=30°,∠C=90°)上,其中顶点B在直尺的一边上,已知∠1=55°,则∠2的度数为.13.如图,在△ABC中,AD是BC边上的中线,若S△ABC=12,AC=3则点D到AC的距离为.三、解答题14.如图,在△ABC中,CD是∠ACB的角平分线,CE是AB边上的高,若∠DCE=10°,∠B=60°,求∠A的度数.15.如图,在△ABC中DE∥BC,F是AC上一点,FD的延长线与CB的延长线交于点G.求证:∠DGH>∠AED.16.如图,在△ABC中,D是AB上一点,E是AC上一点,BE、CD相交于点F,∠A=62°,∠ACD= 35°,∠ABE=20°求∠BFD的度数.17.如图,DE∥AB(1)判断AD与BE是否平行,并说明理由.(2)若∠A=∠C=2∠ABC,求∠E的度数.18.如图AC∥EF,∠1+∠3=180°.(1)求证AF∥CD;(2)若AC平分∠FAB,AC⊥EB于点C,∠4=78°求∠BCD的度数.参考答案1.D2.B3.C4.B5.C6.D7.A8.B9.1610.1011.3012.25°13.414.解:∵CE是AB边上的高∴∠A+∠ACE=90°,∠B+∠BCE=90°.∵CD是∠ACB的角平分线∠ACB∴∠ACD=∠BCD= 12又∵∠DCE=10°,∠B=60°∴∠BCE=90°﹣∠B=30°,∠BCD=∠BCE+∠DCE=40°∴∠ACE=∠ACD+∠DCE=∠BCD+∠DCE=50°∴∠A=90°﹣∠ACE=40°.15.证明:∵∠DGH是△DBG的一个外角∴∠DGH>∠DBG∵∠DBG是△ABC的一个外角∴∠DBG>∠C∴∠DGH>∠C∵DE∥BC∴∠AED=∠C∴∠DGH>∠AED.16.解:∵∠A=62°∴∠BDC=∠A+∠ACD=62°+35°=97°在△BDF中∵∠ABE=20°∴∠BFD=180°−∠ABE−∠BDC=180°−20°−97°=63°. 17.(1)解:AD∥BE,理由为:∵DE∥AB∴∠ABE+∠E=180°∵∠ABE+∠CDF=180°∴∠E=∠CDF∴AD∥BE;(2)解:∵∠A=∠C=2∠ABC∴5∠ABC=180°,则∠ABC=36°∴∠A=2∠ABC=72°∴∠E=∠CDF=∠A=72°.18.(1)证明:∵AC∥EF∴∠1+∠2=180°.又∵∠1+∠3=180°∴∠2=∠3.∴AF∥CD.(2)解:∵AC平分∠FAB∴∠2=∠CAD.∵∠2=∠3∴∠CAD=∠3.∵∠4+∠ADC=180°且∠4=78°∴∠ADC=180°−78°=102°.∴∠CAD=∠3=180°−102°=39°2∵AC⊥EB ∴∠ACB=90°.∴∠BCD=90°−∠3=90°−39°=51°.。
【精品】人教版八年级上册单元测试——第11章三角形单元提优测试【3套】试题
人教版八年级上册单元测试——第11章三角形单元提优测试一.选择题1.小明有两根3cm、7cm的木棒,他想以这两根木棒为边做一个三角形,还需再选用的木棒长为()A. 3cm B. 4cmC. 9cm D. 10cm2.已知a,b,c是三角形的三条边,则|a+b﹣c|﹣|c﹣a﹣b|的化简结果为()A. 0 B. 2a+2bC. 2c D. 2a+2b﹣2c3.正十边形的每一个内角的度数为()A.120°B.135°C.140°D.144°4.如图,直线a∥b,直线AC分别交a、b于点B、C,直线AD交a于点D.若∠1=20°,∠2=65°,则∠3度数等于()A.30° B.45°C.60° D.85°5.如图,点D在BC的延长线上,连接AD,则∠EAD是()的外角.A.△ABC B.△ACDC.△ABD D.以上都不对6.如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是()A.γ=2α+βB.γ=α+2βC.γ=α+β D.γ=180°﹣α﹣β7.如图,用数字标注了3个三角形,其中△ABD表示的是()A.① B.②C.③ D.都不对8.适合条件∠A=∠B=∠C的三角形一定是()A.锐角三角形 B.钝角三角形C.直角三角形 D.任意三角形9.如图,长度为10m的木条,从两边各截取长度为xm的木条,若得到的三根木条能组成三角形,则x可以取的值为()A.2m B. m C.3m D.6m10.如图,在四边形ABCD中,对角线BD平分∠ABC,若∠ABD=31°,则∠ABC的度数是()A.31° B.61°C.60° D.62°11.直角三角形的两锐角平分线相交成的角的度数是()A.45° B.135°C.45°或135° D.以上答案均不对12.如图是由10把相同的折扇组成的“蝶恋花”(图1)和梅花图案(图2)(图中的折扇无重叠),则梅花图案中的五角星的五个锐角均为()A.36° B.42° C.45° D.48°二.填空题13.如图,李叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是.14.三角形在日常生活和生产中有很多应用,如图房屋支架、起重机的臂膀中都有三角形结构,这是利用了三角形的性.15.如图,是某个正多边形的一部分,则这个正多边形是边形.16.将一副直角三角板,按如图所示叠放在一起,则图中∠α的度数是.17.如图,写出△ADE的外角 .三.解答题18.三角形的三边长是三个连续的奇数,且三角形的周长小于30,求三边的长.19.如图,Rt△ABC中,∠ACB=90°,CD是AB边上的高,写出分别与∠1,∠2相等的角,并说明理由.20.在各个内角都相等的多边形中,一个内角是一个外角的4倍,则这个多边形是几边形?这个多边形的内角和是多少度?21.用两种方法证明“三角形的外角和等于360°.如图,∠BAE,∠CBF,∠ACD是△ABC的三个外角.求证:∠BAE+∠CBF+∠ACD=360°.证法1:∵∠BAE+∠1=180°,∠CBF+∠2=180°,∠ACD+∠3═180°∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°.∴∠BAE+∠CBF+∠ACD= .∵,∴.请把证法1补充完整,并用不同的方法完成证法2.22.如图,△ABC的高AD,BE相交于点F.仅用直尺能否作出AB边上的高线?说明理由.答案一.选择题1. C2. A3. D.4. B5. C6. A.7. A8. B9. C.10. D11. C12. D.二.填空题13. 三角形的稳定性14. 稳定15.十.16. 75°17. ∠BDF、∠DEC和∠AEF三.解答题18.解:依题意设三角形的三边长为x﹣2,x,x+2,∴,即2<x<10,∴x为最大取9,最小取3的奇数,当x=9时,三边长为7,9,11,当x=7时,三边长为5,7,9,当x=5时,三边长为3,5,7,当x=3时,三边长为1,3,5.19.解:∠1=∠B,∠2=∠A.理由如下:∵∠ACB=90°,CD是AB边上的高,∴∠1+∠2=90°,∠1+∠A=90°,∠2+∠B=90°,∴∠1=∠B,∠2=∠A.20.解:设多边形的边数为n, 180(n-2)=360×4,解得:n=10,这个多边形的内角和=(10-2)×180=1440(度).答:这个多边形是10边形,这个多边形的内角和是1440度.21.解:证法1补充如下:540°﹣(∠1+∠2+∠3)∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°;证法2:∵∠BAE=∠2+∠3,∠CBF=∠1+∠3,∠ACD=∠1+∠2,∴∠BAE+∠CBF+∠ACD=∠2+∠3+∠1+∠3+∠1+∠2,即∠BAE+∠CBF+∠ACD=2(∠1+∠2+∠3)∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=2×180°=360°,或证法2:过点A作射线AP∥BD,∵AP∥BD,∴∠CBF=∠BAP,∠ACD=∠EAP,∵∠BAE+∠BAP+∠EAP=360°,∴∠BAE+∠CBF+∠ACD=360°.故答案为:540°﹣(∠1+∠2+∠3);∠1+∠2+∠3=180°;∠BAE+∠CBF+∠ACD=540°﹣180°=360°;22.解:仅用直尺能作出AB边上的高线,理由如下:因为锐角三角形的三条高相交于三角形内一点,由于△ABC的高AD,BE相交于点F,所以AB边上的高一定经过点F,而由三角形的高的定义可知,AB边上的高经过点C,所以连结CF并延长与AB交于点G,则CG为AB边上的高线.故仅用直尺能作出AB边上的高线.人教版八年级上册第十一章三角形单元测试一、选择题(每小题3分,共30分)1.[2017·普宁期末]如图1,CD ,CE ,CF 分别是△ABC 的高、角平分线、中线,则下列各式中错误的是( C )图1A .AB =2BF B .∠ACE =12∠ACB C .AE =BE D .CD ⊥BE2.一个三角形的两边长为2和6,第三边为偶数,则这个三角形的周长为( C )A .10B .12C .14D .163.一个三角形三个内角的度数之比为2∶3∶7,这个三角形一定是( D )A .任意三角形B .直角三角形C .锐角三角形D .钝角三角形【解析】 已知三角形三个内角的度数之比,根据三角形内角和定理,可求得三角的度数,由此判断三角形的类型.设三角形的三个角分别为2x ,3x ,7x ,2x +3x +7x =180°,解得x =15°,∴最大角为7×15°=105°.4.[2018·泰安]如图2,将一张含有30°角的三角形纸片的两个顶点叠放在长方形的两条对边上,若∠2=44°,则∠1的大小为( A )图2A.14°B.16°C.90°-αD.α-44°5.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于(C) A.108°B.90°C.72°D.60°6.[2018·长春模拟]如图3,在△ABC中,点D在边BA的延长线上,∠ABC的平分线和∠DAC的平分线相交于点M,若∠BAC=80°,∠C=60°,则∠M的大小为(C)图3A.20°B.25°C.30°D.35°【解析】∵∠BAC=80°,∠C=60°,∴∠ABC=40°,∠DAC=180°-∠BAC=100°,∵∠ABC的平分线和∠DAC的平分线相交于点M,∴∠ABM=20°,∠DAM=∠MAC=50°,∴∠M=∠DAM-∠ABM=30°.7.如图4,在△ABC中,CD是AB边上的高,BE是AC边上的高,O是两条高的交点,则∠A与∠1+∠2的关系是(B)图4A.∠A>∠1+∠2 B.∠A=∠1+∠2C.∠A<∠1+∠2 D.无法确定【解析】在四边形ADOE中,∠DOE=360°-90°-90°-∠A=180°-∠A,在△BOC中,∠BOC=180°-∠1-∠2,∵∠BOC=∠DOE,∴∠A=∠1+∠2.8.如图5,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY ,XZ 分别经过点B ,C ,在△ABC 中,∠A =30°,则∠ABX +∠ACX =( A )图5A .60°B .45°C .30°D .25°【解析】 ∵∠A =30°,∴∠ABC +∠ACB =180°-30°=150°,又∵∠X =90°,∴∠XBC +∠XCB =180°-90°=90°,∴∠ABX +∠ACX =150°-90°=60°.9.如图6,在△ABC 中,BD 平分∠ABC ,CD 平分∠BCA ,若∠D =3∠A ,则∠A =( B )图6A .32°B .36°C .40°D .44°【解析】 ∵∠ABC +∠ACB =180°-∠A ,BD 平分∠ABC ,CD 平分∠BCA ,∴∠DCB +∠DBC =12(∠ABC +∠ACB )=12(180°-∠A )=90°-12∠A ,∴∠D =180°-(∠DCB +∠DBC )=180°-⎝ ⎛⎭⎪⎫90°-12∠A =180°-90°+12∠A =90°+12∠A .∵∠D =3∠A ,∴90°+12∠A =3∠A ,解得∠A =36°.10.如图7,∠ABD ,∠ACD 的平分线交于点P ,若∠A =50°,∠D =10°.则∠P 的度数为( B )A .15°B .20°C .25°D .30°图7 第10题答图【解析】如答图,AC与BP相交于点O,延长DC,与AB交于点E.∵∠ACD=∠A+∠AEC,∠AEC=∠ABD+∠D,∠A=50°,∠D=10°,∴∠ACD=∠A+∠ABD+∠D=∠ABD+60°,∵∠AOB=∠POC,∴∠P+∠PCO=∠A+∠ABO,∵BP,CP分别平分∠ABD,∠ACD,∴∠PCO=12∠ACD,∠ABO=12∠ABD,∴∠P+12∠ACD=∠A+12∠ABD,∴∠P=∠A-12(∠ACD-∠ABD)=20°.二、填空题(每小题3分,共18分)11.[2018·广安]一个n边形的每个内角都等于108°,那么n=__5__.图8【解析】根据多边形的内角和公式可知(n-2)×180°=108°×n,解得n=5. 12.[2018春·单县期末]将一副三角板如图8放置,使点A在DE上,BC∥DE,∠C=45°,∠D=30°,则∠ABD的度数为__15°__.【解析】∵在Rt△ABC中,∠C=45°,∴∠ABC=45°,∵BC∥DE,∠D=30°,∴∠DBC=30°,∴∠ABD=∠ABC-∠DBC=15°.13.当三角形中一个内角α是另一个内角β的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”. 如果一个“半角三角形”的“半角”为20°,那么这个“半角三角形”的最大内角的度数为__120°__.图9【解析】∵α是“半角”,α=20°,∴β=2α=40°,∴最大内角的度数为180°-20°-40°=120°.14.如图9,AD是△ABC的中线,AB=8 cm,△ABD与△ACD的周长差为2 cm,则AC=__6__cm.【解析】∵AD是△ABC的中线,∴BD=CD,∴△ABD与△ACD的周长之差=(AB+AD+BD)-(AC+AD+CD)=AB-AC,∵AB=8 cm,△ABD与△ACD的周长差为2 cm,∴AC=6 cm.15.[2018·白银]已知a,b,c是△ABC的三边长,a,b满足|a-7|+(b-1)2=0,c为奇数,则c=__7__.【解析】∵|a-7|+(b-1)2=0,∴a-7=0,b-1=0,即a=7,b=1,∴由三角形三边关系,得7-1<c<7+1,即6<c<8,又∵c为奇数,∴c=7.16.如图10,BE平分∠ABD,CF平分∠ACD,BE,CF交于点G,若∠BDC=140°,∠BGC=110°,则∠A=__80°__.图10第16题答图【解析】如答图,连接BC.∵BE平分∠ABD,CF平分∠ACD,∴∠ABE=∠DBE=12∠ABD,∠ACF=∠DCF=12∠ACD,又∵∠BDC=140°,∠BGC=110°,∴∠DBC+∠DCB=40°,∠GBC+∠GCB=70°,∴∠EBD+∠FCD=70°-40°=30°,∴∠ABE+∠ACF=30°,∴∠ABE+∠ACF+∠GBC+∠GCB=70°+30°=100°,即∠ABC+∠ACB=100°,∴∠A=80°.三、解答题(共52分)17.(4分)如图11,AD是△ABC的高,BE是△ABC的内角平分线,BE,AD相交于点F,已知∠BAD=40°,求∠BFD的度数.图11解: ∵AD ⊥BC ,∠BAD =40°, ∴∠ABD =90°-40°=50°, ∵BE 是△ABC 的内角平分线,∴∠ABF =12∠ABD =25°,∴∠BFD =∠BAD +∠ABF =40°+25°=65°. 18.(6分)[2017春·兴化期末]如图12,点D 在AB 上,点E 在AC 上,BE ,CD 相交于点O . (1)若∠A =50°,∠BOD =70°,∠C =30°,求∠B 的度数;(2)试猜想∠BOC 与∠A +∠B +∠C 之间的关系,并证明你猜想的正确性.图12解: (1)∵∠A =50°,∠C =30°, ∴∠BDO =∠A +∠C =80°,∵∠BOD =70°, ∴∠B =180°-∠BDO -∠BOD =30°; (2)∠BOC =∠A +∠B +∠C . 理由:∵∠BEC =∠A +∠B ,∴∠BOC =∠BEC +∠C =∠A +∠B +∠C . 19.(6分)[2018春·镇平期末]已知a ,b ,c 是△ABC 的三边长,a =4,b =6,设三角形的周长是x .(1)请直接写出c 及x 的取值范围; (2)若x 是小于18的偶数. ①求c 的长;②判断△ABC 的形状.解: (1)∵a =4,b =6,∴2<c <10. 故周长x 的取值范围为12<x <20; (2)①∵周长为小于18的偶数, ∴x =16或x =14. 当x =16时,c =6; 当x =14时,c =4;②当c =6时,b =c ,△ABC 为等腰三角形;当c =4时,a =c ,△ABC 为等腰三角形. 综上,△ABC 是等腰三角形. 20.(8分)[2017·栖霞区期末]已知AB ∥CD ,一副三角板按如图13所示放置,∠AEG =30°.求∠HFD 的度数.图13 解: ∵∠AEG =30°,∠GEF =45°,∴AEF =75°, ∵AB ∥CD ,∴∠EFD =∠AEF =75°, ∵∠EFH =30°, ∴∠HFD =45°.21.(8分)如图14,在△ABC 中,AD 平分∠BAC ,P 为线段AD 上的一个动点,PE ⊥AD 交直线BC 于点E . (1)若∠B =35°,∠ACB =85°,求∠E 的度数;(2)当P 点在线段AD 上运动时,猜想∠E 与∠B ,∠ACB 的数量关系,写出结论并证明.图14 第21题答图解: (1)∵∠B =35°,∠ACB =85°,∴∠BAC =60°, ∵AD 平分∠BAC ,∴∠DAC =30°, ∴∠ADC =65°,∴∠E =25°;(2)∠E =12(∠ACB -∠B ).证明:如答图,设∠B =n ,∠ACB =m ,∵AD 平分∠BAC ,∴∠1=∠2=12∠BAC ,∵∠B +∠ACB +∠BAC =180°, ∠B =n ,∠ACB =m ,∴∠CAB =180°-n -m ,∴∠1=12(180°-n -m ),∴∠3=∠B +∠1=n +12(180°-n -m )=90°+12n -12m ,∵PE ⊥AD ,∴∠DPE =90°,∴∠E =90°-⎝ ⎛⎭⎪⎫90°+12n -12m =12(m -n )=12(∠ACB -∠B ). 22.(10分)[2018春·衢州期中](1)如图15①,②,③是一个多边形,你能否用一直线去截这个多边形,使得到的新多边形分别满足下列条件:(分别在图①,②,③中画出图形,把截去的部分打上阴影)①新多边形内角和比原多边形的内角和增加了180°; ②新多边形的内角和与原多边形的内角和相等;③新多边形的内角和比原多边形的内角和减少了180°;(2)将多边形只截去一个角,截后形成的多边形的内角和为2 520°,求原多边形的边数.图15解: (1)如答图所示;第22题答图(2)设新多边形的边数为n , 则(n -2)·180°=2 520°,解得n =16,①若截去一个角后边数增加1,则原多边形边数为15, ②若截去一个角后边数不变,则原多边形边数为16, ③若截去一个角后边数减少1,则原多边形边数为17, 故原多边形的边数可以为15,16或17. 23.(10分)[2017·内乡期末](1)如图16①,△ABC 中,点D ,E 在边BC 上,AD 平分∠BAC ,AE ⊥BC ,∠B =35°,∠C =65°,求∠DAE 的度数;图16(2)如图②,若把(1)中的条件“AE⊥BC”变成“F为DA延长线上一点,FE⊥BC”,其他条件不变,求∠DFE的度数;(3)若把(1)中的条件“AE⊥BC”变成“F为AD延长线上一点,FE⊥BC”,其他条件不变,请画出相应的图形,并求出∠DFE的度数;(4)结合上述三个问题的解决过程,你能得到什么结论?解:(1)∠BAC=180°-∠B-∠C=180°-35°-65°=80°,∵AD平分∠BAC,∴∠BAD=12∠BAC=40°,∵AE⊥BC,∴∠AEB=90°,∴∠BAE=90°-∠B=55°,∴∠DAE=∠BAE-∠BAD=55°-40°=15°;第23题答图(2)如答图①,作AH⊥BC于H,由(1)得∠DAH=15°,∵FE⊥BC,∴AH∥EF,∴∠DFE=∠DAH=15°;(3)如答图②,作AH⊥BC于H,由(1)得∠DAH=15°,∵FE⊥BC,∴AH∥EF,∴∠DFE=∠DAH=15°;(4)结合上述三个问题的解决过程,得到∠BAC的角平分线与过角平分线上的一点所作的过BC边的垂线的夹角为15°.人教版八年级数学(上)第11章《三角形》单元检测题(word版有答案)一、选择题(每小题3分,共30分)1,若某三角形的两边长分别为3和4,则下列长度的线段能作为其第三边的是()A. 3 B. 5 C. 7 D. 9 2.下列图形中有稳定性的是()A.直角三角形B.长方形C.正方形D.平行四边形3.下列说法正确的是()A.三角形三条高都在三角形内B.三角形的三条角平分线可能在三角形内,也可能在三角形外C.三角形三条中线相交于一点D.三角形的角平分线是射线4.一个三角形三个内角的度数之比为2:3:7,则这个三角形一定是()A.钝角三角形B.直角三角形C.锐角三角形D.等腰三角形5.一个多边形的每个内角都等于1200,则这个多边形的边数为()A. 3B. 4C. 5D. 6 6.五边形的内角和为()A. 180°B. 360°C. 540°D. 720°7.如图,AB∥CD,∠EBA=45°,∠E+∠D=()A. 30°B. 45°C. 60°D. 90°8.如图,B点在A处的南偏西45°方向,C处在A处的南偏东150方向,C处在B北偏东80°方向,则∠ACB=()A. 40°B. 50°C. 80°D. 85°9.如图,正五边形ABCDE中,AE,CD的延长线交于点F,连接BF交DE于点H,若BF 平分∠AFC,则∠BHE=()A. 75°B. 80°C. 85°D. 90°10.如图,∠ABD与∠ACD的角平分线交于点P,若∠A=50°,∠D=10°,则∠P的度数为( )A. 15°B. 20°C. 25°D. 30°二、填空题(每小题3分,共18分)11.若直角三角形的一个锐角为40°,则另一个锐角的度数是.12.若等腰三角形的两边长分别为3cm和8cm,则它的周长是.13.如图,直线l1∥l2,且分别与△ABC的两边ABAC相交,若∠A=60°,∠1=50°,则∠2=.14.一个七边形共有条对角线.15.如图,在四边形ABCD中,∠A+∠B=200°,作∠ADC、∠BCD的平分线交于点O1称为第1次操作,作∠O1DC、∠O1CD的平分线交于点O2称为第2次操作,作∠O2DC、∠O2CD的平分线交于点O3称为第3次操作,……,则第4次操作后∠CO4D的度数是. 16.如图1、图2、图3中,分别是由1个、2个、n个正方形连接成的图形,在图1中,x =70°;在图2中,y=280;通过以上计算,请写出图3中a+b+c+…+d=.(用含n 的式子表示)三、解答题(共8小题,共72分)17.(本题8分)如图,在△ABC中,画出BC边上的高线、AB边上的高线、BC边上的中线和∠B的角平分线.18.(本题8分)△ABC的三边长分别为a,b,c,化简:|a-b+c|+|a-b-c| .19.(本题8分)一个多边形的内角和与外角和之比为9:2,求这个多边形的边数.20.(本题8分)如图,AD,AE分别是△ABC高和角平分线,∠B=20°,∠C=80°,求∠EAD的度数.21.(本题8分)在Rt△ABC中,∠ACB=900,∠B=300,CD⊥AB于D,CE是△ABC的角平分线.(1)求∠DCE的度数;(2)若∠CEF=135°,求证:EF∥BC.22.(本题10分)如图,在五边形ABCDE中,AE⊥DE,∠BAE=1200,∠BCD=60°,∠CDE-∠ABC=300.(1)求∠D的度数;(2)求证:AB∥CD23.(本题10分)(1)如图1,把△ABC纸片沿DE折叠,使点A落在四边形BCED的内部点A'的位置,试说明2∠A=∠1+∠2;(2)如图2,若把△ABC纸片沿DE折叠,使点A落在四边形BCED的外部点A'的位置,此时∠A与∠1、∠2之间的等量关系是(直接写出);(3)如图3,若把四边形ABCD沿EF折叠,使点A、D落在四边形BCFE的内部点A'、D'的位置,请你探索此时∠A、∠D、∠1与∠2之间的数量关系,写出你发现的结论,并说明理由.24.(本题12分)如图,∠COD=90°,直线AB与OC交于点B,与OD交于点A,射线OE和射线AF交于点G.(1)若OE平分∠BOA,AF平分∠BAD,∠OBA=30°,则∠OGA=;(2)若∠GOA=13∠BOA,∠GAD=13∠BAD,∠OBA=300,则∠OGA=;(3)将(2)中“∠OBA=300”改为“∠OBA=a”,其余条件不变,则∠OGA=(用含a的代数式表示)(4)若OE将∠BOA分成1:2两部分,AF平分∠BAD,∠ABO=a(30°<a<90°),求∠OGA的度数(用含a的代数式表示)1-5BACAD 6-10CBDDB11.50°12.19cm13.70°14.1415.170°16.90n17.解:略18.解:|a-b+c|+|a-b-c|=a-b+c-a-+b+c=219.解;设这个多边形的边数为n,则(n-2)180°:360°=9:2,则n=1120.解:∵∠B=20°,∠C=80°,∴∠BAC=1800-∠B-∠C=80°,∵AE是角平分线,∴∠BAE=40°,∴∠AED=∠B+∠BAE=20°+40°=60°,∴∠EAD=300 .21.解:(1)15°;(2)略.22.解:(1)150°;(2)易求∠B=120°,故AB∥CD23.解:(1)略;(2)2∠A=∠1-∠2;(3)2(∠A+∠D)=∠1+∠2+3600.24解:(4)当∠EOD:∠COE=1:2时,则∠EOD=300,∵∠BAD=∠ABO+∠BOA=a+90°,而AF平分∠BAD,∴∠FAD=12∠BAD,∵∠FAD=∠EOD+∠OGA,∴2×30°+2∠OGA=a+900,∴∠OGA=12a+150;当∠EOD:∠COE=2:1时,则∠EOD=600,同理得到∠OGA=12a-15°,即∠OGA的度数为12a+15°或12a-15°.。
八年级数学上册《第十一章 三角形》单元测试卷及答案-人教版
八年级数学上册《第十一章 三角形》单元测试卷及答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.如果一个多边形的内角和等于360度,那么这个多边形的边数为( )A .4B .5C .6D .72.已知三角形的两边长分别为4和9,则此三角形的第三边长可以是( )A .4B .5C .9D .133.如图,在△ABC 中,∠C =90°,若BD ∥AE ,∠DBC =20°,则∠CAE 的度数是( )A .40°B .60°C .70°D .80°4.如图,在 ABC 中,点 D 是 BC 边的延长线上一点, ABC ∠ 与 ACD ∠ 的平分线相交于点 E ,若 50A ∠=︒ ,则 E ∠= ( )A .25°B .30°C .40°D .45°5.在△ABC 中,如图,CD 平分∠ACB ,BE 平分∠ABC ,CD 与BE 交于点F ,若∠DEF=120°,则∠A=( )A .30°B .45°C .60°D .90°6.如图,在五边形ABCDE 中,∠A+∠B+∠E=∠EDC+∠BCD+140°,DF ,CF 分别平分∠EDC 和∠BCD ,则∠F 的度数为( )A .100°B .90°C .80°D .70°7.如图,在ABC 中AB AC =,中线AD 与角平分线CE 相交于点F ,已知40ACB ∠=︒,则AFC ∠的度数为( )A .100︒B .110︒C .120︒D .130︒8.如图,从ABC 各顶点作平行线AD EB FC ,各与其对边或其延长线相交于点D ,E ,F.若ABE 的面积为1S ,AFC 的面积为2S ,EDC 的面积为3S ,只要知道下列哪个值就可以求出DEF 的面积( )A .12S S +B .123S S S ++C .3SD .1232S S S ++二、填空题:(本题共5小题,每小题3分,共15分.)9.为了使做好的木门窗在运输、安装过程中不变形,木工师傅在木门窗上斜着加钉了一根木条.其原理是10.从一个多边形的顶点出发,分别连接这个点与其余各个顶点,得到分割成的十个三角形,那么,这个多边形为 边形.11.已知 ABC 的高为 AD , ∠BAD=65°,∠CAD=25° ,则 BAC ∠ 的度数是 .12.如图,小明在操场上从A 点出发,沿直线前进5米后向左转40°,再沿直线前进5米后,又向左转40°,照这样走下去,他第一次回到出发地A 点时,一共走了 米.13.纸片△ABC 中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C 落在△ABC 内(如图),若∠1=20°,则∠2的度数为 .三、解答题:(本题共5题,共45分)14.在△ABC 中,∠ADB=100°,∠C=80°,∠BAD= ∠DAC ,BE 平分∠ABC ,求∠BED 的度数15.如图,已知AD 是△ABC 的角平分线,CE 是△ABC 的高,AD 与CE 相交于点P ,∠BAC=66°,∠BCE=40°,求∠ADC 和∠APC 的度数.16.如图所示,在 ABC ∆ 中,∠A=38° ,∠ABC=70° , CD AB ⊥ 于点 D , CE 平分 ACB ∠ , DF CE ⊥ 于点 F ,求 CDF ∠ 的度数.17.如图,AD 为△ABC 的中线,BE 为△ABD 的中线,过点E 作EF 垂直BC ,垂足为点F .(1)∠ABC=35°,∠EBD=18°,∠BAD=30°,求∠BED的度数;(2)若△ABC的面积为30,EF=5,求CD的长度.18.在△ABC中,∠C=90°,BD是△ABC的角平分线,P是射线AC上任意一点(不与A、D、C 三点重合),过点P作PQ⊥AB,垂足为Q,交直线BD于E.(1)如图,当点P在线段AC上时,说明∠PDE=∠PED.(2)作∠CPQ的角平分线交直线AB于点F,则PF与BD有怎样的位置关系?画出图形并说明理由.参考答案:1.A 2.C 3.C 4.A 5.C 6.C 7.B 8.C9.三角形的稳定性10.十二11.90°或40°12.4513.60°14.解答:∵∠ADB=100°,∠C=80°∴∠DAC=∠ADB-∠C=100°-80°=20°∵∠BAD= ∠DAC∴∠BAD= ×20°=10°在△ABD 中,∠ABC=180°-∠ADB-∠BAD=180°-100°-10°=70° ∵BE 平分∠ABC∴∠ABE= ∠ABC= ×70°=35°∴∠BED=∠ABE+∠BAD=35°+10°=45°.15.解:∵AD 是△ABC 的角平分线,∠BAC=66°∴∠BAD=∠CAD= 12∠BAC=33° ∵CE 是△ABC 的高∴∠BEC=90°∵∠BCE=40°∴∠B=50°∴∠ADC=∠BAD+∠B=33°+50°=83°;∠APC=∠ADC+∠BCE=83°+40°=123°16.∵在 ABC 中, ∠A=38°, ∠ABC=70°∴∠ACB =180°−∠A −∠ABC =72°∵CE 平分 ACB ∠∴∠ECB =12∠ACB =36°∵CD AB ⊥ 于点 D∴90CDB ∠=︒∴在 CDB 中∴∠FCD =∠ECB −∠DCB =36°−20°=16°∵DF CE ⊥ 于点 F∴∠CDF =90°−∠FCD =74°17.(1)解:∵∠ABC =35°,∠EBD =18°∴∠ABE =35°﹣18°=17°∴∠BED =∠ABE+∠BAD =17°+30°=47°(2)解:∵AD 是△ABC 的中线∴S△ABD=12S△ABC又∵S△ABC=30∴S△ABD=12×30=15又∵BE为△ABD的中线∴S△BDE=12S△ABD∴S△BDE=12×15=152∵EF⊥BC,且EF=5∴S△BDE=12•BD•EF∴12•BD×5=152∴BD=3∴CD=BD=3.18.(1)解:∵PQ⊥AB∴∠EQB=∠C=90°∴∠BEQ+∠EBQ=90°,∠CBD+∠PDE=90°∵BD为∠ABC的平分线∴∠CBD=∠EBQ∵∠PED=∠BEQ∴∠PDE=∠PED(2)解:当P在线段AC上时,如图1所示,此时PF∥BD理由为:∵∠PDE=∠PED∴PD=PE∵PF为∠CPQ的平分线,∠CPQ为△PDE的外角∴∠CPF=∠QPF=∠PDE=∠PED∴PF∥BD;当P在线段AC延长线上时,如图2所示,PF⊥BD 理由为:∵∠PDE=∠PED∴PD=PE∵PM为∠CPQ的平分线∴PF⊥BD。
2023-2024学年第一学期八年级数学第11章《三角形》单元测试卷(含答案)
2023-2024学年第一学期八年级数学第11章《三角形》单元测试卷人教版一、选择题(每小题3分,共30分)1.(3分)下列条件中能组成三角形的是( )A.5cm, 7cm, 13cm B.3cm, 5cm, 9cmC.6cm, 9cm, 14cm D.5cm, 6cm, 11cm2.(3分)三角形的内角和等于( )A.90°B.180°C.300°D.360°3.(3分)一个多边形从一个顶点出发,最多可以作2条对角线,则这个多边形是( )A.四边形B.五边形C.六边形D.七边形4.(3分)如图,虚线部分是小刚作的辅助线,则你认为线段CD为( )A.边AC上的高B.边BC上的高C.边AB上的高D.不是△ABC的高5.(3分)若三角形的三边的长分别是2cm、5cm、acm,则a的长可能为( )cm.A.8B.2C.5D.36.(3分)直角三角形的一锐角是35° ,那么另一锐角是( )A.55°B.50°C.45°D.70°7.(3分)如图,CD,CE,CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是( )A.AB=2BF B.∠ACE= ∠ACBC.AE=BE D.CD⊥BE8.(3分)一个多边形最少可分割成五个三角形,则它是( )边形。
A.8B.7C.6D.59.(3分)下列正多边形的组合中,能够铺满地面的是( )A.正六边形和正方形B.正六边形和正三角形C.正五边形和正八边形D.正十边形和正三角形10.(3分)在△ABC中,∠A=500,∠ABC的角平分线和∠ACB的角平分线相交所成的∠BOC的度数是( )A.130°B.125°C.115°D.25°二、填空题(共8题;共24分)11.(3分)如图,木匠在做门框时防止门框变形,用一根木条斜着钉好,这样门框就固定了,所运用的数学道理是 .12.(3分)若一个多边形的每个外角都相同且为72°,则这个多边形有 条边.13.(3分)已知三角形的三个外角的度数比为2∶3∶4,则它的最大内角的度数为 .14.(3分)如图,AB//CD,∠A+∠E=70°,则∠C为 度.15.(3分)已知△ABC中,AB=2,BC=5,且AC的长为偶数,则AC的长为 . 16.(3分)如图,已知AD为△ABC的中线,BE为△ABD的中线.过点E作EF⊥BC于F.若△ABC的面积为40,EF=5,则CD的长为 .17.(3分)一次数学活动课上.小聪将一副三角板按图中方式叠放,则∠α等于 .18.(3分)如图,直线l1∥l2,∠A=85°,∠B=70°,则∠1-∠2= .三、解答题(一)(共24分)19.(6分)如图,直线a//b,点A、点B在直线a上,点C、点D在直线b上,连接AC、BD交于点E,其中BD平分∠ABC,∠BCD=80°,∠BEC=110°,求∠BAC的度数.20.(6分)如图,∠B=42°,∠A+10°=∠1,∠ACD=64°,说明AB∥CD21.(6分)如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠EAB=110°,∠C=60°,点D 在GH上,求∠BDC的度数.22.(6分)如图,AF,AD分别是ΔABC的高和角平分线,且∠B=30°,∠C=56°,求∠DAF的度数.四、解答题(二)(共42分)23.(8分)一个多边形的每一个内角都相等,并且每个外角都等于和它相邻的内角的一半.(1)(4分)求这个多边形是几边形;(2)(4分)求这个多边形的内角和24.(8分)如图,小明从点A出发,前进10m后向右转20°,再前进10m后又向右转20°,这样一直下去,直到他第一次回到出发点A为止,他所走的路径构成了一个多边形.(1)(4分)小明一共走了多少米?(2)(4分)这个多边形的内角和是多少度?25.(8分)如图所示,在△ABC中,已知AD是角平分线,∠B=66°,∠C=54°.(1)(4分)求∠ADB的度数;(2)(4分)若DE⊥AC于点E,求∠ADE的度数.26.(8分)将一副三角尺按如图所示方式放置,然后过点C作CF平分∠DCE,交DE于点F。
人教版八年级上册数学第11章《三角形》单元测试卷(含答案解析)
人教版八年级上册数学第11章《三角形》单元测试卷班级_________ 姓名__________ 考号_____________ 得分____________一、选择题(每小题3分,共30分)1.以下列各组线段为边,能组成三角形的是()A.2cm,5 cm,8cm B.3 cm,3 cm,6 cmC.3 cm,4 cm,5 cm D.1 cm,2cm,3 cm2.在△ABC中,∠A=80°,∠B=50°,则∠C的余角是()A.130°B.50°C.40°D.20°3.如第3题图,∠C=25°,∠AED=150°,则∠CDE为()第3题图A.100°B.115°C.125°D.155°4.如第4题图,在△ABC中,∠C=90°,∠B=40°,AD是∠BAC的平分线,则∠ADC的大小为()第4题图A.25°B.50°C.65°D.70°5.如第5 题图,工人师傅砌门时,常用木条EF固定长方形门框,使其不变形,这样做的根据是()第5题图A.三角形具有稳定性B.两点确定一条直线C.两点之间线段最短D.三角形内角和180°6.如果将一副三角板按如第6题图方式叠放,那么∠1=()第6题图A.90°B.100°C.105°D.135°7.给出下列命题:①三条线段组成的图形叫三角形;②三角形相邻两边组成的角叫三角形的内角;③三角形的角平分线是射线;④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外;⑤任何一个三角形都有三条高、三条中线、三条角平分线;⑥三角形的三条角平分线交于一点,且这点在三角形内.正确的命题有()A.1个B.2个C.3个D.4个8.一个正多边形的一个内角是它相邻外角的5倍,则这个正多边形的边数是()A.12 B.10 C.8 D.69.如第9题图,将△ABC沿DE、EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠CDO+∠CFO=100°,则∠C的度数为()第9题图A.40°B.41°C.42°D.43°10.在△ABC中,∠A=150°.第一步:在△ABC上方确定一点A1,使∠A1BA=∠ABC,∠A1CA=∠ACB,如第10题图1.第二步:在△A1BC上方确定一点A2,使∠A2BA1=∠A1BA,∠A2CA1=∠A1CA,如第10题图2.照此下去,至多能进行()步.第10题图1 第10题图2A.3 B.4 C.5 D.6二、填空题(每小题4分,共24分)11.如果三角形的一个外角等于与它相邻的内角的4倍,等于与它不相邻的一个内角的2倍,则此三角形最小内角的度数是.12.如第12题图,∠A+∠B+∠C+∠D+∠E+∠F=度.第12题图13.下列第13题图1、图2、图3中,具有稳定性的是图.图1 图2 图3第13题图14.如第14题图是由射线AB、BC、CD、DE、EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=.。
人教版数学八年级上册:第十一章《三角形》单元测试题(附参考答案)
第十一章《三角形》单元测试题(时间:120分钟 满分:150分)一、选择题(每小题4分,共40分)1.下列图形中具有稳定性的是( )A .正三角形B .正方形C .正五边形D .正六边形2.如图,能说明∠1>∠2的是( )3.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A B C D4.一个多边形的一个内角和是900°,则这个正多边形的边数为( )A .5B .6C .7D .85.下列条件中,能判定△ABC 为直角三角形的是( )A .∠A =2∠B =3∠C B .∠A +∠B =2∠CC .∠A =∠B =30°D .∠A =12∠B =13∠C6.如图,在△ABC 中,∠ACB =90°,CD 是AB 边上的高.如果∠A =50°,那么∠DCB =( )A .50°B .45°C .40°D .25°7.从长为10 cm ,7 cm ,5 cm ,3 cm 的四条线段中任选三条,能构成三角形的选法有( )A .1种B .2种C .3种D .4种8.如图,在△ABC 中,∠C =90°,D ,E 为AC 边上的两点,且AE =DE ,BD 平分∠EBC ,则下列说法不正确的是() A .BC 是△ABE 的高 B .BE 是△ABD 的中线C .BD 是△EBC 的角平分线 D .∠ABE =∠EBD =∠DBC第8题图第9题图第10题图9.小鹏用家中多余的硬纸板做了一个如图所示的多边形飞镖游戏盘,则该游戏盘的内角和比外角和多( ) A.1 080° B.720° C.540° D.360°10.如图,在5×4的方格纸中,每个小正方形边长为1个单位长度,点O,A,B在方格纸的交点(格点)上,在第四象限内的格点上找点C,使△ABC的面积为3,则这样的点C共有( )A.2个 B.3个 C.4个 D.5个二、填空题(每小题3分,共30分)11.如图,在△ABC中,∠A=80°,点D是BC延长线上一点,∠ACD=150°,则∠B=____________.第11题图第15题图第16题图第17题图12.已知△ABC的两条边长分别为2和5,且第三边长为整数,则第三边的长可能为____________.(填一个符合题意的答案)13.已知在△ABC中,∠A∶∠B∶∠C=1∶3∶5,则△ABC是____________三角形.14.一个正八边形每个内角的度数为____________.15.如图所示,直线a∥b,直线c与直线a,b分别相交于点A,B,AM⊥b,垂足为点M.若∠1=58°,则∠2=____________.16.如果将一副三角板按如图方式叠放,那么∠1=____________.17.如图,已知BD是△ABC的中线,AB=5,BC=3,则△ABD与△BCD的周长的差是____________.18.如图,在△ABC中,AE是∠BAC的角平分线,AD是BC边上的高线,且∠B=50°,∠C=60°,则∠EAD的度数是____________.第18题图第19题图第20题图19.如图,△ABC中,D,E,F分别是BC,CA,AB的中点,作△DEF.若△ABC的面积是12,则△DEF的面积是____________.20.如图,已知在△OAB中,∠AOB=70°,∠OAB的平分线与△OBA的外角∠ABN的平分线所在的直线交于点D,则∠ADB的大小为____________.三、(本大题12分)21.如图,在△ABC中,AD,AE分别是边BC上的中线和高,AE=3 cm,S△ABC=12 cm2.求BC和DC的长.四、(本大题12分)22.某工程队准备开挖一条隧道,为了缩短工期,必须在山的两侧同时开挖,为了确保两侧开挖的隧道在同一条直线上,测量人员在如图所示的同一高度定出了两个开挖点P和Q,然后在左边定出开挖的方向线AP,为了准确定出右边开挖的方向线BQ,测量人员取一个可以同时看到点A,P,Q的点O,测得∠A=28°,∠AOC=100°,那么∠QBO应等于多少度才能确保BQ与AP在同一条直线上?五、(本大题14分)23.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.六、(本大题14分)24.将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.七、(本大题12分)25.如图,在△ABC中,∠B=30°,∠ACB=110°,AD是BC边上高线,AE平分∠BAC,求∠DAE的度数.八、(本大题16分)26.已知:如图1,线段AB,CD相交于点O,连接AD,CB,我们把形如图1的图形称之为“8字形”.试解答下列问题:(1)在图1中,请直接写出∠A,∠B,∠C,∠D之间的数量关系:________________;(2)仔细观察,在图2中“8字形”的个数有____________个;(3)在图2中,若∠D=40°,∠B=36°,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD,AB分别相交于点M,N.利用(1)的结论,试求∠P的度数;(4)如果图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D,∠B之间存在着怎样的数量关系.(直接写出结论即可)参考答案:第十一章《三角形》单元测试题1.A2.C3.A4.C5.D6.A7.B8.D9.B10.B11.70°12.答案不唯一,如:4或5或613.钝角14.13515.32°16.105°17.218.5°19.320.35°21.∵S∵ABC=2BC·AE=12cm2,AE=3cm,∵BC=8cm.∵AD是BC边上的中线,∵DC=BC=4cm22.在∵AOB中,∵QBO=180°∵A-∵O=180°-28°-100°=52°即∵QBO应等于52才能确保BQ与AP在同一条直线上23.设∵1=∵2=x,则∵3=∵4=2x.∵∵BAC=63°,∵∵2+∵4=117°, 即x+2x=117°∵x=39°∵∵3=∵4=78°∵∵DAC=180°-∵3∵4=24°24.(1)证明:由三角板的性质,可知∵D=30°,∵3=45°,∵DCE=90°∵CF平分∵DCE,∵∵1=∵2=∵DCE=45°∵∵1=∵3.∵CF∵AB.(2)由三角形内角和,可得∵DFC=180°-∵1-∵D=180°-45°-30°=105°.25.∵∵B=30°,∵ACB=110°,∵∵BAC=1830°—110°=40°∵AE平分∵BAC,∵∵BAE=∵BAC=×40°=20°∵∵B=30°,AD是BC边上高线,∵∵BAD=90°30°=60°∵∵DAE=∵BAD∵BAE=60°-20°=40°26.(1)∵A+∵D=∵B+∵C.(2)6.(3)∵∵D=40°,∵B=36°,∵∵OAD+40°=∵OCB+36°∵∵OCB-∵OAD=4°∵AP、CP分别是∵DAB和∵BCD的平分线,∵∵DAM=∵OAD,∵PCM=2∵OCB.∵∵DAM+∵D=∵PCM+∵P,∵∵P=∵DAM+∵D-∵PCM=2(∵OAD-∵OCB)+∵D=2X(-4)+40=38°.(4)根据“8字形”数量关系,得∵OAD+∵D=∵OCB+∵B ∵DAM+∵D=∵PCM+∵P,所以∵OCB=∵OAD=∵D=∵B, ∵PCM-∵DAM=∵D-∵PAP、CP分别是∵DAB和∵BCD的平分线,∵∵DAM=∵OAD,∵PCM=∵OCB∵2(∵D∵B)=∵D-∵P.整理,得2∵P=∵B+∵D。
人教版八年级上册数学第十一章(三角形)单元测试卷及答案
人教版八年级上册数学单元测试卷第十一章三角形姓名班级学号成绩一.选择题(共10小题,每小题3分,共30分)1.下列图形具有稳定性的是()A.B.C.D.2.若正n边形的一个外角为60°,则n的值是()A.6B.5C.4D.33.如图,△ABC的边BC上的高是()A.线段AF B.线段DB C.线段CF D.线段BE第3题图第6题图第7题图4.以下各组线段为边,能组成三角形的是()A.2cm,4cm,6cm B.8cm,6cm,4cmC.14cm,6cm,7cm D.2cm,3cm,6cm5.在△ABC中,∠A=∠B=∠C,则此三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形6.如图,在△ABC中,∠B=30°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1﹣∠2的度数是()A.30°B.45°C.60°D.70°7.如图所示,在△ABC中,AD平分∠BAC交BC于点D,∠B=30°,∠ADC=70°,则∠BAC的度数是()A.50°B.60°C.70°D.80°8.如图,在△ABC中,BD是AC边上的高,CE是∠ACB的平分线,BD,CE交于点F.若∠AEC=80°,∠BFC=128°,则∠ABC的度数是()A.28°B.38°C.42°D.62°9.一个多边形的内角和等于540°,则它的边数为()A.4B.5C.6D.80.如图,点O是△ABC内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC=()A.95°B.120°C.130°D.135°第10题图第13题图第14题图二.填空题(每小题3分,共15分)11.已知一个三角形的两边长分别为4和5,若第三边的长为整数,则此三角形周长的最大值.12.如果一个多边形的内角和等于它外角和的3倍,则这个多边形的边数是.13.如图,AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=50°,点F为边AB上一点,当△BDF为直角三角形时,则∠ADF的度数为.14.如图,在△ABC中,AD为BC边上的中线,DE⊥AB于点E,DF⊥AC于点F,AB=3,AC=4,DF=1.5,则DE=.15.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为三.解答题一(共3小题,每题8分,共24分)16.在△ABC中,∠CAE=25°,∠C=40°,∠CBD=30°,求∠AFB的度数.17.已知一个正多边形的边数为n.(1)若这个多边形的内角和为其外角和的4倍,求n的值;(2)若这个正多边形的一个内角为135°,求n的值.18.如图,在△ABC中,∠B=40°,∠C=70°,AD是△ABC的角平分线,点E在BD上,点F在CA的延长线上,EF∥AD.(1)求∠BAF的度数.(2)求∠F的度数.四.解答题二(共3小题,每题9分,共27分)19.如图,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠C=70°.(1)∠AOB的度数为;(2)若∠ABC=60°,求∠DAE的度数.20.已知在△ABC中,∠A、∠B、∠C的对边分别为a、b、c.(1)化简代数式:|a+b﹣c|+|b﹣a﹣c|=.(2)若AB=AC,AC边上的中线BD把三角形的周长分为15和6两部分,求腰长AB.21.如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E.(1)求证:∠BAC=∠B+2∠E.(2)若CA⊥BE,∠ECD﹣∠ACB=30°时,求∠E的度数.五.解答题三(共2小题,每题12分,共24分)22.我们在小学已经学习了“三角形内角和等于180°”.在三角形纸片中,点D,E分别在边AC,BC上,将∠C沿DE折叠,点C落在点C'的位置.(1)如图1,当点C落在边BC上时,若∠ADC'=58°,则∠C=,可以发现∠ADC'与∠C 的数量关系是;(2)如图2,当点C落在△ABC内部时,且∠BEC'=42°,∠ADC'=20°,求∠C的度数;(3)如图3,当点C落在△ABC外部时,若设∠BEC'的度数为x,∠ADC'的度数为y,请求出∠C与x,y之间的数量关系.23.如图1,直线m与直线n垂直相交于O,点A在直线m上运动,点B在直线n上运动,AC、BC分别是∠BAO和∠ABO的角平分线.(1)∠ACB=;(2)如图2,若BD是△AOB的外角∠OBE的角平分线,BD与AC相交于点D,点A、B在运动的过程中,∠ADB的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值;(3)如图3,过C作直线与AB交于F,且满足∠AGO﹣∠BCF=45°,求证:CF∥OB.第11章:三角形单元测试卷(参考答案)一.选择题(共10小题,每小题3分,共30分)1.下列图形具有稳定性的是()A.B.C.D.【分析】根据三角形具有稳定性解答.【解答】解:三角形、四边形、五边形及六边形中只有三角形具有稳定性.故选:A.【点评】本题考查了三角形具有稳定性,是基础题,需熟记.2.若正n边形的一个外角为60°,则n的值是()A.6B.5C.4D.3【分析】根据多边形的外角和与正多边形的性质即可求得答案.∵【解答】解:正n边形的一个外角为60°∴n=360°÷60°=6故选:A.【点评】本题考查多边形的外角和及正多边形的性质,此为基础且重要知识点,必须熟练掌握.3.如图,△ABC的边BC上的高是()A.线段AF B.线段DB C.线段CF D.线段BE【分析】根据三角形的高的定义进行分析即可得出结果.【解答】解:由图可得:△ABC的边BC上的高是AF.故选:A.【点评】本题主要考查三角形的角平分线、中线、高,解答的关键是对三角形的高的定义的掌握.4.以下各组线段为边,能组成三角形的是()A.2cm,4cm,6cm B.8cm,6cm,4cmC.14cm,6cm,7cm D.2cm,3cm,6cm【分析】根据三角形任意两边的和大于第三边,进行分析判断.【解答】解:A、2+4=6,不能组成三角形;B、4+6=10>8,能组成三角形;C、6+7=13<14,不能够组成三角形;D、2+3=5<6,不能组成三角形.故选:B.【点评】本题考查了能够组成三角形三边的条件.注意:用两条较短的线段相加,如果大于最长那条就能够组成三角形.5.在△ABC中,∠A=∠B=∠C,则此三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形【分析】用∠A表示出∠B、∠C,然后利用三角形的内角和等于180°列方程求解即可.【解答】解:∵∠A=∠B=∠C∴∠B=2∠A,∠C=3∠A∵∠A+∠B+∠C=180°∴∠A+2∠A+3∠A=180°解得∠A=30°所以,∠B=2×30°=60°∠C=3×30°=90°所以,此三角形是直角三角形.故选:B.【点评】本题考查了三角形的内角和定理,熟记定理并用∠A列出方程是解题的关键.6.如图,在△ABC中,∠B=30°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1﹣∠2的度数是()A.30°B.45°C.60°D.70°【分析】由折叠的性质可得∠B=∠D=30°,再根据外角的性质即可求出结果.【解答】解:将△ABC沿直线m翻折,交BC于点E、F,如图所示:由折叠的性质可知:∠B=∠D=30°根据外角的性质可知:∠1=∠B+∠3,∠3=∠2+∠D∴∠1=∠B+∠2+∠D=∠2+2∠B∴∠1﹣∠2=2∠B=60°故选:C.【点评】本题考查三角形内角和定理、翻折变换的性质,熟练掌握三角形外角的性质和翻折的性质是解题的关键.7.如图所示,在△ABC中,AD平分∠BAC交BC于点D,∠B=30°,∠ADC=70°,则∠BAC的度数是()A.50°B.60°C.70°D.80°【分析】由∠B=30°,∠ADC=70°,利用外角的性质求出∠BAD,再利用AD平分∠BAC,求出∠BAC.【解答】解:∵∠B=30°,∠ADC=70°∴∠BAD=∠ADC﹣∠B=70°﹣30°=40°∵AD平分∠BAC∴∠BAC=2∠BAD=80°.故选:D.【点评】本题主要考查三角形的外角性质,解答的关键是熟记三角形的外角性质:三角形的外角等于与其不相邻的两个内角之和.8.如图,在△ABC中,BD是AC边上的高,CE是∠ACB的平分线,BD,CE交于点F.若∠AEC=80°,∠BFC=128°,则∠ABC的度数是()A.28°B.38°C.42°D.62°【分析】根据∠BFC的度数以及BD⊥AC,可求出∠ACE度数,进而得出∠ACB度数,再结合∠AEC度数,求出∠A度数,最后利用三角形的内角和定理即可解题.【解答】解:因为BD是AC边上的高所以∠BDC=90°.又∠BFC=128°所以∠ACE=128°﹣90°=38°又∠AEC=80°则∠A=62°.又CE是∠ACB的平分线所以∠ACB=2∠ACE=76°.故∠ABC=180°﹣62°﹣76°=42°.故选:C.【点评】本题考查角平分线的定义及三角形的内角和定理,利用外角求出∠ACE的度数是解题的关键.9.一个多边形的内角和等于540°,则它的边数为()A.4B.5C.6D.8【分析】根据n边形的内角和为(n﹣2)•180°得到(n﹣2)•180°=540°,然后解方程即可.【解答】解:设这个多边形的边数为n∴(n﹣2)•180°=540°∴n=5.故选:B.【点评】本题考查了多边形的内角和定理,掌握n边形的内角和为(n﹣2)•180°是解决此题关键.10.如图,点O是△ABC内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC=()A.95°B.120°C.130°D.135°【分析】利用三角形ABC和三角形OBC的内角和都是180°,求解即可.【解答】解:由三角形内角和定理在三角形ABC中:∠A+∠ABC+∠ACB=180°∴∠OBC+∠OCB+∠1+∠2+∠A=180°∴∠OBC+∠OCB=180°﹣80°﹣15°﹣40°=45°在三角形OBC中∠OBC+∠OCB+∠BOC=180°∴∠BOC=180°﹣45°=135°故选:D.【点评】此题主要考查三角形的内角和定理:三角形的内角和是180°;掌握定理是解题关键.二.填空题(共5小题,每小题3分,共15分)11.已知一个三角形的两边长分别为4和5,若第三边的长为整数,则此三角形周长的最大值17.【分析】第三边的长为x,根据三角形的三边关系得出x的取值范围,再由第三边的长为整数得出x的值,进而可得出结论.【解答】解:第三边的长为x∵一个三角形的两边长分别为4和5∴5﹣4<x<5+4,即1<x<9∵第三边的长为整数∴x的值可以为2,3,4,5,6,7,8∴当x=8时,此三角形周长的最大值=4+5+8=17.故答案为:17.【点评】本题考查的是三角形的三边关系,熟知三角形两边之和大于第三边;三角形的两边之差小于第三边是解题的关键.12.如果一个多边形的内角和等于它外角和的3倍,则这个多边形的边数是8.【分析】根据多边形的内角和公式及外角的特征计算.【解答】解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=3×360°解得n=8.故答案为:8.【点评】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.13.如图,AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=50°,点F为边AB上一点,当△BDF为直角三角形时,则∠ADF的度数为20°或60°.【分析】分两种情况进行讨论:当∠BFD=90°时,当∠BDF=90°时,分别依据三角形内角和定理以及角平分线的定义,即可得到∠ADF的度数为20°或60°.【解答】解:如图所示,当∠BFD=90°时∵AD是△ABC的角平分线,∠BAC=60°∴∠BAD=30°∴Rt△ADF中,∠ADF=60°;如图,当∠BDF=90°时同理可得∠BAD=30°∵CE是△ABC的高,∠BCE=50°∴∠BFD=∠BCE=50°∴∠ADF=∠BFD﹣∠BAD=20°综上所述,∠ADF的度数为20°或60°.故答案为:20°或60°.【点评】此题主要考查了三角形的内角和定理,解答此题的关键是要明确:三角形的内角和是180°.14.如图,在△ABC中,AD为BC边上的中线,DE⊥AB于点E,DF⊥AC于点F,AB=3,AC=4,DF=1.5,则DE=2.【分析】由题意,△ABC中,AD为中线,可知△ABD和△ADC的面积相等;利用面积相等,问题可求.【解答】解:∵△ABC中,AD为中线∴BD=DC∴S△ABD=S△ADC∵DE⊥AB于E,DF⊥AC于F,AB=3,AC=4,DF=1.5∴•AB•ED=•AC•DF∴×3×ED=×4×1.5∴ED=2故答案为:2.【点评】此题考查三角形的中线,三角形的中线把三角形的面积分成相等的两部分.本题的解答充分利用了面积相等这个知识点.15.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为360°【分析】根据三角形外角的性质和四边形内角和等于360°可得∠A+∠B+∠C+∠D+∠E+∠F的度数.【解答】解:如图∵∠1=∠2+∠F=∠B+∠E+∠F,∠1+∠A+∠C+∠D=360°∴∠A+∠B+∠C+∠D+∠E+∠F=360°故答案为:360°.【点评】此题考查三角形的内角和,角的和与差,掌握三角形的内角和定理是解决问题的关键.三.解答题一(共3小题,每题8分,共24分)16.在△ABC中,∠CAE=25°,∠C=40°,∠CBD=30°,求∠AFB的度数.【分析】根据三角形的外角定理得出∠AEB=∠CAE+∠C,再根据∠AFB=∠CBD+∠AEB即可求解.【解答】解:∵∠CAE=25°,∠C=40°∴∠AEB=∠CAE+∠C=25°+40°=65°∵∠CBD=30°∴∠AFB=∠CBD+∠AEB=30°+65°=95°.【点评】本题主要考查了三角形的外角定理,解题的关键是掌握三角形的一个外角等于与它不相邻的两个内角之和.17.已知一个正多边形的边数为n.(1)若这个多边形的内角和为其外角和的4倍,求n的值;(2)若这个正多边形的一个内角为135°,求n的值.【分析】(1)利用多边形的内角和与外角和列得方程,解方程即可;(2)利用多边形的内角和与正多边形的性质列得方程,解方程即可.【解答】解:(1)由题意可得(n﹣2)•180°=360°×4解得:n=10;(2)由题意可得(n﹣2)•180°=135°n解得:n=8.【点评】本题考查多边形的内角和与外角和,正多边形的性质,结合已知条件列得对应的方程是解题的关键.18.如图,在△ABC中,∠B=40°,∠C=70°,AD是△ABC的角平分线,点E在BD上,点F在CA的延长线上,EF∥AD.(1)求∠BAF的度数.(2)求∠F的度数.【分析】(1)根据外角的性质即可得到结论;(2)根据角平分线的定义得到∠DAC=BAC=35°,根据平行线的性质即可得到结论.【解答】解:(1)∵∠BAF=∠B+∠C∵∠B=40°,∠C=70°∴∠BAF=110°;(2)∵∠BAF=110°∴∠BAC=70°∵AD是△ABC的角平分线∴∠DAC=BAC=35°∵EF∥AD∴∠F=∠DAC=35°.【点评】本题考查了三角形外角的性质,平行线的性质,三角形的内角和,角平分线的定义,熟练掌握三角形外角的性质是解题的关键.四.解答题二(共3小题,每题9分,共27分)19.如图,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠C=70°.(1)∠AOB的度数为125°;(2)若∠ABC=60°,求∠DAE的度数.【分析】(1)根据角平分线的定义得出∠OAB+∠OBA=(∠BAC+∠ABC),根据三角形内角和定理得出∠BAC+∠ABC=180°﹣∠C=110°,进而即可求解;(2)根据三角形内角和定理求得∠DAC,∠BAC,根据AE是∠BAC的角平分线,得出∠CAE=∠CAB =25°,根据∠DAE=∠CAE﹣∠CAD,即可求解.【解答】(1)解:∵AE、BF是∠BAC、∠ABC的角平分线∴∠OAB+∠OBA=(∠BAC+∠ABC)在△ABC中,∠C=70°∴∠BAC+∠ABC=180°﹣∠C=110°∴∠AOB=180°﹣∠OAB﹣∠OBA=180°﹣(∠BAC+∠ABC)=125°.故答案为:125°;(2)解:∵在△ABC中,AD是高,∠C=70°,∠ABC=60°∴∠DAC=90°﹣∠C=90°﹣70°=20°,∠BAC=180°﹣∠ABC﹣∠C=50°∵AE是∠BAC的角平分线∴∠CAE=∠CAB=25°∴∠DAE=∠CAE﹣∠CAD=25°﹣20°=5°∴∠DAE=5°.【点评】本题考查了三角形中线,角平分线,三角形内角和定理,掌握三角形内角和定理是解题的关键.20.已知在△ABC中,∠A、∠B、∠C的对边分别为a、b、c.(1)化简代数式:|a+b﹣c|+|b﹣a﹣c|=2a.(2)若AB=AC,AC边上的中线BD把三角形的周长分为15和6两部分,求腰长AB.【分析】(1)先根据三角形的三边关系定理可得a+b>c,a+c>b,从而可得a+b﹣c>0,b﹣a﹣c<0,再化简绝对值,然后计算整式的加减法即可得;(2)先根据三角形中线的定义可得,再分①和②两种情况,分别求出a,c的值,从而可得三角形的三边长,然后看是否符合三角形的三边关系定理即可得出答案.【解答】解:(1)由题意得:a+b>c,a+c>b∴a+b﹣c>0,b﹣a﹣c<0∴|a+b﹣c|+|b﹣a﹣c|=a+b﹣c+(﹣b+a+c)=a+b﹣c﹣b+a+c=2a.故答案为:2a;(2)设AB=AC=2x,BC=y,则AD=CD=x∵AC上的中线BD将这个三角形的周长分成15和6两部分①当3x=15,且x+y=6解得,x=5,y=1∴三边长分别为10,10,1;②当x+y=15且3x=6时解得,x=2,y=13,此时腰为4根据三角形三边关系,任意两边之和大于第三边,而4+4=8<13,故这种情况不存在.∴△ABC的腰长AB为10.【点评】本题考查了三角形的三边关系定理、整式加减的应用、二元一次方程组的应用、三角形的中线等知识点,掌握相应的定义和分类讨论思想是解题关键.21.如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E.(1)求证:∠BAC=∠B+2∠E.(2)若CA⊥BE,∠ECD﹣∠ACB=30°时,求∠E的度数.【分析】(1)根据角平分线的定义、三角形的外角性质计算,证明结论;(2)根据角平分线的定义及已知条件可求解∠ACB,∠ECD的度数,利用直角三角形的性质可求解∠B 的度数,再由三角形外角的性质可求解.【解答】(1)证明:∵CE平分∠ACD∴∠ECD=∠ACE.∵∠BAC=∠E+∠ACE∴∠BAC=∠E+∠ECD∵∠ECD=∠B+∠E,′∴∠BAC=∠E+∠B+∠E∴∠BAC=2∠E+∠B.(2)解:∵CE平分∠ACD∴∠ACE=∠DCE∵∠ECD﹣∠ACB=30°,2∠ECD+∠ACB=180°∴∠ACB=40°,∠ECD=70°∵CA⊥BE∴∠B+∠ACB=90°∴∠B=50°∵∠ECD=∠B+∠E∴∠E=70°﹣50°=20°.【点评】本题考查的是三角形的外角性质、三角形内角和定理,直角三角形的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.五.解答题三(共2小题,每题12分,共24分)22.我们在小学已经学习了“三角形内角和等于180°”.在三角形纸片中,点D,E分别在边AC,BC上,将∠C沿DE折叠,点C落在点C'的位置.(1)如图1,当点C落在边BC上时,若∠ADC'=58°,则∠C=29°,可以发现∠ADC'与∠C的数量关系是∠ADC'=2∠C;(2)如图2,当点C落在△ABC内部时,且∠BEC'=42°,∠ADC'=20°,求∠C的度数;(3)如图3,当点C落在△ABC外部时,若设∠BEC'的度数为x,∠ADC'的度数为y,请求出∠C与x,y之间的数量关系.【分析】(1)根据平角定义求出∠CDC′=122°,然后利用折叠的性质可得∠CDE=∠CDC′=61°,∠DEC=×180°=90°,最后利用三角形内角和定理,进行计算即可解答;(2)根据平角定义求出∠CDC′=160°,∠CEC′=138°,然后利用折叠的性质可得∠CDE=∠CDC′=80°,∠DEC=∠CEC′=69°,最后利用三角形内角和定理,进行计算即可解答;(3)根据平角定义求出∠CDC′=180°﹣x,∠CEC′=180°+y,然后利用折叠的性质可得∠CDE=∠CDC′=90°+y,∠DEC=∠CEC′=90°﹣x,最后利用三角形内角和定理,进行计算即可解答.【解答】解:(1)∵∠ADC′=58°∴∠CDC′=180°﹣∠ADC′=122°由折叠得:∠CDE=∠C′DE=∠CDC′=61°,∠DEC=∠DEC′=×180°=90°∴∠C=180°﹣∠EDC﹣∠DEC=29°∴∠ADC'与∠C的数量关系:∠ADC'=2∠C.故答案为:29°,∠ADC'=2∠C;(2)∵∠BEC′=42°,∠ADC′=20°∴∠CEC′=180°﹣∠BEC′=138°,∠CDC′=180°﹣∠ADC′=160°由折叠得:∠CDE=∠C′DE=∠CDC′=80°,∠DEC=∠DEC′=∠CEC′=69°∴∠C=180°﹣∠EDC﹣∠DEC=31°∴∠C的度数为31°;(3)如图:∵∠BEC′=x,∠ADC′=y∴∠CEC′=180°﹣x,∠1=180°+∠ADC′=180°+y由折叠得:∠CDE=∠C′DE=∠1=90°+y,∠DEC=∠DEC′=∠CEC′=90°﹣x∴∠C=180°﹣∠EDC﹣∠DEC=180°﹣(90°+y)﹣(90°﹣x)=x﹣y∴∠C与x,y之间的数量关系:∠C=x﹣y.【点评】本题考查了三角形内角和定理,熟练掌握三角形内角和定理,以及折叠的性质是解题的关键.23.如图1,直线m与直线n垂直相交于O,点A在直线m上运动,点B在直线n上运动,AC、BC分别是∠BAO和∠ABO的角平分线.(1)∠ACB=135°;(2)如图2,若BD是△AOB的外角∠OBE的角平分线,BD与AC相交于点D,点A、B在运动的过程中,∠ADB的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值;(3)如图3,过C作直线与AB交于F,且满足∠AGO﹣∠BCF=45°,求证:CF∥OB.【分析】(1)根据直角三角形的性质得到∠BAO+∠ABO=90°,根据角平分线的定义、三角形内角和定理计算,得到答案;(2)根据三角形的外角性质得到∠OBE﹣∠OAB=90°,再根据三角形的外角性质计算即可;(3)根据邻补角的概念得到∠BCG=45°,根据三角形的外角性质得到∠CBG=∠BCF,根据平行线的判定定理证明结论.【解答】(1)解:∵∠AOB=90°∴∠BAO+∠ABO=90°∵AC、BC分别是∠BAO和∠ABO的角平分线∴∠CAB=∠BAO,∠CBA=∠ABO∴∠CAB+∠CBA=(∠BAO+∠ABO)=45°∴∠ACB=180°﹣45°=135°故答案为:135°;(2)解:∠ADB的大小不发生变化∵∠OBE是△AOB的外角∴∠OBE=∠OAB+∠AOB∵∠AOB=90°∴∠OBE﹣∠OAB=90°∵BD平分∠OBE∴∠EBD=∠OBE∵∠EBD是△ADB的外角∴∠EBD=∠BAG+∠ADB∴∠ADB=∠EBD﹣∠BAG=∠OBE﹣∠OAB=45°;(3)证明:∵∠ACB=135°,∠ACB+∠BCG=180°∴∠BCG=180°﹣∠ACB=180°﹣135°=45°∵∠AGO是△BCG的外角∴∠AGO=∠BCG+∠CBG=45°+∠CBG∵∠AGO﹣∠BCF=45°∴45°+∠CBG﹣∠BCF=45°∴∠CBG=∠BCF∴CF∥OB.【点评】本题考查的是三角形的外角性质、平行线的判定、角平分线的定义、三角形内角和定理,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.。
八年级数学上册《第十一章-三角形》单元测试卷-带答案(人教版)
八年级数学上册《第十一章三角形》单元测试卷-带答案(人教版)一、选择题(共9题)1.下列图形中具有稳定性的是( )A.B.C.D.2.判断下列说法,正确的是( )A.三角形的外角大于任意一个内角B.三角形的三条高相交于一点C.各条边都相等的多边形叫做正多边形D.四边形的一组对角互补,则另一组对角也互补3.等腰三角形的两边长分别是5cm和11cm,则它的周长是( )A.27cm B.21cmC.27cm或21cm D.无法确定4.两根木棒分别为5cm和6cm,要选择第三根,将它们钉成一个三角形,如果第三根木棒长为偶数,则方法有( )A.3种B.4种C.5种D.6种5.如图所示,直线m∥n,∠1=63∘,∠2=34∘则∠BAC的大小是( )A.73∘B.83∘C.77∘D.87∘6.如图l1∥l2,∠1=120∘,∠2=100∘,则∠3=( )A.20∘B.40∘C.50∘D.60∘7.将一副直角三角板按如图所示的位置放置,使含30∘角的三角板的一条直角边和含45∘角的三角板的一条直角边放在同一条直线上,则∠α的度数是( )A.35∘B.45∘C.60∘D.75∘8.如图,在△ABC中,E,F分别是AD,CE边的中点,且S△ABC=8cm2,则S△BEF为( )A.4cm2B.3cm2C.2cm2D.1cm29.如图,△ABC中,∠ABC=50∘,∠ACB=70∘,AD平分线∠BAC,过点D作DE⊥AB于点E,则∠ADE的度数是( )A.45∘B.50∘C.60∘D.70∘二、填空题(共5题)10.一个正多边形的每个内角都是150∘,则它是正边形.11.如图,△ABC中,∠BAC=70∘,∠ABC的平分线与∠ACB的外角平分线交于点O,则∠BOC=度.12.如图,直线a∥b,∠1=60∘,∠2=40∘则∠3=∘.13.如图,△ABC的∠A为40∘,剪去∠A后得到一个四边形,则∠1+∠2=度.14.如图∠A=20∘,∠B=30∘,∠C=50∘则∠ADB的度数.三、解答题(共6题)15.已知:如图,△ABC中,AD是高,AE平分∠BAC,∠B=50∘,∠C=80∘求∠DAE的度数.16.如图,在△ABC中∠B=∠C=45∘点D在BC边上,点E在AC边上,且∠ADE=∠AED,连接DE.(1) 当∠BAD=60∘,则∠CDE的度数是:.(2) 当点D在BC(点B,C除外)边上运动时,设∠CDE=α,请用α表示∠BAD,并说明理由.17.在△ABC中∠B<∠C,AQ平分∠BAC,交BC于点Q,P是AQ上的一点(不与点Q重合)PH⊥BC于点H.(1) 若∠C=2∠B=60∘,如图1,当点P与点A重合时,求∠QPH的度数;(2) 当△ABC是锐角三角形时,如图2,试探索∠QPH,∠C,∠B之间的数量关系,并说明理由.18.如图,已知点E,F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHD.(1) 请说出AB∥CD的理由.(2) 若∠EHF=100∘,∠D=30∘,求∠AEM的度数.19.如图,在四边形ABCD中∠B=50∘,∠C=110∘,∠D=90∘,AE⊥BC,AF是∠BAD的平分线,与边BC交于点F.求∠EAF的度数.20.如图,已知点E,F为四边形ABDC的边CA的延长线上的两点,连接DE,BF,作∠BDH的平分线DP交AB的延长线于点P.若∠1=∠2,∠3=∠4,∠5=∠C.(1) 判断DE与BF是否平行?并说明理由;(2) 试说明:∠C=2∠P.参考答案1.【答案】A2.【答案】D3.【答案】A4.【答案】C5.【答案】B6.【答案】B7.【答案】D8.【答案】C9.【答案】C10.【答案】十二11.【答案】3512.【答案】8013.【答案】22014. 100°15. 【答案】∵△ABC中∠B=50∘,∠C=80∘∴∠BAC=180∘−∠B−∠C=180∘−50∘−80∘=50∘,∵AE是∠BAC的平分线∠BAC=25∘∴∠EAC=12∵AD是BC边上的高∴在直角△ADC中∠DAC=90∘−∠C=90∘−80∘=10∘∴∠DAE=∠EAC−∠DAC=25∘−10∘=15∘.16.【答案】(1) 30∘ (2) ∠BAD=2α.证明:设∠BAD=x∵∠ADC是△ABD的外角∴∠ADC=∠B+∠BAD=45∘+x∵∠AED是△CDE的外角∴∠AED=∠C+∠CDE∵∠B=∠C,∠ADE=∠AED∴∠ADC−α=∠45∘+x−α=45∘+α解得:∠BAD=2∠CDE=2α.17.【答案】(1) ∵∠C=2∠B=60∘∴∠B=30∘,∠BAC=180∘−60∘−30∘=90∘.∵AQ平分∠BAC∠BAC=45∘∴∠BAQ=∠QAC=12∴∠AQH=∠B+∠BAQ=30∘+45∘=75∘∵PH⊥BC∴∠PHQ=90∘∴∠QPH=∠QAH=90∘−75∘=15∘.(2) 如图,过点A作AG⊥BC于点G 则∠PHQ=∠AGQ=90∘∴PH∥AG∴∠QPH=∠QAG设∠QPH=∠QAG=x∵AQ平分∠BAC∴∠BAQ=∠QAC=x+∠GAC∵∠AQH=∠B+∠BAQ又∠AQH=90∘−x∴∠BAQ=90∘−x−∠B.∴x+∠GAC=90∘−x−∠B∵AG⊥BC∴∠GAC=90∘−∠C∴x+90∘−∠C=90∘−x−∠B∴x=12(∠C−∠B),即∠QPH=12(∠C−∠B).18. 【答案】 (1) ∵∠CED=∠GHD∴CE∥GF∵∠C=∠FGD又∵∠C=∠EFG∴∠FGD=∠EFG∴AB∥CD∴∠AED+∠D=180∘.(2) ∵∠DHG=∠EHF=100∘,∠D=30∘∴∠CGF=100∘+30∘=130∘∵CE∥GF∴∠C=180∘−130∘=50∘∵AB∥CD∴∠AEC=50∘∴∠AEM=180∘−50∘=130∘.19. 【答案】∵AE⊥BC∴∠AEC=∠AEB=90∘∵∠B=50∘∴∠BAE=180∘−90∘−50∘=40∘∵∠C=110∘,∠D=90∘∴∠DAE=360∘−∠D−∠C−∠AEC=70∘∴∠DAB=∠BAE+∠DAE=40∘+70∘=110∘∵AF平分∠DAB∴∠FAB=12∠DAB=12×110∘=55∘∴∠EAF=∠FAB−∠BAE=55∘−40∘=15∘.20. 【答案】 (1) DE∥BF理由是:因为∠3=∠4所以BD∥CE所以∠5=∠FAB因为∠5=∠C所以∠C=∠FAB所以AB∥CD所以∠2=∠BGD因为∠1=∠2所以∠1=∠BGD所以DE∥BF.(2) 因为AB∥CD所以∠P=∠PDH因为DP平分∠BDH所以∠BDP=∠PDH所以∠BDP=∠PDH=∠P 因为∠5=∠P+∠BDP所以∠5=2∠P所以∠C=∠5所以∠C=2∠P.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一章三角形单元测试
班级姓名分数
一、选择题(每题3分,共24分)
1、等腰三角形中,一个角为50°,则这个等腰三角形的顶角的度数为( )
A.150°
B.80°
C.50°或80°
D.70°
2.下面四个图形中,线段BE 是⊿ABC 的高的图是( )
3.已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作 为第三边的是()
A .13cm
B .6cm
C .5cm
D .4cm
4.三角形一个外角小于与它相邻的内角,这个三角形是( )
A .直角三角形
B .锐角三角形
C .钝角三角形
D .不能确定
5.如图1,在直角三角形ABC 中,AC ≠AB ,AD 是斜边上的高,
DE ⊥AC ,DF ⊥AB ,垂足分别为E 、F ,则图中与∠C
(∠C 除外)相等的角的个数是( )
A 、3个
B 、4个
C 、5个
D 、6个
6.下面说法正确的是个数有( )
①如果三角形三个内角的比是1∶2∶3,那么这个三角形是直角三角形;②如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;④如果∠A=∠B=∠C ,那么△ABC 是直角三角形;⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;⑥在ABC 中,若∠A +∠B=∠C ,则此三角形是直角三角形。
A 、3个
B 、4个
C 、5个
D 、6个
7.如图2,五角星的顶点为A 、B 、C 、D 、E ,∠A +∠B +∠C +∠D +∠E
的度数为()
A 、90°
B 、180°
C 、270°
D 、360°
图2
8.如图3,将一副三角板叠放在一起,使直角的顶点重合
于O ,则∠AOC+∠DOB=( )
A 、900
B 、1200
C 、1600
D 、1800
A 、13
B 、14
C 、15
D 、16 图
3
图1
二、填空题(每题3分,共24分)
9.如图4,一面小红旗其中∠A=60°, ∠B=30°,则∠BCD=。
10、一扇窗户打开后,用窗钩可将其固定,这里所运用的几何原理是____________。
11.把一副常用的三角板如图5所示拼在一起,那么图中∠ADE 是度。
12.过多边形的一个顶点的所有对角线把多边形分成8个三角形,这个多边形 的边数是。
13.若三角形三个内角度数的比为2:3:4,则相应的外角比是.
14.如图6,⊿ABC 中,∠A = 40°,∠B = 72°,CE 平分∠ACB ,CD ⊥AB 于D , DF ⊥CE ,则∠CDF =度。
15.如果将长度为a-2、a+5和a+2的三根线段首尾顺次相接可以得到一个三角形, 那么a 的取值范围是
16.如图7,△ABC 中,∠A=1000,BI 、CI 分别平分∠ABC ,∠ACB ,则∠BIC=, 若BM 、CM 分别是∠ABC ,∠ACB 的外角平分线,则∠M=
三、解答题(共52分)
17.(本题6分)在△ABC 中,∠B=3∠A, ∠C=5∠A,求△ABC 的三个内角度数
18、(6分)如图,在△ABC 中,∠BAC 是钝角,完成下列画图.
(1)∠BAC 的平分线AD ;
(2)AC 边上的中线BE ;
(3)AC 边上的高BF ;
C B
A 图4 A
B C
D
E
图5 图6 1 2
B A E
C D
I 图7
C A
19.(8分)如图,在△ABC 中, AD ⊥BC 于D ,AE 平分∠DAC ,∠BAC=800,∠B=600; 求∠AEC 的度数.
20、(8分)如图,∠1=20°,∠2=25°,∠A=35°,求∠BDC 的度数。
21、(8分)如图,在△BCD 中,BC=4,BD=5,
(1)求CD 的取值范围;
(2)若AE ∥BD ,∠A=55°,∠BDE=125°,求∠C 的度数.
F E D C
B
A
A B C
D 12
22、(7分)如图,在△ABC 中,AD 是BC 边上的中线,△ADC 的周长比△ABD 的周长多5cm ,AB 与AC 的和为11cm ,求AC 的长.
23、(9分)如图,在△ABC 中,∠ABC=66°,∠ACB=54°,BE 是AC 上的高,CF 是AB 上的高,H 是BE 和CF 的交点,求∠ABE 、∠ACF 和∠BHC 的度数. D C
B A
H
A
B C E
F。