51单片机串口接收的函数模块
51单片机的串口通信程序(C语言)
51单片机的串口通信程序(C语言) 51单片机的串口通信程序(C语言)在嵌入式系统中,串口通信是一种常见的数据传输方式,也是单片机与外部设备进行通信的重要手段之一。
本文将介绍使用C语言编写51单片机的串口通信程序。
1. 硬件准备在开始编写串口通信程序之前,需要准备好相应的硬件设备。
首先,我们需要一块51单片机开发板,内置了串口通信功能。
另外,我们还需要连接一个与单片机通信的外部设备,例如计算机或其他单片机。
2. 引入头文件在C语言中,我们需要引入相应的头文件来使用串口通信相关的函数。
在51单片机中,我们需要引入reg51.h头文件,以便使用单片机的寄存器操作相关函数。
同时,我们还需要引入头文件来定义串口通信的相关寄存器。
3. 配置串口参数在使用串口通信之前,我们需要配置串口的参数,例如波特率、数据位、停止位等。
这些参数的配置需要根据实际需要进行调整。
在51单片机中,我们可以通过写入相应的寄存器来配置串口参数。
4. 初始化串口在配置完串口参数之后,我们需要初始化串口,以便开始进行数据的发送和接收。
初始化串口的过程包括打开串口、设置中断等。
5. 数据发送在串口通信中,数据的发送通常分为两种方式:阻塞发送和非阻塞发送。
阻塞发送是指程序在发送完数据之后才会继续执行下面的代码,而非阻塞发送是指程序在发送数据的同时可以继续执行其他代码。
6. 数据接收数据的接收与数据的发送类似,同样有阻塞接收和非阻塞接收两种方式。
在接收数据时,需要不断地检测是否有数据到达,并及时进行处理。
7. 中断处理在串口通信中,中断是一种常见的处理方式。
通过使用中断,可以及时地响应串口数据的到达或者发送完成等事件,提高程序的处理效率。
8. 串口通信实例下面是一个简单的串口通信实例,用于在51单片机与计算机之间进行数据的传输。
```c#include <reg51.h>#include <stdio.h>#define BAUDRATE 9600#define FOSC 11059200void UART_init(){TMOD = 0x20; // 设置定时器1为模式2SCON = 0x50; // 设置串口为模式1,允许接收TH1 = 256 - FOSC / 12 / 32 / BAUDRATE; // 计算波特率定时器重载值TR1 = 1; // 启动定时器1EA = 1; // 允许中断ES = 1; // 允许串口中断}void UART_send_byte(unsigned char byte){SBUF = byte;while (!TI); // 等待发送完成TI = 0; // 清除发送完成标志位}unsigned char UART_receive_byte(){while (!RI); // 等待接收完成RI = 0; // 清除接收完成标志位return SBUF;}void UART_send_string(char *s){while (*s){UART_send_byte(*s);s++;}}void main(){UART_init();UART_send_string("Hello, World!"); while (1){unsigned char data = UART_receive_byte();// 对接收到的数据进行处理}}```总结:通过以上步骤,我们可以编写出简单的51单片机串口通信程序。
51系列单片机的功能模块及其应用
MOV A,P1 XCHD A, @RO RET
4.2 定时器及其应用
4.2.1 定时器的一般结构和工作原理
4.2.2 定时器T0、T1的功能和使用方法 4.2.3 定时器T0的应用-定时中断可控硅导通角
TIMER的作用:
定时器概述
定时操作:定时采样,定时扫描,定时中断 测量外部信号:累加统计,测量周期等 定时输出:PWM等 监视系统正常工作与否
1
1
3
0
截 止
1 读引脚 =0
2、控制=1 时,此脚作高8位地址A8—A15输出口:
地址高8位 控制=1 =1 2 内部 总线 写锁 存器
D CK Q /Q
Vcc
读锁存器
内部上拉电阻
1 =1 引脚P2.X
1
3
0
截 止
1
读引脚 =0
4.1.4 P0 口
一、P0口的功能特性 • P0.0—P0.7: 双向I/O (内置场效应管上拉) 寻址外部程序存储器时分时作为双向8位数据口 和输出低8位地址复用口;(可浮空)不接外部 程序存储器时可作为8位准双向I/O口使用。
一、BCD拨码盘的构造
BCD拨码盘具有0~9 十个位置,每个位置都有 相应的指示,一个拨码盘 可以输入1个十进制数据。 每个BCD拨码盘后面有5位 引出线,其中一位为输入 控制线(编号为A),另外4 位是数据线(编号为 8,4,2,1)。
8 4 2 1 A
8 4 2 1 A
其中A为控制线,8、4、2、1四个接点为开关的输 出线。当拨盘开关置于不同位置时,控制线A与8、 4、2、1中某些接点接通。如拨到0,则所有的接 点与A均不通;如拨到1,则1与控制线A接通,其 余的均不通。
Vcc 读锁存器 2 内部 总线 0 写锁 存器
51单片机串口设置及应用
51单片机串口设置及应用单片机的串口设置及应用是指通过单片机的串口功能来进行通信的一种方式。
串口通信是一种全双工通信方式,可以实现双向数据传输。
单片机通过串口可以与其他设备进行通信,如计算机、传感器、LCD显示屏等。
1. 串口设置:单片机的串口通信一般需要进行以下设置:(1)串口模式选择:要根据实际情况选择串口工作模式,一般有异步串口和同步串口两种。
(2)波特率设置:串口通信需要设置一个波特率,即数据传输速率。
常见的波特率有9600、19200、115200等,需要与通信的设备保持一致。
(3)数据位设置:设置传输的数据位数,常见的有8位、9位等。
(4)停止位设置:设置停止位的个数,常见的有1位、2位等。
(5)校验位设置:可以选择是否启用校验位,校验位主要用于检测数据传输的正确性。
2. 串口应用:串口通信在很多领域都得到广泛应用,下面列举几个常见的应用场景:(1)串口与计算机通信:通过串口可以实现单片机与计算机的通信,可以进行数据的读写、控制等操作。
例如,可以通过串口将传感器采集到的数据发送给计算机,由计算机进行进一步处理分析。
(2)串口与传感器通信:串口可以与各种传感器进行通信,可以读取传感器采集到的数据,并进行处理和控制。
例如,可以通过串口连接温度传感器,读取实时的温度数据,然后进行温度控制。
(3)串口与LCD显示屏通信:通过串口可以实现单片机与LCD显示屏的通信,可以将需要显示的数据发送给LCD显示屏进行显示。
例如,可以通过串口将单片机采集到的数据以数字或字符的形式显示在LCD上。
(4)串口与外部存储器通信:通过串口可以与外部存储器进行通信,可以读写存储器中的数据。
例如,可以通过串口读取SD卡中存储的图像数据,然后进行图像处理或显示。
(5)串口与其他设备通信:通过串口可以和各种其他设备进行通信,实现数据的传输和控制。
例如,可以通过串口与打印机通信,将需要打印的数据发送给打印机进行打印。
总结:单片机的串口设置及应用是一种实现通信的重要方式。
51单片机串口通信程序。。含详细例子
4.//////////////// /////////////////////////////////////////////////////////
pw.fpReadSign(); SendData();//通知上位机,送出读出器件特征字 }
void Erase()//擦除器件 {
pw.fpErase(); SendData();//通知上位机,擦除了器件 }
void Write()//写器件 {
BYTE n; pw.fpInitPro();//编程前的准备工作 SendData();//回应上位机表示进入写器件状态,
{
unsigned char c;
TMOD = 0x20; // 定时器 1 工作于 8 位自动重载模式, 用于产生波特率
TH1=(unsigned char)(256 - (XTAL / (32L * 12L * baudrate)));
TL1=(unsigned char)(256 - (XTAL / (32L * 12L * baudrate))); SCON = 0x50; PCON = 0x00; TR1 = 1; IE = 0x00; // 禁止任何中断 while(1) {
///////////////////////////////////////////////////////////////////////////////// //所支持的 FID,请在这里继续添加
///////////////////////////////////////////////////////////////////////////// extern void PreparePro00();//FID=00:AT89C51 编程器 extern void PreparePro01();//FID=01:AT89C2051 编程器 extern void PreparePro02();//FID=02:AT89S51 编程器
51单片机_ch340_串口工作原理_概述说明
51单片机ch340 串口工作原理概述说明1. 引言1.1 概述本文将对51单片机与CH340芯片进行详细的介绍和分析,重点关注它们在串口通信中的工作原理以及应用场景。
具体而言,我们将首先介绍51单片机的背景和特点,然后详细讲解CH340芯片的功能特点及其在串口通信中的重要作用。
随后,我们将深入探讨串口协议、波特率设置原理以及常见传输错误的调试方法等基础知识。
最后,我们将针对CH340芯片在串口通信中的应用进行解析,并详细介绍CH340和51单片机之间的串口连接方式以及数据传输过程。
1.2 文章结构本文共分为六个部分。
首先是引言部分,概述文章要点和结构;其次是51单片机简介部分,包括定义与背景、特点与应用以及开发环境与工具;接下来是CH340芯片概述部分,介绍芯片的基本信息、功能特点、工作原理以及应用场景与优势;然后是串口通信基础知识部分,包括串口协议简介、波特率与数据位设置原理以及常见传输错误及其调试方法;之后是CH340在串口通信中的应用及原理解析部分,详细介绍了CH340的串口通信模块、CH340和51单片机的串口连接方式以及数据传输过程的流程分析;最后是结论与展望部分,总结了主要论点和研究结果,并对未来研究方向和应用前景进行展望。
1.3 目的本文旨在深入探讨51单片机和CH340芯片在串口通信中的工作原理及其应用。
通过对51单片机与CH340芯片的介绍和分析,读者将能够全面了解它们的特点、功能以及在实际应用中的重要性。
同时,本文还将提供基础知识和实例,帮助读者理解串口协议、波特率设置原理以及常见传输错误调试方法等内容。
通过阅读本文,读者将能够更好地掌握串口通信技术,并在实践中灵活运用。
2. 51单片机简介2.1 定义与背景51单片机,又称为8051单片机,是一种广泛应用于嵌入式系统中的微控制器。
它以英特尔公司的经典型号8051为代表,具有低功耗、高性能和可靠性等特点。
由于其独特的设计结构和丰富的外设接口,使得51单片机成为众多嵌入式系统的首选。
51单片机串口通信程序。。含详细例子
{ P3_4=0; P3_3=1;
} void RstPro()//编程器复位 {
pw.fpProOver();//直接编程结束 SendData();//通知上位机,表示编程器就绪,可以直接用此函数因为协议号(ComBuf[0])还没被修改,下同 }
void ReadSign()//读特征字 {
} void serial () interrupt 4 using 3 //串口接收中断函数 {
if (RI) { RI = 0 ; ch=SBUF; read_flag= 1 ; //就置位取数标志 }
} main()
{ init_serialcom(); //初始化串口 while ( 1 ) { if (read_flag) //如果取数标志已置位,就将读到的数从串口发出 { read_flag= 0 ; //取数标志清 0 send_char_com(ch); } }
while(RI == 0); RI = 0; c = SBUF; // 从缓冲区中把接收的字符放入 c 中 SBUF = c; // 要发送的字符放入缓冲区 while(TI == 0); TI = 0; } }
4.//////////////// /////////////////////////////////////////////////////////
SendData(); } else break;//等待回应失败 } pw.fpProOver();//操作结束设置为运行状态 ComBuf[0]=0;//通知上位机编程器进入就绪状态 SendData(); }
void Lock()//写锁定位
{
pw.fpLock();
SendData();
51单片机调用函数的方法
51单片机调用函数的方法摘要:1.引言2.51单片机简介3.调用函数的原理4.调用函数的方法5.实例演示6.总结正文:1.引言在51单片机编程中,调用函数是非常重要的环节。
本文将详细介绍51单片机调用函数的方法,帮助读者更好地理解和应用这一技术。
2.51单片机简介51单片机是一种基于冯·诺依曼结构的微控制器,内置了CPU、RAM、ROM、I/O口等硬件资源。
它具有体积小、成本低、功耗低等特点,广泛应用于嵌入式系统领域。
3.调用函数的原理在51单片机中,调用函数实际上是通过传递参数,执行子程序的方式实现的。
调用函数的语句一般形式为:`void 函数名(参数1, 参数2,...);`4.调用函数的方法调用函数的方法主要包括以下几点:(1)声明函数在程序开头,需要对要调用的函数进行声明。
声明语句一般形式为:`void 函数名(参数类型参数名1, 参数类型参数名2,...);`(2)定义函数在程序中,需要对声明的函数进行定义。
定义语句一般形式为:`void 函数名(参数类型参数名1, 参数类型参数名2,...) {// 函数体}`(3)调用函数在主程序中,通过调用声明过的函数,传入相应的参数,实现函数的调用。
调用语句一般形式为:`函数名(参数1, 参数2,...);`5.实例演示以下是一个简单的实例,演示如何调用函数:```c#include <reg52.h>// 声明函数void delay(unsigned int ms);void main() {unsigned int i;// 调用函数,延时1000msdelay(1000);for (i = 0; i < 10; i++) {P1 = i; // 输出P1口的值delay(100); // 延时100ms}while (1); // 循环等待}// 定义函数:延时函数void delay(unsigned int ms) {unsigned int i, j;for (i = ms; i > 0; i--) {for (j = 114; j > 0; j--) {_nop_();}}}```6.总结本文从51单片机简介、调用函数的原理、调用方法等方面进行了详细的介绍,并通过一个实例演示了如何调用函数。
nrf24l01无线通信模块与51单片机工作原理
nrf24l01无线通信模块与51单片机工作原理
nRF24L01是一款低功耗的2.4GHz无线通信模块,适用于微
控制器和嵌入式系统之间的短距离数据传输。
它可以与51单
片机进行配合使用。
nRF24L01模块包括一个射频发射芯片和一个射频接收芯片。
模块通过SPI接口与51单片机连接。
其工作原理如下:
1. 初始化:首先,51单片机通过SPI接口向nRF24L01模块发送配置命令,包括设置通信频率、通信通道、发射功率等参数。
2. 发送数据:当需要发送数据时,51单片机将待发送的数据
通过SPI接口发送给nRF24L01模块的发送芯片。
发送芯片将
数据转换为无线信号,并通过天线发射出去。
3. 接收数据:当有数据被接收时,nRF24L01模块的接收芯片
会把接收到的数据通过SPI接口传递给51单片机。
单片机再
根据需要对接收到的数据进行处理。
4. 确认和重传:发送芯片在发送数据后会等待接收芯片的确认信号。
如果收到确认信号,发送芯片会继续发送下一个数据包。
如果未收到确认信号,发送芯片会进行多次重传,以确保数据的可靠传输。
5. 通信协议:nRF24L01模块支持多种通信协议,如无线串口、SPI、I2C等。
可以根据需要选择合适的通信协议进行数据传输。
通过上述工作原理,nRF24L01模块可以实现低功耗、短距离的无线数据传输,并与51单片机进行可靠的通信。
它被广泛应用于无线遥控、传感器网络、智能家居等领域。
51单片机的串口
发送
门电路
T线
发送控制器
口
同 步 串行口中断
时
≥1
TI RI
钟
接收控制器
控 制 寄 存 器
(98H)
接收 SBUF
输入移位寄存器
RXD(P3.0)
(99H)
51单片机串行口结构框图
1. 51单片机串口结构
➢ 有两个物理上独立的接收、发送缓冲器SBUF(属于特殊功能 寄存器),可同时发送、接收数据。
2. 51单片机串口相关寄存器
① SM0 SM1 —— 串行口工作方式选择位
SM0 SM1 工作方式
00
0
01
1
10
2
11
3
功能说明 同步移位寄存器输入/输出,波特率固定为fosc/12 8位UART;波特率可变(TI溢出率/n,n=32或16) 9位UART,波特率固定为fosc/n,(n=64或32) 9位UART,波特率可变(T1溢出率/n,n=32或16)
2. 51单片机串口相关寄存器
(2)串行控制寄存器SCON
SCON 位名称 位地址
功能
D7 SM0 9FH
D6 SM1 9EH
工作方式选择
D5 SM2 9DH
D4
D3
D2
D1
D0
REN
TB8
RB8
TI
RI
9CH
9BH
9AH
99H
98H
多机通信控制 接收允许 发送第9位 接收第9位 发送中断 接收中断
2. 51单片机串口相关寄存器
③ REN —— 允许接收控制位。 REN位用于对串行数据的接收进行控制:REN=0,禁止接收;REN=1,允许接收。该位由软件置位 或复位。
51单片机实现scanf和printf函数
51 单片机实现scanf 和printf 函数
最开始学习C 语言时,使用printf 和scanf 进行格式化输入输出十分方便。
学习单片机有很长时间了,之前要再屏幕上显示一个变量或者通过串口传
出一些变量值观测的话,需要进行一系列的取余取整运算,很是麻烦。
最近又研究了一下keil 中针对printf 和scanf 的实现机理,做了一些改动,实现了标准格式化输入输出,共大家参考。
1.printf 函数在格式化输出时,向下调用了char putchar(char c);这个函数,在stdio.h 里可以发现有这个函数,所以我们需要自己构造一个这样的函数,
即通过串口putchar(),代码如下:
[cpp] view plain copychar putchar(char c)
{
hal_uart_putchar(c);
return c;
}。
51单片机的2个串口分别通信的方法
51单片机的2个串口资源分别通信的方法当使用51单片机的2个串口资源进行通信时,比如用一个串口与PLC的串口使用RS485协议通信,一个串口通过蓝牙模块和另一个单片机无线通信时,该如何处理呢?传统的51单片机只有1个串口资源,只能采用分时复用的方法。
STC的15系列增强版51单片机具有多个串口资源,本文将描述如何使用IAP15W4K58S单片机用一个串口资源与PLC的RS485有线通信,另一个串口资源与Arduino单片机通过蓝牙模块无线通信,该通讯连接过程中PLC作为主机,IAP15W4K58S作为中间机,Arduino单片机作为最低层级。
工作过程是按下启动按键,PLC发信息给IAP15W4K58S单片机发高速脉冲控制步进电机驱动的机械臂运动取走货物,当货物取走后,IAP15W4K58S单片机通过蓝牙模块通知Arduino单片机控制的小车将新货物运送过来。
连接结构示意图如下图所示。
本例程使用的单片机型号为:IAP15W4K58S,该单片机有4个采用UART 工作方式的全双工异步串行通信接口(分别为串口1、串口2、串口3和串口4),每个串行口由2个数据缓冲器、1个移位寄存器、1个串行控制寄存器和1个波特率发生器等组成。
本项目使用串行口1和串行口2。
串行口1的两个缓冲器共用寄存器SBUF (99H),串行口2的两个缓冲器共用寄存器S2BUF(9BH)。
10位(1起始位,8位数据位,1停止位)可变波特率(9600)。
串口1对应的硬件部分是TxD和RxD,串行口2对应硬件部分是TxD2和RxD2。
串口1选择引脚P3.0(RxD)和P3.1(TxD),串口2选择引脚P1.0(RxD)和P1.1(TxD)。
串口1既可以选择T1作为波特率发生器,也可以选择T2作为波特率发生器。
本文串口1提供2个选择(T1和T2),串口2只能选择T2作波特率发生器。
但是当串口1和串口2的波特率相同时,可以共用T2作为波特率发器,当T2工作在1T模式时,串行口1的波特率=SYSclk/(65536-[RL_TH2,RL_TL2])/4,SYSclk表示系统时钟频率,[RL_TH2,RL_TL2]表示T2H,T2L的定时初值设置值。
C51单片机串口通讯通用模块代码(可用于操作系统串口通讯)
C51单片机串口通讯通用模块代码(可用于操作系统串口通讯)#include#include "UART1.h"#include "commdriver.h"//当前适用于C51//可以根据具体CPU型号,修改宏定义和串口初始化代码就可以#define CPU_XTAL 22118400 //CPU频率#define FUNCTION_NULL 0 //没有定义函数#define COM_TI TI //发送中断寄存器#define COM_TI0() {TI = 0;} //发送中断寄存器清零#define COM_TI1() {TI = 1;} //发送中断寄存器置一( 强行置一触发发送中断)#define COM_TI_SBUF(dat) {SBUF = dat;} //发送数据到硬件缓冲区#define COM_TI_End() {return;} //发送结束处理函数#define COM_RI RI //接收中断寄存器#define COM_RI0() {RI = 0;} //接收中断寄存器清零#define COM_RI1() {RI = 1;} //接收中断寄存器置一#define COM_RI_SBUF(dat) {dat = SBUF;} //提取接收硬件缓冲区数据#define COM_TI_FLAG COM_TI //发送中断标志寄存器(非中断发送方式使用)#define COM_TI_FLAG0() COM_TI0() //发送中断标志寄存器清零(非中断发送方式使用)void (*COM1RevEvent)(unsigned char dat); //数据接收事件#define LenTxBuf 30 //发送缓冲区长度#define LenRxBuf 1 //接收缓冲区长度volatile unsigned char TxBuf1[LenTxBuf],RxBuf1[LenRxBuf]; //收发缓冲区实体volatile unsigned char *inTxBuf1,*outTxBuf1,*inRxBuf1,*outRxBuf1; //收发缓冲区读写指针volatile unsigned char TIflag1=1;//Note:It must be 1. //发送缓冲区为空标志//*********************#define _TxBuf TxBuf1#define _RxBuf RxBuf1#define _inTxBuf inTxBuf1#define _outTxBuf outTxBuf1#define _inRxBuf inRxBuf1#define _outRxBuf outRxBuf1#define _TIflag TIflag1/*************函数声明****************/#define _COMRevEvent COM1RevEvent //串口接收事件#define _USART_IRQ void USART1_IRQHandler(void) interrupt 4 //串口中断服务程序#define _COM_Buffer_Init void COM1_Buffer_Init(void) //串口缓冲区初始化#define _COM_Open void COM1_Open(unsigned int baudrate,void (*revevent)(unsigned char dat)) // 串口初始化#define _COM_Close void COM1_Close(void) //关闭串口#define _COM_GetOneByte unsigned charCOM1_GetOneByte(unsigned char *ch) //获取一个字节#define _COM_GetPChar unsigned char COM1_GetPChar(unsigned char *ch,unsigned char len) //获取指定长度字节数组#define _COM_RxByte unsigned char COM1_RxByte(void) //获取接收字节个数//********缓冲区中断方式发送(安全性高)#define _COM_SendOneByte unsigned char COM1_SendOneByte(unsigned char one_byte) // 发送一个字节#define _COM_SendPChar void COM1_SendPChar(unsigned char *P,unsigned char Len) //发送定长字节数组#define _COM_SendString void COM1_SendString(unsigned char *P) //发送字符串//********非缓冲区中断方式发送#define _COM_PrintOneByte void COM1_PrintOneByte(unsigned char c) // 发送一个字节#define _COM_PrintPChar void COM1_PrintPChar(unsigned char *buf,unsigned int len) //发送定长字节数组#define _COM_PrintString void COM1_PrintString(unsigned char *P) //发送字符串//*************内部引用模型函数(外部不关心,移植时修改后面函数名,要与上面对应的外部声明的函数名一致)*******************#define COM_GetOneByte_(ptr) COM1_GetOneByte(ptr) //与上面获取一个字节的函数对应#define COM_SendOneByte_(dat) COM1_SendOneByte(dat) //与上面发送一个字节的函数对应#define COM_PrintOneByte_(dat) COM1_PrintOneByte(dat) //与上面发送一个字节的函数对应//*********************函数模型定义区(不需要修改)*****************/****************************函数模型:void USART_IRQHandler(void)函数功能:串口中断服务程序入口参数:无返回值:无修改者:修改时间:修改内容简要:***************************/_USART_IRQ //串口1中断{volatile unsigned char *t;if(COM_RI){COM_RI0(); //清接收标记if(_COMRevEvent != FUNCTION_NULL) //自定义接收事件{COM_RI_SBUF(*_inRxBuf);_COMRevEvent(*_inRxBuf);}else{t = _inRxBuf;t++;if(t == (_RxBuf + LenRxBuf)) t = _RxBuf;if(t != _outRxBuf) //RxBuf No Full{COM_RI_SBUF(*_inRxBuf);_inRxBuf = t;}}}if(COM_TI){COM_TI0();if(_inTxBuf == _outTxBuf) {_TIflag = 1;COM_TI_End();};//TxBuf1 EmptyCOM_TI_SBUF(*_outTxBuf); _outTxBuf++;if(_outTxBuf == (_TxBuf+LenTxBuf)) _outTxBuf = _TxBuf;}}/****************************函数模型:void COM1_Buffer_Init(void)函数功能:串口1缓冲区初始化入口参数:无返回值:无修改者:修改时间:修改内容简要:***************************/_COM_Buffer_Init{_inTxBuf = _TxBuf;_outTxBuf = _TxBuf;_inRxBuf = _RxBuf;_outRxBuf = _RxBuf;}/****************************函数模型:void COM_Open(unsigned int baudrate,void (*revevent)(unsigned char dat))函数功能:系统串口初始化入口参数: unsigned int baudrate:串口波特率返回值:无修改者:修改时间:修改内容简要:***************************/_COM_Open{//定时器1做波特率发生器TI = 0; /* clear transmit interrupt */TR1 = 0; /* stop timer 1 */ET1 = 0; /* disable timer 1 interrupt */PCON |= 0x80; /* 0x80=SMOD: set serial baudrate doubler */ TMOD &= ~0xF0; /* clear timer 1 mode bits */TMOD |= 0x20; /* put timer 1 into MODE 2 */TH1 = (unsigned char) (256 - (CPU_XTAL / (16L * 12L * baudrate)));TR1 = 1; /* start timer 1 *///设置串口1模式SM0 = 0; SM1 = 1; /* serial port MODE 1 */SM2 = 0;REN = 1; /* enable serial receiver */RI = 0; /* clear receiver interrupt */TI = 0; /* clear transmit interrupt */ES = 1; /* enable serial interrupts */PS = 1; /* set serial interrupts to low priority */_COMRevEvent = revevent;}/****************************函数模型:void COM1_Close(void)函数功能:关闭系统串口入口参数:无返回值:无修改者:修改时间:修改内容简要:***************************/_COM_Close{}/****************************函数模型:unsigned char COM1_GetOneByte(unsigned char *ch)函数功能:获取一个字节入口参数:unsigned char *ch:接收字节指针返回值: unsigned char *ch:接收字节指针unsigned char :获取状态;0:成功,1:失败(缓冲区为空)修改者:修改时间:修改内容简要:***************************/_COM_GetOneByte{if(_inRxBuf == _outRxBuf) {return 0;}; //RxBuf Empty*ch = *_outRxBuf; _outRxBuf++;if(_outRxBuf==_RxBuf+LenRxBuf) _outRxBuf = _RxBuf;return 1;}/****************************函数模型:unsigned char COM_GetPChar(unsigned char *ch,unsigned char len)函数功能:获取指定长度字节数组入口参数: unsigned char *ch:接收字节数组指针unsigned char len:接收字节个数返回值: unsigned char *ch:接收字节数组指针unsigned char:实际接收字节个数修改者:修改时间:修改内容简要:***************************/_COM_GetPChar{unsigned char i = 0;do{len--;if(!COM_GetOneByte_(ch)) break;i++;ch++;}while(len);return i;}/****************************函数模型:unsigned char COM_RxByte(void)函数功能:获取接收缓冲区有效字节个数入口参数:无返回值: unsigned char:接收缓冲区有效字节个数修改者:修改时间:修改内容简要:***************************/_COM_RxByte{if(_inRxBuf>=_outRxBuf) return (_inRxBuf-_outRxBuf);else return LenRxBuf-(_outRxBuf-_inRxBuf);}/****************************函数模型:unsigned char COM_SendOneByte(unsigned char one_byte)函数功能:发送一个字节入口参数: unsigned char one_byte:发送的字节返回值:unsigned char:发送状态,0:成功,1:失败(缓冲区满)修改者:修改时间:修改内容简要:***************************/_COM_SendOneByte{volatile unsigned char *t;if(_TIflag){_TIflag = 0;COM_TI1();}t = _inTxBuf;t++;if(t == _TxBuf + LenTxBuf) t = _TxBuf;if(t == _outTxBuf) {return 1;};//TxBuf Full*_inTxBuf = one_byte;_inTxBuf = t;return 0;}/****************************函数模型:void COM_SendPChar(unsigned char *P,unsigned char Len)函数功能:发送定长字节数组入口参数: unsigned char *P:字节数组指针unsigned char Len:发送长度返回值:无修改者:修改时间:修改内容简要:***************************/_COM_SendPChar{while(Len){//while(COM1_SendOneByte(*P)); //发送失败,继续发送,知道发送成功COM_SendOneByte_(*P);P++;Len--;}}/****************************函数模型:void COM_SendString(unsigned char *P)函数功能:发送字符串入口参数: unsigned char *P:字符串指针返回值:无修改者:修改时间:修改内容简要:***************************/_COM_SendString{while(*P){COM_SendOneByte_(*P);P++;}}//**************** 非缓冲区中断方式发送/****************************函数模型:void COM_PrintOneByte(unsigned char c)函数功能:发送一个字节入口参数: unsigned char one_byte:发送的字节返回值:无修改者:修改时间:修改内容简要:***************************/_COM_PrintOneByte{COM_TI_FLAG0();COM_TI_SBUF(c); //发送数据while(!COM_TI_FLAG) ; //等待发送结束}/****************************函数模型:void COM_PrintPChar(unsigned char *buf,unsigned int len)函数功能:发送定长字节数组入口参数: unsigned char *P:字节数组指针unsigned char Len:发送长度返回值:无修改者:修改时间:修改内容简要:***************************/_COM_PrintPChar{while(len){COM_PrintOneByte_(*buf);buf ++;len--;}}/****************************函数模型:void COM_PrintString(unsigned char *P) 函数功能:发送字符串入口参数: unsigned char *P:字符串指针返回值:无修改者:修改时间:修改内容简要:***************************/_COM_PrintString{while(*P){COM_PrintOneByte_(*P);P++;}}。
单片机串口通信的发送与接收
51单片机的串口,是个全双工的串口,发送数据的同时,还可以接收数据。
当串行发送完毕后,将在标志位TI 置1,同样,当收到了数据后,也会在RI 置1。
无论RI 或TI 出现了1,只要串口中断处于开放状态,单片机都会进入串口中断处理程序。
在中断程序中,要区分出来究竟是发送引起的中断,还是接收引起的中断,然后分别进行处理。
看到过一些书籍和文章,在串口收、发数据的处理方法上,很多人都有不妥之处。
接收数据时,基本上都是使用“中断方式”,这是正确合理的。
即:每当收到一个新数据,就在中断函数中,把RI 清零,并用一个变量,通知主函数,收到了新数据。
发送数据时,很多的程序都是使用的“查询方式”,就是执行while(TI ==0); 这样的语句来等待发送完毕。
这时,处理不好的话,就可能带来问题。
看了一些网友编写的程序,发现有如下几条容易出错:1.有人在发送数据之前,先关闭了串口中断!等待发送完毕后,再打开串口中断。
这样,在发送数据的等待期间内,如果收到了数据,将不能进入中断函数,也就不会保存的这个新收到的数据。
这种处理方法,就会遗漏收到的数据。
2.有人在发送数据之前,并没有关闭串口中断,当TI = 1 时,是可以进入中断程序的。
但是,却在中断函数中,将TI 清零!这样,在主函数中的while(TI ==0);,将永远等不到发送结束的标志。
3.还有人在中断程序中,并没有区分中断的来源,反而让发送引起的中断,执行了接收中断的程序。
对此,做而论道发表自己常用的方法:接收数据时,使用“中断方式”,清除RI 后,用一个变量通知主函数,收到新数据。
发送数据时,也用“中断方式”,清除TI 后,用另一个变量通知主函数,数据发送完毕。
这样一来,收、发两者基本一致,编写程序也很规范、易懂。
更重要的是,主函数中,不用在那儿死等发送完毕,可以有更多的时间查看其它的标志。
实例:求一个PC与单片机串口通信的程序,要求如下:1、如果在电脑上发送以$开始的字符串,则将整个字符串原样返回(字符串长度不是固定的)。
51单片机串口通信
51单片机串口通信串行口通信是一种在计算机和外部设备之间进行数据传输的通信方式,其中包括了并行通信、RS-232通信、USB通信等。
而在嵌入式系统中,最常见、最重要的通信方式就是单片机串口通信。
本文将详细介绍51单片机串口通信的原理、使用方法以及一些常见问题与解决方法。
一、串口通信的原理串口通信是以字节为单位进行数据传输的。
在串口通信中,数据传输分为两个方向:发送方向和接收方向。
发送方将待发送的数据通过串行转并行电路转换为一组相对应的并行信号,然后通过串口发送给接收方。
接收方在接收到并行信号后,通过串行转并行电路将数据转换为与发送方发送时相对应的数据。
在51单片机中,通过两个寄存器来实现串口通信功能:SBUF寄存器和SCON寄存器。
其中,SBUF寄存器用于存储要发送或接收的数据,而SCON寄存器用于配置串口通信的工作模式。
二、51单片机串口通信的使用方法1. 串口的初始化在使用51单片机进行串口通信之前,需要进行串口的初始化设置。
具体的步骤如下:a. 设置波特率:使用波特率发生器,通过设定计算器的初值和重装值来实现特定的波特率。
b. 串口工作模式选择:设置SCON寄存器,选择串行模式和波特率。
2. 发送数据发送数据的过程可以分为以下几个步骤:a. 将要发送的数据存储在SBUF寄存器中。
b. 等待发送完成,即判断TI(发送中断标志位)是否为1,如果为1,则表示发送完成。
c. 清除TI标志位。
3. 接收数据接收数据的过程可以分为以下几个步骤:a. 等待数据接收完成,即判断RI(接收中断标志位)是否为1,如果为1,则表示接收完成。
b. 将接收到的数据从SBUF寄存器中读取出来。
c. 清除RI标志位。
三、51单片机串口通信的常见问题与解决方法1. 波特率不匹配当发送方和接收方的波特率不一致时,会导致数据传输错误。
解决方法是在初始化时确保两端的波特率设置一致。
2. 数据丢失当发送方连续发送数据时,接收方可能会出现数据丢失的情况。
51单片机C语言应用开发实例精讲8结构实例6:单片机的串口通信
8. 结构实例6:单片机串口通信虽然那个流水灯游戏的可玩性和按键手感问题还值得再好好提升一下,但小月更希望调剂一下,转而开始了对手头烧写板上关于RS-232转换部分的学习。
小月的做法并不难以理解,毕竟与RS-232转换的相关电路在原理图中还是相当显眼的,甚至于他手头编程器的别名就是RS-232转换器。
图8.1 单片机中负责RS-232通讯的电路在烧写器一端与电脑连接的两个接头中,9针的RS-232接口就是串口通信线,而另一个USB口仅接通了+5V和GND,只有给烧写器供电的作用。
这样就可以知道,电脑可以通过RS-232对单片机的内部程序进行改写。
那么,这就意味着单片机与电脑间必然可以进行数据的交换,这种交换,就叫做通信。
所谓串口通信,就是指这种基于RS-232串口的通信方式。
RS-232(ANSI/EIA-232标准)是IBM-PC及其兼容机上的串行连接标准。
最早是为使电脑通过电话线系统相互通信的调制解调器上而是设计的。
后来发展到连接鼠标或打印机上,目前已经被支持设备的即插即用和热插拔功能的USB所替代,但仍广泛的用于工业仪器仪表中,同时也是单片机最基础和最常见的通信方式。
不过要把“最基础和最常见”这两个最拆开来说,就要在后面加上“之一”了。
虽然目前的通信技术日新月异,但这种说法在今后很长一段时期内都是成立的,也正因为这样的特点,STC的51系列单片机都是默认通过RS-232方式进行烧写的。
作为两台设备之间进行的通信,必然需要共同遵守某种规定或规则,包括交流什么、怎样交流及何时交流。
这个规则就是通信协议。
RS-232通信中通信协议的原则就是串口按位(bit)发送和接收数据。
线路上,RS-232通信使用3根线完成,分别是地线、发送、接收。
端口能够在一根线上发送数据的同时在另一根线上接收数据,即全双工传输。
全双工传输是传输制式的一种分类方式中的一类,除此还有单工传输和半双工传输。
单工传输,是指消息只能单方向传输的工作方式。
基于51单片机的网口串口转换模块设计
基于51单片机的网口串口转换模块设计随着计算机技术的高速发展,网络已经成为人们日常工作和生活中不可缺少的一部分。
在此基础上,各种网络设备和网络应用如雨后春笋般出现,成为我们日常工作和生活中不可或缺的工具。
因此本文将介绍一款基于51单片机的网口串口转换模块的设计原理及其应用。
一、设计原理1、硬件设计该网口串口转换模块的硬件设计主要是由51单片机单片机控制器、ENC28J60 网络控制器及 MAX2323 串口控制器组成。
其中51单片机作为控制芯片,控制ENC28J60 和 MAX2323的工作。
ENC28J60 网络控制器是一种专门用于网络通信的单片机控制芯片。
它可以通过网络端口直接连接互联网,可以实现TCP/IP 协议栈的功能。
ENC28J60 处理网络中传输的数据,然后将处理后的数据发送给 51 单片机处理或将 51 单片机需要发送的数据传输到网络中。
MAX2323 串口控制器是一款主控芯片,它在 rs-232 串口和TTL 串口之间起到转换的作用。
该芯片的内部电路结构包含了一组电荷泵电路,可以将 rs-232 的电平转换成 TTL 电平,以适应 51 单片机的与其他设备的串口通信。
2、软件设计1. 网络通信部分(1) 网络初始化:该模块初始化时需要设置IP地址、子网掩码、默认网关等网络参数;(2) TCP连接:TCP连接是和目标主机建立连接,以便发送数据。
服务器端必须打开相应的端口进行侦听,也就是绑定目标主机的IP地址和端口信息,等待客户端连接;(3) 传输数据:该部分主要是通过发送TCP数据包,将51单片机上产生的数据传送到网络中。
2.串口通信部分该部分主要是控制51单片机和外部设备之间的串口通信,比如串口数据传输的速率、数据位、停止位、奇偶校验等参数。
二、应用1、工控基于51单片机的网口串口转换模块可以应用于工控系统的远程监控、控制和通讯等方面。
通过这个模块,可以实现工控系统和互联网的连接,实现远程监控和控制。
51单片机与串口通信代码
51单片机与串口通信代码串口调试1. 发送:向总线上发命令2. 接收:从总线接收命令,并分析是地址还是数据。
3. 定时发送:从内存中取数并向主机发送.经过调试,以上功能基本实现,目前可以通过上位机对单片机进行实时控制。
程序如下://这是一个单片机C51串口接收(中断)和发送例程,可以用来测试51单片机的中断接收//和查询发送,另外我觉得发送没有必要用中断,因为程序的开销是一样的#i nclude <reg51.h>#i nclude<stdio.h>#i nclude <string.h>#define INBUF_LEN 4 //数据长度unsigned char inbuf1[INBUF_LEN];unsigned char checksum,count3 , flag,temp,ch;bit read_flag=0;sbit cp=P1^1;sbit DIR=P1^2;int i;unsigned int xdata *RAMDATA; /*定义RAM地址指针*/unsigned char a[6] ={0x11,0x22,0x33,0x44,0x55,0x66} ;void init_serialcomm(void){SCON=0x50; //在11.0592MHz下,设置串行口波特率为9600,方式1,并允许接收PCON=0x00;ES=1;TMOD=0x21; //定时器工作于方式2,自动装载方式 TH0=(65536-1000)%256;TL0=(65536-1000)/256;TL1=0xfd;TH1=0xfd;ET0=1;TR0=1;TR1=1;// TI=0;EA=1;// TI=1;RAMDATA=0x1F45;}void serial () interrupt 4 using 3{if(RI){ RI=0;ch=SBUF;TI=1; //置SBUF空switch(ch){case 0x01 :printf("A"); TI=0;break;case 0x02 :printf("B"); TI=0;break;case 0x03 :printf("C"); TI=0;break;case 0x04 :printf("D"); TI=0;break; default :printf("fg"); TI=0;break; }}}//向串口发送一个字符void timer0() interrupt 1 using 3{// char i;flag++;TH0=0x00;TL0=0x00;if(flag==10){// cp=!cp;// for(i=0;i<6;i++)P2=0x25;TI=1;temp=*RAMDATA;printf("%c",temp); TI=0;// RAMDATA--;flag=0;}}//主程序main(){init_serialcomm(); //初始化串口//向6264中送数据{*RAMDATA=0x33;}while(1){*RAMDATA=0x33;;}}调试过程中遇到的问题:1. 发送过程:在发送时必须保证TI=1:即发送缓冲器为空,否则将导致数据发不出去,如果想强制发送可以用:TI=1.具体发送数据:利用printf(“akjdfaklfj”);函数直接发送即可。
51单片机模拟串口通讯
论坛新老朋友们。
祝大家新年快乐。
在新的一年开始的时候,给大家一点小小的玩意。
工程师经常碰到需要多个串口通信的时候,而低端单片机大多只有一个串行口,甚至没有串口。
这时候无论是选择高端芯片,还是更改系统设计都是比较麻烦的事。
我把以前搞的用普通I/O口模拟串行口通讯的程序拿出来,供大家参考,希望各位兄弟轻点拍砖。
基本原理:我们模拟的是串行口方式1.就是最普通的方式。
一个起始位、8个数据位、一个停止位。
模拟串行口最关键的就是要计算出每个位的时间。
以波特率9600为例,每秒发9 600个位,每个位就是1/9600秒,约104个微秒。
我们需要做一个精确的延时,延时时间+对IO口置位的时间=104微秒。
起始位是低状态,再延时一个位的时间。
停止位是高状态,也是一个位的时间。
数据位是8个位,发送时低位先发出去,接收时先接低位。
了解这些以后,做个IO模拟串口的程序,就是很容易的事。
我们开始。
先上简单原理图:就一个MAX232芯片,没什么好说的,一看就明白。
使用单片机普通I/ O口,232数据输入端使用51单片机P3.2口(外部中断1口,接到普通口上也可以,模拟中断方式的串行口会有用。
呵呵)。
数据输出为P0.4(随便哪个口都行)。
下面这个程序,您只需吧P0.4 和P3.2 当成串口直接使用即可,经过测试完全没有问题.2、底层函数代码如下:sbit TXD1 = P0^4; //定义模拟输出脚sbit RXD1 = P3^2; //定义模拟输入脚bdata unsigned char SBUF1; //定义一个位操作变量sbit SBUF1_bit0 = SBUF1^0;sbit SBUF1_bit1 = SBUF1^1;sbit SBUF1_bit2 = SBUF1^2;sbit SBUF1_bit3 = SBUF1^3;sbit SBUF1_bit4 = SBUF1^4;sbit SBUF1_bit5 = SBUF1^5;sbit SBUF1_bit6 = SBUF1^6;sbit SBUF1_bit7 = SBUF1^7;void delay_bps() {unsigned char i; for (i = 0; i < 29; i++); _nop_(); _nop_();} //波特率9600 模拟一个9600波特率unsigned char getchar2() //模拟接收一个字节数据{while (RXD1);_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_(); delay_bps();SBUF1_bit0 = RXD1; //0delay_bps();SBUF1_bit1 = RXD1; //1delay_bps();SBUF1_bit2 = RXD1; //2delay_bps();SBUF1_bit3 = RXD1; //3delay_bps();SBUF1_bit4 = RXD1; //4delay_bps();SBUF1_bit5 = RXD1; //5delay_bps();SBUF1_bit6 = RXD1; //6delay_bps();SBUF1_bit7 = RXD1; //7delay_bps();return(SBUF1) ; //返回读取的数据}void putchar2(unsigned char input) //模拟发送一个字节数据{SBUF1 = input;TXD1 = 0; //起始位delay_bps();TXD1 = SBUF1_bit0; //0delay_bps();TXD1 = SBUF1_bit1; //1delay_bps();TXD1 = SBUF1_bit2; //2delay_bps();TXD1 = SBUF1_bit3; //3delay_bps();TXD1 = SBUF1_bit4; //4delay_bps();TXD1 = SBUF1_bit5; //5delay_bps();TXD1 = SBUF1_bit6; //6delay_bps();TXD1 = SBUF1_bit7; //7delay_bps();TXD1 = 1; //停止位delay_bps();}3、实现串行通讯。
51单片机串口通信接收并指示灯提示
要求:用串口调试助手软件通过串口向单片机发送数据。
当发送的数据为1到8时,分别对应点亮相应的发光二极管。
发送其他数据,蜂鸣器会响。
晶振:11.0592MHZ程序如下:#include <reg52.h>#define uchar unsigned char#define uint unsigned intuchar buf;sbit beep=P2^3;void main(void){SCON=0x50; //设定串口工作方式PCON=0x00; //波特率不倍增TMOD=0x20; //定时器1工作于8位自动重载模式, 用于产生波特率EA=1;ES = 1; //允许串口中断TL1=0xfd;TH1=0xfd; //波特率9600TR1=1;while(1);}/*********************************************************串行中断服务函数*********************************************************/void serial() interrupt 4{ES = 0; //关闭串行中断RI = 0; //清除串行接受标志位buf = SBUF; //从串口缓冲区取得数据switch(buf){case 0x31: P1=0xfe;beep=1;break; //接受到1,第一个LED亮case 0x32: P1=0xfd;beep=1;break; //接受到2,第二个LED亮case 0x33: P1=0xfb;beep=1;break; //接受到3,第三个LED亮case 0x34: P1=0xf7;beep=1;break; //接受到4,第四个LED亮case 0x35: P1=0xef;beep=1;break; //接受到5,第五个LED亮case 0x36: P1=0xdf;beep=1;break; //接受到5,第六个LED亮case 0x37: P1=0xbf;beep=1;break; //接受到5,第七个LED亮case 0x38: P1=0x7f;beep=1;break; //接受到5,第八个LED亮default: beep=0;P1=0xff;break; //接受到其它数据,蜂鸣器响}ES = 1; //允许串口中断}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
if (getlast==inlast) inbufsign=0; //地址相等置接收缓冲区空空标志,再取
数前要检该标志
ES=1;
return (c); //取回数据
extern putstring(uchar *puts);//发送一个字符串到串口
extern puthex(uchar c);//发送一个字节的hex码,分成两个字节发。
extern bit inbufsign;
#define CR putstring("\r\n")//发送一个回车换行
inlast++;
if (inlast==inbuf+ILEN) inlast=inbuf;
if (inlast==getlast) inbufful=1;
inbufsign=1;
}
ES=1;
}
*/
//*****************************************
//用t2作波特率
/*
T2CON=0x30;
RCAP2H=0xFF;
RCAP2L=0xb8;//70=4800,b8=9600,dc=19200,ee=38400,f4=57600,fa=115200
TR2=1;ET2=1;
SCON=0x50;//SCON=0xd0;
*/
ES = 1;
REN=1;
EA=1;
SM2=1; //SM2=1时收到的第9位为1才置位RI标志
TI=1;
}
putstring(uchar *puts)
{
for(;*puts!=0;puts++) //遇到停止符0结束
putbyte(*puts);
}
//*************************************
//发送一个字节的hex码,分成两个字节发。
uchar code hex_[]={"0123456789ABCDEF"};
标 题: 51单片机串口接收的函数模块 Zz
发信站: 郁金香BBS站 (2006年07月05日13:06:32 星期三), 站内信件
//**************************************************************************
//本函数模块来自"51单片机世界",作者版主丁丁(聂小猛)。
//*****************************
//放入一个字节到发送缓冲区
putbyte(unsigned char c)
{
SBUF=c;
while(!TI);TI=0;
}
//***************************************
//发送一个定义在程序存储区的字符串到串口
uchar getbyte (void)
{
char idata c ;
while (!inbufsign); //缓冲区空等待
ES=0;
c= *getlast; //取数据
getlast++; //最后取走的数据位置加一
inbufful=0; //输入缓冲区的满标志清零
i[3]=0x30+(n%100)/10;
i[4]=0x30+n%10;
i[5]=0;
putstring(i);
}
//*********************
//模拟接收到一个字符,
putinbuf(uchar c)
{ES=0; if(!inbufful)
{*inlast= c;
00 110592
void serial_init (void)
{
//用t1作波特率
SCON = 0x50; // mode 1: 8-bit UART, enable receiver
TMOD |= 0x21; // timer 1 mode 2: 8-Bit reload th0 1X16
puthex(unsigned char c)
Байду номын сангаас{
int ch;
ch=(c>>4)&0x0f;
putbyte(hex_[ch]);
ch=c&0x0f;
putbyte(hex_[ch]);
}
//*************************************
//从接收缓冲区取一个byte,如不想等待则在调用前检测inbufsign是否为1。
//串口中断服务程序,仅需做简单调用即可完成串口输入输出的处理
//串口输入设有缓冲区,大小可任意设置。
//可供使用的函数名:
/*
extern char getbyte(void);//从接收缓冲区取一个byte,如不想等待则在调用前检测
inbufsign是否为1。
extern putbyte(char c);//放入一个字节到发送缓冲区
#define uchar unsigned char
#define uint unsigned int
#define ILEN 16 //32 //设置串口中断接收缓冲区大小
idata uchar inbuf[ILEN];
data uchar idata *inlast=inbuf; //最后由中断进入接收缓冲区的字节位置
//串口中断处理
serial () interrupt 4
{
if (RI)
{
RI = 0;
if(!inbufful)
{
*inlast= SBUF; //放入数据
inlast++; //最后放入的位置加一
inbufsign=1;
//主页地址/
//本程序为本站推出的"MCU51-63K仿真器"及"DX-51多功能试验板"而设计的,详情请到本
站查看.
//"51单片机世界"版权所有,未经允许,不得抄袭作为商业用途
//**************************************************************************
data uchar idata *getlast=inbuf; //最后取走的字节位置
bit inbufsign; //接收缓冲区非空标志 有=1
bit inbufful; //输入缓冲区满标志 满=1
#define CR putstring("\r\n") //CR=回车换行
extern void serial_init (void);
extern putint(uint n);
*/
//*************************************************************************
#include <reg52.h>
PCON |= 0x00; //SMOD =0
TH1 = 0xfd; //baud*1 /* reload value 9600 baud
TL1 = 0xfd;
TR1 = 1; // timer 1 run
if (inlast==inbuf+ILEN) inlast=inbuf;//地址到顶部回到底部
if (inlast==getlast) inbufful=1; //接收缓冲区满置满标志
}
}
}
//*****************************
//串口初始化 0xfd=19200,0xfa=9600,0xf4=4800,0xe8=2400,0xd0=12
}
/*
//*************************
//以十进制的形式输出一个整型数到串口
putint(uint n)
{
uchar i[6];
i[0]=0x30+n/10000;
i[1]=0x30+(n%10000)/1000;
i[2]=0x30+(n%1000)/100;