南京师范大学附属扬子中学三角函数单元测试

合集下载

江苏南京师范大学附属扬子中学期末精选单元测试卷 (word版,含解析)

江苏南京师范大学附属扬子中学期末精选单元测试卷 (word版,含解析)

江苏南京师范大学附属扬子中学期末精选单元测试卷 (word 版,含解析)一、第一章 运动的描述易错题培优(难)1.如图所示,物体沿曲线轨迹的箭头方向运动,AB 、ABC 、ABCD 、ABCDE 四段曲线轨迹运动所用的时间分别是:1s 、2s 、3s 、4s ,下列说法正确的是( )A .物体在AB 段的平均速度为1m/sB .物体在ABC 5m/s C .AB 段的平均速度比ABC 段的平均速度更能反映物体处于A 点时的瞬时速度D .物体在B 点的速度等于AC 段的平均速度【答案】ABC【解析】【分析】【详解】A .由图可知物体在AB 段的位移为1m ,则物体在AB 段的平均速度1m/s 1m/s 1x v t === 选项A 正确; B .物体在ABC 段的位移大小为 2212m 5m x =+=所以物体在ABC 段的平均速度5m/s 2x v t == 选项B 正确;C .根据公式x v t=可知,当物体位移无限小、时间无限短时,物体的平均速度可以代替某点的瞬时速度,位移越小平均速度越能代表某点的瞬时速度,则AB 段的平均速度比ABC 段的平均速度更能反映物体处于A 点时的瞬时速度,选项C 正确;D .根据题给条件,无法得知物体的B 点的运动速度,可能很大,也可能很小,所以不能得出物体在B 点的速度等于AC 段的平均速度,选项D 错误。

故选ABC 。

2.一个质点做变速直线运动的v-t 图像如图所示,下列说法中正确的是A .第1 s 内与第5 s 内的速度方向相反B .第1 s 内的加速度大于第5 s 内的加速度C .OA 、AB 、BC 段的加速度大小关系是BC OA AB a a a >>D .OA 段的加速度与速度方向相同,BC 段的加速度与速度方向相反【答案】CD【解析】【分析】【详解】A .第1s 内与第5s 内的速度均为正值,方向相同,故A 错误;B .第1 s 内、第5 s 内的加速度分别为:2214m/s 2m/s 2a == 22504m/s 4m/s 1a -==- 1a 、5a 的符号相反,表示它们的方向相反,第1s 内的加速度小于于第5 s 内的加速度,故B 错误;C .由于AB 段的加速度为零,故三段的加速度的大小关系为:BC OA AB a a a >>故C 正确;D .OA 段的加速度与速度方向均为正值,方向相同;BC 段的加速度为负值,速度为正值,两者方向相反,故D 正确;故选CD 。

苏教版高中数学必修4三角函数单元测试.doc

苏教版高中数学必修4三角函数单元测试.doc

南京师范大学附属扬子中学三角函数(苏教版必修4)单元测试一、选择题(每小题5分,共60分,请将所选答案填在括号内)1.设a <0,角α的终边经过点P (-3a ,4a ),那么sin α+2cos α的值等于:A.52B.-52C.51D.-51 2.若cos(π+α)=-23,21π<α<2π,则sin(2π-α)等于:A.-23 B.23 C.21 D.±23 3. 已知sin α>sin β,那么下列命题成立的是:A.若α,β是第一象限角,则cos α>cos βB.若α,β是第二象限角,则tan α>tan βC.若α、β是第三象限角,则cos α>cos βD.若α、β是第四象限角,则tan α>tan β 4.若sin x +cos x =1,那么sin n x +cos n x 的值是:A .1B .0C .-1D .不能确定 5. 函数y=-x ·cos x 的部分图象是:6. 函数x x y sin cos 2-=的值域是: A 、[]1,1-B 、⎥⎦⎤⎢⎣⎡45,1C 、[]2,0D 、⎥⎦⎤⎢⎣⎡-45,17. 已知:函数sin()y A x ωϕ=+,在同一周期内,当12x π=时取最大值4y =;当712x π=时,取最小值4y =-,那么函数的解析式为: A .4sin(2)3y x π=+ B. 4sin(2)3y x π=-+C 4sin(4)3=+y x π. D. 4sin(4)3y x π=-+8. 在函数y =|tan x |,y =|sin(x +2π)|,y =|sin2x |,y =sin(2x -2π)四个函数中,既是以π为周期的偶函数,又是区间(0,2π)上的增函数个数是:A .1B .2C .3D .49. 定义在R 上的函数)(x f 既是偶函数又是周期函数,若)(x f 的最小正周期是π,且当]2,0[π∈x 时,x x f sin )(=,则)35(πf 的值为: A. 21- B. 23C. 23- D 21 10. 下列函数中,最小正周期为π,且图象关于直线3π=x 对称的是:A.)32sin(π-=x y B.)62sin(π-=x y C .)62sin(π+=x yD .)62sin(π+=x y11.函数f(x)=cos(3x +φ)的图象关于原点中心对称,则:A .φ=π2B .φ=k π+π2C .φ=k πD .φ=2k π-π2(k ∈Z)12.2002年8月,在北京召开的国际数学家大会会标如图所示,它是由4个相同的直角三角形与中间的小正方形拼成的一大正方形,若直角三角形中较小的锐角为θ,大正方形的面积是1,小正方形的面积是θθ22cos sin ,251-则的值等于:A .1B .2524-C .257D .725-二.填空题:本大题共4小题,每小题4分,共16分。

第一章三角函数测试题(含参考答案)

第一章三角函数测试题(含参考答案)

第一章三角函数测试题第一章三角函数测试题一、选择题(本题共12小题,每小题5分,共60分) 1.sin 330°等于(等于( ))A .32- B .12- C .12D .322.已知点(tan ,cos )P a a 在第三象限,则角a 的终边在(的终边在( ))A.A.第一象限第一象限第一象限B. B.第二象限第二象限第二象限C. C. C.第三象限第三象限第三象限D. D.第四象限第四象限第四象限3.若1cos()2p a +=-,322p a p <<,则sin(2)p a -等于(等于( ))A.32- B.32C. 12D. 32±4.已知函数)2tan(j +=x y 的图象过点)0,12(p ,则j 可以是(可以是( ))A .6p-B .6pC .12p-D .12p5.把函数sin ()y x x =ÎR 的图象上所有的点向左平行移动3p 个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数(,得到的图象所表示的函数( ))A .sin 23y x x p æö=-Îç÷èøR ,B B..sin 26x y x p æö=+Îç÷èøR , C .sin 23y x x p æö=+Îç÷èøR ,D .sin 23y x x 2p æö=+Îç÷èøR , 6.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是(,则这个圆心角所对的弧长是( ))A .2B .1sin 2 C .1sin 2 D .2sin7.设0a <,角a 的终边经过点(3,4)P a a -,那么sin 2cos a a +的值等于(的值等于( ))A.25B. 25-C.15D. 15-8.下列不等式中,正确的是(.下列不等式中,正确的是( ))A .tan513tan413p p < B B..sin)7cos(5pp->C .sin(π-1)<sin1oD D..cos )52cos(57pp -<9. 9. 函数函数)62sin(p+-=x y 的单调递减区间是(的单调递减区间是( ))A .)](23,26[Z k k k Î++-p pp pB .)](265,26[Z k k k Î++p p p pC .)](3,6[Z k k k Î++-p p p p D D..)](65,6[Z k k k Î++p p p pp p)22_ .p3÷öπ)18. (18. (本小题本小题12分)已知1tan 3a =-求下列各式的值求下列各式的值. .(1)3cos 5sin sin cos a a a a +-(2)22sin 2sin cos 3cos a a a a +-19. (19. (本小题本小题12分)化简化简(1))-()+(-)++()+()-(-)++(-a a a a a a °°°°180cos cos 180tan 360tan sin 180sin(2)111(sin )(cos )(tan )sin cos tan a a a aaa--+2020..(本小题12分) 已知1sin cos 5a a +=(0a p <<)求:(1)sin cos a a(2)sin cos a a -p 2p p ùú2,33-úp p参考答案参考答案一、选择题(本题共12小题,每小题5分,共60分) BBBAC BADCD BA二、填空题(本题共4小题,每小题5分,共20分)1313..52- 14 14..}2422,33a p p a p p ì+<<+Îíî 15 15..3216 16.①③..①③.三、解答题(本大题共6小题,共70分,解答题应写出文字说明、证明过程或演算步骤分,解答题应写出文字说明、证明过程或演算步骤..)1717.. (1) (1)图略图略图略 (( 2 2))max2=,},8pp ì=+Îíî18. 18. ((1)1- ((2)165-19. 19. ((1) -1 1 ((2)1 2020.. (1) 1225- (2)7521. 21. ((1)()2sin(2)6p =+ ((2)1,3éùëû22. 22. 解:解:22()sin (cos 1)coscos1=+-=-++-,((1) 令令cos =,2,33p p éùÎ-êúëû,1[,1]2\Î- 则则2()1=-++-,对称轴为2=,当当124£,即12£时,在1=时,()有最小值为0,此时0=当当124³,即12³时,在12=-时,()有最小值为3342-,此时23p =.(2)当1=时,2()coscos =-+令cos=,2()=-+,对称轴为12=,当当12£时,5[2,2]3p p p p Î++(Î),此时cos=单调递增,所以单调递增,所以()单调递增;单调递增;当当12³时,[2,2]3p p p Î+(Î),此时cos=单调递减,所以单调递减,所以()单调递增单调递增. .。

【单元练】南京师范大学附属中学九年级数学下册第二十八章《锐角三角函数》经典复习题(含答案解析)

【单元练】南京师范大学附属中学九年级数学下册第二十八章《锐角三角函数》经典复习题(含答案解析)

一、选择题1.如图,旗杆AB竖立在斜坡CB的顶端,斜坡CB长为65米,坡度为125i=小明从与点C相距115米的点D处向上爬12米到达建筑物DE的顶端点E,在此测得放杆顶端点A的仰角为39°,则旗杆的高度AB约为()米.(参考数据:sin390.63︒≈,cos390.78︒≈,tan390.81︒≈)A.12.9 B.22.2 C.24.9 D.63.1C解析:C【分析】通过作高,构造直角三角形,利用直角三角形的边角关系和坡度即可求出答案.【详解】解:过点B作BF⊥CD,垂足为F,过点E作EG⊥BF,垂足为G,在Rt△BCF中,由斜坡BC的坡度i=125,得,BFFC=125,又BC=65,设BF=12x,FC=5x,由勾股定理得,(12x)2+(5x)2=652,∴x=5,∴BF=60,FC=25,又∵DC=115,∴DF=DC-FC=115-25=90=EG,在Rt△AEG中,AG=EG•tan39°≈90×0.81=72.9,∴AB=AG+FG-BF=72.9+12-60=24.9(米),故选:C.【点睛】本题考查坡度、仰角以及直角三角形的边角关系,理解坡度、仰角和直角三角形的边角关系式解决问题的关键.2.下列说法中,正确的有( )个①a 为锐角,则1sina cosa +>;②314172︒+︒=︒cos cos cos ﹔③在直角三角形中,只要已知除直角外的两个元素,就可以解这个三角形﹔④坡度越大,则坡角越大,坡越陡; ⑤1302==︒sinA ; ⑥当Rt ABC ∆的三边长扩大为2倍时,则sinA 的值也相应扩大2倍. A .1B .2C .3D .4B 解析:B【分析】①根据三角函数的定义判断;②函数值不是简单度数相加;③至少已知一条边能解直角三角形;④根据坡度的性质即可判定④对;⑤只能说∠A=30°;⑥角度数不变,函数值就不变.【详解】①在Rt △ACB 中,设c 为斜边,∠α的对边、邻边分别为a ,b ,那么sinα+cosα=1a b c+>,所以①对; ②不对,函数值是角与边的关系,不是简单度数相加;③不对,只知道角不知道边也不能解直角三角形;④垂直高度与水平距离之比即坡度所以④对;⑤也不对,sinA=1302=︒,是明显错误; ⑥不对,角度数不变,函数值就不变.综上,①④正确,共2个,故选:B .【点睛】 本题主要考查了解直角三角形以及锐角三角函数.学生学这一部分知识时要细心去理解文字所表达的意思.关键是熟练掌握有关定义和性质.3.如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF ,下面四个结论:①CF=2AF ;②tan ∠ ;③DF=DC ;④△AEF ∽△CAB ;⑤S 四边形CDEF =52S △ABF ,其中正确的结论有( )A .2个B .3个C .4个D .5个D解析:D【分析】 依据△AEF ∽△CBF ,即可得出CF=2AF ;依据△BAE ∽△ADC ,即可得到tan ∠CAD=22 ;过D 作DM ∥BE 交AC 于N ,依据DM 垂直平分CF ,即可得出DF=DC ;依据∠EAC=∠ACB ,∠ABC=∠AFE=90°,即可得到△AEF ∽△CAB ;设△AEF 的面积为s ,则△ABF 的面积为2s ,△CEF 的面积为2s ,△CDE 的面积为3s ,四边形CDEF 的面积为5s ,进而得出S 四边形CDEF =52S △ABF 【详解】解:∵AD ∥BC ,∴△AEF ∽△CBF , AE AF BC CF∴= ∵AE=12AD= 12BC , 12AF CF ∴= ∴CF=2AF ,故①正确;设AE=a ,AB=b ,则AD=2a ,∵BE ⊥AC ,∠BAD=90°,∴∠ABE=∠ADC ,而∠BAE=∠ADC=90°,∴△BAE ∽△ADC ,2b a a b∴=,即2b a ∴= 222CD tan CAD AD b a =∠=∴=,故②正确;如图,过D 作DM ∥BE 交AC 于N ,∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=12BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正确;∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∵BE⊥AC于点F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB,故④正确;如图,连接CE,由△AEF∽△CBF,可得12AFCF EFBF==设△AEF的面积为s,则△ABF的面积为2s,△CEF的面积为2s,∴△ACE的面积为3s,∵E是AD的中点,∴△CDE的面积为3s,∴四边形CDEF的面积为5s,∴S四边形CDEF=52S△ABF,故⑤正确.故选:D.【点睛】本题主要考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.解题时注意:相似三角形的对应边成比例.4.2ABCD的对角线AC在x轴上,点A的坐标是()1,0,把正方形ABCD绕原点O旋转180︒,则点B的对应点B'的坐标是()A .(-1,-1)B .()2,1C .()2,1--D .()2,1--D解析:D【分析】 根据题意,画出图形,连接BD ,交x 轴于E ,根据正方形的性质可得AB=2,BD ⊥x 轴,AE=BE ,∠BAE=45°,利用锐角三角函数即可求出AE 和BE ,从而求出OE ,即可求出点B 的坐标,然后根据关于原点对称的两点坐标关系即可求出结论.【详解】解:把正方形ABCD 绕原点O 旋转180︒,如图所示,连接BD ,交x 轴于E∵四边形ABCD 为正方形,边长为2∴AB=2,BD ⊥x 轴,AE=BE ,∠BAE=45°∴AE=BE=AB·sin ∠BAE=1∴OE=OA +AE=2∴点B 的坐标为(2,1)∴点B 绕点O 旋转180°的对应点B '的坐标(-2,-1)故选D .【点睛】此题考查的是正方形的性质,锐角三角函数和关于原点对称的两点坐标关系,掌握正方形的性质,锐角三角函数和关于原点对称的两点坐标关系是解题关键.5.如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,则sinB 的值等于( )A .43B .34C .45D .35C解析:C【解析】∵∠C=90°,AC=4,BC=3,∴AB=5,∴sinB=45AC AB = , 故选C.6.如图,在ABC ∆中,90ACB ∠=︒,D 是BC 的中点,DE BC ⊥,//CE AD ,若2AC =,30ADC ∠=︒,①四边形ACED 是平行四边形;②BCE ∆是等腰三角形;③四边形ACEB 的周长是10213+;则以上结论正确的是( )A .①②③B .①②C .①③D .②③A解析:A【分析】 证明AC ∥DE ,再由条件CE ∥AD 可证明四边形ACED 是平行四边形;根据线段的垂直平分线证明AE=EB 可得△BCE 是等腰三角形;首先利用三角函数计算出AD=4,CD=23出AB 长可得四边形ACEB 的周长是10+213【详解】①∵∠ACB=90°,DE ⊥BC ,∴∠ACD=∠CDE=90°,∴AC ∥DE ,∵CE ∥AD ,∴四边形ACED 是平行四边形,故①正确;②∵D 是BC 的中点,DE ⊥BC ,∴EC=EB ,∴△BCE 是等腰三角形,故②正确;③∵AC=2,∠ADC=30°,∴AD=4,CD=cos30AD ⋅︒=23∵四边形ACED 是平行四边形,∴CE=AD=4,∵CE=EB ,∴EB=4,DB=23∴BC=43∴AB=()2222243213AC BC +=+=,∴四边形ACEB 的周长是10213+,故③正确;综上,①②③均正确,故选:A .【点睛】本题主要考查了平行四边形的判定和性质、等腰三角形的判定和性质、特殊角三角函数、勾股定理、线段的垂直平分线的性质等知识,解题的关键是熟练掌握平行四边形的判定方法.等腰三角形的判定方法.7.如图,在Rt ABC ∆中,90ACB ∠=︒,22AC BC ==,CD AB ⊥于点D .点P 从点A 出发,沿A D C →→的路径运动,运动到点C 停止,过点P 作PE AC ⊥于点E ,作PF BC ⊥于点F .设点P 运动的路程为x ,四边形CEPF 的面积为y ,则能反映y 与x 之间函数关系的图象是( )A .B .C .D . A解析:A【分析】分两段来分析:①点P 从点A 出发运动到点D 时,写出此段的函数解析式,则可排除C 和D ;②P 点过了D 点向C 点运动,作出图形,写出此阶段的函数解析式,根据图象的开口方向可得答案.【详解】解:∵90ACB ∠=︒,22AC BC ==∴45A ∠=︒,4AB =,又∵CD AB ⊥,∴2AD BD CD ===,45ACD BCD ∠=∠=︒,∵PE AC ⊥,PF BC ⊥,∴四边形CEPF 是矩形,I .当P 在线段AD 上时,即02x <≤时,如解图1∴2sin 2AE PE AP A x ===, ∴2222CE x =-, ∴四边形CEPF 的面积为2221222222y x x x x ⎛⎫=-=-+ ⎪ ⎪⎝⎭,此阶段函数图象是抛物线,开口方向向下,故选项CD 错误;II .当P 在线段CD 上时,即24x <≤时,如解图2:依题意得:4CP x =-,∵45ACD BCD ∠=∠=︒,PE AC ⊥,∴sin CE PE CP ECP ==⨯∠,∴())24sin 4542CE PE x x ==-︒=-, ∴四边形CEPF 的面积为()222144822x x x y ⎤-=-+⎥⎣⎦=,此阶段函数图象是抛物线,开口方向向上,故选项B 错误;故选:A .【点睛】本题考查了动点问题的函数图象,分段写出函数的解析式并数形结合进行分析是解题的关键.8.如图,点A ,B ,C 在正方形网格的格点上,则sin ∠BAC=( )A .26B .2626C .2613D .1313B 解析:B【分析】作BD ⊥AC 于D ,根据勾股定理求出AB 、AC ,利用三角形的面积求出BD ,最后在直角△ABD 中根据三角函数的意义求解.【详解】解:如图,作BD ⊥AC 于D ,由勾股定理得,22223213,3332AB AC =+==+=∵1113213222ABC S AC BD BD =⋅=⨯=⨯⨯, ∴22BD =, ∴2262sin 13BD BAC AB ∠=== 故选:B .【点睛】本题考查了勾股定理,解直角三角形,三角形的面积,三角函数的意义等知识,根据网格构造直角三角形和利用三角形的面积求出BD 是解决问题的关键.9.如图,反比例函数k y x=(0)k ≠第一象限内的图象经过ABC ∆的顶点A ,C ,AB AC =,且BC y ⊥轴,点A ,C ,的横坐标分别为1,3,若120BAC ∠=︒,则k的值为( )A .1B .2C .3D .2C解析:C【分析】 先表示出CD ,AD 的长,然后在Rt △ACD 中利用∠ACD 的正切列方程求解即可.【详解】过点A 作AD BC ⊥,∵点A 、点C 的横坐标分别为1,3,且A ,C 均在反比例函数k y x =第一象限内的图象上, ∴(1,)A k ,3,3k C ⎛⎫ ⎪⎝⎭, ∴CD=2,AD=k-3k , ∵AB AC =,120BAC ∠=︒,AD BC ⊥,∴30ACD ∠=︒,90ADC ∠=︒,∵tan ∠ACD=AD DC, ∴3DC AD =,即233k k ⎛⎫=- ⎪⎝⎭,∴3k =. 故选:C .【点睛】本题考查了等腰三角形的性质,解直角三角形,以及反比例函数图像上点的坐标特征,熟练掌握各知识点是解答本题的关键.10.若菱形的周长为16,高为2,则菱形两个邻角的比为( )A .6:1B .5:1C .4:1D .3:1B【分析】由锐角函数可求∠B 的度数,可求∠DAB 的度数,即可求解.【详解】如图,∵四边形ABCD 是菱形,菱形的周长为16,∴AB=BC=CD=DA=4,∵AE=2,AE ⊥BC ,∴sin ∠B=12BE AB = ∴∠B=30° ∵四边形ABCD 是菱形,∴AD ∥BC ,∴∠DAB+∠B=180°,∴∠DAB=150°,∴菱形两邻角的度数比为150°:30°=5:1,故选:B .【点睛】本题考查了菱形的性质,锐角三角函数,能求出∠B 的度数是解决问题的关键.二、填空题11.如图,ABC 内接于O ,AB AC =,直径AD 交BC 于点E ,若1DE =,2cos 3BAC ∠=,则弦BC 的长为______. 【分析】连接OBOC 由题意易得AE ⊥BC 则有BE=EC ∠BOD=∠BAC 设OB=3rOE=2r 然后根据勾股定理可求解【详解】解:连接OBOC 如图所示:∵内接于AD 过圆心O ∴AE ⊥BC ∴BE=EC ∴∠解析:5连接OB 、OC ,由题意易得AE ⊥BC ,则有BE=EC ,∠BOD=∠BAC ,设OB=3r ,OE=2r ,然后根据勾股定理可求解.【详解】解:连接OB 、OC ,如图所示:∵ABC 内接于O ,AB AC =,AD 过圆心O ,∴AE ⊥BC ,∴BE=EC ,BD DC =,∴∠BAD=∠CAD ,∵∠BOD=2∠BAD ,∴∠BAC=∠BOD , ∵2cos 3BAC ∠=, ∴2cos 3BOD ∠=, ∵DE=1,∴设OB=3r ,OE=2r ,则有: 321r r =+,解得:1r =,∴3,2OB OE ==,∴在Rt △BEO 中,225BE OB OE -=, ∴25BC = 故答案为5【点睛】本题主要考查垂径定理、三角形内接圆的性质及圆周角定理,熟练掌握垂径定理、三角形内接圆的性质及圆周角定理是解题的关键.12.如图,在矩形ABCD 中,6BC =,4cos 5CAB ∠=, P 为对角线AC 上一动点,过线段BP 上的点M 作EF BP ⊥,交AB 边于点E ,交BC 边于点 F ,点N 为线段EF 的中点,若四边形BEPF 的面积为18,则线段BN 的最大值为 ________ .【分析】在△ABC 中求出AC 与AB 的长点P 在AC上则6≤BP≤8由点N 为线段EF 的中点∠ABC=90º则EF=2BN 根据四边形BEPF 的面积为18利用对角线乘积的一半求面积得BN 与PB 成反比例PB 最 解析:154【分析】在△ABC 中,6BC =,4cos 5CAB ∠=求出AC 与AB 的长,点P 在AC 上 则6≤BP≤8,由点N 为线段EF 的中点,∠ABC=90º,则EF=2BN ,根据四边形BEPF 的面积为18,EF BP ⊥利用对角线乘积的一半求面积得,PB BN=18,BN 与PB 成反比例, PB 最小时,BN 最大,当PB ⊥AC 时,PB 最小,求出最小值即可.【详解】在△ABC 中,6BC =,4cos 5CAB ∠=, ∵22sin cos 1CAB CAB ∠+∠=, ∴2243sin =1cos =155CAB CAB ⎛⎫∠-∠-= ⎪⎝⎭, 由正弦函数定义BC sin =ACCAB ∠, ∴AC=BC 6==103sin 5CAB ∠,由勾股定理得2222AC 1068BC -=-=,点P 在AC 上 则6≤BP≤8,∵点N 为线段EF 的中点,由∠ABC=90º,∴EF=2BN ,∵四边形BEPF 的面积为18,EF BP ⊥,∴S 四边形EBFP =11PB EF=PB 2BN=PB BN=1822⨯, ∴PB BN=18, ∴18BN=PB,当PB最小时,BN最大,当PB⊥AC时,PB最小,即S△ABC=11AB BC=AC BP 22BP最小=AB BC8624== AC105BN最大=1815= 2445故答案为:154.【点睛】本题考查锐角三角函数解直角三角形与点到直线距离最短问题,掌握锐角三角函数及其之间的关系,会用锐角三角函数解直角三角形,掌握垂线段最短,会利用面积或勾股定理求BP的最小值,解题时要理解BP最小,BN最大是解题关键.13.如果在某建筑物的A处测得目标B的俯角为37°,那么从目标B可以测得这个建筑物的A处的仰角为_____.37°【分析】由俯角和仰角的定义和平行线的性质即可得到目标B可以测得这个建筑物的A处的仰角为37°【详解】如图∵某建筑物的A 处测得目标B的俯角为37°∴目标B可以测得这个建筑物的A处的仰角为37°故解析:37°【分析】由俯角和仰角的定义和平行线的性质即可得到目标B可以测得这个建筑物的A处的仰角为37°.【详解】如图,∵某建筑物的A处测得目标B的俯角为37°,∴目标B可以测得这个建筑物的A处的仰角为37°,故答案为:37°.【点睛】考查了解直角三角形,解题关键是理解向下看,视线与水平线的夹角叫俯角;向上看,视线与水平线的夹角叫仰角.14.已知ABC中,16,3AB AC cosB===,则边BC的长度为____________.4【分析】过A作AD⊥BC于点D则根据等腰三角形的性质和锐角三角函数的定义可以得到解答【详解】解:如图过A作AD⊥BC于点D则由已知可得△ABC为等腰三角形BD=DC=∴由cosB=得BC=2BD=解析:4【分析】过A作AD⊥BC于点D,则根据等腰三角形的性质和锐角三角函数的定义可以得到解答.【详解】解:如图,过A作AD⊥BC于点D,则由已知可得△ABC为等腰三角形,BD=DC=12 BC,∴由 cosB=13得111,62333BDBD ABAB===⨯=,BC=2BD=4,故答案为4 .【点睛】本题考查等腰三角形和锐角三角函数的综合应用,灵活运用等腰三角形的性质和锐角三角函数的定义是解题关键.15.如图,边长为1的小正方形构成的网格中,半径为1的⊙O在格点上,则∠AED的正切值为_____.【详解】解:根据圆周角定理可得∠AED=∠ABC所以tan ∠AED=tan ∠ABC=故答案为:【点睛】本题考查圆周角定理;锐角三角函数 解析:12 【详解】 解:根据圆周角定理可得∠AED=∠ABC ,所以tan ∠AED=tan ∠ABC=12AC AB =. 故答案为:12. 【点睛】本题考查圆周角定理;锐角三角函数.16.如图,在半径为3的⊙O 中,直径AB 与弦CD 相交于点E ,连接AC ,BD ,若AC=2,则tanD=__. 【分析】连接BC 可得∠ACB=90°根据同弧对等角有∠D=∠A 在△ABC 中根据正切定义可求出tanD 【详解】如图所示连接BC 因为AB 是直径所以∠ACB=90°在Rt △ABC 中BC=tanA=而BC 弧解析:22【分析】连接B 、C ,可得∠ACB=90°,根据同弧对等角有∠D=∠A ,在△ABC 中根据正切定义可求出tanD.【详解】如图所示,连接B 、C ,因为AB 是直径,所以∠ACB=90°在Rt △ABC 中BC=2222AB AC =62=42--,tanA=BC 42==22AC 2, 而BC 弧所对的∠D=∠A ,所以tanD= tanA=22.【点睛】本题考查了三角函数的定义、圆周角定理、勾股定理,连接BC 构造直角三角形是解题的关键.17.如图, 圆O 的直径AB 垂直于弦CD ,垂足是E ,22.5A ∠=︒,4OC =,CD 的长为__________.【分析】根据圆周角定理得由于的直径垂直于弦根据垂径定理得且可判断为等腰直角三角形所以然后利用进行计算【详解】解:∵∴∵的直径垂直于弦∴∴为等腰直角三角形∴∴故答案是:【点睛】本题考查了垂径定理:垂直 解析:42 【分析】 根据圆周角定理得245BOC A ∠=∠=︒,由于O 的直径AB 垂直于弦CD ,根据垂径定理得CE DE =,且可判断OCE △为等腰直角三角形,所以2222CE OC ==,然后利用2CD CE =进行计算.【详解】解:∵22.5A ∠=︒∴245BOC A ∠=∠=︒∵O 的直径AB 垂直于弦CD∴CE DE =∴OCE △为等腰直角三角形∴2222CE OC == ∴242CD CE ==.故答案是:42【点睛】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了等腰直角三角形的性质和圆周角定理.18.如图,已知∠AOB =60°,点P 在边OA 上,OP =12,点M ,N 在边OB 上,PM =PN ,若MN =2,则OM =____.5【分析】过P 作PD ⊥OB 交OB 于点D 在直角三角形POD 中利用锐角三角函数定义求出OD 的长再由PM=PN 利用三线合一得到D 为MN 中点根据MN 求出MD 的长由OD-MD 即可求出OM 的长【详解】过P 作PD解析:5.【分析】过P作PD⊥OB,交OB于点D,在直角三角形POD中,利用锐角三角函数定义求出OD的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN求出MD的长,由OD-MD 即可求出OM的长.【详解】过P作PD⊥OB,交OB于点D,在Rt△OPD中,cos60°12 OD OP==,OP=12,∴OD=6.∵PM=PN,PD⊥MN,MN=2,∴MD=ND12=MN=1,∴OM=OD﹣MD=6﹣1=5.故答案为:5.【点晴】本题考查的是勾股定理,含30度直角三角形的性质,等腰三角形的性质等知识,熟练掌握直角三角形的性质是解本题的关键.19.在Rt△ABC中,∠C=90°,AB=2AC,则∠A=__°,∠B=___°.6030【分析】在Rt△ABC中根据AB=2AC可得出∠B=30°∠A=60°【详解】解:如图在Rt△ABC中∵∠C=90°AB=2AC∴sin∠B==∴∠B=30°∴∠A=90°﹣∠B=90°﹣3解析:60 30【分析】在Rt△ABC中,根据AB=2AC,可得出∠B=30°,∠A=60°.【详解】解:如图,在Rt△ABC中,∵∠C=90°,AB=2AC,∴sin∠B=ACAB =12,∴∠B=30°,∴∠A=90°﹣∠B=90°﹣30°=60°.故答案为:60,30.【点睛】此题考查有一个角是30°的直角三角形的性质,根据三角函数求解较简单.20.如图,在ABC ∆中10AB AC ==,以AB 为直径的圆O 分别交AC 、BC 于点D 、E ,点F 在AC 的延长线上,且12CBF A ∠=∠,1tan 3CBF ∠= ,则BC 的长为__________.【分析】连接AE 根据AB 是直径得出AE ⊥BCCE=EB 依据已知条件得出∠CBF=∠EABFB 是圆的且线进而得出CB 的长【详解】解:连接AE ∵AB 为直径∴AE ⊥BC ∵AB=AC ∴∠EAB=∠CABEB解析:210【分析】连接AE ,根据AB 是直径,得出AE ⊥BC ,CE=EB ,依据已知条件得出∠CBF=∠EAB ,FB 是圆的且线,进而得出CB 的长.【详解】解:连接AE ,∵AB 为直径,∴AE ⊥BC ,∵AB=AC ,∴∠EAB=12∠CAB ,EB=CE=12CB , ∵∠CBF=12∠CAB ,tan ∠CBF=13,∴∠CBF=∠EAB ,tan ∠EAB=EB AE =13, ∴∠CBF+∠ABC=∠EAB+∠ABC=90°,∴FB 是⊙O 的切线,∴FB 2=FD•FA ,在RT △AEB 中,AB=10, ∴,∴,故答案为:.【点睛】此题考查圆周角的性质,解直角三角形,求得FB 是圆的切线是解题的关键.三、解答题21.(1)计算:|﹣1|﹣(3﹣π)0(﹣12)-1+2cos60°; (2)解方程:2x (x ﹣1)=x ﹣1.解析:(1)3;(2)x 1=1,x 2=0.5.【分析】(1)根据实数的混合运算顺序和运算法则计算即可;(2)利用因式分解法求解即可.【详解】(1)原式=1﹣1+4+(﹣2)+2×12=3; (2)∵2x (x ﹣1)=x ﹣1.∴2x (x ﹣1)﹣(x ﹣1)=0,∴(x ﹣1)(2x ﹣1)=0,则x ﹣1=0或2x ﹣1=0,解得x 1=1,x 2=0.5.【点睛】本题主要考查实数的运算、解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.22.计算:202( 3.14)44sin 60π-+--︒. 解析:-7【分析】将原式依次利用乘方运算、零指数幂、绝对值的代数意义化简、特殊角的三角函数值计算进行化简,再计算即可得到结果.【详解】原式341(412)42=-+---⨯ 341223=--+-342323=--+-7=-.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.23.计算:()2tan 451tan 602cos30︒--︒+︒ . 解析:2.【分析】由特殊角的三角函数值,二次根式的性质,二次根式的加减乘除混合运算进行化简,即可得到答案.【详解】解:()2tan 451tan 602cos30︒--︒+︒ =31(31)22--+⨯=1313-++=2.【点睛】本题考查了特殊角的三角函数值,二次根式的性质,二次根式的加减乘除混合运算,解题的关键是掌握运算法则进行化简.24.如图,在Rt ABC △中,90C ∠=︒,60ABC ∠=︒,将ABC 绕点A 顺时针旋转得ADE ,点C 的对应点E 恰好落在AB 上,(1)求DBC ∠的度数;(2)求tan ∠BDE 的值.解析:(1)135°;(2)23【分析】(1)根据旋转的性质得到ABD △是等腰三角形和顶角BAD ∠的度数,再算出ABD ∠的度数,就可以算出DBC ∠的度数;(2)设2AD AB x ==,根据特殊角的三角函数值用x 表示出BE 和DE ,就可以求出tan ∠BDE 的值.【详解】解:(1)∵90C ∠=︒,60ABC ∠=︒,∴30BAC DAB ∠=∠=︒,∵AD AB =, ∴()118030752ABD ADB ∠=∠=︒-︒=︒, ∴7560135DBC ABD ABC ∠=∠+∠=︒+︒=︒; (2)设2AD AB x ==,则12DE AD x ==,AE =,∴2BE x =-,∴(2tan 2x BE BDE DE x∠===.【点睛】本题考查旋转的性质,等腰三角形的性质,锐角三角函数,解题的关键是掌握这些性质定理进行求解.25.计算(1(2(3)2sin 45cos30tan60+⋅解析:(1)-10;(2)53)2.【分析】(1)先按照乘法分配律计算,再把二次根式化简,即可得出结果;(2)先按照除法法则进行计算,再把各二次根式化简,即可得出结果;(3)先把三角函数值代入,然后进行二次根式的计算即可.【详解】解:(1)原式;(2)原式=2+3(3)原式= 221322+=2. 【点睛】本题考查了二次根式的混合运算及特殊角三角函数值的运算,合理安排运算顺序,可达到简便计算的目的.26.计算:101()|12sin 60tan 602--︒︒解析:22 【分析】 根据负整数指数幂、二次根式、零次幂、特殊角的三角函数值的意义进行计算即可求出代数式的值. 【详解】解:101()8|12|2sin 60tan 602-++--︒︒32221232=++-⨯⨯ 22213=++-22=【点睛】本题考查负整数指数幂;二次根式;零次幂;特殊角的三角函数值.27.如图,小王在长江边某瞭望台D 处,测得江面上的渔船A 的俯角为40°,若DE =3米,CE =2米,CE 平行于江面AB ,DE ⊥CE ,迎水坡BC 的坡度i =1:0.75,坡长BC =10米,求此时AB 的长.(小数点后面保留一位,参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)解析:5.1米【分析】延长DE 交AB 延长线于点P 、作CQ AP ⊥于点Q ,根据矩形的判定和性质可得CE PQ 2==、CQ PE =,由坡度1:0.75i =,可设CQ 4x =、BQ 3x =,根据勾股定理可列出关于x 的方程、解方程即可求得x 的值,即由线段的和差可知11DP =,最后解Rt ADP 、线段的和差可求得答案.【详解】解:如图,延长DE 交AB 延长线于点P ,作CQ AP ⊥于点Q ,如图:∵//CE AP ,DE CE ⊥∴DP AP ⊥∴四边形CEPQ 为矩形∴CE PQ 2==,CQ PE = ∵140.753CQ i BQ === ∴设CQ 4x =、BQ 3x =∴在Rt BCQ 中, 222BQ CQ BC +=∴()()2224310x x += ∴12x =或22x =-(舍去)∴48CQ PE x ===,36BQ x ==∴DP DE PE 11=+=∵测得江面上的渔船A 的俯角为40︒∴40A ∠=︒∴在Rt ADP 中,1113.1tan 0.84DP AP A =≈≈∠ ∴13.162 5.1AB AP BQ PQ =--=--= ∴此时AB 的长为5.1米.故答案是:5.1米【点睛】本题考查了俯角、坡度、锐角三角函数、矩形的判定和性质、勾股定理、一元二次方程、线段的和差等,解题的关键在于通过添加辅助线构造出直角三角形.28.第十一届全国少数民族传统体育运动会于2019年9月8日至16日在郑州举行,据了解,该赛事每四年举办一届,是我国规格最高、规模最大的综合性民族体育盛会,其中,花炮、押加、民族式摔跤三个项目的比赛在郑州大学主校区进行.如图,钟楼是郑州大学主校区标志性建筑物之一,是郑大的“第一高度”,寓意来自五湖四海的郑大人的团结和凝聚.小刚站在钟楼前C 处测得钟楼顶A 的仰角为53°,小强站在对面的教学楼三楼上的D 处测得钟楼顶A 的仰角为45°,此时,两人的水平距离EC 为4m ,已知教学楼三楼所在的高度为10m ,根据测得的数据,计算钟楼AB 的高度.(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)解析:钟楼AB 的高度约为56m【分析】作DF ⊥AB 于F ,根据矩形的性质得到FB =DE =10,DF =BE ,根据等腰直角三角形的性质、正切的定义计算,得到答案.【详解】解:作DF ⊥AB 于F ,设AB =xm ,∵FB ⊥EB ,DE ⊥EB ,DF ⊥AB ,∴四边形FBED 为矩形,∴FB =DE =10,DF =BE ,∴AF =10﹣x ,在Rt △AFD 中,∠ADF =45°,∴DF =AF =x ﹣10,在Rt △ABC 中,∠ACB =53°,tan ∠ACB =AB BC , ∴BC =3tan 4AB x ACB ≈∠, 由题意得,BE ﹣BC =CE ,即x ﹣10﹣34x =4, 解得,x =56,答:钟楼AB 的高度约为56m .【点睛】本题考查了解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.。

三角函数测试题及答案

三角函数测试题及答案

高一年级新教材三角函数单元测试卷一、单选题1.() 1920sin -=( ) A.21 B.21- C. 23 D.23-2.已知扇形的圆心角为3弧度,弧长为6cm,则扇形的面积为( )2cm A.2B.3C.6D.123.已知α为第三象限角,且25sin 5α=-,则cos (α= ) A.55B.55-C.255D.255-4.已知函数)32sin()(π+=x x f ,为了得到函数)62cos()(π+=x x g 的图象,可以将)(x f 的图象( )A.向右平移6π个单位长度B.向左平移12π个单位长度C.向左平移6π个单位长度D.向右平移12π个单位长度5.函数)1sin 2lg(+=x y 的定义域为( )A.},656|{Z k k x k x ∈+<<+ππππ B.},676|{Z k k x k x ∈+<<+ππππC.},65262|{Z k k x k x ∈+<<+ππππD.},67262|{Z k k x k x ∈+<<-ππππ6.若函数()()⎪⎭⎫ ⎝⎛≤-=2sin πϕϕωx x f 的部分图象如图所示,则ω和ϕ的值是( )A.3,1πϕω== B.3,1πϕω-== C.6,21πϕω== D.6,21πϕω-==7.如图,在平面直角坐标系中,角)0(παα≤≤的始边为x 轴的非负半轴,终边与单位圆的交点为A ,将OA 绕坐标原点逆时针旋转2π至OB ,过点B 轴作x 的垂线,垂足为Q ,记线段BQ 的长为y ,则函数)(αf y =的图象大致是( )8.若将函数()()⎪⎭⎫ ⎝⎛<+=22sin 2πϕϕx x f 的图象向左平移6π个单位后得到的图象关于轴对称,则函数()x f 在⎥⎦⎤⎢⎣⎡2,0π上的最大值为( ) A. 2 B. 3 C. 1 D. 23二、多选题9. 下列结论正确的是( )A. 67π-是第三象限角B. 若圆心角为3π的扇形的弧长为π,则该扇形面积为23πC. 若角的终边过点P(-3,4),则53cos -=α D. 若角为锐角,则角为钝角10.下列各式中,值为23的是( ) A. 15cos 15sin 2 B. 15sin 15cos 22- C. 15sin 212- D. 15cos 15sin 22+11.要得到sin 25y x π⎛⎫=- ⎪⎝⎭的图象,可以将函数y =sin x 的图象上所有的点( )A.向右平行移动5π个单位长度,再把所得各点的横坐标缩短到原来的12倍B.向右平行移动10π个单位长度,再把所得各点的横坐标缩短到原来的12倍C.横坐标缩短到原来的12倍,再把所得各点向右平行移动5π个单位长度D.横坐标缩短到原来的12倍,再把所得各点向右平行移动10π个单位长度12.已知函数()sin()(0f x x ωϕω=+>,||)2πϕ<,其图象相邻两条对称轴之间的距离为4π,且直线12x π=-是其中一条对称轴,则下列结论正确的是( )A.函数()f x 的最小正周期为2πB.函数()f x 在区间[6π-,]12π上单调递增 C.点5(24π-,0)是函数()f x 图象的一个对称中心D.将函数()f x 图象上所有点的横坐标伸长为原来的2倍,纵坐标不变,再把得到的图象向左平移6π个单位长度,可得到()sin 2g x x =的图象 三、填空题13.已知3)tan(,4tan =-=βπα,则)tan(βα+= .14.函数()⎥⎦⎤⎢⎣⎡∈++-=65,6,23sin 2cos 22ππx x x x f 的值域是 .15.已知)4,0(,34cos sin πθθθ∈=+,则θθcos sin -= .16.已知π1sin 63x ⎛⎫+= ⎪⎝⎭,则25πsin sin 6π3x x -+⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭的值为 .四、解答题17.已知3sin(3π)cos(2π)sin π2()cos(π)sin(π)f αααααα⎛⎫-⋅-⋅-+ ⎪⎝⎭=--⋅--.(1)化简()f α;(2)若α为第四象限角且31sin π25α⎛⎫-= ⎪⎝⎭,求()f α的值;(3)若31π3α=-,求()f α.18.已知α,β为锐角,1cos 7α=,11cos()14αβ+=-.(1)求sin()αβ+的值;(2)求cos β的值.19.已知函数2()2sin cos 2cos ()f x x x x x =+∈R .(1)求()f x 的最小正周期;(2)求()f x 的最值及取得最值时x 的集合.20.海水受日月的引力,在一定的时候发生涨落的现象叫潮,一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;在落潮时返回海洋.下面是某港口在某季节每天的时间和时刻 2:00 5:00 8:00 11:00 14:00 17:00 20:00 23:00 水深/米 7.0 5.0 3.0 5.0 7.0 5.0 3.0 5.0经长期观测,港口的水深与时间关系,可近似用函数()()⎪⎭⎫ ⎝⎛<>++=2,0,sin πϕωϕωA B t A t f 描述.(1)根据以上数据,求出函数()()B t A t f ++=ϕωsin 的表达式; (2)一条货船的吃水深度(船底与水面的距离)为4.0米,安全条例规定至少要有2米的安全间隙(船底与洋底的距离),该船在一天内(0:00~24:00)何时能进入港口然后离开港口?每次在港口能停留多久?21.已知0a >,函数()2sin(2)26f x a x a b π=-+++,当[0,]2x π∈时,()51f x -≤≤.(1)求常数,a b 的值;(2)设()()2g x f x π=+且()lg 0g x >,求()g x 的单调区间.22.已知函数()()2sin 24sin 206x x x f πωωω⎛⎫=--+> ⎪⎝⎭,其图象与x 轴相邻两交点的距离为2π.(1)求函数()f x 的解析式;(2)若将()f x 的图象向左平移()0m m >个长度单位得到函数()g x 的图象恰好经过点,03π⎛-⎫ ⎪⎝⎭,求当m 取得最小值时,()g x 在7,612ππ⎡⎤-⎢⎥⎣⎦上的单调区间.1.【答案】D【解析】sin (-1920°)=- sin 1920°=- sin (21x90°+30°)=-cos30°=23-求三角函数值,根据诱导公式负化正(即把负角转化为正角),把较大的正角化为 k .90°+α的形式,α为锐角,根据奇变偶不变符号看象限,把所求的三角函数转化为求锐角的三角函数,即可求出.2.【答案】C【解析】因为扇形的圆心角为3弧度,弧长为6cm, 所以其所在圆的半径为623r ==, 因此该扇形的面积是21166m 2c 22S lr ==⨯⨯=,故选C.3.【答案】B【解析】因为α为第三象限角,且25sin 5α=-,则22255cos 11()55sin αα=--=---=-. 4. 【答案】C【解析】5.【答案】D【解析】6.【答案】D【解析】7.【答案】B 【解析】8.【答案】A 【解析】9.【答案】BC 【解析】10.【答案】BC【解析】11.【答案】AD【解析】将函数y =sin x 的图象上所有的点向右平行移动5π个单位长度得到y =sin(x 5π-),再把所得各点的横坐标缩短到原来的12倍得到y =sin(2x 5π-).也可以将函数y =sin x 的图象上所有的点横坐标缩短到原来的12倍得到y =sin2x , 再把所得各点向右平行移动10π个单位长度得到y =sin2(x 10π-)=sin(2x 5π-).12. 【答案】AC 【解析】函数()sin()(0f x x ωϕω=+>,||)2πϕ<,其图象相邻两条对称轴之间的距离为1224ππω⋅=,4ω∴=,()sin(4)f x x ϕ=+. 直线12x π=-是其中一条对称轴,4()122ππϕπ∴⨯-+=+,Z ∈,6πϕ∴=-,()sin(4)6f x x π=-.故函数()f x 的最小正周期为242ππ=,故A 正确; 当[6x π∈-,]12π,54[66x ππ-∈-,]6π,函数()f x 没有单调性,故B 错误; 令524x π=-,求得()0f x =,可得点5(24π-,0)是函数()f x 图象的一个对称中心,故C 正确;将函数()f x 图象上所有点的横坐标伸长为原来的2倍,纵坐标不变,可得sin(2)6y x π=-的图象;再把得到的图象向左平移6π个单位长度,可得到()sin(2)6g x x π=+的图象,故D 错误, 【点评】本题主要考查由函数sin()y A x ωϕ=+的部分图象求解析式,由周期求出ω,由图象的对称性求出ϕ的值,正弦函数的图象和性质,属于中档题.13.【答案】131 【解析】14.【答案】⎥⎦⎤⎢⎣⎡27,1【解析】15.【答案】32-【解析】16.【答案】59【解析】因为5πππ1sin sin πsin 6663x x x ⎛⎫⎛⎫⎛⎫-=+-=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,2222πππππ18sin sin cos 1sin 13266699x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=-+=+=-+=-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,所以25ππ185sin sin 63399x x ⎛⎫⎛⎫-+-=-+= ⎪ ⎪⎝⎭⎝⎭.17.【答案】(1)()cos f αα=-;(2)15-;(3)12-.【解析】(1)[]3sin(π)cos()sin π(sin )cos (cos )2()cos cos(π)sin(π)(cos )sin f αααααααααααα⎛⎫+⋅-⋅-+ ⎪-⋅⋅-⎝⎭===-+⋅-+-⋅.(2)因为31sin πsin cos 2π25ααα⎛⎫⎛⎫-=+== ⎪ ⎪⎝⎭⎝⎭,所以1()cos 5f αα=-=-.(3)因为31π3α=-,()cos f αα=-, 所以31π31cos π33f ⎛⎫⎛⎫-=-- ⎪ ⎪⎝⎭⎝⎭1cos 52ππcos πco 3πs 13321⎛⎫⎪⎛⎫=--⨯-=--=- ⎝⎭⎭=-⎝⎪. 18.解:(1)α,β为锐角,11cos()14αβ+=-. ∴2παβπ<+<,221153sin()1()1()14cos αβαβ∴+-+=--. (2)α为锐角,1cos 7α=,22143sin 11()7cos αα∴=-=-=. cos cos[()]cos cos()sin sin()βααβααβααβ∴=-+=⋅++⋅+ 11143531()7142=⨯-=. 【点评】本题考查了同角三角函数基本关系式,考查了推理能力与计算能力,属于基础题.19.(2)当142sin =⎪⎭⎫ ⎝⎛+πx ,可得()Z k k x ∈+=+πππ2242,即()Z k k x ∈+=ππ8时,函数()x f 的最大值为12+,此时x 的集合为⎭⎬⎫⎩⎨⎧∈+=Z k k x x ,8|ππ.20.21.(1)由[0,]2x π∈,所以72[,]666x πππ+∈,则1sin(2)[,1]62x π+∈-,所以2sin(2)[2,]6a x a a π-+∈-,所以()[,3]f x b a b ∈+,又因为()51f x -≤≤,可得531b a b =-⎧⎨+=⎩,解得2,5a b ==-. (2)由(1)得()4sin(2)16f x x π=-+-,则()7()4sin(2)14sin(2)1266g x f x x x πππ=+=-+-=+-, 又由()lg 0g x >,可得()1g x >, 所以4sin(2)116x π+->,即1sin(2)62x π+>, 所以5222,666k x k k Z πππππ+<+<+∈, 当222,662k x k k Z πππππ+<+≤+∈时,解得,6k x k k Z πππ<≤+∈, 此时函数()g x 单调递增,即()g x 的递增区间为(,),6k k k Z πππ+∈ 当5222,266k x k k Z πππππ+<+<+∈时,解得,63k x k k Z ππππ+<<+∈, 此时函数()g x 单调递减,即()g x 的递减区间为(,),63k k k Z ππππ++∈. 22.解:(1)()2sin 24sin 26x x x f πωω⎛⎫=--+ ⎪⎝⎭ 311cos22cos24222x x x ωωω-=--⨯+ 33sin 2cos222x x ωω=+ 323x πω⎛⎫=+ ⎪⎝⎭ 由已知函数()f x 的周期T π=,22ππω=,1ω= ∴()323f x x π⎛⎫=+ ⎪⎝⎭. (2)将()f x 的图象向左平移()0m m >个长度单位得到()g x 的图象∴()3223m x x g π⎛⎫=++ ⎪⎝⎭, ∵函数()g x 的图象经过点,03π⎛⎫- ⎪⎝⎭3sin 22033m ππ⎡⎤⎛⎫⨯-++= ⎪⎢⎥⎝⎭⎣⎦,即sin 203m π⎛⎫-= ⎪⎝⎭ ∴23m k ππ-=,k Z ∈ ∴26k m ππ=+,k Z ∈ ∵0m >,∴当0k =,m 取最小值,此时最小值为6π此时,()2323g x x π⎛⎫=+ ⎪⎝⎭. 令7612x ππ-≤≤,则2112336x πππ≤+≤ 当22332x πππ≤+≤或32112236x πππ≤+≤,即当612x ππ-≤≤-或571212x ππ≤≤时,函数()g x 单调递增 当232232x πππ≤+≤,即51212x ππ-≤≤时,函数()g x 单调递减. ∴()g x 在7,612ππ⎡⎤-⎢⎥⎣⎦上的单调增区间为,612ππ⎡⎤--⎢⎥⎣⎦,57,1212ππ⎡⎤⎢⎥⎣⎦;单调减区间为5,1212ππ⎡⎤-⎢⎥⎣⎦.。

苏教版高中数学必修4三角函数单元测试

苏教版高中数学必修4三角函数单元测试

高中数学学习材料(灿若寒星精心整理制作)南京师范大学附属扬子中学三角函数(苏教版必修4)单元测试、选择题(每小题5分,共60分,请将所选答案填在括号内)1.设a<0,角a的终边经过点P(-3 a,4 a),那么 sin a +2cos a 的值等于:A. -B.- 2C. ID.- I5…,、1 3 2.育 COs(兀 + a )=——,5 5 5<a <2兀,则sin(2兀-a )等于:.3 A.- -- B. 立 C. I D. 土国2 2 23.已知sin a >sin 3 ,那么下列命题成立的是:A.若a , 3是第一象限角,则 cos a >cos 3B.若a , 3是第二象限角,则 tan a >tan 3C.若a、3是第三象限角,则 cos a >cos 3D.若a、3是第四象限角,则 tan a >tan 34.若 sinx+ cosx= 1,那么 sin n x+ cosnx 的值是:A. 1B. 0C. - 1D.不能确定5.函数y=—x • cosx的部分图象是:6.函数y =cos2 x -sin x的值域是:A、L[1]B、[51 C 、0,2】D:15〕,4」I4j 「7.已知:函数y = Asin(8x +中),在同一周期内,当x =三时取最大值y = 4;当127 二x =——时,取最小值y = -4 , 128 .在函数 y= | tanx | , y= | sin(x+ )-)| , y= | sin2x | , y= sin(2x —1)四个函数中,既 是以兀为周期的偶函数,又是区间 (0,;)上的增函数个数是:9 .定义在R 上的函数f(x)既是偶函数又是周期函数,若 x€[0 当时,f(x)=sinx,则 f (一)的值为: 2J3 A. _1B. 3C.3D 12T一3210 .下列函数中,最小正周期为 兀,且图象关于直线x=工对称白^是:3A. y =sin(2x --)B.y =sin(2x —三)C, y =sin(2x +—)D, y =sin(- + —)3662 611 .函数f(x) =cos(3x +(())的图象关于原点中心对称,则:兀 兀 兀A. ())=— B . ())=k % +— C . ())=kTt D . ())=2kTt -- (k C Z) 12.2002年8月,在北京召开的国际数学家大会会标如图所示,它是由 4个相同的直角三角形与中间的小正方形拼成的一大正方形,若直角三角形中较小的锐角为12 . 2 .9 ,大正万形的面积是1,小正万形的面积是 ——,则sin 日- cos 日的值25等于:A. 1 B . _空 C .二 D . _工252525二.填空题:本大题共4小题,每小题4分,共16分13 .函数y =sin 4x+cos 2x 的最小正周期为 14 . 函数y = Jsin 2x 的定义域是.15 .若 f (n )=sin —, f (1) +f(3) +f (5)+l|l|l|+f (101 = __________ . ________6冗D16 .给出下列命题:(1)存在实数x,使sinx+cosx = ;; (2) 若口,F 是锐角^ABC 的内角, 则sins >cosB ; (3) 函数y=sin( 2 x-7-)是偶函数;(4)函数y=sin2x 的图象向那么函数的解析式为A. y = 4sin(2 x —)B.3y - - 4 sin(2 x -)TTC y = 4sin(4 x —). 3D. y = _ 4 sin(4 x —)A. 1B. 2C. 3D. 4f(x)的最小正周期是n ,且当3 2右平移 土个单位,得到y = sin(2x+三)的图象.其中正确的命题的序号是三、解答题(本大题 6小题,共74分,解答应写出文字说明,证明过程或演算步骤)⑴化简f( a );(2)若 COS( a )=;,求 f( a )的值; 2 5 ⑶若a =- 1860° ,求f( a )的值.18 .已知函数y= 3sin3x .⑴作出函数在xC[1,5^]上的图象. (2)求(1)中函数的图象与直线y=3所围成的封闭图形的面积.19 .设函数f (x) =sin(2x+5)(―n <中<0), y = f(x)图像的一条对称轴是直线 x = -8(I)求中;(n)求函数y = f (x)的单调增区间;17.已知a 为第三象限角,且f( sin(兀a )=--------- a)COS(2 兀——a ).tan( ——ad —2") cot a .sin(兀 + a )c ■ 223sin x -2 sin x cos x cos x .击(n)求--- 的值21.已知y = Asin( cox+(H, (A>0, co >0,< n )的图象过点 P(云0)图象上与点 P一- 一一.一兀取近的一个顶点是 QC3~,5). (1)求函数的解析式; (2)求使yw 0的x 的取值范围.22.函数的性质通常指函数的定义域、值域、周期性、单调性、奇偶性等,请选择适当的探究顺序,研究函数 f(x)= J i -sin x +、1 +sln x 的性质,并在此基础上,作出其在[-n ,叫的图象。

三角函数》单元测试卷含答案

三角函数》单元测试卷含答案

三角函数》单元测试卷含答案三角函数》单元测试卷一、选择题(本大题共10小题,每小题5分,共50分)1.已知点P(tanα,cosα)在第三象限,则角α的终边在(。

)A.第一象限B.第二象限C.第三象限D.第四象限2.集合M={x|x=kπ/2±π/4,k∈Z}与N={x|x=kπ/4,k∈Z}之间的关系是(。

)A.M∩NB.M∪NC.M=ND.M∩N=∅3.若将分针拨慢十分钟,则分针所转过的角度是(。

)A.60°B.-60°C.30°D.-30°4.已知下列各角(1)787°,(2)-957°,(3)-289°,(4)1711°,其中在第一象限的角是(。

)A.(1)(2)B.(2)(3)C.(1)(3)D.(2)(4)5.设a>0,角α的终边经过点P(-3a,4a),那么sinα+2cosα的值等于(。

)A.5/21B.-1/55C.-5/13D.-2/56.若cos(π+α)=-3/22,π<α<2π,则sin(2π-α)等于(。

)A.-2/3B.3/2C.-2/5D.3/47.若是第四象限角,则απ-α是(。

)A.第一象限角B.第二象限角C.第三象限角D.第四象限角8.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是(。

)A.2B.2sin1C.2cos1D.sin29.如果sinx+cosx=4/3,且π/4<x<π/2,那么cotx的值是(。

)A.-3/4B.-4/3或-3/4C.-4/3D.3/4或-3/410.若实数x满足log2x=2+sinθ,则|x+1|+|x-10|的值等于(。

)A.2x-9B.9-2xC.11D.9二、填空题(本大题共6小题,每小题5分,共30分)11.tan300°+cot765°的值是_____________.12.若sinα+cosα=2,则sinαcosα的值是_____________.13.不等式(lg20)2cosx>1,(x∈(0,π))的解集为_____________.14.若θ满足cosθ>-1/2,则角θ的取值集合是_____________.15.若cos130°=a,则tan50°=_____________.16.已知f(x)=sin2x+cosx,则f(π/6)为_____________.sinα=√(1-cos^2α)=√(1-(2x^2/(x^2+5^2)))=√((25-x^2)/(x^2+25)),tanα=sinα/cosα=(25-x^2)/(2x)。

南京师范大学附属扬子中学单元测试卷

南京师范大学附属扬子中学单元测试卷

南京师范大学附属扬子中学单元测试卷平面向量单元测试卷考试时间:120分钟 满分:150分一、选择题:(本大题共12小题,每小题5分,共60分).1、若向量),sin ,(cos ),sin ,(cos ββαα==则与一定满足:………………( ) (A )与的夹角等于βα- (B ))(+⊥)(-(C )a ∥b(D )a ⊥b2、在四边形ABCD 中,,,,b a b a b a 3542--=--=+=其中b a 、不共线,则四边形ABCD 是:…………………………………………………………………( ) (A )梯形 (B )矩形 (C )菱形 (D )正方形3、两点P (4,-9),Q (-2,3),则y 轴与直线PQ 的交点分有向线段PQ 所成的比为:( )(A)31 (B)21(C) 2 (D) 3 4、设c b a 、、是任意的非零平面向量,且相互不共线,则 ①0)()(=⋅⋅-⋅⋅b a c c b a ;②b a b a -<-; ③b a c a c b )()(⋅-⋅不与c垂直;④)23()23(b a b a-⋅+=2249b a - 中是真命题的有:……………………( )(A )①② (B )②③ (C )③④ (D )②④5、),4,3(),1,2(==b a则向量a 在向量b 方向上的投影为: ……………………( )(A )52 (B )2 (C )5 (D )106、已知ΔABC 的三个顶点A 、B 、C 及所在平面内一点P 满足=++,则点P 与ΔABC 的关系是: ……………………………………………………………( )A 、P 在ΔABC 内部B 、P 在ΔABC 外部C 、P 在直线AB 上D 、P 在ΔABC 的AC 边的一个三等分点上7、若θ的夹角与,则,,b a b a b a721=+==的余弦值为:………………( )(A )21-(B )21 (C )31(D )以上都不对8、 ABCD 的3个顶点为A(a,b),B(-b,a),C(0,0),则它的第4个顶点D 的坐标是:( )A.(2a,b)B.(a-b,a+b)C.(a+b,b-a)D.(a-b,b-a)9、△ABC 的三边长分别为AB=7,BC=5,CA=6,则⋅的值为:………………( )(A )19(B )-19(C )-18(D )-1410、在ΔABC 中,=,=,=,给出下列命题:①若0>⋅,则ΔABC 为钝角三角形 ②若0=⋅, 则ΔABC 为直角三角形 ③若⋅=⋅, 则ΔABC 为等腰三角形 ④若0)(=++⋅,则ΔABC 为正三角形;其中真命题的个数是:…………………………………………………………( )A .1B . 2C . 3D .411、若b a b a 与,,12==的夹角为060,且,,b m a d b a m c -=+=23d c ⊥,则m 的值是: …………………………………………………………………………( )(A )0 (B )1或-6 (C )-1或6 (D )6或-612、已知O 为ΔABC 所在平面内一点,满足|OA |2+|BC |2=|OB |2+|CA |2=|OC |2+||2, 则点O 是ΔABC 的:…………………………………… ( )A. 外心B. 内心C. 垂心D. 重心二、填空题:(本大题共4小题,每小题4分,共16分).13、在菱形ABCD 中,(+)·(-)= 。

江苏省南京师范大学附属扬子中学2025届高三第六次模拟考试数学试卷含解析

江苏省南京师范大学附属扬子中学2025届高三第六次模拟考试数学试卷含解析

江苏省南京师范大学附属扬子中学2025届高三第六次模拟考试数学试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.将函数2()3sin 22cos f x x x =-图象上各点的横坐标伸长到原来的3倍(纵坐标不变),再向右平移8π个单位长度,则所得函数图象的一个对称中心为( ) A .3,08π⎛⎫⎪⎝⎭B .3,18⎛⎫-- ⎪⎝⎭π C .3,08⎛⎫-⎪⎝⎭π D .3,18⎛⎫-⎪⎝⎭π 2.达芬奇的经典之作《蒙娜丽莎》举世闻名.如图,画中女子神秘的微笑,,数百年来让无数观赏者人迷.某业余爱好者对《蒙娜丽莎》的缩小影像作品进行了粗略测绘,将画中女子的嘴唇近似看作一个圆弧,在嘴角,A C 处作圆弧的切线,两条切线交于B 点,测得如下数据:6,6,10.392AB cm BC cm AC cm ===(其中30.8662≈).根据测量得到的结果推算:将《蒙娜丽莎》中女子的嘴唇视作的圆弧对应的圆心角大约等于( )A .3π B .4π C .2π D .23π 3.若集合{}(2)0A x x x =->,{}10B x x =->,则A B =A .{}10x x x ><或B .{}12x x <<C .{|2}x x >D .{}1x x >4.已知双曲线()222210,0x y a b a b-=>>的焦距是虚轴长的2倍,则双曲线的渐近线方程为( )A .33y x =±B .3y x =C .12y x =±D .2y x =±5.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有 A .72种B .36种C .24种D .18种6.如图,已知平面αβ⊥,l αβ⋂=,A 、B 是直线l 上的两点,C 、D 是平面β内的两点,且DA l ⊥,CB l ⊥,3AD =,6AB =,6CB =.P 是平面α上的一动点,且直线PD ,PC 与平面α所成角相等,则二面角P BC D--的余弦值的最小值是( )A .55B .32C .12D .17.如图,点E 是正方体ABCD -A 1B 1C 1D 1的棱DD 1的中点,点F ,M 分别在线段AC ,BD 1(不包含端点)上运动,则( )A .在点F 的运动过程中,存在EF //BC 1B .在点M 的运动过程中,不存在B 1M ⊥AEC .四面体EMAC 的体积为定值D .四面体FA 1C 1B 的体积不为定值8.已知{}n a 为等差数列,若2321a a =+,4327a a =+,则5a =( ) A .1B .2C .3D .69.函数()sin 3f x x πω⎛⎫=-⎪⎝⎭(0>ω),当[]0,x π∈时,()f x 的值域为3,12⎡⎤-⎢⎥⎣⎦,则ω的范围为( ) A .53,62⎡⎤⎢⎥⎣⎦B .55,63⎡⎤⎢⎥⎣⎦C .14,23⎡⎤⎢⎥⎣⎦D .50,3⎛⎤ ⎥⎝⎦10. “tan 2θ=”是“4tan 23θ=-”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件11.己知函数sin ,2,2(),2223sin ,2,2(),222x x k k k z y x x k k k z ππππππππππ⎧⎛⎫⎡⎫+∈-+∈ ⎪⎪⎪⎢⎪⎝⎭⎣⎭=⎨⎛⎫⎡⎫⎪-+∈++∈ ⎪⎪⎢⎪⎝⎭⎣⎭⎩的图象与直线(2)(0)y m x m =+>恰有四个公共点()()()()11123344,,,,.,,,A x y B x y C x y D x y ,其中1234x x x x <<<,则()442tan x x +=( ) A .1-B .0C .1D .222+ 12.正项等比数列{}n a 中的1a 、4039a 是函数()3214633f x x x x =-+-的极值点,则20206log a =( ) A .1-B .1C .2D .2二、填空题:本题共4小题,每小题5分,共20分。

江苏南京师范大学附属扬子中学函数的概念与基本初等函数多选题试题含答案

江苏南京师范大学附属扬子中学函数的概念与基本初等函数多选题试题含答案

江苏南京师范大学附属扬子中学函数的概念与基本初等函数多选题试题含答案一、函数的概念与基本初等函数多选题1.已知函数()1y f x =-的图象关于1x =对称,且对(),y f x x R =∈,当12,(,0]x x ∈-∞时,()()21210f x f x x x -<-成立,若()()2221f ax f x <+对任意的x ∈R 恒成立,则a 的可能取值为( )A .B .1-C .1 D【答案】BC 【分析】由已知得函数()f x 是偶函数,在[0,)+∞上是单调增函数,将问题转化为2|2||21|ax x <+对任意的x ∈R 恒成立,由基本不等式可求得范围得选项. 【详解】因为函数()1y f x =-的图象关于直线1x =对称,所以函数()y f x =的图象关于直线0x =(即y 轴)对称,所以函数()f x 是偶函数.又12,(,0]x x ∈-∞时,()()21210f x f x x x -<-成立,所以函数()f x 在[0,)+∞上是单调增函数.且()()2221f ax f x <+对任意的x ∈R 恒成立,所以2|2||21|ax x <+对任意的x ∈R 恒成立,当0x =时,01<恒成立,当0x ≠时,2|21|11|||||||||2|22x a x x x x x+<=+=+,又因为1||||2x x +=≥||2x =时,等号成立,所以||a <,因此a <<,故选:BC. 【点睛】方法点睛:不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立.2.已知函数21,01()(1)1,1x x f x f x x ⎧-≤<=⎨-+≥⎩,方程()0f x x -=在区间0,2n⎡⎤⎣⎦(*n N ∈)上的所有根的和为n b ,则( ) A .()20202019f =B .()20202020f =C .21122n n n b --=+D .(1)2n n n b +=【答案】BC 【分析】先推导出()f x 在[)()*,1n n n N+∈上的解析式,然后画出()f x 与y x =的图象,得出()f x x =时,所有交点的横坐标,然后得出n b .【详解】因为当[)0,1x ∈时,()21xf x =-,所以当[)1,2x ∈时,[)10,1x -∈,则()1121x f x --=-,故()()11112112x x f x f x --=-+=-+=,即[)10,1x -∈时,[)10,1x -∈,()12x f x -= 同理当[)2,3x ∈时,[)11,2x -∈,()()21121x f x f x -=-+=+;当[)3,4x ∈时,[)12,3x -∈,则()()31122x f x f x -=-+=+;………故当[),1x n n ∈+时,()()21x nf x n -=+-,当21,2nnx ⎡⎤∈-⎣⎦时,()()()21222n x n f x --=+-.所以()20202020f =,故B 正确;作出()f x 与y x =的图象如图所示,则当()0f x x -=且0,2n⎡⎤⎣⎦时,x 的值分别为:0,1,2,3,4,5,6,,2n则()()121122101222221222n n n n n n n n b ---+=+++++==+=+,故C 正确.故选:BC.【点睛】本题考查函数的零点综合问题,难度较大,推出原函数在每一段上的解析式并找到其规律是关键.3.设函数()f x 是定义在区间I 上的函数,若对区间I 中的任意两个实数12,x x ,都有1212()()(),22x x f x f x f ++≤则称()f x 为区间I 上的下凸函数.下列函数中是区间(1,3)上的下凸函数的是( ) A .()21f x x =-+ B .()2f x x =-- C .3()5f x x =+ D .21()1x f x x +=- 【答案】ACD 【分析】根据函数的解析式,求得1212()()()22x x f x f x f ++=,可判定A 正确;根据特殊值法,可判定B 不正确;根据函数的图象变换,结合函数的图象,可判定C 、D 正确. 【详解】对于A 中,任取12,(1,3)x x ∈且12x x ≠,则1212()()12x x f x x +=-++, 121212()()1(2121)()122f x f x x x x x +=-+-+=-++,可得1212()()()22x x f x f x f ++=,满足1212()()()22++≤x x f x f x f ,所以A 正确; 对于B 中,取1235,22x x ==,则1222x x +=, 可得351()()222f f ==-,所以12()()122f x f x +=-,12()(2)02x x f f +==, 此时1212()()()22x x f x f x f ++>,不符合题意,所以B 不正确; 对于C 中,函数3()5f x x =+,由幂函数3y x =的图象向上移动5个单位,得到函数3()5f x x =+的图象, 如图所示,取12,(1,3)x x ∈且12x x ≠,由图象可得12()2C x x f y +=,12()()2D f x f x y +=, 因为D C y y >,所以1212()()()22++≤x x f x f x f ,符合题意,所以是正确的;对于D 中,函数213()211x f x x x +==+-- 由函数3y x =的图象向右平移1个单位,再向上平移2个单位,得到21()1x f x x +=-的图象,如图所示,取12,(1,3)x x ∈且12x x ≠,由图象可得12()2C x x f y +=,12()()2D f x f x y +=,因为D C y y >,所以1212()()()22++≤x x f x f x f ,符合题意,所以是正确的;【点睛】本题主要考查了函数的新定义及其应用,其中解答中正确理解函数的新定义,以及结合函数的图象求解是解答的关键,着重考查了数形结合法,以及推理与运算能力,属于中档试题.4.已知当0x >时,2()24f x x x =-+;0x ≤时(2)y f x =+,以下结论正确的是( )A .()f x 在区间[]6,4--上是增函数;B .()()220212f f -+-=;C .函数()y f x =周期函数,且最小正周期为2;D .若方程()1f x kx =+恰有3个实根,则142k <<-4k =; 【答案】BD 【分析】利用函数的性质,依次对选项加以判断,ABC 考查函数的周期性及函数的单调性,重点理解函数周期性的应用,是解题的关键,D 选项考查方程的根的个数,需要转化为两个函数的交点个数,在同一图像中分别研究两个函数,临界条件是直线与函数()f x 相切,结合图像将问题简单化. 【详解】对于A ,0x ≤时(2)y f x =+,即()f x 在区间[]6,4--上的单调性与()f x 在区间[]0,2上单调性一致, 所以()f x 在[]6,5--上是增函数,在[]5,4--上是减函数,故A 错误; 对于B ,当0x ≤时,()2()f x f x +=,()()22=22242=0f f -=-⨯+⨯,()()()()20211=1+2=1=2+42f f f f -=---=,故B 正确;对于C ,当0x ≤时,()2()f x f x +=, 当0x >时,()f x 不是周期函数,故C 错误; 对于D ,由0x >时,2()24f x x x =-+;0x ≤时(2)y f x =+,可求得当20x -<<时,2()24f x x x =--;直线1y kx =+恒过点(0,1),方程()1f x kx =+恰有3个实根, 即函数()f x 和函数1y kx =+的图像有三个交点,当0k >时,直线1y kx =+与函数()f x (0x >)相切于点00(,)x y ,则020001244124k k x kx x x⎧>⎪⎪=-+⎨⎪+=-+⎪⎩,解得04=2k x ⎧=-⎪⎨⎪⎩,要函数()f x 和函数1y kx =+的图像有三个交点, 则k的取值范围为:142k <<-当0k <时,当0x >时,直线1y kx =+与函数()f x 有两个交点, 设直线1y kx =+与函数()f x (0x ≤)相切于点00(,)x y '',则020*******k x kx x x =-'-⎧⎨'+=-'-'⎩,解得02242=2k x ⎧=-⎪⎨'-⎪⎩综上,方程()1f x kx =+有3个实根, 则14222k <<-或224k =-,故D 正确.故选:BD. 【点睛】本题考查函数的性质,单调性,及函数零点个数的判断,主要考查学生的逻辑推理能力,数形结合能力,属于较难题.5.设函数g (x )=sinωx (ω>0)向左平移5πω个单位长度得到函数f (x ),已知f (x )在[0,2π]上有且只有5个零点,则下列结论正确的是( )A .f (x )的图象关于直线2x π=对称B .f (x )在(0,2π)上有且只有3个极大值点,f (x )在(0,2π)上有且只有2个极小值点C .f (x )在(0,)10π上单调递增 D .ω的取值范围是[1229,510) 【答案】CD 【分析】利用正弦函数的对称轴可知,A 不正确;由图可知()f x 在(0,2)π上还可能有3个极小值点,B 不正确;由2A B x x π≤<解得的结果可知,D 正确;根据()f x 在3(0,)10πω上递增,且3 1010ππω<,可知C正确.【详解】依题意得()()5f xg xπω=+sin[()]5xπωω=+sin()5xπω=+,2Tπω=,如图:对于A,令52x kππωπ+=+,k Z∈,得310kxππωω=+,k Z∈,所以()f x的图象关于直线310kxππωω=+(k Z∈)对称,故A不正确;对于B,根据图象可知,2A Bx xπ≤<,()f x在(0,2)π有3个极大值点,()f x在(0,2)π有2个或3个极小值点,故B不正确,对于D,因为5522452525Ax Tππππωωωω=-+=-+⨯=,22933555Bx Tππππωωωω=-+=-+⨯=,所以2429255πππωω≤<,解得1229510ω≤<,所以D正确;对于C,因为1123545410Tππππωωωω-+=-+⨯=,由图可知()f x在3(0,)10πω上递增,因为29310ω<<,所以33(1)0101010πππωω-=-<,所以()f x在(0,)10π上单调递增,故C正确;故选:CD.【点睛】本题考查了三角函数的相位变换,考查了正弦函数的对称轴和单调性和周期性,考查了极值点的概念,考查了函数的零点,考查了数形结合思想,属于中档题.6.德国著名数学家狄利克雷(Dirichlet,1805~1859)在数学领域成就显著.19世纪,狄利克雷定义了一个“奇怪的函数” ()1,0,Rx Qy f xx C Q∈⎧==⎨∈⎩其中R为实数集,Q为有理数集.则关于函数()f x有如下四个命题,正确的为( )A.函数()f x是偶函数B.1x∀,2Rx C Q∈,()()()1212f x x f x f x+=+恒成立C.任取一个不为零的有理数T,f x T f x对任意的x∈R恒成立D .不存在三个点()()11,A x f x ,()()22,B x f x ,()()33C x f x ,,使得ABC ∆为等腰直角三角形 【答案】ACD 【分析】根据函数的定义以及解析式,逐项判断即可. 【详解】对于A ,若x Q ∈,则x Q -∈,满足()()f x f x =-;若R x C Q ∈,则R x C Q -∈,满足()()f x f x =-;故函数()f x 为偶函数,选项A 正确;对于B ,取12,R R x C Q x C Q ππ=∈=-∈,则()()1201f x x f +==,()()120f x f x +=,故选项B 错误;对于C ,若x Q ∈,则x T Q +∈,满足()()f x f x T =+;若R x C Q ∈,则R x T C Q +∈,满足()()f x f x T =+,故选项C 正确;对于D ,要为等腰直角三角形,只可能如下四种情况:①直角顶点A 在1y =上,斜边在x 轴上,此时点B ,点C 的横坐标为无理数,则BC 中点的横坐标仍然为无理数,那么点A 的横坐标也为无理数,这与点A 的纵坐标为1矛盾,故不成立;②直角顶点A 在1y =上,斜边不在x 轴上,此时点B 的横坐标为无理数,则点A 的横坐标也应为无理数,这与点A 的纵坐标为1矛盾,故不成立;③直角顶点A 在x 轴上,斜边在1y =上,此时点B ,点C 的横坐标为有理数,则BC 中点的横坐标仍然为有理数,那么点A 的横坐标也应为有理数,这与点A 的纵坐标为0矛盾,故不成立;④直角顶点A 在x 轴上,斜边不在1y =上,此时点A 的横坐标为无理数,则点B 的横坐标也应为无理数,这与点B 的纵坐标为1矛盾,故不成立.综上,不存在三个点()()11,A x f x ,()()22,B x f x ,()()33C x f x ,,使得ABC ∆为等腰直角三角形,故选项D 正确. 故选:ACD . 【点睛】本题以新定义为载体,考查对函数性质等知识的运用能力,意在考查学生运用分类讨论思想,数形结合思想的能力以及逻辑推理能力,属于难题.7.高斯是德国著名数学家、物理学家、天文学家、大地测量学家,近代数学奠基者之一.高斯被认为是历史上最重要的数学家之一,并享有“数学王子”之称.有这样一个函数就是以他名字命名的:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]()f x x =称为高斯函数,又称为取整函数.如:(2.3)2f =,( 3.3)4f -=-.则下列正确的是( ) A .函数()f x 是R 上单调递增函数B .对于任意实数a b ,,都有()()()f a f b f a b +≤+ C .函数()()g x f x ax =-(0x ≠)有3个零点,则实数a 的取值范围是34434532⎛⎤⎡⎫⋃ ⎪⎥⎢⎝⎦⎣⎭,, D .对于任意实数x ,y ,则()()f x f y =是1x y -<成立的充分不必要条件 【答案】BCD 【分析】取反例可分析A 选项,设出a ,b 的小数部分,根据其取值范围可分析B 选项,数形结合可分析C 选项,取特殊值可分析D 选项.【详解】解:对于A 选项,()()1 1.21f f ==,故A 错误;对于B 选项,令[]a a r =+,[](,b b q r =+q 分别为a ,b 的小数部分), 可知[]01r a a =-<,[]01q b b =-<,[]0r q +≥, 则()[][][][][][][]()()f a b a b r q a b r q a b f a f b ⎡⎤+=+++=++++=+⎣⎦,故B 错误;对于C 选项,可知当1k x k ≤<+,k Z ∈时,则()[]f x x k ==, 可得()f x 的图象,如图所示:函数()()()0g x f x ax x =-≠有3个零点,∴函数()f x 的图象和直线y ax =有3个交点,且()0,0为()f x 和直线y ax =必过的点,由图可知,实数a 的取值范围是][3443,,4532⎛⎫⋃⎪⎝⎭,故C 正确;对于D 选项,当()()f x f y =时,即r ,q 分别为x ,y 的小数部分,可得01r ≤<,01q ≤<,[][]101x y x r y q r q -=+--=-<-=;当1x y -<时,取0.9x =-,0.09y =,可得[]1x =-,[]0y =,此时不满足()()f x f y =,故()()f x f y =是1x y -<成立的充分不必要条件,故D 正确; 故选:BCD . 【点睛】本题考查函数新定义问题,解答的关键是理解题意,转化为分段函数问题,利用数形结合思想;8.对于函数()f x 定义域中任意的()1212,x x x x ≠,有如下结论,当()lg f x x =时,上述结论中正确结论的序号是( ) A .()()()1212f x x f x f x +=⋅B .()()()1212f x x f x f x ⋅=+C .1212()()f x f x x x -->0D .()()121222f x f x x x f ++⎛⎫<⎪⎝⎭【答案】BC 【分析】由对数的运算性质判断A ,B ,由对数函数的单调性判断C ,由对数的运算结合基本不等式判断D . 【详解】 对于A ,()()112122lg lg lg f x x x x x x +=+≠⋅,即()()()1212f x x f x f x +≠⋅,故A 错误; 对于B ,()()()()12112122lg lg lg f x x x x x x f x f x ⋅=+=+=,故B 正确; 对于C ,()lg f x x =在定义域中单调递增,()()12120f x f x x x -∴->,故C 正确;对于D ,()1212,0x x x x >≠,利用基本不等式知1122lg 22x x x x f +⎛⎫> ⎪+⎛⎫⎪⎭⎝= ⎝⎭()()()221121lg lg lg 222f x f x x x x x +===+()()121222f x f x x x f ++⎛⎫>⎪⎝⎭,故D 错误; 故选:BC 【点睛】关键点点睛:本题考查命题的真假判断,考查对数函数的性质,考查基本不等式的应用,解决本题的关键点是将对数形式化为根式,即21lg lg 2x x =+合基本不等式放缩得出答案,并验证取等条件,考查了学生逻辑思维能力和计算能力,属于中档题.二、导数及其应用多选题9.下列不等式正确的有( )A 2ln 3<B .ln π<C .15<D .3ln 2e <【答案】CD 【分析】构造函数()ln xf x x=,利用导数分析其单调性,然后由()2f f >、ff >、(4)f f >、()f f e <得出每个选项的正误.【详解】 令()ln x f x x =,则()21ln xf x x-'=,令()0f x '=得x e = 易得()f x 在()0,e 上单调递增,在(),e +∞上单调递减所以①()2f f>,即ln 22>22ln ln 3>=,故A 错误;②ff>>,所以可得ln π>B 错误;③(4)f f >ln 4ln 242>=,即ln152ln 2=>所以ln15ln >15<,故C 正确;④()f f e <ln e e <3ln 21e<,即3ln 22e <所以3eln 2<,故D 正确; 故选:CD 【点睛】关键点点睛:本题考查的是构造函数,利用导数判断函数的单调性,解题的关键是函数的构造和自变量的选择.10.已知函数()1ln f x x x x=-+,()()1ln x x x x g --=,则下列结论正确的是( ) A .()g x 存在唯一极值点0x ,且()01,2x ∈ B .()f x 恰有3个零点C .当1k <时,函数()g x 与()h x kx =的图象有两个交点D .若120x x >且()()120f x f x +=,则121=x x 【答案】ACD【分析】根据导数求得函数()g x '在(0,)+∞上为单调递减函数,结合零点的存在性定,可判定A 正确;利用导数求得函数 ()f x 在(,0)-∞,(0,)+∞单调递减,进而得到函数 ()f x 只有2个零点,可判定B 不正确;由()g x kx =,转化为函数()()1ln x x x ϕ-=和 ()(1)m x k x =-的图象的交点个数,可判定C 正确;由()()120f x f x +=,化简得到 ()121()f x f x =,结合单调性,可判定D 正确. 【详解】由函数()()1ln x x x x g --=,可得 ()1ln ,0g x x x x '=-+>,则()2110g x x x''=--<,所以()g x '在(0,)+∞上为单调递减函数,又由 ()()110,12ln 202g g '=>=-+<, 所以函数()g x 在区间(1,2)内只有一个极值点,所以A 正确; 由函数()1ln f x x x x=-+, 当0x >时,()1ln f x x x x=-+,可得 ()221x x f x x -+-'=,因为22131()024x x x -+-=---<,所以 ()0f x '<,函数()f x 在(0,)+∞单调递减;又由()10f =,所以函数在(0,)+∞上只有一个零点, 当0x <时,()1ln()f x x x x =--+,可得 ()221x x f x x -+-'=,因为22131()024x x x -+-=---<,所以 ()0f x '<,函数()f x 在(,0)-∞单调递减; 又由()10f -=,所以函数在(,0)-∞上只有一个零点, 综上可得函数()1ln f x x x x=-+在定义域内只有2个零点,所以B 不正确; 令()g x kx =,即()1ln x x x kx --=,即 ()1ln (1)x x k x -=-, 设()()1ln x x x ϕ-=, ()(1)m x k x =-, 可得()1ln 1x x x ϕ'=+-,则 ()2110x x xϕ''=+>,所以函数()x ϕ'(0,)+∞单调递增, 又由()01ϕ'=,可得当(0,1)x ∈时, ()0x ϕ'<,函数()x ϕ单调递减, 当(1,)x ∈+∞时,()0x ϕ'>,函数 ()x ϕ单调递增, 当1x =时,函数()x ϕ取得最小值,最小值为()10ϕ=, 又由()(1)m x k x =-,因为1k <,则 10k ->,且过原点的直线,结合图象,即可得到函数()()1ln x x x ϕ-=和 ()(1)m x k x =-的图象有两个交点,所以C 正确;由120x x >,若120,0x x >>时,因为 ()()120f x f x +=,可得()()12222222211111ln ln1f x f x x x f x x x x x ⎛⎫⎛⎫=-=--+=+-= ⎪ ⎪⎝⎭⎝⎭,即()121()f x f x =,因为()f x 在(0,)+∞单调递减,所以 121x x =,即121=x x , 同理可知,若120,0x x <<时,可得121=x x ,所以D 正确. 故选:ACD.【点睛】函数由零点求参数的取值范围的常用方法与策略:1、分类参数法:一般命题情境为给出区间,求满足函数零点个数的参数范围,通常解法为从()f x 中分离参数,然后利用求导的方法求出由参数构造的新函数的最值,根据题设条件构建关于参数的不等式,再通过解不等式确定参数的取值范围;2、分类讨论法:一般命题情境为没有固定的区间,求满足函数零点个数的参数范围,通常解法为结合函数的单调性,先确定参数分类标准,在每个小范围内研究零点的个数是否符合题意,将满足题意的参数的各个小范围并在一起,即可为所求参数的范围.。

江苏南京师范大学附属扬子中学必修3物理 全册全单元精选试卷检测题

江苏南京师范大学附属扬子中学必修3物理 全册全单元精选试卷检测题

江苏南京师范大学附属扬子中学必修3物理 全册全单元精选试卷检测题一、必修第3册 静电场及其应用解答题易错题培优(难)1.(1)科学家发现,除了类似太阳系的恒星-行星系统,还存在许多双星系统,通过对它们的研究,使我们对宇宙有了较深刻的认识.双星系统是由两个星体构成,其中每个星体的线度(直径)都远小于两星体间的距离,一般双星系统距离其他星体很远,可以当做孤立系统处理.已知某双星系统中每个星体的质量都是M 0,两者相距L ,它们正围绕两者连线的中点做匀速圆周运动,引力常量为G . 求: ①该双星系统中星体的加速度大小a ; ②该双星系统的运动周期T .(2)微观世界与宏观世界往往存在奇妙的相似性.对于氢原子模型,因为原子核的质量远大于电子质量,可以忽略原子核的运动,形成类似天文学中的恒星-行星系统,记为模型Ⅰ.另一种模型认为氢原子的核外电子并非绕核旋转,而是类似天文学中的双星系统,核外电子和原子核依靠库仑力作用使它们同时绕彼此连线上某一点做匀速圆周运动,记为模型Ⅱ.已知核外电子的质量为m ,氢原子核的质量为M ,二者相距为r ,静电力常量为k ,电子和氢原子核的电荷量大小均为e .①模型Ⅰ、Ⅱ中系统的总动能分别用E k Ⅰ、 E k Ⅱ表示,请推理分析,比较E k Ⅰ、 E k Ⅱ的大小关系;②模型Ⅰ、Ⅱ中核外电子做匀速圆周运动的周期分别用T Ⅰ、T Ⅱ表示,通常情况下氢原子的研究采用模型Ⅰ的方案,请从周期的角度分析这样简化处理的合理性.【答案】(1) ①02GM a L = ②2T = (2) ①2k k II =2ke E E r =Ⅰ ②T T ⅠⅡ为M >>m ,可得T Ⅰ≈T Ⅱ,所以采用模型Ⅰ更简单方便. 【解析】 【详解】(1)①根据万有引力定律和牛顿第二定律有:2002GM M a L=解得02GM a L =②由运动学公式可知,224π2La T =⋅解得2T =(2)①模型Ⅰ中,设电子绕原子核的速度为v ,对于电子绕核的运动,根据库仑定律和牛顿第二定律有222ke mv r r=解得:22k 122ke E mv r==Ⅰ模型Ⅱ中,设电子和原子核的速度分别为v 1、v 2,电子的运动半径为r 1,原子核的运动半径为r2.根据库仑定律和牛顿第二定律对电子有:2 21 21mv ker r=,解得22k11121=22keE mv rr=对于原子核有:22222=Mvker r,解得22k22221=22keE Mv rr=系统的总动能:E kⅡ=E k1+ E k2=()2212222ke ker rr r+=即在这两种模型中,系统的总动能相等.②模型Ⅰ中,根据库仑定律和牛顿第二定律有22224πkem rr T=Ⅰ,解得23224πmrTke=Ⅰ模型Ⅱ中,电子和原子核的周期相同,均为TⅡ根据库仑定律和牛顿第二定律对电子有221224πkem rr T=⋅Ⅱ,解得221224πke Trr m=Ⅱ对原子核有222224πkeM rr T=⋅Ⅱ,解得222224πke Trr M=Ⅱ因r1+r2=r,可解得:()23224πmMrTke M m=+Ⅱ所以有T M mT M+=ⅠⅡ因为M>>m,可得TⅠ≈TⅡ,所以采用模型Ⅰ更简单方便.2.有三根长度皆为l=0.3 m的不可伸长的绝缘轻线,其中两根的一端固定在天花板的O 点,另一端分别栓有质量皆为m=1.0×10﹣2kg的带电小球A和B,它们的电荷量分别为﹣q 和+q,q=1.0×10﹣6C.A、B之间用第三根线连接起来,空间中存在大小为E=2.0×105N/C的匀强电场,电场强度的方向水平向右.平衡时A、B球的位置如图所示.已知静电力常量k=9×109N•m2/C2重力加速度g=10m/s2.求:(1)A、B间的库仑力的大小(2)连接A 、B 的轻线的拉力大小. 【答案】(1)F=0.1N (2)10.042T N = 【解析】试题分析:(1)以B 球为研究对象,B 球受到重力mg ,电场力Eq ,静电力F ,AB 间绳子的拉力1T 和OB 绳子的拉力2T ,共5个力的作用,处于平衡状态,A 、B 间的静电力22q F k l=,代入数据可得F=0.1N(2)在竖直方向上有:2sin 60T mg ︒=,在水平方向上有:12cos 60qE F T T =++︒ 代入数据可得10.042T N = 考点:考查了共点力平衡条件的应用【名师点睛】注意成立的条件,掌握力的平行四边形定则的应用,理解三角知识运用,注意平衡条件的方程的建立.3.如图所示,在绝缘的水平面上,相隔2L 的,A 、B 两点固定有两个电量均为Q 的正点电荷,C 、O 、D 是AB 连线上的三个点,O 为连线的中点,CO=OD=L/2。一质量为m 、电量为q 的带电物块以初速度v 0从c 点出发沿AB 连线向B 运动,运动过程中物块受到大小恒定的阻力作用。当物块运动到O 点时,物块的动能为初动能的n 倍,到达D 点刚好速度为零,然后返回做往复运动,直至最后静止在O 点。已知静电力恒量为k,求: (1)AB 两处的点电荷在c 点产生的电场强度的大小; (2)物块在运动中受到的阻力的大小; (3)带电物块在电场中运动的总路程。【答案】(1)(2) (3)【解析】 【分析】 【详解】(1)设两个正点电荷在电场中C 点的场强分别为E 1和E 2,在C 点的合场强为E C ;则12()2kQ E L=;223()2kQE L = 则E C =E 1-E 2 解得:E C =232 9kQL . (2)带电物块从C 点运动到D 点的过程中,先加速后减速.AB 连线上对称点φC =φD ,电场力对带电物块做功为零.设物块受到的阻力为f , 由动能定理有:−fL =0−12mv 02 解得:2012f mv L=(3)设带电物块从C 到O 点电场力做功为W 电,根据动能定理得:220011222L W f n mv mv 电=-⋅⋅-解得:()201214W n mv -电=设带电物块在电场中运动的总路程为S ,由动能定理有:W 电−fs =0−12mv 02 解得:s=(n+0.5)L 【点睛】本题考查了动能定理的应用,分析清楚电荷的运动过程,应用动能定理、点电荷的场强公式与场的叠加原理即可正确解题.4.如图所示,空间存在方向水平向右的匀强电场,两个可视为点电荷的带电小球P 和Q 用绝缘细绳悬挂在水平天花板下,两细绳都恰好与天花板垂直,已知匀强电场强度为E ,两小球之间的距离为L ,PQ 连线与竖直方向之间的夹角为θ,静电常数为k (1)画出小球P 、Q 的受力示意图; (2)求出P 、Q 两小球分别所带的电量。

江苏省南京市师范大学附属扬子中学高一数学理测试题含解析

江苏省南京市师范大学附属扬子中学高一数学理测试题含解析

江苏省南京市师范大学附属扬子中学高一数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 函数的图象是 --------------()yy yy-1 O 1 x -1 O 1 x -1 O1 x -1O 1 xA、 B、 C、D、参考答案:A略2. 已知集合M={y|y=,x>0},N={x|y=lg(2x-)},则M∩N为()A.(1,2) B.(1,+∞) C.[2,+∞) D.[1,+∞)参考答案:A3. 某林场有树苗30 000棵,其中松树苗4 000棵,为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为()A.30 B.25C.20 D.15参考答案:C略4. 设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣)B.(﹣3,)C.(1,)D.(,3)参考答案:D【考点】交集及其运算.【分析】解不等式求出集合A,B,结合交集的定义,可得答案.【解答】解:∵集合A={x|x2﹣4x+3<0}=(1,3),B={x|2x﹣3>0}=(,+∞),∴A∩B=(,3),故选:D5. (4分)已知函数,则的值是()A.7 B. 2 C. 5 D.3参考答案:A考点:函数的值.专题:计算题.分析:根据已知函数解析式,先求f(0),然后求出f(f(0)),再求出f()即可求解解答:由题意可得,f(1)=log21=0,f(f(1))=f(0)=90+1=2f()=+1=+1=5∴=7故选A点评:本题主要考查了分段函数的函数值的求解,解题的关键是明确不同x所对应的函数解析式6. 各项均为实数的等比数列的前项和记为()A.150 B.-200 C.150或200 D.-50或400参考答案:A略7. 下列说法正确的是()A.若|,B.若,C.若,则D.若,则与不是共线向量参考答案:C【考点】96:平行向量与共线向量;93:向量的模.【分析】利用平面向量的性质,决定向量的有大小和方向,结合共线向量的定义进行选择.【解答】解:对于A,若|,;错误;因为向量没有大小之分;对于B,,错误;因为两个向量方程可能不同;对于C,相等的向量大小和方向都相同;故正确;对于D,,则与可能是共线向量;故错误;故选:C.8. 若直线与直线2x+3y﹣6=0的交点位于第一象限,则直线l的倾斜角的取值范围()A.B.C.D.参考答案:B考点:直线的斜率;两条直线的交点坐标.专题:计算题.分析:联立两直线方程到底一个二元一次方程组,求出方程组的解集即可得到交点的坐标,根据交点在第一象限得到横纵坐标都大于0,联立得到关于k的不等式组,求出不等式组的解集即可得到k的范围,然后根据直线的倾斜角的正切值等于斜率k,根据正切函数图象得到倾斜角的范围.解答:解:联立两直线方程得:,将①代入②得:x=③,把③代入①,求得y=,所以两直线的交点坐标为(,),因为两直线的交点在第一象限,所以得到,由①解得:k>﹣;由②解得k>或k<﹣,所以不等式的解集为:k>,设直线l的倾斜角为θ,则tanθ>,所以θ∈(,).故选B.点评:此题考查学生会根据两直线的方程求出交点的坐标,掌握象限点坐标的特点,掌握直线倾斜角与直线斜率的关系,是一道综合题.9. 若都是奇函数,在上存在最大值5,则在上存在A.最小值-5 B.最小值-1C.最大值-5 D.最大值-3参考答案:B10. 右表是某厂1~4月份用水量(单位:百吨)的一组数据:由散点图可知,用水量y与月份x之间,则a等于()D略二、填空题:本大题共7小题,每小题4分,共28分11. 已知,,则参考答案:-2略12. 两平行直线,若两直线之间的距离为1 ,则.参考答案:±5根据两平行直线间的距离公式得到13. 设集合M ={ 2,0,1},N ={1,2,3,4,5},映射f:M→N使对任意的x∈M ,都有x+f(x)+xf(x)是奇数,则这样的映射f的个数是________.参考答案:45略14. 不等式|2x﹣1|﹣|x+2|>0的解集为.参考答案:【考点】绝对值三角不等式.【分析】不等式可化为|2x﹣1|>|x+2|,两边平方整理可得(3x+1)(x﹣3)>0,即可得出不等式的解集.【解答】解:不等式可化为|2x﹣1|>|x+2|,两边平方整理可得(3x+1)(x﹣3)>0,∴x<﹣或x>3,∴不等式的解集为.故答案为:.15. (5分)若正方体ABCD ﹣A 1B 1C 1D 1的外接球O 的体积为4π,则球心0到正方体的一个面ABCD 的距离为 .参考答案:1考点: 球内接多面体. 专题: 空间位置关系与距离.分析: 根据球的体积公式算出球的半径R=,从而得到正方体的对角线长为 2,可得正方体的棱长为2.再由球心O 是正方体ABCD ﹣A 1B 1C 1D 1的中心,得到点O 到正方体的一个面的距离等于正方体棱长的一半,从而算出答案.解答: 解设球O 的半径为R ,正方体ABCD ﹣A 1B 1C 1D 1的棱长为a ,∵正方体ABCD ﹣A 1B 1C 1D 1内接于球O ,∴正方体的对角线长等于球O 的直径,可得2R=a .又∵球O 的体积为4π,∴V=?R 3=4π,解得R=,由此可得a=2R=2,解得a=2.∵球O 是正方体ABCD ﹣A 1B 1C 1D 1的外接球, ∴点O 是正方体ABCD ﹣A 1B 1C 1D 1的中心,可得点O 到正方体的一个面的距离等于正方体棱长的一半,即d=a=1. 因此,球心O 到正方体的一个面ABCD 的距离等于1. 故答案为:1.点评: 本题给出正方体的外接球的体积,求球心到正方体一个面的距离.着重考查了正方体的性质、球的体积公式与球内接多面体等知识,属于基础题.16. 若,且,则a 的取值范围为 .参考答案:∵,∴,得.17. 是第 象限角.参考答案: 三三、 解答题:本大题共5小题,共72分。

江苏南京师范大学附属中学江宁分校三角函数与解三角形多选题试题含答案

江苏南京师范大学附属中学江宁分校三角函数与解三角形多选题试题含答案

江苏南京师范大学附属中学江宁分校三角函数与解三角形多选题试题含答案一、三角函数与解三角形多选题1.设函数g (x )=sinωx (ω>0)向左平移5πω个单位长度得到函数f (x ),已知f (x )在[0,2π]上有且只有5个零点,则下列结论正确的是( )A .f (x )的图象关于直线2x π=对称B .f (x )在(0,2π)上有且只有3个极大值点,f (x )在(0,2π)上有且只有2个极小值点C .f (x )在(0,)10π上单调递增 D .ω的取值范围是[1229,510) 【答案】CD 【分析】利用正弦函数的对称轴可知,A 不正确;由图可知()f x 在(0,2)π上还可能有3个极小值点,B 不正确;由2A B x x π≤<解得的结果可知,D 正确;根据()f x 在3(0,)10πω上递增,且31010ππω<,可知C 正确. 【详解】依题意得()()5f x g x πω=+sin[()]5x πωω=+sin()5x πω=+, 2T πω=,如图:对于A ,令52x k ππωπ+=+,k Z ∈,得310k x ππωω=+,k Z ∈,所以()f x 的图象关于直线310k x ππωω=+(k Z ∈)对称,故A 不正确; 对于B ,根据图象可知,2A B x x π≤<,()f x 在(0,2)π有3个极大值点,()f x 在(0,2)π有2个或3个极小值点,故B 不正确, 对于D ,因为5522452525A x T ππππωωωω=-+=-+⨯=,22933555B x T ππππωωωω=-+=-+⨯=,所以2429255πππωω≤<,解得1229510ω≤<,所以D 正确; 对于C ,因为1123545410T ππππωωωω-+=-+⨯=,由图可知()f x 在3(0,)10πω上递增,因为29310ω<<,所以33(1)0101010πππωω-=-<,所以()f x 在(0,)10π上单调递增,故C 正确; 故选:CD. 【点睛】本题考查了三角函数的相位变换,考查了正弦函数的对称轴和单调性和周期性,考查了极值点的概念,考查了函数的零点,考查了数形结合思想,属于中档题.2.在ABC 中,a ,b ,c 分别为A ∠,B ,C ∠的对边,下列叙述正确的是( ) A .若sin sin a bB A=,则ABC 为等腰三角形 B .若cos cos a bB A=,则ABC 为等腰三角形 C .若tan A tan tan 0B C ++<,则ABC 为钝角三角形 D .若sin cos a b C c B =+,则4C π∠=【答案】ACD 【分析】多项选择题,一个一个选项验证:对于A :利用正弦定理判断sin sin A B =,在三角形中只能A=B ,即可判断; 对于B :∵由正弦定理得 sin 2sin 2A B =,可以判断∴ABC 为等腰三角形或直角三角形;对于C :利用三角函数化简得tan A tan tan B C ++sin sin sin =cos cos cos A B CA B C,利用sin 0,sin 0,sin 0,A B C >>>判断cos cos cos A B C 、、必有一个小于0,即可判断; 对于D :利用正弦定理判断得cos sin C C =求出角C . 【详解】对于A :∵由正弦定理得:sin sin a bA B=,而sin sin a b B A =,∴sin sin A B =, ∵A+B+C=π,∴只能A=B ,即ABC 为等腰三角形,故A 正确;对于B :∵由正弦定理得:sin sin a bA B=, ∴若cos cos a bB A=可化为sin cos sin cos A A B B =,即sin 2sin 2A B =, ∴22A B =或22A B π+=∴ABC 为等腰三角形或直角三角形,故B 错误; 对于C :∵A+B+C=π,∴()()()()sin sin sin cos cos cos A B C C A B C C ππ+=-=+=-=,,∴tan A tan tan B C ++sin sin sin =cos cos cos A B CA B C++ sin cos sin cos sin =cos cos cos A B B A CA B C ++sin sin =cos cos cos C CA B C+11=sin cos cos cos C A B C ⎛⎫+ ⎪⎝⎭cos cos cos =sin cos cos cos C A B C A B C +⎛⎫ ⎪⎝⎭sin sin sin =cos cos cos A B CA B C.∵tan A tan tan 0B C ++<而sin 0,sin 0,sin 0,A B C >>> ∴cos cos cos A B C 、、必有一个小于0,∴ABC 为钝角三角形. 故C 正确;对于D :∵sin cos a b C c B =+,∴由正弦定理得:sin sin sin sin cos A B A C B =+, 即sin cos sin cos sin sin sin cos B C C B B C C B +=+ ∴cos sin C C = ∵()0,C π∈∴4C π.故D 正确. 故选:ACD 【点睛】在解三角形中,选择用正弦定理或余弦定理,可以从两方面思考: (1)从题目给出的条件,边角关系来选择; (2)从式子结构来选择.3.已知函数()2sin 26f x x π⎛⎫=+⎪⎝⎭,则( ) A .函数()f x 的最小正周期为π B .()f x 的图像关于直线6x π=对称C .()f x 的图象关于点,03π⎛⎫⎪⎝⎭对称 D .()f x 在区间(0,)π上有两个零点【答案】ABD 【分析】借助于()2sin 26f x x π⎛⎫=+ ⎪⎝⎭的图像及y =sin x 的性质,对ABCD 四个选项一一验证: 对于A :利用2T πω=求周期;对于B :利用图像观察,也可以根据()26f π=判断;对于C :利用图像观察,也可以根据()13f π=否定结论;对于D :利用图像观察,可以得到()f x 在区间(0,)π上有两个零点. 【详解】对于A :函数()y f x =的周期222T πππω===故A 正确; 对于B :∵ ()2sin 22666f πππ⎛⎫=⨯+= ⎪⎝⎭,∴()f x 的图像关于直线6x π=对称,故B 正确;对于C :∵ 5()2sin 22sin 13366f ππππ⎛⎫⎛⎫=⨯+== ⎪ ⎪⎝⎭⎝⎭,故()f x 的图像不经过点,03π⎛⎫ ⎪⎝⎭,,03π⎛⎫⎪⎝⎭也不是其对称中心,故C 错误; 对于C :由图像显然可以观察出,()f x 在区间(0,)π上有两个零点.也可以令()()00f x x π=<<,即2sin 206x π⎛⎫+= ⎪⎝⎭,解得:512x π=或1112π,故()f x 在区间(0,)π上有两个零点,故D 正确.故选:ABD 【点睛】三角函数问题通常需要把它化为“一角一名一次”的结构,即()sin y A x B ωϕ=++的结构:(1)画出图像,利用图像分析性质;(2)用t x ωϕ=+借助于sin y x =或cos y x =的性质解题.4.已知函数22()(sin cos )2cos f x x x x =++,则( ) A .()f x 的最小正周期是πB .()f x 的图像可由函数()22g x x =+的图像向左平移8π个单位而得到 C .4x π=是()f x 的一条对称轴D .()f x 的一个对称中心是,08π⎛⎫- ⎪⎝⎭【答案】AB 【分析】首先化简函数()224f x x π⎛⎫=++ ⎪⎝⎭,再根据三角函数形式的公式,以及代入的方法判断选项. 【详解】()1sin 2cos 21224f x x x x π⎛⎫=+++=++ ⎪⎝⎭,A.函数的最小正周期22T ππ==,故A 正确;B.根据图象的平移变换规律,可知函数()22g x x =+的图像向左平移8π个单位而得到()222284f x x x ππ⎛⎫⎛⎫=++=++ ⎪ ⎪⎝⎭⎝⎭,故B 正确;C.当4x π=时,32444πππ⨯+=,不是函数的对称轴,故C 不正确; D.当8x π=-时,2084ππ⎛⎫⨯-+= ⎪⎝⎭,此时函数值是2,故函数的一个对称中心应是,28π⎛⎫- ⎪⎝⎭,故D 不正确. 故选:AB 【点睛】思路点睛:本题考查()sin y A ωx φ=+的解析式和性质的判断,可以整体代入验证的方法判断函数性质:(1)对于函数()sin y A ωx φ=+,其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点,因此判断直线0x x =或点()0,0x 是否是函数的对称轴和对称中心时,可通过验证()0f x 的值进行判断;(2)判断某区间是否是函数的单调区间时,也可以求x ωϕ+的范围,验证此区间是否是函数sin y x =的增或减区间.5.已知函数()26f x x π⎛⎫=- ⎪⎝⎭,则下列结论正确的是( )A .函数()f x 的最小正周期为πB .函数()f xC .函数()f x 的图象关于点,012π⎛⎫⎪⎝⎭对称 D .函数()f x 的图象关于直线712x π=对称 【答案】BD 【分析】首先要熟悉()26g x x π⎛⎫=- ⎪⎝⎭的图象和性质,将()26g x x π⎛⎫=- ⎪⎝⎭在x 轴下方的图象沿x 轴翻折(x 轴上方的图象不变),可以得到函数()f x 的图象,并判断选项. 【详解】由题意,将()26g x x π⎛⎫=- ⎪⎝⎭在x 轴下方的图象沿x 轴翻折(x 轴上方的图象不变),可以得到函数()f x 的图象,故函数()f x 的最小正周期为2π,故A 错误;函数()f x B 正确;函数()f x 的图象是由()26g x x π⎛⎫=- ⎪⎝⎭在x 轴下方的图象沿x 轴翻折(x 轴上方的图象不变),所以不是中心对称图形,故C 错误; 由7012f π⎛⎫=⎪⎝⎭知D 正确, 故选:BD . 【点睛】思路点睛:要判断函数()f x 的性质,需先了解函数()26g x x π⎛⎫=- ⎪⎝⎭的性质,并且知道函数()26g x x π⎛⎫=- ⎪⎝⎭在x 轴下方的图象沿x 轴翻折(x 轴上方的图象不变),可以得到函数()f x 的图象,函数的周期变为原来的一半,()g x 的对称轴和对称中心都是函数()f x 的对称轴.6.设函数()()31sin sin 022f x x x πωωω⎛⎫=++> ⎪⎝⎭,已知()f x 在[]0,π有且仅有3个零点,则( )A .在()0,π上存在1x 、2x ,满足()()122f x f x -=B .()f x 在()0,π有且仅有1个最小值点C .()f x 在0,2π⎛⎫⎪⎝⎭上单调递增 D .ω的取值范围是1723,66⎡⎫⎪⎢⎣⎭【答案】AD 【分析】化简函数()f x 的解析式为()sin 6f x x πω⎛⎫=+ ⎪⎝⎭,令6t x πω=+,由[]0,x π∈可求得,66t ππωπ⎡⎤∈+⎢⎥⎣⎦,作出函数sin ,066y t t ππωπω⎛⎫=≤≤+> ⎪⎝⎭的图象,可判断AB 选项的正误;由图象得出346ππωππ≤+<可判断D 选项的正误;取3ω=,利用正弦型函数的单调性可判断C 选项的正误. 【详解】()3131sin sin sin cos sin 222226f x x x x x x ππωωωωω⎛⎫⎛⎫=++=+=+ ⎪ ⎪⎝⎭⎝⎭, 当[]0,x π∈时,,666x πππωωπ⎡⎤+∈+⎢⎥⎣⎦,令6t x πω=+,则,66t ππωπ⎡⎤∈+⎢⎥⎣⎦,作出函数sin ,066y t t ππωπω⎛⎫=≤≤+>⎪⎝⎭的图象如下图所示:对于A 选项,由图象可知,max 1y =,min 1y =-,所以,在()0,π上存在1x 、2x ,满足()()122f x f x -=,A 选项正确; 对于B 选项,()f x 在()0,π上有1个或2个最小值点,B 选项错误; 对于D 选项,由于函数()f x 在[]0,π有且仅有3个零点,则346ππωππ≤+<,解得172366ω≤<,D 选项正确; 对于C 选项,由于172366ω≤<,取3ω=,当0,2x π⎛⎫∈ ⎪⎝⎭时,53663x πππ<+<,此时,函数()f x 在区间0,2π⎛⎫⎪⎝⎭上不单调,C 选项错误. 故选:AD. 【点睛】关键点点睛:本题考查利用正弦型函数在区间上的零点个数判断正弦型函数的基本性质,解本题的关键在于换元6t x πω=+,将问题转化为函数sin y t =在区间,66ππωπ⎡⎤+⎢⎥⎣⎦上的零点个数问题,数形结合来求解.7.已知函数()cos f x x x =-,则下列说法正确的是( ) A .()f x 的图象关于点,06π⎛⎫⎪⎝⎭中心对称B .()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减 C .()f x 在()0,2π上有且仅有1个最小值点 D .()f x 的值域为[]1,2- 【答案】BC 【分析】利用特殊值法可判断A 选项的正误;化简函数()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上的解析式,利用正弦型函数的单调性可判断B 选项的正误;由()()f x f x π+=可得()f x 的周期为π,再在[]0,π上讨论函数()f x 的单调性、最值,可判断CD 选项的正误.【详解】对于A 选项,因为06f π⎛⎫-= ⎪⎝⎭,2f π⎛⎫= ⎪⎝⎭62f f ππ⎛⎫⎛⎫-≠- ⎪ ⎪⎝⎭⎝⎭, 所以()f x 的图象不关于点,06π⎛⎫⎪⎝⎭中心对称,故A 错误;对于B 选项,当,2x ππ⎡⎤∈⎢⎥⎣⎦时,()cos 2sin 6f x x x x π⎛⎫=+=+ ⎪⎝⎭,27,636x πππ⎡⎤+∈⎢⎥⎣⎦,所以,函数()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减,B 选项正确; 对于C 选项,()()()cos sin cos f x x x x x πππ+=+-+=--()cos x x f x =-=,所以π为函数()f x 的周期.当0,2x π⎡⎤∈⎢⎥⎣⎦时,()cos 2sin 6f x x x x π⎛⎫=-=- ⎪⎝⎭,,663x πππ⎡⎤-∈-⎢⎥⎣⎦,所以()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上单调递增,()()min 01f x f ==-,()max 2f x f π⎛⎫== ⎪⎝⎭ 由B 选项可知,函数()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减,当,2x ππ⎡⎤∈⎢⎥⎣⎦时,()max 2f x f π⎛⎫== ⎪⎝⎭()()min1f x f π==-.所以,函数()f x 在()0,2π上有且只有1个最小值点,C 选项正确;对于D 选项,由C 选项可知,函数()f x 的值域为⎡-⎣,D 选项错误.故选:BC. 【点睛】方法点睛:求函数()()sin f x A x =+ωϕ在区间[],a b 上值域的一般步骤: 第一步:三角函数式的化简,一般化成形如()sin y A x k ωϕ=++的形式或()cos y A x k ωϕ=++的形式;第二步:由x 的取值范围确定x ωϕ+的取值范围,再确定()sin x ωϕ+(或()cos x ωϕ+)的取值范围;第三步:求出所求函数的值域(或最值).8.已知函数()()sin 22sin cos 644f x x x x x πππ⎛⎫⎛⎫⎛⎫=--++∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭R ,现给出下列四个命题,其中正确的是( ) A .函数()f x 的最小正周期为2πB .函数()f xC .函数()f x 在,44ππ⎡⎤-⎢⎥⎣⎦上单调递增D .将函数()f x 的图象向左平移512π个单位长度,得到的函数解析式为()()2g x x =【答案】BD 【分析】首先利用三角恒等变形化简函数()23f x x π⎛⎫=-⎪⎝⎭,再根据函数的性质依次判断选项,AB 选项根据解析式直接判断,C 选项可以先求23x π-的范围,再判断函数的单调性,D 选项根据平移规律直接求解平移后的解析式. 【详解】()12cos 2sin 222f x x x x π⎛⎫=--+ ⎪⎝⎭132cos 2cos 22cos 22222x x x x x =--=-23x π⎫⎛=- ⎪⎝⎭,函数()f x 的周期22T ππ==,故A 不正确;B.B 正确; C.,44x ππ⎡⎤∈-⎢⎥⎣⎦时,52,366x πππ⎡⎤-∈-⎢⎥⎣⎦,当52,362x πππ⎡⎤-∈--⎢⎥⎣⎦时函数单调递减,即,412x ππ⎡⎤∈--⎢⎥⎣⎦时函数单调递减,,124x ππ⎡⎤∈-⎢⎥⎣⎦时,函数单调递增,故C 不正确;D. ()23f x x π⎛⎫=-⎪⎝⎭向左平移512π个单位长度,得到()52221232g x x x x πππ⎡⎤⎛⎫⎛⎫=+-=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故D 正确. 故选:BD 【点睛】思路点睛:本题考查()sin y A ωx φ=+的解析式和性质的判断,可以整体代入验证的方法判断函数性质:(1)对于函数()sin y A ωx φ=+,其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点,因此判断直线0x x =或点()0,0x 是否是函数的对称轴和对称中心时,可通过验证()0f x 的值进行判断;(2)判断某区间是否是函数的单调区间时,也可以求x ωϕ+的范围,验证此区间是否是函数sin y x =的增或减区间.二、数列多选题9.某集团公司有一下属企业A 从事一种高科技产品的生产.A 企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了40%,预计以后每年资金年增长率与第一年的相同.集团公司要求A 企业从第一年开始,每年年底上缴资金t 万元(800t <),并将剩余资金全部投入下一年生产.设第n 年年底A 企业上缴资金后的剩余资金为n a 万元.则( )A .22800a t =-B .175n n a a t +=-C .1n n a a +>D .当400t =时,33800a > 【答案】BC【分析】先求得第一年年底剩余资金1a ,第二年底剩余资金2a ,即可判断A 的正误;分析总结,可得1n a +与n a 的关系,即可判断B 的正误;根据题意,求得n a 的表达式,利用作差法即可比较1n a +与n a 的大小,即可判断C 的正误,代入400t =,即可求得3a ,即可判断D 的正误,即可得答案.【详解】第一年年底剩余资金12000(140%)2800a t t =⨯+-=-, 第二年底剩余资金211712(140%)392055a a t a t t =⨯+-=-=-,故A 错误; 第三年底剩余资金3227109(140%)5488525t a a t a t =⨯+-=-=-,⋅⋅⋅ 所以第n +1年年底剩余资金为17(140%)5n n n a a t a t +=⨯+-=-,故B 正确; 因为212277777()()55555n n n n a a t a t t a t t ---=-=--=--12217777()[1()()]5555n n a t --=-+++⋅⋅⋅+117[1()]75()(2800)7515n n t t ---=---=11757()(2800)[()1]525n n t t -----=1775()(2800)522n t t --+, 所以111722775277[()(2800)]()(2800)555522552n n n n n n n t t t a a a t a a t t --+-=--=-=-+-=-, 因为800t <,所以7280002t ->, 所以11277()(2800)0552n n n t a a -+-=->,即1n n a a +>,故C 正确;当400t =时,310910940054885488374438002525t a ⨯=-=-=<,故D 错误; 故选:BC【点睛】 解题的关键是根据123,,a a a ,总结出n a ,并利用求和公式,求得n a 的表达式,综合性较强,考查计算化简的能力,属中档题.10.关于等差数列和等比数列,下列四个选项中正确的有( )A .若数列{}n a 的前n 项和22n S n =,则数列{}n a 为等差数列B .若数列{}n a 的前n 项和122n n S +=-,则数列{}n a 为等比数列C .若等比数列{}n a 是递增数列,则{}n a 的公比1q >D .数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,仍为等比数列【答案】AB【分析】对于A ,求出 42n a n =-,所以数列{}n a 为等差数列,故选项A 正确;对于B , 求出2n n a =,则数列{}n a 为等比数列,故选项B 正确;对于选项C ,有可能10,01a q <<<,不一定 1q >,所以选项C 错误;对于D ,比如公比1q =-,n 为偶数,n S ,2n n S S -,32n n S S -,⋯,均为0,不为等比数列.故选项D 不正确.【详解】对于A ,若数列{}n a 的前n 项和22n S n =,所以212(1)(2)n S n n -=-≥,所以142(2)n n n a S S n n -=-=-≥,适合12a =,所以数列{}n a 为等差数列,故选项A 正确;对于B ,若数列{}n a 的前n 项和122n n S +=-,所以122(2)nn S n -=-≥,所以12(2)n n n n a S S n -=-=≥,又1422a =-=,2218224a S S =-=--=, 212a a = 则数列{}n a 为等比数列,故选项B 正确;对于选项C ,若等比数列{}n a 是递增数列,则有可能10,01a q <<<,不一定 1q >,所以选项C 错误;对于D ,数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯不一定为等比数列,比如公比1q =-,n 为偶数,n S ,2n n S S -,32n n S S -,⋯,均为0,不为等比数列.故选项D 不正确.故选:AB【点睛】方法点睛:求数列的通项常用的方法有:(1)公式法;(2)归纳法;(3)累加法;(4)累乘法;(5)构造法. 要根据已知条件灵活选择方法求解.。

(人教版)南京市必修第一册第五单元《三角函数》测试(答案解析)

(人教版)南京市必修第一册第五单元《三角函数》测试(答案解析)

一、选择题1.下列函数中既是奇函数,又在区间[]1,1-上单调递减的是( ) A .()sin f x x = B .lg y x = C .()f x x =-D .()cos f x x =2.已知0>ω,函数()sin 3f x x πω⎛⎫=+ ⎪⎝⎭在,2ππ⎛⎫⎪⎝⎭上单调递减,则ω的取值范围是( ) A .15,36⎡⎤⎢⎥⎣⎦B .17,36⎡⎤⎢⎥⎣⎦C .15,46⎡⎤⎢⎥⎣⎦D .17,46⎡⎤⎢⎥⎣⎦3.函数()[sin()cos()]f x A x x ωθωθ=+++部分图象如图所示,当[,2]x ππ∈-时()f x 最小值为( )A .1-B .2-C .2-D .3-4.已知函数()22sin 23sin cos cos f x x x x x =+-,x ∈R ,则( ) A .()f x 的最大值为1 B .()f x 的图象关于直线3x π=对称C .()f x 的最小正周期为2πD .()f x 在区间()0,π上只有1个零点5.计算cos 20cos80sin160cos10+=( ). A .12B .32C .12-D .3 6.化简求值1tan12tan 72tan12tan 72+-( )A .33-B .3C .33D 37.已知函数()()π2tan 010,2f x x ωϕωϕ⎛⎫=+<<<⎪⎝⎭,()230f =,π,012⎛⎫ ⎪⎝⎭为()f x 图象的一个对称中心.现给出以下四种说法:①π6ϕ=;②2ω=;③函数()f x在区间5ππ,243⎛⎫⎪⎝⎭上单调递增;④函数()f x的最小正周期为π4.则上述说法正确的序号为()A.①④B.③④C.①②④D.①③④8.若4cos5θ=-,θ是第三象限的角,则1tan21tan2θθ-=+()A.12B.12-C.35D.-29.sin20cos10cos160sin10-=()A.3-B.12C.12-D.3210.3tan26tan34tan26tan34++=()A.3B.3-C.3D.3-11.已知函数()()()sin0,0f x A x=+>-π<<ωϕωϕ的部分图象如图所示.则()f x的解析式为().A.()2sin12f x xπ⎛⎫=-⎪⎝⎭B.()2sin23f x xπ⎛⎫=-⎪⎝⎭C.()2sin26f x xπ⎛⎫=-⎪⎝⎭D.()32sin34f x xπ=-⎛⎫⎪⎝⎭12.函数()()cosf x A xωϕ=+(其中0A>,0>ω,2πϕ<)的图象如图所示.为了得到()cosg x A xω=-的图象,只需把()y f x=的图象上所有的点()A .向右平移12π个单位长度 B .向右平移512π个单位长度 C .向左平移12π个单位长度D .向左平移512π个单位长度 二、填空题13.已知函数()sin 2cos 2f x x a x =+,对x R ∀∈,|()|8f x f π⎛⎫≤ ⎪⎝⎭成立,则a =_______.14.已知函数sin cos y x x =-,其图象的对称轴中距离y 轴最近的一条对称轴方程为x =________.15.已知角θ的终边经过点(,3)P x (0x <)且10cos 10x θ=,则x =___________. 16.已知函数()sin f x x =,若存在1x 、2x 、⋅⋅⋅、m x 满足1206m x x x π≤≤<⋅⋅⋅<≤,且()()()()()()()12231120,N m m f x f x f x f x f x f x m m *--+-+⋅⋅⋅+-=≥∈,则m的最小值为______. 17.若3sin 2θ=,,2πθπ⎛⎫∈ ⎪⎝⎭则cos 6πθ⎛⎫-= ⎪⎝⎭______. 18.下列四个命题中:①已知()()()sin cos 21,sin cos 2πααπαπα-+-=++则tan 1α=-;②()003tan 30tan 30-=-=③若3sin α=则1cos 2;2α=-④在锐角三角形ABC 中,已知73sin ,cos ,255A B ==则119sin .125C =其中真命题的编号有_______. 19.设函数2()2cos 23cos f x x x x m =++,当0,2x π⎡⎤∈⎢⎥⎣⎦时()f x 的值域为17,22⎡⎤⎢⎥⎣⎦,则实数m 的值是________. 20.已知α为第二象限角,且22sin α=sin()63sin 2cos 21πααα+++___________. 三、解答题21.已知函数2()2cos )f x x x =--. (1)求4f π⎛⎫⎪⎝⎭的值和()f x 的最小正周期; (2)求函数()f x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.22.已知()()f x x a ωϕ=++0,2πωϕ⎛⎫>< ⎪⎝⎭的图象过点,12a π⎛⎫⎪⎝⎭,且图象的相邻两条对称轴的距离为2π. (1)求函数()f x 的单调区间;(2)若()f x 在区间,122ππ⎡⎤-⎢⎥⎣⎦,求实数a 的值.23.已知函数2()sin(2)2cos 1(0)6f x x x πωωω=-+->的最小正周期为π,(1)求ω的值 (2)求()f x 在区间70,12π⎡⎤⎢⎥⎣⎦上的最大值和最小值.24.已知函数()()2cos cos sin f x x x x x =+-.(1)求函数()f x 的单调递增区间; (2)若当0,2x π⎡⎤∈⎢⎥⎣⎦时,关于()f x m ≥的不等式 _______,求实数m 的取值范围. 请选择①和②中的一个条件,补全问题(2),并求解.其中,①有解;②恒成立. 注意:如果选择①和②两个条件解答,以解答过程中书写在前面的情况计分. 25.已知()cos2cos 23f x x x π⎛⎫=+- ⎪⎝⎭. (1)求()f x 的单调递增区间;(2)若23f α⎛⎫=⎪⎝⎭,求12f πα⎛⎫- ⎪⎝⎭的值. 26.已知函数()4cos sin (0)6f x x x πωωω⎛⎫=-> ⎪⎝⎭的最小正周期是π.(1)求函数()f x 在区间(0,)π上的单调递增区间; (2)求()f x 在3,88ππ⎡⎤⎢⎥⎣⎦上的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据基本初等函数的性质,以及函数奇偶性的定义,逐项判定,即可求解. 【详解】对于A 中,函数()sin f x x =,根据正弦函数的性质,可得函数()sin f x x =在[]1,1-上单调递增,不符合题意;对于B 中,函数lg y x =,满足()()lg lg f x x x f x -=-==,所以函数lg y x =为偶函数,不符合题意;对于C 中,函数()f x x =-,根据一次函数的性质,可得函数()f x x =-为奇函数,且在[]1,1-上单调递减函数,符合题意;对于D 中,函数()cos f x x =,满足()()cos()cos f x x x f x -=-==,所以函数()cos f x x =为偶函数,不符合题意.故选:C.2.B解析:B 【分析】 由322232k x k ππππωπ+++求得22766k k x ππππωωωω++,k z ∈.可得函数()f x 的一个减区间为[6πω,7]6πω.再由6276ππωππω⎧⎪⎪⎨⎪⎪⎩,求得ω的范围.【详解】函数()sin()3f x x πω=+在(,)2ππ上单调递减, 设函数的周期22T T πππω⇒=-,2ω∴. 再由函数()sin()3f x x πω=+满足322232k x k ππππωπ+++,k z ∈, 求得22766k k x ππππωωωω++,k z ∈. 取0k =,可得766x ππωω,故函数()f x 的一个减区间为[6πω,7]6πω. 再由6276ππωππω⎧⎪⎪⎨⎪⎪⎩,求得1736ω, 故选:B . 【点睛】函数sin()y A x ωϕ=+的单调区间的求法:若0,0A ω>>,把x ωϕ+看作是一个整体,由22k x ππωϕ+≤+≤()322k k Z ππ+∈求得函数的减区间,由2222k x k πππωϕπ-+≤+≤+求得增区间3.D解析:D 【分析】首先结合图像求得()f x 的解析式,然后根据三角函数最值的求法,求得()f x 在区间[],2ππ-上的最小值.【详解】 由已知()()sin 04f x x πωθω⎛⎫=⋅++> ⎪⎝⎭,由图象可知取A =,52433T πππ=-=, 故最小正周期4T π=,所以212T πω==, 所以()12sin 24f x x πθ⎛⎫=++ ⎪⎝⎭,由55152sin 2sin 0332464f πππππθθ⎛⎫⎛⎫⎛⎫=⨯++=++=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,及图象单调性知,取564ππθπ++=,则46ππθ+=所以()12sin 26x f x π⎛⎫=+⎪⎝⎭,[],2x ππ∈-,17,2636x πππ⎡⎤+∈-⎢⎥⎣⎦, ()f x 最小值为()2sin 3f ππ⎛⎫-=-= ⎪⎝⎭故选:D4.B解析:B【分析】利用二倍角公式和辅助角公式化简()f x ,再利用三角函数的性质求解即可. 【详解】()22sin cos cos f x x x x x =+-2cos 2x x =-2sin 26x π⎛⎫=- ⎪⎝⎭故最大值为2,A 错22sin 2sin 23362f ππππ⎛⎫⎛⎫=-== ⎪ ⎪⎝⎭⎝⎭,故关于3x π=对称,B 对最小正周期为22ππ=,C 错 ()26x k k Z ππ-=∈解得()122k x k Z ππ=+∈,12x π=和712x π=都是零点,故D 错.故选:B 【点睛】对于三角函数,求最小正周期和最值时可先把所给三角函数式化为y =Asin (ωx +φ)或y =Acos (ω x +φ)的形式,则最小正周期为2T πω=,最大值为A ,最小值为A -;奇偶性的判断关键是解析式是否为y =Asin ωx 或y =Acos ωx 的形式.5.A解析:A 【分析】将160化为20,10化为80后,利用两角差的余弦公式可求得结果. 【详解】cos 20cos80sin160cos10+cos 20cos80sin 20sin80=+()cos 8020=-cos60=12=. 故选:A .6.A解析:A 【分析】逆用两角差的正切公式先求出tan12tan 721tan12tan 72-+,即可求解.【详解】 因为()tan 1272-tan12tan 721tan12tan 72-=+()tan 60=-=-所以()1tan12tan 721tan12tan723tan 60+===---.故选:A7.D解析:D 【分析】 根据()0f =,代入数据,结合ϕ的范围,即可求得ϕ的值,即可判断①的正误;根据对称中心为π,012⎛⎫⎪⎝⎭,代入公式,可解得ω的表达式,结合ω的范围,即可判断②的正误;根据()f x 解析式,结合x 的范围,即可验证③的正误;根据正切函数的周期公式,即可判断④的正误,即可得答案. 【详解】 对于①:由()03f =知2tan 3ϕ=,即tan 3ϕ=,结合π2ϕ<,解得π6ϕ=.故①正确;对于②:因为π,012⎛⎫⎪⎝⎭为()f x 图象的一个对称中心,故πππ,1262k k Z ω+=∈,解得62,k k Z ω=-∈,因为010ω<<,所以4ω=,故②错误;对于③:当5ππ,243x ⎛⎫∈ ⎪⎝⎭时,π3π4π,62x ⎛⎫+∈ ⎪⎝⎭,故函数()f x 在区间5ππ,243⎛⎫⎪⎝⎭上单调递增,故③正确;对于④:因为4ω=,所以()f x 的最小正周期π4T =,故④正确. 综上,正确的序号为①③④. 故选:D .8.D解析:D 【分析】根据4cos 5θ=-,θ是第三象限的角,先利用半角公式求得tan 2θ,然后代入1tan21tan 2θθ-+求解. 【详解】因为θ为第三象限角,所以2θ可能为二、四象限角,所以tan 32θ===-, 所以1tan1322131tan2θθ-+==--+. 故选:D.9.B解析:B 【分析】利用诱导公式cos160cos 20=-,再利用两角和的正弦公式即可求解. 【详解】sin 20cos10cos160sin10-()sin 20cos10cos 18020sin10=-- sin 20cos10cos 20sin10=+()sin 2010=+sin30=12=故选:B10.C解析:C 【分析】利用两角和的正切公式,特殊角的三角函数值化简已知即可求解. 【详解】26tan34tan 26tan34︒︒+︒+︒26tan 34tan(2634)(1tan 26tan 34)=︒︒+︒+︒-︒︒26tan 34tan 26tan 34)=︒︒+-︒︒26tan3426tan34=︒︒︒︒=故选:C .11.B解析:B 【分析】根据函数图象得到3532,41234T A πππ⎛⎫==--= ⎪⎝⎭ ,进而求得2,2T Tππω===,然后由函数图象过点5,212π⎛⎫⎪⎝⎭求解. 【详解】由函数图象知:3532,41234T A πππ⎛⎫==--= ⎪⎝⎭, 所以2,2T Tππω===, 又函数图象过点5,212π⎛⎫⎪⎝⎭, 所以 522,122k k Z ππϕπ⨯+=+∈, 解得 2,3k k Z πϕπ=-∈,又因为 0πϕ-<<,所以3πϕ=-,所以()f x 的解析式为:()2sin 23f x x π⎛⎫=- ⎪⎝⎭.故选:B 【点睛】本题主要考查三角函数的图象和性质,还考查了数形结合的思想方法,属于中档题.12.B解析:B 【分析】先根据图象求出,,A ωϕ的值即可得()f x 和()g x 的解析式,再利用函数图象的平移变换即可得正确选项. 【详解】 由图知:1A =,74123T πππ⎛⎫=-= ⎪⎝⎭,所以22T πω==,()()cos 2f x x φ=+,当712x π=时,()()cos 2f x x φ=+有最小值,所以()72212k k Z πϕππ⨯+=+∈, 所以()26k k Z πϕπ=-+∈,又因为2πϕ<,所以0,6k πϕ==-,所以()cos 26f x x π⎛⎫=- ⎪⎝⎭,()()cos2cos 2g x x x π=-=-,所以只需要把()cos 26f x x π⎛⎫=- ⎪⎝⎭图象上所有的点向右平移512π个单位长度得()()5cos 2cos 2cos 2126x x x g x πππ⎡⎤⎛⎫--=-=-= ⎪⎢⎥⎝⎭⎣⎦,故选:B 【点睛】关键点点睛:本题的关键点是由函数的部分图象求出,,A ωϕ的值,进而求出()f x 和()g x 的解析式,()()cos2cos 2g x x x π=-=-,由平移变换的规律求解,注意左右平移指一个x 变化多少,此点容易出错,属于中档题.二、填空题13.1【分析】利用辅助角公式和为的形式:根据已知可得是f(x)的图象的对称轴进而求得利用的关系和诱导公式求得的值【详解】解:其中∵对成立∴是f(x)的图象的对称轴即∴故答案为:1【点睛】本题考查三角函数解析:1 【分析】利用辅助角公式和为()Asin x ωϕ+的形式:()sin 2cos2)f x x a x x ϕ=+=+,根据已知可得π8x =是f(x)的图象的对称轴,进而求得ϕ,利用,a ϕ的关系tan a ϕ=和诱导公式求得a 的值. 【详解】解:()sin 2cos2)f x x a x x ϕ=+=+, 其中sin tan a ϕϕϕ===.∵对x R ∀∈,|()|8f x f π⎛⎫≤ ⎪⎝⎭成立, ∴π8x =是f(x)的图象的对称轴,即π2,82k k Z πϕπ⨯+=+∈, ∴,4k k Z πϕπ=+∈,tan 1a ϕ==,故答案为:1. 【点睛】本题考查三角函数的图象和性质,涉及辅助角公式化简三角函数,利用辅助角化简是前提,理解,a ϕ的关系是基础,由对x R ∀∈,|()|8f x f π⎛⎫≤⎪⎝⎭成立,得出π8x =是f(x)的图象的对称轴是关键.14.【分析】函数令求解【详解】已知函数令解得所以其图象的对称轴中距离轴最近的一条对称轴方程为故答案为: 解析:4π-【分析】函数4y x π⎛⎫=- ⎪⎝⎭,令42x k πππ-=+求解.【详解】已知函数sin cos 4y x x x π⎛⎫=-=- ⎪⎝⎭,令,42x k k Z πππ-=+∈,解得 3,4x k k Z ππ=+∈, 所以其图象的对称轴中距离y 轴最近的一条对称轴方程为x =4π-. 故答案为:4π-15.【分析】由余弦函数的定义可得解出即可【详解】由余弦函数的定义可得解得(舍去)或(舍去)或故答案为: 解析:1-【分析】由余弦函数的定义可得cos 10x θ==,解出即可. 【详解】由余弦函数的定义可得cos x θ==, 解得0x =(舍去),或1x =(舍去),或1x =-,1x ∴=-.故答案为:1-.16.【分析】本题首先可根据正弦函数的性质得出然后根据当最大时最小即可得出结果【详解】因为所以因此要使成立的最小须取即故答案为:【点睛】关键点点睛:本题考查正弦函数的性质能否结合正弦函数性质得出是解决本题 解析:8【分析】本题首先可根据正弦函数的性质得出()()max min ()()2m n f x f x f x f x -≤-=,然后根据当()()m n f x f x -最大时m 最小即可得出结果. 【详解】因为()sin f x x =,所以()()max min ()()2m n f x f x f x f x -≤-=,因此要使()()()()()()1223112m m f x f x f x f x f x f x --+-+⋅⋅⋅+-=成立的m 最小,须取10x =、22x π=、332x π=、452x π=、572x π=、692x π=、7112x π=、86x π=,即8m =,故答案为:8. 【点睛】关键点点睛:本题考查正弦函数的性质,能否结合正弦函数性质得出()()max min ()()2m n f x f x f x f x -≤-=是解决本题的关键,考查转化与化归思想,考查学生分析问题和讨论问题的能力,是中档题.17.0【分析】先求出再利用差角的余弦公式求解【详解】因为所以所以故答案为:0解析:0 【分析】 先求出1cos 2θ=-,再利用差角的余弦公式求解. 【详解】因为sin θ=,2πθπ⎛⎫∈ ⎪⎝⎭,所以1cos 2θ=-,所以11cos 0622πθ⎛⎫-=-= ⎪⎝⎭. 故答案为:018.②③【分析】对于①:运用诱导公式化简再运用同角三角函数的关系可判断;对于②:先运用同角三角函数的商数关系切化弦再运用诱导公式可判断;对于③:运用余弦的二倍角公式计算可判断;对于④:运用同角三角函数求解析:②③ 【分析】对于①:运用诱导公式化简,再运用同角三角函数的关系可判断;对于②:先运用同角三角函数的商数关系“切化弦”,再运用诱导公式可判断; 对于③:运用余弦的二倍角公式计算可判断;对于④:运用同角三角函数求得244cos ,sin ,255A B ==再用正弦的和角公式代入可判断. 【详解】对于①:因为()()()sin -cos 21,sin cos 2πααπαπα+-=++所以sin cos 1,sin cos 2αααα+=-所以sin 11cos ,sin 21cos αααα+=-即tan 11,tan 12αα+=-解得tan 3α=-,故①不正确; 对于②:因为()()()00sin 30sin 30tan 30tan 30cos303cos 30---===-=--故②正确;对于③:因为sin α=所以221cos 212sin 1222αα⎛⎫=-=-⨯-=- ⎪ ⎪⎝⎭,故③正确;对于④:因为在锐角三角形ABC 中, 73sin ,cos ,255A B ==所以00,0222A B C πππ<<<<<<,,所以244cos ,sin ,255A B ====所以 ()()sin sin +sin +C A B A B π⎡⎤=-=⎣⎦ 73244117sin cos +cos sin +255255125A B A B ==⨯⨯=,故④不正确, 故答案为:②③.19.【分析】利用二倍角公式与辅助角公式化简解析式为根据定义域求出函数值域为利用可得答案【详解】因为则由得且故故答案为:【点睛】高考解答题对三角三角函数的考查主要以三角恒等变形三角函数的图象和性质利用正余 解析:12【分析】利用二倍角公式与辅助角公式化简解析式为2sin 216x m π⎛⎫+++ ⎪⎝⎭,根据定义域求出函数值域为[,3]m m +,利用17[,3],22m m ⎡⎤+=⎢⎥⎣⎦可得答案. 【详解】因为2()2cos cos f x x x x m =++1cos 222sin 216x x m x m π⎛⎫=++=+++ ⎪⎝⎭.0,2x π⎡⎤∈⎢⎥⎣⎦,2666x ππ7π∴≤+≤,则1sin 2,162x π⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦. ()2sin 21[,3]6f x x m m m π⎛⎫∴=+++∈+ ⎪⎝⎭,由17[,3],22m m ⎡⎤+=⎢⎥⎣⎦得,12m =且732m +=,故12m =. 故答案为:12. 【点睛】高考解答题对三角三角函数的考查主要以三角恒等变形,三角函数的图象和性质,利用正余弦定理解三角形为主,在研究三角函数的图象和性质问题时,一般先运用三角恒等变形,将表达式转化为一个角的三角函数的形式,再结合正弦函数与余弦函数的性质求解.20.【分析】由条件依次算出然后代入即可算出答案【详解】因为为第二象限角且所以所以所以故答案为:解析:34-【分析】由条件依次算出cos α、sin 2α、cos2α,然后代入即可算出答案. 【详解】因为α为第二象限角,且sin 3α=,所以1cos 3α=-所以1sin 22sin cos 2339ααα⎛⎫==⨯-=-⎪⎝⎭,27cos 22cos 19αα=-=-111sin()3499πα+-⨯-===- 故答案为:34-三、解答题21.(1π;(2)最小值1-;最大值2. 【分析】(1)由二倍角公式,两角和的正弦公式化函数为一个角的一个三角函数形式,结合正弦函数性质求得周期; (2)求得26x π+的范围后,由正弦函数性质得最值.【详解】(1)因为2()2cos )f x x x =--()2223sin cos cos x x x x =-+-()22212sin212sin 2x x x x =-+=-cos 222sin 26x x x π⎛⎫==+ ⎪⎝⎭所以22sin 22sin 4463f ππππ⎛⎫⎛⎫=⋅+==⎪ ⎪⎝⎭⎝⎭所以()f x 的周期为22||2T πππω===. (2)当,63x ππ⎡⎤∈-⎢⎥⎣⎦时,252,,2,33666x x πππππ⎡⎤⎡⎤∈-+∈-⎢⎥⎢⎥⎣⎦⎣⎦所以当6x π=-时,函数取得最小值16f π⎛⎫-=- ⎪⎝⎭. 当6x π=时,函数取得最大值26f π⎛⎫= ⎪⎝⎭.【点睛】关键点点睛:本题考查求三角函数的周期,最值.解题方法是利用二倍角公式,诱导公式,两角和与差的正弦(或余弦)公式化函数为一个角的一个三角函数形式,然后结合正弦函数性质求解.22.(1)单调递增区间为,()63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,单调递减区间为5,()36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)34. 【分析】(1)根据图象上相邻两条对称轴的距离为2π可知周期为π,可确定2ω=,然后将点,12a π⎛⎫⎪⎝⎭代入求解出ϕ的值,利用整体法求解原函数的单调区间即可.(2)由(1)中的结果可知()f x 在,122ππ⎡⎤-⎢⎥⎣⎦上的单调性,确定出()f x 在,122ππ⎡⎤-⎢⎥⎣⎦上,得到关于a 的方程求解即可. 【详解】(1)由函数()f x 图象的相邻两条对称轴间的距离为2π, 得函数()f x 的最小正周期T π=, ∴22πωπ==.又函数()f x 的图象过点,12a π⎛⎫⎪⎝⎭,∴21212f a a ππϕ⎛⎫⎛⎫=⨯++=⎪ ⎪⎝⎭⎝⎭, ∴sin 2012πϕ⎛⎫⨯+= ⎪⎝⎭,6k πϕπ+=.∵||2ϕπ<,∴6πϕ=-,则()26f x x a π⎛⎫=-+ ⎪⎝⎭.令222262k x k πππππ-≤-≤+,解得63x k πππ-≤≤+,()k ∈Z ,3222262k x k πππππ+≤-≤+, 解得536k x k ππππ+≤≤+,()k ∈Z ∴函数()f x 的单调递增区间为,()63k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z , 单调递减区间为5,(k )36k k ππππ⎡⎤++∈⎢⎥⎣⎦Z . (2)由(1)知,函数()f x 在,123ππ⎡⎤-⎢⎥⎣⎦上单调递增,在,32ππ⎛⎤⎥⎝⎦上单调递减,又3122f a π⎛⎫-=-+ ⎪⎝⎭,3f a π⎛⎫= ⎪⎝⎭,2f a π⎛⎫=+ ⎪⎝⎭,∴()f x 在区间,122ππ⎡⎤-⎢⎥⎣⎦上的最大值与最小值之和为32a a -++=∴34a =.【点睛】本题考查三角函数图象性质的综合应用,解答时只要方法如下:(1)求解三角函数单调区间时一般采用整体代换法,将自变量部分的代数式当做一个整体,利用正弦函数、余弦函数的单调性列出不等式求解即可;(2)求解三角函数在某固定区间上的最值或值域时,关键是分析清楚原函数在所给区间上的单调性,利用单调性确定取得最大值或最小值的点,确定最值;也可以采用换元法,将函数()sin y A ωx φ=+的最值转化为求sin y A t =的最值问题,只需根据格据正弦函数的图像性质确定即可.23.(1)1ω=;(2)最大值为1;最小值为. 【分析】(1)根据三角函数的倍角公式以及辅助角公式将函数进行化简即可. (2)求出角的取值范围,结合三角函数的最值性质进行判断求解即可. 【详解】解:(1)因为2π()sin(2)(2cos 1)6f x x x ωω=-+-ππ(sin 2cos cos 2sin )cos 266x x x ωωω=-+12cos222x x ωω=+ πsin(2)6x ω=+,所以()f x 的最小正周期2ππ2T ω==,0>ω, 解得1ω=.(2)由(1)得π()sin(2)6f x x =+. 因为7π12x ≤≤0,所以ππ4π2663x +≤≤. 所以,当ππ262x +=,即π6x =时,()f x 取得最大值为1;当π4π263x +=,即7π12x =时,()f x 取得最小值为. 24.(1)[,],36k k k Z ππππ-++∈;(2)若选择①,2m ≤. 若选择②,1m ≤-.【分析】(1)先结合二倍角公式及辅助角公式对已知函数进行化简,然后结合正弦函数的单调性可求; (2)若选择①,由()f x m ≥有解,即max ()m f x ≤,结合正弦函数的性质可求;若选择②,由()f x m ≥恒成立,即min ()m f x ≤,结合正弦函数的性质可求. 【详解】(1)因为()()2cos cos sin f x x x x x =+-22cos s n cos i x x x x =+-2cos2x x =+2sin(2).6x π=+令222,262k x k k Z πππππ-+≤+≤+∈,解得36k x k k Z ππ-+π≤≤+π,∈. 所以函数()f x 的单调递增区间,,.36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦(2)若选择①,由题意可知,不等式()f x m ≥有解,即max ()m f x ≤, 因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以72666x πππ≤+≤, 故当262x ππ+=,即6x π=时,()f x 取得最大值,且最大值为()26f π=,所以2m ≤.若选择②,由()f x m ≥恒成立,即min ()m f x ≤, 因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以72666x πππ≤+≤, 故当7266x ππ+=,即2x π=时,()f x 取得最小值,且最小值为()12f π=-,所以1m ≤- 【点睛】关键点点睛:考查了二倍角公式辅助角公式在三角函数化简中的应用,还考查了正弦函数性质的综合应用,其中,考查了存在性命题与全称命题的理解,理解含量词命题转化成适当的不等式是解题关键,属于中档试题.25.(1)5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(2). 【分析】(1)利用三角恒等变换化简()23f x x π⎛⎫=+ ⎪⎝⎭,再整体代入求单调递增区间;(2)由已知得23f απα⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,求出sin 3πα⎛⎫+ ⎪⎝⎭的值,再利用倍角公式求12f πα⎛⎫- ⎪⎝⎭的值; 【详解】(1)1()cos2cos 2cos2cos22322f x x x x x x π⎛⎫=+-=++ ⎪⎝⎭3cos222223x x x π⎛⎫=+=+ ⎪⎝⎭ 当22,2,322x k k k Z πππππ⎡⎤+∈-+∈⎢⎥⎣⎦,函数()f x 单调递增, 所以()f x 的单调递增区间5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦.(2)由已知得233f απα⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,所以1sin 33πα⎛⎫+= ⎪⎝⎭,而2221263f πππααα⎛⎫⎛⎫⎛⎫-=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭212sin 39πα⎤⎛⎫=-+=- ⎪⎥⎝⎭⎦.【点睛】求正弦型三角函数的单调区间,常用整体代入法,但要注意保证x 的系数为正,才比较不容易出错;求三角函数值时,要注意整体观察角.26.(1)0,3π⎛⎤ ⎥⎝⎦和5,6ππ⎡⎫⎪⎢⎣⎭;(2)1. 【分析】(1)利用两角和差的三角公式结合辅助角公式进行化简,结合周期公式求出ω的值,结合单调性进行求解即可; (2)根据3,88x ππ⎡⎤∈⎢⎥⎣⎦得到7212612x πππ≤-≤可得()f x 最大值.【详解】(1)1()4cos cos 22f x x x x ωωω⎛⎫=- ⎪ ⎪⎝⎭2cos 2cos 2cos 21x x x x x ωωωωω=-=--2sin 216x πω⎛⎫=-- ⎪⎝⎭, 因为()f x 的最小正周期为π,所以22T ππω==. 又0>ω,所以1ω=, 所以()2sin 216f x x π⎛⎫=-- ⎪⎝⎭. 令222()262k x k k πππππ-+≤-≤+∈Z , 得()63k x k k ππππ-+≤≤+∈Z ,所以函数()f x 在(0,)π上的单调递增区间为0,3π⎛⎤ ⎥⎝⎦和5,6ππ⎡⎫⎪⎢⎣⎭. (2)当3,88x ππ⎡⎤∈⎢⎥⎣⎦时,32,44x ππ⎡⎤∈⎢⎥⎣⎦,7212612x πππ≤-≤. 当226x ππ-=,即3x π=时,()f x 取得最大值1. 【点睛】 本题主要考查三角函数的图象和性质,结合两角和差的三角公式以及辅助角公式进行化简,求出函数的解析式,结合的函数的性质是解决本题的关键,难度中等.。

(人教版)南京市必修第一册第五单元《三角函数》测试卷(有答案解析)

(人教版)南京市必修第一册第五单元《三角函数》测试卷(有答案解析)

一、选择题1.下列函数中既是奇函数,又在区间[]1,1-上单调递减的是( ) A .()sin f x x = B .lg y x = C .()f x x =-D .()cos f x x =2.已知()0,πα∈,2sin cos 1αα+=,则cos 21sin 2αα=-( )A .2425-B .725-C .7-D .17-3.函数()2sin(2)33f x x π=-+的最小正周期为( )A .2π B .πC .2πD .4π4.已知α为第二象限角,且π3cos 25α⎛⎫-= ⎪⎝⎭,则tan α=( ). A .34-B .43-C .53-D .45-5.已知一个扇形的半径与弧长相等,且扇形的面积为22cm ,则该扇形的周长为( ) A .6cmB .3cmC .12cmD .8cm6.已知函数()()sin 0,2f x A x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,则()f x 的解析式为( )A .()2sin 26f x x π⎛⎫=+ ⎪⎝⎭B .()2sin 26f x x π⎛⎫=- ⎪⎝⎭C .()sin 23f x x π⎛⎫=+⎪⎝⎭D .()sin 23πf x x ⎛⎫=-⎪⎝⎭7.函数()()sin 0,0,22f x A x A ωϕωϕππ⎛⎫=+>>-<< ⎪⎝⎭的部分图象如图所示,则()f x =( )A .sin 6x ππ⎛⎫+⎪⎝⎭B .sin 3x ππ⎛⎫+⎪⎝⎭C .sin 6x ππ⎛⎫-⎪⎝⎭D .sin 3x ππ⎛⎫-⎪⎝⎭8.把函数sin y x =的图象上所有的点向左平行移动6π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数解析式是( ) A .sin 23y x π⎛⎫=- ⎪⎝⎭B .sin 26x y π⎛⎫=+⎪⎝⎭ C .sin 26y x π⎛⎫=-⎪⎝⎭D .sin 26y x π⎛⎫=+⎪⎝⎭9.将函数()f x 的图象向左平移02πϕϕ⎛⎫<< ⎪⎝⎭个单位后得到函数()sin 2g x x =的图象,若对满足()()122f x g x -=的1x ,2x ,有12min3x x π-=,则ϕ=( ) A .512π B .3π C .4π D .6π10.已知sin()cos(2)()cos()tan x x f x x xπππ--=--,则313f π⎛⎫- ⎪⎝⎭的值为( ) A .12B .13 C .12-D .13-11.已知函数()()()sin 0,0f x A x =+>-π<<ωϕωϕ的部分图象如图所示.则()f x 的解析式为( ).A .()2sin 12f x x π⎛⎫=- ⎪⎝⎭B .()2sin 23f x x π⎛⎫=- ⎪⎝⎭C .()2sin 26f x x π⎛⎫=-⎪⎝⎭D .()32sin 34f x x π=-⎛⎫ ⎪⎝⎭12.若4cos ,5αα=-是第三象限角,则sin α等于( )A .35B .35C .34D .34-二、填空题13.已知()0,απ∈且tan 3α=,则cos α=______. 14.在半径为2米的圆形弯道中,56π角所对应的弯道为_________. 15.化简cos()sin()2sin()cos()πααπααπ+-=--___________.16.已知()tan 3πα+=,则2tan 2sin αα-的值为_______. 17.如下图所示,某农场有一块扇形农田,其半径为100m ,圆心角为3π,现要按图中方法在农田中围出一个面积最大的内接矩形用于种植,则围出的矩形农田的面积为___________2m .18.设α、β都是锐角,且()53cos 5ααβ=+=,则cos β=____________. 19.已知α,β,且()()1tan 1tan 2αβ-+=,则αβ-=______. 20.已知sin θ+cos θ=15,则tan θ+cos sin θθ的值是____________________.三、解答题21.已知函数()2cos 3sin cos f x x x x =+.(1)求()f x 的最小正周期; (2)函数()f x 的单调递减区间. 22.已知()()sin23cos2f x x x x R =+∈(1)求56f π⎛⎫⎪⎝⎭的值; (2)若0,4x π⎡⎤∈⎢⎥⎣⎦,求函数()f x 的取值范围. 23.设1cos 29βα⎛⎫-=- ⎪⎝⎭,2sin 23αβ⎛⎫-= ⎪⎝⎭,其中,2παπ⎛⎫∈ ⎪⎝⎭,0,2πβ⎛⎫∈ ⎪⎝⎭. (1)求2βα-以及2αβ-的取值范围.(2)求cos2αβ+的值.24.已知函数()sin (sin 3cos )1f x x x x =+-. (1)若(0,)2πα∈,且1sin 2α=,求()f α的值;(2)求函数()f x 的最小正周期及单调递增区间.25.如图为函数()sin()(0,0,||)2f x A x A πωφωφ=+>><的一个周期内的图象.(1)求函数()f x 的解析式及单调递减区间; (2)当1,43x ⎛⎫∈ ⎪⎝⎭时,求()f x 的值域. 26.已知3cos cos 5αβ+=,4sin sin 5αβ+=,求()cos αβ-的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】根据基本初等函数的性质,以及函数奇偶性的定义,逐项判定,即可求解. 【详解】对于A 中,函数()sin f x x =,根据正弦函数的性质,可得函数()sin f x x =在[]1,1-上单调递增,不符合题意;对于B 中,函数lg y x =,满足()()lg lg f x x x f x -=-==,所以函数lg y x =为偶函数,不符合题意;对于C 中,函数()f x x =-,根据一次函数的性质,可得函数()f x x =-为奇函数,且在[]1,1-上单调递减函数,符合题意;对于D 中,函数()cos f x x =,满足()()cos()cos f x x x f x -=-==,所以函数()cos f x x =为偶函数,不符合题意.故选:C.2.D解析:D 【分析】利用22sin cos 1αα+=以及2sin cos 1αα+=解出sin α,cos α的值,再利用二倍角公式化简即可求解. 【详解】因为2sin cos 1αα+=,所以cos 12sin αα=-, 代入22sin cos 1αα+=得()22sin 12sin 1αα+-=, 因为()0,πα∈,所以4sin 5α,所以43cos 12sin 1255αα=-=-⨯=-,所以4324sin 22sin cos 25525ααα⎛⎫==⨯⨯-=- ⎪⎝⎭, 2247cos 212sin 12525αα⎛⎫=-=-⨯=- ⎪⎝⎭cos 211sin 2717252425αα-==--⎛⎫- ⎪⎭-⎝, 故选:D 【点睛】关键点点睛:本题的关键点是熟记同角三角函数基本关系,以及三角函数值在每个象限内的符号,熟记正余弦的二倍角公式,计算仔细.3.B解析:B 【分析】利用函数()sin y A ωx φ=+的周期公式2T ωπ=即可求解.【详解】22T ππ==, 故函数()2sin(2)33f x x π=-+的最小正周期为π,故选:B4.A解析:A 【分析】 由已知求出3sin 5α=,即可得cos α,进而求出所求. 【详解】 ∵π3cos 25α⎛⎫-=⎪⎝⎭,∴3sin 5α=,∵α为第二象限角,∴4cos 5α==-, ∴sin 3tan cos 4ααα==-. 故选:A .5.A解析:A 【分析】由题意利用扇形的面积公式可得2122R =,解得R 的值,即可得解扇形的周长的值.【详解】解:设扇形的半径为Rcm ,则弧长l Rcm =, 又因为扇形的面积为22cm , 所以2122R =,解得2R cm =, 故扇形的周长为6cm . 故选:A .6.A解析:A【分析】利用图象可得出()max A f x =,求出函数()f x 的最小正周期,可求得ω的值,再将点,26π⎛⎫⎪⎝⎭代入函数()f x 的解析式,结合ϕ的取值范围,求出ϕ的值,进而可得出函数()f x 的解析式.【详解】由图象可得()max 2A f x ==,函数()f x 的最小正周期为2236T πππ⎛⎫=⨯-=⎪⎝⎭, 22Tπω∴==,()()2sin 2f x x ϕ∴=+, 又2sin 2266f ππϕ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,可得sin 13πϕ⎛⎫+= ⎪⎝⎭, 22ππϕ-<<,5636πππϕ∴-<+<,32ππϕ∴+=,解得6π=ϕ, 因此,()2sin 26f x x π⎛⎫=+ ⎪⎝⎭. 故选:A. 【点睛】方法点睛:根据三角函数()()sin f x A x b ωϕ=++的部分图象求函数解析式的方法: (1)求A 、()()max min:2f x f x b A -=,()()max min2f x f x b +=;(2)求出函数的最小正周期T ,进而得出2Tπω=; (3)取特殊点代入函数可求得ϕ的值.7.C解析:C 【分析】由函数的图象的顶点坐标求出A ,由周期求出ω,由五点法作图求出ϕ的值,从而得到函数的解析式. 【详解】解:由图象可得1A =,再根据35134362T =-=,可得2T =, 所以22πωπ==, 再根据五点法作图可得1,6k k Z πϕπ⨯+=∈,求得6πϕ=-,故函数的解析式为()sin 6f x x ππ⎛⎫=- ⎪⎝⎭. 故选:C.8.D解析:D 【分析】根据三角函数的图象变换规律可得解析式. 【详解】函数sin y x =的图象上所有的点向左平行移动6π个单位长度,得sin 6y x π⎛⎫=+ ⎪⎝⎭,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),可得sin 26y x π⎛⎫=+ ⎪⎝⎭. 故选:D .9.D解析:D 【分析】利用三角函数的最值,取自变量1x 、2x 的特值,然后判断选项即可. 【详解】因为函数()sin 2g x x =的周期为π,由题意可得:()()sin 2x f x ϕ=-⎡⎤⎣⎦, 若()()122f x g x -=,两个函数的最大值与最小值的差等于2,有12min3x x π-=,所以不妨取24x π=,则1712x π=,即()()sin 2x f x ϕ=-⎡⎤⎣⎦在1712x π=取得最小值, 所以77121s 12in 2f ϕππ⎛⎫=-=- ⎪⎡⎤⎛⎫⎪⎢⎝⎥⎭⎣⎦⎭⎝,此时5+,6k k Z πϕπ=∈,又02πϕ<<,所以此时不符合题意,取24x π=,则112x π=-,即()()sin 2x f x ϕ=-⎡⎤⎣⎦在112x π=-取得最小值, 所以12sin 21ϕπ⎡⎤⎛⎫-=- ⎪⎢⎥⎝⎭⎣⎦-,此时,6k k Z πϕπ=-∈,当0k =时,6π=ϕ满足题意,故选:D . 【点睛】本题考查三角函数的图象的平移,三角函数性质之最值,关键在于取出2x ,得出1x ,再利用正弦函数取得最小值的点,求得ϕ的值,属于中档题.10.C解析:C 【分析】利用诱导公式先化简整理函数()f x ,再利用诱导公式求值即可. 【详解】 由sin()cos(2)()cos()tan x x f x x xπππ--=--,利用诱导公式得:sin cos ()cos cos tan x xf x x x x==--,所以31311cos cos 103332f ππππ⎛⎫⎛⎫⎛⎫-=--=---=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; 故选:C.11.B解析:B 【分析】根据函数图象得到3532,41234T A πππ⎛⎫==--= ⎪⎝⎭ ,进而求得2,2T Tππω===,然后由函数图象过点5,212π⎛⎫⎪⎝⎭求解. 【详解】由函数图象知:3532,41234T A πππ⎛⎫==--= ⎪⎝⎭, 所以2,2T Tππω===, 又函数图象过点5,212π⎛⎫⎪⎝⎭, 所以 522,122k k Z ππϕπ⨯+=+∈, 解得 2,3k k Z πϕπ=-∈,又因为 0πϕ-<<,所以3πϕ=-,所以()f x 的解析式为:()2sin 23f x x π⎛⎫=- ⎪⎝⎭. 故选:B 【点睛】本题主要考查三角函数的图象和性质,还考查了数形结合的思想方法,属于中档题.12.B解析:B【分析】运用同角的三角函数关系式直接求解即可. 【详解】4cos ,5a a =-是第三象限角,3sin 5a ∴==-,故选:B 二、填空题13.【分析】本题考查同角三角函数及其关系借助公式求解即可求解时需要判定符号的正负【详解】解:法一:由可得代入解得因为所以所以法二:由且可取终边上的一点坐标为根据三角函数终边定义公式故答案为:【点睛】方法解析:10【分析】本题考查同角三角函数及其关系,借助公式sin tan cos ααα=,22sin +cos =1αα求解即可,求解时需要判定符号的正负. 【详解】解:法一:由sin tan =3cos ααα=可得sin =3cos αα,代入22sin +cos =1αα解得cos α= 因为()0,tan 30απα∈=>,,所以0,2πα⎛⎫∈ ⎪⎝⎭,所以cos α=. 法二:由()0,απ∈且tan 3α=可取α终边上的一点坐标为(1,3),根据三角函数终边定义公式cos 10α===.故答案为:10. 【点睛】方法点睛:同角三角函数基本关系的3个应用技巧: (1)弦切互化利用公式sin tan ()cos 2k απααπα=≠+实现角α的弦切互化; (2)和(差)积转换利用2(sin cos )=1sin 2ααα±±进行变形、转化;(3)巧用“1”的变换22222211sin+cos =cos (tan 1)sin (1)tan αααααα=+=+. 14.【分析】根据扇形的弧长公式即可求解【详解】由题意根据扇形的弧长公式可得所对应的弯道为故答案为: 解析:53π 【分析】根据扇形的弧长公式,即可求解. 【详解】由题意,根据扇形的弧长公式,可得所对应的弯道为55263ππ⨯=. 故答案为:53π. 15.【分析】利用诱导公式直接化简即可【详解】故答案为: 解析:tan α-【分析】利用诱导公式直接化简即可. 【详解】cos()sin()(sin )(sin )2tan sin()cos()sin (cos )παααααπααπαα+--⋅-==----,故答案为:tan α-.16.【分析】利用诱导公式求出再利用二倍角公式求出以及同角三角函数的基本关系求出即可得解;【详解】解:由题意所以所以所以故答案为: 解析:3320-【分析】利用诱导公式求出tan α,再利用二倍角公式求出tan2α,以及同角三角函数的基本关系求出2sin α,即可得解; 【详解】解:由题意()tan 3πα+=,所以tan 3α=,所以22tan 3tan 21tan 4ααα==--,222222sin tan 9sin sin cos tan 110αααααα===++,所以23933tan 2sin 41020αα-=--=-. 故答案为:3320-17.【分析】设利用直角三角形的边角关系和正弦定理分别求出矩形各边的边长表示出矩形的面积为借助于三角函数辅助角公式求出最大值即可【详解】解:如图:做的角平分线交于设则在中由正弦定理可知:则所以矩形农田的面 解析:()1000023-【分析】设EOA θ∠=,利用直角三角形的边角关系和正弦定理分别求出矩形各边的边长,表示出矩形的面积为()2sin 302sin S R R θθ=-⋅,借助于三角函数辅助角公式求出最大值即可. 【详解】解:如图:做AOB ∠的角平分线交BE 于D ,设EOA θ∠=,则()22sin 30DE R θ=-,150OFE ∠=,在OFE △中,由正弦定理可知:sin sin150EF Rθ= ,则2sin EF R θ= 所以矩形农田的面积为:()22sin 302sin 4sin sin(30)S R R R θθθθ=-⋅=- 22132sin 2cos 2322R R θθ⎛⎫=+- ⎪ ⎪⎝⎭()222sin 2603R R θ=+-当()sin 2601θ+=时,即15θ=时,S 有最大值为()223R-又100R =,所以面积的最大值为()1000023-. 故答案为:()1000023-.【点睛】本题考查在扇形中求矩形面积的最值,属于中档题. 思路点睛:(1)在扇形中求矩形的面积,关键是设出合适的变量,一般情况下是以角度为变量; (2)合理的把长和宽放在三角形中,利用角度表示矩形的长和宽; (3)对三角函数合理变形,从而求出面积.18.【分析】由α是锐角求出的值再由β是锐角得出的值将角转化成利用两角和差的余弦公式化简计算并验证即可【详解】因为α是锐角所以因为β是锐角所以又所以所以当时此时即与矛盾舍去当时符合要求故答案为:【点睛】本解析:25【分析】由α是锐角,cos 5α=求出sin α的值,再由β是锐角,()3sin 5αβ+=得出()cos αβ+的值,将β角转化成()αβα+-,利用两角和差的余弦公式化简计算,并验证即可. 【详解】因为α是锐角,cos 5α=,所以sin 5α==, 因为β是锐角,所以0αβ<+<π,又()3sin 5αβ+=,所以()4cos 5αβ+==±, 所以()()()cos cos cos cos sin sin βαβααβααβα=+-=+++当()4cos 5αβ+=时, 43cos +55555β=⨯⨯=,此时cos sin βα=,即2παβ+=,与()3sin 5αβ+=矛盾,舍去,当()4cos 5αβ+=-时, 43cos 55β=-=.故答案为:25【点睛】本题主要考查了两角和与差的正余弦公式以及同角三角函数基本关系,属于中档题,熟练掌无公式并应用是解题的关键.19.【分析】将原式打开变形然后根据正切的差角公式求解【详解】即即即故答案为:【点睛】本题考查正切的和差角公式的运用常见的变形形式有:(1);(2) 解析:()+4k k Z ππ-∈【分析】将原式打开变形,然后根据正切的差角公式求解. 【详解】()()1tan 1tan 1tan tan tan tan 2αβαβαβ-+=-+-=,即tan tan 1tan tan βααβ-=+,tan tan 11tan tan βααβ-∴=+,即()tan 1βα-=,()π4k k Z βαπ∴-=+∈,即()+4k k Z παβπ-=-∈. 故答案为: ()+4k k Z ππ-∈.【点睛】本题考查正切的和差角公式的运用,常见的变形形式有: (1)()()tan tan tan tan tan tan αβαβαβαβ+=+++⋅⋅; (2)()()tan tan tan tan tan tan αβαβαβαβ-=---⋅⋅.20.【分析】先通过已知求出再化简tanθ+即得解【详解】由sinθ+cosθ=得tanθ+故答案为:【点睛】关键点睛:解答本题的关键是把sinθ+cosθ=两边平方得到 解析:2512-【分析】先通过已知求出12sin cos 25θθ=-,再化简tan θ+cos sin θθ即得解. 【详解】 由sin θ+cos θ=15得1121+2sin cos ,sin cos 2525θθθθ=∴=-. tan θ+cos sin θθsin cos 125cos sin sin cos 12θθθθθθ=+==-.故答案为:2512- 【点睛】关键点睛:解答本题的关键是把sin θ+cos θ=15两边平方得到12sin cos 25θθ=-. 三、解答题21.(1)π;(2)2,,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【分析】(1)利用二倍角的正弦、余弦公式将函数化为()1sin 262f x x π⎛⎫=++ ⎪⎝⎭,由周期公式即可求解.(2)由正弦函数的单调递减区间32,2,22k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,整体代入即可求解. 【详解】(1)()21cos 21cos cos sin 2262x f x x x x x π+⎛⎫===++ ⎪⎝⎭, 所以函数的最小正周期222T πππω===, (2)3222,262k x k k Z πππππ+≤+≤+∈, 解不等式可得2,63k x k k Z ππππ+≤≤+∈, 所以函数()f x 的单调递减区间为2,,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦22.(1)0;(2)[]1,2. 【分析】(1)本题可直接将56x π=代入函数()f x 中,通过计算即可得出结果; (2)本题首先可根据两角和的正弦公式将函数()f x 转化为()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,然后根据0,4x π⎡⎤∈⎢⎥⎣⎦得出52,336x πππ⎡⎤+∈⎢⎥⎣⎦,最后根据正弦函数的性质即可得出结果. 【详解】(1)555sin 0633f πππ⎛⎫===⎪⎝⎭,(2)()sin 222sin 23f x x x x π⎛⎫=+=+⎪⎝⎭, 当0,4x π⎡⎤∈⎢⎥⎣⎦时,52,336x πππ⎡⎤+∈⎢⎥⎣⎦, 则1sin 2,132x π⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦,函数()f x 的取值范围为[]1,2.23.(1)22πβαπ<-<,022απβ<-<;(2 【分析】 (1)由,2παπ⎛⎫∈⎪⎝⎭,0,2πβ⎛⎫∈ ⎪⎝⎭以及不等式知识求出,24βπαπ⎛⎫-∈ ⎪⎝⎭,,242αππβ⎛⎫-∈- ⎪⎝⎭,再根据1cos 29βα⎛⎫-=- ⎪⎝⎭,2sin 23αβ⎛⎫-= ⎪⎝⎭可得,22βπαπ⎛⎫-∈ ⎪⎝⎭,0,22απβ⎛⎫-∈ ⎪⎝⎭. (2)根据cos cos 222αββααβ⎡⎤+⎛⎫⎛⎫=--- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,利用两角差的余弦公式可求得结果.【详解】 (1),2παπ⎛⎫∈⎪⎝⎭,0,2πβ⎛⎫∈ ⎪⎝⎭,,242αππ⎛⎫∴∈ ⎪⎝⎭,0,24βπ⎛⎫∈ ⎪⎝⎭,,02πβ⎛⎫-∈- ⎪⎝⎭, ,224αππ⎛⎫∴-∈-- ⎪⎝⎭,,024βπ⎛⎫-∈- ⎪⎝⎭,,24βπαπ⎛⎫∴-∈ ⎪⎝⎭,,242αππβ⎛⎫-∈- ⎪⎝⎭, 又1cos 29βα⎛⎫-=- ⎪⎝⎭,2sin 23αβ⎛⎫-= ⎪⎝⎭,所以22πβαπ<-<,022απβ<-<.(2)coscos 222αββααβ⎡⎤+⎛⎫⎛⎫=--- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦cos cos sin sin 2222βαβααβαβ⎛⎫⎛⎫⎛⎫⎛⎫=--+-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,又1cos 29βα⎛⎫-=- ⎪⎝⎭且,22βπαπ⎛⎫-∈ ⎪⎝⎭,sin 2βα⎛⎫∴-== ⎪⎝⎭, 又2sin 23αβ⎛⎫-= ⎪⎝⎭,0,22απβ⎛⎫-∈ ⎪⎝⎭,cos 2αβ⎛⎫∴-==⎪⎝⎭12cos2939327αβ+∴=-⋅+⋅=【点睛】关键点点睛:将所求角拆成两个已知角进行求解是解题关键. 24.(1)12;(2)T π=;调递增区间为[,]63k k ππππ-+,k Z ∈. 【分析】先把函数()f x 化简,(1)根据条件即可求出角α的大小,代入解析式即可求解.(2)根据周期定义即可求出周期,再利用整体代换思想代入正弦函数的递增区间求出x 的范围即可求解. 【详解】21()sin (sin )1sin cos 1sin(2)62f x x x x x x x x π=-=-=--,(1)由(0,)2πα∈,1sin 2α=,可得6πα=,所以1()sin(2)sin 66662f ππππ=⨯-==,(2)函数周期为22T ππ==, 令2[2,2]622x k k πππππ-∈-+,k Z ∈, 解得[,]63x k k ππππ∈-+,k Z ∈, 所以函数()f x 的单调递增区间为[,]63k k ππππ-+,k Z ∈.25.(1)()2sin()44f x x ππ=+,[]8 1.85,k k k Z ++∈;(2)(2⎤⎦. 【分析】(1)由图可求出()2sin()44f x x ππ=+,令322()2442k x k k Z ππππππ+≤+≤+∈,即可求出单调递减区间; (2)由题可得5,4434x ππππ⎛⎫+∈ ⎪⎝⎭,则可求得值域. 【详解】(1)由题图,知2,7(1)8A T ==--=, 所以2284T πππω===, 所以()2sin()4f x x πφ=+.将点(-1,0)代入,得2sin()04πφ-+=.因为||2πφ<,所以4πφ=,所以()2sin()44f x x ππ=+.令322()2442k x k k Z ππππππ+≤+≤+∈, 得8185()k x k k Z +≤≤+∈.所以()f x 的单调递减区间为[]8 1.85,k k k Z ++∈. (2)当1,43x ⎛⎫∈ ⎪⎝⎭时,5,4434x ππππ⎛⎫+∈ ⎪⎝⎭,此时sin()1244x ππ-<+≤,则()2f x <≤,即()f x 的值域为(2⎤⎦. 【点睛】方法点睛:根据三角函数()sin()f x A x ωϕ=+部分图象求解析式的方法: (1)根据图象的最值可求出A ; (2)求出函数的周期,利用2T πω=求出ω;(3)取点代入函数可求得ϕ.26.12-【分析】根据3cos cos 5αβ+=,4sin sin 5αβ+=,分别平方两式相加,利用两角差的余弦公式求解. 【详解】因为3cos cos 5αβ+=,4sin sin 5αβ+=, 所以()2229cos cos cos 2cos cos cos 25αβααββ+=+⋅+=, ()22216sin sin sin 2sin sin sin 25αβααββ+=+⋅+=, 两式相加得:()22cos 1αβ+-=, 所以()1cos 2αβ-=- 故答案为:12-。

三角函数单元测试题

三角函数单元测试题

三角函数单元测试题测试题答案如下:1. 计算下列各式的值:a) sin(30°) = 0.5b) cos(45°) = 0.707c) tan(60°) = 1.7322. 判断下列各式的真假:a) sin(45°) = cos(45°) Trueb) cos(180°) = -1 Truec) tan(90°) = undefined True3. 将下列各式化简为最简形式:a) sin²(α) + cos²(α) = 1b) tan²(α) + 1 = sec²(α)c) 1 + cot²(α) = csc²(α)4. 求解下列各式中的未知数:a) sin(θ) = 0.5 → θ = 30° or 150° + n*360°b) cos(x) = -0.866 → x = 150° or 210° + n*360°c) tan(φ) = 1 → φ = 45° + n*180°5. 根据给定的三角函数值,求解下列各式中的未知数:a) sin(α) = -0.5 → α = 210° or 330° + n*360°b) cos(β) = 0.866 → β = 30° or 330° + n*360°c) tan(γ) = -1.732 → γ = 240° + n*180°6. 利用三角函数的相互关系求解下列各式:a) sin(θ) = cos(θ - 90°)b) cos(θ) = sin(90° - θ)c) tan(θ) = cot(θ - 90°)7. 根据给定的三角函数值,求解下列各式中的未知数:a) sin(θ) = 0.866, θ∈[0°, 180°] → θ = 60°b) cos(θ) = -0.5, θ∈[180°, 360°] → θ = 240°c) tan(θ) = -1, θ∈[180°, 360°] → θ = 225°8. 根据给定的三角函数值,求解下列各式中的未知数:a) sin(θ) = -0.707, θ∈[0°, 360°] → θ = 225° or 315°b) cos(θ) = -0.866, θ∈[0°, 360°] → θ = 150° or 210°c) tan(θ) = 1, θ∈[0°, 360°] → θ = 45° or 225°9. 求解下列各式中的未知数:a) s in(2x) = 0.5 → x = 15° or 75° + n*180°b) cos(2x) = -0.866 → x = 150° or 210° + n*180°c) tan(2x) = -1.732 → x = 150° + n*180°10. 根据给定的三角函数关系,求解下列各式中的未知数:a) sin(2α) = sin(120°) → 2α = 120° + n*360° → α = 60° + n*180°b) cos(2β) = cos(240°) → 2β = 240° + n*360° → β = 120° + n*180°c) tan(2γ) = tan(60°) → 2γ = 60° + n*180° → γ = 30° + n*90°以上就是三角函数单元测试题的答案,希望能够帮助你更好地理解和应用三角函数的知识。

(人教版)南京市必修第一册第五单元《三角函数》测试(包含答案解析)

(人教版)南京市必修第一册第五单元《三角函数》测试(包含答案解析)

一、选择题1.函数()sin()(0)f x x ωϕω=+>的一段图象如图所示,则ω=( )A .14B .2π C .4π D .122.已知函数()sin()(0)f x x ωω=>在区间,123ππ⎛⎤- ⎥⎝⎦上单调递增,在区间5,312ππ⎡⎫⎪⎢⎣⎭上单调递减,则ω=( ) A .362k -,k ∈N B .362k +,k ∈N C .32D .33.已知()3sin 5πα+=,则sin()cos()sin 2απαπα--=⎛⎫- ⎪⎝⎭( ) A .45-B .45C .35D .354.cos75cos15sin75sin15︒⋅︒+︒⋅︒的值是( ) A .0B .12C .32D .15.已知函数()2sin 46f x x π⎛⎫=+ ⎪⎝⎭,则( )A .()f x 的最小正周期为πB .()f x 的单调递增区间为(),26212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z C .()f x 的图象关于直线6x π=对称D .()f x 的图象关于点,024π⎛⎫⎪⎝⎭对称6.函数1()11f x x=+-的图象与函数()2sin 1(24)g x x x π=+-的图象所有交点的横坐标之和等于( ) A .8 B .6 C .4 D .27.sin15cos15+=( )A .12B .2C D8.已知函数()()π2tan 010,2f x x ωϕωϕ⎛⎫=+<<<⎪⎝⎭,()0f =,π,012⎛⎫ ⎪⎝⎭为()f x 图象的一个对称中心.现给出以下四种说法:①π6ϕ=;②2ω=;③函数()f x 在区间5ππ,243⎛⎫⎪⎝⎭上单调递增;④函数()f x 的最小正周期为π4.则上述说法正确的序号为( ) A .①④B .③④C .①②④D .①③④9.若函数sin 3y x πω⎛⎫=+ ⎪⎝⎭的图象向右平移6π个单位后与函数cos y x ω=的图象重合,则ω的值可能为( ) A .1- B .2-C .1D .210.若1sin 63πα⎛⎫-= ⎪⎝⎭,则2cos 23πα⎛⎫+ ⎪⎝⎭等于( ).A .79-B .13-C .13D .7911.要得到cos 26y x π⎛⎫=- ⎪⎝⎭的图像,只需将函数sin 22y x π⎛⎫=+⎪⎝⎭的图像( ) A .向左平移12π个单位B .向右平移12π个单位C .向左平移6π个单位 D .向右平移6π个单位 12.刘徽是中国魏晋时期杰出的数学家,他提出“割圆求周”方法:当n 很大时,用圆内接正n 边形的周长近似等于圆周长,并计算出精确度很高的圆周率 3.1416π≈.在《九章算术注》中总结出“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”的极限思想,可以说他是中国古代极限思想的杰出代表.运用此思想,当π取3.1416时可得cos89︒的近似值为( ) A .0.00873B .0.01745C .0.02618D .0.03491二、填空题13.已知()0,απ∈且tan 3α=,则cos α=______.14.设函数()sin (0,0)6f x A x A πωω⎛⎫=->> ⎪⎝⎭,[]0,2x π∈,若()f x 恰有4个零点,则下述结论中:①0()()f x f x ≥恒成立,则0x 的值有且仅有2个;②存在0>ω,使得()f x 在80,19π⎡⎤⎢⎥⎣⎦上单调递增;③方程1()2f x A =一定有4个实数根,其中真命题的序号为_________.15.化简cos()sin()2sin()cos()πααπααπ+-=--___________.16.已知角α的终边经过点()3,4P -,则sin 2cos αα+的值等于______. 17.若3sin 45πα⎛⎫-=- ⎪⎝⎭,则sin2α=_____; 18.已知7sin cos 17αα+=,()0,απ∈,则tan α= ________. 19.已知2sin 3θ=-,3,2πθπ⎛⎫∈ ⎪⎝⎭,则tan θ=______. 20.已知函数()cos 2f x x =,若12,x x 满足12|()()|2f x f x -=,则12||x x -的一个取值为________.三、解答题21.已知tan 1tan 1αα=--,求下列各式的值:(1)sin 3cos sin cos αααα-+;(2)2sin sin cos 2ααα++. 22.已知 3sin 5α=,12cos 13,,2παπ⎛⎫∈ ⎪⎝⎭,3,2πβπ⎛⎫∈ ⎪⎝⎭ 求sin()αβ+,cos()αβ-,tan2α的值. 23.已知()()cos 0f x x ωω=>(1)若f (x )的周期是π,求ω,并求此时()12f x =的解集; (2)若()()()21,2g x fx x f x πω⎛⎫==+-+ ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦,求()g x 的值域.24.已知在扇形OPQ 中,半径1OP =,圆心角3POQ π∠=.从该扇形中截取一个矩形ABCD ,有以下两种方案:方案一:(如图1)C 是扇形弧上的动点,记COP a ∠=,矩形ABCD 内接于扇形;方案二:(如图2)M 是扇形弧的中点,A 、B 分别是弧PM 和MQ 上的点,记AOM BOM β∠=∠=,矩形ABCD 内接于扇形.要使截取的矩形面积最大,应选取哪种方案?并求出矩形的最大面积.25.已知函数23()3cos sin()sin()36f x x x x ππ=++--(1)求()f x 的最小正周期及对称中心; (2)若1()6f α=,且()123ππα∈,,求cos2α的值. 26.如图,扇形ABC 是一块半径为2千米,圆心角为60的风景区,P 点在弧BC 上,现欲在风景区中规划三条商业街道,要求街道PQ 与AB 垂直,街道PR 与AC 垂直,线段RQ 表示第三条街道.(1)如果P 位于弧BC 的中点,求三条街道的总长度;(2)由于环境的原因,三条街道PQ 、PR 、RQ 每年能产生的经济效益分别为每千米300万元、200万元及400万元,问:这三条街道每年能产生的经济总效益最高为多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据函数的图象,求得函数的最小正周期,结合三角函数周期的公式,即可求解. 【详解】由题意,函数()sin()(0)f x x ωϕω=+>的一段图象, 可得2114T=-=,所以4T =,又由24w π=,解得2w π=. 故选:B. 2.C解析:C 【分析】 由题意知,当3x π=时,函数()f x 取得最大值,可求得362k ω=+,k ∈N .再由函数的单调区间得出不等式组,解之可得选项. 【详解】 由题意知,当3x π=时,函数()f x 取得最大值,所以232k ππωπ⋅=+,k Z ∈.得362k ω=+,k ∈N .因为()f x 在区间,123ππ⎛⎤-⎥⎝⎦上递增,在5,312ππ⎡⎫⎪⎢⎣⎭上递减,所以312πππω≥+且5123πππω≥-, 解得1205ω<≤.因此32ω=.故选:C.3.C解析:C 【分析】由条件利用诱导公式进行化简所给的式子,可得结果. 【详解】 ∵3sin()sin 5παα+==-,∴3sin 5α=-, 则sin()cos()sin (cos )3sin cos 5sin 2απααααπαα---⋅-===-⎛⎫- ⎪⎝⎭, 故选:C4.B解析:B 【分析】由两角和的余弦公式化简计算.原式=1cos(7515)cos 602︒-︒=︒=. 故选:B .5.B解析:B 【分析】对A ,根据解析式可直接求出最小正周期;对B ,令242,262k x k k Z πππππ-+≤+≤+∈可求出单调递增区间;对C ,计算6f π⎛⎫⎪⎝⎭可判断; 对D ,计算24f π⎛⎫⎪⎝⎭可判断.【详解】 对于A ,()2sin 46f x x π⎛⎫=+ ⎪⎝⎭,∴()f x 的最小正周期为242T ππ==,故A 错误;对于B ,令242,262k x k k Z πππππ-+≤+≤+∈,解得,26212k k x k Z ππππ-≤≤+∈,∴()f x 的单调递增区间为(),26212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,故B 正确;对于C ,2sin 412666f πππ⎛⎫⨯+=≠± ⎪⎝=⎭⎛⎫ ⎪⎝⎭,∴()f x 的图象不关于直线6x π=对称,故C 错误;对于D ,2sin 4026244f πππ⎛⎫⨯⎛⎫= +=≠ ⎪⎭⎭⎪⎝⎝,∴()f x 的图象不关于点,024π⎛⎫⎪⎝⎭对称. 故选B. 【点睛】方法点睛:判断正弦型函数()()=sin f x A x ωϕ+对称轴或对称中心的方法: (1)利用正弦函数的性质求出对称轴或对称中心,令()2x k k Z πωϕπ+=+∈可求得对称轴,令()x k k Z ωϕπ+=∈可求得对称中心;(2)代入求值判断,若()()00=sin f x A x A ωϕ+=±,则0x x =是对称轴;若()()00=sin 0f x A x ωϕ+=,则()0,0x 是对称中心. 6.A解析:A 【分析】根据函数图象的对称性,可知交点关于对称中心对称,即可求解.由函数图象的平移可知,函数1()11f x x=+-与函数()2sin 1g x x π=+的图象都关于(1,1)M 对称. 作出函数的图象如图,由图象可知交点个数一共8个(四组,两两关于点(1,1)对称), 所以所有交点的横坐标之和等于428⨯=. 故选:A 【点睛】关键点点睛:由基本初等函数及图象的平移可知1()11f x x=+-与()2sin 1g x x π=+都是关于(1,1)中心对称,因此图象交点也关于(1,1)对称,每组对称点的横坐标之和为2,由图象可知共8个交点,4组对称点.7.D解析:D 【分析】由辅助角公式可直接计算得到结果. 【详解】()6sin15cos152sin 15452sin 602+=+==. 故选:D.8.D解析:D 【分析】 根据()230f =,代入数据,结合ϕ的范围,即可求得ϕ的值,即可判断①的正误;根据对称中心为π,012⎛⎫⎪⎝⎭,代入公式,可解得ω的表达式,结合ω的范围,即可判断②的正误;根据()f x 解析式,结合x 的范围,即可验证③的正误;根据正切函数的周期公式,即可判断④的正误,即可得答案. 【详解】对于①:由()03f =知2tan 3ϕ=,即tan 3ϕ=,结合π2ϕ<,解得π6ϕ=.故①正确;对于②:因为π,012⎛⎫⎪⎝⎭为()f x 图象的一个对称中心,故πππ,1262k k Z ω+=∈,解得62,k k Z ω=-∈,因为010ω<<,所以4ω=,故②错误;对于③:当5ππ,243x ⎛⎫∈⎪⎝⎭时,π3π4π,62x ⎛⎫+∈ ⎪⎝⎭,故函数()f x 在区间5ππ,243⎛⎫⎪⎝⎭上单调递增,故③正确;对于④:因为4ω=,所以()f x 的最小正周期π4T =,故④正确. 综上,正确的序号为①③④. 故选:D .9.A解析:A 【分析】先求解出sin 3y x πω⎛⎫=+ ⎪⎝⎭右移6π个单位后的函数解析式,然后根据诱导公式求解出ω的可取值. 【详解】因为sin 3y x πω⎛⎫=+ ⎪⎝⎭右移6π个单位后得到sin 63y x ωππω⎛⎫=-+ ⎪⎝⎭, 又因为sin 63y x ωππω⎛⎫=-+⎪⎝⎭与cos sin 2y x x πωω⎛⎫==+⎪⎝⎭的图象重合, 所以令2,632k k Z ωππππ-+=+∈,所以121,k k Z ω=--∈,所以ω可取1-,此时0k =, 故选:A. 【点睛】思路点睛:根据三角函数的图象重合求解参数ω或ϕ的思路: (1)先根据诱导公式将函数名统一; (2)然后分析三角函数初相之间的关系;(3)对k 进行取值(有时注意结合所给范围),确定出满足条件的ω或ϕ的值.10.A解析:A根据1sin 63πα⎛⎫-=⎪⎝⎭,利用诱导公式得到cos 3πα⎛⎫+ ⎪⎝⎭,再由2cos 2cos 233ππαα⎛⎫⎛⎫⎛⎫+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,利用二倍角公式求解. 【详解】 因为1sin sin 6233πππαα⎛⎫⎛⎫⎛⎫-=-+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以1cos 33πα⎛⎫+=⎪⎝⎭, 所以227cos 2cos 22cos 13339πππααα⎛⎫⎛⎫⎛⎫⎛⎫+=+=+-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故选:A11.B解析:B 【分析】化简函数cos 2cos 2612y x x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,sin 2cos 22y x x π⎛⎫=+= ⎪⎝⎭,即可判断. 【详解】cos 2cos 2612y x x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,sin 2cos 22y x x π⎛⎫=+= ⎪⎝⎭,∴需将函数sin 22y x π⎛⎫=+ ⎪⎝⎭的图象向右平移12π个单位.故选:B.12.B解析:B 【分析】根据cos89sin1︒=,将一个单位圆分成360个扇形,由这360个扇形的面积之和近似为单位圆的面积求解. 【详解】因为()cos89cos 901sin1︒=-=,所以将一个单位圆分成360个扇形,则每一个扇形的圆心角为1︒, 所以这360个扇形的面积之和近似为单位圆的面积,即2136011sin112π⨯⨯⨯⨯≈,所以 3.1416sin10.01745180180π≈≈≈,二、填空题13.【分析】本题考查同角三角函数及其关系借助公式求解即可求解时需要判定符号的正负【详解】解:法一:由可得代入解得因为所以所以法二:由且可取终边上的一点坐标为根据三角函数终边定义公式故答案为:【点睛】方法【分析】本题考查同角三角函数及其关系,借助公式sin tan cos ααα=,22sin +cos =1αα求解即可,求解时需要判定符号的正负. 【详解】解:法一:由sin tan =3cos ααα=可得sin =3cos αα,代入22sin +cos =1αα解得cos 10α=±, 因为()0,tan 30απα∈=>,,所以0,2πα⎛⎫∈ ⎪⎝⎭,所以cos 10α=. 法二:由()0,απ∈且tan 3α=可取α终边上的一点坐标为(1,3),根据三角函数终边定义公式cos α===.【点睛】方法点睛:同角三角函数基本关系的3个应用技巧: (1)弦切互化利用公式sin tan ()cos 2k απααπα=≠+实现角α的弦切互化; (2)和(差)积转换利用2(sin cos )=1sin 2ααα±±进行变形、转化;(3)巧用“1”的变换22222211sin+cos =cos (tan 1)sin (1)tan αααααα=+=+. 14.①②③【分析】可把中的整体当作来分析结合三角函数的图象与性质即可得解【详解】由于恰有4个零点令由有4个解则解得①即由上述知故的值有且仅有个正确;②当时当时解得又故存在使得在上单调递增正确;③而所以可解析:①②③ 【分析】可把sin()y A x ωθ=+中的x ωθ+整体当作t 来分析,结合三角函数的图象与性质即可得解. 【详解】由于()f x 恰有4个零点,令6t x πω=-,266t ππωπ⎡⎤∈--⎢⎥⎣⎦,, 由sin 0t =有4个解,则3246x ππωπ≤-<,解得19251212ω≤<, ①()0f x A =即0262ππωx k π-=+,由上述知0,1k =, 故0x 的值有且仅有2个,正确; ②当0x =时,66ππωx -=-,当819πx =时,81962πππω⋅-≤,解得1912ω≤, 又19251212ω≤<,故存在1912ω=,使得()f x 在80,19π⎡⎤⎢⎥⎣⎦上单调递增,正确; ③11()sin 262f x A x πω⎛⎫=⇒-= ⎪⎝⎭,而2[3,4)6ππωππ-∈, 所以6x πω-可取51317,,,6666ππππ,共4个解,正确,综上,真命题的序号是①②③. 故答案为:①②③. 【点睛】三角函数的性质分析一般用数形结合,图象的简化十分重要。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南京师范大学附属扬子中学三角函数单元测试
一、选择题(每小题5分,共60分,请将所选答案填在括号内)
1.设a<0,角α的终边经过点P(-3a,4a),那么sin α+2cos α的值等于:
A.52
B.-52
C.51
D.-5
1 2.若cos(π+α)=-2
3
,21π<α<2π,则sin(2π-α)等于:
A.-
23 B.23 C.21 D.±2
3
3. 已知sin α>sin β,那么下列命题成立的是:
A.若α,β是第一象限角,则cos α>cos β
B.若α,β是第二象限角,则tan α>tan β
C.若α、β是第三象限角,则cos α>cos β
D.若α、β是第四象限角,则tan α>tan β 4.若sinx +cosx =1,那么sin n x +cos n x 的值是:
A .1
B .0
C .-1
D .不能确定 5. 函数y=-x·cosx 的部分图象是:
6. 函数x x y sin cos 2
-=的值域是: A 、[]1,1-
B 、⎥⎦
⎤⎢⎣⎡45,1
C 、[]2,0
D 、⎥⎦
⎤⎢⎣
⎡-45,1
7. 已知:函数
sin()y A x ωϕ=+,在同一周期内,当12
x π
=时取最大值4y =;当
712
x π
=
时,取最小值4y =-,那么函数的解析式为: A .4sin(2)3
y x π
=+ B. 4sin(2)3
y x π
=-+
C 4sin(4)3
=+
y x π
. D. 4sin(4)3
y x π
=-+
8. 在函数y =|tanx |,y =|sin(x +
2π)|,y =|sin2x |,y =sin(2x -2
π
)四个函数中,既是以π为周期的偶函数,又是区间(0,2
π
)上的增函数个数是:
A .1
B .2
C .3
D .4
9. 定义在R 上的函数)(x f 既是偶函数又是周期函数,若)(x f 的最小正周期是π,且当
]
2
,
0[π∈x 时,x x f sin )(=,则)3
5(πf 的值为: A. 2
1- B. 2
3
C. 2
3- D 21
10. 下列函数中,最小正周期为π,且图象关于直线3
π
=x 对称的是:
A.)32sin(π
-
=x y B.)6
2sin(π-=x y C .)6
2sin(π+=x y
D .)6
2sin(π+=x y
11.函数f(x)=cos(3x +φ)的图象关于原点中心对称,则:
A .φ=π2
B .φ=k π+π2
C .φ=k π
D .φ=2k π-π
2
(k ∈Z)
12.2002年8月,在北京召开的国际数学家大会会标如图所示,它是由4个相同的直角三角
形与中间的小正方形拼成的一大正方形,若直角三角形中较小的锐角为
θ,大正方形的面积是1,小正方形的面积是
θθ22cos sin ,25
1
-则的值等于:
A .1
B .2524-
C .257
D .725
- 二.填空题:本大题共4小题,每小题4分,共16分。

13. 函数x x y 24cos sin +=的最小正周期为 .
14. 函数y =的定义域是 .
15. 若1351016()sin ()()()(n f n f f f f π=++++ ,)= . 16.给出下列命题:(1)存在实数x ,使sinx+cosx =3
π
; (2)若αβ,是锐角△ABC 的内角,则sin α>cos β; (3)函数y =sin(32x-2
7π)是偶函数; (4)函数y =sin2x 的图象向
右平移
4π个单位,得到y =sin(2x+4
π
)的图象.其中正确的命题的序号是 . 三、解答题(本大题6小题,共74分,解答应写出文字说明,证明过程或演算步骤) 17. 已知α为第三象限角,且f(α)=sin(π-α)cos(2π―α).tan(―α+3π
2
)
cot α.sin(π+α)

(1)化简f(α);
(2)若cos(α-3π2)=1
5,求f(α)的值;
(3)若α=-1860°,求f(α)的值.
18.已知函数y =3sin3x .
(1)作出函数在x ∈[π6,5π
6
]上的图象.
(2)求(1)中函数的图象与直线y =3所围成的封闭图形的面积.
19. 设函数)(),0( )2sin()(x f y x x f =<<-+=ϕπϕ图像的一条对称轴是直线8
π
=x .
(Ⅰ)求ϕ;
(Ⅱ)求函数)(x f y =的单调增区间;
20. 已知5
1cos sin ,02
=
+<<-
x x x π
. (I )求sinx -cosx 的值;
(Ⅱ)求2232sin sin cos cos tan cot x x x x
x x
-++的值
21. 已知y =Asin(ωx +φ),(A >0, ω>0,ϕπ<)的图象过点P(π
12,0)图象上与点P 最近
的一个顶点是Q(π
3,5).
(1)求函数的解析式;
(2)求使y ≤0的x 的取值范围.
22.函数的性质通常指函数的定义域、值域、周期性、单调性、奇偶性等,请选择适当的 探究顺序,研究函数f(x)=x x sin 1sin 1++-的性质,并在此基础上,作出其在
[,]ππ-的图象。

参考答案
二、填空题 13.
2π 14.2,()k k k Z πππ⎡
⎤+∈⎢⎥⎣
⎦ 15.2 16.(1),(2),(3) 三解答题
17. (1)f(α)=-cos α.
(2) f(α)=26
5

(3) f(α)=-1
2

18.(1)略 (2)2π 19.(1)34
ϕπ=- (2)1788,()k k k Z ππππ⎡⎤
++∈⎢⎥⎣⎦
20.(1)75-
(2)804625
- 21.(1)526
sin()y x π
=-
(2) 511212,()k k k Z ππππ⎡⎤
-
+∈⎢⎥⎣⎦
22. 解:① ∵1sin 0
1sin 0
x x -≥⎧⎨
+≥⎩∴()f x 的定义域为R ② ∵
()()
f x f x -=== ∴f(x)为偶函数;
③ ∵f(x+π)=f(x), ∴f(x)是周期为π的周期函数;
④ 当[0,]2x π∈时f(x)=)2
cos 2|cos |22)sin 1sin 1(2x
x x x =+=++-
∴当[0,]2x π∈时()f x 单减;当[]2x π
π∈,时()f x 单增; 又∵()f x 是周期为π的偶函数 ∴f(x)的单调性为:在[,]2
k k π
πππ+
+上单增,在[,]2
k k π
ππ+上单减。

⑤ ∵当
[0,]2x π∈时()2cos 2
x f x ⎤=∈⎦;当[]2x ππ∈,时()2sin 2x
f x ⎤=∈⎦∴()f x 的值域为:]2,2[
⑥由以上性质可得:()f x 在[]ππ-,上的图象如图所示:。

相关文档
最新文档