步进电机驱动电路设计
步进电机驱动电路
R11 R10 361x4
IC6 TCP521-4
1 io4 Vdd 16 2 io6 io2 15 3 o/i io1 14 4 io7 io0 13 5 io5 io3 12 6 inh a 11 7 Vee b 10 8 Vss c 9
+5V
13 1A
14 Vcc 12 1Y
Nc
11 5A
10 5Y
+15V
14
1
Vcc 1A
1Y
3
1B
2
E7 E12/47u25V +5V
IC9
5
NE555
C41
8 VCC 4 RST
R26
470u 35V
C7
103
7 DHE 3 OUT D1
2 TGR 5 CTL
3
4 2A 2Y 6 5 2B 9 1A 1Y 8
1B 10
C16
R27 333 D2
6 TSD 1 GND
78L15
2
PC6
47u
25V
E2
C2
47u
25V
E3
C3
47u
25V
PC3 PC3 47u 25V
PT3
1
Vin
Vout
3
GND
78L15
2
PC7
47u
25V
E4
C4
47u
25V
驱动/电源板: H2P-8AH.PCB
P
222
N
1kV
2
3 1/9 12
8 10/7
PD1
PT4
1
Vin
Vout
3
GND
(整理)实用的步进电机驱动电路图.
实用的步进电机驱动电路(图)概述步进电机是一种将电脉冲转化为角位移的执行机构,可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。
目前,对步进电机的控制主要有由分散器件组成的环形脉冲分配器、软件环形脉冲分配器、专用集成芯片环形脉冲分配器等。
本设计选用第三种方案,用PMM8713三相或四相步进电机的脉冲分配器、SI-7300A 两相或四相功率驱动器,组成四相步进电机功率驱动电路,以提高集成度和可靠性,步进电机控制框图见图1。
图1 步进电机控制系统框图硬件简介● PMM8713原理框图及功能PMM8713是日本三洋电机公司生产的步进电机脉冲分配器,适用于控制三相或四相步进电机。
控制三相或四相步进电机时都可以选择3种励磁方式,每相最小吸入与拉出电流为20mA,它不仅满足后级功率放大器的输入要求,而且在其所有输入端上均内嵌施密特触发电路,抗干扰能力强,其原理框图如图2所示。
图2 PMM8713的原理框图在PMM8713的内部电路中,时钟选通部分用于设定步进电机的正反转脉冲输入发。
PMM8713有两种脉冲输入法:双脉冲输入法和单脉冲输入法。
采用双脉冲输入法时,CP、CU两端分别输入步进电机正反转的控制脉冲。
当采用单脉冲输入时,步进电机的正反转方向由U/D的高、低电位决定。
激励方式控制电路用来选择采用何种励磁方式。
激励方式判断电路用于输出检测;而可逆环形计数器则用于产生步进电机在选定的励磁方式下的各相通断时序信号。
● SI-7300A的结构及功率驱动原理SI-7300A是日本三青公司生产的高性能步进电机集成功率放大器,该器件为单极性四相驱动,采用SIP18封装。
步进电机功率驱动级电路可分为电压和电流两种驱动方式。
电流驱动方式最常用的是PWM恒流斩波驱动电路,也是最常用的高性能驱动方式,其中一相的等效电路图如图3所示。
图3 LM331电压/频率变换电路● LM331芯片LM331是美国国家半导体公司生产的双列直插式8脚芯片,只需接入几个外部元件就可以方便地构成电压/频率(V/F)变换电路,电路如图4所示。
uln2003agp驱动电路的工作原理
一、引言uln2003agp驱动电路是一种常见的驱动电路,其工作原理对于电子工程师和爱好者来说是非常重要的。
本文将深入解析uln2003agp驱动电路的工作原理,希望读者能够通过本文的介绍和分析,对这一驱动电路有更深入的了解。
二、uln2003agp驱动电路的概述uln2003agp是一种高压高电流驱动器件,其内部集成了七个开关管,可用于驱动各种类型的负载。
uln2003agp常用于步进电机驱动、继电器驱动等领域。
其特点是输入信号低电平触发、输出端带有电流型放大器,能够驱动负载电流高达500mA。
下面将详细介绍uln2003agp驱动电路的工作原理。
三、uln2003agp驱动电路的主要特点1. 输入信号低电平触发:uln2003agp的输入信号是低电平触发型的,这意味着当输入端为低电平时,相应的输出端会有电流通过。
2. 输出端带有电流型放大器:uln2003agp的输出端带有电流型放大器,能够驱动负载电流高达500mA,适用于许多电子设备的驱动场景。
3. 集成了七个开关管:uln2003agp内部集成了七个开关管,能够同时驱动多个负载,极大地提高了其在电子设备中的应用灵活性和便利性。
四、uln2003agp驱动电路的工作原理1. 输入信号低电平触发机制:uln2003agp的输入端采用低电平触发机制,当输入为低电平时,相应的输出端会有电流通过。
这是通过内部的晶体管开关实现的,当输入为低电平时,对应的晶体管会处于导通状态,导通的电流会流向相应的输出端,从而实现对负载的驱动。
2. 输出端电流型放大器:uln2003agp的输出端带有电流型放大器,能够承受高达500mA的负载电流。
这使得uln2003agp能够驱动多种类型的负载,包括步进电机、继电器等。
3. 多个开关管的作用:uln2003agp内部集成了七个开关管,可以同时驱动多个负载。
这样的设计极大地提高了其在实际应用中的灵活性和便利性,使得uln2003agp成为众多电子设备中必不可少的驱动器件。
步进电机驱动电路设计
步进电机驱动电路设iti耍隧着数字化技术发展,数字控制技术得對了广泛而深入的应用。
步进电机是一种将数字信号直接转换成轴位務或线位務的控制腿动元件,具有快速起动和停止的特点。
S 为步进电动机组成的控翎系统结构简单,价招低廉,性能上能满足工业腔制的基本要求, 所以广泛地应用于手工业自动控翎、数控机床、组合机床、机器人、il算机外围设备、照相机,投影仪、像机、大型望远镜、卫星天线定位系貌、医疗器件以员各种可腔机MIR等等。
直流电机广泛应用于it算机外围设备(如硬盘、軟盘和光盘存棒器)、家电产品、医疗器械和电动车上,无刷直流电机的转子部普遍使用永龜林料组成的磁鋼, 并且在航空、航天、汽车、精密电子等行业也被广泛应用。
在电工设备中的应用,除了直浦电磁铁(直济继电器、直滾接触器等)外,最重要的就是应用在直济废转电机中。
在发电厂里,同步发电Hl的助脱机、蓄电池的充电HI 等,都是直流发电Hl;錯炉给粉机的原动机是直流电动机。
此外,在许多工业部门,例如大塑轧鋼设备、大型精密机床、矿井卷畅机、市电车、电缆设备要求严怡线速度一致的地方等,通常都果用直流电动机作为原动机来isaji作机械的。
直逍发电机通常是作为直流电源,向负裁输岀电能;a 潦电动机则是作为原动机带动各种生产机械工作,向负我输出机械能。
在控初系坑中, 直潦电机还有其它的用迩,例如测速电机、何服电机等。
他们都是利用电和磁的相互作用来实现向机械能能的转换。
介鉛了步进电机和直流电机原理及其驱动程序控初控制模块,通11 AT89S52单片机及脉冲分配器(R林逻辑转换器)L298完成步进电机和宜流电机各种运行方式的控制。
实现步进电机的正反转速18控制并且显示数振。
整个系筑果用模快化设计,结枸简单、可靠,通il按建控制,操作方便,节省成本。
关鍵词:步进电机,单片机控制,AT89S52, L297, L2981步进电动机11.1步进电机简介11.2步进电机分类22步进电机工作原理32. 1步进电HI结构32. 2步进电机的旋转方武3 3设计原理53.1硕件电路组成53.2步进电机控制电路53.2.1廿数器工作模成63.2.2定时器工作模式6 4步进电机驱朋电路设it 74.1驱动芯片L29774.2驱动芯片L29884.3權盘电路94.4显示电路105步进电机控制程序11 总给14致15参考文151步进电动机1.1步进电机简介步进电动#1是一种稱电脉冲信号转換成角位務或线位務的精密执行元件,由于步进电机具有控制方便、体枳小等特点,所以在数控系统!自动生产线!自动灿表!绘图机和计算机外围设备中需到广泛应用。
步进电机H桥功率驱动电路设计
步进电机H桥功率驱动电路设计步进电机是一种特殊的直流电机,可以通过一定的控制方式实现精准的角度控制。
步进电机的驱动电路通常采用H桥功率驱动电路,其中H桥电路是通过四个开关元件(通常是MOSFET管或者IGBT管)和两个电源组成的,能够实现电机的正、反向旋转。
H桥电路由四个开关元件组成,其中开关S1和S4连接在一起,共同控制电机的一个端口,开关S2和S3连接在一起,共同控制电机的另一个端口。
H桥电路有四种状态:S1和S4为导通状态,S2和S3为截止状态;S2和S3为导通状态,S1和S4为截止状态;S1和S3为导通状态,S2和S4为截止状态;S2和S4为导通状态,S1和S3为截止状态。
步进电机的驱动原理是通过控制H桥电路的四种状态,使得电机在施加电源电压的不同方向上旋转。
控制步进电机的一个重要参数是步距角,即电机每转一圈所走过的角度。
根据步距角的大小,步进电机可以分为全角步进电机和半角步进电机。
全角步进电机的步距角为360度/步数,控制方式可以是单相驱动方式或者双相驱动方式。
单相驱动方式只需要两个驱动电路,一个控制电机的一个端口,另一个端口通过调整S1和S4的导通时间来实现,通过调整导通的时间长短,可以控制电机的速度。
双相驱动方式需要四个驱动电路,分别控制电机的两个端口,通过交替切换四种状态来实现控制。
半角步进电机的步距角为360度/(2×步数)。
控制半角步进电机通常采用四相驱动方式,需要八个驱动电路,通过交替切换八种状态来实现控制。
四相驱动方式的原理是将步进电机的一个端口分成四段,通过施加电源电压的不同顺序,使得电机在不同的相邻段上产生磁场,并完成旋转。
步进电机的驱动电路设计需要考虑以下几个问题:1.驱动电路的工作电压范围,要能适应电机的额定电压以及工作电压波动范围。
2.驱动电路的开关元件的选型,要能够满足电流和功率的要求,并具有足够的开关速度。
3.驱动电路的保护措施,要考虑过流、过热等异常情况的保护。
基于单片机的步进电机控制电路设计
基于单片机的步进电机控制电路设计
步进电机是一种应用广泛的电机,它的控制方式是通过逐步改变电流来驱动电机转动。
基于单片机的步进电机控制电路设计可以使步进电机的控制更加精确、方便和自动化。
下面将介绍一下如何设计一台基于单片机的步进电机控制电路。
首先,我们需要选择合适的单片机。
对于步进电机控制,需要一个I/O口数目足够的单片机,并且要求计算速度快、性能稳定。
常用的单片机有AT89C51、AVR、PIC、STM32等,其
中STM32拥有强大的计算能力和外设支持,非常适合用于步
进电机控制电路的设计。
接下来,我们需要考虑步进电机的驱动方式。
步进电机可以采用全步进或半步进两种方式驱动。
全步进控制方式会让电机一步步转动,步距为180度,转速慢但精确度高,而半步进控制方式可以让电机先半步,再进入全步进控制,提高了转速同时又保持了较高的精度。
最后,我们需要设计电路连接和代码编写。
在电路连接方面,需要将单片机输出引脚和驱动芯片的控制引脚相连,同时将驱动芯片输出端和电机的相应引脚相连。
在代码编写方面,需要根据所选单片机的指令集来编写步进电机控制引脚输出的程序,实现步进电机转速和方向的控制。
综上所述,基于单片机的步进电机控制电路设计需要选取合适的单片机,选择合适的步进电机驱动方式,并根据电路连接和
代码编写来实现电机的精确控制。
这样设计出的步进电机控制电路可以应用于各种机械设备控制,使之更加智能化和自动化。
步进电机驱动电路
02
步进电机驱动电路设计要素
驱动电路的组成及工作原理
驱动电路的组成
• 电源模块:为驱动电路提供稳定的电压和电流 • 控制模块:接收控制信号,控制电流的方向和大小 • 驱动模块:将控制信号转换为驱动电流,驱动电机运行
驱动电路的工作原理
• 控制模块根据输入的控制信号生成驱动信号 • 驱动模块根据驱动信号产生相应的驱动电流,驱动电机运行 • 电源模块为驱动电路提供稳定的电压和电流,保证电路正常工作
04
步进电机驱动电路在实际应用中的注意事项
驱动电路与步进电机的匹配问题
驱动电路与步进电机的匹配原则
• 度要求选择合适的驱动电路
驱动电路与步进电机的匹配方法
• 通过实验和计算确定最佳匹配方案 • 参考产品手册和应用案例进行匹配
驱动电路的控制策略与优化
未来应用场景的拓展
• 在智能家居、机器人等领域的应用 • 在航空航天、武器装备等领域的应用
未来驱动电路的设计方向
• 高性能、高效率、高可靠性的驱动电路设计 • 绿色环保、节能减排的驱动电路设计
CREATE TOGETHER
DOCS
谢谢观看
THANK YOU FOR WATCHING
模块化驱动电路的优势
• 便于维护和升级 • 提高设计灵活性,易于扩展
新型驱动技术与控制方法的研究与应用
新型驱动技术
• 永磁同步电机等高效电机的研究与应用 • 无刷直流电机等环保电机的研究与应用
新型控制方法
• PID控制等先进控制算法的研究与应用 • 模糊控制等人工智能技术的研究与应用
步进电机驱动电路在未来应用场景的拓展
双极性驱动电路的优缺点
• 优点:驱动能力强,能实现正反转控制 • 缺点:结构较复杂,成本较高
三相步进电机驱动电路设计
三相步进电机驱动电路设计一、引言步进电机是一种将电脉冲信号转换为机械转动的电动机,具有结构简单、定位精度高、起动停止快的特点,被广泛应用于数控机床、机器人、自动化设备等领域。
本文将介绍三相步进电机驱动电路的设计。
二、驱动原理三相步进电机的驱动原理基于磁场交替作用的原理,通过控制电流的改变,使电机在不同的磁场中转动。
它分为两种驱动方式:全、半步进驱动。
全步进驱动方式中,步进电机每接收一个脉冲信号就转动一个步距,而在半步进驱动方式中,步进电机每接收一个脉冲信号就转动半个步距。
本文以全步进驱动为例进行设计。
三、电路设计1.电源电路:步进电机驱动电路需要一个稳定的直流电源,通常使用电容滤波器和稳压电路来提供稳定的电压输出,保证电机正常工作。
2.脉冲发生及控制电路:脉冲发生电路产生脉冲信号,用于控制步进电机的转动。
常用的发生电路有震荡电路和微处理器控制电路。
本文以震荡电路为例,通过计算电容充放电时间确定震荡频率。
3.驱动电路:驱动电路是步进电机的核心,它将脉冲信号转换为电流控制信号,控制步进电机的转动。
常用的驱动方式有双H桥驱动和高低电平驱动。
本文以双H桥驱动为例进行设计。
4.电流检测和反馈电路:为了控制步进电机的转速和转矩,需要对电机的电流进行检测和反馈。
常用的检测电路有电阻检测和霍尔效应检测。
通过检测电流大小,可以调节驱动电流,以达到控制步进电机的效果。
5.保护电路:为了保护步进电机和驱动电路的安全,需要设计相应的保护电路。
常见的保护电路有过流保护电路、过热保护电路和短路保护电路等。
四、总结本文介绍了三相步进电机驱动电路的设计。
通过合理设计电路,可以实现对步进电机的控制和保护,提高步进电机的运行效果和寿命。
未来,可以进一步研究和改进三相步进电机驱动电路的设计,以满足更高精度、更高速度的步进电机应用需求。
步进电机驱动电路.(DOC)
步进电机驱动电路[单机片]1. 步进电机的工作原理该步进电机为一四相步进电机,采用单极性直流电源供电。
只要对步进电机的各相绕组按合适的时序通电,就能使步进电机步进转动。
图1是该四相反应式步进电机工作原理示意图。
图1 四相步进电机步进示意图开始时,开关SB接通电源,SA、SC、SD断开,B相磁极和转子0、3号齿对齐,同时,转子的1、4号齿就和C、D相绕组磁极产生错齿,2、5号齿就和D、A相绕组磁极产生错齿。
当开关SC接通电源,SB、SA、SD断开时,由于C相绕组的磁力线和1、4号齿之间磁力线的作用,使转子转动,1、4号齿和C相绕组的磁极对齐。
而0、3号齿和A、B相绕组产生错齿,2、5号齿就和A、D相绕组磁极产生错齿。
依次类推,A、B、C、D四相绕组轮流供电,则转子会沿着A、B、C、D方向转动。
四相步进电机按照通电顺序的不同,可分为单四拍、双四拍、八拍三种工作方式。
单四拍与双四拍的步距角相等,但单四拍的转动力矩小。
八拍工作方式的步距角是单四拍与双四拍的一半,因此,八拍工作方式既可以保持较高的转动力矩又可以提高控制精度。
单四拍、双四拍与八拍工作方式的电源通电时序与波形分别如图2.a、b、c所示:图2.步进电机工作时序波形图图3 步进电机驱动器系统电路原理图AT89C2051将控制脉冲从P1口的P1.4~P1.7输出,经74LS14反相后进入9014,经9014放大后控制光电开关,光电隔离后,由功率管TIP122将脉冲信号进行电压和电流放大,驱动步进电机的各相绕组。
使步进电机随着不同的脉冲信号分别作正转、反转、加速、减速和停止等动作。
图中L1为步进电机的一相绕组。
AT89C2051选用频率22MHz的晶振,选用较高晶振的目的是为了在方式2下尽量减小AT89C2051对上位机脉冲信号周期的影响。
图3中的RL1~RL4为绕组内阻,50Ω电阻是一外接电阻,起限流作用,也是一个改善回路时间常数的元件。
D1~D4为续流二极管,使电机绕组产生的反电动势通过续流二极管(D1~D4)而衰减掉,从而保护了功率管TIP122不受损坏。
步进电机驱动电路制作图解
步进电机驱动电路制作图解
前几天吧寒假作业糊弄完了,这几天没事干昨天晚上看到了步进电机然后就研究了半晚上原理
今天在我的那个单片机试验箱里翻到啦一个35mm的步进电机,然后在配套资料里面找到了驱动电路的电路图如图
下面我给大家讲讲原理(仅供参考):首先j18接口是加到单片机io 口上的j19接到步进电机j19的1234分别为步进电机的a,a1,b,b1
首先8550是低电平导通,如果j18的1的电平为0,那幺三极管v8导通,v8导通之后j19的1脚的电平为1
,同时电流又通过R49让三极管v15导通由电路图可知,j19的2脚接到了v15的集电极,且j19的2脚和1脚是
一组线圈,3和4脚是一组线圈,现在1脚电平为1,电流流经一组线圈。
步进电机驱动器电原理图
6 5 4 3 2 1
6 J21 NM
R13 P521 270 D3
控制板 步进电机驱 动器电路原理图(控制部分)
时钟
R26 100
3
I/O CD4051BM
R27 270
+5
U5F MM74HC14 +5
40 C11 0.1u D1 +5
VCC GND
12
13
U5A 2
14
0.1 1 P1 R11 270 4N26 R54 +5 D2 OPTO CP DIR FREE
J2 1 2 3 4 5 6 7 8 CON8 R12 270
R36 10k T4C5 G2 C6 Z1
R34 10k T2 G2 C7 C8
CON2 DC 24 - 40V 4A 电源输入
220u/25V
C3 220u/25V
5.6V/0.3W
22u/100V 22u/100V R32 100 T5 ZL R37 10k D2 MUR1660CT T12 K0225
22u/100V 22u/100V R31 100 T3 ZL R35 10k T11 K0225
J2 1 2 3 4 5 6 7 8 CON8
接控制板
J13 1 2 3 4 CP 步进脉冲 DIR 正反转控制 FREE 自由状态控制 OPTO 光耦合器公共阳极
R39 10k
CON4 信号输入 R42 10k
- 15 -
+15 5 8 11 J1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 CON18 +5 R46 10k +5 U7A CD4050B 2 +15 3 R43 4k7 2 U6A DM7407 U7B CD4050B 4 +15 +5 +5 U7C CD4050B 6 U7D CD4050B 10 +15 R44 4k7 7 4 U6B DM7407 9 +5 R3 2k U3B LM393 34 7 5 5 6 5 U6C DM7407 14
步进电机恒流驱动电路设计
步进电机恒流驱动电路设计摘要:经济在快速的发展,社会在不断的进步,针对步进电机在恒压驱动控制中,高频条件下容易出现电机失步,造成无法正常运转的情况,设计了基于LMD18200的电流滞环驱动电路;通过对步进电机功率放大器电路的常见形式进行研究,分析恒压与恒流驱动电路设计上的差异,理论上推导恒流驱动稳定电流及波动频率等特性;利用Matlab仿真对比恒流与恒压驱动电路相电流的上升速度,说明两种方式下平均输出力矩以及运行频率情况;以电机驱动集成芯片LMD18200实现两种驱动方式的硬件电路,分别对型号TS3641N1E2的负载电机进行测试;在不同的运行频率下,根据两种驱动电路的相电流以及运行状态,验证步进电机恒流驱动电路设计满足空间光学遥感器机构控制的要求。
关键词:步进电机;LMD18200;恒流驱动引言步进电机是广泛用于计算机控制系统和计算机外部设备的驱动元件.步进电机使用脉冲电流驱动,利用环形脉冲分配器给各绕组分配驱动脉冲,每向环形分配器输入1个脉冲,步进电机绕组的通电状态改变一次,电机的转子转过1个步距角.步进电机的运行性能例如运行频率、输出力矩等,除受电机自身性能的影响外,还直接受驱动器的制约.步进电机伺服系统具有价格低、简单、可靠等交直流伺服系统无法比拟的优点,但由于它的运行速度低、驱动器效率低和发热量大等缺点,使它的使用范围受到限制.随着现代电力电子技术、微电子技术特别是微处理器技术的发展,为步进电机驱动器性能的提高提供了条件,使步进电机驱动器的性能有了很大提高,从而使传统的步进伺服系统得到了广泛的应用.1步进电机的控制系统结构1.1DSP简介DSP即数字信号处理器,是一种专门用来实现各种数字信号处理算法的微处理器。
文中选用TI公司的TMS320F2812作为主控制芯片,片内集成了丰富的外设模块,简化了系统的硬件设计;快速的中断处理能力和硬件I/O支持,保证了系统实时响应的能力;片内具有快速RAM同时采用改进的哈佛总线结构,可以通过独立的总线对多个存储器进行并行访问而且可同时完成获取指令和数据读取操作。
步进电机控制驱动电路设计
步进电机控制驱动电路设计一、任务步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件,它在速度、位置等控制领域被广泛地应用。
但步进电机必须由环形脉冲信号、功率驱动电路等组成控制系统方可使用。
设计一个三相步进电机控制驱动电路。
二、要求1.基本要求1)时钟脉冲产生电路,能实现步进电机的正转、反转、手动(点动)和自动控制;2)用IC设计一个具有“自启动”功能的三相三拍环形分配器;3)能驱动三相步进电机的功放电路。
使用的是三相步进电机,工作相电压为12V2.发挥部分1)设计的环形分配器可实现“三相单三拍”、“三相双三拍”和“三相六拍”的多工作方式选择;2)完成步进电机供电电源电路设计;3)其它创新。
操作说明(与实际电路相对应):(从上到下依次)(从左到右)短路环: 1 2 3 4 开关:1 4 工作模式:断开接通断开接通0 0 三相单三拍正转断开接通断开接通0 1 三相单三拍反转断开接通断开接通0 0 三相六拍反转断开接通断开接通0 1 三相六拍正转接通断开接通断开0 0 三相双三拍正转接通断开接通断开0 1 三相双三拍反转注意:按键按下为0 向上为1如果在工作时有异常情况请按复位键调节变阻器2可以调节速度的大小摘要本设计采用自己设计的电源来给整个电路供电,用具有置位,清零功能的JK触发器74LS76作为主要器件来设计环行分配器,来对555定时器产生的脉冲进行分配,通过功率放大电路来对步进电机进行驱动,从而来完成题目中的要求。
并且产生的脉冲的频率可以控制,从而来控制步进电机的速度,环形分配器中具有复位的功能,在对于异常情况可以按复位键来重新工作。
本系统具有以下的特点:1.时钟脉冲产生电路,能实现步进电机的正转、反转、手动(点动)和自动控制;2.具有“自启动”的功能。
3.可以工作在“三相单三拍”、“三相双三拍”和“三相六拍”的多工作方式选择的状态下。
4.具有复位的功能。
(创新)5.具有速度可变的功能。
简易步进电机驱动系统的设计与实现
简易步进电机驱动系统的设计与实现摘要:本实验设计了一个简易的步进电机驱动电路,使用了SST89E516RD单片机、ULN2803电机驱动芯片和四相八拍的步进电机。
实验的目标是通过控制电路,使步进电机按照预定的顺序旋转。
首先,我们将SST89E516RD单片机与ULN2803电机驱动芯片进行连接。
单片机的相应引脚连接到ULN2803的输入端,ULN2803的输出端通过电阻连接到步进电机的控制端。
然后,根据步进电机的类型和步进方式,我们确定了四相八拍的驱动顺序。
通过对ULN2803的输入信号进行适时改变,可以实现步进电机的转动。
关键词:步进电机驱动电路,SST89E516RD单片机,四相八拍的步进电机,ULN2803电机驱动芯片,步进电机的转动一、设计任务与要求1、基本要求(1)利用SST89E516RD单片机、ULN2803电机驱动芯片和四相八拍的步进电机,设计一个简易的步进电机驱动电路;(2)使用嘉立创EDA或者Altium Designer软件完成硬件原理图的设计,并借助SST89E516RD单片机实验箱完成硬件电路的搭建;(3)利用Keil等集成开发环境,完成汇编语言软件的编写和调试,并借助串口下载器将程序下载到实验系统上运行,本系统可以利用按键对步进电机进行加速和减速顺时针转动。
2、拓展要求(选做)设计C语言代码完成上述基本要求,并且读取按键值,使步进电机进行逆时针转动。
二、总体方案设计(一)总体方案论证1. 步进电机选型:根据实验要求和预设条件,选择具有合适参数的步进电机作为驱动电机。
需要考虑的参数包括步距角、相数、电机型号等。
选择步进电机时需要根据实际需求确定电机的转速和扭矩要求,以及所需要的精度和分辨率等。
2. 驱动电路设计:步进电机的驱动电路通常由电流控制器和功率放大器组成。
电流控制器负责产生所需的驱动信号,而功率放大器则负责将信号放大以驱动步进电机。
常见的驱动方式包括双极性驱动和四相驱动。
如何优化步进电机的驱动电路设计提高可靠性
如何优化步进电机的驱动电路设计提高可靠性在现代工业自动化和控制系统中,步进电机以其精确的定位和控制能力得到了广泛的应用。
然而,要确保步进电机能够稳定、可靠地运行,优化其驱动电路设计至关重要。
一个良好的驱动电路不仅能够提高电机的性能,还能增强系统的可靠性,减少故障发生的概率。
接下来,我们将探讨如何通过一系列的方法和策略来优化步进电机的驱动电路设计,从而提高其可靠性。
首先,电源供应的稳定性是优化驱动电路设计的基础。
不稳定的电源可能导致电机运行异常、产生噪声甚至损坏电机。
因此,我们需要选择合适的电源模块,确保其能够提供稳定、纯净的电压和电流。
同时,为了应对电源波动和干扰,添加适当的滤波电容和稳压电路是必不可少的。
这些措施可以有效地减少电源噪声对驱动电路的影响,提高电机运行的稳定性。
在驱动芯片的选择上,需要根据步进电机的规格和应用需求进行仔细考量。
不同的驱动芯片具有不同的性能特点,如电流输出能力、细分精度、保护功能等。
例如,对于需要高精度控制的应用,应选择具有高细分精度的驱动芯片;而对于负载较大的电机,则需要选择电流输出能力较强的芯片。
此外,驱动芯片的保护功能也不容忽视,如过流保护、过热保护和欠压保护等。
这些保护功能可以在异常情况下及时切断电机的电源,避免电机和驱动电路受到损坏。
合理的布线和布局对于提高驱动电路的可靠性同样重要。
在电路设计中,应尽量缩短驱动芯片与电机之间的连线长度,以减少线路电阻和电感对信号传输的影响。
同时,要注意将电源线和信号线分开布置,避免相互干扰。
在电路板的布局上,应将发热元件合理分布,留出足够的散热空间,以防止过热导致的电路故障。
细分驱动技术是优化步进电机性能的有效手段。
通过细分驱动,可以将电机的步距角进一步细分,使电机的运行更加平稳、精度更高。
细分驱动的实现通常是通过控制驱动芯片的电流输出方式来实现的。
在设计细分驱动电路时,需要精确计算电流的大小和变化规律,以确保电机的平稳运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
步进电机驱动电路设计摘要随着数字化技术发展,数字控制技术得到了广泛而深入的应用。
步进电机是一种将数字信号直接转换成角位移或线位移的控制驱动元件, 具有快速起动和停止的特点。
因为步进电动机组成的控制系统结构简单,价格低廉,性能上能满足工业控制的基本要求,所以广泛地应用于手工业自动控制、数控机床、组合机床、机器人、计算机外围设备、照相机,投影仪、数码摄像机、大型望远镜、卫星天线定位系统、医疗器件以及各种可控机械工具等等。
直流电机广泛应用于计算机外围设备( 如硬盘、软盘和光盘存储器) 、家电产品、医疗器械和电动车上, 无刷直流电机的转子都普遍使用永磁材料组成的磁钢, 并且在航空、航天、汽车、精密电子等行业也被广泛应用。
在电工设备中的应用,除了直流电磁铁(直流继电器、直流接触器等)外,最重要的就是应用在直流旋转电机中。
在发电厂里,同步发电机的励磁机、蓄电池的充电机等,都是直流发电机;锅炉给粉机的原动机是直流电动机。
此外,在许多工业部门,例如大型轧钢设备、大型精密机床、矿井卷扬机、市内电车、电缆设备要求严格线速度一致的地方等,通常都采用直流电动机作为原动机来拖动工作机械的。
直流发电机通常是作为直流电源,向负载输出电能;直流电动机则是作为原动机带动各种生产机械工作,向负载输出机械能。
在控制系统中,直流电机还有其它的用途,例如测速电机、伺服电机等。
他们都是利用电和磁的相互作用来实现向机械能能的转换。
介绍了步进电机和直流电机原理及其驱动程序控制控制模块,通过AT89S52单片机及脉冲分配器(又称逻辑转换器) L298完成步进电机和直流电机各种运行方式的控制。
实现步进电机的正反转速度控制并且显示数据。
整个系统采用模块化设计,结构简单、可靠,通过按键控制,操作方便,节省成本。
关键词:步进电机,单片机控制,AT89S52,L297,L298目录1 步进电动机 (1)1.1步进电机简介 (1)1.2步进电机分类 (1)2 步进电机工作原理 (2)2.1步进电机结构 (2)2.2步进电机的旋转方式 (2)3 设计原理 (3)3.1硬件电路组成 (4)3.2步进电机控制电路 (4)3.2.1 计数器工作模式 (4)3.2.2 定时器工作模式 (4)4 步进电机驱动电路设计 (4)4.1驱动芯片L297 (5)4.2驱动芯片L298 (5)4.3键盘电路 (7)4.4显示电路 (7)5 步进电机控制程序 (8)总结 (12)致谢 (13)参考文献 (14)1 步进电动机1.1 步进电机简介步进电动机是一种将电脉冲信号转换成角位移或线位移的精密执行元件,由于步进电机具有控制方便、体积小等特点,所以在数控系统!自动生产线!自动化仪表!绘图机和计算机外围设备中得到广泛应用。
微电子学的迅速发展和微型计算机的普及与应用,为步进电动机的应用开辟了广阔前景,使得以往用硬件电路构成的庞大复杂的控制器得以用软件实现,既降低了硬件成本又提高了控制的灵活性,可靠性及多功能性’市场上有很多现成的步进电机控制机构,但价格都偏高。
应用SGS公司推出的L297和 L298两芯片可方便的组成步进电机驱动器,并结合51单片机进行控制,即可以实现用相对便宜的价格组成一个性能不错的步进电机驱动电路。
图 1 步进电机步进电机把电脉冲信号变换成角位移以控制转子转动的微特电机。
在自动控制装置中作为执行元件。
每输入一个脉冲信号,步进电动机前进一步,故又称脉冲电动机。
步进电动机多用于数字式计算机的外部设备,以及打印机、绘图机和磁盘等装置。
步进电动机的驱动电源由变频脉冲信号源、脉冲分配器及脉冲放大器组成,由此驱动电源向电机绕组提供脉冲电流。
步进电动机的运行性能决定于电机与驱动电源间的良好配合。
步进电机的优点是没有累积误差,结构简单,使用维修方便,制造成本低,步进电动机带动负载惯量的能力大,适用于中小型机床和速度精度要求不高的地方,缺点是效率较低,发热大,有时会“失步”。
1.2 步进电机分类步进电动机分为机电式、磁电式及直线式三种基本类型。
1、机电式步进电动机机电式步进电动机由铁心、线圈、齿轮机构等组成。
螺线管线圈通电时将产生磁力,推动其铁心心子运动,通过齿轮机构使输出轴转动一角度,通过抗旋转齿轮使输出转轴保持在新的工作位置;线圈再通电,转轴又转动一角度,依次进行步进运动。
2、磁电式步进电动机磁电式步进电动机主要有永磁式、反应式和永磁感应子式3种形式。
永磁式步进电动机由四相绕组组成。
A相绕组通电时,转子磁钢将转向该相绕组所确定的磁场方向;A 相断电、B相绕组通电时,就产生一个新的磁场方向,这时,转子就转动一角度而位于新的磁场方向上,被激励相的顺序决定了转子运动方向。
永磁式步进电动机消耗功率较小,步矩角较大。
缺点是起动频率和运行频率较低。
3、直线式步进电动机有反应式和索耶式两类。
索耶式直线步进电动机由静止部分(称为反应板)和移动部分(称动子)组成。
反应板由软磁材料制成,在它上面均匀地开有齿和槽。
电机的动子由永久磁铁和两个带线圈的磁极A和B组成。
动子是由气垫支承,以消除在移动时的机械摩擦,使电机运行平稳并提高定位精度。
这种电机的最高移动速度可达1.5米/秒,加速度可达2g,定位精度可达20多微米。
由两台索耶式直线步进电动机相互垂直组装就构成平面电动机。
给x方向和y方向两台电机以不同组合的控制电流,就可以使电机在平面内做任意几何轨迹的运动。
大型自动绘图机就是把计算机和平面电动机组合在一起的新型设备。
平面电动机也可用于激光剪裁系统,其控制精度和分辨力可达几十微米。
2 步进电机工作原理2.1 步进电机结构电机转子均匀分布着40个小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开0、1/3て、2/3て,(相邻两转子齿轴线间的距离为齿距以て表示),即图2 定子和转子的展开图A与齿1相对齐,B与齿2向右错开1/3て,C与齿3向右错开2/3て,A'与齿5相对齐,(A'就是A,齿5就是齿1),如图2。
2.2 步进电机的旋转方式如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力以下均同)。
如B相通电,A,C相不通电时,齿2应与B对齐,此时转子向右移过1/3て,此时齿3与C偏移为1/3て,齿4与A偏移(て-1/3て)=2/3て。
如C相通电,A,B相不通电,齿3应与C对齐,此时转子又向右移过1/3て,此时齿4与A偏移为1/3て对齐。
如A相通电,B,C相不通电,齿4与A对齐,转子又向右移过1/3て,这样经过A、B、C、A分别通电状态,齿4(即齿1前一齿)移到A相,电机转子向右转过一个齿距,如果不断地按A,B,C,A……通电,电机就每步(每脉冲)1/3て,向右旋转。
如按A,C,B,A……通电,电机就反转。
由此可见:电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系,而方向由导电顺序决定。
如图3。
图3 步进电机运转顺序图不过,出于对力矩、平稳、噪音及减少角度等方面考虑。
往往采用A-AB-B-BC-C-CA-A 这种导电状态,这样将原来每步1/3て改变为1/6て。
甚至于通过二相电流不同的组合,使其1/3て变为1/12て,1/24て,这就是电机细分驱动的基本理论依据。
所以电机定子上有m相励磁绕阻,其轴线分别与转子齿轴线偏移1/m,2/m……(m-1)/m,1。
并且导电按一定的相序电机就能正反转被控制——这是步进电机旋转的物理条件。
只要符合这一条件我们理论上可以制造任何相的步进电机,出于成本等多方面考虑,市场上一般以二、三、四、五相为多。
3 设计原理由于步进电机是一种将电脉冲信号转换成直线或角位移的执行元件,它不能直接接到交直流电源上,而必须使用专用设备5步进电机控制驱动器。
典型步进电机控制系统如图4所示:控制器可以发出脉冲频率从几赫兹到几十千赫兹可以连续变化的脉冲信号,它为环形分配器提供脉冲序列。
环形分配器的主要功能是把来自控制环节的脉冲序列按一定的规律分配后,经过功率放大器的放大加到步进电机驱动电源的各项输人端,以驱动步进电机的转动。
环形分配器主要有两大类:一类是用计算机软件设计的方法实现环分器要求的功能,通常称软环形分配器。
另一类是用硬件构成的环形分配器,通常称为硬环形分配器。
功率放大器主要对环形分配器的较小输出信号进行放大,以达到驱动步进电机目的。
图 4 典型步进电机控制系统3.1 硬件电路组成文中所控制的步进电机是四相单极式减速步进电动机。
本文所设计的步进电机控制驱动器的框图如图5所示。
它由 51单片机、集成芯片L297和L298组成。
图 5 步进电机控制驱动器的框图3.2 步进电机控制电路本系统的控制电路采用单片机MCS-51进行控制。
在工业检测、控制中,许多场合都要用到计数或定时功能。
例如,对外部脉冲进行计数、产生精确的定时时间等。
MCS-51单片机内有两个可编程的定时器/计数器T1、T0,以满足这方面的需要。
两个定时器/计数器都具有定时器和计数器两种工作模式。
3.2.1 计数器工作模式计数器是对外来脉冲进行计数51单片机芯片有T0(P3.4)和T1(P3.5)两个输入引脚,分别是这两个计数器的输入端。
每当计数器的输入引脚的脉冲发生负跳变时,计数器加1。
3.2.2 定时器工作模式定时功能也是通过计数器的计数来实现的,不过此时的计数脉冲来自单片机的内部,即每个机器周期产生1个计数脉冲,也就是每经过1个机器周期的时间,计数器加1。
如果MCS-51采用12Hz晶体,则计数频率为1MHz,即每过1微妙的时间计数器加1。
这样可以根据计数值计算出定时时间,也可根据定时时间的要求计算出计数器的初值。
4 步进电机驱动电路设计驱动电路由L297和L298芯片组成。
L297是步进电动机控制器(包括环形分配器),L298是双H桥式驱动器。
这种方式结合的优点是,需要的元件很少,从而使得装配成本低,可靠性高和占空间少。
并且通过软件开发,可以简化和减轻微型计算机的负担。
另外,4056 和 4057 都是独立的芯片,所以应用是十分灵活的。
4.1 驱动芯片L297L297是步进电机专用控制器,它能产生4相控制信号,可用于计算机控制的两相双极和四相单相步进电机,能够用单四拍、双四拍、四相八拍方式控制步进电机。
芯片内的PWM 斩波器电路可开关模式下调节步进电机绕组中的电机绕组中的电流。
该集成电路采用了SGS 公司的模拟/数字兼容的I2L 技术,使用5V 的电源电压,全部信号的连接都与TFL/CMOS 或集电极开路的晶体管兼容。
图 6 L297图 7 L297引脚图4.2 驱动芯片L298L298N 为SGS-THOMSON Microelectronics 所出产的双全桥步进电机专用驱动芯片( Dual Full-Bridge Driver ) ,内部包含4信道逻辑驱动电路,是一种二相和四相步进电机的专用驱动器,可同时驱动2个二相或1个四相步进电机,内含二个H-Bridge 的高电压、大电流双全桥式驱动器,接收标准TTL逻辑准位信号,可驱动46V、2A以下的步进电机,且可以直接透过电源来调节输出电压;此芯片可直接由单片机的IO端口来提供模拟时序信号,但在本驱动电路中用L297 来提供时序信号,节省了单片机IO 端口的使用。