SMT回流焊PCB温度曲线讲解
回流焊PCB温度曲线讲解
回流焊PCB温度曲线讲解1. 引言回流焊是电子元器件表面贴装的主要连接工艺之一。
在回流焊过程中,合适的温度曲线对于保证焊点质量以及避免元器件损坏至关重要。
本文将介绍回流焊的基本原理,并详细讲解回流焊PCB温度曲线的设计和特点。
2. 回流焊的基本原理回流焊是利用热风或蒸汽将焊料预热至熔点,通过表面张力作用使焊料润湿焊盘,然后快速冷却固化焊点的方法。
其基本原理如下:•加热:通过预热炉或沿焊点方向移动的加热头,将焊盘、元器件表面和焊料加热至熔点附近。
•润湿:在焊料熔化后,焊料会润湿焊盘和元器件表面,形成液态焊接材料。
•冷却:在焊料润湿后,迅速冷却焊点,使焊料固化,固定连接元器件和焊盘。
3. PCB温度曲线的设计为了确保回流焊质量和避免元器件受损,需要设计合适的PCB温度曲线。
PCB温度曲线由预热阶段、高温阶段和冷却阶段组成。
3.1 预热阶段在预热阶段,PCB温度逐渐升高,热量逐渐传导到焊盘和元器件表面。
此阶段的温度升高速度较慢,以免过快的温度变化引发热应力而损坏元器件。
3.2 高温阶段在高温阶段,PCB温度达到焊料的熔点。
此阶段的温度需要保持一定时间,以确保焊料充分熔化并使焊点质量达到要求。
在高温阶段,焊料的表面张力会促使其润湿焊盘和元器件表面。
3.3 冷却阶段在冷却阶段,PCB温度迅速下降。
冷却阶段的温度变化速度需要适当控制,以避免焊点在急剧温度变化中产生冷焊、裂纹等缺陷。
4. 回流焊PCB温度曲线的特点回流焊PCB温度曲线的设计需考虑以下几个因素:4.1 元器件耐热温度不同的元器件有不同的耐热温度。
在设计温度曲线时,需要确保元器件能够耐受高温环境,避免损坏。
4.2 焊料熔点根据焊料的熔点来确定高温阶段的温度和时间。
高温阶段的温度需要高于焊料熔点以保证焊料能够充分熔化。
4.3 焊接质量要求回流焊的质量要求取决于焊接应用的具体要求,如焊点的可靠性、电气性能等。
根据焊点的要求,调整高温阶段的温度和时间,以保证焊接质量。
SMT知识系列课程-回流焊及其温度曲线
HELLER 1809/1808/1800
6
回流焊接温度曲线
• 由于整个回流焊接的工艺要点在于控制 PCBA上各点的温度和时间,温度曲线是个 常用和重要的工艺管理工具。
7
温度‘直线’
温度 产品安全温度 峰值温度 熔化温度
室温
升温
降温
时间
8
温度‘直线’的问题
温度 A 产品安全温度
B 熔化温度
室温
升温
降温
时间
9
温度曲线
温 度 温度
温度
温
温
温
10
温度曲线制作
• 温度曲线测试板的制作:
– 领取半成品报废板 – 根据工艺要求选取测试点 – 焊接和固定热电偶
11
焊接热电偶注意点
• 错误 • 正确
12
温度曲线审核-有铅锡膏曲线
13
温度曲线审核-无铅锡膏曲线
14
温度曲线审核-红胶曲线
SMT知识系列课程 知识系列课程
回流焊及其温度曲线
1
课程目录
• • • • 焊接知识介绍 回流焊接技术 温度曲线知识 实际操作
2
焊接
• 焊接,是电子板组装作业中的重要工序, 如果没有很好的掌握它,不但会出现许多 焊接不良还会直接影响焊点的寿命。 • 在SMT技术应用中,可供使用的焊接技术 不单是回流焊接,而回流焊接中也有诸如 红外、热风、激光、白热光、热压等等技 术。
3
焊接
• 高质量的焊接应具备以下5项基本要求。
– – – – – 适当的热量; 良好的润湿; 适当的焊点大小和形状; 受控的锡流方向; 焊接过程中焊接面不移动。
4
回流焊接
• 目前的回流焊设备大体分为四类:强制热风对 流回流焊炉、红外回流焊炉、激光回流焊炉、 汽相回流焊炉。 强制热风对流回流焊炉一般采用上、下两层的 双加热装置和多温串接的隧道式炉腔结构,特 殊的热风输送系统设计使炉内形成一个多重循 环的紊流气流,从而保证在每个加热阶段PCB 周围气氛恒温,同时使PCB上的元器件不发生 偏移,而且整个加热过程利用微机全面控制。
回流焊曲线讲解
理解锡膏的回流过程
理解锡膏的回流过程
回流焊接要求总结:
重要的是有充分的缓慢加热来安 全地蒸发溶剂,防止锡珠形成和限制由 于温度膨胀引起的元件内部应力,造成 断裂痕可靠性问题。其次,助焊剂活跃 阶段必须有适当的时间和温度,允许清 洁阶段在焊锡颗粒刚刚开始熔化时完成。
理解锡膏的回流过程
时间温度曲线中焊锡熔化的阶段 是最重要的,必须充分地让焊锡颗粒完全 熔化,液化形成冶金焊接,剩余溶剂和助 焊剂残余的蒸发,形成焊脚表面。此阶段 如果太热或太长,可能对元件和PCB造成伤 害。锡膏回流温度曲线的设定,最好是根 据锡膏供应商提供的数据进行,同时把握 元件内部温度应力变化原则,即加热温升 速度小于每秒3° C,和冷却温降速度小于 5° C。
RTS曲线回流区是装配达到焊锡回流温度的阶 段。在达到150° C之后,峰值温度应尽快地 达到,峰值温度应控制在215(± 5)° C,液 化居留时间为60(± 15)秒钟。液化之上的这 个时间将减少助焊剂受夹和空洞,增加拉伸 强度。和RSS一样,RTS曲线长度也应该是从 室温到峰值温度最大3.5~4分钟,冷却速率控 制在每秒4° C。
怎样设定锡膏回流温度曲线
理想的曲线由四个部分或区间组成,前面三个区加热、最 后一个区冷却。炉的温区越多,越能使温度曲线的轮廓达 到更准确和接近设定。大多数锡膏都能用四个基本温区成 功回流。
怎样设定锡膏回流温度曲线
预热区,也叫斜坡区,用来将PCB的温
度从周围环境温度提升到所须的活性温 度。在这个区,产品的温度以不超过每 秒2~5°C速度连续上升,温度升得太快 会引起某些缺陷,如陶瓷电容的细微裂 纹,而温度上升太慢,锡膏会感温过度, 没有足够的时间使PCB达到活性温度。 炉的预热区一般占整个加热通道长度的 25~33%。
SMT回流焊的温度曲线说明与注意事项
SMT回流焊的温度曲线(Reflow Profile)说明与注意事项电子产业之所以能发展迅速,表面贴焊技术(SMT, Surface Mount Technology)的发明具有极大程度的贡献。
而回焊(Reflow)又是表面贴焊技术中最重要的技术之一。
下面给大家介绍下回焊的一些技术与温度设定的问题电路板组装的回流焊温度曲线(reflow profile)共包括了预热、吸热、回焊和冷却等四个大区块预热区预热区通常是指由温度由常温升高至150°C左右的区域﹐在这个区域﹐温度缓升(又称一次升温)以利锡膏中的部分溶剂及水气能够及时挥发﹐电子零件(特别是BGA、IO连接器零件)缓缓升温﹐为适应后面的高温作准备吸热区在这段几近恒温区的温度通常维持在150±10° C的区域﹐斜升式的温度通常落在150~190°C之间,此时锡膏正处于融化前夕﹐焊膏中的挥发物会进一步被去除﹐活化剂开始启动﹐并有效的去除焊接表面的氧化物﹐PCB表面温度受热风对流的影响﹐让不同大小、质地不同的零组件温度能保持均匀温度。
此区域的温度如果升温太快,锡膏中的松香(助焊剂)就会迅速膨胀挥发,正常情况下,松香应该会慢慢从锡膏间的缝隙逸散,当松香挥发的速度过快时,就会发生气孔、炸锡、锡珠等品质问题回焊区回焊区是整段回焊温度最高的区域﹐通常也叫做「液态保持时间,必须注意,温度不可超过PCB板上任何温度敏感元件的最高温度和加热速率承受能力。
回焊的峰值温度,通常取决于焊料的熔点温度及组装零件所能承受的温度。
一般的峰值温度应该比锡膏的正常熔点温度要高出约25~30°C,才能顺利的完成焊接作业。
如果低于此温度,则极有可能会造成冷焊与润湿不良的缺点冷却区在回焊区之后,产品冷却,固化焊点,将为后面装配的工序准备。
控制冷却速度也是关键的,冷却太快可能损坏装配,冷却太慢将增加TAL,可能造成脆弱的焊点。
冷却区应迅速降温使焊料凝固,迅速冷却也可以得到较细的合晶结构,提高焊点的强度,使焊点光亮,表面连续并呈弯月面状,但缺点就是较容易生成孔洞,因为有些气体来不及散去。
回流焊温度曲线分析解读 (1)
二.什么叫爐溫曲線
回流曲线是指PCBA通过回流炉时,PCBA上某一点的温度 随时间变化的曲线。通過温度曲线可以直观的分析該元件在 整个回流焊过程中的狀態。获得最佳的可焊性,避免由于超 温损坏元件,保证焊接质量。
三﹑設置爐溫曲線的依據
根据使用焊膏的温度曲线进行设置。 根据PCB板的材料、厚度、是否多层板、 尺寸大小进行设置。 根据表面组装板搭载元器件的密度、元器 件的大小以及有无BGA、CSP等特殊元器 件进行设置。
4.2恆溫區
指温度升至焊膏熔点的区域,也叫活性區 ,有两个功用, 第一,将PCB在相当稳定的温度下感温,允许不同质量的 元件在温度上同质,减少它们的相当温差。第二,保証助 焊剂活性化,挥发性的物质从锡膏中充分揮发。如果活性 区的温度设定太高,助焊剂没有足够的时间活性化,温度 曲线的斜率是一个向上递增的斜率。这个区一般占加热通 道的33~50% 。
目錄
回流爐簡介 什么叫爐溫曲線 設置爐溫曲線的依據 爐溫曲線的特性詳解 有鉛/無鉛錫膏回流曲线解析 與爐溫曲線相關的常見缺陷
一.回流爐簡介
回流焊﹕ 通過高溫焊料 固化,從而達到將PCB 和SMT的表面貼裝元件 連接在一起,形成電氣 回路。
目前回流焊的热传递方式大致经历了远红 线—全热风--红外/热风三个阶段。
4.3回流區
該区的作用是将PCB装配的温度从活性温度提高到 所推荐的峰值温度,在这一区域里加热器的温度设 置得最高,使组件的温度快速上升至峰值温度,峰 值温度视所用焊膏的不同而不同,再流时间不要过 长,以防对PCBA造成不良影响。理想的温度曲线 是超过焊锡熔点的“尖端区”覆盖的面积最小。
4.4冷卻區
三﹑設置爐溫曲線的依據
根据设备的具体情况,例如加热区的长度、 加热源的材料、回流焊炉的构造和热传导 方式等因素进行设置。
SMT回流焊PCB温度曲线讲解
区间
区间温度设定
区间末实际板温
预热 210℃(410°F)
140℃(284°F)
活性 177℃(350°F)
150℃(302°F)
回流 250℃(482℃)
210℃(482°F)
怎样设定锡膏回流温度曲线
图形曲线的形状必须和所希望的相比较,如果形状不协调, 则同下面的图形进行比较。选择与实际图形形状最相协调的曲 线。
得益于升温-到-回流的回流温度曲线
无光泽、颗粒状焊点 一个相对普遍的回流焊缺陷是无光泽、颗粒 状焊点。这个缺陷可能只是美观上的,但也 可能是不牢固焊点的征兆。在RTS曲线内改正 这个缺陷,应该将回流前两个区的温度减少 5° C;峰值温度提高5° C。如果这样还不行, 那么,应继续这样调节温度直到达到希望的 结果。这些调节将延长锡膏活性剂寿命,减 少锡膏的氧化暴露,改善熔湿能力。
得益于升温-到-回流的回流温度曲线
整个温度曲线应该从45℃到峰值温度215(± 5)℃持续3.5~4分钟。冷却速率应控制在每秒 4℃。一般,较快的冷却速率可得到较细的颗 粒结构和较高强度与较亮的焊接点。可是,超 过每秒4° C会造成温度冲击。
得益于升温-到-回流的回流温度曲线
升温-到-回流
RTS温度曲线可用于任何化学成分或合金,为水溶锡膏和难 于焊接的合金与零件所首选。 RTS温度曲线比RSS有几个优 点。RTS一般得到更光亮的焊点,可焊性问题很少,因为在 RTS温度曲线下回流的锡膏在预热阶段保持住其助焊剂载体。 这也将更好地提高湿润性,因此,RTS应该用于难于湿润的 合金和零件。
怎样设定锡膏回流温度曲线
活性区,有时叫做干燥或浸湿区,这个
区一般占加热通道的33~50%,有两个 功用,第一是,将PCB在相当稳定的温 度下感温,允许不同质量的元件在温度 上同质,减少它们的相当温差。第二个 功能是,允许助焊剂活性化,挥发性的 物质从锡膏中挥发。一般普遍的活性温 度范围是120~150℃。
SMT回流温度曲线
回流温度曲线回流焊分为四个温区:加热、保温、回流、冷却.预热段:该区域的目的是把室温的PCB尽快加热,以达到第二个特定目标,但升温速率要控制在适当范围以内,如果过快,会产生热冲击,电路板和元件都可能受损,过慢,则溶剂挥发不充分,影响焊接质量。
由于加热速度较快,在温区的后段SMA内的温差较大。
为防止热冲击对元件的损伤。
一般规定最大速度为40C/S。
然而,通常上升速率设定为1~30C/S。
典型的升温度速率为20C/S.保温段:是指温度从1200C~1500C升至焊膏熔点的区域。
保温段的主要目的是使SMA内各元件的温度趋于稳定,尽量减少温差。
在这个区域里给予足够的时间使较大元件的温度赶上较小元件,并保证焊膏中的助焊剂得到充分挥发。
到保温段结束,焊盘、焊料球及元件引脚上的氧化物被除去,整个电路板的温度达到平衡。
应注意的是SMA上所有元件在这一段结束时应具有相同的温度,否则进入到回流段将会因为各部分温度不均产生各种不良焊接现象。
回流段:在这一区域里加热器的温度设置得最高,使组件的温度快速上升至峰值温度。
在回流段其焊接峰值温度视所用焊膏的不同而不同,一般推荐为焊膏为焊膏的溶点温度加20-400C.对于熔点为1830C的63Sn/37Pb 焊膏和熔点为1790C的Sn62/Pb36/Ag2膏焊,峰值温度一般为210-2300C,再流时间不要过长,以防对SMA造成不良影响。
理想的温度曲线是超过焊锡熔点的“尖端区”覆盖的体积最小。
冷却段:这段中焊膏中的铅锡粉末已经熔化并充分润湿被连接表面,应该用尽可能快的速度来进行冷却,这样将有助于得到明亮的焊点并有好的外形和低的接触角度。
缓慢冷却会导致电路板的更多分解而进入锡中,从而产生灰暗毛糙的焊点。
在极端的情形下,它能引起沾锡不良和弱焊点结合力。
冷却段降温速率一般为3~100C/S,冷却至750C即可。
测量再流焊温度曲线测试仪(以下简称测温仪),其主体是扁平金属盒子,一端插座接着几个带有细导线的微型热电偶探头。
SMT回流焊PCB温度曲线讲解 ppt课件
SMT回流焊PCB温度曲线讲解
7
理解锡膏的回流过程
时间温度曲线中焊锡熔化的阶段是最重要的, 必须充分地让焊锡颗粒完全熔化,液化形成冶 金焊接,剩余溶剂和助焊剂残余的蒸发,形成 焊脚表面。此阶段如果太热或太长,可能对元 件和PCB造成伤害。锡膏回流温度曲线的设定, 最好是根据锡膏供应商提供的数据进行,同时 把握元件内部温度应力变化原则,即加热温升 速度小于每秒3°C,和冷却ห้องสมุดไป่ตู้降速度小于5°C。
怎样设定锡膏回流温度曲线
活性区,有时叫做干燥或浸湿区,这个
区一般占加热通道的33~50%,有两个 功用,第一是,将PCB在相当稳定的温 度下感温,允许不同质量的元件在温度 上同质,减少它们的相当温差。第二个 功能是,允许助焊剂活性化,挥发性的 物质从锡膏中挥发。一般普遍的活性温 度范围是120~150°C。
3. 当温度继续上升,焊锡颗粒首先单 独熔化,并开始液化和表面吸锡的 “灯草”过程。这样在所有可能的 表面上覆盖SM,T回流并焊PCB开温度曲始线讲形解 成锡焊点。 4
理解锡膏的回流过程
4. 这个阶段最为重要,当单个的焊锡颗粒全 部熔化后,结合一起形成液态锡,这时表 面张力作用开始形成焊脚表面,如果元件 引脚与PCB焊盘的间隙超过4mil,则极可 能由于表面张力使引脚和焊盘分开,即造 成锡点开路。
SMT回流焊PCB温度曲线讲解
14
怎样设定锡膏回流温度曲线
接下来必须决定各个区的温度设定,重要的是 要了解实际的区间温度不一定就是该区的显示 温度。显示温度只是代表区内热敏电偶的温度, 如果热电偶越靠近加热源,显示的温度将相对 比区间温度较高,热电偶越靠近PCB的直接通 道,显示的温度将越能反应区间温度。
5. 冷却阶段,如果冷却快,锡点强度会稍微 大一点,但不可以太快而引起元件内部的 温度应力。
回流焊PCB温度曲线讲解
回流焊PCB温度曲线讲解回流焊是一种常用的电子组装工艺,用于将电子元件焊接到印刷电路板(PCB)上。
在回流焊过程中,PCB需要经历一系列的温度变化,以确保焊点可靠连接。
下面将讲解回流焊温度曲线的各个阶段及其作用。
1. 预热阶段(Preheat Stage):回流焊过程开始时,PCB需要从室温逐渐升温至预定温度。
预热阶段的作用是除去PCB上的水分和挥发性有机物,以避免在焊接过程中产生气泡和蒸汽。
通常,预热温度为100°C至150°C,持续时间为1至2分钟。
2. 热液相预热阶段(Thermal Soak Stage):在预热阶段后,PCB会继续加热至更高的温度,通常为150°C至200°C。
这一阶段的目的是让整个PCB均匀达到焊接温度,以减少焊接过程中的热应力。
热液相预热阶段的持续时间通常为1至4分钟。
3. 焊接阶段(Reflow Stage):当PCB达到焊接温度时,焊膏开始熔化,将电子元件与PCB焊接在一起。
焊接温度通常为220°C至245°C,具体取决于焊膏的特性。
焊接阶段的持续时间通常为1至3分钟。
4. 冷却阶段(Cooling Stage):焊接完成后,PCB需要冷却到室温,以确保焊点的稳定性。
冷却阶段通常使用强制风冷却或自然冷却。
冷却时间因焊接设备和PCB的尺寸而异,一般为1至5分钟。
回流焊温度曲线中的每个阶段都有其特定的温度和时间要求,这是为了保证焊接质量和工艺稳定性。
通过控制这些参数,焊接过程中的温度变化可以最小化,从而减少因热应力引起的PCB变形和元件损坏的风险。
总结来说,回流焊温度曲线包括预热阶段、热液相预热阶段、焊接阶段和冷却阶段。
每个阶段都有其特定的温度和时间要求,以确保焊接质量和PCB的稳定性。
通过合理控制回流焊温度曲线,可以提高焊接过程的可靠性和稳定性,从而保证电子产品的性能和可靠性。
回流焊是一种广泛应用于电子制造业的关键工艺,它能够将电子元件精准地焊接到印刷电路板(PCB)上。
SMT回流焊工艺知识
SMT 回流焊工艺知识Board/Sma llComp onen t ---------- LargeComp onen t1、 预热区:预热区的目的是使 PCB 和元器件预热,达到平衡,同时 除去焊膏中的水份、溶剂,以防焊膏发生塌落和焊料飞溅。
升温速率 要控制在适当范围内(过快会产生热冲击,如:引起多层陶瓷电容器 开裂、造成焊料飞溅,使在整个PCB 勺非焊接区域形成焊料球以及焊 料不足的焊点;过慢则助焊剂Flux 活性作用),一般上升速率设定为 1〜3C /sec ,最大升温速率为 4C /sec ;2、 恒温区:指从120C 升温至170C 的区域。
主要目的是使 PCB 上各 元件的温度趋于均匀,尽量减少温差,保证在达到再流温度之前焊料 能完全干燥,到保温区结束时,焊盘、锡膏球及元件引脚上的氧化物 应被除去,整个电路板的温度达到均衡。
过程时间约 60〜120秒,根 据焊料的性质有所差异。
3、 回流区:这一区域里的加热器的温度设置得最高,焊接峰值温度 视所用锡膏的不同而不同,一般推荐为锡膏的熔点温度加20〜40C 。
此时焊膏中的焊料开始熔化 , 再次呈流动状态,替代液态焊剂润湿焊 盘和元器件。
也可以将该区域分为两个区,即熔融区和再流区。
理想 的温度典型的回流曲线2 2曲线是超过焊锡熔点的“尖端区”覆盖的面积最小且左右对称。
4、冷却区:用尽可能快的速度进行冷却,将有助于得到明亮的焊点并饱满的外形和低的接触角度。
缓慢冷却会导致PAD的更多分解物进入锡中,产生灰暗毛糙的焊点,甚至引起沾锡不良和弱焊点结合力。
降温速率一般为-4 C/sec以内,冷却至75C左右即可。
由于锡膏、机型与工艺要求不同,产品的炉温曲线也不尽相同。
生产时必须定期用炉温测试仪测试炉温并记录存档。
炉温测试板的测试点必须合宜每片测温板最多可以使用200 次。
回流焊接工艺的经典PCB温度曲线
回流焊接工艺的经典PCB温度曲线对于回流焊接工艺,温度曲线是非常重要的参考指标。
下面是一篇关于经典PCB温度曲线的介绍。
回流焊接是一种常用的电子组装工艺,能够快速、可靠地连接电子元器件与印刷电路板(Printed Circuit Board,PCB)。
随着电子设备的不断进一步迷你化和复杂化,回流焊接工艺的应用越来越广泛。
经典的PCB温度曲线通常可以分为四个主要阶段:预热、热插入、呼吸和冷却。
1. 预热阶段:在预热阶段,PCB和电子元器件被暴露在逐渐升高的温度下。
这个阶段的目标是将PCB和元器件逐渐加热至焊接温度,同时还可以除去潮湿度以减少热应力。
2. 热插入阶段:一旦预热阶段完成,进入热插入阶段。
此时焊接温度达到预定的最高值,以确保焊接剂充分熔化并完成焊接。
在这个阶段,PCB会保持在高温下一段时间,以确保焊点能够完全形成。
3. 呼吸阶段:在热插入阶段的末端,PCB进入呼吸阶段。
这个阶段是温度逐渐下降的过程,焊点开始冷却。
在此期间,焊点形成并固化。
4. 冷却阶段:最后,PCB进入冷却阶段。
整个PCB和焊点以及电子元器件逐渐恢复到室温。
此时,焊点已经形成,焊接过程完毕。
以上四个阶段构成了经典的PCB温度曲线。
在焊接过程中,控制好温度的升降速度和保持时间非常重要,以确保焊接质量和减少热应力。
通过合理设计温度曲线,可以确保焊接剂充分熔化和流动,同时避免元器件的过度加热或熔化。
此外,还需要注意选择适合的焊接剂和适当的温度曲线,以满足特定的焊接要求和电子元器件的特性。
总之,经典的PCB温度曲线是回流焊接工艺中的重要参考指标,用于控制焊接温度和时间,确保焊接质量和避免热应力。
合理设计和实施温度曲线可以提高焊接质量和可靠性,同时保护电子元器件。
在进行回流焊接工艺时,控制好温度曲线对于焊接质量至关重要。
下面将进一步探讨相关内容。
在经典的PCB温度曲线中,每个阶段的温度升降速度和保持时间都需要精确控制,以确保焊接剂充分熔化和流动,同时避免过度加热或熔化电子元器件。
回流焊炉温曲线图讲解
从下面回流焊炉温曲线标准图分析回流焊的原理:当PCB进入升温区(干燥区)时,焊锡膏中的溶剂、气体蒸发掉,同时焊锡膏中的助焊剂润湿焊盘、元器件端头和引脚,焊锡膏软化、塌落、覆盖了焊盘,将焊盘、元器件引脚与氧气隔离;PCB进入保温区时,使PCB 和元器件得到充分的预热,以防PCB突然进入焊接区升温过快而损坏PCB和元器件;当PCB进入焊接区时,温度迅速上升使焊锡膏达到熔化状态,液态焊锡对PCB的焊盘、元器件端头和引脚润湿、扩散、漫流或回流混合形成焊锡接点;PCB进入冷却区,使焊点凝固,完成了整个回流焊接过程。
回流焊温度曲线图
回流焊炉温曲线是保证焊接质量的关键,实际炉温曲线和焊锡膏温度曲线的升温斜率和峰值温度应基本致。
160℃前的升温速度控制在1℃/s~2℃/s,如果升温斜率速度太快,方面使元器件及PCB受热太快,易损坏元器件,易造成PCB变形;另方面,焊锡膏中的溶剂挥发速度太快,容易溅出金属成分,产生焊锡球。
峰值温度般设定在比焊锡膏熔化温度高20℃~40℃左右(例如Sn63/Pb37焊锡膏的熔点为183℃,峰值温度应设置在205℃~230℃左右),回(再)流时间为10s~60s,峰值温度低或回(再)流时间短,会使焊接不充分,
严重时会造成焊锡膏不熔;峰值温度过高或回(再)流时间长,造成金属粉末氧化,影响焊接质量,甚损坏元器件和PCB。
根据回流焊炉温曲线及回流原理,目前市场上的回流焊大、中、小型号的都有,简易的有小三温区的到八温区的,大型的有六温区到十六温区的。
回流焊温区越大焊接的效果会越好,这个要根据客户的产品需求来定。
SMT回流焊PCB温度曲线讲解
它利用热量将焊料融化,使元件 与PCB板连接在一起,形成可靠 的电气连接。
SMT回流焊的工作原理
SMT回流焊通过加热元件和PCB板, 使焊料融化,当焊料冷却凝固后形成 焊接点。
温度曲线是SMT回流焊的关键因素, 它决定了焊接质量的好坏。
SMT回流焊的应用场景
SMT回流焊广泛应用于电子产品的制造中,如手机、电脑、电视等。 它能够实现自动化生产,提高生产效率,减少人工成本。
优化PCB设计
优化元器件布局
合理分布元器件,减小热阻抗,提高散热性能。
选择合适的基材
根据工艺需求选择合适的PCB基材,以提高耐热性和导热性。
加强关键区域的散热设计
在关键元器件或大功率元器件周围加强散热设计,提高局部散热能 力。
05 PCB温度曲线的测试与验证
CHAPTER
测试方法与设备
红外测温仪
冷却区温度与速度
优化冷却区温度和速度,控制焊点的冷却速度,防止因快速冷却 导致的应力集中。
优化焊膏选择
选择高可靠性焊膏
选用具有高可靠性、优良 润湿性的焊膏,提高焊接 质量。
考虑焊膏活性
根据PCB和元器件的材质 选择适宜活性的焊膏,以 获得良好的焊接效果。
考虑焊膏粘度
根据工艺需求选择合适粘 度的焊膏,确保良好的印 刷性能和脱模性。
设定测试点
在PCB上选择具有代表性的区域,设 置测温点,确保测温点的数量和分布 合理。
01
注意事项
确保测试过程中设备正常运行,避免 外界干扰,保证测试结果的准确性。
05
03
开始测试
将待测PCB放入回流焊设备,按照工 艺要求进行加热,同时实时监测各测 温点的温度变化。
04
回流焊接PCB温度曲线作图
回流焊接PCB 温度曲线作图本文介绍对于回流焊接工艺的经典的PCB温度曲线作图方法,分析了两种最常见的回流焊接温度曲线类型:保温型和帐篷型。
经典印刷电路板(PCB)的温度曲线(profile)作图,涉及将PCB装配上的热电偶连接到数据记录曲线仪上,并把整个装配从回流焊接炉中通过。
作温度曲线有两个主要的目的:1)为给定的PCB装配确定正确的工艺设定,2)检验工艺的连续性,以保证可重复的结果。
通过观察PCB在回流焊接炉中经过的实际温度(温度曲线),可以检验和/ 或纠正炉的设定,以达到最终产品的最佳品质。
经典的PCB®度曲线将保证最终PCB装配的最佳的、持续的质量,实际上降低PCB勺报废率,提高PCB勺生产率和合格率,并且改善整体的获利能力。
回流工艺在回流工艺过程中,在炉子内的加热将装配带到适当的焊接温度,而不损伤产品。
为了检验回流焊接工艺过程,人们使用一个作温度曲线的设备来确定工艺设定。
温度曲线是每个传感器在经过加热过程时的时间与温度的可视数据集合。
通过观察这条曲线,你可以视觉上准确地看出多少能量施加在产品上,能量施加哪里。
温度曲线允许操作员作适当的改变,以优化回流工艺过程。
一个典型的温度曲线包含几个不同的阶段- 初试的升温(ramp) 、保温(soak)、向回流形成峰值温度(spike to reflow)、回流(reflow) 和产品的冷却(cooling) 。
作为一般原则,所希望的温度坡度是在2~4° C范围内,以防止由于加热或冷却太快对板和/或元件所造成的损害。
在产品的加热期间,许多因素可能影响装配的品质。
最初的升温是当产品进入炉子时的一个快速的温度上升。
目的是要将锡膏带到开始焊锡激化所希望的保温温度。
最理想的保温温度是刚好在锡膏材料的熔点之下-对于共晶焊锡为183° C,保温时间在30~90秒之间。
保温区有两个用途:1) 将板、元件和材料带到一个均匀的温度,接近锡膏的熔点,允许较容易地转变到回流区,2) 激化装配上的助焊剂。
回流焊接工艺的PCB温度曲线知识
回流焊接工艺的经典PCB温度曲线本文介绍对于回流焊接工艺的经典的PCB温度曲线作图方法,阐发了两种最常见的回流焊接温度曲线类型:保温型和帐篷型...。
经典印刷电路板(PCB)的温度曲线(profile)作图,涉及将PCB装配上的热电偶连接到数据记录曲线仪上,并把整个装配从回流焊接炉中通过。
作温度曲线有两个主要的目的:1) 为给定的PCB装配确定正确的工艺设定,2) 查验工艺的持续性,以包管可重复的成果。
通过不雅察PCB在回流焊接炉中颠末的实际温度(温度曲线),可以查验和/或纠正炉的设定,以达到最终产物的最正确品质。
经典的PCB温度曲线将包管最终PCB装配的最正确的、持续的质量,实际上降低PCB 的报废率,提高PCB的出产率和合格率,而且改善整体的获利能力。
回流工艺在回流工艺过程中,在炉子内的加热将装配带到适当的焊接温度,而不损伤产物。
为了查验回流焊接工艺过程,人们使用一个作温度曲线的设备来确定工艺设定。
温度曲线是每个传感器在颠末加热过程时的时间与温度的可视数据调集。
通过不雅察这条曲线,你可以视觉上准确地看出多少能量施加在产物上,能量施加哪里。
温度曲线允许操作员作适当的改变,以优化回流工艺过程。
一个典型的温度曲线包含几个不同的阶段 - 初试的升温(ramp)、保温(soak)、向回流形成峰值温度(spike to reflow)、回流(reflow)和产物的冷却(cooling)。
作为一般原那么,所但愿的温度坡度是在2~4°C范围内,以防止由于加热或冷却太快对板和/或元件所造成的损害。
在产物的加热期间,许多因素可能影响装配的品质。
最初的升温是当产物进入炉子时的一个快速的温度上升。
目的是要将锡膏带到开始焊锡激化所但愿的保温温度。
最抱负的保温温度是刚好在锡膏材料的熔点之下 - 对于共晶焊锡为183°C,保温时间在30~90秒之间。
保温区有两个用途:1) 将板、元件和材料带到一个均匀的温度,接近锡膏的熔点,允许较容易地转变到回流区,2) 激扮装配上的助焊剂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
理解锡膏的回流过程
4. 这个阶段最为重要,当单个的焊锡颗粒全 部熔化后,结合一起形成液态锡,这时表 面张力作用开始形成焊脚表面,如果元件 引脚与PCB焊盘的间隙超过4mil,则极可 能由于表面张力使引脚和焊盘分开,即造 成锡点开路。 5. 冷却阶段,如果冷却快,锡点强度会稍微 大一点,但不可以太快而引起元件内部的 温度应力。
得益于升温-到-回流的回流温度曲线
熔湿性差 熔湿性差经常是时间与温度比率的结果。锡膏内 的活性剂由有机酸组成,随时间和温度而退化。 如果曲线太长,焊接点的熔湿可能受损害。因为 使用RTS曲线,锡膏活性剂通常维持时间较长,因 此熔湿性差比RSS较不易发生。如果RTS还出现熔 湿性差,应采取步骤以保证曲线的前面三分之二 发生在150° C之下。这将延长锡膏活性剂的寿命 ,结果改善熔湿性。
焊锡球
许多细小的焊锡球镶陷在回流后助焊剂残留的周边上 。在RTS曲线上,这个通常是升温速率太慢的结果,由 于助焊剂载体在回流之前烧完,发生金属氧化。这个 问题一般可通过的结果,但是,这对RTS曲 线不大可能,因为其相对较慢、较平稳的温升。
得益于升温-到-回流的回流温度曲线 焊锡珠
怎样设定锡膏回流温度曲线
回流区,有时叫做峰值区或最后升温区。这 个区的作用是将PCB装配的温度从活性温度提 高到所推荐的峰值温度。活性温度总是比合 金的熔点温度低一点,而峰值温度总是在熔 点上。典型的峰值温度范围是205~230°C, 这个区的温度设定太高会使其温升斜率超过 每秒2~5°C,或达到回流峰值温度比推荐的 高。这种情况可能引起PCB的过分卷曲、脱层 或烧损,并损害元件的完整性。
应该注意到,保温区一般是不 需要用来激化锡膏中的助焊剂化学成 分。这是工业中的一个普遍的错误概 念,应予纠正。当使用线性的RTS温 度曲线时,大多数锡膏的化学成分都 显示充分的湿润活性。事实上,使用 RTS温度曲线一般都会改善湿润。
得益于升温-到-回流的回流温度曲线
升温-保温-回流
升温-保温-回流(RSS)温度曲线可用于RMA或免洗化学 成分,但一般不推荐用于水溶化学成分,因为RSS保 温区可能过早地破坏锡膏活性剂,造成不充分的湿润 。使用RSS温度曲线的唯一目的是消除或减少D T。
升温-到-回流
因为RTS曲线的升温速率是如此受控的,所以 很少机会造成焊接缺陷或温度冲击。另外, RTS曲线更经济,因为减少了炉前半部分的加 热能量。此外,排除RTS的故障相对比较简单, 有排除RSS曲线故障经验的操作员应该没有困 难来调节RTS曲线,以达到优化的温度曲线效 果。
得益于升温-到-回流的回流温度曲线
得益于升温-到-回流的回流温度曲线
排除RTS曲线的故障
排除RSS和RTS曲线的故障,原则是相同的 :按需要,调节温度和曲线温度的时间, 以达到优化的结果。时常,这要求试验和 出错,略增加或减少温度,观察结果。以 下是使用RTS曲线遇见的普遍回流问题, 以及解决办法。
得益于升温-到-回流的回流温度曲线
怎样设定锡膏回流温度曲线
怎样设定锡膏回流温度曲线
怎样设定锡膏回流温度曲线
得益于升温-到-回流的回流温度曲线
许多旧式的炉倾向于以不同速率来加热一个装配 上的不同零件,取决于回流焊接的零件和线路板层的 颜色和质地。一个装配上的某些区域可以达到比其它 区域高得多的温度,这个温度变化叫做装配的D T。如 果D T大,装配的有些区域可能吸收过多热量,而另一 些区域则热量不够。这可能引起许多焊接缺陷,包括 焊锡球、不熔湿、损坏元件、空洞和烧焦的残留物。
理解锡膏的回流过程
2.
3.
助焊剂活跃,化学清洗行动开始, 水溶性助焊剂和免洗型助焊剂都会 发生同样的清洗行动,只不过温度 稍微不同。将金属氧化物和某些污 染从即将结合的金属和焊锡颗粒上 清除。好的冶金学上的锡焊点要求 “清洁”的表面。 当温度继续上升,焊锡颗粒首先单 独熔化,并开始液化和表面吸锡的 “灯草”过程。这样在所有可能的 表面上覆盖,并开始形成锡焊点。
得益于升温-到-回流的回流温度曲线
为什么和什么时候保温 保温区的唯一目的是减少或消除大的DT。保 温应该在装配达到焊锡回流温度之前,把装 配上所有零件的温度达到均衡,使得所有的 零件同时回流。由于保温区是没有必要的, 因此温度曲线可以改成线性的升温-到-回流 (RTS)的回流温度曲线。
为什么和什么时候保温
得益于升温-到-回流的回流温度曲线
升温-保温-回流 RSS温度曲线开始以一个陡坡温升,在90秒的目标 时间内大约150° C,最大速率可达2~3° C。随 后,在150~170° C之间,将装配板保温90秒钟; 装配板在保温区结束时应该达到温度均衡。保温 区之后,装配板进入回流区,在183° C以上回 流时间为60(± 15)秒钟。
怎样设定锡膏回流温度曲线
接下来必须决定各个区的温度设定,重要的 是要了解实际的区间温度不一定就是该区的显 示温度。显示温度只是代表区内热敏电偶的温 度,如果热电偶越靠近加热源,显示的温度将 相对比区间温度较高,热电偶越靠近PCB的直 接通道,显示的温度将越能反应区间温度。
怎样设定锡膏回流温度线
典型PCB回流区间温度设定 区间 预热
区间温度设定
区间末实际板温 140°C(284°F)
210°C(410°F)
活性
177°C(350°F)
150°C(302°F)
回流
250°C(482°C)
210°C(482°F)
怎样设定锡膏回流温度曲线
图形曲线的形状必须和所希望的相比较,如果形状不协调, 则同下面的图形进行比较。选择与实际图形形状最相协调的曲 线。
RTS温度曲线可用于任何化学成分或合金,为水溶锡膏和难 于焊接的合金与零件所首选。 RTS温度曲线比RSS有几个优 点。RTS一般得到更光亮的焊点,可焊性问题很少,因为在 RTS温度曲线下回流的锡膏在预热阶段保持住其助焊剂载体 。这也将更好地提高湿润性,因此,RTS应该用于难于湿润 的合金和零件。
得益于升温-到-回流的回流温度曲线
经常与焊锡球混淆,焊锡珠是一颗或一些大的焊锡 球,通常落在片状电容和电阻周围。虽然这常常是 丝印时锡膏过量堆积的结果,但有时可以调节温度 曲线解决。和焊锡球一样,在RTS曲线上产生的焊 锡珠通常是升温速率太慢的结果。这种情况下,慢 的升温速率引起毛细管作用,将未回流的锡膏从焊 锡堆积处吸到元件下面。回流期间,这些锡膏形成 锡珠,由于焊锡表面张力将元件拉向机板,而被挤 出到元件边。和焊锡球一样,焊锡珠的解决办法也 是提高升温速率,直到问题解决。
怎样设定锡膏回流温度曲线
活性区,有时叫做干燥或浸湿区,这
个区一般占加热通道的33~50%,有两个 功用,第一是,将PCB在相当稳定的温度 下感温,允许不同质量的元件在温度上 同质,减少它们的相当温差。第二个功 能是,允许助焊剂活性化,挥发性的物 质从锡膏中挥发。一般普遍的活性温度 范围是120~150°C。
设定RTS温度曲线 RTS曲线的升温基本原则是,曲线的三 分之二在150° C以下。在这个温度后, 大多数锡膏内的活性系统开始很快失效 。因此,保持曲线的前段冷一些将活性 剂保持时间长一些,其结果是良好的湿 润和光亮的焊接点。
得益于升温-到-回流的回流温度曲线
设定RTS温度曲线 RTS曲线回流区是装配达到焊锡回流温度的阶 段。在达到150° C之后,峰值温度应尽快地 达到,峰值温度应控制在215(± 5)° C,液 化居留时间为60(± 15)秒钟。液化之上的这 个时间将减少助焊剂受夹和空洞,增加拉伸强 度。和RSS一样,RTS曲线长度也应该是从室温 到峰值温度最大3.5~4分钟,冷却速率控制在 每秒4° C。
怎样设定锡膏回流温度曲线
理想的曲线由四个部分或区间组成,前面三个区加热、 最后一个区冷却。炉的温区越多,越能使温度曲线的轮廓达到 更准确和接近设定。大多数锡膏都能用四个基本温区成功回流。
怎样设定锡膏回流温度曲线
预热区,也叫斜坡区,用来将PCB的温度从
周围环境温度提升到所需的活性温度。在这 个区,产品的温度以不超过每秒2~5°C速度 连续上升,温度升得太快会引起某些缺陷, 如陶瓷电容的细微裂纹,而温度上升太慢, 锡膏会感温过度,没有足够的时间使PCB达 到活性温度。炉的预热区一般占整个加热通 道长度的25~33%。
回流焊PCB溫度曲線講解
目
錄
理解锡膏的回流过程 怎样设定锡膏回流温度曲线
得益于升温-到-回流的回流温度曲线
群焊的温度曲线
回流焊接工艺的经典PCB温度曲线
理解锡膏的回流过程
当锡膏置于一个加热的环境中,锡膏 回流分为五个阶段 1.首先,用于达到所需粘度和丝印性 能的溶剂开始蒸发,温度上升必需 慢(大约每秒3° C),以限制沸腾和 飞溅,防止形成小锡珠,还有,一 些元件对内部应力比较敏感,如果 元件外部温度上升太快,会造成断 裂。
理解锡膏的回流过程
理解锡膏的回流过程
回流焊接要求总结:
重要的是有充分的缓慢加热来完全 地蒸发溶剂,防止锡珠形成和限制由于 温度膨胀引起的元件内部应力,造成断 裂痕可靠性问题。其次,助焊剂活跃阶 段必须有适当的时间和温度,允许清洁 阶段在焊锡颗粒刚刚开始熔化时完成。
理解锡膏的回流过程
时间温度曲线中焊锡熔化的阶段是最重 要的,必须充分地让焊锡颗粒完全熔化,液化 形成冶金焊接,剩余溶剂和助焊剂残余的蒸发, 形成焊脚表面。此阶段如果太热或太长,可能 对元件和PCB造成伤害。锡膏回流温度曲线的 设定,最好是根据锡膏供应商提供的数据进行, 同时把握元件内部温度应力变化原则,即加热 温升速度小于每秒3°C,和冷却温降速度小于 5°C。
得益于升温-到-回流的回流温度曲线
焊锡不足 焊锡不足通常是不均匀加热或过快加热 的结果,使得元件引脚太热,焊锡吸 上引脚。回流后引脚看到去锡变厚, 焊盘上将出现少锡。减低加热速率或 保证装配的均匀受热将有助于防止该 缺陷。
得益于升温-到-回流的回流温度曲线