八年级(上)数学竞赛练习题(含答案)
初二数学竞赛试题7套整理版(含答案)
初二数学竞赛试题7套整理版(含答案)初二数学竞赛试题7套整理版(含答案)第一套试题1. 某数与它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.2. 有一个矩形,长是宽的3倍,如果长再加上宽再加上1的和等于50,求矩形的长和宽各是多少?解:设矩形的宽为x,则长为3x,根据题意可得方程 3x + x + 1 = 50,化简得 4x + 1 = 50,解得 x = 12,所以长为3 * 12 = 36,宽为12.3. 某个数的三次方减去它自身等于608,求这个数是多少?解:设这个数为x,根据题意可得方程 x^3 - x = 608,化简得 x^3 - x - 608 = 0,因此需求解该方程的解x.4. 甲数和乙数之和是300,甲数比乙数大30,求甲数和乙数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 x + y = 300,x - y = 30,联立这两个方程可以解得甲数x和乙数y.5. 家长购买某品牌的饮料,每瓶售价为5元,如果购买10瓶,优惠50%,那么需要支付的价格是多少?解:购买10瓶优惠50%,相当于购买5瓶的价格,所以需要支付 5 * 10 * (1 - 50%) = 25元.第二套试题1. 学校图书馆购买300本新书,若图书馆中已有书籍500本,现将这些书按每排放10本的方式摆放,共需要多少排?解:新书300本加上原有书籍500本,共计800本书,每排放10本,所以需要 800 / 10 = 80排.2. 小明每天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,求他一天中运动的总时长是多少分钟?解:小明一天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,总时长为 30 + 25 + 40 = 95分钟.3. 甲、乙两人开始一起钓鱼,甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,如果他们一起钓了45分钟,那么他们一共钓到了多少条鱼?解:甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,他们一起钓了45分钟,所以甲和乙一共钓到了 2 * 45 + 1 * 45 = 135 条鱼.4. 某商品原价100元,现在打8折,过了一段时间后再降价,降到原价的85%,现在这个商品的售价是多少?解:原价100元,打8折后为 100 * (1 - 80%) = 80元,再降到原价的85%为 80 * 85% = 68元.5. 某人的年收入为12000元,每月生活费占月收入的1/5,那么这个人每月的生活费用是多少元?解:年收入12000元,月收入为 12000 / 12 = 1000元,生活费占收入的1/5,所以生活费用为 1000 * 1/5 = 200元.第三套试题1. 甲、乙两个人合作修一个房子,甲一个人修需要8天,乙一个人修需要12天,问他们一起修需要多少天?解:甲一个人修需要8天,乙一个人修需要12天,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8天.2. 甲购买一本书花费了原价的3/4,折后价格为60元,问这本书的原价是多少?解:折后价格为60元,花费原价的3/4,所以原价为 60 / (3/4) = 80元.3. 甲、乙两人比赛,甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,问谁的平均速度更快?解:甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒,平均速度为 (60 + 50 + 40) / 3 = 50 秒/轮;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,平均速度为 (55 + 45 + 35) / 3 = 45 秒/轮;所以甲的平均速度更快.4. 一只小狗每小时能跑5公里,一只小猫每小时能跑8公里,如果它们从同一地点同时出发并分别向东和西跑,4小时后它们相距了多少公里?解:小狗每小时能跑5公里,4小时后跑了5 * 4 = 20公里,小猫每小时能跑8公里,4小时后跑了8 * 4 = 32公里,所以它们相距了 32 -20 = 12 公里.5. 三个连续的偶数相加的和是60,求这三个数分别是多少?解:设第一个偶数为x,那么第二个偶数为x + 2,第三个偶数为x+ 4,根据题意可得方程 x + (x + 2) + (x + 4) = 60,求解该方程可得x及其对应的三个连续偶数.第四套试题1. 一个数的2倍加上5等于13,求这个数是多少?解:设这个数为x,根据题意可得方程 2x + 5 = 13,解得 x = 4.2. 甲乙两数相差22,乙数的2倍与甲数的3倍之和等于70,求甲、乙两数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 y - x = 22,2y + 3x= 70,联立这两个方程可以解得甲数x和乙数y.3. 一辆汽车以每小时80千米的速度行驶,行驶了1小时20分钟后停下来休息,求这段时间内汽车行驶的路程?解:汽车以每小时80千米的速度行驶,1小时20分钟共1.33 小时,所以汽车行驶的路程为 80 * 1.33 = 106.4 千米.4. 甲、乙两个人一起做一件工作,甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成需要的时间为 1/(1/4 + 1/6) = 2.4小时.5. 一个数加上它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.第五套试题1. 一条宽10米的路,两边分别种植了向阳向每排7棵树或9棵树,每棵树之间距离相等,而且与路两边相邻树之间距离也相等,问道路中间最宽的地方有多宽?解:分别种植7棵树和9棵树,每棵树之间距离相等,所以道路中间最宽的地方为两排树之间的距离.2. 一个数与4的乘积减去2等于18,求这个数是多少?解:设这个数为x,根据题意可得方程 4x - 2 = 18,解得 x = 5.3. 甲、乙、丙三人合作种田,甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,问他们三个人一起种地需要多少天?解:甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,他们一起种地需要的时间为 1/(1/10 + 1/12 + 1/15) =4.8天.4. 某人共有100元,买了一本书花掉了原价的3/5,剩下的钱还能买另一本原价为80元的书吗?解:100元买了一本书花掉了原价的3/5,剩下的钱为 100 * (1 - 3/5) = 40元,剩下的钱不足以购买另一本80元的书.5. 一团面粉重800克,其中水分为15%,求这团面粉中水分的重量是多少克?解:面粉重800克,其中水分为15%,所以水分的重量为800 * 15% = 120克.第六套试题1. 一个数与它的五分之一之和的和是40,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/5)x + x = 40,化简得7/5x = 40,解得 x = 28.57.2. 甲、乙两个人分别完成一项工作需要的时间比为2:5,如果他们一起完成这项工作需要3小时,求乙单独完成这项工作需要多少时间?解:甲、乙两个人分别完成一项工作需要的时间比为2:5,设甲单独完成需要的时间为x,乙单独完成需要的时间为y,根据题意可得方程 2x + 5x = 3,解得 y = 7.5.3. 有两个相交的圆,圆心之间的距离为8,两圆的半径分别为5和3,求两圆相交的弦的长度是多少?解:两个圆的半径分别为5和3,圆心之间的距离为8,利用勾股定理可以求得两圆相交的弦的长度.4. 甲乙两个人一起做一件工作,甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成需要的时间为 1/(1/10 + 1/15) = 6小时.5. 甲给乙20元,乙给丙30元,丙给甲10元,这三个人一共交易了多少元?解:甲给乙20元,乙给丙30元,丙给甲10元,所以一共交易了20 + 30 + 10 = 60元.第七套试题1. 某数比它的2/3小12,求这个数是多少?解:设这个数为x,根据题意可得方程 x - (2/3)x = 12,化简得 1/3x = 12,解得 x = 36.2. 甲、乙两个人一起修一条路,甲单独修需要8小时,乙单独修需要12小时,也有可能甲的速度是乙的倍数,问他们一起修需要多少小时?解:甲单独修需要8小时,乙单独修需要12小时,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8小时.3. 某品牌的衣服原价为200元,现在打折8折,过了一段时间后再降价,降到原价的85%,现在这件衣服的售价是多少?解:原价200元,打8折后为 200 * (1 - 80%) = 160元,再降到原价的85%为 160 * 85% = 136元.4. 甲、乙两个人一起做工,甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,问他们一起做一份工作需要多少时间?解:甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,他们一起做一份工作需要的时间为 1/(1/3 + 1/4) = 12/7小时.5. 某人的年收入为12000元,每月花销占收入的1/4,那么这个人每月的花销是多少元?解:年收入12000元,。
八年级上数学竞赛练习题含答案
八年级上数学竞赛练习题含答案文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]八年级(上)数学竞赛题一、选择题1、设x 、y 、z 均为正实数,且满足z x+y <x y+z <yz+x ,则x 、y 、z 三个数的大小关系是( ) A 、z<x<yB 、y<z<xC 、x<y<zD 、z<y<x2、已知a 、b 都是正整数,那么以a 、b 和8为边组成的三角形有( ) A 、3个B 、4个C 、5个D 、无数个3、将一长方形切去一角后得一边长分别为13、19、20、25和31的五边形(顺序不一定按此),则此五边形的面积为( ) A 、680B 、720C 、745D 、7604、如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对(a 、b )共有( ) 个 个 个 个5、设标有A 、B 、C 、D 、E 、F 、G 记号的7盏灯顺次排成一行,每盏灯安装一个开关,现在A 、C 、E 、G 4盏灯开着,其余3盏灯是关的,小岗从灯A 开始,顺次拉动开关,即从A到G,再顺次拉动开关,即又从A到G,…,他这样拉动了1999次开关后,则开着的灯是()A、、 C、 D、、已知13xx-=,那么多项式3275x x x--+的值是()A.11 B.9 C.7 D.57、线段12y x a=-+(1≤x≤3,),当a的值由-1增加到2时,该线段运动所经过的平面区域的面积为()A.6 B.8 C.9 D.108、已知四边形ABCD为任意凸四边形,E、F、G、H分别是边AB、BC、CD、DA的中点,用S、P分别表示四边形ABCD的面积和周长;S1、P1分别表示四边形EFGH的面积和周长.设K = SS1,K1 =PP1,则下面关于K、K1的说法正确的是().、K1均为常值为常值,K1不为常值不为常值,K1为常值、K1均不为常值二、填空题1、如图,△ABC是一个等边三角形,它绕着点P旋转,可以与等边△ABD重合,则这样的点P有_______个。
八年级数学竞赛试题及参考答案
八年级数学竞赛试题及参考答案八年级数学竞赛试题(一)一、选择题(每小题5分,共30分) 1.已知2220082008,2ca b a b c k k +=-==++=,且那么的值为( ). A .4 B .14 C .-4 D .14- 2.若方程组312433x y k x y k x y x y +=+⎧<<-⎨+=⎩的解为,,且,则的取值范围是( ). A .102x y <-<B .01x y <-<C .31x y -<-<-D .11x y -<-< 3.计算:2399100155555++++++=( ).A .10151- B .10051- C .101514- D .100514-4.如图,已知四边形ABCD 的四边都相等,等边△AEF 的顶点E 、F 分别在BC 、CD 上,且AE=AB ,则∠C=( ). A .100° B .105° C .110° D .120°5.已知5544332222335566a b c d a b c d ====,,,,则、、、的大小关系是( ). A .a b c d >>> B .a b d c >>> C .b a c d >>> D .a d b c >>> 6.如果把分数97的分子、分母分别加上正整数913a b 、,结果等于,那么a b +的最小 值是( ).A .26B .28C .30D .32 二、填空题:(每小题5分,共30分)(第4题图)DCB(第15题图)EDCBA7.方程组200820092007200720062008x y x y -=⎧⎨-=⎩的解是 .8.如图,已知AB 、CD 、EF 相交于点O ,EF ⊥AB ,OG 为∠COF 的平分线,OH 为∠DOG 的平分线,若∠AOC :∠COG=4:7,则∠GOH= .9.小张和小李分别从A 、B 两地同时出发,相向而行,第一次在距A 地5千米处相遇,继续往前走到各地(B 、A )后又立即返回,第二次在距B 地4千米处两人再次相遇,则A 、B 两地的距离是 千米.10.在△ABC 中,∠A 是最小角,∠B 是最大角,且2∠B=5∠A ,若∠B 的最大值为m °,最小值为n °,则m °+n °= .11.已知21()()()04b c b c a b c a a a+-=--≠=,且,则 . 12.设p q ,均为正整数,且7111015p q <<,当q 最小时,pq 的值为 . 以下三、四、五题要求写出解题过程. 三、(本题满分20分)13.在一次抗击雪灾而募捐的演出中,晨光中学有A 、B 、C 、D 四个班的同学参加演出,已知A 、B 两个班共16名演员,B 、C 两个班共20名演员,C 、D 两个班共34名演员,且各班演员的人数正好按A 、B 、C 、D 次序从小到大排列,求各班演员的人数. 四、(本题满分20分)14.已知2211x x y y x y =+=+≠,,且. ⑴ 求证:1x y +=. ⑵ 求55x y +的值.五、(本题满分20分)15.如图,在△ABC 中AC >BC ,E 、D 分别是AC 、BC 上的点,且∠BAD=∠ABE ,AE=BD .求证:∠BAD=12∠C .G(第8题图)HOFED CBA参考答案一、选择题1.A 2.B 3.C 4.A 5.A 6.B 二、填空题: 7、21x y =⎧⎨=⎩ 8、72.5° 9、11 10、175° 11、2 12、68213、解:依题意得:A+B=16,B+C=20,C+D=34∵A <B <C <D ,∴A <8,B >8,B <10,C >10,C <17,D >17 由8<B <10且B 只能取整数得,B=9 ∴C=11,D=23,A=7答:A 、B 、C 、D 各班演员人数分别是7人、9人、11人、23人。
八年级(上)数学竞赛练习题-精选题(3)(含答案)-
B (R)A(Q)ED PCGEF DC BA DCBA八年级数学竞赛精选题(3)一、选择题:1、整数x 、y 满足等式x 2 + y 2 + 7 = 4x + 4y ,则x + y 的值是 ( ) (A) 1或 – 1 (B) 5 (C) 3 (D) 5或32、如图1,正五边形ABCDE 内有一个正三角形PQR ,QR 与AB 重合,将△PQR 在五边形内沿着它的边AB 、BC 、CD 、DE 、EA 、AB 、…连续地翻转n 次,使点P 、Q 、R 同时回到原来的起始位置,那么 n 的最小值为 ( ) (A) 5 (B) 9 (C) 10 (D) 15(1) (2) (3)3、如图2,正方形ABCD 的面积为64,△BCE 是等边三角形,F 是CE 的中点,AE 、BF 交于点G ,连结CG ,则CG 等于 ( )(A) 4 2 (B) 6 (C) 3 2 (D) 4 4、化简9x 2 – 6x + 1 – (3x – 5 )2,结果是( ).(A)6x – 6 (B) – 6x + 6 (C) – 4 (D) 45、使得关于x 的一元二次方程2x(kx –4)–x 2+6=0无实数根的最小整数k 为( ). (A) – 1 (B) 2 (C)3 (D)4个6、在正方形ABCD 的边AB 、BC 、CD 、DA 上分别任意取点E 、F 、G 、H .这样得到的四边形EFGH 中,是正方形的有( ).(A)1个 (B)2个 (C)4个 (D)无穷多个7、如图3,四边形ABCD 的对角线AC 与BD 互相垂直,若AB=3,BC=4,CD=5,则AD 的长为( ). (A)3 2 (B) 4 (C)2 3 (D)4 28、已知x ,y ,z 为实数,若x 2 + y 2 = 1,y 2 + z 2 = 2,z 2 + x 2 = 2,则xy + yz + zx 的最小值为( ). (A) 52 (B) 12 + 3 (C) – 12 (D) 12– 39、在三角形ABC 中,∠BAC=90°,AC= 3 ,AB=4,D 为边BC 上一点,∠CAD=30°,则AD 的长为( ).βγθαE DCBA(A) 65 (B) 75 (C) 85 (D) 9510、设1x ,2x 是方程042=-+x x 的两个实数根,则1052231+-x x =( ). (A)-29 (B)-19 (C)-15 (D)-9 二、填空题:1、一个直角三角形三边的长a 、b 、c 都是整数,且满足a<b<c,a+c=49.则这个直角三角形的面积为 .2、如图,△ABC 、中,AB = AC ,点D 、E 分别在BC 和AC 上,且AD = AE .设∠DAB = α,∠B = β,∠CDE = γ,∠DAC = θ.(1) 写一个含有上面四个角度的等式: ; (等式中若有同类项应予合并,使形式简明)(2)写一个仅含有上述两个角度的等式: . 3、若 a 4 + b 4 = a 2 – 2a 2b 2 + b 2 + 6,则a 2 + b 2 = . 4、如图,在四边形ABCD 中,AB=AC=AD ,若∠BAC=25°, ∠CAD = 75°,则∠BDC = ,∠DBC = . 5、若实数x ,y 满足70,3392;xy x y xyxy 则x 2y + xy 2= .6、正六边形ABCDEF 的边长为2 3 cm ,点P 为六边形内任一点.则点P 到各边距离之和 为 cm .7、某人5次上班所用时间(单位:分钟)分别为a ,b ,8,9,10.已知这组数据的平均数为9,方差为2,则| a –b | 的值为 .8、若整数m 使方程x 2-mx+m+2006 = 0 的根为非零整数,则这样的整数m 的个数为 . 9、设x 、y 均为实数,代数式4284522++-+x xy y x 的最小值为 .10、设关于x 的一元二次方程04122=-++k kx x 有两个实数根,则k 的取值范围为 . 三、解答题:1、在平面直角坐标系中,求同时满足下列两个条件的点的坐标:①直线y= -2x+3必经过这样的点;②只要m 取不等于零的任何值,抛物线y=m 2x +(m-32)x - (2m -83)都不经过这样的点.2、河岸 l 同侧的两个居民小区A 、B 到河岸的距离分别为 a 米、b 米 (即图(1)中所示AA ′ = a 米,BB ′ = b 米),A ′B ′=c 米. 现欲在河岸边建一个长度为 s 米的绿化带CD (宽度不计),使C 到小区A 的距离与D 到小区B 的距离之和最小.(1) 在图(2)中画出绿化带的位置,并写出画图过程; (2) 求AC + BD 的最小值.(1)(2)3、如图,直线OB 是一次函数x y 2 的图象,点A 的坐标为(0,2),在直线OB 上找点C ,使得△AOC 为等腰三角形,求点C 的坐标.lsB 'A 'baDCBA4、有两只同样的杯子,甲杯盛满了水,乙杯是空杯.第一次操作是将甲杯中水的一半倒入乙杯,第二次操作是将乙杯中水的一半倒入甲杯,如此反复上述过程.操作三次后两杯中的水量记录如下表(满杯水量记为1):操作序号n 0 1 2 3 4 5 6 7 8甲杯水量a n 1 123438乙杯水量b n0 121458(1) 补填表中的各空格;(2) 对于n >1的情况,比较a n与b n的大小;(3) 对于n >1的情况,求a n与a n – 1的关系(用a n – 1表示a n ).HC'D 0P'PD'C 0A BsbalA‘B‘参考答案一、选择题: DDADB DADCB 二、填空题:1、210;2、2(α+β-γ)+θ=1800;α=2γ; 3、3; 4、12.50,37.50; 5、6; 6、18; 7、4; 8、5; 9、3; 10、k ≥212-或k ≤212+-; 三、解答题:1、设点(00,y x )满足上述条件,则3200+-=x y ,对任意实数m 都有)832()32(0200---+≠m x m mx y 消去y 0整理得 82134)2)(1(000+-≠+-x m x x 从而可知当10=x 或-2或3263时才适合题意,∴适合题意的点为)1615,3263(),7,2(),1,1(-- 三个.2、解:如图(3),作线段AP ∥l ,使AP =s ,且点P 在点A 右侧.取点P 关于l 的对称点P ',连BP '交l于点D ,在l 上点D 左侧截取DC =s ,则CD 即为所求绿化带的位置. 如图,设绿化带建于另一位置C 'D '.连BD '、PD '、AC '、P 'D '.则由对称性知,P 'D =PD ,P 'D '=PD '.由AP =∥CD 及AP =∥C 'D ',知AC =PD ,AC '=PD '.但P 'D '+D 'B ≥P 'B =P 'D +BD ,即PD '+D 'B ≥PD +DB .就是AC +BD ≤AC '+BD '.(当且仅当D '在线段P 'B 与l 的交点时等号成立).所以,这样画出的AC +BD 最小.3、解:符合条件的C 点有四点,其坐标分别为:),)、(,)、,)、,121554552(554552(51658(--; 4、解:(1)甲:1611,3211,6443,12843,256171;乙:165,3221,6421,12885,25685; (2)当n 为偶数时,a n >b n ;当n 为奇数时,a n <b n ; (3)当n 为奇数时,a n =12n a -;当n 为偶数时,a n =1-b n =1-21-n b =1-211--n a =211-+n a ;。
八年级(上)数学竞赛练习题(含答案)
八年级(上)数学竞赛题一、选择题1、设x 、y 、z 均为正实数,且满足z x+y <x y+z <yz+x ,则x 、y 、z 三个数的大小关系是( )A 、z<x<yB 、y<z<xC 、x<y<zD 、z<y<x2、已知a 、b 都是正整数,那么以a 、b 和8为边组成的三角形有( ) A 、3个B 、4个C 、5个D 、无数个3、将一长方形切去一角后得一边长分别为13、19、20、25和31的五边形(顺序不一定按此),则此五边形的面积为( ) A 、680B 、720C 、745D 、7604、如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b的有序数对(a 、b )共有( )A.17个B.64个C.72个D.81个5、设标有A 、B 、C 、D 、E 、F 、G 记号的7盏灯顺次排成一行,每盏灯安装一个开关,现在A 、C 、E 、G 4盏灯开着,其余3盏灯是关的,小岗从灯A 开始,顺次拉动开关,即从A 到G ,再顺次拉动开关,即又从A 到G ,…,他这样拉动了1999次开关后,则开着的灯是( )A 、A.C.E.GB 、 A.C.FC 、 B.D.FD 、C.E.G 6、已知13x x-=,那么多项式3275x x x --+的值是( ) A .11 B .9 C .7 D .5 7、线段12y x a =-+(1≤x ≤3,),当a 的值由-1增加到2时,该线段运动所经过的平面区域的面积为( )A .6B .8C .9D .108、已知四边形ABCD 为任意凸四边形,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点,用S 、P 分别表示四边形ABCD 的面积和周长;S 1、P 1分别表示四边形EFGH 的面积和周长.设K =S S 1,K 1 = PP 1,则下面关于K 、K 1的说法正确的是( ). A .K 、K 1均为常值 B .K 为常值,K 1不为常值 C .K 不为常值,K 1为常值 D .K 、K 1均不为常值 二、填空题1、如图,△ABC 是一个等边三角形,它绕着点P 旋转,可以与等边△ABD 重合,则这样的点P 有_______个。
八年级上学期数学竞赛试题(含答案)
分解因式:
解:原式=
=
=
=
=
此种方法抓住了二次项和一次项的特点,然后加一项,使这三项成为完全平方式,我们把这种分解因式的方法叫配方法.请仔细体会配方法的特点,然后尝试用配方法解决下列问题:
(1)分解因式: ;
(2)无论 取何值,代数式 总有一个最小值,请你尝试用配方法求出它的最小值.
∵ = ,∴ ,………………………………………………7分
,得 .……………………………………………………………………9分
24.(12分)解:(1)由图可知, , ;…………………………4分
(2)由(1)可知,关于直线 对称的点 ;……………………………………7分
(3)作出点E关于直线 对称点F,连接FD,则QF=QE,故EQ+QD=FQ+QD=FD.
∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°,
∴△DEF仍为等腰直角三角形.…………………………………………………11分
26.(本题12分)解:(1) …………1分
………………………………3分
;………………………………6分
(2) …………………………7分
,………………………………8分
∴△DEF为等腰直角三角形 …………………………… 5分
(2)若E,F分别是AB,CA延长线上的点,如图所示.连结AD
∵AB=AC,∠BAC=90°, D为BC的中点,∴AD=BD,AD⊥BC
∴∠DAC=∠ABD=45°,∴∠DAF=∠DBE=135°,
又AF=BE,∴△DAF≌△DBE(SAS),∴FD=ED,∠FDA=∠EDB,
3.下列运算错误的是
A. B.
初二(上)数学竞赛试题(含答案)
泗县三中初二数学(上)竞赛一.选择题(4′×10=40′)1.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( )A .y=-x-2B .y=-x-6C .y=-x+10D .y=-x-1 2.,则斜边上的高为( )A 3 或3B 3或2C 2D 3或23.已知Rt △ABC 中,∠C=90°,若a+b=14cm ,c=10cm ,则Rt △ABC 的面积是( )A 、24cm 2B 、36cm 2C 、48cm 2D 、60cm 24.等腰三角形底边上的高为8,周长为32,则三角形的面积为( ) A 、56 B 、48 C 、40 D 、325.一件商品如果按定价打九折出售可以盈利20%;如果打八折出售可以盈利10元,问此商品的定价是( )元A 、100B 、200C 、300D 、4006. 点A (-3,2)关于原点的对称点是B ,B 关于x 轴的对称点是C ,则点C 的坐标是( )A .(3,2)B .(-3,2)C .(3,-2)D .(-2,3)7.一个平行四边形三个顶点的坐标分别是(0,0)、(2,0)、(1,2),第四个顶点在x 轴下方,则第四个顶点的坐标为( )A .(-1,-2)B .(1,-2)C .(3,2)D .(-1,2) 8.已知731 的整数部分是a ,小数部分是b ,则a 2+(1+7)ab=( )班级 姓名 考号 装 订 线A.12B.11C.10D.99.某商品的标价比成本价高p%,当该商品降价出售时,为了不亏损成本,售价的折扣(即降价的百分数)不得超过d%,则d 可用p 表示为( ) A 、p p +100 B 、p C 、p p +100100 D 、pp-100100 10.有一种足球由32块黑白相间的牛皮缝制而成,黑皮为正五边形,白皮为正六边形,且边长都相等,则白皮的块数是( ) A 、22 B 、20 C 、18 D 、16 二.填空(5′×5=25′)11已知一个正整数的算术平方根是m,则下一个正整数的算术平方根是 .12数轴上A 点表示的数是3,B 点表示的数是-1,则数轴上与点B距离等于线段AB 长的另一点表示的数是 .13.A 点的坐标是(-1,5),AB 平行于x 轴,AB=7,则B 点的坐标是 . 14.已知点A(-3,2),点B (1,4),若CA 平行于x 轴,BC 平行于y 轴,则点C 的坐标是15.已知关于x ,y 的方程组⎩⎨⎧+=-=+14332k y x ky x 的解x,y满足方程5x-y =3,则k的值为 . 三.解答题(10′+10′+10′+12′+13′)16.如图,在△ABC 中,∠ACB=90O ,CD ⊥AB 于点D ,若AD=8,BD=2,求CD 的长度。
八年级上数学竞赛练习题含答案
八年级上数学竞赛练习题含答案Newly compiled on November 23, 2020八年级(上)数学竞赛题一、选择题1、设x 、y 、z 均为正实数,且满足z x+y <x y+z <yz+x ,则x 、y 、z 三个数的大小关系是( ) A 、z<x<yB 、y<z<xC 、x<y<zD 、z<y<x2、已知a 、b 都是正整数,那么以a 、b 和8为边组成的三角形有( ) A 、3个B 、4个C 、5个D 、无数个3、将一长方形切去一角后得一边长分别为13、19、20、25和31的五边形(顺序不一定按此),则此五边形的面积为( ) A 、680B 、720C 、745D 、7604、如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对(a 、b )共有( ) 个 个 个 个5、设标有A 、B 、C 、D 、E 、F 、G 记号的7盏灯顺次排成一行,每盏灯安装一个开关,现在A 、C 、E 、G 4盏灯开着,其余3盏灯是关的,小岗从灯A 开始,顺次拉动开关,即从A到G,再顺次拉动开关,即又从A到G,…,他这样拉动了1999次开关后,则开着的灯是()A、、 C、 D、、已知13xx-=,那么多项式3275x x x--+的值是()A.11 B.9 C.7 D.57、线段12y x a=-+(1≤x≤3,),当a的值由-1增加到2时,该线段运动所经过的平面区域的面积为()A.6 B.8 C.9 D.108、已知四边形ABCD为任意凸四边形,E、F、G、H分别是边AB、BC、CD、DA的中点,用S、P分别表示四边形ABCD的面积和周长;S1、P1分别表示四边形EFGH的面积和周长.设K = SS1,K1 =PP1,则下面关于K、K1的说法正确的是().、K1均为常值为常值,K1不为常值不为常值,K1为常值、K1均不为常值二、填空题1、如图,△ABC是一个等边三角形,它绕着点P旋转,可以与等边△ABD重合,则这样的点P有_______个。
八年级上学期数学竞赛试题(含答案)
90y 千米()x 时()31.51O 八年级上学期数学竞赛试题 (共100分,时间:60分钟) 一、选择题(本题共10小题,每小题4分,共40分) 1. 判断下列几组数据中,可以作为直角三角形的三条边的是( ) A.6,15,17 B. 7,12,15 C. 13,15,20 D. 7,24,25 2. 平方根等于它本身的数是 ( ) A. 0 B. 1,0 C. 0, 1 ,-1 D. 0, -1 3. 下列式子正确的是 ( ) A.9)9(2-=- B.525±= C.1)1(33-=- D.2)2(2-=- 4. 点P 关于x 轴的对称点1P 的坐标是(4,-8),则P 点关于y 轴的对称点2P 的坐标是( ) A.(-4,-8) B.(4,8) C.(-4,8) D.(4,-8) 5. 一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度n (厘米)与燃烧时间 t(时)的函数关系的图象是 ( ) A B C D 6. 若点(m ,n)在函数y =2x +1的图象上,则2m -n 的值是( ) A .2 B .-2 C .1 D .-1 7.设面积为3的正方形的边长为x ,那么关于x 的说法正确的是( ) A .x 是有理数 B .x ±=3 C .x 不存在 D .x 取1和2之间的实数 8. 在平面直角坐标系中,将五边形的各顶点的横坐标都减5,纵坐标保持不变,那么该五边 形( ) A.横向向右平移5个单位 B.横向向左平移5个单位 C.纵向向上平移5个单位 D.纵向向下平移5个单位 9.若2x+5y+4z=6,3x+y-7z=-4,则x+y-z 的值为( ) A.-1 B.0 C.1 D.4 10. 已知03132=+++x x ,则2015321x x x x +++++ 的值为( ) A.0 B.1 C.-1 D.2015 二、填空题:(本题共6个小题,每小题5分,共30分。
八年级上册数学竞赛试题及答案
八年级上册数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 计算下列哪个表达式的结果是正数?A. \((-3) \times (-2)\)B. \((-3) \times (-3)\)C. \(3 \times (-2)\)D. \((-3) \times 3\)答案:A3. 一个数的平方是16,这个数是:A. 4B. -4C. 4或-4D. 以上都不是答案:C4. 一个三角形的三个内角分别是30°、60°和90°,这个三角形是:A. 直角三角形B. 等边三角形C. 等腰三角形D. 钝角三角形答案:A5. 一个数的绝对值是5,这个数是:A. 5B. -5C. 5或-5D. 以上都不是答案:C6. 计算下列哪个表达式的结果是0?A. \((-2) + 2\)B. \((-2) \times 2\)C. \((-2) - 2\)D. \((-2) \div 2\)答案:A7. 一个数的立方是-8,这个数是:A. 2B. -2C. 2或-2D. 以上都不是答案:B8. 一个数除以-1的结果是它本身,这个数是:A. 0B. 1C. -1D. 任何数答案:A9. 一个数的倒数是它本身,这个数是:A. 0B. 1C. -1D. 任何数答案:B10. 一个数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 任何数答案:A二、填空题(每题4分,共20分)1. 一个数的平方是25,这个数是______。
答案:±52. 一个数的立方是27,这个数是______。
答案:33. 如果一个三角形的两个内角分别是40°和70°,那么第三个内角是______。
答案:70°4. 一个数的绝对值是7,这个数是______。
答案:±75. 一个数除以-2的结果是-3,这个数是______。
初中数学八年级上数学竞赛试题含答案
初中数学八年级上数学竞赛试题含答案Newly compiled on November 23, 20200 1 2-1A 八年级(上)数学竞赛试题一、填空题:(40分)1、在ABC Rt ∆中,b a 、为直角边,c 为斜边,若14=+b a ,10=c ,则ABC ∆的面积是 ;2、计算:=⋅27 311 ;3 313÷⨯= ;2 3 2 +-= ; 3、某位老师在讲实数时,画了一个图(如图1),即以数轴的单位长线段为边作一个正方形,然后以0点为圆心,正方形的对角线长为半径画图,交x 轴于一点A ,作这样的图是用来说明 ;42,又出现了一个方格体正向下运动,为了使所有图案消失,你必须按 后 才能拼一个完整图案,从而使图案自动消失(游戏机有此功能)。
5、如图3,=∠+∠+∠+∠+∠+∠F E D C B A ;6、图4是一住宅小区的长方形花坛图样,阴影部分是草地,空地是四块同样的菱形,则草地与空地的面积之比为 ;(6)7、如图5,一块白色的正方形木板,边长是cm 18,上面横竖各有两根木条(阴影部分),宽都是cm 2,则白色部分面积是 2cm ;8、如图6,一块正方形地板由全等的正方形瓷砖铺成,这地板上的两条对角线上的瓷砖全是黑色,其余的瓷砖是白色的,如果有101块黑色瓷砖,那么瓷砖的总数是 ; 二、选择题:(30分)9、CD 是ABC Rt ∆斜边AB 上的高,若2=AB ,1:3:=BC AC ,则CD 为( )A 、51B 、52 C 、53D 、5410、如图,长方形ABCD 中,3=AB ,4=BC ,若将该矩形折叠,使C 点与A 点重合,则折痕EF 的长为( )A 、B 、3.75C 、D 、 11、如果a a -=-1 1 ,则a 的取值范围是( )A 、1=aB 、10<<aC 、0≥aD 、10≤≤a 12、若2 2 -+-x x 有意义,则x 的取值为( )A 、2>xB 、2<xC 、2≤xD 、2=x13、如上中图所示,一块边长为cm 10的正方形木板ABCD ,在水平桌面上绕点D 按顺时针方向转到D C B A ''''的位置时,顶点B 从开始到结束所经过的路径为( ) A 、cm 20 B 、cm 220 C 、cm 10π D 、cm 25π14、如上右图所示,设ABCD 边上任意一点,设CMB ∆的面积为2S ,CDM ∆的面积为S ,AMD ∆的面积为1S ,则有( )A 、21S S S +=B 、21S S S +> C 、21S S S +< D 、不能确定 三、画图题:(12分)15、如图,历史上最有名的军师诸葛亮,率精骑兵与司马懿对阵,诸葛亮一挥羽扇,军阵瞬时由左图变为右图,其实只移动了其中的3骑而己,请问如何移动(在图形上画出来即可)16、有一等腰梯形纸片,其上底和腰长都是a ,下底的长是a 2,你能将它剪成形状、大小完全一样的四块吗若能,请画出图形。
八年级(上)数学竞赛试题(含答案)
B 'A 'CBA八年级(上)数学竞赛试题(2018-12-12)一、选择题:(24分) 1、下列计算正确的是( )。
A.(a 3)n+1=a 3n+1B.(-a 2)3·a 6=a 12C.a 8m ·a 8=2a 16mD.(-m)(-m)4=-m52、把(3x+2y)2-(x-y)2分解因式,结果是( )。
A .(4x+y)(2x+y)B .(4x+y)(2x+3y)C .(2x+3y)2D .(4x+y)2 3、下列说法正确的是( )。
A.全等三角形的中线相等;B.有两边对应相等的两个等腰三角形全等;C.有两边和一角对应相等的两个三角形全等;D.周长相等的两个等边三角形全等 4、数a 的平方的算术平方根等于( ).A .aB .aC .a 的绝对值D .以上答案都不对 5、下列各组数据中的三个数,可作为三边长构成直角三角形的是_____. A.1、2、3 B.2223,4,56、如图所示,图中的两个正方形可以通过平移的方法互相得到。
如果将其中一个正方形绕某个点旋转一个角度后能与另一个重合,则这样的点共有( )个? A .1 B.2 C.3 D.47、下列英文单词或标记中, 是中心对称的是( )。
A. SOS B. CEO C. MBA D. SARS8、如图,把三角形△ABC 绕着点C 顺时针旋转350,得到△A 'B 'C ,A 'B '交AC 于点D ,若∠A 'DC=900,则∠A 的度数是( )。
A .550 B.650 C.750 D.850二、填空题:(24分)9、多项式42++mx x 因式分解后有一个因式是1-x ,则=m 。
10、644×83=2x ,则x =_________. 11、18x2+19x-m=(9x+5)(2x+n),则m-n= .12、16的平方根是 ,364-的立方根是 。
13、如果一个数的平方根与它的算术平方根相同,那么这个数是 。
八年级上期数学竞赛试题附答案
(总分120分,考试时间:100分钟)
学校班级姓名
一、填空题(每题3分,共24分):
1、计算: -(-1)0+|-1|=.
2、已知 .
3、一个等腰三角形的周长为16,底边上的高是4,则这个三角形的三边长分别
是______,_____,_______。
4、若x取整数,则使式子 的值为整数的x值有________个
A.4B.3C.2D.1
10、适合 的正整数 的值有()
A.1个B.2个C.3个D.4个
11、正整数x,y满足(2x-5)(2y-5)=25,则x+y的值是()
A、10;B、18;C、26;D、10或18;
12、如图,将圆桶中的水倒入一个直径为 ,高为 的圆口容器中,圆桶放置的角 度与水平线的夹角为 .若使容器中的水面与圆桶相接触,则容器中水的深度至少应为( )
A、4种B、3种C、2种D、1种
15、在平面直角坐标系中,横、纵坐标都是整数的点称为整点,已知k为整数,若函数 与 的图象的交点是整点,则k的值有()个
(A)2.(B)3。(C)4。(D)5。
16、若三角形的三条边的长分别为a、b、c,且 则这个三角形一定是()
(A)等腰三角形(B)直角三角形
(C)等边三角形(D)等腰直角三角形
A. B.
C. D.
13、祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:
按照上面的规律,摆100条“金鱼”需用火柴棒的根数为()
A.800 B.608 C.704D.602
14、一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有()
初二上册数学竞赛试题及答案
八年级(上)数学竞赛试卷一、精心填一填(本题共10题,每题3分,共30分) 1.函数中,字母a 的取值范围是_____________、2.如图1,∠1=∠2,由AAS 判定△ABD ≌△ACD ,则需添加的条件是____________. 3.计算:20072-2006×2008=_________图1 图24、写出一个图象经过点(-1,-1),且不经过...第一象限的函数表达式 5.已知点P 1(a-1,5)和P 2(2,b-1)关于x 轴对称,则(a+b )2005的值为 . 6.如图2,△ABC 中边AB 的垂直平分线分别交BC 、AB 于点D 、E ,AE=3cm ,△ADC•的周长为9cm ,则△ABC 的周长是_______7.如图3,AE =AF ,AB =AC ,∠A =60°,∠B =24°,则∠BOC =__________.8、如图4,在△ABC 中,AB=AC ,∠A=36°,BD 、CE 分别为∠ABC 与∠ACB 的角平分线,且相交于点F ,则图中的等腰三角形有 个。
9.如果用四则运算的加、减、除法定义一种新的运算,对于任意实数x 、y 有 y x yx y x -+=* 则()()31*191211**=10.如图5所示,圆的周长为4个单位长度,在圆的4等分点处标上0,1,2,3.先让圆周上数字0所对应的数与数轴上的数-1所对应的点重合,再让数轴按逆时针方向绕在该圆上,那么数轴上的数-2007将与圆周上的数字_________重合.FEDACB图5图4二、相信你一定能选对!(本题共6题,每题3分,共18分) 11.下列各式成立的是( )A .a-b+c=a-(b+c )B .a+b-c=a-(b-c )C .a-b-c=a-(b+c )D .a-b+c-d=(a+c )-(b-d ) 12.已知一次函数y=kx+b 的图象(如图6),当y <0时,x 的取值范围是( )(A )x >0 (B )x <0 (C )x <1 (D )x >1A B C D12 AEBO F C图3图6 图713.在△ABC 中,∠B =∠C ,与△ABC 全等的三角形有一个角是100°,那么在△ABC 中与这100°角对应相等的角是 ( )A.∠AB.∠BC.∠CD.∠B 或∠C14.某校八(2)班的全体同学喜欢的球类运动用图7所示的扇形统计图来表示,下面说法正确的是( )A 、从图中可以直接看出喜欢各种球类的具体人数;B 、从图中可以直接看出全班的总人数;C 、从图中可以直接看出全班同学初中三年来喜欢各种球类的变化情况;D 、从图中可以直接看出全班同学现在喜欢各种球类的人数的大小关系 15.已知一次函数y=mx+│m+1│的图像与y 轴交于点(0,3),且y 随x 的增大而减小,则m 的值为( ).A .2B .-4C .-2或-4D .2或-4 16.设y=ax 15+bx 13+cx 11-5(a 、b 、c 为常数),已知当x=7时,y=7,则x= -7时,y 的值等于( )A 、-7B 、-17C 、17D 、不确定三、认真解答,一定要细心哟!(各6分,共18分)17. 先化简再求值:[]y y x y x y x 4)4()2)(2(2÷+--+,其中x =5,y=2。
八年级(上)竞赛数学试题(含答案)
八年级竞赛数学试题及答案一、选择题:(每小题3分,本题满分共36分,)下列每小题中有四个备选答案,其中只有一个....是符合题意的,把正确答案前字母序号填在下面表格相应的题号下。
题号 1 2 3 4 5 6 7 8 9 10 11 12答案1.分式有意义,则x的取值范围是()A.x>1 B.x≠1 C.x<1 D.一切实数2.下列运算正确的是()A.3a+2a=5a2B.x2﹣4=(x+2)(x﹣2)C.(x+1)2=x2+1 D.(2a)3=6a33.把x3﹣2x2y+xy2分解因式,结果正确的是( )A.x(x+y)(x﹣y)B.x(x2﹣2xy+y2)C.x(x+y)2D.x(x﹣y)2 4.如图,将等腰直角三角形沿虚线裁去顶角后,∠ 1+∠ 2=()A.225°B.235°C.270°D.300°5.如图,△ABC和△DEF中,AC=DE,∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF( )A.AC∥DF B.∠A=∠D C.AB=DE D.∠ACB=∠F 6.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是( )A.85°B.80°C.75°D.70°7.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=D C.将仪器上的点A与∠PRQ 的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠P AE.则说明这两个三角形全等的依据是( ) A.SAS B.ASA C.AAS D.SSS8.若3x=4,9y=7,则3x﹣2y的值为( )A.B.C.﹣3 D.9.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有( )A.1个B.2个C.3个D.4个10.如图,在△ABC中,AD是角平分线,DE⊥AB于点E,△ABC的面积为7,AB=4,DE=2,则AC的长是()A.4 B.3 C.6 D.511.如图,平面直角坐标系中,已知定点A(1,0)和B(0,1),若动点C在x轴上运动,则使△ABC为等腰三角形的点C有( )个A. 5B. 4C. 3D. 212、.当x=1时,ax+b+1的值为﹣2,则(a+b﹣1)(1﹣a﹣b)的值为()A.﹣16 B.﹣8 C.8D.16二、填空(每题4分,共32分)13. 如图,直线a ∥b ,一块含60°角的直角三角板ABC (∠A =60°)按如图所示放置.若∠1=55°,则∠2的度数为 .14.如图,△ABC 中,∠C =90°,∠BAC =60°,AD 是角平分线,若BD =8,则CD 等于 .15.分解因式:﹣x 2+4xy ﹣4y 2= .16.若9x 2﹣kxy +4y 2是一个完全平方式,则k 的值是 . 17.一个多边形的内角和是它的外角和的4倍,这个多边形是 边形. 18.已知x 为正整数,当时x = 时,分式的值为负整数.19. 已知1024x y xy +==,,则()2x y -的值是 .20.比较255,344,433,522的大小,用“<”号连接为: 三、解答下列各题(满分52分)21.(每小题4分,本题满分8分)分解因式: (1)3x 2﹣12x +12 (2)ax 2﹣4a .22. (每小题5分,本题满分15分)计算与化简 (1)(3-x )(3+x )+(1+x )2,(2)(﹣)÷.(3)÷23. (本题满分8分)如图,△ACB和△ECD都是等边三角形,点A、D、E在同一直线上,连接BE.(1)求证:△ACD≌△BCE;(2)若CE=16,BE=21,求AE的长.24.(本题满分10分)如图,AD为△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD 于点G.(1)求证:AD垂直平分EF;(2)若∠BAC=60°,猜测DG与AG间有何数量关系?请说明理由.25. (本题满分5分)阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:已知x2﹣2xy+2y2+6y+9=0,求xy的值;26. (本题满分6分).我们在学习完全平方公式(a+b)2=a2+2ab+b2时,了解了一下它的几何背景,即通过图来说明上式成立.在习题中我们又遇到了题目“计算:(a+b+c)2”,你能将知识进行迁移,从几何背景说明(大致画出图形即可)并计算(a+b+c)2吗?八年级数学试题参考答案及评分标准(这里只提供了一种解法或证法,其他证法,只要合理,照常得分)一、1-12,BBDCC A DACB BA二、13.115°14.4 15. ﹣(x﹣2y)2.16、±12.17、十.18、3,4,5,8;19、4;20、522<255<433<344三、解答题.21、(1)解:原式=3(x2﹣4x+4)--------------------2分=3(x﹣2)2,-------------4分(2)解:ax2﹣4a=a(x2﹣4)--------------------------2分=a(x﹣2)(x+2).-----------------------4分22、(1)解:原式=9-x2+1+2x+x2 -------------------3分=2x+10 ---------------------------5分(2)解:原式=•--------------------3分=•---------------------------4分=,------------------------------5分(3)解:÷=--------------------3分=----------------------------5分23、(1)证明:∵△ACB和△ECD都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,----------------1分∵∠ACD=∠ACB﹣∠DCB,∠BCE=∠DCE﹣∠DCB,∴∠ACD=∠BCE,--------------------2分在△ACD和△BCE中,,∴△ACD≌△BCE(SAS);----------------------5分(2)∵△ACD≌△BCE,∴AD=BE=21,----------------6分∵△ECD是等边三角形,∴DE=CE=16,----------------------------7分∴AE=AD+DE=21+16=37.--------------------------8分24、(1)证明:∵ A D为△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,∠AED=∠AFD=90°,---------1分∴∠DEF=∠DFE,∴∠AEF=∠AFE,∴AE=AF------------------------------------3分∴点A、D都在EF的垂直平分线上,∴AD垂直平分EF.--------------------------------5分(2)答:AG=3DG.-----------------------6分理由:∵∠BAC=60°,AD平分∠BAC,∴∠EAD=30°,∴AD=2DE,∠EDA=60°,-------------7分∵AD⊥EF,∴∠EGD=90°,∴∠DEG=30°--------------8分∴DE=2DG,∴AD=4DG,∴AG=3DG.---------------------------------10分25解:∵x2﹣2xy+2y2+6y+9=0,∴(x2﹣2xy+y2)+(y2+6y+9)=0,---------------------2分∴(x﹣y)2+(y+3)2=0,∴x﹣y=0,y+3=0,∴x=﹣3,y=﹣3,---------------------------------4分∴xy=(﹣3)×(﹣3)=9,即xy的值是9.--------------------------------5分26.解:(a+b+c)2的几何背景如图,-----------------------3分整体的面积为:(a+b+c)2,用各部分的面积之和表示为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,所以(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.-----------------------6分。
上学期八年级数学竞赛试题附答案
上学期八年级数学竞赛试题时量:120分钟满分:120分一.选择题(共10小题,每小题3分,满分30分)1.如图,已知点A(﹣1,0)和点B(1,2),在坐标轴上确定点P,使得△ABP为直角三角形,则满足这样条件的点P共有()BB4.如图,平行四边形ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则ABCD于F,交AB于G,连接EF,则线段EF的长为()B8.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B→C→D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是()A. B. C. D.9.将点P(5,3)向左平移4个单位,再向下平移1个单位后,落在函数y=kx﹣2的图象11.已知:如图,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD与△ACD的面积之比为.第11题图第12题图12.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A 作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=13,CF=6,则四边形BDFG的周长为.13.一个多边形除了一个内角外,其余各内角之和为1680°那么除去的这个内角的度数为.14.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O 分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,4),则点B2014的横坐标为.15.如图,A、B的坐标分别为(1,0)、(0,2),若将线段AB平移到至A1B1,A1、B1的坐标分别为(2,a)、(b,3),则a+b=.第15题图第16题图第17题图16.如图,一次函数y=kx+b(k<0)的图象经过点A.当y<3时,x的取值范围是.17.直线y=(3﹣a)x+b﹣2在直角坐标系中的图象如图所示,化简:=.18.已知点A(2a﹣1,3a+1),直线l经过点A,则直线l的解析式是.三、解答题(共2小题,每小题6分,满分12分)19.如图,在四边形ABCD中,∠B=∠D=90°,∠C=60°,BC=4,CD=3,求AB的长.20.已知点A(a﹣1,2),B(﹣3,b+1),根据下列要求确定a、b的值:(1)直线AB∥x轴;(2)直线AB∥y轴;(3)A、B两点在第一、三象限的角平分线上.四、解答题(共2小题,每小题8分,满分16分)21.已知:如图,在平行四边形ABCD中,点M在边AD上,且AM=DM.CM、BA的延长线相交于点E.求证:(1)AE=AB;(2)如果BM平分∠ABC,求证:BM⊥CE.22.如图,已知一次函数y=kx+b的图象经过A(﹣2,﹣1),B(1,3)两点,并且交x轴于点C,交y轴于点D.(1)求该一次函数的解析式;(2)求△AOB的面积.五、解答题(共2小题,每小题9分,满分18分)23.如图,BE、CF分别是△ABC的高,M为BC中点,BC=10,,求△EFM的面积.24.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.(1)求出图中m,a的值;(2)求出甲车行驶路程y(km)与时间x(h)的函数解析式,并写出相应的x的取值范围;(3)当乙车行驶多长时间时,两车恰好相距50km.六、解答题(共2小题,每小题10分,满分20分)25.已知直线l1经过点A(﹣1,0)与点B(2,3),另一条直线l2经过点B,且与x轴相交于点P(m,0).(1)求直线l1表示的函数关系式;(2)若△APB的面积为3,求m的值;(3)如果点C是x轴上一点,点D是y轴上一点,且以A、B、C、D为顶点的四边形是平行四边形,请直接写出符合条件的C点的坐标.26.(1)操作发现:如图1,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.猜想线段GF与GC有何数量关系?并证明你的结论.(2)类比探究:如图2,将(1)中的矩形ABCD改为平行四边形,其它条件不变,(1)中的结论是否仍然成立?请说明理由.参考答案19、解:延长DA,CB,交于点E,在Rt△ABE中,∠E=30°,设AB=x,则有AE=2x,根据勾股定理得:BE==x,∴CE=BC+BE=4+x,在Rt△DCE中,∠E=30°,∴CD=CE,即(4+x)=3,解得:x=,则AB=.20、解:(1)∵直线AB∥x轴,∴b+1=2,a﹣1≠﹣3,解得a≠﹣2,b=1;(2)∵直线AB∥y轴,∴a﹣1=﹣3,b+1≠2,解得a=﹣2,b≠1;(3)∵A、B两点在第一、三象限的角平分线上,∴a﹣1=2,b+1=﹣3,解得a=3,b=﹣4.四、解答题(共2个小题,每小题8分,满分16分)21、证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠E=∠DCM,在△AEM和△DCM中,,∴△AEM≌△DCM(AAS),∴AE=CD,∴AE=AB;(2)∵BM平分∠ABC,∴∠ABM=∠CBM,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠CBM=∠AMB,∴∠ABM=∠AMB,∴AB=AM,∵AB=AE,AM=DM,∴点M是AD的中点,∴BC=2AM,∴BC=BE,∴△BCE是等腰三角形.∵BM平分∠ABC,∴BM⊥CE.22、解:(1)把A(﹣2,﹣1),B(1,3)代入y=kx+b得,解得.所以一次函数解析式为y=x+;(2)把x=0代入y=x+得y=,所以D点坐标为(0,),所以△AOB的面积=S△AOD+S△BOD=××2+××1=.五、解答题(共2个小题,每小题9分,满分18分)23、过M作MD⊥EF于D,∵BE、CF分别是△ABC的高,∴∠BFC=∠BEC=90°,∵M为BC的中点,BC=10,∴ME=MF=5,∵EF=5,∴DE=DF=,在△MDE中由勾股定理得:MD==,∴△EFM的面积是EF•DM=×5×=.答:△EFM的面积是.24、解:(1)由题意,得m=1.5﹣0.5=1,120÷(3.5﹣0.5)=40,∴a=40.(2)当0≤x≤1时设y与x之间的函数关系式为y=k1x,由题意,得40=k1,∴y=40x当1<x≤1.5时,y=40;当1.5<x≤7设y与x之间的函数关系式为y=k2x+b,由题意,得,解得:,∴y=40x﹣20.y=;(3)设乙车行驶的路程y与时间x之间的解析式为y=k3x+b3,由题意,得,解得:,∴y=80x﹣160.当40x﹣20﹣50=80x﹣160时,解得:x=.当40x﹣20+50=80x﹣160时,解得:x=.=,.答:乙车行驶小时或小时,两车恰好相距50km.六、解答题(共2个小题,每小题10分,满分20分)25、解:(1)设直线l1的表达式为y=kx+b,则,解得:.∴直线l1的函数关系式为:y=x+1.(2)过点B作BE⊥x轴于点E,则BE=3,∵△APB的面积为3,∴AP×BE=3,即AP=2,又∵点A的坐标为(﹣1,0),点P的坐标为(m,0),∴m的值为﹣3或1.(3)当AB为一边时,如图所示:点C坐标为(﹣3,0).当AB为对角线时,如图所示:,点C的坐标为(1,0).同理,当点D在y轴负半轴上时,C(3,0),点D(0,﹣3).综上可得:点C的坐标为(±3,0)或(1,0).26、解:(1)猜想线段GF=GC,证明:连接EG,∵E是BC的中点,∴BE=CE,∵将△ABE沿AE折叠后得到△AFE,∴BE=EF,∴EF=EC,∵EG=EG,∠C=∠EFG=90°,∴△ECG≌△EFG(HL),∴FG=CG;(2)(1)中的结论仍然成立.证明:连接EG,FC,∵E是BC的中点,∴BE=CE,∵将△ABE沿AE折叠后得到△AFE,∴BE=EF,∠B=∠AFE,∴EF=EC,∴∠EFC=∠ECF,∵矩形ABCD改为平行四边形,∴∠B=∠D,∵∠ECD=180°﹣∠D,∠EFG=180°﹣∠AFE=180°﹣∠B=180°﹣∠D,∴∠ECD=∠EFG,∴∠GFC=∠GFE﹣∠EFC=∠ECG﹣∠ECF=∠GCF,∴∠GFC=∠GCF,∴FG=CG;即(1)中的结论仍然成立.11。
初中数学八年级(上)数学竞赛试题(含答案)
1 2-1A 八年级〔上〕数学竞赛试题一、填空题:〔40分〕1、在ABC Rt ∆中,b a 、为直角边,c 为斜边,若14=+b a ,10=c ,则ABC ∆的面积是;2、计算:=⋅27 311 ;3 313÷⨯=;2 3 2 +-=;3、某位老师在讲实数时,画了一个图〔如图1〕,即以数轴的单位长线段为边作一个正方形,然后以0点为圆心,正方形的对角线长为半径画图,交x 轴于一点A ,作这样的图是用来说明;〔1〕4、在电子游戏中有一种方格拼图游戏,若在游戏过程中,已拼好的图案如图2,又出现了一个方格体正向下运动,为了使所有图案消失,你必须按后才能拼一个完整图案,从而使图案自动消失〔游戏机有此功能〕。
5、如图3,=∠+∠+∠+∠+∠+∠F E D C B A ;6、图4是一住宅小区的长方形花坛图样,阴影部分是草地,空地是四块同样的菱形,则草地与空地的面积之比为;<4> <5> <6>7、如图5,一块白色的正方形木板,边长是cm 18,上面横竖各有两根木条〔阴影部分〕,宽都是cm 2,则白色部分面积是2cm ;8、如图6,一块正方形地板由全等的正方形瓷砖铺成,这地板上的两条对角线上的瓷砖全是黑色,其余的瓷砖是白色的,如果有101块黑色瓷砖,则瓷砖的总数是; 二、选择题:〔30分〕9、CD 是ABC Rt ∆斜边AB 上的高,若2=AB ,1:3:=BC AC ,则CD 为〔 〕A 、51B 、52 C 、53 D 、5410、如图,长方形ABCD 中,3=AB ,4=BC ,若将该矩形折叠,使C 点与A 点重合,则折痕EF 的长为〔 〕A 、3.74B 、3.75 C 、3.76 D 、3.77DFD)(A '11、如果a a -=-1 1 ,则a 的取值范围是〔 〕A 、1=aB 、10<<aC 、0≥aD 、10≤≤a 12、若2 2 -+-x x 有意义,则x 的取值为〔 〕A 、2>xB 、2<xC 、2≤xD 、2=x13、如上中图所示,一块边长为cm 10的正方形木板ABCD ,在水平桌面上绕点D 按顺时针方向转到D C B A ''''的位置时,顶点B 从开始到结束所经过的路径为〔 〕A 、cm 20B 、cm 220C 、cm 10πD 、cm 25π14、如上右图所示,设M 是边上任意一点,设CMB ∆的面积为2S ,CDM ∆的面积为S ,AMD ∆的面积为1S ,则有〔 〕A 、21S S S +=B 、21S S S +>C 、21S S S +<D 、不能确定 三、画图题:〔12分〕15、如图,历史上最有名的军师诸葛亮,率精骑兵与司马懿对阵,诸葛亮一挥羽扇,军阵瞬时由左图变为右图,其实只移动了其中的3骑而己,请问如何移动?〔在图形上画出来即可〕16、有一等腰梯形纸片,其上底和腰长都是a ,下底的长是a 2,你能将它剪成形状、大小完全一样的四块吗?若能,请画出图形。
八上数学竞赛(含答案)
八年级上数学竞赛试题 (时间90分钟,满分100分)一、填空题(每小题5分,共40分) 1、若01223344555)12(a x a x a x a x a x a x +++++=-,则024a a a ++的值是_2、已知b a 82=(b a ,是正整数)且,52=+b a 那么b a 82+的值是3、如图,在Rt △ABC 中,∠C=90°,∠A=35°,以直角顶点C 为旋转中心,将△ABC 旋转到△A ’B ’C 的位置,其中A ’、B ’分别是A 、B 的对应点,且点B 在斜边A ’B ’上,直角边CA ’交AB 于点D ,则∠DCA 的度数_____。
4、小王与同学约好下午4:30在学校门口见,不见不散,为此,他们在早上8:00钟两人均把自己的表对准,小王于4:30正点走到学校门口,可是同学没来,原来同学的手表比正确时间每小时慢4分钟,如果同学按他自己的手表4:30到达,则小王还要等 分钟(正确时间)5、甲、乙两位探险者到沙漠进行探险。
某日早晨7∶00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进。
上午10∶00,甲、乙二人的距离的平方是_____。
6、一个等腰三角形的周长为16,底边上的高是4,则 这个三角形的三边长分别是______,_____,_______。
7、已知:如图2,E 、F 分别是正方形ABCD 的边BC 、CD 上的点,AE 、AF 分别与对角线BD 相交于M 、N ,若∠EAF=500,则∠CME +∠CNF =________。
8、如图3,将面积为2a 的正方形与面积为2b 的正方形(b>a)放在一起,则△ABC 的面积是__________。
二、选择题(每小题5分,共40分)1、如图5,正方形ABCD 的边长为1cm ,以对角线AC 为边长再作一个正方形,则正方形ACEF 的面积是( )A 、3cm 2B 、4cm 2AE D BFC图3 A BCDFE 图5ABC D FENM图2BA ∙甲组AE CD F 图612C 、5cm 2D 、2cm 22、以线段16,13,10,6ab c d ====为边,且使a ∥c 作四边形,这样的四边形( )A 、能作一个 B 、能作两个 C 、能作三个 D 、能作无数个 E 、不能作3、如图6,正方形的面积为256,点F 在AD 上,点E 在AB 的延长线上,Rt △CEF 的面积为200,则BE 的值为( )A 、10 B 、11 C 、12 D 、154、实数a 、b 满足ab=1,若11,1111a b M N a b a b=+=+++++, 则M 、N 的关系为( )A 、M>N B 、M=N C 、M<N D 、不确定 5、一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如左图),那么B 点从开始至结束走过的路径长度为( )A 、23πB 、34π C 、 4 D 、2+23π6、在甲组图形的4个图中,每个图示由4种简单图形A 、B 、C 、D (不同的线段或圆)中的某两个图形组成的,例如由A 、B 组成的图形记为B A ∙,在乙组图形的(a )、(b)、 (c)、(d )4个图中,表示“D A ∙”和“C A ∙”的是( )A 、 (a),(b)B 、 (b),(c)C 、 (c),(d)D 、 (b),(d) 7、如图所示的4个的半径均为1,那么图中的阴影部分的面积为( ) A 、1+πB 、π2 C 、 4 D 、68、设标有A 、B 、C 、D 、E 、F 、G 记号的7盏灯顺次排成一行,每盏灯安装一个开关,现在A 、C 、E 、G 4盏灯开着,其余3盏灯是关的,小岗从灯A 开始,顺次拉动开关,即从A 到G ,再顺次拉动开关,即又从A 到G ,…,他这样拉动了1999次开关后,则开着的灯是( )A 、A.C.E.G B 、 A.C.F C 、 B.D.F D 、C.E.G乙组B A ∙C B ∙D C ∙ D B ∙ 甲组三、解答题(20分)1、已知四边形ABCD中,AB=AD,∠BAD=60°,∠BCD=120°,请说明:BC+DC=AC2、如图,四边形ABCD中,AB∥CD,且AB+BC=CD+AD。
八年级(上)竞赛数学试卷(含答案)
八年级(上)竞赛数学试卷(含答案)一、填空题(共12小题,每小题5分,满分60分)1.等腰三角形的底角是15°,腰长为10,则其腰上的高为.2.已知点A(a,2)、B(﹣3,b)关于x轴对称,求a+b=.3.如图,D为等边三角形ABC内一点,AD=BD,BP=AB,∠DBP=∠DBC,则∠BPD=度.4.等腰三角形一腰上的高等于腰长的一半,则它的顶角的度数为.5.已知一次函数y=kx+2过点(﹣2,﹣1),则k为6.合泰童装厂在其生产的一批产品中抽取300件进行质量检测,发现有6件产品质量不合格,则这批产品的合格率是%.7.新运算规定:a◇b=,且1◇2=1,则2◇3=.8.在列频率分布表时,得到一组数据中某一个数据的频数是12,频率是0.2,那么这个数据组中共有个数据.9.若(x+2)2=64,则x=.10.若△ABC≌△A′B′C′且∠A=35°25′,∠B′=49°45′,则∠C=.11.已知|x﹣13|+|y﹣12|+(z﹣5)2=0,则由此为三边的三角形是三角形.12.观察下列规律:3=3,32=9,33=27,34=81,35=243,36=729…用你发现的规律写出32010个位数字为二、选择题(共8小题,每小题5分,满分40分)13.的算术平方根是()A.﹣3 B.3 C.±3 D.8114.如图所示,直线l1,l2,l3表示三条相交的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.1处B.2处C.3处D.4处15.如果点A(﹣3,a)是点B(3,﹣4)关于y轴的对称点,那么点A关于x轴的对称点的坐标是()A.(3,﹣4)B.(﹣3,4)C.(3,4)D.(﹣3,4)16.一次考试后对60名学生的成绩进行频率分布统计,以10分为一分数段,共分10组,若学生得分均为整数,且在69.5~79.5之间这组的频率是0.3,那么得分在这个分数段的学生有()A.30人B.18人C.20人D.15人17.已知一组数据含有三个不同的数12,17,25,它们的频率分别是,则这组数据的平均数是()A.19 B.16.5 C.18.4 D.2218.如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD等于()A.4 B.3 C.2 D.119.如图,已知AD=AE,BE=CD,∠1=∠2=110°,∠BAC=80°,则∠CAE的度数是()A.20°B.30°C.40°D.50°20.若x2+2(m﹣3)x+16是完全平方式,则m的值是()A.﹣1 B.7 C.7或﹣1 D.5或1三、解答题(共5小题,满分50分)21.如图,已知直线l1:y=2x+1、直线l2:y=﹣x+7,直线l1、l2分别交x轴于B、C两点,l1、l2相交于点A.(1)求A、B、C三点坐标;(2)求△ABC的面积.22.如图,AB=DC,AC=BD,AC、BD交于点E,过E点作EF∥BC交CD于F.求证:∠1=∠2.23.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.24.如表石山中学八年级某班25名男生100m跑成绩(精确到0.1秒)的频数分布表:组别(秒)频数频数12.55~13.55 313.55~14.55 614.55~15.55 815.55~16.55 516.55~17.55 3(1)求各组频率,并填入上表;(2)求其中100m跑的成绩不低于15.55秒的人数和所占的比例.25.三江职业中学要印刷招生宣传材料,现有两家印刷厂可供选择:甲印刷厂提出:每份材料收0.2元的印刷费,另收500元的制版费;乙印刷厂提出:每份材料收0.4元的印刷费,不收制版费.(1)分别写出两印刷厂的收费y(元)与印刷数量x(份)之间的函数关系式;(2)若三江职业中学拿出2000元材料印刷费,你会选择哪家印刷厂,试说明理由?参考答案与试题解析一、填空题(共12小题,每小题5分,满分60分)1.等腰三角形的底角是15°,腰长为10,则其腰上的高为5.【考点】等腰三角形的性质;含30度角的直角三角形.【分析】根据题意作出图形,利用等腰三角形的两底角相等求出三角形的顶角等于150°,所以顶角的邻补角等于30°,然后根据直角三角形中30°角所对的直角边等于斜边的一半即可求出.【解答】解:如图,△ABC中,∠B=∠ACB=15°,∴∠BAC=180°﹣15°×2=150°,∴∠CAD=180°﹣150°=30°,∵CD是腰AB边上的高,∴CD=AC=×10=5cm.故答案为:5.2.已知点A(a,2)、B(﹣3,b)关于x轴对称,求a+b=﹣5.【考点】关于x轴、y轴对称的点的坐标.【分析】先根据“于x轴对称的点,横坐标相同,纵坐标互为相反数”求得a,b的值再求代数式的值.【解答】解:∵点A(a,2)、B(﹣3,b)关于x轴对称,∴a=﹣3,b=﹣2,∴a+b=﹣5.3.如图,D为等边三角形ABC内一点,AD=BD,BP=AB,∠DBP=∠DBC,则∠BPD=30度.【考点】等边三角形的性质.【分析】作AB的垂直平分线,再根据等边三角形的性质及全等三角形的性质解答即可.【解答】解:作AB的垂直平分线,∵△ABC为等边三角形,△ABD为等腰三角形;∴AB的垂直平分线必过C、D两点,∠BCE=30°;∵AB=BP=BC,∠DBP=∠DBC,BD=BD;∴△BDC≌△BDP,所以∠BPD=30°.故应填30°.4.等腰三角形一腰上的高等于腰长的一半,则它的顶角的度数为30°或150°.【考点】含30度角的直角三角形;等腰三角形的性质.【分析】本题要分两种情况解答:当BD在三角形内部以及当BD在三角形外部.再根据等腰三角形的性质进行解答.【解答】解:本题分两种情况讨论:(1)如图1,当BD在三角形内部时,∵BD=AB,∠ADB=90°,∴∠A=30°;(2)当如图2,BD在三角形外部时,∵BD=AB,∠ADB=90°,∴∠DAB=30°,∠ABC=180°﹣∠DAB=30°=150°.故答案是:30°或150°.5.已知一次函数y=kx+2过点(﹣2,﹣1),则k为【考点】待定系数法求一次函数解析式.【分析】将点(﹣2,﹣1)代入函数解析式即可求出k的值.【解答】解:将点(﹣2,﹣1)代入得:﹣1=﹣2k+2,解得:k=.故填.6.合泰童装厂在其生产的一批产品中抽取300件进行质量检测,发现有6件产品质量不合格,则这批产品的合格率是98%.【考点】有理数的除法.【分析】合泰童装厂在其生产的一批产品中抽取300件进行质量检测,发现有6件产品质量不合格,即有294件合格,根据合格率=合格产品÷总产品,得出结果.【解答】解:这批产品的合格率=÷300=294÷300=0.98.答:这批产品的合格率是98%.7.新运算规定:a◇b=,且1◇2=1,则2◇3=.【考点】代数式求值.【分析】令a=1,b=2,代入a◇b=,可求得k的值,进而根据运算法则可得出2◇3的值.【解答】解:令a=1,b=2,∴=1,k=7,∴2◇3==.故填:.8.在列频率分布表时,得到一组数据中某一个数据的频数是12,频率是0.2,那么这个数据组中共有60个数据.【考点】频数(率)分布表.【分析】根据频率、频数的关系:频率=频数÷数据总和,可得数据总和=频数÷频率.【解答】解:∵一组数据中某一个数据的频数是12,频率是0.2,∴这个数据组中共有数据的个数=12÷0.2=60.9.若(x+2)2=64,则x=6或﹣10.【考点】平方根.【分析】依据平方根的定义可求得x+2的值,然后解关于x的一元一次方程即可.【解答】解:∵(x+2)2=64,∴x+2=±8.解得:x=6或x=﹣10.故答案为:6或﹣10.10.若△ABC≌△A′B′C′且∠A=35°25′,∠B′=49°45′,则∠C=94°10′.【考点】全等三角形的性质.【分析】全等三角形的对应角相等,三角形内角和等于180°.所以∠C=180°﹣∠A﹣∠B,且∠C1=∠C,∠B=∠B′.【解答】解:∵△ABC≌△A1B1C1,∴∠C1=∠C,∠B=∠B′,又∵∠C=180°﹣∠A﹣∠B=180°﹣∠A﹣∠B′=180°﹣35°25′﹣49°45′=94°50′.11.已知|x﹣13|+|y﹣12|+(z﹣5)2=0,则由此为三边的三角形是直角三角形.【考点】勾股定理的逆定理;非负数的性质:绝对值;非负数的性质:偶次方.【分析】本题可根据非负数的性质“几个非负数相加,和为0,这几个非负数的值都为0”解出x、y、z的值,再根据勾股定理的逆定理判断三角形的类型.【解答】解:依题意得:x﹣13=0,y﹣12=0,z﹣5=0,∴x=13,y=12,z=5,∵x2=y2+z2,∴此三角形为直角三角形,故填直角.12.观察下列规律:3=3,32=9,33=27,34=81,35=243,36=729…用你发现的规律写出32010个位数字为9【考点】规律型:数字的变化类.【分析】根据3的指数从1到4,末位数字从3,9,7,1进行循环,再用2010除以4得出余数,再写出32010个位数字.【解答】解:2010÷4=502…2,则32010个位数字为9,故答案为9.二、选择题(共8小题,每小题5分,满分40分)13.的算术平方根是()A.﹣3 B.3 C.±3 D.81【考点】算术平方根.【分析】根据算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根.所以结果必须为正数,由此即可求出=9的算术平方根.【解答】解:∵=32=9,∴的算术平方根是3.故选:B.14.如图所示,直线l1,l2,l3表示三条相交的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.1处B.2处C.3处D.4处【考点】角平分线的性质.【分析】根据到三条相互交叉的公路距离相等的地点应是三条角平分线的交点.把三条公路的中心部位看作三角形,那么这个三角形两个内角平分线的交点以及三个外角两两平分线的交点都满足要求.【解答】解:满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角平分线两两相交的交点,共三处.故选:D.15.如果点A(﹣3,a)是点B(3,﹣4)关于y轴的对称点,那么点A关于x轴的对称点的坐标是()A.(3,﹣4)B.(﹣3,4)C.(3,4)D.(﹣3,4)【考点】关于x轴、y轴对称的点的坐标.【分析】平面直角坐标系中任意一点P(x,y),分别关于x轴的对称点的坐标是(x,﹣y),关于y轴的对称点的坐标是(﹣x,y).【解答】解:根据对称的性质,得已知点A(﹣3,a)是点B(3,﹣4)关于y轴对称的点的坐标,那么a=﹣4;则点A的坐标是(﹣3,﹣4),所以点A关于x轴对称的点的坐标是(﹣3,4).故选B.16.一次考试后对60名学生的成绩进行频率分布统计,以10分为一分数段,共分10组,若学生得分均为整数,且在69.5~79.5之间这组的频率是0.3,那么得分在这个分数段的学生有()A.30人B.18人C.20人D.15人【考点】频数与频率.【分析】根据频率、频数的关系:频率=,可得频数=频率×数据总和.【解答】解:根据题意,得0.3×60=18(人).故选B.17.已知一组数据含有三个不同的数12,17,25,它们的频率分别是,则这组数据的平均数是()A.19 B.16.5 C.18.4 D.22【考点】加权平均数.【分析】本题是加权平均数,根据加权平均数的公式即可求解.【解答】解:平均数=12×+17×+25×=16.5.故选B.18.如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD等于()A.4 B.3 C.2 D.1【考点】菱形的判定与性质;含30度角的直角三角形.【分析】过点P做PM∥CO交AO于M,可得∠CPO=∠POD,再结合题目推出四边形COMP为菱形,即可得PM=4,又由CO∥PM可得∠PMD=30°,由直角三角形性质即可得PD.【解答】解:如图:过点P做PM∥CO交AO于M,PM∥CO∴∠CPO=∠POD,∠AOP=∠BOP=15°,PC∥OA∴四边形COMP为菱形,PM=4PM∥CO⇒∠PMD=∠AOP+∠BOP=30°,又∵PD⊥OA∴PD=PC=2.令解:作CN⊥OA.∴CN=OC=2,又∵∠CNO=∠PDO,∴CN∥PD,∵PC∥OD,∴四边形CNDP是长方形,∴PD=CN=2故选:C.19.如图,已知AD=AE,BE=CD,∠1=∠2=110°,∠BAC=80°,则∠CAE的度数是()A.20°B.30°C.40°D.50°【考点】等腰三角形的性质.【分析】由题意知,△ABD和△ABC是等腰三角形,可求得顶角∠DAE的度数,及∠BAD=∠EAC,进而求得∠CAE的度数.【解答】解:∵AD=AE,BE=CD,∴△ABE和△ABC是等腰三角形.∴∠B=∠C,∠ADE=∠AED.∵∠1=∠2=110°,∴∠ADE=∠AED=70°.∴∠DAE=180°﹣2×70°=40°.∵∠1=∠2=110°,∠B=∠C,∴∠BAD=∠EAC.∵∠BAC=80°.∴∠BAD=∠EAC=(∠BAC﹣∠DAE)÷2=20°.故选A.20.若x2+2(m﹣3)x+16是完全平方式,则m的值是()A.﹣1 B.7 C.7或﹣1 D.5或1【考点】完全平方式.【分析】完全平方公式:(a±b)2=a2±2ab+b2这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x和4积的2倍,故2(m﹣3)=±8,∴m=7或﹣1.【解答】解:∵(x±4)2=x2±8x+16,∴在x2+2(m﹣3)x+16中,2(m﹣3)=±8,解得:m=7或﹣1.故选:C.三、解答题(共5小题,满分50分)21.如图,已知直线l1:y=2x+1、直线l2:y=﹣x+7,直线l1、l2分别交x轴于B、C两点,l1、l2相交于点A.(1)求A、B、C三点坐标;(2)求△ABC的面积.【考点】两条直线相交或平行问题.【分析】(1)联立两直线解析式,解方程即可得到点A的坐标,两直线的解析式令y=0,求出x的值,即可得到点A、B的坐标;(2)根据三点的坐标求出BC的长度以及点A到BC的距离,然后根据三角形的面积公式计算即可求解.【解答】解:(1)直线l1:y=2x+1、直线l2:y=﹣x+7联立得,,解得,∴交点为A(2,5),令y=0,则2x+1=0,﹣x+7=0,解得x=﹣0.5,x=7,∴点B、C的坐标分别是:B(﹣0.5,0),C(7,0);(2)BC=7﹣(﹣0.5)=7.5,=×7.5×5=.∴S△ABC22.如图,AB=DC,AC=BD,AC、BD交于点E,过E点作EF∥BC交CD于F.求证:∠1=∠2.【考点】全等三角形的判定与性质.【分析】根据AB=DC,AC=BD可以联想到证明△ABC≌△DCB,可得∠DBC=∠ACB,从而根据平行线的性质证得∠1=∠2.【解答】证明:∵AB=DC,AC=BD,BC=CB,∴△ABC≌△DCB.∴∠DBC=∠ACB.∵EF∥BC,∴∠1=∠DBC,∠2=∠ACB.∴∠1=∠2.23.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.【考点】等腰三角形的判定与性质.【分析】(1)由AB=AC,∠ABC=∠ACB,BE=CF,BD=CE.利用边角边定理证明△DBE≌△CEF,然后即可求证△DEF是等腰三角形.(2)根据∠A=40°可求出∠ABC=∠ACB=70°根据△DBE≌△CEF,利用三角形内角和定理即可求出∠DEF的度数.【解答】证明:∵AB=AC,∴∠ABC=∠ACB,在△DBE和△CEF中,∴△DBE≌△CEF,∴DE=EF,∴△DEF是等腰三角形;(2)∵△DBE≌△CEF,∴∠1=∠3,∠2=∠4,∵∠A+∠B+∠C=180°,∴∠B==70°∴∠1+∠2=110°∴∠3+∠2=110°∴∠DEF=70°24.如表石山中学八年级某班25名男生100m跑成绩(精确到0.1秒)的频数分布表: 组别(秒)频数频数12.55~13.55 313.55~14.55 614.55~15.55 815.55~16.55 516.55~17.55 3(1)求各组频率,并填入上表;(2)求其中100m跑的成绩不低于15.55秒的人数和所占的比例.【考点】频数(率)分布表.【分析】(1)根据频率、频数的关系,频率=,可依次计算出各组的频率;(2)观察图表,可得其中100m跑的成绩不低于15.55秒的有8人,进而求得其所占的比例.【解答】解:(1)样本容量为25,且已知各组的频数,则各组的频率分别为0.12,0.24,0.32,0.2,0.12.(2)观察图表可得:有8人100m跑的成绩不低于15.55秒,所占的比例为=0.32.25.三江职业中学要印刷招生宣传材料,现有两家印刷厂可供选择:甲印刷厂提出:每份材料收0.2元的印刷费,另收500元的制版费;乙印刷厂提出:每份材料收0.4元的印刷费,不收制版费.(1)分别写出两印刷厂的收费y(元)与印刷数量x(份)之间的函数关系式;(2)若三江职业中学拿出2000元材料印刷费,你会选择哪家印刷厂,试说明理由?【考点】一次函数的应用.【分析】(1)根据“甲厂费用=单价×数量+制版费;乙厂费用=单价×数量”,即可得出y甲、y乙关于x之间的函数关系式;(2)分别令y甲、y乙=2000,求出与之对应的x的值,比较后即可得出结论.【解答】解:(1)根据题意可知:y甲=0.2x+500;y乙=0.4x.(2)选甲印刷厂,理由如下:当y甲=2000时,有0.2x+500=2000,解得:x=7500;当y乙=2000时,有0.4x=2000,解得:x=5000.∵7500>5000,∴若三江职业中学拿出2000元材料印刷费,应该选取甲印刷厂.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级(上)数学竞赛题
一、选择题
1、设x 、y 、z 均为正实数,且满足z x+y <x y+z <y
z+x ,则x 、y 、z 三个数的大小关系是( )
A 、z<x<y
B 、y<z<x
C 、x<y<z
D 、z<y<x
2、已知a 、b 都是正整数,那么以a 、b 和8为边组成的三角形有( ) A 、3个
B 、4个
C 、5个
D 、无数个
3、将一长方形切去一角后得一边长分别为13、19、20、25和31的五边形(顺序不一定按此),则此五边形的面积为( ) A 、680
B 、720
C 、745
D 、760
4、如果不等式组⎩⎨
⎧<-≥-0
80
9b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b
的有序数对(a 、b )共有( )
A.17个
B.64个
C.72个
D.81个
5、设标有A 、B 、C 、D 、E 、F 、G 记号的7盏灯顺次排成一行,每盏灯安装一个开关,现在A 、C 、E 、G 4盏灯开着,其余3盏灯是关的,小岗从灯A 开始,顺次拉动开关,即从A 到G ,再顺次拉动开关,即又从A 到G ,…,他这样拉动了1999次开关后,则开着的灯是( )
A 、A.C.E.G
B 、 A.C.F
C 、 B.D.F
D 、C.E.G 6、已知1
3x x
-
=,那么多项式3275x x x --+的值是( ) A .11 B .9 C .7 D .5 7、线段1
2
y x a =-
+(1≤x ≤3,),当a 的值由-1增加到2时,该线段运动所经过的平面区域的面积为( )
A .6
B .8
C .9
D .10
8、已知四边形ABCD 为任意凸四边形,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点,
用S 、P 分别表示四边形ABCD 的面积和周长;S 1、P 1分别表示四边形EFGH 的面积和周长.设K =
S S 1,K 1 = P
P 1
,则下面关于K 、K 1的说法正确的是( ). A .K 、K 1均为常值 B .K 为常值,K 1不为常值 C .K 不为常值,K 1为常值 D .K 、K 1均不为常值 二、填空题
1、如图,△ABC 是一个等边三角形,它绕着点P 旋转,可以与等边
△ABD 重合,则这样的点P 有_______个。
2、如图,现有棱长为a 的8个正方体堆成一个棱长为2a 的正方体,
它的主视图、俯视图、左视图均为一个边长为2a 的正方形,现如果要求从图中上面4个正方体中拿去2个,而三个视图的形状仍不改变,那么拿去的2个正方体的编号应为__________。
3、一个周长约为5厘米的圆形硬币,从周长为20厘米的四边形的边界上某点出发,转动一圈后回到原出发点。
在这个过程中,圆心将画下一条封闭的曲线,这条曲线的长度是___________厘米。
4、有一个特别的计算器,只有蓝、红、黄三个键。
蓝键为“输入/删除”键(按它一下可输入一个数,再按它一下则将显示屏上的数删除)。
每按一下红键,则显示幕上的数变为原来的2倍;每按一下黄键,则显示屏的数的末位数自动消失。
现在先按蓝键输入21,要求:(1)操作过程只能按红键和黄键;(2)按键次数不超过6次;(3)最后输出的数是3。
请设计一个符合要求的操作程序: ;
5、恰有28个连续自然数的算术平方根的整数部分相同(其小数部分不等于零),那么这个相同的整数是______________。
6、如图,△ABC 中,∠A=30°以BE 为边,将此三角形对折,其次,又以BA 为边,再一次对折,C 点落在BE 上,此时∠CDB =82°,则原三角形的∠B =____________度。
D B
A
A B
C
D
7、若a 为正有理数,在-a 与a 之间(不包括-a 和a )恰有2007个整数,则a 的取值范围为_____________. 8、已知正整数a .b 满足134<b a <22
7
,则当b 最小时,a +b 的值为_____. 三、解答题:
1、某公园门票价格,对达到一定人数的团队,按团体票优惠,现有A 、B 、C 三个旅游团共72人,如果各团单独购票,门票依次为360元、、384元、480元;如果三个团合起来购票,总共可少花72元. ⑴这三个旅游团各有多少人?
⑵在下面填写一种票价方案,使其与上述购票情况相符:
2、如图,已知梯形ABCD 中,AD ∥BC ,CA 平分∠BCD ,AD =12,BC =22,CE =10, (1)试说明: AB =DE; (2)求CD 的长。
E
D
C
B
A
3、如图,D 为等腰△ABC 底边BC 的中点,E 、F 分别为AC 及其延长线上的点.又已知∠EDF = 90°,ED = DF = 1,AD = 5.求线段BC 的长.
F
E
D
C B A
参考答案
一、选择题:
ADCC BCAB 二、填空题:
1、3;
2、A 、C 或B 、D ;
3、25;
4、21-2-4-8-16-32-3或21-42-4-8-16-32-3或21-42-84-168-336-33-3;
5、14;
6、78;
7、1003<a≤1004;
8、21(分数为5/16); 三、解答题: 1、解:
(1)360+384+480-72=1152(元),1152÷72=16(元/人),即团体票是每人16元。
因为16不能整除360,所以A 团未达到优惠人数,若三个团都未达到优惠人数, 则三个团的人数比为360︰384︰480=15︰16︰20,即三个团的人数分别为
725115⨯、725116⨯、7251
20
⨯,均不是整数,不可能, 所以B 、C 两团至少有一个团本来就已达到优惠人数,这有两种可能:①只有C 团达到;②B 、C 两团都达到.
对于①,可得C 团人数为480÷16=30(人),A 、B 两团共有42人,A 团人数为4231
15
⨯,B 团人数为
4231
16
⨯,不是整数,不可能;所以必是②成立,即C 团有30人,B 团有24人,A 团有18人. (2)
2、先由AD 平行且等于BE 得到四边形ABED 为平行四边形,因此AB=DE ,再由角平分线得等腰,从而AD=CD=12;
3、作DG ⊥AC 于G ,得△ABD 与△ADG 为相似变换,又DG=1/2EF=22
1
,由勾股定理得AG=22
7,从而BD=75,BC=710;。