23.2.2图形的旋转-旋转的性质
第二十三章旋转全章教案
23.1 图形的旋转1.掌握旋转的概念,了解旋转中心,旋转角,旋转方向,对应点的概念及其应用.2.掌握旋转的性质,应用概念及性质解决一些实际问题.3.会利用简单的旋转作图.一、情境导入飞行中的飞机的螺旋桨、高速运转中的电风扇等均属于旋转现象.你还能举出类似现象吗?二、合作探究探究点一:图形的旋转的有关概念【类型一】旋转图形的识别下列图形:线段、等边三角形、正方形、等腰梯形、正五边形、圆,其中是旋转对称图形的有哪些?解析:由旋转对称图形的定义逐一判断求解.解:线段、等边三角形、正方形、正五边形、圆都是旋转对称图形.方法总结:判断一个图形是否是旋转对称图形,其关键是要看这个图形能否找到一个旋转中心,且图形能绕着这个旋转中心旋转一定角度与自身重合.【类型二】旋转中心,旋转角的判断如图,在6×4方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是()A.格点MB.格点NC.格点PD.格点Q解析:只有点N到两个三角形的三个顶点的距离对应相等.故选B.如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为()A.30°B.45°C.90°D.135°解析:对应点与旋转中心的连线的夹角,就是旋转角,∠BOD,∠AOC都是旋转角.由图可知,OB、OD是对应边,∠BOD是旋转角,所以,旋转角∠BOD=90°.故选C.探究点二:图形的旋转的性质【类型一】旋转性质的理解如图,四边形ABCD是边长为4的正方形且DE=1,△ABF是△ADE旋转后的图形.(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF的长度是多少?(4)如果连接EF,那么△AEF是怎样的三角形?解:(1)旋转中心是A点.(2)∵△ABF是由△ADE旋转而成的,∴B是D的对应点,又∵∠DAB=90°,∴旋转了90°.(3)∵AD=4,DE=1,∴AE=42+12=17.∵对应点到旋转中心的距离相等且F是E的对应点,∴AF=AE=17.(4)∵∠EAF=90°(旋转角相等)且AF=AE ,∴△EAF 是等腰直角三角形.【类型二】旋转的性质的运用如图,点E 是正方形ABCD 内一点,连接AE 、BE 、CE ,将△ABE 绕点B 顺时针旋转90°到△CBE ′的位置,若AE =1,BE =2,CE =3则∠BE ′C =________度.解析:连接EE ′,由旋转性质知BE =BE ′,∠EBE ′=90°,∴EE ′=2 2.在△EE ′C 中,EE ′=22,E ′C =1,EC =3,由勾股定理逆定理可知∠EE ′C =90°,∴∠BE ′C =∠BE ′E +∠EE ′C =135°.探究点三:旋转作图 【类型二】旋转作图在如图所示的网格图中按要求画出图形:(1)先画出△ABC 向下平移5格后的△A 1B 1C 1.(2)再画出△ABC 以点O 为旋转中心,沿顺时针方向旋转90°后的△A 2B 2C 2.解:(1)如图,△A 1B 1C 1即为△ABC 向下平移5格后的图形.(2)△A 2B 2C 2即为△ABC 以点O 为旋转中心,沿顺时针方向旋转90°后的图形.三、板书设计教学过程中,强调学生自主探索和合作交流,经历观察、归纳和动手操作,体会图形变换思想.23.2 中心对称23.2.1 中心对称1.理解中心对称的定义,掌握中心对称的性质.2.培养观察、分析和归纳能力,感受中心对称美,发掘作图能力.一、情境导入剪纸,又叫刻纸,是中国汉族最古老的民间艺术之一,它的历史可追溯到公元6世纪.如图剪纸中两个金鱼之间有什么关系呢?二、合作探究探究点一:中心对称【类型一】中心对称的识别如下图所示的四组图形中,左边图形与右边图形成中心对称的有( )A.1组 B.2组C.3组 D.4组解析:将选项中左边图形沿着某一点旋转180°能与右边图形重合的是(1)(2)(3),所以(1)(2)(3)中左边图形与右边图形成中心对称.共3组,故选C.探究点二:中心对称的性质【类型一】确定对称中心如图中,已知△ABC和△A′B′C′成中心对称,画出它们的对称中心.解析:由于△ABC和△A′B′C′成中心对称,即从整体上看,此图是一幅中心对称图案,所以本题有两种解法.解法一:根据观察,B、B′及C、C′应是两组对应点,连接BB′、CC′,BB′、CC′相交于点O,则O为对称中心.如图.解法二:B、B′是一对对应点,连接BB′,找出BB′的中点O,则点O即为对称中心.如图.方法总结:利用中心对称的特征,找正确对应点.当两个图形成中心对称时,通过直接观察的方法找对应点;如果直观体现不明显,可采用测量方法找对应点.【类型二】确定中心对称的对应元素如图,四边形ABCD绕D点旋转180°,请作出旋转后的图案,写出作法并回答.(1)这两个图形成中心对称吗?如果是,对称中心是哪一点?如果不是,请说明理由.(2)如果是中心对称,那么A、B、C、D关于中心的对称点是哪些点?解:作法:①延长AD,并且使得DA′=AD;②同样可得:BD=B′D,CD=C′D;③连接A′B′、B′C′、C′D,则四边形A′B′C′D为所求的四边形,如图所示.(1)这两个图形成中心对称,对称中心是点D;(2)A、B、C、D关于中心的对称点为A′、B′、C′和D.【类型三】利用中心对称性质的应用求线段如图,已知△AOB与△DOC成中心对称,△AOB的面积是12,AB=3,则△DOC中CD边上的高是( )A.3B.6C.8D.12解析:设AB边上的高为h,因为△AOB的面积是12,AB=3,所以12×AB×h=12,所以h=8,又因为△AOB与△DOC成中心对称,△COD≌△AOB,所以△DOC中CD边上的高是8.故选C.方法总结:成中心对称的两个图形全等,全等三角形的对应高相等.三、板书设计教学过程中,强调学生自主探索和合作交流,结合图形的旋转学习中心对称,体会图形变换思想方法.23.2.2 中心对称图形1.认识中心对称图形的有关概念.2.能判断某图形是不是中心对称图形.3.体验数学与生活的紧密联系,发展美感.一、情境导入你见过雪花吗?如图所示是其中一种雪花,你认为它是中心对称图形吗?二、合作探究探究点一:中心对称图形【类型一】中心对称图形的识别下列标志图中,既是轴对称图形,又是中心对称图形的是( )解析:根据轴对称和中心对称的概念和性质逐一进行判断,选项A是中心对称图形,不是轴对称图形;选项B既是中心对称图形,又是轴对称图形;选项C是轴对称图形,不是中心对称图形;选项D既不是中心对称图形,也不是轴对称图形.故选B.方法总结:识别中心对称图形的方法是根据概念,将这个图形绕某一点旋转180°,如果旋转后的图形能够与自身重合,那么这个图形就是中心对称图形.【类型二】补全中心对称图形如图,网格中有一个四边形和两个三角形.(1)请你画出三个图形关于点O的中心对称图形;(2)将(1)中画出的图形与原图形看成一个整体图形,请写出这个整体图形对称轴的条数;这个整体图形至少旋转多少度能与自身重合?解:(1)如图所示;(2)这个整体图形的对称轴有4条;此图形最少旋转90°能与自身重合.【类型三】利用中心对称图形的性质求面积如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,试求图中阴影部分的面积.解析:由于矩形是中心对称图形,所以依题意可知△BOF与△DOE关于点O成中心对称,由此图中阴影部分的三个三角形就可以转化到直角△ADC中,于是此面积即可求得.解:因为矩形ABCD是中心对称图形,所以△BOF与△DOE关于点O成中心对称,所以图中阴影部分的三个三角形就可以转化到直角△ADC 中.又因为AB =2,BC =3,所以Rt △ADC 的面积为12×3×2=3,即图中阴影部分的面积为3.方法总结:利用中心对称的性质将阴影部分转化到一个直角三角形中来解决更简单.【类型四】中心对称性质的实际应用有一块长方形土地ABCD ,其中有一口如图①所示的圆形井.现将此土地分给甲、乙两户承包种植蔬菜,若使两家得到的面积一样大,你想怎么帮他们分呢?简要说明你的分法(假设土地都一样好).分析:已知整个图形是由一个长方形和一个圆组成,而这两个图形又都是中心对称图形,所以只要设法分别找出这两个图形的对称中心,并经过两个中心作一条直线,这条直线即将面积一分为二,问题随之解决.作法:(1)任意作出已知圆的两条直径,交点为O ;(2)连接AC 、BD ,交点为O ′; (3)过点O 、O ′作一条直线l .如图②中所示直线l 即为所分的痕迹.三、板书设计教学过程中,强调学生自主探索和合作交流,结合图形,多观察,多归纳,体会认识中心对称图形的方法,认识中心对称图形的特征.23.2.3 关于原点对称的点的坐标1.掌握两点关于原点对称时,横、纵坐标的关系.2.利用对称性质,在平面直角坐标系内作关于原点对称的图形.3.进一步体会数形结合的思想.一、情境导入△ABC 关于原点O 对称的三角形的三个顶点坐标分别为(2,3)、(-1,4)、(5,-2),你能知道△ABC 的三个顶点坐标分别是什么吗?二、合作探究探究点:关于原点对称的点的坐标 【类型一】求一个点关于原点的对称点坐标填空:(1)在平面直角坐标系中,点P (2,-3)关于原点对称的点P ′的坐标是________.(2)点P (2,n )与点Q (m ,-3)关于原点对称,则(m +n )2015=________.(3)点M (3,-5)绕原点旋转180°后到达的位置是________.解析:(1)因为点P (2,-3)与点P ′关于原点对称,所以点P ′的坐标是P ′(-2,3).(2)因为点P (2,n )与点Q (m ,-3)关于原点对称,所以m =-2,n =3,则(m +n )2015=(-2+3)2015=1. (3)因为点M (3,-5)绕原点旋转180°后到达的位置与原来的点关于原点对称,所以到达的位置是(-3,5).方法总结:在平面直角坐标系中,任意点A (x ,y )关于坐标轴、原点都存在对称点.关于x 轴的对称点的横坐标相同,纵坐标互为相反数,关于y 轴的对称点的横坐标互为相反数,纵坐标相同,关于原点对称的点的横、纵坐标都互为相反数.如:点A (x ,y )关于x 轴的对称点为A ′(x ,-y );关于y 轴的对称点为A ″(-x ,y ),关于原点对称的点为A (-x ,-y ).【类型二】画关于原点的中心对称图形如图,在平面直角坐标系中,△ABC 的顶点坐标为A (-2,3)、B (-3,2)、C (-1,1).(1)若将△ABC 向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的△A 1B 1C 1;(2)画出△A 1B 1C 1绕原点旋转180°后得到的△A 2B 2C 2;(3)△A ′B ′C ′与△ABC 关于原点成中心对称,请写出对称中心的坐标:________;(4)顺次连接C 、C 1、C ′、C 2,所得到的四边形CC 1C ′C 2是轴对称图形吗?解:(1)(2)如图所示; (3)(0,0);(4)是轴对称图形. 方法总结:熟练掌握图形变换的几种形式是解决问题的关键.【类型三】关于原点对称点的坐标规律应用若点A 的坐标是(a ,b )且a ,b 满足a -3+b 2+4b +4=0,求点A 关于原点O 的对称点A ′的坐标.解:∵a -3+b 2+4b +4=0,∴a -3+(b +2)2=0.∵a -3≥0,(b +2)2≥0,∴a -3=0,b +2=0.即a =3,b =-2.∴点A的坐标是(3,-2).又因为点A 和点A ′关于点O 对称,所以A ′(-3,2).方法总结:透过问题的表象找到隐含条件,再根据点的对称性质作出解答.三、板书设计教学过程中,强调学生自主探索和合作交流,经历探究关于坐标轴对称的点的坐标变化规律将实际问题转化为数学问题,体会数形结合思想.23.3 课题学习 图案设计1.利用旋转、轴对称或平移进行简单的图案设计.2.认识和欣赏平移、旋转在现实生活中的应用,并灵活运用平移与旋转组合的方式进行一些图案设计.一、情境导入2016年里约热内卢奥运会会徽是由三人牵手相连的标志,以代表巴西的著名景点“面包山”作为图形的基础,融合充满激情的卡里奥克舞,并且呼应了巴西国旗的绿黄蓝三色.标志象征着团结、转变、激情及活力,在和谐动感中共同协力,同时也体现了里约的特色和这座城市多样的文化,展示了热情友好的里约人和这座美丽的上帝之城.二、合作探究探究点:图案的形成与设计【类型一】分析构成图案的基本图形分析下列图形的形成过程.解析:仔细观察图案,分析构成的基本图形,再分析图形变换的过程和方式.是通过平移、轴对称、旋转中的一种变换还是其中的几种变换的组合,另外要注意图形形成不是唯一的,即基本图形也不唯一,要全面思考,认真分析.解:仔细观察会发现这四个图形分别是由以下的基本图形构成的.第一个是由基本图形旋转十次后得到的,第二个是由基本图形平移两次后得到的,第三个是由基本图形旋转五次后得到的,第四个是由基本图形旋转五次后得到的,因为图形的变换不唯一还可以有其他的变换方式,如(1)、(4)可以由图2(a)、2(b)轴对称变换得到.方法总结:对于这四种图形变换一般从定义区分即可.分清图形变换的几个最基本概念是解题的关键.【类型二】分析图形形成过程分析左边的树形图案,经过怎样的图形变换就可能得到右边的树形图案.解析:根据左右两图形的位置关系可知,若要由左图得到右图,可以通过以下的途径:(1)把左图绕点A沿顺时针方向旋转一个角度,使左边的树形图案与直线垂直,然后再作轴对称变换(要注意对称轴的正确选择),即可得到右边的树形图案.(2)把左图先做轴对称变换(要注意对称轴的正确选择),使左边的树形图案与直线垂直,然后再作平移变换,即可得到右边的树形图案.方法总结:图形的变换可以通过选择不同的变换方式得到,可能需要旋转、轴对称、平移等多种变换组合才能得到完美的图案,希望同学们认真分析,精心设计一定也能设计出漂亮的图案来.【类型三】图案的设计用四块如图(1)所示的正方形卡片拼成一个新的正方形,使拼成的图案是一个轴对称图形,请你在图(2)、图(3)、图(4)中各画出一种拼法(要求三种画法各不相同,且其中至少有一个既是轴对称图形,又是中心对称图形).解:解法不唯一.例如:方法总结:求解时只要符合题意即可,另外,在平时的学习生活中一定要留意身边的各种形状的图案,这样才能在具体求解问题时如鱼得水,一蹴而就.如图,是一个4×4的正方形网格,每个小正方形的边长为 1.请你在网格中以左上角的三角形为基本图形,通过平移、对称或旋转变换,设计一个精美图案,使其满足:①既是轴对称图形,又是以点O 为对称中心的中心对称图形;②所作图案用阴影标识,且阴影部分面积为4.解析:所给左上角的三角形的面积为12×1×1=12,故设计图案总共需要三角形4÷12=8(个),以O 为对称中心的中心对称图形,同时又是轴对称图形的设计方案有很多.答案:答案不唯一,以下各图供参考:方法总结:在读清要求后,进行方案的尝试设计,一般要经历一个不断修改的过程,使问题在修正中得以解决.三、板书设计教学过程中,强调学生自主探索和合作交流,经历运用平移、旋转、轴对称的组合进行简单的图案设计过程,体会图形的欣赏与设计过程.。
九年级数学上册 23.2.2 中心对称图形 课件(共24张PPT)
(2)中心对称图形的对称点
O
连线被_对__称__中__心__平__分__
C
B
性质:中心对称图形上的每一对对称点的连线都经过对称
中心且被对称中心平分.
知识归纳
中心对称图形的性质
知识点二
中心对称与中心对称图形的区别与联系:
中心对称
中心对称图形
1.针对两个图形而言的
1.针对一个图形而言的
区 2.是指两个图形的(位置)关系2.是指具有某种性质的一个图形
探究新知
中心对称图形的概念
【问题】将下面的图形绕O点旋转,你有什么发现?
知识点一
AO B
O
O
O
共同点:(1)都绕一点旋转了180度; (2)都与原图形完全重合.
中心对称图形的定义 注意 中心对称图形是指一个图形.
把一个图形绕某个点旋转180º,如果旋转后的图形能与原来的图 形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中
ABCDEFGH I J KLM
NOPQRSTUVWXYZ
2.在线段、角、等腰三角形、等边三角形、等腰梯形、平行四 边形、矩形、菱形、正方形、正六边形、圆中,既是轴对称图形, 又是中心对称图形的图形有( D ) A.3个 B.4个 C.5个 D.6个
针对训练
中心对称图形的概念
知识点一
3.下列图形中,既是轴对称图形,又是中心对称图形的是( B )
分别交AD和BC于点E,F,AB=2,BC=3,则图中阴影部分的面积为_3__.
A
ED
O
BF
C
针对训练
中心对称图形的性质
知识点二
1.如图,有一个平行四边形请你用无刻度的直尺画一条直线把他
初中数学人教版九年级上册:第23章《旋转》全章教案
初中数学人教版九年级上册实用资料第二十三章旋转23.1图形的旋转1.了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.2.通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.3.旋转的基本性质.重点旋转及对应点的有关概念及其应用.难点旋转的基本性质.一、复习引入(学生活动)请同学们完成下面各题.1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.2.如图,已知△ABC和直线l,请你画出△ABC关于l的对称图形△A′B′C′.3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?(口述)老师点评并总结:(1)平移的有关概念及性质.(2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它具有的一些性质.(3)什么叫轴对称图形?二、探索新知我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.1.请同学们看讲台上的大时钟,有什么在不停地转动?旋转围绕什么点呢?从现在到下课时针转了多少度?分针转了多少度?秒针转了多少度?(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时钟的中心.从现在到下课时针转了________度,分针转了________度,秒针转了________度.2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?(老师点评略)3.第1,2两题有什么共同特点呢?共同特点是如果我们把时钟、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.下面我们来运用这些概念来解决一些问题.例1如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A,B分别移动到什么位置?解:(1)旋转中心是O,∠AOE,∠BOF等都是旋转角.(2)经过旋转,点A和点B分别移动到点E和点F的位置.自主探究:请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板.(分组讨论)根据图回答下面问题(一组推荐一人上台说明)1.线段OA与OA′,OB与OB′,OC与OC′有什么关系?2.∠AOA′,∠BOB′,∠COC′有什么关系?3.△ABC与△A′B′C′的形状和大小有什么关系?老师点评:1.OA=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心的距离相等.2.∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,即对应点与旋转中心所连线段的夹角称为旋转角.3.△ABC和△A′B′C′形状相同和大小相等,即全等.综合以上的实验操作得出:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.例2如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B的对应点的位置,以及旋转后的三角形.分析:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=∠ACD,又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示.解:(1)连接CD;(2)以CB为一边作∠BCE,使得∠BCE=∠ACD;(3)在射线CE上截取CB′=CB,则B′即为所求的B的对应点;(4)连接DB′,则△DB′C就是△ABC绕C点旋转后的图形.三、课堂小结(学生总结,老师点评)本节课应掌握:1.对应点到旋转中心的距离相等;2.对应点与旋转中心所连线段的夹角等于旋转角;3.旋转前、后的图形全等及其它们的应用.四、作业布置教材第62~63页习题4,5,6.23.2中心对称23.2.1中心对称1.正确认识什么是中心对称、对称中心,理解关于中心对称图形的性质特点.2.能根据中心对称的性质,作出一个图形关于某点成中心对称的对称图形.重点中心对称的概念及性质.难点中心对称性质的推导及理解.复习引入问题:作出下图的两个图形绕点O旋转180°后的图案,并回答下列的问题:1.以O为旋转中心,旋转180°后两个图形是否重合?2.各对应点绕O旋转180°后,这三点是否在一条直线上?老师点评:可以发现,如图所示的两个图案绕O旋转180°后都是重合的,即甲图与乙图重合,△OAB与△COD重合.像这样,把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.探索新知(老师)在黑板上画一个三角形ABC,分两种情况作两个图形:(1)作△ABC一顶点为对称中心的对称图形;(2)作关于一定点O为对称中心的对称图形.第一步,画出△ABC.第二步,以△ABC的C点(或O点)为中心,旋转180°画出△A′B′C和△A′B′C′,如图(1)和图(2)所示.从图(1)中可以得出△ABC与△A′B′C是全等三角形;分别连接对称点AA′,BB′,CC′,点O在这些线段上且O平分这些线段.下面,我们就以图(2)为例来证明这两个结论.证明:(1)在△ABC和△A′B′C′中,OA=OA′,OB=OB′,∠AOB=∠A′OB′,∴△AOB ≌△A′OB′,∴AB=A′B′,同理可证:AC=A′C′,BC=B′C′,∴△ABC≌△A′B′C′;(2)点A′是点A绕点O旋转180°后得到的,即线段OA绕点O旋转180°得到线段OA′,所以点O在线段AA′上,且OA=OA′,即点O是线段AA′的中点.同样地,点O也在线段BB′和CC′上,且OB=OB′,OC=OC′,即点O是BB′和CC′的中点.因此,我们就得到1.关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.2.关于中心对称的两个图形是全等图形.例题精讲例1如图,已知△ABC和点O,画出△DEF,使△DEF和△ABC关于点O成中心对称.分析:中心对称就是旋转180°,关于点O成中心对称就是绕O旋转180°,因此,我们连AO,BO,CO并延长,取与它们相等的线段即可得到.解:(1)连接AO并延长AO到D,使OD=OA,于是得到点A的对称点D,如图所示.(2)同样画出点B和点C的对称点E和F.(3)顺次连接DE,EF,FD,则△DEF即为所求的三角形.例2(学生练习,老师点评)如图,已知四边形ABCD和点O,画四边形A′B′C′D′,使四边形A′B′C′D′和四边形ABCD关于点O成中心对称(只保留作图痕迹,不要求写出作法).课堂小结(学生总结,老师点评)本节课应掌握:中心对称的两条基本性质:1.关于中心对称的两个图形,对应点所连线都经过对称中心,而且被对称中心所平分;2.关于中心对称的两个图形是全等图形及其它们的应用.作业布置教材第66页练习23.2.2中心对称图形了解中心对称图形的概念及中心对称图形的对称中心的概念,掌握这两个概念的应用.复习两个图形关于中心对称的有关概念,利用这个所学知识探索一个图形是中心对称图形的有关概念及其他的运用.重点中心对称图形的有关概念及其它们的运用.难点区别关于中心对称的两个图形和中心对称图形.一、复习引入1.(老师口问)口答:关于中心对称的两个图形具有什么性质?(老师口述):关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.关于中心对称的两个图形是全等图形.2.(学生活动)作图题.(1)作出线段AO关于O点的对称图形,如图所示.(2)作出三角形AOB关于O点的对称图形,如图所示.延长AO使OC=AO,延长BO使OD=BO,连接CD,则△COD即为所求,如图所示.二、探索新知从另一个角度看,上面的(1)题就是将线段AB绕它的中点旋转180°,因为OA=OB,所以,就是线段AB绕它的中点旋转180°后与它本身重合.上面的(2)题,连接AD,BC,则刚才的关于中心O对称的两个图形就成了平行四边形,如图所示.∵AO=OC,BO=OD,∠AOB=∠COD∴△AOB≌△COD∴AB=CD也就是,ABCD绕它的两条对角线交点O旋转180°后与它本身重合.因此,像这样,把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.(学生活动)例1从刚才讲的线段、平行四边形都是中心对称图形外,每一位同学举出三个图形,它们也是中心对称图形.老师点评:老师边提问学生边解答的特点.(学生活动)例2请说出中心对称图形具有什么特点?老师点评:中心对称图形具有匀称美观、平稳的特点.例3求证:如图,任何具有对称中心的四边形是平行四边形.分析:中心对称图形的对称中心是对应点连线的交点,也是对应点间的线段中点,因此,直接可得到对角线互相平分.证明:如图,O是四边形ABCD的对称中心,根据中心对称性质,线段AC,BD必过点O,且AO=CO,BO=DO,即四边形ABCD的对角线互相平分,因此,四边形ABCD 是平行四边形.三、课堂小结(学生归纳,老师点评)本节课应掌握:1.中心对称图形的有关概念;2.应用中心对称图形解决有关问题.四、作业布置教材第70页习题8,9,10.23.2.3关于原点对称的点的坐标理解点P与点P′关于原点对称时它们的横纵坐标的关系,掌握P(x,y)关于原点的对称点为P′(-x,-y)的运用.复习轴对称、旋转,尤其是中心对称,知识迁移到关于原点对称的点的坐标的关系及其运用.重点两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点的对称点P′(-x,-y)及其运用.难点运用中心对称的知识导出关于原点对称的点的坐标的性质及其运用它解决实际问题.一、复习引入(学生活动)请同学们完成下面三题.1.已知点A和直线l,如图,请画出点A关于l对称的点A′.2.如图,△ABC是正三角形,以点A为中心,把△ABC顺时针旋转60°,画出旋转后的图形.3.如图△ABO,绕点O旋转180°,画出旋转后的图形.老师点评:老师通过巡查,根据学生解答情况进行点评.(略)二、探索新知(学生活动)如图,在直角坐标系中,已知A(-3,1),B(-4,0),C(0,3),D(2,2),E(3,-3),F(-2,-2),作出A,B,C,D,E,F点关于原点O的中心对称点,并写出它们的坐标,并回答:这些坐标与已知点的坐标有什么关系?老师点评:画法:(1)连接AO并延长AO;(2)在射线AO上截取OA′=OA;(3)过A作AD′⊥x轴于点D′,过A′作A′D″⊥x轴于点D″.∵△AD′O与△A′D″O全等,∴AD′=A′D″,OA=OA′,∴A′(3,-1),同理可得B,C,D,E,F这些点关于原点的中心对称点的坐标.(学生活动)分组讨论(每四人一组):讨论的内容:关于原点作中心对称时,①它们的横坐标与横坐标绝对值什么关系?纵坐标与纵坐标的绝对值又有什么关系?②坐标与坐标之间符号又有什么特点?提问几个同学口述上面的问题.老师点评:(1)从上可知,横坐标与横坐标的绝对值相等,纵坐标与纵坐标的绝对值相等.(2)坐标符号相反,即P(x,y)关于原点O的对称点P′(-x,-y).两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点为P′(-x,-y).例1如图,利用关于原点对称的点的坐标的特点,作出与线段AB关于原点对称的图形.分析:要作出线段AB关于原点的对称线段,只要作出点A、点B关于原点的对称点A′,B′即可.解:点P(x,y)关于原点的对称点为P′(-x,-y),因此,线段AB的两个端点A(0,1),B(3,0)关于原点的对称点分别为A′(0,-1),B(-3,0).连接A′B′.则就可得到与线段AB关于原点对称的线段A′B′.(学生活动)例2已知△ABC,A(1,2),B(-1,3),C(-2,4),利用关于原点对称的点的坐标的特点,作出△ABC关于原点对称的图形.老师点评分析:先在直角坐标系中画出A,B,C三点并连接组成△ABC,要作出△ABC 关于原点O的对称三角形,只需作出△ABC中的A,B,C三点关于原点的对称点,依次连接,便可得到所求作的△A′B′C′.三、巩固练习教材第69页练习.四、课堂小结点P(x,y)关于原点的对称点为P′(-x,-y).五、作业布置教材第70页习题3,4.23.3课题学习图案设计利用平移、轴对称和旋转的这些图形变换中的一种或组合进行图案设计,设计出称心如意的图案.通过复习平移、轴对称、旋转的知识,然后利用这些知识让学生开动脑筋,敝开胸怀大胆联想,设计出一幅幅美丽的图案.重点设计图案.难点如何利用平移、轴对称、旋转等图形变换中的一种或它们的组合得出图案.一、复习引入(学生活动)请同学们独立完成下面的各题.1.如图,已知线段CD是线段AB平移后的图形,D是B点的对称点,作出线段AB,并回答AB与CD有什么位置关系.错误!错误!,第2题图)错误!,第3题图) 2.如图,已知线段CD,作出线段CD关于对称轴l的对称线段C′D′,并说明CD与对称线段C′D′之间有什么关系?3.如图,已知线段CD,作出线段CD关于D点旋转90°的旋转后的图形,并说明这两条线段之间有什么关系?老师点评:1.AB与CD平行且相等;2.过D点作DE⊥l,垂足为E并延长,使ED′=ED,同理作出C′点,连接C′D′,则C′D′即为所求.CD的延长线与C′D′的延长线相交于一点,这一点在l上并且CD=C′D′.3.以D点为旋转中心,旋转后CD⊥C′D,垂足为D,并且CD=C′D.二、探索新知请用以上所讲的平移、轴对称、旋转等图形变换中的一种或几种组合完成下面的图案设计.例1(学生活动)学生亲自动手操作题.按下面的步骤,请每一位同学完成一个别致的图案.(1)准备一张正三角形纸片(课前准备)(如图a);(2)把纸片任意撕成两部分(如图b,如图c);(3)将撕好的如图b沿正三角形的一边作轴对称,得到新的图形;(4)将(3)得到的图形以正三角形的一个顶点作为旋转中心旋转,得到如图(d)(如图c保持不动);(5)把如图(d)平移到如图(c)的右边,得到如图(e);(6)对如图(e)进行适当的修饰,使得到一个别致美丽的如图(f)的图案.老师必要时可以给予一定的指导.三、课堂小结本节课应掌握:利用平移、轴对称和旋转的图形变换中的一种或组合设计图案.11。
23.2.2中心对称图形教案
23.2.2中心对称图形一、教学内容中心对称图形二、教材分析“中心对称图形”是初中数学教学中的重要内容之一,它既与“轴对称图形”有紧密的联系和区别,同时又是图形的三种基本运动方式(平移,翻折,旋转)中的“旋转”的特殊情况﹒通过对这一节课的学习,丰富学生对“对称图形”的认识, 同时又向学生渗透了“旋转变换”的思想,使学生学会用运动的观点研究问题,发展学生的空间智能﹒本节课在生活中有丰富的实际素材,学习本节课后学生能进一步感受到数学的应用价值,能用数学的观点观察生活,解决生活中的实际问题,为续内容的学习奠定良好的基础,学习中涉及的归纳、类比等思想方法,对激发学生探索精神和创新意识等方面都有重要意义﹒三、学情分析学生已学过《生活中的轴对称》和《图形的平移和旋转》,初步积累了一定的图形变换的数学活动经验,在此基础上,组织学生观察、分析、识图、简单图案欣赏和设计等实践操作活动,丰富学生对图形变换的认识﹒由于学生的操作能力相对比较差,呈现内容时,力图为学生提供生动有趣的现实情境,安排观察、实践、交流等活动,进一步深化学生对中心对称图形定义和性质的理解,以及对识图、画图等操作技能的掌握,丰富学生数学活动体验,有意识培养学生积极的情感、态度,促进良好的数学观的养成﹒四、教学目标(一)知识与技能1.了解中心对称图形及其基本性质.2.掌握平行四边形是中心对称图形.(二)过程与方法1.经历观察、发现,探索中心对称图形的有关概念和基本性质的过程,积累一定的审美体验.2.了解中心对称图形及其基本性质,掌握平行四边形是中心对称图形.(三)情感态度价值观通过观察发现、动手操作、大胆猜想、自主探索、合作交流体验到成功的喜悦,学习的乐趣并积累一定的审美体验。
五、教学重难点重点:中心对称图形的定义及其性质.难点:(1)中心对称图形与轴对称图形的区别;(2)利用中心对称图形的有关概念和基本性质解决问题。
六、教学方法和手段实验观察,自主探究,合作交流七、学法指导合作指导八、教具准备多媒体课件、几张扑克牌、风车和平行四边形、细线及大头针九、教学过程(一)巧设情景问题,引入课题(多媒体显示图片),回答问题:1、这些图形有什么共同的特征?(都可由一个基本图形经过旋转而得到)演示"风车"旋转过程,复习旋转。
23.2.2中心对称图形
A
B
C
D
2、下列图形中,是轴对称图形,不是中 心对称图形的是( )
A
B
C
D
3、下列图形中,是中心对称图形而不是轴 对称图形的是( ) A、平行四边形 C、等边三角形 B、菱形 D、正方形
O
等边三角形不是中心对称图形!
小结:
• 一个定义; • 两个对比;
趣味活动
你有几种方法将平行四边形拆成 两个中心对称的图形?
23.2.2中心对称图 形
一、回顾:
1、图形的旋转
旋转的定义
旋转三要素
旋转的基本性质
2、中心对称
把一个图形绕着某一个点旋转180°,
中心对称定义
如果它能够和另一个图形重合,
那么就说这两个图形关于这个点对称或中心对称, 这个点就叫做对称中心, 这两个图形中的对应点叫做关于中心的对称点.
O
B (2) C
比 较
中心对称与中心对称图形是两个既有 联系又有区别的概念.
区别: 中心对称指两个全等图形的相互位置关系, 中心对称图形指一个图形本身成中心对称.
B
(2)
C
重合
联系: 如果将中心对称图形的两个图形看成一个整体, 则它们是中心对称图形. 如果将中心对称图形对称的部分看成两个图形, 则它们成中心对称.
索马里
以色列
布隆迪
肯尼亚
印度
想一想
在生活中你还见过哪些中心对称图形?
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
议一议
在一次游戏当中,小明将下面左图的四张扑克牌 中的一张旋转180O后,得到右图,小亮看完很 快知道小明旋转了哪一张扑克,你知道为什么吗?
人教版九年级数学上册第二十三章旋转《23.2中心对称》第2课时说课稿
人教版九年级数学上册第二十三章旋转《23.2中心对称》第2课时说课稿一. 教材分析人教版九年级数学上册第二十三章旋转《23.2中心对称》第2课时说课稿,主要讲述了中心对称图形的性质和判定。
本节课的内容是在学生已经掌握了中心对称的概念和基本性质的基础上进行进一步的拓展和应用。
教材通过具体的例题和练习题,使学生能够深入理解中心对称图形的性质,并能够运用这些性质解决实际问题。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于中心对称的概念和基本性质已经有了一定的了解。
但是,学生在应用中心对称性质解决实际问题时,往往会存在一些困惑和困难。
因此,在教学过程中,我需要引导学生通过观察、思考和操作,深入理解中心对称图形的性质,并能够灵活运用这些性质解决实际问题。
三. 说教学目标1.知识与技能:使学生熟练掌握中心对称图形的性质,能够运用性质判定一个图形是否为中心对称图形。
2.过程与方法:通过观察、思考和操作,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和创新精神。
四. 说教学重难点1.教学重点:中心对称图形的性质和判定。
2.教学难点:如何灵活运用中心对称性质解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作学习法。
2.教学手段:利用多媒体课件和实物模型进行教学。
六. 说教学过程1.导入新课:通过展示一些生活中的中心对称图形,引导学生回顾中心对称的概念和基本性质。
2.讲解与示范:讲解中心对称图形的性质,并通过示例演示如何运用性质判定一个图形是否为中心对称图形。
3.学生练习:学生独立完成教材中的练习题,巩固对中心对称性质的理解和运用。
4.小组讨论:学生分组讨论,分享各自的解题方法和思路,互相学习和交流。
5.总结与拓展:总结中心对称图形的性质和判定方法,并给出一些拓展问题,引导学生进一步深入思考。
七. 说板书设计板书设计如下:中心对称图形的性质:1.对称中心:每个点关于对称中心对称。
【人教版】九年级上册数学课件:第23章《旋转》
中心对称 有一个对称中心——点 图形绕中心旋转 180° 旋转后与另一个图形重合
轴对称 有一条对称轴——直线 图形沿轴折叠 折叠后与另一个图形重合
知识点一 知识点二 知识点三
教材新知精讲
例1 下列图形中哪两个图形成中心对称 ( )
综合知识拓展
拓展点一 拓展点二 拓展点三
分析:(1)根据等边三角形的性质,得到四边形ABDC是菱形,从而 再根据菱形是中心对称图形,得到旋转中心有B点、C点、BC的中 点;
(2)根据两组对边分别相等的四边形是平行四边形即可判断.
解:(1)∵等边三角形ABC和等边三角形DBC有公共的底边BC, ∴AB=AC=CD=BD,∴四边形ABDC是菱形. ∴要旋转△DBC,使△DBC与△ABC重合,旋转中心有三点,分别
教材新知精讲
名师解读:可以这样理解和识别旋转的相关概念: (1)旋转中心:旋转中心可以是平面内的任意一点. 注意:旋转中心是点,而不是直线,如生活中的开门、关门,虽然门 转动了,但它是绕轴旋转一定的角度,所以它不属于我们要研究的 绕定点旋转. (2)旋转角:因为经过旋转,图形上的每一个点都绕旋转中心沿相 同方向转动了相同的角度,所以任意一对对应点与旋转中心的连线 所成的角都是旋转角. (3)旋转方向:旋转方向通常是指顺时针旋转或逆时针旋转. 这三个方面构成的旋转的三要素,三者缺一不可.
知识点二中心对称的性质 中心对称的性质:(1)中心对称的两个图形,对称点所连线段都经过 对称中心,而且被对称中心所平分.(2)中心对称的两个图形是全等 形.
名师解读:由于成中心对称的两个图形是全等形,所以对应线段 相等、对应角相等.对称中心是对应点连线的中点.
(完整版)第二十三章旋转知识点
第二十三章旋转23.1 图形的旋转1.旋转的定义:在平面内,把一个图形绕着某一个点O旋转一个角度的图形变换叫做旋转.点O叫做旋转中心,转动的角叫做旋转角,如果图形上的点P经过旋转变为点P′,那么这两个点叫做对应点.注意:①旋转是围绕一点旋转一定的角度的图形变换,因而旋转一定有旋转中心和旋转角,且旋转前后图形能够重合,这时判断旋转的关键.②旋转中心是点而不是线,旋转必须指出旋转方向.③旋转的范围是平面内的旋转,否则有可能旋转成立体图形,因而要注意此点。
2.旋转的性质(1)旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.(2)旋转三要素:①旋转中心;②旋转方向;③旋转角度.注意:三要素中只要任意改变一个,图形就会不一样.3.旋转对称图形如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.常见的旋转对称图形有:线段,正多边形,平行四边形,圆等.23.2 中心对称图形1.中心对称(1)中心对称的定义把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点..(2)中心对称的性质①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.2.中心对称图形(1)定义把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.注意:中心对称图形和中心对称不同,中心对称是两个图形之间的关系,而中心对称图形是指一个图形自身的特点,这点应注意区分,它们性质相同,应用方法相同.(2)常见的中心对称图形平行四边形、圆形、正方形、长方形等等.3.关于原点对称的点的坐标特点(1)两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(-x,-y).(2)关于原点对称的点或图形属于中心对称,它是中心对称在平面直角坐标系中的应用,它具有中心对称的所有性质.但它主要是用坐标变化确定图形.注意:运用时要熟练掌握,可以不用图画和结合坐标系,只根据符号变化直接写出对应点的坐标.4.坐标与图形变化--旋转(1)关于原点对称的点的坐标P(x,y)⇒P(-x,-y)(2)旋转图形的坐标图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.23.3课题学习图案设计1.利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.2.利用平移设计图案确定一个基本图案按照一定的方向平移一定的距离,连续作图即可设计出美丽的图案.通过改变平移的方向和距离可使图案变得丰富多彩.3.作图--旋转变换(1)旋转图形的作法:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.(2)旋转作图有自己独特的特点,决定图形位置的因素较多,旋转角度、旋转方向、旋转中心,任意不同,位置就不同,但得到的图形全等.4.利用旋转设计图案由一个基本图案可以通过平移、旋转和轴对称以及中心对称等方法变换出一些复合图案.利用旋转设计图案关键是利用旋转中的三个要素(①旋转中心;②旋转方向;③旋转角度)设计图案.通过旋转变换不同角度或者绕着不同的旋转中心向着不同的方向进行旋转都可设计出美丽的图案.5.几何变换的类型(1)平移变换:在平移变换下,对应线段平行且相等.两对应点连线段与给定的有向线段平行(共线)且相等.(2)轴对称变换:在轴对称变换下,对应线段相等,对应直线(段)或者平行,或者交于对称轴,且这两条直线的夹角被对称轴平分.(3)旋转变换:在旋转变换下,对应线段相等,对应直线的夹角等于旋转角.(4)位似变换:在位似变换下,一对位似对应点与位似中心共线;一条线上的点变到一条线上,且保持顺序,即共线点变为共线点,共点线变为共点线;对应线段的比等于位似比的绝对值,对应图形面积的比等于位似比的平方;不经过位似中心的对应线段平行,即一直线变为与它平行的直线;任何两条直线的平行、相交位置关系保持不变;圆变为圆,且两圆心为对应点;两对应圆相切时切点为位似中心.。
九年级数学人教版上册课件:23.2.2中心对称图形
③哪些既是轴对称图形,又是中心对称图形?
(1)
(2)
(3)
(4)
(5)
(6)
21
5.世界上因为有了圆的图案,万物才显得富有生机,以 下来自现实生活的图形中都有圆,它们看上去是那么美 丽与和谐,这正是因为圆具有 轴对称和中心对称性.
请问以下三个图形中是轴对称图形的有 ①②③ ,是 中心对称图形的有 ①③ .
8
练一练
1.下列图形中,既是轴对称图形又是中心对称图形的 是(D )
A.
B. C. D.
2.下列图形中,是中心对称图形,但不是轴对称图
形的是( D )
A.正方形 B.矩形 C.菱形 D.平行四边形
9
3.下列图形中,是轴对称图形但不是中心对称图 形的是(A )
4. 在线段、等腰梯形、平行四边形、矩形、正六 边形、圆、正方形、等边三角形中,既是轴对称 图形,又是中心对称图形的图形有( C)
A. 3个 B.4个 C.5个 D.6个
10
例2 如图,矩形ABCD的对角线AC和BD相交于点O, 过点O的直线分别交AD和BC于点E、F,AB=2,BC =3,则图中阴影部分的面积为___3____.
解析:由于矩形是中心对称图形,所 以依题意可知△BOF与△DOE关于点 O成中心对称,由此图中阴影部分的 三个三角形就可以转化到直角△ADC 中,易得阴影部分的面积为3.
A . 角 B. 等边三角形 C . 线段 D . 平行四边形
19
3.从一副扑克牌中抽出如下四张牌,其中是中 心对称图形的有( A )
A.1 张 B.2 张 C.3 张 D.4 张
20
4.观察图形,并回答下面的问题:
①哪些只是轴对称图形? (3)(4)(6)
人教版九年级上册数学23章旋转教案
第二十三章旋转23.1图形的旋转第1课时旋转的概念及性质1.掌握旋转的有关概念,理解旋转变换是图形的一种基本变换.2.理解旋转的性质.3.能综合运用旋转的性质解决有关代数、几何类问题.▲重点理解旋转的基本性质.▲难点1.探索旋转的基本性质.2.综合运用旋转的性质解决有关代数、几何类问题.◆活动1新课导入同学们,请欣赏下面几幅图案,并思考下列问题:在以前的学习中,我们已经学习了图形的平移和图形的轴对称,对于上述各图案,你能说出它们分别是由怎样的基本图形经过怎样的变换得到的吗?请同学们进入本章内容的学习.◆活动2探究新知1.教材P59思考.提出问题:(1)钟表的指针在不停地转动,指针都是绕着哪一点转动的?从3时到5时,时针由点P转到了哪一点?转动了多少度?旋转方向呢?(2)图中的风车的每一个叶片都是绕着哪一点转动的?若风车按顺时针方向转动一定的角度与自身重合,需要旋转多少度?(3)生活中还有类似的物体运动吗?观察这些现象?有什么共同特征?学生完成并交流展示.2.教材P60探究.根据探究内容,在横线上填上恰当的符号:OA__=__OA′,AB__=__A′B′,∠AOC__=__∠A′OC′,∠AOA′__=__∠BOB′,△ABC__≌__△A′B′C′.学生完成并交流展示.◆活动3知识归纳1.把一个平面图形绕着平面内某一点O转动一个角度,叫做图形的旋转.点O叫做__旋转中心__,转动的角叫做__旋转角__.2.旋转的三要素:__旋转中心__、__旋转方向__、__旋转角__.3.旋转的性质:(1)对应点到旋转中心的距离__相等__;(2)对应点与旋转中心所连线段的夹角等于__旋转角__;(3)旋转前、后的图形全等.◆活动4例题与练习例1在下列现象中,不属于旋转现象的是(C)A.方向盘的转动B.水龙头开关的转动C.电梯的上下移动D.钟摆的运动例2如图,图形甲变成图形乙,既能用平移,又能用旋转的是(C)例3如图,四边形ABCD是边长为4的正方形,DE=1,△ABF是△ADE旋转后的图形.(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF的长度是多少?(4)如果连接EF,那么△AEF是怎样的三角形?解:(1)旋转中心是点A;(2)∵△ABF是由△ADE旋转而成的,∴B是D的对应点.又∵∠DAB=90°,∴旋转了90°;(3)∵AD=4,DE=1,∴AE=42+12=17.∵对应点到旋转中心的距离相等且F是E的对应点,∴AF=AE=17;(4)∵∠EAF=90°(旋转角相等)且AF=AE,∴△EAF是等腰直角三角形.练习1.教材P59练习1,2,3题.2.教材P61练习1,2,3题.3.如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C.若∠A=40°,∠B′=110°,则∠BCA′的度数是(B)A.110°B.80°C.40°D.30°◆活动5完成《名师测控》随堂反馈手册◆活动6课堂小结(1)旋转及旋转中心、旋转角的概念;(2)旋转的对应点及其应用;(3)旋转的基本性质;(4)旋转变换与平移、轴对称两种变换的共性与区别.1.作业布置(1)教材P62习题23.1第5,6题;(2)《名师测控》对应课时练习.2.教学反思第2课时旋转作图1.运用旋转的有关概念及旋转的基本性质作旋转后的图形及计算.2.经历对生活中旋转现象的观察、推理和分析过程,学会用数学的眼光看待生活中的有关问题,体验数学与现实生活的密切关系.▲重点作旋转后的图形由旋转的三个条件确定.▲难点旋转的性质与几何性质的综合运用.◆活动1新课导入如图,将△ABO绕点O旋转得到△EFO,指出图中的旋转中心、旋转角、对应线段及对应角.解:旋转中心是点O;旋转角是∠AOE或∠BOF;对应线段:OA与OE,OB与OF,AB与EF;对应角:∠AOB与∠EOF,∠A与∠E,∠B与∠F.◆活动2探究新知1.教材P60例题.提出问题:(1)旋转中心是哪个点?点A,B的对应点分别是什么?(2)如何确定点E的对应点的位置?(3)讨论是否还有其他方法能画出旋转后的图形.学生完成并交流展示.2.教材P61.提出问题:(1)由例题的作图过程可以知道旋转作图应满足哪三个要素?如果选择不同的旋转中心、不同的旋转角旋转同一个图案,出现的效果会一样吗?(2)观察图23.1-7中的两个旋转,它们的旋转中心-样吗?旋转角呢?产生的效果一样吗?图23.1-8中的两个旋转,它们的旋转中心一样吗?旋转角呢?产生的效果一样吗?(3)我们可以利用旋转设计出许多美丽的图案,你能通过改变旋转中心或旋转角设计出与图23.1-9中不同的图案吗?◆活动3知识归纳1.旋转变换作图步骤:(1)确定__旋转中心__、__旋转角__和__旋转方向__;(2)找出能确定图形的__关键点__;(3)连接图形的各关键点与旋转中心,并按旋转方向分别将它们旋转一定的角度,得到各关键点的__对应点__;(4)按原图形的顺序连接这些对应点,得到旋转后的图形.2.选择不同的旋转中心、不同的旋转角旋转同一个图案,会出现不同的效果.◆活动4例题与练习例如图,四边形ABCD绕点O旋转后,顶点A的对应点为E,试确定B,C,D的对应点的位置以及旋转后的四边形.解:如图,B,C,D的对应点分别是F,G,H,四边形EFGH是四边形ABCD旋转后得到的四边形.练习1.教材P62练习.2.在旋转过程中,确定一个三角形旋转的位置所需的条件是(A)①三角形原来的位置;②旋转中心;③三角形的形状;④旋转角及旋转方向.A.①②④B.①②③C.②③④D.①③④3.在如图所示的网格中,画出“小旗”绕点O按顺时针方向旋转90°后得到的图案.解:如图所示.◆活动5完成《名师测控》随堂反馈手册◆活动6课堂小结1.掌握图形旋转的基本作图,能综合运用平移、轴对称、旋转作图.2.熟练运用旋转的性质解决问题.1.作业布置(1)教材P63习题23.1第1,3,8题;(2)《名师测控》对应课时练习.2.教学反思23.2中心对称23.2.1中心对称1.认识两个图形关于某一点中心对称的本质.2.理解中心对称的性质,并可以判断两个图形是否成中心对称.3.会画某图形关于某点对称的图形,会确定对称中心.▲重点判断两个图形是否成中心对称.▲难点画某图形关于某点对称的图形,确定对称中心.◆活动1新课导入大家都知道,魔术表演很精彩.相信很多同学都看到过这样一个魔术:魔术师把三张扑克牌放在桌子上,如下图(上)所示,然后蒙住眼睛,请一个观众上台,把其中的一张旋转180°放好,魔术师解开蒙着眼睛的布后,看到四张牌如下图(下)所示,他很快确定了被旋转的那一张.聪明的同学们,你知道哪一张被观众旋转过吗?解:要确定哪张被旋转了,就要根据图形的性质进行判定,四张扑克牌中只有呈中心对称的那张牌被旋转后是看不出来的,这四张牌中只有第一张牌是中心对称图形,所以被观众旋转的牌为第一张.◆活动2探究新知1.教材P64思考.学生完成并交流展示.2.教材P64~65.提出问题:(1)图23.2-3中,△ABC与△A′B′C′全等吗?为什么?(2)分别连接对应点AA′,BB′,CC′,点O在线段AA′上吗?如果在,在什么位置?(3)由此你能得到中心对称的性质吗?学生完成并交流展示.◆活动3知识归纳1.把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点__对称__或__中心对称__;这个点叫做__对称中心__(简称中心);这两个图形在旋转后能重合的对应点叫做关于对称中心的__对称点__.2.中心对称的性质:(1)中心对称的两个图形,对称点所连线段都经过__对称中心__,而且被对称中心所__平分__;(2)中心对称的两个图形是__全等__图形.◆活动4例题与练习例1 如图,△A′B′C′与△ABC关于点O成中心对称,找出图中的对称点、对称线段.解:对称点:A与A′,B与B′,C与C′;对称线段:AB与A′B′,BC与B′C′,AC与A′C′.例2如图所示的四组图形中,左边图形与右边图形成中心对称的有(C)A.1组B.2组C.3组D.4组例3在等腰三角形ABC中,∠ACB=90°,BC=20 cm,如果以AC的中点O为旋转中心,将这个三角形旋转180°,点B落在B′处,求点B′与点B的距离.解:连接BB′,由中心对称可知,BB′必过点O.∵△ABC为等腰三角形,∴AC=BC=20 cm.∴CO=12AC=10 cm.∴在Rt△BCO中,OB=OC2+BC2=102+202=105(cm).∴BB′=2OB=2×105=205(cm).答:点B′与点B的距离为20 5 cm.练习1.教材P66练习第1,2题.2.如图,△ABC与△A′B′C′是成中心对称的两个图形,则下列说法不正确的是(D)A.AO=A′O,BC=B′C′B.AC∥A′C′C.∠BAC=∠B′A′C′D.△ABC≌△A′OC′3.如图,已知△ABC和点O,画出△A′B′C′,使它与△ABC关于点O成中心对称.解:如图,△A′B′C′就是所求的三角形.4.如图所示的两个三角形是否成中心对称?若是,请画出对称中心.解:如图,点O是其对称中心.◆活动5完成《名师测控》随堂反馈手册◆活动6课堂小结1.中心对称及对称中心的概念.2.中心对称的基本性质.(1)教材P69习题23.2第1,6题;(2)《名师测控》对应课时练习.2.教学反思23.2.2中心对称图形1.了解中心对称图形的概念及其性质.2.让学生掌握中心对称图形性质的应用.▲重点中心对称图形的概念、性质及其运用.▲难点中心对称图形性质的应用.◆活动1新课导入剪纸艺术是我国文化宝库中的优秀瑰宝.如右图是一幅剪纸作品,将它绕其中心点旋转180°后能与自身重合.我们把具有这样特征的图形叫做中心对称图形.观察下列图案,它们都具有这样的特征吗?本节课我们就学习中心对称图形的一些知识.◆活动2探究新知1.教材P66思考.提出问题:(1)线段AB绕点O旋转180°后的图形与它本身有什么关系?(2)▱ABCD绕点O旋转180°后,点A的对应点为__点C__,点C的对应点为__点A__,点B的对应点为__点D__,点D的对应点为__点B__,旋转后的图形与它本身有什么关系?学生完成并交流展示.2.(1)除了上面所讲的线段、平行四边形都是中心对称图形外,你还能说出一些其他的中心对称图形吗?(2)说说中心对称图形具有哪些特点?它与中心对称有什么区别和联系?学生完成并交流展示.◆活动3知识归纳1.把一个图形绕着某一点旋转180°,如果旋转后的图形能够与原来的图形__重合__,那么这个图形叫做中心对称图形,该点就是__它的对称中心__.2.判断中心对称图形的“两个方法”:①若一个图形上,存在这样的一个点,使整个图形绕着这个点旋转180°后能够与原来的图形重合,则这个图形就是中心对称图形;②若图形中的对应点的连线都经过同一个点,并且被这个点平分,则这个图形就是中心对称图形.3.中心对称图形是指一个图形本身是中心对称的,它反映了一个图形的本质特征.而中心对称是指两个图形关于某一点对称,揭示的是两个全等图形之间的一种位置关系.◆活动4例题与练习例1随着人民生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是(A)例2判断下列图形是否为中心对称图形,如果是,请指出它们的对称中心.(1)线段;(2)等腰三角形;(3)平行四边形;(4)矩形;(5)圆;(6)角.解:(1)是中心对称图形,对称中心是线段的中点;(3)(4)是中心对称图形,对称中心是它们对角线的交点;(5)是中心对称图形,对称中心是圆心;(2)(6)不是中心对称图形.例3下列各图是中心对称图形吗?如果是,请画出它们的对称中心.解:三种图形都是中心对称图形,它们的对称中心如图中点A,B,C所示.练习1.教材P67练习第1,2题.2.下列商标图案中,既不是轴对称图形又不是中心对称图形的是(C),A),B),C),D) 3.下列四个图形中,既是轴对称图形又是中心对称图形的是(B),A),B),C),D) 4.如图,在矩形中挖去一个正方形,并用无刻度的直尺(即直尺只具有连线的功能),准确作出直线l,将剩下图形的面积平分.(保留作图痕迹)解:如图,直线l即为所求.◆活动5完成《名师测控》随堂反馈手册◆活动6课堂小结1.中心对称的定义,会判断某个图形是否为中心对称图形.2.中心对称图形的性质及运用.1.作业布置.(1)教材P69习题23.2第2,8题;(2)《名师测控》对应课时练习.2.教学反思23.2.3关于原点对称的点的坐标1.会求关于原点对称的点的坐标.2.能运用关于原点成中心对称的点的坐标间的关系进行中心对称图形的变换.▲重点关于原点对称的点的坐标关系.▲难点关于原点对称的点的坐标关系的探索.◆活动1新课导入1.点P(3,-6)关于x轴对称的点的坐标为(B)A.(-3,6)B.(3,6)C.(-3,-6)D.(3,-6)2.在平面直角坐标系中,已知点O(0,0),A(1,3),将线段OA向右平移3个单位长度,得到线段O1A1,则点O1的坐标是__(3,0)__,点A1的坐标是__(4,3)__.3.点P(2 019,-2 020)关于y轴对称的点的坐标为__(-2__019,-2__020)__.在学习了平移变换和轴对称变换的时候,我们研究了在平面直角坐标系中点的平移规律和关于轴对称的点的坐标规律,那么关于原点对称的点的坐标有怎样的规律呢?请进入本课时的学习!◆活动2探究新知1.教材P68探究.提出问题:(1)填表:已知点的坐标A(4,0) B(0,-3) C(2,1) D(-1,2) E(-3,-4)关于原点O对称的点的坐标(2)观察上表:①它们的横坐标与横坐标的绝对值有什么关系?纵坐标与纵坐标的绝对值又有什么关系?②坐标与坐标之间的符号又有什么特点?(3)你能由此归纳出关于原点对称的点的坐标特征吗? 学生完成并交流展示. 2.教材P 68 例2. 提出问题:(1)回顾不在坐标系中,作△ABC 关于点O 对称的图形是怎样作的?(2)由图可知A ,B ,C 三点的坐标分别是什么?A ,B ,C 三点关于原点对称的点的坐标分别是多少?把对称点标在坐标系内并顺次连接;(3)总结作一个图形关于原点对称的图形的步骤. 学生完成并交流展示. ◆活动3 知识归纳1.两个点关于原点对称时,它们的坐标符号相反,即P(x ,y)关于原点的对称点为__P′(-x ,-y)__. 2.在平面直角坐标系中,任一点A(x ,y)关于坐标轴、原点都存在对称点.关于x 轴的对称点的横坐标__相同__,纵坐标互为__相反数__.关于y 轴的对称点的横坐标__互为相反数__,纵坐标__相同__.关于原点对称的点的横、纵坐标都__互为相反数__.如:点A(x ,y)关于x 轴的对称点为A′__(x ,-y)__,关于y 轴的对称点为A′′__(-x ,y)__,关于原点对称的点为__(-x ,-y)__.◆活动4 例题与练习例1 (1)在平面直角坐标系中,点P(7,-8)关于原点的对称点P′的坐标是__(-7,8)__; (2)点P(2,n)与点Q(m ,-3)关于原点对称,则(m +n)2 020=__1__; (3)点M(5,-1)绕原点旋转180°后到达的位置是__(-5,1)__.例2 四边形ABCD 各顶点坐标分别为A(5,0),B(-2,3),C(-1,0),D(-1,-5),作出与四边形ABCD 关于原点O 对称的图形,并写出各点的对称点的坐标.解:如图,四边形A′B′C′D′即为所求.点A ,B ,C ,D 的对称点的坐标分别为:A′(-5,0),B′(2,-3),C′(1,0),D′(1,5).例3 已知点M(2-a ,b)与点N(-b -1,2)关于原点对称,求点M 的坐标. 解:∵点M(2-a ,b)与点N(-b -1,2)关于原点对称,∴⎩⎪⎨⎪⎧2-a =-(-b -1),b =-2,解得⎩⎪⎨⎪⎧a =3,b =-2.∴点M 的坐标为(-1,-2). 练习1.教材P 69 练习第1,2,3题.2.若点P(-20,a)与点Q(b ,13)关于原点对称,则a +b 的值是( D ) A .33 B .-33 C .-7 D .7。
九年级数学人教版第二十三章旋转整章知识详解(同步课本知识结合例题)
旋转的决定因素: 旋转中心和旋转角度和旋转方向.
九年级数学第23章旋转
4.时钟的时针在不停地转动,从上午6时到上午9时,时 针旋转的旋转角是多少度?从上午9时到上午10时呢?
答案:
90
30
5.如图,杠杆绕支点转动撬起重物,杠杆的旋转中心
O
九年级数学第23章旋转
2.香港特别行政区区旗中央的紫荆花图案由5个相同 的花瓣组成,它是由其中一瓣经过几次旋转得到的?
答案:4次
九年级数学第23章旋转
3.如图,如果正方形CDEF旋转后能与正方形ABCD重合,
那么图形所在的平面上可以作为旋转中心的点共有
_____3_个.
A
D
E
B
C
F
九年级数学第23章旋转
1.下列现象中属于旋转的有( C )个.
①地下水位逐年下降;②传送带的移动;
③方向盘的转动; ④水龙头的转动;
⑤钟摆的运动;
⑥荡秋千.
A.2
B.3
C.4
D.5
九年级数学第23章旋转
2.(青岛·中考)如图,
△ABC的顶点坐标分别为 A(4,6)、B(5,2)、 C(2,1),如果将△ABC 绕点C按逆时针方向旋转
和P′叫做这个旋转的___对__应__点__.
P
O 120
点击播放动画展示
P′
九年级数学第23章旋转
探究:
请大家在硬纸板上,挖一个三角形洞,再挖一个
小洞O作为旋转中心,硬纸板下面放一张白纸.先在
纸上描出这个挖掉的三角形洞(△ABC),然后围绕O
转动硬纸板,再描出这个挖掉的三角形洞
《第二十三章 旋转》同步练习及答案
《第二十三章旋转》同步练习23.1 图形的旋转第1课时认识图形的旋转【预习导学】1.图形旋转的定义:把一个图形绕着平面内某一点O转动一定的角度就叫做图形的__旋转___,点O叫做__旋转中心___,转动的角度叫做__旋转角___.2.图形旋转的性质:(1)对应点到旋转中心的距离__相等___;(2)对应点与旋转中心所连线段的夹角等于__旋转角___;(3)旋转前后的图形__全等(或重合)___.【课堂精练】知识点1:认识旋转现象1.将左图按顺时针方向旋转90°后得到的是( A )2.下列图案中能由一个图形通过旋转而构成的有__①②___.3.如图,△AOB绕着点O旋转至△A′OB′,此时:(1)点B的对应点是__点B′___;(2)旋转中心是__点O___,旋转角为__∠AOA′或∠BOB′___;(3)∠A的对应角是__∠A′___,线段OB的对应线段是__OB′___.知识点2:图形旋转的性质4.如图,以点O为旋转中心,将∠1按顺时针方向旋转110°得到∠2.若∠1=40°,则∠2=__40°___.,第4题图),第5题图),第6题图)5.如图,在Rt△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB=__70°___.6.如图,把Rt△ABC绕点A逆时针旋转40°,得到Rt△AB′C′,点C′恰好落在边AB上,连接BB′,则∠BB′C′=__20___°.7.如图,△ABC是等边三角形,点D是BC上一点,△ABD经过旋转后到达△ACE的位置.(1)旋转中心是哪一点?(2)旋转了多少度?(3)若M是AB的中点,那么经过上述旋转后,点M转到了什么位置?解:(1)旋转中心是点A(2)顺时针旋转300°或逆时针旋转60°(3)点M旋转到了AC的中点处8.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n°后,得到△DEC,点D刚好落在AB边上.(1)求n的值;(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.解:(1)n=60(2)四边形ACFD是菱形.理由:∵∠DCE=∠ACB=90°,F是DE的中点,∴FC=DF=FE,∵∠CDF=∠A=60°,∴△DFC是等边三角形,∴DF=DC=FC.∵△ADC是等边三角形,∴AD=AC=DC,∴AD=AC=FC=DF,∴四边形ACFD 是菱形【课堂达标】9.如图,在△ABC中,∠BAC=90°,△AB1C1是由△ABC绕点A旋转得到的,下列说法错误的是( C )A.AB=AB1B.∠BAB1=∠CAC1C.旋转角为∠B1AC D.AB不一定等于BB1,第9题图) ,第10题图)10.如图,在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4,则下列结论错误的是( B )A.AE∥BC B.∠ADE=∠BDCC.△BDE是等边三角形 D.△ADE的周长是911.如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为( B ) A.4,30°B.2,60°C.1,30°D.3,60°,第11题图) ,第12题图) 12.如图,将Rt△ABC绕点A按顺时针方向旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上.若AC=3,∠B=60°,则CD的长为( D ) A.0.5 B.1.5 C. 2 D.113.如图,将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E的对应点为F,则∠EAF的度数是__60°___.,第13题图) ,第14题图) 14.如图,在正方形ABCD中,AD=1,将△ABD绕点B顺时针旋转45°得到△A′BD′,此时A′D′与CD交于点E,则DE的长度为.15.如图,在四边形ABCD中,AB⊥AD,CD⊥AD,将BC按逆时针方向绕点B 旋转90°,得到线段BE,连接AE,若AB=2 cm,CD=3 cm,过B点作BF⊥AB,过点E作EG⊥AB交AB的延长线于G,试求△ABE的面积.解:易证△BCF≌△BEG,∴EG=FC=DC-AB=1 (cm),∴S△ABE =12×2×1=1(cm2)【提高训练】16.四边形ABCD是正方形,E,F分别是DC和CB的延长线上的点,且DE =BF,连接AE,AF,EF.(1)求证:△ADE≌△ABF;(2)填空:△ABF可以由△ADE绕旋转中心__A___点,按顺时针方向旋转__90___度得到;(3)若BC=8,DE=6,求△AEF的面积.解:(1)∵四边形ABCD是正方形,∴AD=AB,∠D=∠ABC=90°,而F是CB的延长线上的点,∴∠ABF=∠D=90°.又∵AB=AD,DE=BF,∴△ADE≌△ABF(SAS) (3)∵BC=8,∴AD=8,在Rt△ADE中,DE=6,AD=8,∴AE=AD2+DE2=10.∵△ABF可以由△ADE绕旋转中心A点,按顺时针方向旋转90°得到,∴AE=AF,∠EAF=90°.∴△AEF的面积=12AE2=12×100=50第2课时旋转作图【预习导学】1.在旋转的过程中,要确定一个图形旋转后的位置,除了应了解图形原来的位置外,还应了解__旋转中心___、__旋转方向___和__旋转角___.2.旋转作图的步骤:(1)首先确定__旋转中心___、旋转方向和__旋转角___;(2)其次确定图形的关键点;(3)将这些关键点沿指定的方向旋转指定的角度;(4)连接__对应点___,形成相应的图形.【课堂精练】知识点1:旋转作图1.如图,在4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心一定是__点B___.2.如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B对应点的位置以及旋转后的三角形.解:图略3.任意画一个△ABC,作下列旋转:(1)以点A为旋转中心,把这个三角形逆时针旋转45°;解:图略(2)以三角形外任意一点O为旋转中心,把这个三角形顺时针旋转120°;解:图略(3)以AB边的中点D为旋转中心,把这个三角形旋转180°.解:图略知识点2:在平面直角坐标系中的图形旋转4.将等腰直角三角形AOB按如图所示位置放置,然后绕点O逆时针旋转90°至△A′OB′的位置,点B的横坐标为2,则点A′的坐标为( C ) A.(1,1) B.(2,2)C.(-1,1) D.(-2,2),第4题图) ,第5题图)5.如图,将△ABC绕点C(0,1)旋转180°得到△A′B′C,设点A的坐标为(a,b),则点A′的坐标为( D )A.(-a,-b) B.(-a,-b-1)C.(-a,-b+1) D.(-a,-b+2)6.如图,将△ABC绕点P顺时针旋转90°得到△A′B′C′,则点P的坐标是( B )A.(1,1) B.(1,2)C.(1,3) D.(1,4),第6题图) ,第7题图) 7.如图,正方形OABC的两边OA,OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是( C ) A.(2,10) B.(-2,0)C.(2,10)或(-2,0) D.(10,2)或(-2,0)【课堂达标】8.如图,在平面直角坐标系中,矩形OABC的顶点A在x轴上,点C在y轴上,把矩形OABC绕着原点顺时针旋转90°得到矩形OA′B′C′,若OA=2,OC=4,则点B′的坐标为( C )A.(2,4) B.(-2,4) C.(4,2) D.(2,-4),第8题图) ,第9题图) 9.如图,将平面直角坐标系中的△AOB绕点O顺时针旋转90°得到△A′OB′.已知∠AOB=60°,∠B=90°,AB=3,则点B′的坐标是( A )A.(32,12) B.(32,32) C.(32,32) D.(12,32)10.如图,在方格纸中,△ABC的三个顶点和点P都在小方格的顶点,按要求画一个三角形,使它的顶点在方格的顶点上.(1)将△ABC平移,使点P落在平移后的三角形内部,在图甲中画出示意图;(2)以点C为旋转中心,将△ABC旋转,使点P落在旋转后的三角形内部,在图乙中画出示意图.解:图略11.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若A的对应点A2的坐标为(0,-4),画出平移后对应的△A2B2C2;(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2,请直接写出旋转中心的坐标.解:(1)△A1B1C和△A2B2C2图略(2)旋转中心坐标(32,-1)【提高训练】12.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α,将△BOC 绕点C按顺时针方向旋转60°得到△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形?解:(1)根据旋转的意义和性质知,∠OCD=60°,CO=CD,∴△COD是等边三角形(2)当α=150°,即∠BOC=150°时,△AOD是直角三角形.由旋转的性质可知,△BO C≌△ADC,∴∠ADC=∠BOC=150°.又∵△COD是等边三角形,即∠ODC=60°,∴∠ADO=∠ADC-∠ODC=90°,即△AOD是直角三角形(3)①若要AO=AD,需∠AOD=∠ADO.∵∠AOB=110°,∠DOC=60°,∴∠AOD=360°-∠AOB-∠BOC-∠DOC=360°-110°-α-60°=190°-α.∵∠ADO=∠ADC-∠ODC=α-60°,∴190°-α=α-60°.∴α=125°;②若使OA=OD,需∠OAD=∠ADO.由①知,∠AOD=190°-α,∠ADO=α-60°,∴∠OAD =180°-(∠AOD+∠ADO)=50°,∴α-60°=50°,∴α=110°;③若使OD=AD,需∠OAD=∠AOD.由①知,∠AOD=190°-α.由②知,∠OAD=50°,∴190°-α=50°.∴α=140°.综上所述:当α的度数为125°或110°或140°时,△AOD是等腰三角形专题训练(六) 利用旋转证明或计算一、利用旋转进行计算1.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上的一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD,要使点D 恰好落在BC上,求AP的长.解:易证△APO≌△COD,∴AP=OC,又∵AC=9,AO=3,∴AP=OC=62.如图,正方形ABCD的边长为6,将其绕点A顺时针旋转30°得到正方形AEFG,FG与BC相交于点H.(1)求证:BH=GH;(2)求BH的长.解:(1)连接AH,依题意,得正方形ABCD与正方形AEFG全等,∴AB=AG,∠B=∠G=90°,可证Rt△ABH≌Rt△AGH,∴BH=GH(2)∵∠1=30°,△ABH≌△AGH,∴∠2=∠3=30°,设BH=x,AH=2x,在Rt△ABH中,BH2+AB2=AH2,即x2+62=(2x)2,∴x=23,∴BH=2 33.把一副三角板如图①放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D =30°,斜边AB=6,DC=7.把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图②),求线段AD1的长度.解:易求∠OFE1=120°,∴∠D1FO=60°,∵∠CD1F=30°,∴∠COB=90°.∵∠BCE1=15°,∴∠BCD1=45°,又∵∠ACB=90°,∴∠ACO=∠BCO=45°.又∵AC=BC,AB=6,∴OA=OB=3,∵∠ACB=90°,∴CO=3,又∵CD1=7,∴OD1=CD1-OC=7-3=4,在Rt△AD1O中,AD1=OA2+OD12=54.在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.(1)如图①,直接写出∠ABD的大小;(用含α的式子表示)(2)如图②,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.解:(1)∠ABD=30°-α2(2)△ABE是等边三角形.证明:连接AD,CD,∠DBC=60°,BD=BC,∴△BDC是等边三角形,∠BDC=60°,BD=DC,又∵AB =AC,AD=AD,∴△ABD≌△ACD,∴∠ADB=∠ADC,∴∠ADB=150°,∵∠ABE =∠DBC=60°,∴∠ABD=∠EBC,又∵BD=BC,∠ADB=∠ECB=150°,∴△ABD ≌△EBC,∴AB=EB,∴△ABE是等边三角形(3)∵BDC是等边三角形,∴∠BCD =60°,∴∠DCE=∠BCE-∠BCD=90°,又∵∠DEC=45°,∴CE=CD=BC.∴∠EBC=15°.∵∠EBC=∠ABD=30°-α2,∴α=30°二、利用旋转进行证明5.某校九年级学习小组在学习探究过程中,用两块完全相同的且含60°角的直角三角板ABC与AFE按如图①所示位置放置.现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),如图②,AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.(1)求证:AM=AN;(2)当旋转角α=30°时,四边形ABPF 会是什么样的特殊四边形?并说明理由.解:(1)由旋转可知,AB =AF ,∠BAM =∠FAN,∠B =∠F =60°,∴△ABM ≌△AFN(ASA),∴AM =AN (2)当旋转角α=30°时,四边形ABPF 是菱形.理由:连接AP ,∵∠α=30°,∴∠FAN =30°,∴∠FAB =120°,∵∠B =60°,∴AF ∥BP ,∴∠F =∠FPC=60°,∴∠FPC =∠B=60°,∴AB ∥FP ,∴四边形ABPF 是平行四边形,∵AB =AF ,∴平行四边形ABPF 是菱形6.(1)如图①,在△ABC 中,BA =BC ,D ,E 是AC 边上的两点,且满足∠DBE =12∠ABC(0°<∠CBE<12∠ABC).以点B 为旋转中心,将△BEC 按逆时针方向旋转∠ABC,得到△BE′A(点C 与点A 重合,点E 到点E′处),连接DE′.求证:DE′=DE.(2)如图②,在△ABC 中,BA =BC ,∠ABC =90°,D ,E 是AC 边上的两点,且满足∠DBE=12∠ABC(0°<∠CBE<45°).求证:DE 2=AD 2+EC 2.解:(1)∵△BE′A 是由△BEC 以点B 为旋转中心,按逆时针方向旋转而得到,∴BE =BE′,∠CBE =∠ABE′,∠E ′BE =∠ABC.∵∠DBE=12∠ABC,∴∠DBE =∠DBE′,又∵BD=BD ,BE =BE′,∴△DBE ≌△DBE ′,∴DE ′=DE (2)将△CBE 以点B 为中心按逆时针方向旋转90°,得到△ABF,则AF =CE ,∠FAB =∠C.∵BA =BC ,∠ABC =90°,∴∠BAC =∠C =45°.∴∠FAD =90°.∴DF 2=AD 2+AF 2=AD 2+CE 2.由(1)知DF =DE ,故DE 2=AD 2+EC 27.如图①,点A 是线段BC 上一点,△ABD 和△ACE 都是等边三角形. (1)连接BE ,CD ,求证:BE =CD ;(2)如图②,将△ABD 绕点A 顺时针旋转得到△AB′D′. ①当旋转角为__60___度时,边AD′落在边AE 上;②在①的条件下,延长DD′交CE 于点P ,连接BD′,CD ′,当线段AB ,AC 满足什么数量关系时,△BDD ′与△CPD′全等?并给予证明.解:(1)∵△ACE,△ABD 都是等边三角形,∴AB =AD ,AE =AC ,∠BAD =∠CAE =60°,∴∠BAD +∠DAE=∠CAE+∠DAE,即∠BAE=∠DAC,∴△BAE ≌△DAC ,∴BE =CD (2)②当AC =2AB 时,△BDD ′与△CPD′全等,证明:由旋转可知AB′与AD 重合,∴AB =BD =DD′=AD′,∴四边形ABDD′是菱形,∴∠ABD ′=∠DBD′=12∠ABD=30°,DP ∥BC.∵△ACE 是等边三角形,∴AC =AE ,∠ACE =60°.∵AC =2AB ,∴AE =2AD′,∴∠PCD ′=∠ACD′=12∠ACE=30°,∴DP ∥BC ,∴∠ABD ′=∠DBD′=∠BD′D=∠ACD′=∠PCD′=∠PD′C=30°,∴BD ′=CD′,∴△BDD ′≌△CPD ′23.2 中心对称 23.2.1 中心对称【预习导学】1.把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点__中心对称___,这个点叫做__对称中心___,这两个图形中的对应点叫做关于中心的__对称点___.2.关于中心对称的两个图形,对称点所连线段都经过__对称中心___,而且被对称中心__平分___,且这两个图形是全等的.【课堂精练】知识点1:认识中心对称1.如图,△A′B′C′与△ABC成中心对称的是( A )2.下面四组图形中,右边图形与左边图形成中心对称的有( C )A.1组B.2组C.3组D.4组3.如图,▱ABCD中,点A关于点O对称的点是点__C___.,第3题图) ,第6题图) 4.如图,图形①与图形__④___成轴对称,图形②与图形__③___成中心对称.知识点2:中心对称的性质5.下列说法中正确的有( C )A.全等的两个图形成中心对称B.成中心对称的两个图形必须重合C.成中心对称的两个图形全等D.旋转后能够重合的两个图形成中心对称6.如图,△ABC与△A′B′C′是成中心对称的两个图形,则下列说法不正确的是( D )A.AB=A′B′,BC=B′C′B.AB∥A′B′,BC∥B′C′C.S△ABC =S△A′B′C′D.△ABC≌△A′OC′7.如图,△AOB与△COD关于点O成中心对称,连接BC,AD.(1)求证:四边形ABCD为平行四边形;(2)若△AOB的面积为15 cm2,求四边形ABCD的面积.解:(1)∵△AOB与△COD关于点O成中心对称,∴OA=OC,OB=OD,∴四边形ABCD为平行四边形(2)四边形ABCD的面积为60 cm2知识点3:画中心对称的图形8.如图,两个圆形的卡通图案是关于某点成中心对称的两个图案,试在图中确定其对称中心.解:连接两个对称的眼睛,交点O为对称中心,图略9.画出下图关于点O对称的图形.解:图略【课堂达标】10.下列四组图形中成中心对称的有( C )A.1组B.2组C.3组D.4组11.下列说法中,正确的是( B )A.在成中心对称的图形中,连接对称点的线段不一定都经过对称中心B.在成中心对称的图形中,连接对称点的线段都被对称中心平分C.若两个图形的对应点连成的线段都经过某一点,那么这两个图形一定关于这一点成中心对称D.以上说法都正确12.如图,已知△ABC与△CDA关于AC的中点O成中心对称,添加一个条件__∠B=90°___,使四边形ABCD为矩形.,第12题图) ,第13题图)13.如图,在平面直角坐标系中,若△ABC与△A1B1C1关于E点成中心对称,则对称中心E点的坐标是__(3,-1)___.14.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0).(1)画出△ABC关于x轴对称的△A1B1C1;(2)画出将△ABC绕原点O按逆时针方向旋转90°所得的△A2B2C2;(3)△A1B1C1与△A2B2C2成轴对称吗?若成轴对称,画出对称轴;(4)△A1B1C1与△A2B2C2成中心对称吗?若成中心对称,写出对称中心的坐标.解:(1)图略(2)图略(3)成轴对称(4)成中心对称,对称中心的坐标为(12,12)15.如图,AD是△ABC的边BC的中线.(1)画出以点D为对称中心,与△ABD成中心对称的三角形;(2)若AB=10,AC=12,求AD长的取值范围.解:(1)图略(2)1<AD<11【提高训练】16.如图,在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°得到△FEC.(1)试猜想AE与BF有何关系,并说明理由;(2)若△ABC的面积为3 cm2,求四边形ABFE的面积;(3)当∠ACB为多少度时,四边形ABFE为矩形?说明理由.解:(1)AE与BF平行且相等.理由:∵△ABC绕点C顺时针旋转180°得到△FEC,∴△ABC与△FEC关于C点成中心对称,∴AC=CF,BC=CE,∴四边形ABFE是平行四边形,∴AE綊BF (2)∵AC=CF,∴S△BCF =S△ABC=3,又BC=CE,∴S△ABC =S△ACE=3,∴S△ABC=S△BCF=S△ECF=S△ACE=3,则S四边形ABFE=4×3=12(cm2) (3)当∠ACB=60°时,四边形ABFE为矩形.理由:∵AB=AC,∠ACB=60°,∴∠ABC=∠BAC=∠ACB=60°,∴AC=BC,而四边形ABFE为平行四边形,∴AF=2AC =2BC=BE,∴四边形ABFE为矩形23.2.2 中心对称图形【预习导学】1.把一个图形绕着某一个点旋转__180°___,如果旋转后的图形能够与原来的图形__重合___,那么这个图形叫做中心对称图形,这个点就是它的__对称中心___.2.如果将中心对称的两个图形看成一个图形,那么这个图形的整体就是__中心对称图形___;反过来,如果将一个中心对称图形沿过对称中心的任一条直线分成两个图形,那么这两个图形成__中心对称___.【课堂精练】知识点1:认识中心对称图形1.下列图形是中心对称图形的是( D )2.下列汽车标志中既是轴对称图形又是中心对称图形的是( C )3.下列图形中,既是轴对称图形,又是中心对称图形的是( C )4.下列手机软件图标中,既是轴对称图形又是中心对称图形的是( D )5.如图,下列汉字或字母中既是轴对称图形,又是中心对称图形的有( B )A.1个B.2个C.3个D.4个6.在正三角形、直角三角形、矩形、平行四边形中,既是轴对称图形又是中心对称图形的是( C )A.正三角形 B.直角三角形C.矩形 D.平行四边形知识点2:中心对称图形的性质7.如图,若用这两个三角形拼四边形,则拼成中心对称图形的有__3___个.,第7题图) ,第8题图)8.如图,直线EF经过平行四边形ABCD的对角线的交点,若AE=3 cm,四边形AEFB的面积为15 cm2,则CF=__3_cm___,四边形EDCF的面积为__15_cm2___.9.如图是某种标志的一部分,其对称中心是点A.请补全图形.解:图略10.下列各图是中心对称图形吗?如果是,请找出它们的对称中心.解:都是中心对称图形.图①为两对对应对角线的交点A;图②为中间小菱形对角线的交点B;图③为矩形对角线的交点P【课堂达标】11.下列图形是中心对称图形的是( B )12.在方格纸中,选择有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,该小正方形的序号是( B )A.①B.②C.③D.④,第12题图) ,第13题图) 13.三张扑克牌如图①所示放在桌子上,小敏把其中一张旋转180°后得到如图②所示,则她所旋转的牌从左数起是( A )A.第一张 B.第二张C.第三张 D.都不是14.两个人轮流在一张圆形的桌子上摆放同样大小的硬币,规则规定每人每次摆一个,硬币不能相互重叠,也不能有一部分在桌子的外部.若规定最后没地方摆放硬币者为输,则要想获胜,先下者应下在__圆心处___.15.如图,点A,B,C的坐标分别为(2,4),(5,2),(3,-1).若以点A,B,C,D为顶点的四边形既是轴对称图形,又是中心对称图形,求点D的坐标.解:D点的坐标为(0,1)16.如图,在一平行四边形的菜地中,有一口圆形的水井,现张大爷要在菜地上修一条笔直的小路将菜地面积两等分以播种不同蔬菜,且要使水井在小路上,利用它对两地浇水.请你帮助张大爷画出小路修建的位置.解:作图如下:【提高训练】17.用六根一样长的小棒搭成如图所示的图形.(1)试移动AC,BC这两根小棒,使六根小棒成为中心对称图形;(2)若移动AC,DE这两根,能不能也达到要求呢?(画出图形)解:(1)如图1 (2)能,如图223.2.3 关于原点对称的点的坐标【预习导学】1.若P(x,y)与P′关于原点对称,则P′的坐标为__(-x,-y)___.2.点P(x,y),P1(-x,y),P2(x,-y),P3(-x,-y),则点P与点P1的关系是__关于y轴对称___,点P与点P2的关系是__关于x轴对称___,点P与点P3的关系是__关于原点对称___.【课堂精练】知识点1:求关于原点对称的点的坐标1.点P(3,2)关于原点对称的点在( C )A.第一象限B.第二象限C.第三象限 D.第四象限2.将点A(3,2)沿x轴向左平移4个单位长度得到点A′,点A′关于原点对称的点的坐标是( D )A.(-3,2) B.(-1,2) C.(1,2) D.(1,-2)3.已知点P到x轴的距离是2,到y轴的距离是3,且与第二象限内的点Q 关于原点对称,则点P的坐标为( A )A.(3,-2) B.(-3,2) C.(2,-3) D.(-2,3)知识点2:利用关于原点对称的点的坐标特征求字母的取值范围4.点A(a-1,-4)与点B(-3,1-b)关于原点对称,则(a+b)2015的值为__1___.5.如图,在方格纸上建立的平面直角坐标系中,将OA绕原点O按顺时针方向旋转180°得到OA′,则A′的坐标为( B )A.(-3,1) B.(3,-1) C.(1,-3) D.(1,3),第5题图) ,第6题图) 知识点3:平面直角坐标系中的中心对称6.如图,△ABC与△DEF关于原点O对称,点A(-1.2,2),B(-3,2.5),C(-1,1),则点D的坐标为__(1.2,-2)___,点E的坐标为__(3,-2.5)___,点F的坐标为__(1,-1)___.7.如图,在平面直角坐标系中,▱MNEF的两条对角线ME,NF交于原点O,点F的坐标是(3,2),则点N的坐标为( A )A.(-3,-2) B.(-3,2) C.(-2,3) D.(2,3)【课堂达标】8.已知点A(2a+2,3-3b)与点B(2b-4,3a+6)关于坐标原点对称,则a =__-1___,b=__2___.9.抛物线y=x2-2x-3关于原点对称的抛物线的解析式为__y=-x2-2x +3___.10.如图,下列网格中,每个小方格的边长都是1.(1)分别作出四边形ABCD关于x轴、y轴、原点的对称图形;(2)求出四边形ABCD的面积.解:(1)图略(2)S四边形ABCD =2×(3×1-12×3×1-12×1×1)=211.在下列网格图中,每个小正方形的边长均为1个单位.在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)试在图中作出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(-3,5),试在图中画出直角坐标系,并写出A,C两点的坐标;(3)根据(2)的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并写出B2,C2两点的坐标.解:(1)图略(2)图略,A(0,1),C(-3,1)(3)图略,B2(3,-5),C2(3,-1)23.3 课题学习图案设计【预习导学】1.图案设计一般是利用图形的__平移___、__旋转___、__轴对称___来完成的.2.下列图形均可由“基本图案”变换得到:(只填序号)(1)平移但不能旋转的是__①___;(2)可以旋转但不能平移的是__②④___;(3)既可以平移,也可以旋转的是__③___.【课堂精练】知识点1:分析图案1.如图所示的图案是由六个全等的菱形拼成的,它也可以看作是以一个图案为“基本图案”,通过旋转得到的.以下图案中,不能作为“基本图案”的一个是( B )2.在下列某品牌T恤的四个洗涤说明图案的设计中,没有运用旋转或轴对称知识的是( C )知识点2:设计图案3.如图,在4×3的网格上,由个数相同的白色方块与黑色方块组成一幅图案,请仿照此图案,在下列网格中设计符合要求的图案(注:①不得与原图案相同;②黑、白方块的个数要相同).(1)是轴对称图形又是中心对称图形;(2)是轴对称图形但不是中心对称图形;(3)是中心对称图形但不是轴对称图形.解:答案不唯一,图略【课堂达标】4.下面四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有( A )A.4个B.3个C.2个D.1个5.顺次连接正六边形的三个不相邻的顶点.得到如图所示的图形,该图形( B )A.既是轴对称图形也是中心对称图形B.是轴对称图形但并不是中心对称图形C.是中心对称图形但并不是轴对称图形D.既不是轴对称图形也不是中心对称图形6.把一张正方形纸片如图①,图②对折两次后,再如图③挖去一个三角形小孔,则展开后图形是( C )7.右边的图案是由下面五种基本图形中的两种拼接而成,这两种基本图形是__②⑤___8.为创建绿色校园,学校决定对一块正方形的空地种植花草,现向学生征集设计方案.图案要求只能用圆弧在正方形内加以设计,使正方形和所画的圆弧构成的图案,既是轴对称图形又是中心对称图形.种植花草部分用阴影表示.请你在图③、图④、图⑤中画出三种不同的设计图案.解:答案不唯一,如图:。
旋转(全)知识点习题及答案精编版
旋转23.1 图形的旋转1.旋转的定义:在平面内,把一个图形绕着某一个点O旋转一个角度的图形变换叫做旋转.点O叫做旋转中心,转动的角叫做旋转角,如果图形上的点P经过旋转变为点P′,那么这两个点叫做对应点.注意:①旋转是围绕一点旋转一定的角度的图形变换,因而旋转一定有旋转中心和旋转角,且旋转前后图形能够重合,这时判断旋转的关键.②旋转中心是点而不是线,旋转必须指出旋转方向.③旋转的范围是平面内的旋转,否则有可能旋转成立体图形,因而要注意此点。
2.旋转的性质(1)旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.(2)旋转三要素:①旋转中心;②旋转方向;③旋转角度.注意:三要素中只要任意改变一个,图形就会不一样.3.旋转对称图形如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.常见的旋转对称图形有:线段,正多边形,平行四边形,圆等.23.2 中心对称图形1.中心对称(1)中心对称的定义把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点..(2)中心对称的性质①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.2.中心对称图形(1)定义把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.注意:中心对称图形和中心对称不同,中心对称是两个图形之间的关系,而中心对称图形是指一个图形自身的特点,这点应注意区分,它们性质相同,应用方法相同.(2)常见的中心对称图形平行四边形、圆形、正方形、长方形等等.3.关于原点对称的点的坐标特点(1)两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(-x,-y).(2)关于原点对称的点或图形属于中心对称,它是中心对称在平面直角坐标系中的应用,它具有中心对称的所有性质.但它主要是用坐标变化确定图形.注意:运用时要熟练掌握,可以不用图画和结合坐标系,只根据符号变化直接写出对应点的坐标.4.坐标与图形变化--旋转(1)关于原点对称的点的坐标P(x,y)⇒P(-x,-y)(2)旋转图形的坐标图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.23.3课题学习图案设计1.利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.2.利用平移设计图案确定一个基本图案按照一定的方向平移一定的距离,连续作图即可设计出美丽的图案.通过改变平移的方向和距离可使图案变得丰富多彩.3.作图--旋转变换(1)旋转图形的作法:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.(2)旋转作图有自己独特的特点,决定图形位置的因素较多,旋转角度、旋转方向、旋转中心,任意不同,位置就不同,但得到的图形全等.4.利用旋转设计图案由一个基本图案可以通过平移、旋转和轴对称以及中心对称等方法变换出一些复合图案.利用旋转设计图案关键是利用旋转中的三个要素(①旋转中心;②旋转方向;③旋转角度)设计图案.通过旋转变换不同角度或者绕着不同的旋转中心向着不同的方向进行旋转都可设计出美丽的图案.5.几何变换的类型(1)平移变换:在平移变换下,对应线段平行且相等.两对应点连线段与给定的有向线段平行(共线)且相等.(2)轴对称变换:在轴对称变换下,对应线段相等,对应直线(段)或者平行,或者交于对称轴,且这两条直线的夹角被对称轴平分.(3)旋转变换:在旋转变换下,对应线段相等,对应直线的夹角等于旋转角.(4)位似变换:在位似变换下,一对位似对应点与位似中心共线;一条线上的点变到一条线上,且保持顺序,即共线点变为共线点,共点线变为共点线;对应线段的比等于位似比的绝对值,对应图形面积的比等于位似比的平方;不经过位似中心的对应线段平行,即一直线变为与它平行的直线;任何两条直线的平行、相交位置关系保持不变;圆变为圆,且两圆心为对应点;两对应圆相切时切点为位似中心.旋转基础练习一一、选择题1.在26个英文大写字母中,通过旋转180°后能与原字母重合的有 ( )A .6个B .7个C .8个D .9个2.从5点15分到5点20分,分针旋转的度数为 ( )A .20°B .26°C .30°D .36°3.如图1,在Rt △ABC 中,∠ACB=90°,∠A=40°,以直角顶点C 为旋转中心,将△ABC旋转到△A′B′C 的位置,其中A′、B′分别是A 、B 的对应点,且点B 在斜边A′B′上,直角边CA′交AB 于D ,则旋转角等于 ( )A .70°B .80°C .60°D .50°(图1) (图2) (图3)二、填空题.1.在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动称为________,这个定点称为________,转动的角为________.2.如图2,△ABC 与△ADE 都是等腰直角三角形,∠C 和∠AED 都是直角,点E 在AB上,如果△ABC 经旋转后能与△ADE 重合,那么旋转中心是点_________;旋转的度数是__________.3.如图3,△ABC 为等边三角形,D 为△ABC 内一点,△ABD 经过旋转后到达△ACP 的位置,则,(1)旋转中心是________;(2)旋转角度是________;(3)△ADP 是________三角形.三、解答题.1.阅读下面材料:如图4,把△ABC 沿直线BC 平行移动线段BC 的长度,可以变到△ECD 的位置. 如图5,以BC 为轴把△ABC 翻折180°,可以变到△DBC 的位置.(图4) (图5) (图6) (图7)如图6,以A 点为中心,把△ABC 旋转90°,可以变到△AED 的位置,像这样,其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的,这种只改变位置,不改变形状和大小的图形变换,叫做三角形的全等变换.回答下列问题如图7,在正方形ABCD 中,E 是AD 的中点,F 是BA 延长线上一点,AF=12AB . (1)在如图7所示,可以通过平行移动、翻折、旋转中的哪一种方法,使△ABE 移到△ADF 的位置?(2)指出如图7所示中的线段BE 与DF 之间的关系.2.一块等边三角形木块,边长为1,如图,现将木块沿水平线翻滚五个三角形,那么B点从开始至结束所走过的路径长是多少?答案:一、1.B 2.C 3.B二、1.旋转旋转中心旋转角2.A 45°3.点A 60°等边三、1.(1)通过旋转,即以点A为旋转中心,将△ABE逆时针旋转90°.(2)BE=DF,BE⊥DF2.翻滚一次滚120°翻滚五个三角形,正好翻滚一个圆,所以所走路径是2.旋转基础练习二一、选择题1.△ABC绕着A点旋转后得到△AB′C′,若∠BAC′=130°,∠BAC=80°,则旋转角等于()A.50°B.210°C.50°或210°D.130°2.在图形旋转中,下列说法错误的是()A.在图形上的每一点到旋转中心的距离相等B.图形上每一点转动的角度相同C.图形上可能存在不动的点D.图形上任意两点的连线与其对应两点的连线长度相等3.如图,下面的四个图案中,既包含图形的旋转,又包含图形的轴对称的是()二、填空题1.在作旋转图形中,各对应点与旋转中心的距离________.2.如图,△ABC和△ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,图中的△ABD绕A旋转42°后得到的图形是________,它们之间的关系是______,其中BD CE(填“>”,“<”或“=”).3.如图,自正方形ABCD的顶点A引两条射线分别交BC、CD于E、F,∠EAF=45°,在保持∠EAF=45°的前提下,当点E、F分别在边BC、CD上移动时,BE+DF与EF的关系是________.三、解答题1.如图,正方形ABCD的中心为O,M为边上任意一点,过OM随意连一条曲线,将所画的曲线绕O点按同一方向连续旋转3次,每次旋转角度都是90°,这四个部分之间有何关系?2.如图,以△ABC 的三顶点为圆心,半径为1,作两两不相交的扇形,则图中三个扇形面积之和是多少?3.如图,已知正方形ABCD 的对角线交于O 点,若点E 在AC的延长线上,AG ⊥EB ,交EB 的延长线于点G ,AG 的延长线交DB 的延长线于点F ,则△OAF 与△OBE 重合吗?如果重合给予证明,如果不重合请说明理由?答案:一、1.C 2.A 3.D二、1.相等 2.△ACE 图形全等 = 3.相等三、1.这四个部分是全等图形2.∵∠A+∠B+∠C=180°,∴绕AB 、AC 的中点旋转180°,可以得到一个半圆,∴面积之和=12. 3.重合:证明:∵EG ⊥AF∴∠2+∠3=90°∵∠3+∠1+90°=180°∵∠1+∠3=90°∴∠1=∠2同理∠E=∠F ,∵四边形ABCD 是正方形,∴AB=BC∴△ABF ≌△BCE ,∴BF=CE ,∴OE=OF ,∵OA=OB∴△OBE 绕O 点旋转90°便可和△OAF 重合.旋转基础练习三一、选择题1.如图,摆放有五杂梅花,下列说法错误的是(以中心梅花为初始位置)( )A .左上角的梅花只需沿对角线平移即可B .右上角的梅花需先沿对角线平移后,再顺时针旋转45°C .右下角的梅花需先沿对角线平移后,再顺时针旋转180D .左下角的梅花需先沿对角线平移后,再顺时针旋转90°2.同学们曾玩过万花筒吧,它是由三块等宽等长的玻璃镜片围成的,如图是看到的万花筒的一个图案,图中所有三角形均是等边三角形,其中的菱形AEFG 可以看成把菱形ABCD 以A 为中心( )A .顺时针旋转60°得到的B .顺时针旋转120°得到的C .逆时针旋转60°得到的D .逆时针旋转120°得到的3.下面的图形中,绕着一个点旋转120°后,能与原来的位置重合的是()A.(1),(4)B.(1),(3)C.(1),(2)D.(3),(4)二、填空题1.如图,五角星也可以看作是一个三角形绕中心点旋转_______次得到的,每次旋转的角度是________.2.图形之间的变换关系包括平移、_______、轴对称以及它们的组合变换.3.如图,过圆心O和图上一点A连一条曲线,将OA绕O点按同一方向连续旋转三次,每次旋转90°,把圆分成四部分,这四部分面积_________.三、解答题.1.请你利用线段、三角形、菱形、正方形、圆作为“基本图案”绘制一幅以“校运动会”为主题的徽标.2.如图,是某设计师设计的方桌布图案的一部分,请你运用旋转的方法,将该图案绕原点O顺时针依次旋转90°、180°、270°,并画出图形,你来试一试吧!但是涂阴影时,要注意利用旋转变换的特点,不要涂错了位置,否则你将得不到理想的效果,并且还要扣分的噢!3.如图,△ABC的直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,如果AP=3,求PP′的长.答案:一、1.D 2.D 3.C二、1.4 72°2.旋转3.相等三、1.答案不唯一,学生设计的只要符合题目的要求,都应给予鼓励.2.略3.∵△ABP绕点A逆时针旋转后,能与△ACP′重合,∴AP′=AP,∠CAP′=∠BAP,∴∠PAP′=∠PAC+∠CAP′=∠PAC+∠BAP=∠BAC=90°,△PAP′为等腰直角三角形,PP′为斜边,∴.旋转基础练习四一、选择题1.在英文字母VWXYZ中,是中心对称的英文字母的个数有()A.1个B.2个C.3个D.4个2.下面的图案中,是中心对称图形的个数有()A.1个B.2个C.3个D.4个3.如图,把一张长方形ABCD的纸片,沿EF折叠后,ED′与BC的交点为G,点D、C分别落在D′、C′的位置上,若∠EFG=55°,则∠1=()A.55°B.125°C.70°D.110°二、填空题1.关于某一点成中心对称的两个图形,对称点连线必通过_________.2.把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形是_________图形.3.用两个全等的直角非等腰三角形可以拼成下面图形中的哪几种:_______(填序号)(1)长方形;(2)菱形;(3)正方形;(4)一般的平行四边形;(5)等腰三角形;(6)梯形.三、解答题1.仔细观察所列的26个英文字母,将相应的字母填入下表中适当的空格内.2.如图,在正方形ABCD中,作出关于P点的中心对称图形,并写出作法.3.如图,是由两个半圆组成的图形,已知点B是AC的中点,画出此图形关于点B成中心对称的图形.答案:一、1.B 2.D 3.D二、1.这一点(对称中心)2.中心对称3.(1)(4)(5)三、1.略2.作法:(1)延长CB且BC′=BC;(2)延长DB且BD′=DB,延长AB且使BA′=BA;(3)连结A′D′、D′C′、C′B则四边形A′BC′D′即为所求作的中心对称图形,如图所示.3.略.旋转基础练习五一、选择题1.下面图形中既是轴对称图形又是中心对称图形的是()A.直角B.等边三角形C.直角梯形D.两条相交直线2.下列命题中真命题是()A.两个等腰三角形一定全等B.正多边形的每一个内角的度数随边数增多而减少C.菱形既是中心对称图形,又是轴对称图形D.两直线平行,同旁内角相等3.将矩形ABCD沿AE折叠,得到如图的所示的图形,已知∠CED′=60°,则∠AED的大小是()A.60°B.50°C.75°D.55°二、填空题1.关于中心对称的两个图形,对称点所连线段都经过__________,而且被对称中心所________.2.关于中心对称的两个图形是_________图形.3.线段既是轴对称图形又是中心对称图形,它的对称轴是_________,它的对称中心是__________.三、解答题1.分别画出与已知四边形ABCD成中心对称的四边形,使它们满足以下条件:(1)以顶点A为对称中心,(2)以BC边的中点K为对称中心.2.如图,已知一个圆和点O,画一个圆,使它与已知圆关于点O成中心对称.3.如图,A、B、C是新建的三个居民小区,我们已经在到三个小区距离相等的地方修建了一所学校M,现计划修建居民小区D,其要求:(1)到学校的距离与其它小区到学校的距离相等;(2)控制人口密度,有利于生态环境建设,试写居民小区D的位置.21085答案:一、1.D 2.C 3.A二、1.对称中心 平分 2.全等 3.线段中垂线,线段中点.三、1.略 2.作出已知圆圆心关于O 点的对称点O′,以O′为圆心,已知圆的半径为半径作圆.3.连结AB 、AC ,分别作AB 、AC 的中垂线PQ 、GH 相交于M ,学校M 所在位置,就是△ABC 外接圆的圆心,小区D 是在劣弧BC 的中点即满足题意.旋转基础练习六一、选择题1.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .等边三角形B .等腰梯形C .平行四边形D .正六边形2.下列图形中,是中心对称图形,但不是轴对称图形的是( ) A .正方形 B .矩形 C .菱形 D .平行四边形3.如图所示,平放在正立镜子前的桌面上的数码“21085”在镜子中的像是( )A .21085B .28015C .58012D .51082二、填空题1.把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做__________.2.请你写出你所熟悉的三个中心对称图形_________.3.中心对称图形具有什么特点(至少写出两个)_____________.三、解答题1.在平面内,如果一个图形绕一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角称为这个图形的一个旋转角,例如:正方形绕着它的对角线的交点旋转90°后能与自身重合,所以正方形是旋转对称图形,应有一个旋转角为90°.(1)判断下列命题的真假(在相应括号内填上“真”或“假”)①等腰梯形是旋转对称图形,它有一个旋转角为180°;( )②矩形是旋转对称图形,它有一个旋转角为180°;( )(2)填空:下列图形中是旋转对称图形,且有一个旋转角为120°是_____.(写出所有正确结论的序号)①正三角形;②正方形;③正六边形;④正八边形.(3)写出两个多边形,它们都是旋转对称图形,却有一个旋转角为72°,并且分别满足下列条件:①是轴对称图形,但不是中心对称图形;②既是轴对称图形,又是中心对称图形.2.如图,将矩形A 1B 1C 1D 1沿EF 折叠,使B 1点落在A 1D 1边上的B 处;沿BG 折叠,使D 1点落在D 处且BD 过F 点.(1)求证:四边形BEFG 是平行四边形;(2)连接BB ,判断△B 1BG 的形状,并写出判断过程.D 1C 1B 1A 1B AED G F3.如图,直线y=2x+2与x 轴、y 轴分别交于A 、B 两点,将△AOB 绕点O 顺时针旋转90°得到△A 1OB 1.(1)在图中画出△A 1OB 1;(2)设过A 、A 1、B 三点的函数解析式为y=ax 2+bx+c ,求这个解析式.答案:一、1.D 2.D 3.D二、1.中心对称图形 2.答案不唯一 3.答案不唯一三、1.(1)①假 ②真 (2)①③(3)①例如正五边形 正十五边形 •②例如正十边 正二十边形2.(1)证明:∵A 1D 1∥B 1C 1,∴∠A 1BD=∠C 1FB又∵四边形ABEF 是由四边形A 1B 1EF 翻折的,∴∠B 1FE=∠EFB ,同理可得:∠FBG=∠D 1BG , 初中数学资源网 ∴∠EFB=90°-12∠C 1FB ,∠FBG=90°-12∠A 1BD , ∴∠EFB=∠FBG∴EF ∥BG ,∵EB ∥FG∴四边形BEFG 是平行四边形.(2)直角三角形,理由:连结BB ,∵BD 1∥FC 1,∴∠BGF=∠D 1BG ,∴∠FGB=∠FBG同理可得:∠B 1BF=∠FB 1B .∴∠B 1BG=90°,∴△B 1BG 是直角三角形3.解:(1)如右图所示……………………………………………………………最新资料推荐…………………………………………………11(2)由题意知A 、A 1、B 1三点的坐标分别是(-1,0),(0,1),(2,0)∴01042a b c c a b c =-+⎧⎪=⎨⎪=++⎩ 解这个方程组得12121a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩∴所求五数解析式为y=-12x 2+12x+1.。
人教版数学九年级上册23.2.2《中心对称图形》说课稿
人教版数学九年级上册23.2.2《中心对称图形》说课稿一. 教材分析人教版数学九年级上册第23.2.2节《中心对称图形》是整个初中数学阶段中心对称图形知识的重要内容。
本节课主要介绍了中心对称图形的定义、性质及其在实际问题中的应用。
教材通过丰富的实例,让学生体会中心对称图形的概念,培养学生的空间想象能力,同时,也让学生感受数学与实际生活的紧密联系。
二. 学情分析九年级的学生已经具备了一定的空间想象能力和抽象思维能力,他们对平面几何图形有一定的了解。
但是,对于中心对称图形的概念和性质,学生可能还比较陌生。
因此,在教学过程中,我将会注重引导学生从具体实例中发现中心对称图形的特征,并通过对比分析,让学生深刻理解中心对称图形的性质。
三. 说教学目标1.知识与技能:让学生掌握中心对称图形的定义和性质,能够判断一个图形是否为中心对称图形。
2.过程与方法:通过观察、操作、对比等方法,培养学生发现规律、总结性质的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的空间想象能力,感受数学与实际生活的联系。
四. 说教学重难点1.重点:中心对称图形的定义及其性质。
2.难点:中心对称图形性质的证明和应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组合作法等,引导学生主动探究、发现、总结中心对称图形的性质。
2.教学手段:利用多媒体课件、实物模型、几何画板等,为学生提供丰富的学习资源,提高教学效果。
六. 说教学过程1.导入新课:通过展示一些生活中的中心对称现象,如轴对称的门、旋转的水龙头等,引导学生发现中心对称图形的特征。
2.探究中心对称图形的定义:让学生观察、操作,尝试用自己的语言描述中心对称图形的特征,然后给出中心对称图形的正式定义。
3.发现中心对称图形的性质:引导学生通过对比、归纳、总结中心对称图形的性质,如对称中心、对称轴等。
4.应用中心对称图形解决实际问题:通过一些实际问题,让学生运用中心对称图形的性质解决问题,巩固所学知识。
人教版数学九年级上册23.2信息技术应用探索旋转的性质教案
-通过例题讲解,如“一个三角形绕某点旋转一定角度后,如何确定旋转后的三角形位置”,强调旋转性质在实际问题中的应用。
2.教学难点
-理解和区分旋转中心、旋转角的概念,以及它们对旋转图形的影响。
-在实际问题中,能够准确地应用旋转变换,解决几何问题。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与旋转相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示旋转的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“旋转在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
4.通过实际操作和实例分析,解决有关旋转变换的问题。
教学内容与课本紧密相关,旨在帮助学生深入理解旋转相关知识,提高空间想象能力和信息技术应用能力。
二、核心素养目标
1.培养学生的几何直观能力,通过观察和操作旋转图形,深化对旋转性质的理解,提高空间观念。
2.发展学生的逻辑推理能力,运用旋转性质解决实际问题,培养严谨的思维习惯。
三、教学难点与重点
1.教学重点
-理解旋转的定义及其基本性质,掌握旋转中心、旋转角等核心概念。
-学会运用信息技术工具绘制旋转图形,并能分析旋转前后图形之间的关系。
-能够运用旋转性质解决实际问题,如计算旋,让学生直观感受旋转中心对图形的影响,理解旋转角的度量方法。
五、教学反思
在今天的教学中,我发现学生们对于旋转的概念和性质表现出很大的兴趣。通过引入日常生活中的实例,他们能够更直观地理解旋转的实际意义。在理论讲授环节,我注意到了几个关键点:首先,需要反复强调旋转中心和旋转角的概念,因为这是理解旋转的核心;其次,通过案例分析,让学生看到旋转在解决具体问题时的作用,这有助于提高他们学习的积极性。
数学九年级上册《23.2中心对称信息技术应用探索旋转的性质》教案4
课题23.1图形的旋转(1)课时1课时课型学习掌握旋转的定义以及有关观点目标要点旋转有关观点以及性质难点旋转有关观点以及性质导学流程【自主预习】------ 不议不讲(一).自学教材P59并填空:1、把一个平面图形___着平面内某一点O_____一个角度,就叫做图形的旋转,点O叫做_________,转动的角叫做________。
因此,旋转的决定要素是_________和_________。
....(二).自学检测:钟表的分针匀速旋转一周需要60分.指出它的旋转中心;经过20分,分针旋转了_________度.2.如图,假如把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转获得△OEF,在这个旋转过程中:(1)旋转中心是______旋转角是__________(2)经过旋转,点A、B分别挪动到_______. 如图:ABC是等边三角形,D是BC上一点,ABD 经过旋转后抵达 ACE的地点。
1)旋转中心是_______。
2)旋转了_______度.3)假如M是AB的中点,那么经过上述旋转后,点M转到了________________.(三)旋转性质的应用1、已知△ABC是直角三角形,∠ACB=90°,AB=5㎝,BC=3厘米,△ABC绕点C逆时针方向旋转90°后获得△DEC,则∠D=______,∠B=______,DE=_______㎝,EC=______㎝,AE=_______㎝,DE与AB的位置关系为_________________.【当堂检测】以下现象中属于旋转的有________________①地下水位逐年降落;②传递带的挪动;③方向盘的转动;④水龙头的转动;⑤钟摆的运动;⑥荡秋千等边三角形起码旋转__________度才能与自己重合。
正方形ABCD中有一点P,把△ABP绕点点B旋转到△CQB,连结PQ,则△PBQ的形状是_____________________________.【作业部署】配套练习课题23.1图形的旋转(二)课时1课时课型新讲课学习理解对应点到旋转中心的距离相等;理解对应点与旋转中心所连线段的夹角等于旋目标转角;理解旋转前、后的图形全等.掌握以上三个图形的旋转的基天性质的使用.要点图形的旋转的基天性质及其应用.难点使用操作实验几何得出图形的旋转的三条基天性质.导学流程【旧知回首】学生口答.1.什么叫旋转?什么叫旋转中心?什么叫旋转角?2.什么叫旋转的对应点?(3)旋转前、后的图形全等.三、例题如图,E是正方形ABCD中CD边上随意一点,以点A为中心,把△ADE顺时针旋转90度,画出旋转后的图形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在硬纸板上挖下一个点O和△ABC的洞,以点O作为旋 转中心任意转动硬纸板,得到的洞△A′B′C′. 1.△ABC与△A′B′C′全等吗? 2.线段OA与OA′,OB与OB′,OC与OC′有什么关系? 3.∠AOA′、∠BOB′、∠COC′有什么关系? 4.直线AB与A′B′、BC与B′C′、AC与A′C′有什么关系?
1.如图,正方形ABCD中,△ADE绕A旋转后能与△ABF 重合,△AEF的形状是 . 2.(02n)如图,P是正方形ABCD内一点,将△ABP绕点B 顺时针旋转能与△CBP′重合,若PB=3,则PP′= . 3.如图,正方形ABCD中,E在OC上,连接BE,过A作AG ⊥BE于G,交BD于F.那么AF与BE的大小关系是 .
归纳:旋转90°通常得等腰直角三角形;反之,正方形、 等腰直角三角形通常联想旋转90°.
1.如图,D是正△ABC内一点,若将△ABD经过旋转后得到 △ACP.则△ADP的形状是 ;∠APC= °. 2.如图,等边△ABC中,将△BCD绕点C旋转得到△ACE, 若BC=5,BD=4.则下列错误的是( ) A.AE//BC B.∠ADE=∠BDC C.△CDE是等边三角形 D.△ADE的周长是9
归纳:旋转60°通常得到等边三角形;反之,等边三角 形通常如图,△AOB绕点O沿逆时针方向旋转α ,得到△A′OB′: ⑴旋转中心为点 ,旋转方向为 ,旋转角为 ; ⑵OA= ,OB= ,AB= ;∠AOB= , ∠OAB= ,∠ABO= ;∠AOA′= ; △A′OB′. ⑶△AOB
猜想:⑴形方面:旋转前、后的图形 . ⑵线方面:旋转图形的对应线的夹角等于 . ⑶点方面:对应点到旋转中心的距离 ;并且对应点 与旋转中心的连线的夹角等于 .对应点的连线的 垂直平分线经过 .