广西南宁历年中考数学作图题

合集下载

2024年广西南宁市中考模拟数学试卷(三)

2024年广西南宁市中考模拟数学试卷(三)

2024年广西南宁市中考模拟数学试卷(三)一、单选题1.2024-的相反数是( )A .2024-B .2024C .12024-D .120242.下列图形中,是中心对称图形的是( )A .B .C .D . 3.下列计算正确的是( )A .236a a a ⋅=B .22(3)6a a =C .632a a a ÷=D .22232a a a -= 4.如图是某工厂要设计生产的零件的主视图,这个零件可能是( )A .B .C .D . 5.数据2370000用科学记数法可表示为( )A .62.3710⨯B .52.3710⨯C .70.23710⨯D .423710⨯ 6.若点P (m ﹣1,5)与点Q (3,2﹣n )关于y 轴对称,则m +n 的值是( ) A .﹣5 B .1 C .5 D .117.在同一平面直角坐标系中,正比例函数y =kx 与一次函数y =-kx -k (k ≠0)的大致图象是( )A .B .C .D . 8.在平行四边形ABCD 中,AC ,BD 是两条对角线,现从以下四个关系:①AB =BC ,②AC =BD ,③AC ⊥BD ,④AB ⊥BC 中任取一个作为条件,即可推出平行四边形ABCD 是菱形的概率为( )A .14B .12 C .34 D .19.《孙子算经》是我国古代经典数学名著,其中有一道“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何?”学了方程(组)后,我们可以非常顺捷地解决这个问题.如果设鸡有x 只,兔有y 只,那么可列方程组为( )A .35,4494x y x y +=⎧⎨+=⎩B .35,4294x y x y +=⎧⎨+=⎩C .94,2435x y x y +=⎧⎨+=⎩D .35,2494x y x y +=⎧⎨+=⎩ 10.《九章算术》中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何.”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这个木材,锯口深1寸((1ED =寸),锯道长1尺(1AB =尺10=寸),问这块圆形木材的直径是多少.”如图,请根据所学知识计算:圆形木材的直径AC 是()A .13寸B .20寸C .26寸D .28寸11.定义一种新的运算:如果0a ≠.则有2||a b a ab b -=++-▲,那么1()22-▲的值是( ) A .3- B .5 C .34- D .3212.如图,OABC Y 的顶点(0,0)O ,(1,2)A ,点C 在x 轴的正半轴上,延长BA 交y 轴于点D .将ODA V 绕点O 顺时针旋转得到OD A ''△,当点D 的对应点D ¢落在OA 上时,D A ''的延长线恰好经过点C ,则点C 的坐标为( )A .B .C .1,0)D .1,0)二、填空题13.满足式子2≤3x ﹣7<8成立的所有整数解的和为.14.分解因式:244ax ax a -+=.15.学校要从王静,李玉两同学中选拔一人参加运动会志愿者工作,选拔项目为普通话,体育知识和旅游知识.并将成绩依次按4∶3∶3计分. 两人的各项选拔成绩如下表所示,则最终胜出的同学是.16.如图,无人机于空中A 处测得某建筑顶部B 处的仰角为45o ,测得该建筑底部C 处的俯角为17o .若无人机的飞行高度AD 为62m ,则该建筑的高度BC 为m .(参考数据:sin170.29≈o ,cos170.96≈o , tan170.31≈o )17.如图,要用一个扇形纸片围成一个无底盖的圆锥(接缝处忽略不计),若该圆锥的底面圆周长为20πcm ,侧面积为240π2cm ,则这个扇形的圆心角的度数是度.18.如图,抛物线y =﹣x 2+2x+3交x 轴于A ,B 两点,交y 轴于点C ,点D 为抛物线的顶点,点C 关于抛物线的对称轴的对称点为E ,点G ,F 分别在x 轴和y 轴上,则四边形EDFG周长的最小值为.三、解答题19.计算:2024()()()1625-+÷---20.先化简,再求值:22311213x x x x x x x+-⋅+-++,其中1x = 21.如图,已知E 是平行四边形ABCD 对角线AC 上的点,连接DE .(1)过点B 在平行四边形内部作射线BF 交AC 于点F ,且使CBF ADE ∠=∠(要求:用尺规作图,保留作图痕迹,不写作法与证明)(2)连接BE ,DF ,判断四边形BFDE 的形状并证明.22.学校组织七、八年级学生参加了“国家安全知识”测试(满分100分).已知七、八年级各有200人,现从两个年级分别随机抽取10名学生的测试成绩x (单位:分)进行统计: 七年级 86 94 79 84 71 90 76 83 90 87八年级 88 76 90 78 87 93 75 87 87 79整理如下:根据以上信息,回答下列问题:(1)填空:=a _______,b =________.A 同学说:“这次测试我得了86分,位于年级中等偏上水平”,由此可判断他是________年级的学生;(2)学校规定测试成绩不低于85分为“优秀”,估计该校这两个年级测试成绩达到“优秀”的学生总人数;(3)你认为哪个年级的学生掌握国家安全知识的总体水平较好?请给出一条理由. 23.某县贡桔成本为10元/斤,售价不低于15元/斤,不高于30元/斤.(1)每日贡桔销售量y (斤)与售价x (元/斤)之间的函数关系如图所示,求y 与x 之间的函数关系式;(2)若每天销售利润率不低于60%,且不高于80%,求每日销售的最大利润.24.如图,ABC V 是等腰直角三角形,90ACB ∠=︒,O 为AB 的中点,连接CO 交O e 于点E , O e 与AC 相切于点D .(1)求证:BC 是O e 的切线;(2)延长CO 交O e 于点G ,连接AG 交O e 于点F ,若AC =FG 的长.25.如图,在矩形ABCD 中,5cm AB =,3cm BC =.动点P ,Q 分别从点A ,B 出发,同时以1cm/s 的速度沿折线ADC 和BAD 分别向终点C ,D 运动.设运动时间为(s)(0)x x >,直线PQ ,BQ ,PC ,BC 所围成的图形的面积为2(cm )y .(1)当点P 与点D 重合时,AQ 的长为 cm ;(2)求y 关于x 的函数解析式,并写出自变量x 的取值范围;(3)当PBQ V 为直角三角形时,直接写出x 的值.26.综合与实践问题背景数学小组发现国旗上五角星的五个角都是顶角为36︒的等腰三角形,对此三角形产生了极大兴趣并展开探究.探究发现如图1,在ABC V 中,36A ∠=︒,AB AC =.(1)操作发现:将ABC V 折叠,使边BC 落在边BA 上,点C 的对应点是点E ,折痕交AC 于点D ,连接DE ,DB ,则BDE ∠=_______︒,设1AC =,BC x =,那么AE =______(用含x 的式子表示);(2)进一步探究发现:BC AC 底腰这个比值被称为黄金比.在(1)的条件下试证明:BC AC 底腰 拓展应用:当等腰三角形的底与腰的比等于黄金比时,这个三角形叫黄金三角形.例如,图1中的ABC V是黄金三角形.如图2,在菱形ABCD 中,72BAD ∠=︒,1AB =.求这个菱形较长对角线的长.。

中考数学作图题60例

中考数学作图题60例

中考数学作图题60例一、解答题(共60小题)1.如图,在平行四边形ABCD中,AB<BC.(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);(2)若BC=8,CD=5,则CE=.2.图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);(2)在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于.3.如图,在10×10的正方形网格中,点A,B,C,D均在格点上,以点A为位似中心画四边形AB′C′D′,使它与四边形ABCD位似,且相似比为2.(1)在图中画出四边形AB′C′D′;(2)填空:△AC′D′是三角形.4.如图,在边长均为1的正方形网格纸上有一个△ABC,顶点A、B、C及点O均在格点上,请按要求完成以下操作或运算:(1)将△ABC向上平移4个单位,得到△A1B1C1(不写作法,但要标出字母);(2)将△ABC绕点O旋转180°,得到△A2B2C2(不写作法,但要标出字母);(3)求点A绕着点O旋转到点A2所经过的路径长.5.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是;(3)△A2B2C2的面积是平方单位.6.如图,一条公路的转弯处是一段圆弧().(1)用直尺和圆规作出所在圆的圆心O;(要求保留作图痕迹,不写作法)(2)若的中点C到弦AB的距离为20m,AB=80m,求所在圆的半径.7.各顶点都在方格纸格点(横竖格子线的交错点)上的多边形称为格点多边形.如何计算它的面积?奥地利数学家皮克(G•Pick,1859~1942年)证明了格点多边形的面积公式S=a+b﹣1,其中a表示多边形内部的格点数,b表示多边形边界上的格点数,S表示多边形的面积.如图,a=4,b=6,S=4+×6﹣1=6(1)请在图中画一个格点正方形,使它的内部只含有4个格点,并写出它的面积.(2)请在图乙中画一个格点三角形,使它的面积为,且每条边上除顶点外无其它格点.(注:图甲、图乙在答题纸上)8.如图,△ABC是直角三角形,∠ACB=90°.(1)尺规作图:作⊙C,使它与AB相切于点D,与AC相交于点E,保留作图痕迹,不写作法,请标明字母.(2)在你按(1)中要求所作的图中,若BC=3,∠A=30°,求的长.9.如图,在△ABC中,∠C=60°,∠A=40°.(1)用尺规作图作AB的垂直平分线,交AC于点D,交AB于点E(保留作图痕迹,不要求写作法和证明);(2)求证:BD平分∠CBA.10.用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:线段c,直线l及l外一点A.求作:Rt△ABC,使直角边为AC(AC⊥l,垂足为C),斜边AB=c.11.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣4),B(3,﹣2),C(6,﹣3).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1.12.在边长为1的小正方形组成的方格纸中,若多边形的各顶点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点多边形.记格点多边形内的格点数为a,边界上的格点数为b,则格点多边形的面积可表示为S=ma+nb﹣1,其中m,n为常数.(1)在下面的方格中各画出一个面积为6的格点多边形,依次为三角形、平行四边形(非菱形)、菱形;(2)利用(1)中的格点多边形确定m,n的值.13.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣1,1),B(﹣3,1),C(﹣1,4).(1)画出△ABC关于y轴对称的△A1B1C1;(2)将△ABC绕着点B顺时针旋转90°后得到△A2BC2,请在图中画出△A2BC2,并求出线段BC旋转过程中所扫过的面积(结果保留π).14.如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)15.⊙O为△ABC的外接圆,请仅用无刻度的直尺,根据下列条件分别在图1,图2中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法).(1)如图1,AC=BC;(2)如图2,直线l与⊙O相切于点P,且l∥BC.16.如图,在方格网中已知格点△ABC和点O.(1)画△A′B′C′和△ABC关于点O成中心对称;(2)请在方格网中标出所有使以点A、O、C′、D为顶点的四边形是平行四边形的D点.17.下列网格中的六边形ABCDEF是由边长为6的正方形左上角剪去边长为2的正方形所得,该六边形按一定的方法可剪拼成一个正方形.(1)根据剪拼前后图形的面积关系求出拼成的正方形的边长;(2)如图甲,把六边形ABCDEF沿EH,BG剪成①②③三部分,请在图甲中画出将②③与①拼成的正方形,然后标出②③变动后的位置,并指出②③属于旋转、平移和轴对称中的哪一种变换;(3)在图乙中画出一种与图甲不同位置的两条裁剪线,并在图乙中画出将此六边形剪拼成的正方形.18.如图,已知△ABC,∠C=Rt∠,AC<BC.D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连结AD,若∠B=37°,求∠CAD的度数.19.如图,在图中求作⊙P,使⊙P满足以线段MN为弦且圆心P到∠AOB两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)20.如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;(3)求出(2)中C点旋转到C2点所经过的路径长(记过保留根号和π).21.如图,已知在△ABC中,∠A=90°(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P的面积.22.如图,在△ABC中,AB=AC,∠DAC是△ABC的一个外角.实验与操作:根据要求进行尺规作图,并在图中标明相应字母(保留作图痕迹,不写作法)(1)作∠DAC的平分线AM;(2)作线段AC的垂直平分线,与AM交于点F,与BC边交于点E,连接AE,CF.猜想并证明:判断四边形AECF的形状并加以证明.23.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(3,2)、B(3,5)、C (1,2).(1)在平面直角坐标系中画出△ABC关于x轴对称的△A1B1C1;(2)把△ABC绕点A顺时针旋转一定的角度,得图中的△AB2C2,点C2在AB上.①旋转角为多少度?②写出点B2的坐标.24.如图,在△ABC中,∠ACB=90°,AC=BC=AD.(1)作∠A的平分线交CD于E;(2)过B作CD的垂线,垂足为F;(3)请写出图中两对全等三角形(不添加任何字母),并选择其中一对加以证明.25.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;(2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).26.如图,△ABC各顶点的坐标分别是A(﹣2,﹣4),B(0,﹣4),C(1,﹣1).(1)在图中画出△ABC向左平移3个单位后的△A1B1C1;(2)在图中画出△ABC绕原点O逆时针旋转90°后的△A2B2C2;(3)在(2)的条件下,AC边扫过的面积是.27.如图,AC是⊙O的直径,点B在⊙O上,∠ACB=30°(1)利用尺规作∠ABC的平分线BD,交AC于点E,交⊙O于点D,连接CD(保留作图痕迹,不写作法)(2)在(1)所作的图形中,求△ABE与△CDE的面积之比.28.如图,将△ABC在网格中(网格中每个小正方形的边长均为1)依次进行位似变换、轴对称变换和平移变换后得到△A3B3C3.(1)△ABC与△A1B1C1的位似比等于;(2)在网格中画出△A1B1C1关于y轴的轴对称图形△A2B2C2;(3)请写出△A3B3C3是由△A2B2C2怎样平移得到的?(4)设点P(x,y)为△ABC内一点,依次经过上述三次变换后,点P的对应点的坐标为.29.如图,△ABC是等腰三角形,AB=AC,请你用尺规作图将△ABC分成两个全等的三角形,并说明这两个三角形全等的理由.(保留作图痕迹,不写作法)30.如图,已知锐角△ABC.(1)过点A作BC边的垂线MN,交BC于点D(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,若BC=5,AD=4,tan∠BAD=,求DC的长.31.如图,在平面直角坐标系中,△ABC的三个顶点坐标为A(﹣3,4),B(﹣4,2),C (﹣2,1),且△A1B1C1与△ABC关于原点O成中心对称.(1)画出△A1B1C1,并写出A1的坐标;(2)P(a,b)是△ABC的AC边上一点,△ABC经平移后点P的对称点P′(a+3,b+1),请画出平移后的△A2B2C2.32.如图,已知BD平分∠ABF,且交AE于点D,(1)求作:∠BAE的平分线AP(要求:尺规作图,保留作图痕迹,不写作法);(2)设AP交BD于点O,交BF于点C,连接CD,当AC⊥BD时,求证:四边形ABCD 是菱形.33.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形ABC(项点是网格线的交点).(1)先将△ABC竖直向上平移6个单位,再水平向右平移3个单位得到△A1B1C1,请画出△A1B1C1;(2)将△A1B1C1绕B1点顺时针旋转90°,得△A2B1C2,请画出△A2B1C2;(3)线段B1C1变换到B1C2的过程中扫过区域的面积为.34.如图,在边长为1个单位长度的小正方形网格中,给出了△ABC(顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C2B2.35.阅读下面材料:在数学课上,老师提出如下问题:小芸的作法如下:老师说:“小芸的作法正确.”请回答:小芸的作图依据是.36.如图,C,D分别是线段AB,AC的中点,分别以点C,D为圆心,BC长为半径画弧,两弧交于点M,测量∠AMB的度数,结果为()A.80°B.90°C.100°D.105°37.已知在Rt△ABC中,∠ACB=90°,现按如下步骤作图:①分别以A,C为圆心,a为半径(a>AC)作弧,两弧分别交于M,N两点;②过M,N两点作直线MN交AB于点D,交AC于点E;③将△ADE绕点E顺时针旋转180°,设点D的像为点F.(1)请在图中直线标出点F并连接CF;(2)求证:四边形BCFD是平行四边形;(3)当∠B为多少度时,四边形BCFD是菱形.38.在每个小正方形的边长为1的网格中.点A,B,D均在格点上,点E、F分别为线段BC、DB上的动点,且BE=DF.(Ⅰ)如图①,当BE=时,计算AE+AF的值等于(Ⅱ)当AE+AF取得最小值时,请在如图②所示的网格中,用无刻度的直尺,画出线段AE,AF,并简要说明点E和点F的位置如何找到的(不要求证明).39.设ω是一个平面图形,如果用直尺和圆规经过有限步作图(简称尺规作图),画出一个正方形与ω的面积相等(简称等积),那么这样的等积转化称为ω的“化方”.(1)阅读填空如图①,已知矩形ABCD,延长AD到E,使DE=DC,以AE为直径作半圆.延长CD交半圆于点H,以DH为边作正方形DFGH,则正方形DFGH与矩形ABCD等积.理由:连接AH,EH.∵AE为直径,∴∠AHE=90°,∴∠HAE+∠HEA=90°.∵DH⊥AE,∴∠ADH=∠EDH=90°∴∠HAD+∠AHD=90°∴∠AHD=∠HED,∴△ADH∽.∴,即DH2=AD×DE.又∵DE=DC∴DH2=,即正方形DFGH与矩形ABCD等积.(2)操作实践平行四边形的“化方”思路是,先把平行四边形转化为等积的矩形,再把矩形转化为等积的正方形.如图②,请用尺规作图作出与▱ABCD等积的矩形(不要求写具体作法,保留作图痕迹).(3)解决问题三角形的“化方”思路是:先把三角形转化为等积的(填写图形名称),再转化为等积的正方形.如图③,△ABC的顶点在正方形网格的格点上,请作出与△ABC等积的正方形的一条边(不要求写具体作法,保留作图痕迹,不通过计算△ABC面积作图).(4)拓展探究n边形(n>3)的“化方”思路之一是:把n边形转化为等积的n﹣1边形,…,直至转化为等积的三角形,从而可以化方.如图④,四边形ABCD的顶点在正方形网格的格点上,请作出与四边形ABCD等积的三角形(不要求写具体作法,保留作图痕迹,不通过计算四边形ABCD面积作图).40.定义:数学活动课上,乐老师给出如下定义:有一组对边相等而另一组对边不相等的凸四边形叫做对等四边形.理解:(1)如图1,已知A、B、C在格点(小正方形的顶点)上,请在方格图中画出以格点为顶点,AB、BC为边的两个对等四边形ABCD;(2)如图2,在圆内接四边形ABCD中,AB是⊙O的直径,AC=BD.求证:四边形ABCD 是对等四边形;(3)如图3,在Rt△PBC中,∠PCB=90°,BC=11,tan∠PBC=,点A在BP边上,且AB=13.用圆规在PC上找到符合条件的点D,使四边形ABCD为对等四边形,并求出CD 的长.41.如图,已知△ABC,按如下步骤作图:①以A为圆心,AB长为半径画弧;②以C为圆心,CB长为半径画弧,两弧相交于点D;③连接BD,与AC交于点E,连接AD,CD.(1)求证:△ABC≌△ADC;(2)若∠BAC=30°,∠BCA=45°,AC=4,求BE的长.42.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A.B.C.D.43.数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是()A.B.C.D.44.在平面直角坐标系中,点A的坐标是(0,3),点B在x轴上,将△AOB绕点A逆时针旋转90°得到△AEF,点O、B的对应点分别是点E、F.(1)若点B的坐标是(﹣4,0),请在图中画出△AEF,并写出点E、F的坐标.(2)当点F落在x轴的上方时,试写出一个符合条件的点B的坐标.45.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(2,﹣4),B(4,﹣4),C(1,﹣1).(1)画出△ABC关于y轴对称的△A1B1C1,直接写出点A1的坐标;(2)画出△ABC绕点O逆时针旋转90°后的△A2B2C2;(3)在(2)的条件下,求线段BC扫过的面积(结果保留π).46.如图,已知△ABC三个顶点坐标分别是A(1,3),B(4,1),C(4,4).(1)请按要求画图:①画出△ABC向左平移5个单位长度后得到的△A1B1C1;②画出△ABC绕着原点O顺时针旋转90°后得到的△A2B2C2.(2)请写出直线B1C1与直线B2C2的交点坐标.47.如图,△ABC在平面直角坐标系内,顶点的坐标分别为A(﹣1,5),B(﹣4,1),C (﹣1,1)将△ABC绕点A逆时针旋转90°,得到△AB′C′,点B,C的对应点分别为点B′,C′,(1)画出△AB′C′;(2)写出点B′,C′的坐标;(3)求出在△ABC旋转的过程中,点C经过的路径长.48.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C (3,5)(每个方格的边长均为1个单位长度).(1)请画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长.49.数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()A.勾股定理B.直径所对的圆周角是直角C.勾股定理的逆定理D.90°的圆周角所对的弦是直径50.如图,已知△ABC,请用尺规过点A作一条直线,使其将△ABC分成面积相等的两部分.(保留作图痕迹,不写作法)51.如图,将线段AB放在边长为1的小正方形网格,点A点B均落在格点上,请用无刻度直尺在线段AB上画出点P,使AP=,并保留作图痕迹.(备注:本题只是找点不是证明,∴只需连接一对角线就行)52.图①,图②,图③都是4×4的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB,在图③中已画出点A.按下列要求画图:(1)在图①中,以格点为顶点,AB为一边画一个等腰三角形;(2)在图②中,以格点为顶点,AB为一边画一个正方形;(3)在图③中,以点A为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形.53.“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹).54.手工课上,老师要求同学们将边长为4cm的正方形纸片恰好剪成六个等腰直角三角形,聪明的你请在下列四个正方形中画出不同的剪裁线,并直接写出每种不同分割后得到的最小等腰直角三角形面积(注:不同的分法,面积可以相等)55.如图是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则()A.甲、乙都可以B.甲、乙都不可以C.甲不可以、乙可以D.甲可以、乙不可以56.将正方形纸片以适当的方式折叠一次,沿折痕剪开后得到两块小纸片,用这两块小纸片拼接成一个新的多边形(不重叠、无缝隙),给出以下结论:①可以拼成等腰直角三角形;②可以拼成对角互补的四边形;③可以拼成五边形;④可以拼成六边形.其中所有正确结论的序号是.57.如图所示,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是()A.B.C.D.58.一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A.B.C.D.59.如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有()A.2种B.3种C.4种D.5种60.如图,在边上为1个单位长度的小正方形网格中:(1)画出△ABC向上平移6个单位长度,再向右平移5个单位长度后的△A1B1C1.(2)以点B为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2.(3)求△CC1C2的面积.2015年全国中考数学作图题60例参考答案与试题解析一、解答题(共60小题)1.如图,在平行四边形ABCD中,AB<BC.(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);(2)若BC=8,CD=5,则CE=3.考点:作图—复杂作图;平行四边形的性质.专题:作图题.分析:(1)根据角平分线上的点到角的两边距离相等知作出∠A的平分线即可;(2)根据平行四边形的性质可知AB=CD=5,AD∥BC,再根据角平分线的性质和平行线的性质得到∠BAE=∠BEA,再根据等腰三角形的性质和线段的和差关系即可求解.解答:解:(1)如图所示:E点即为所求.(2)∵四边形ABCD是平行四边形,∴AB=CD=5,AD∥BC,∴∠DAE=∠AEB,∵AE是∠A的平分线,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BE=BA=5,∴CE=BC﹣BE=3.故答案为:3.点评:考查了作图﹣复杂作图,关键是作一个角的角平分线,同时考查了平行四边形的性质,角平分线的性质,平行线的性质和等腰三角形的性质的知识点.2.图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);(2)在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于.考点:正多边形和圆;圆锥的计算;作图—复杂作图.专题:作图题.分析:(1)作AE的垂直平分线交⊙O于C,G,作∠AOG,∠EOG的角平分线,分别交⊙O于H,F,反向延长FO,HO,分别交⊙O于D,B顺次连接A,B,C,D,E,F,G,H,八边形ABCDEFGH即为所求;(2)由八边形ABCDEFGH是正八边形,求得∠AOD=3=135°得到的长=,设这个圆锥底面圆的半径为R,根据圆的周长的公式即可求得结论.解答:(1)如图所示,八边形ABCDEFGH即为所求,(2)∵八边形ABCDEFGH是正八边形,∴∠AOD=3=135°,∵OA=5,∴的长=,设这个圆锥底面圆的半径为R,∴2πR=,∴R=,即这个圆锥底面圆的半径为.故答案为:.点评:本题考查了尺规作图,圆内接八边形的性质,弧长的计算,圆的周长公式的应用,会求八边形的内角的度数是解题的关键.3.如图,在10×10的正方形网格中,点A,B,C,D均在格点上,以点A为位似中心画四边形AB′C′D′,使它与四边形ABCD位似,且相似比为2.(1)在图中画出四边形AB′C′D′;(2)填空:△AC′D′是等腰直角三角形.考点:作图-位似变换.专题:作图题.分析:(1)延长AB到B′,使AB′=2AB,得到B的对应点B′,同样得到C、D的对应点C′,D′,再顺次连接即可;(2)利用勾股定理求出AC′2=42+82=80,AD′2=62+22=40,C′D′2=62+22=40,那么AD′=C′D′,AD′2+C′D′2=AC′2,即可判定△AC′D′是等腰直角三角形.解答:解:(1)如图所示:(2)∵AC′2=42+82=16+64=80,AD′2=62+22=36+4=40,C′D′2=62+22=36+4=40,∴AD′=C′D′,AD′2+C′D′2=AC′2,∴△AC′D′是等腰直角三角形.故答案为:等腰直角.点评:本题考查了作图﹣位似变换.画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.同时考查了勾股定理及其逆定理等知识.熟练掌握网格结构以及位似变换的定义是解题的关键.4.如图,在边长均为1的正方形网格纸上有一个△ABC,顶点A、B、C及点O均在格点上,请按要求完成以下操作或运算:(1)将△ABC向上平移4个单位,得到△A1B1C1(不写作法,但要标出字母);(2)将△ABC绕点O旋转180°,得到△A2B2C2(不写作法,但要标出字母);(3)求点A绕着点O旋转到点A2所经过的路径长.考点:作图-旋转变换;弧长的计算;作图-平移变换.专题:作图题.分析:(1)根据图形平移的性质画出平移后的△A1B1C1即可;(2)根据图形旋转的性质画出△ABC绕点O旋转180°后得到的△A2B2C2;(3)根据弧长的计算公式列式即可求解.解答:解:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示:(3)∵OA=4,∠AOA2=180°,∴点A绕着点O旋转到点A2所经过的路径长为=4π.点评:本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.也考查了弧长的计算.5.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,﹣2);(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0);(3)△A2B2C2的面积是10平方单位.考点:作图-位似变换;作图-平移变换.专题:作图题.分析:(1)利用平移的性质得出平移后图象进而得出答案;(2)利用位似图形的性质得出对应点位置即可;(3)利用等腰直角三角形的性质得出△A2B2C2的面积.解答:解:(1)如图所示:C1(2,﹣2);故答案为:(2,﹣2);(2)如图所示:C2(1,0);故答案为:(1,0);(3)∵A2C22=20,B2C=20,A2B2=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面积是:×20=10平方单位.故答案为:10.点评:此题主要考查了位似图形的性质以及平移的性质和三角形面积求法等知识,得出对应点坐标是解题关键.6.如图,一条公路的转弯处是一段圆弧().(1)用直尺和圆规作出所在圆的圆心O;(要求保留作图痕迹,不写作法)(2)若的中点C到弦AB的距离为20m,AB=80m,求所在圆的半径.考点:作图—复杂作图;勾股定理;垂径定理的应用.专题:作图题.分析:(1)连结AC、BC,分别作AC和BC的垂直平分线,两垂直平分线的交点为点O,如图1;(2)连接OA,OC,OC交AB于D,如图2,根据垂径定理的推论,由C为的中点得到OC⊥AB,AD=BD=AB=40,则CD=20,设⊙O的半径为r,在Rt△OAD中利用勾股定理得到r2=(r﹣20)2+402,然后解方程即可.解答:解:(1)如图1,点O为所求;(2)连接OA,OC,OC交AB于D,如图2,∵C为的中点,∴OC⊥AB,∴AD=BD=AB=40,设⊙O的半径为r,则OA=r,OD=OD﹣CD=r﹣20,在Rt△OAD中,∵OA2=OD2+BD2,∴r2=(r﹣20)2+402,解得r=50,即所在圆的半径是50m.点评:本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法;解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了勾股定理和垂径定理.7.各顶点都在方格纸格点(横竖格子线的交错点)上的多边形称为格点多边形.如何计算它的面积?奥地利数学家皮克(G•Pick,1859~1942年)证明了格点多边形的面积公式S=a+b﹣1,其中a表示多边形内部的格点数,b表示多边形边界上的格点数,S表示多边形的面积.如图,a=4,b=6,S=4+×6﹣1=6(1)请在图中画一个格点正方形,使它的内部只含有4个格点,并写出它的面积.(2)请在图乙中画一个格点三角形,使它的面积为,且每条边上除顶点外无其它格点.(注:图甲、图乙在答题纸上)考点:作图—应用与设计作图.专题:作图题.分析:(1)根据皮克公式画图计算即可;(2)根据题意可知a=3,b=3,画出满足题意的图形即可.解答:解:(1)如图所示,a=4,b=4,S=4+×4﹣1=5;(2)因为S=,b=3,所以a=3,如图所示,点评:本题考查了应用与设计作图,关键是理解皮克公式,根据题意求出a、b的值.8.如图,△ABC是直角三角形,∠ACB=90°.(1)尺规作图:作⊙C,使它与AB相切于点D,与AC相交于点E,保留作图痕迹,不写作法,请标明字母.(2)在你按(1)中要求所作的图中,若BC=3,∠A=30°,求的长.考点:作图—复杂作图;切线的性质;弧长的计算.专题:作图题.分析:(1)过点C作AB的垂线,垂足为点D,然后以C点为圆心,CD为半径作圆即可;(2)先根据切线的性质得∠ADC=90°,则利用互余可计算出∠DCE=90°﹣∠A=60°,∠BCD=90°﹣∠ACD=30°,再在Rt△BCD中利用∠BCD的余弦可计算出CD=,然后根据弧长公式求解.解答:解:(1)如图,⊙C为所求;(2)∵⊙C切AB于D,∴CD⊥AB,∴∠ADC=90°,∴∠DCE=90°﹣∠A=90°﹣30°=60°,∴∠BCD=90°﹣∠ACD=30°,在Rt△BCD中,∵cos∠BCD=,∴CD=3cos30°=,∴的长==π.点评:本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法;解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了切线的性质和弧长公式.9.如图,在△ABC中,∠C=60°,∠A=40°.(1)用尺规作图作AB的垂直平分线,交AC于点D,交AB于点E(保留作图痕迹,不要求写作法和证明);(2)求证:BD平分∠CBA.。

2023年广西南宁市中考数学试题及参考答案

2023年广西南宁市中考数学试题及参考答案

2023年广西南宁市中考数学试题及参考
答案
一、选择题
1. 一台电视机原价5000元,先降价20%,然后又降价10%,
现在的价格是多少元?
A. 4000元
B. 4400元
C. 4500元
D. 4600元
2. 在一个几何图形中,如果一个角为90°,则这个角是什么角?
A. 顶角
B. 平角
C. 直角
D. 钝角
3. 图1是一个正方形,边长为40厘米。

其中的线段AB为边长的1/5,线段CD为边长的1/3,求线段BE的长度是多少厘米?
![图1](image1.png)
A. 20
B. 15
C. 12
D. 10
二、填空题
1. 某公司制作计划生产个产品,已完成7956个产品的制作,
还剩下____个产品未完成。

2. 某股票第1天涨了5%,第2天下跌了10%,那么第2天的
收盘价相对于第1天的涨跌幅为____。

3. 若a=5、b=3,则a的平方加b的平方等于____。

三、解答题
1. 某超市促销活动,购买3件相同商品可以打折,原价100元,现在以90元的价格销售,如果购买5件相同商品,应付多少元?
2. 现有一条长为28厘米的线段,将它分成3段,比为1:3:4,求第一段的长度是多少厘米?
四、参考答案
一、选择题
1. B
2. C
3. D
二、填空题
1. 4566
2. -4%
3. 34
三、解答题
1. 150元
2. 4厘米
以上是2023年广西南宁市中考数学试题及参考答案。

2024年广西中考真题数学试卷含答案解析

2024年广西中考真题数学试卷含答案解析

2024年广西中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列选项记录了我国四个直辖市某年一月份的平均气温,其中气温最低的是()A.B.C.D.2.端午节是中国传统节日,下列与端午节有关的文创图案中,成轴对称的是()A.B.C.D.【答案】B【分析】本题主要考查成轴对称的定义,掌握成轴对称的定义是解题的关键.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫作对称轴,折叠后重合的点是对应点,叫作对称点.根据两个图形成轴对称的定义,逐一判断选项即可.【详解】A.不是轴对称图形,故不符合题意;B.是轴对称图形,故符合题意;C.不是轴对称图形,故不符合题意;D.不是轴对称图形,故不符合题意;故你:B.3.广西壮族自治区统计局发布的数据显示,2023年全区累计接待国内游客8.49亿人次.将849000000用科学记数法表示为()A.90.84910⨯B.88.4910⨯C.784.910⨯D.684910⨯4.榫卯是我国传统建筑及家具的基本构件.燕尾榫是“万榫之母”,为了防止受拉力时脱开,榫头成梯台形,形似燕尾,如图是燕尾榫正面的带头部分,它的主视图是()A.B.C.D.【答案】A【分析】本题考查三视图,根据主视图是从前往后看,得到的图形,进行判断即可.【详解】解:由图可知:几何体的主视图为:故选A.5.不透明袋子中装有白球2个,红球1个,这些球除了颜色外无其他差别.从袋子中随机取出1个球,取出白球的概率是()A.1B.13C.12D.236.如图,2时整,钟表的时针和分针所成的锐角为()A .20︒B .40︒C .60︒D .80︒【答案】C 【分析】本题考查了钟面角,用30︒乘以两针相距的份数是解题关键.根据钟面的特点,钟面平均分成12份,每份是30︒,根据时针与分针相距的份数,可得答案.【详解】解:2时整,钟表的时针和分针所成的锐角是30260︒⨯=︒,故选:C .7.如图,在平面直角坐标系中,点O 为坐标原点,点P 的坐标为()2,1,则点Q 的坐标为( )A .()3,0B .()0,2C .()3,2D .()1,2【答案】C 【分析】本题主要考查点的坐标,理解点的坐标意义是关键.根据点P 的坐标可得出横、纵轴上一格代表一格单位长度,然后观察坐标系即可得出答案.【详解】解:∵点P 的坐标为()2,1,∴点Q 的坐标为()3,2,故选:C .8.激光测距仪L 发出的激光束以5310km ⨯的速度射向目标M ,s t 后测距仪L 收到M 反射回的激光束.则L 到M 的距离dkm 与时间s t 的关系式为( )A .53102d t ⨯=B .5310d t =⨯C .52310d t =⨯⨯D .6310d t=⨯【答案】A9.已知点()11,M x y ,()22,N x y 在反比例函数2y x =的图象上,若120x x <<,则有( )A .120y y <<B .210y y <<C .120y y <<D .120y y <<10.如果3a b +=,1ab =,那么32232a b a b ab ++的值为( )A .0B .1C .4D .9【答案】D【分析】本题考查因式分解,代数式求值,先将多项式进行因式分解,利用整体代入法,求值即可.【详解】解:∵3a b +=,1ab =,∴()32232222a b a b ab ab a ab b ++=++()2ab a b =+213=⨯9=;故选D .11.《九章算术》是我国古代重要的数学著作,其中记载了一个问题,大致意思为:现有田出租,第一年3亩1钱,第二年4亩1钱,第三年5亩1钱.三年共得100钱.问:出租的田有多少亩?设出租的田有x 亩,可列方程为( )A .1345x x x ++=B .100345x x x ++=C .3451x x x ++=D .345100x x x ++=12.如图,边长为5的正方形ABCD ,E ,F ,G ,H 分别为各边中点,连接AG ,BH ,CE ,DF ,交点分别为M ,N ,P ,Q ,那么四边形MNPQ 的面积为( )A .1B .2C .5D .10理等知识,明确题意,灵活运用相关知识求解是解题的关键.二、填空题13.已知1∠与2∠为对顶角,135∠=︒,则2∠= °.【答案】35【分析】本题主要考查了对顶角性质,根据对顶角相等,得出答案即可.【详解】解:∵1∠与2∠为对顶角,135∠=︒,∴2135∠=∠=︒.故答案为:35.14大的整数是 .15.八桂大地孕育了丰富的药用植物.某县药材站把当地药市交易的400种药用植物按“草本、藤本、灌木、乔木”分为四类,绘制成如图所示的统计图,则藤本类有 种.【答案】80【分析】本题考查了扇形统计图,用400乘以藤本类的百分比即可求解,看懂统计图是解题的关键.【详解】解:由扇形统计图可得,藤本类有40020%80⨯=种,故答案为:80.16.不等式7551x x +<+的解集为 .【答案】<2x -【分析】本题考查了解一元一次不等式,根据解一元一次不等式的步骤解答即可求解,掌握解一元一次不等式的步骤是解题的关键.【详解】解:移项得,7515x x -<-,合并同类项得,24x <-,系数化为1得,<2x -,故答案为:<2x -.17.如图,两张宽度均为3cm 的纸条交叉叠放在一起,交叉形成的锐角为60︒,则重合部分构成的四边形ABCD 的周长为 cm .18.如图,壮壮同学投掷实心球,出手(点P处)的高度OP是7m4,出手后实心球沿一段抛物线运行,到达最高点时,水平距离是5m,高度是4m.若实心球落地点为M,则OM=m.【答案】35 3三、解答题19.计算:()()2342-⨯+-【答案】8-【分析】本题主要考查了有理数的混合运算.先算乘法和乘方,再算加法即可.【详解】解:原式124=-+8=-.20.解方程组:2321x y x y +=⎧⎨-=⎩21.某中学为了解七年级女同学定点投篮水平,从中随机抽取20名女同学进行测试,每人定点投篮5次,进球数统计如下表:进球数012345人数186311(1)求被抽取的20名女同学进球数的众数、中位数、平均数;(2)若进球数为3以上(含3)为“优秀”,七年级共有200名女同学,请估计七年级女同学中定点投篮水平为“优秀”的人数.22.如图,在ABC 中,45A ∠=︒,AC BC >.(1)尺规作图:作线段AB 的垂直平分线l ,分别交AB ,AC 于点D ,E :(要求:保留作图痕迹,不写作法,标明字母)(2)在(1)所作的图中,连接BE ,若8AB =,求BE 的长.(2)连接BE 如下图:∵DE 为线段AB 的垂直平分线,∴BE AE =,∴45EBA A ∠=∠=︒,∴90BEA ∠=︒,∴ABE 为等腰直角三角形,2BE 23.综合与实践在综合与实践课上,数学兴趣小组通过洗一套夏季校服,探索清洗衣物的节约用水策略.【洗衣过程】步骤一:将校服放进清水中,加入洗衣液,充分浸泡揉搓后拧干;步骤二:将拧干后的校服放进清水中,充分漂洗后拧干.重复操作步骤二,直至校服上残留洗衣液浓度达到洗衣目标.假设第一次漂洗前校服上残留洗衣液浓度为0.2%,每次拧干后校服上都残留0.5kg水.浓度关系式:0.50.5ddw=+前后.其中d前、d后分别为单次漂洗前、后校服上残留洗衣液浓度;w为单次漂洗所加清水量(单位:kg)【洗衣目标】经过漂洗使校服上残留洗衣液浓度不高于0.01%【动手操作】请按要求完成下列任务:(1)如果只经过一次漂洗,使校服上残留洗衣液浓度降为0.01%,需要多少清水?(2)如果把4kg清水均分,进行两次漂洗,是否能达到洗衣目标?(3)比较(1)和(2)的漂洗结果,从洗衣用水策略方面,说说你的想法.24.如图,已知O 是ABC 的外接圆,AB AC =.点D ,E 分别是BC ,AC 的中点,连接DE 并延长至点F ,使DE EF =,连接AF .(1)求证:四边形ABDF 是平行四边形;(2)求证:AF 与O 相切;(3)若3tan 4BAC ∠=,12BC =,求O 的半径.18OD r =-,再利用勾股定理求解即可.【详解】(1)证明:∵点D ,E 分别是BC ,AC 的中点,∴BD CD =,AE CE =,又∵AEF CED ∠=∠,DE EF =,∴AEF CED △≌△,∴AF CD =,F EDC ∠=∠,∴AF BD =,∥A F B D ,∴四边形ABDF 是平行四边形;(2)证明:如图,连接AD ,∵AB AC =,D 为BC 中点,∴AD BC ⊥,∴AD 过圆心,∵∥A F B D ,∴AF AD ⊥,而OA 为半径,∴AF 为O 的切线;(3)解:如图,过B 作BQ AC ⊥于Q ,连接OB ,∵3tan 4BAC ∠=,∴34BQ AQ =,设BQ 3x =,则4AQ x =,∴225AC AB AQ BQ x ==+=,∴CQ AC AQ x =-=,25.课堂上,数学老师组织同学们围绕关于x 的二次函数223y x ax a =++-的最值问题展开探究.【经典回顾】二次函数求最值的方法.(1)老师给出4a =-,求二次函数223y x ax a =++-的最小值.①请你写出对应的函数解析式;②求当x 取何值时,函数y 有最小值,并写出此时的y 值;【举一反三】老师给出更多a 的值,同学们即求出对应的函数在x 取何值时,y 的最小值.记录结果,并整理成下表:a...4-2-024 (x)…*204-2-…y 的最小值…*9-3-5-15-…注:*为②的计算结果.【探究发现】老师:“请同学们结合学过的函数知识,观察表格,谈谈你的发现.”甲同学:“我发现,老师给了a 值后,我们只要取x a =-,就能得到y 的最小值.”乙同学:“我发现,y 的最小值随a 值的变化而变化,当a 由小变大时,y 的最小值先增大后减小,所以我猜想y 的最小值中存在最大值.”(2)请结合函数解析式223y x ax a =++-,解释甲同学的说法是否合理?(3)你认为乙同学的猜想是否正确?若正确,请求出此最大值;若不正确,说明理由.26.如图1,ABC 中,90B Ð=°,6AB =.AC 的垂直平分线分别交AC ,AB 于点M ,O ,CO 平分ACB ∠.(1)求证:ABC CBO △∽△;(2)如图2,将AOC 绕点O 逆时针旋转得到A OC ''△,旋转角为()0360a α︒<<︒.连接A M ',C M '①求A MC ''△面积的最大值及此时旋转角α的度数,并说明理由;②当A MC ''△是直角三角形时,请直接写出旋转角α的度数.由旋转的性质知AOC A OC '' ≌∴OM A C '''⊥,43A C AC ''==,OM 根据垂线段最短知MN MM '≤,又MM OM OM ≤'+',∴当M 、O 、M '三点共线,且点此时180α=︒,∴A MC ''△面积的最大值为142⨯②∵246MC MO OC ''≤+=+=,4∵AOC A OA'≌ ∴30A CAO '∠=∠=︒,OAA OCA '∠=∠∴120A OA '∠=︒,试题21∵90AMO ∠=︒,∴60AOM ∠=︒,∴180A OA AOM '∠+∠=︒,∴A '、O 、M 三点共线,∴A MC ''△为直角三角形,此时旋转角120A OA α'=∠=︒;当A '和C 重合时,如图,同理30OCC CAO '∠=∠=︒,30C OCA '∠=∠=︒,∴120COC '∠=︒,∵AO CO =,60AOM ∠=︒∴60COM AOM ∠=∠=︒,∴180COM COC '∠+∠=︒,∴C '、O 、M 三点共线,又90AMO ∠=︒∴A MC ''△为直角三角形,此时旋转角360240A OA α'=︒-∠=︒;综上,旋转角α的度数为120︒或240︒时,A MC ''△为直角三角形.【点睛】本题考查了线段垂直平分线的性质,含30︒的直角三角形的性质,勾股定理,旋转的性质等知识,明确题意,正确画出图形,添加辅助线,合理分类讨论是解题的关键.。

南宁往年中考数学试卷真题

南宁往年中考数学试卷真题

南宁往年中考数学试卷真题一、选择题1. 设集合 A={1, 2, 3, 4},则集合 B = {x | x = 2^n, n∈A} 中元素个数为()。

A. 4B. 3C. 2D. 12. 菱形 ABCD 中,点 E 为 AB 边上的动点,且 AE = EB = 7cm。

动点 E 向 CD 边上动,且每动 1cm,使 DE 上升 2cm,若当 E 到达 CD 中点 M 时,ME 的最大值为 a cm,则 a 的值为()。

A. 2B. 3C. 4D. 53. 15 位不同的整数中,最大数减去最小数,最多是多少?A. 14B. 15C. 16D. 174. 已知函数 f(x) 的定义域为 R,对于任意 x∈R,定义 f(x-2)=x^2-4x+4,则 f(x) 的值域为()。

A. {y | y≥0}B. {y | y>0}C. {y | y≥-1}D. {y | y≥-2}5. 下列计算式的结果为 2/59 的是()。

A. (1-1)(1+1)(1+1)B. (1-1)(1-1)(1+1)C. (1+1)(1+1)(1-1)D.(1+1)(1-1)(1-1)二、填空题1. 若 a:b=2:3,b:c=4:5,则 a:b:c=()。

2. 若 1+2+3+...+100=n(n+1)/2,则 n 的值为()。

3. 设已知平方根√3 约等于1.732,且 (1-√3)^2=a+b√3,则 a+b=()。

三、解答题1. 某公司2020年1月1日的资产总额为800万元,2020年12月31日的资产总额是1000万元,请计算该公司2020年的年均资产增长率。

(结果保留两位小数)2. 下图中,如∠BAC < 90°,则 x 的最小值为多少?A————B| || |D————C题解:选择题:1. 选 B,集合 B 中的元素为 [2^1, 2^2, 2^3, 2^4],即 B = {2, 4, 8, 16},共有 4 个元素。

中考数学作图题---精选

中考数学作图题---精选

1、作图:(不写作法,但要保留作图痕迹)如图所示,要在街道旁修建一个牛奶站,向居民区A、B提供牛奶,牛奶站应建在什么地方,才能使A、B到它的距离之和最短.2、如图(1),A、B两单位分别位于一条封闭街道的两旁(直线L1、L2是街道两边沿),现准备合作修建一座过街人行天桥.(1)天桥应建在何处才能使由A经过天桥走到B的路程最短?在图(2)中作出此时桥PQ的位置,简要叙述作法并保留作图痕迹.(注:桥的宽度忽略不计,桥必须与街道垂直).(2)根据图(1)中提供的数据计算由A经过天桥走到B的最短路线的长.(单位:米)3、有一块三角形的土地,现要平均分给四个农户种植.请给出两种分法.(在下列所给的图形上画图,不要求写作法,保留作图痕迹且要有简要分法的说明)4、画图题.如图:求作一点P,使PC=PD,并且P到∠AOB两边的距离相等.(不写作法,保留作图痕迹.)5、如图,已知点M 、N 和∠AOB ,求作一点P ,使P 到点M 、N 的距离相等,且到∠AOB 的两边的距离相等.(要求用尺规画图,保留作图痕迹)6、如图,AC 、BD 为正方形ABCD 对角线,相交于点O,点D 为BC 边的中点,正方形边长为2cm,在BD 上找点P ,使DP+CP 之和最小,且最小值为________。

7、如图,点P 在∠AOB 内部,问如何在射线OA 、OB 上分别找点C 、D ,使PC+CD+DP 之和最小?请简要说明。

8、如图,P 是∠AOB 内任一点,分别在OA 、OB 上,求作两点P 1,P 2,使△PP 1P 2的周长最小(简要说明作法).9、如图,在边长为1个单位长度的小正方形组成的两格中,点A 、B 、C 都是格点.(1)将△ABC 向左平移6个单位长度得到得到△A 1B 1C 1;(2)将△ABC 绕点O 按逆时针方向旋转180°得到△A 2B 2C 2,请画出△A 2B 2C 2.A B C D D O P 0P BA。

2002—2019年广西省南宁市中考数学试卷含详细解答(历年真题)

2002—2019年广西省南宁市中考数学试卷含详细解答(历年真题)

2019年广西南宁市中考数学试卷一、选择题(本大题共 12小题,毎小题 3分,共36分,在毎小题给出的四个选项中只有一项是符合要求的)A .打开电视机,正在播放新闻C .买一张电影票,座位号是奇数号D .掷一枚质地均匀的硬币,正面朝上(3分)如果温度上升 2C 记作+2 C, 那么温度下降3C 记作( ) A. +2 CB. - 2CC. +3 °CD . - 3C2.(3分)如图,将下面的平面图形绕直线l 旋转一周,得到的立体图形是(3.—B .C .D . IB •任意画一个三角形,其内角和是1804.(3分)2019年6月6日,南宁市地铁 3号线举行通车仪式,预计地铁 3号线开通 后日均客流量为700000人次,其中数据 700000用科学记数法表示为(4A . 70 X 10 5B. 7X 10 6C . 7X 10 6D . 0.7 X 10 5. (3分)将一副三角板按如图所示的位置摆放在直尺上,则/ 1的度数为()A . (3分)下列事件为必然事件的是(6.( 3分)下列运算正确的是( )3、22 6A . ( ab ) = a bD. ( a+1) 2= a 2+17.( 3分)如图,在△ ABC 中,AC = BC ,Z A = 40°,观察图中尺规作图的痕迹,可 知/ BCG 的度数为( ) A . 40° B . 45°C . 50 °D . 60 °&( 3分)“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴 和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰 好选择同一场馆的概率是()10 . ( 3分)扬帆中学有一块长 30m ,宽20m 的矩形空地,计划在这块空地上划出四 分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为 xm ,则可列方程为()B . 65C . 75D 85B . 2a+3b = 5abC . 5a 2 - 3a 2= 2 9. (3 分)若点(—1 , y i ),( 2, y 2), 象上,贝【J y i , y 2, y 3的大小关系是( A . y i > y 2> y 3 B . y 3> y 2> y i(3, y 3)在反比例函数y -(k v 0)的图 )C . y i > y 3> y 2D . y 2> y 3> y iA . ( 30 - x)( 20 - x) - 20X 30B .( 30 - 2x )( 20 - x ) 20 X 302 214.( 3分)因式分解:3ax - 3ay =C . 30x+2 X 20x -20X 30(30- 2x ) ( 20 - x )20X 3011.( 3分)小菁同学在数学实践活动课中测量路灯的高度•如图,已知她的目高AB为1.5米,她先站在A 处看路灯顶端O 的仰角为35°,再往前走3米站在C 处,看 路灯顶端O 的仰角为65°,则路灯顶端 O 到地面的距离约为(已知 sin35°~ 0.6, cos35°~ 0.8, tan35 °~ 0.7, sin65 °~ 0.9 , cos65°~ 0.4, tan65-2.1)( )严胃.4CA . 3.2 米B . 3.9 米C . 4.7 米 5.4米12.( 3分)如图,AB 为O O 的直径,BC 、CD 是O O 的切线,切点分别为点 B 、D ,点E 为线段OB 上的一个动点,连接OD , CE , DE ,已知 AB = 2 : BC = 2,当 CE+DE 的值最小时, 则一的值为(C .二、填空题(本大题共 6小题,每嗯题3分,共18分)13.( 3分)若二次根式有意义, 则x 的取值范围是15.(3分)甲,乙两人进行飞镖比赛,每人各投6次,甲的成绩(单位:环)为:9,8, 9, 6, 10,6•甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是_____ •(填“甲”或“乙”)16. (3分)如图,在菱形ABCD中,对角线AC, BD交于点0,过点A作AH丄BC于点H,已知B0 = 4 , S菱形ABCD = 24,则AH = _________________ .17. (3分)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB =1尺(1尺=10寸),则该圆材的直径为 _________寸.18. (3 分)如图,AB 与CD 相交于点O, AB= CD,/ AOC = 60 ° ,Z ACD + Z ABD=210°,则线段AB, AC, BD之间的等量关系式为__________ .三、解答题共(本大题共8小题,共66分,解答应写岀文字说明,证明过程或演算步骤)2 — 219. (6 分)计算:(-1)+ () -(- 9)+ (- 6)* 2.<20. (6分)解不等式组:,并利用数轴确定不等式组的解集.第5页(共473页)-5 -4 -3 -2 -1 0 1 2 3 4(8分)如图,在平面直角坐标系中,已知△ABC 的三个顶点坐标分别是 A (2, -1),B( 1,- 2), C (3, - 3)(1) 将厶ABC向上平移4个单位长度得到厶A i B i C i,请画出厶A i B i C i;(2) 请画出与厶ABC关于y轴对称的厶A2B2C2;22. ( 8分)红树林学校在七年级新生中举行了全员参加的“防溺水”安全知识竞赛,试卷题目共io题,每题io分•现分别从三个班中各随机取io名同学的成绩(单位: 分),收集数据如下:i 班:90, 70, 80, 80, 80, 80, 80, 90, 80, i00;2 班:70, 80, 80, 80, 60, 90, 90, 90, i00, 90;3 班:90, 60, 70, 80, 80, 80, 80, 90, i00, i00整理数据:分数人数班级60708090i00i班0i62i2i.(3)请写出A i、A2的坐标.2班113a13班11422分析数据:平均数中位数众数1班8380802班83c d3班b8080根据以上信息回答下列问题:(1)请直接写出表格中a, b, c, d的值;(2 )比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好? 请说明理由;(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级新生共570人,试估计需要准备多少张奖状?23. (8分)如图,△ ABC是O O的内接三角形,AB为O O直径,AB= 6, AD平分/BAC,交BC于点E,交O O于点D,连接BD .(1)求证:/ BAD = Z CBD ;的长(结果保留n)求24. (10分)某校喜迎中华人民共和国成立70周年,将举行以“歌唱祖国”为主题的歌咏比赛,需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具•已知毎袋贴纸有50张,毎袋小红旗有20面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少5元,用150元购买贴纸所得袋数与用200元购买小红旗所得袋数相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果给每位演出学生分发国旗图案贴纸2张,小红旗1面•设购买国旗图案贴纸a 袋(a为正整数),则购买小红旗多少袋能恰好配套?请用含a的代数式表示.(3)在文具店累计购物超过800元后,超出800元的部分可享受8折优惠•学校按(2)中的配套方案购买,共支付w元,求w关于a的函数关系式.现全校有1200 名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用多少元?25. ( 10分)如图1,在正方形ABCD中,点E是AB边上的一个动点(点E与点A, B不重合),连接CE,过点B作BF丄CE于点G,交AD于点F.(1)求证:△ ABFBCE;(2)如图2,当点E运动到AB中点时,连接DG,求证:DC = DG;(3)如图3,在(2)的条件下,过点C作CM丄DG于点H,分别交AD , BF于点E S A E $関3M , N,求一的值.26. ( 10分)如果抛物线C1的顶点在拋物线C2上,抛物线C2的顶点也在拋物线C1上时,那么我们称抛物线C1与C2 “互为关联”的抛物线.如图1,已知抛物线C1:y1 -x2+x 与C2:y2= ax2+x+c是“互为关联"的拋物线,点A, B分别是抛物线C1, C2的顶点,抛物线C2经过点D (6,- 1).(1)直接写出A, B的坐标和抛物线C2的解析式;(2)抛物线C2上是否存在点E,使得△ ABE是直角三角形?如果存在,请求出点E的坐标;如果不存在,请说明理由;(3)如图2,点F (- 6, 3)在抛物线C1上,点M , N分别是抛物线C1, C2上的动点,且点M , N的横坐标相同,记△ AFM面积为Si (当点M与点A, F重合时Si=0),A ABN的面积为Q察图象,当y i< y2时,写出(当点N与点A, B重合时,S2= 0),令S= S1+S2,观x的取值范围,并求出在此范围内S的最大值.2019年广西南宁市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,毎小题3分,共36分,在毎小题给出的四个选项中只有一项是符合要求的)1. (3分)如果温度上升2C记作+2 C,那么温度下降3C记作()A . +2°CB . - 2C C. +3 °CD . - 3C【解答】解:上升2C记作+2C,下降3C记作-3C;故选:D.2. (3分)如图,将下面的平面图形绕直线l 旋转一周,得到的立体图形是()【解答】解:面动成体,直角三角形绕直角边旋转一周可得圆锥,长方形绕一边旋转一周可得圆柱,那么所求的图形是下面是圆锥,上面是圆柱的组合图形.故选:D.3. (3分)下列事件为必然事件的是()A .打开电视机,正在播放新闻B •任意画一个三角形,其内角和是180°C.买一张电影票,座位号是奇数号D .掷一枚质地均匀的硬币,正面朝上【解答】解:T A, C, D选项为不确定事件,即随机事件,故不符合题意.二一定发生的事件只有B,任意画一个三角形,其内角和是180 °,是必然事件, 符合题意.故选:B.4. (3分)2019年6月6日,南宁市地铁3号线举行通车仪式,预计地铁3号线开通后日均客流量为700000人次,其中数据700000用科学记数法表示为()" “ “4 5 6 6A . 70X 10B . 7X 10 C. 7X 10 D . 0.7 X 105【解答】解:700000 = 7X 105;故选:B.3、 2 2 6A . ( ab ) = a bB . 2a+3b = 5ab 2 2C . 5a - 3a = 22 2D .( a+1) 2= a 2+1【解答】解:2a+3b 不能合并同类项, B 错误;5a 2- 3a 2= 2a 2, C 错误;2 2(a+1) = a +2a+1 , D 错误; 故选:A . 7.( 3分)如图,在△ ABC 中,AC = BC ,Z A = 40°,观察图中尺规作图的痕迹,可 知/ BCG 的度数为()5.(3分)将一副三角板按如图所示的位置摆放在直尺上,则/1的度数为()6. 【解答】解:如图:•••7 BCA = 60°,7•••上 2= 180°- ••• HF II BC ,故选:C .C .75°D . 85DCE = 45°,-45°= 75°,(3分)下列运算正确的是( 65OA. 40°B. 45°C. 50° D . 60【解答】解:由作法得CG丄AB,••• AC = BC,•••CG 平分/ ACB,Z A=Z B,vZ ACB = 180°- 40°- 40°= 100••丄 BCG -Z ACB= 50°.故选:C.&(3分)“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是()A . -B . - C. - D .-【解答】解:画树状图为:(用A、B、C分别表示“图书馆,博物馆,科技馆”三个场馆)B CZK /N /1\A B C ABC A B C共有9种等可能的结果数,其中两人恰好选择同一场馆的结果数为 3, 所以两人恰好选择同一场馆的概率故选:A .象上,贝【J y i ,y 2, y 3的大小关系是( )【解答】解:T k v 0,.•.在每个象限内,y 随x 值的增大而增大, •••当 x =— i 时,y i >0, •/ 2v 3, 二 y 2v y 3v y i 故选:C .i0.( 3分)扬帆中学有一块长 30m ,宽20m 的矩形空地,计划在这块空地上划出四 分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为 xm ,则可列方程为()A . ( 30 — x )( 20 — x) - 20X 30B . ( 30 — 2x )( 20 — x )一 20 X 309.( 3分)若点(-1 , y i ) (2, y 2), (3, y 3)在反比例函数y - (k v 0)的图A . y i >y 2>y 3B . y 3>y 2>y iC . y i >y 3>y 2D . y 2> y 3> y iC . 30x+2 X 20x 一20X 30D .( 30 - 2x) ( 20 - x) 20X 30【解答】解:设花带的宽度为xm,贝【J可列方程为(30 - 2x) ( 20 - x) - 20 X 30, 故选:D.11. ( 3分)小菁同学在数学实践活动课中测量路灯的高度•如图,已知她的目高AB 为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端0的仰角为65°,则路灯顶端0到地面的距离约为(已知sin35°〜0.6, cos35°~ 0.8, tan35 °~ 0.7, sin65°~ 0.9 , cos65°~ 0.4, tan65°~ 2.1)( ) OJ A/ fA CA . 3.2 米B . 3.9米C. 4.7 米 D . 5.4 米【解答】解:过点O作OE丄AC于点F,延长BD交OE于点F ,设DF = x,••• tan 65°OF = xtan65°,BF = 3+x,••• tan 35°•OF =( 3+x) tan35°,• 2.1x= 0.7 (3+x),•- x= 1.5,•OF = 1.5X 2.1 = 3.15,/ / I•OE= 3.15+1.5 = 4.65, 故选:C.A C E12. (3分)如图,AB为O O的直径,BC、CD是O O的切线,切点分别为点B、D , 点E为线段0B上的一个动点,连接0D, CE, DE,已知AB= 2 : BC= 2,当CE+DE的值最小时,则一的值为()A . —B . - C. — D .【解答】解:延长CB到F使得BF= BC,贝V C与F关于0B对称,连接DF与0B相交于点E,此时CE+DE = DF值最小,贝y OC 丄BD , OC••• OB?BC = OC?BG,••• BD = 2BG••• OD2- OH2= DH2= BD2- BH2,第19页(共473页)••• BH••• DH II BF,故选:A.二、填空题(本大题共6小题,每嗯题3分,共18分)13. ( 3分)若二次根式有意义,则x的取值范围是X》-4 .【解答】解:x+4> 0,• x>- 4;故答案为x >- 4;2 214. ( 3 分)因式分解:3ax2-2 2 2 2【解答】解:3ax - 3ay = 3a (x - y )= 3a (x+y)( x- y).故答案为:3a (x+y)( x- y)15. ( 3分)甲,乙两人进行飞镖比赛,每人各投6次,甲的成绩(单位:环)为:9, 8, 9, 6, 10, 6.甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是甲.(填“甲”或“乙”)【解答】解:甲的平均数—-(9+8+9+6+10+6 ) = 8,所以甲的方差-[(9- 8) 2+ (8 - 8) 2+ ( 9- 8)2+ ( 6 -8) 2+ (10- 8) 2+ (6 - 8) 2]-,因为甲的方差比乙的方差小,所以甲的成绩比较稳定.3ay2= 3a (x+y)( x-y) .16. (3分)如图,在菱形ABCD中,对角线AC, BD交于点0,过点A作AH丄BC 于点H,已知B0 = 4 , S菱形ABCD = 24,则AH =—.【解答】解:•••四边形ABCD是菱形,••• B0= DO = 4, A0= CO, AC丄BD ,BD = 8,T S菱形ABCD -AC X BD = 24,•• AC = 6,•OC -AC= 3,•BC 5,T S 菱形ABCD = BC X AH = 24 ,• AH故答案为:一.17. (3分)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB =1尺(1尺=10寸),则该圆材的直径为26寸.故答案为甲.第21页(共473页)【解答】解:设O O的半径为r•在Rt A ADO 中,AD = 5, OD = r - 1, OA= r,则有r2= 52+ (r - 1) 2,解得r = 13,O O的直径为26寸,故答案为:26 •◎18. ( 3 分)如图,AB 与CD 相交于点O,AB= CD,/ AOC = 60 ° ,Z ACD + Z ABD =210°,则线段AB, AC, BD之间的等量关系式为AB2= AC2+BD2.【解答】解:过点A作AE II CD,截取AE = CD,连接BE、DE,如图所示:则四边形ACDE是平行四边形,••• DE = AC,Z ACD = Z AED ,T Z AOC = 60°, AB = CD ,•Z EAB= 60°, CD = AE = AB,•△ ABE为等边三角形,•BE = AB,第22页(共473页)T Z ACD + Z ABD = 210°,•Z AED + Z ABD = 210°,•Z BDE = 360°-(Z AED + Z ABD) -Z EAB= 360°- 210°- 60 ° = 90°,第23页(共473页)第24页(共473页)222• • BE = DE + BD ,222• AB = AC +BD ;共66分,解答应写岀文字说明,证明过程或演算步19.( 6分)计算:(- 1)2)-(-9) + (- 6) 一 2. 【解答】解:(-1) _)2-(- 9) + (- 6)- 2=1+6+9 - 3 =13.20.( 6分)解不等式组: ,并利用数轴确定不等式组的解集.骤)第25页(共473页)故答案为: AB 2=AC 2+BD 2.21. ( 8分)如图,在平面直角坐标系中,已知△ABC 的三个顶点坐标分别是 A (2,-1), B (1 , - 2), C (3, - 3)(1) 将厶ABC 向上平移4个单位长度得到厶A 1B 1C 1,请画出厶A 1B 1C 1; (2) 请画出与厶ABC 关于y 轴对称的厶A 2B 2C 2; (3) 请写出A 1、A 2的坐标.【解答】解:(1)如图所示:△ A i B i C i ,即为所求;(2)如图所示:△ A 2B 2C 2,即为所求;(3) A i (2, 3), A 2 (- 2,- 1)解①得x < 3,解得x >- 2 , 所以不等式组的解集-5 -4 *3 -2 *1 0 1 2 3 4 5第26页(共473页)22. ( 8分)红树林学校在七年级新生中举行了全员参加的“防溺水”安全知识竞赛,试卷题目共10题,每题10分•现分别从三个班中各随机取10名同学的成绩(单位: 分),收集数据如下:1 班:90, 70, 80, 80, 80, 80, 80, 90, 80, 100;2 班:70, 80, 80, 80, 60, 90, 90, 90, 100, 90;3 班:90, 60, 70, 80, 80, 80, 80, 90, 100, 100整理数据:根据以上信息回答下列问题:(1)请直接写出表格中a, b, c, d的值;(2 )比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好? 请说明理由;(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级新生共570人,试估计需要准备多少张奖状?【解答】解:(1)由题意知a = 4,第21页(共473页)b —(90+60+70+80+80+80+80+90+100+100 )= 83,2班成绩重新排列为60, 70, 80, 80, 80, 90, 90, 90, 90, 100,二 c --------- 85, d= 90;(2)从平均数上看三个班都一样;从中位数看,1班和3班一样是80, 2班最高是85;从众数上看,1班和3班都是80, 2班是90;综上所述,2班成绩比较好;(3)570 —76 (张),答:估计需要准备76张奖状.23. (8分)如图,△ ABC是O O的内接三角形,AB为O O直径,AB= 6, AD平分/BAC,交BC于点E,交O O于点D,连接BD .(1)求证:/ BAD = Z CBD ;/•Z CAD = Z BAD,vZ CAD = Z CBD,•••Z BAD = Z CBD ;第28页(共473页)(2)解:连接OD,vZ AEB= 125°,••上AEC = 55°,v AB为O O直径,•Z ACE = 90°,•Z CAE = 35°,•Z DAB = Z CAE= 35°•Z BOD = 2 Z BAD = 70的长24. ( 10分)某校喜迎中华人民共和国成立70周年,将举行以“歌唱祖国”为主题的歌咏比赛,需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具•已知毎袋贴纸有50张,毎袋小红旗有20面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少5元,用150元购买贴纸所得袋数与用200元购买小红旗所得袋数相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果给每位演出学生分发国旗图案贴纸2张,小红旗1面•设购买国旗图案贴纸a袋(a为正整数),则购买小红旗多少袋能恰好配套?请用含a的代数式表示.(3)在文具店累计购物超过800元后,超出800元的部分可享受8折优惠•学校按(2)中的配套方案购买,共支付w元,求w关于a的函数关系式.现全校有1200 名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用多少元?第21页(共473页)【解答】解:(1)设每袋国旗图案贴纸为x元,则有一解得x= 15,经检验x= 15时方程的解,•••每袋小红旗为15+5 = 20元;答:每袋国旗图案贴纸为15元,每袋小红旗为20元;(2)设购买b袋小红旗恰好与a袋贴纸配套,则有50a: 20b= 2:1,解得b -a,答:购买小红旗-a袋恰好配套;(3)如果没有折扣,则W= 15a+20 -a= 40a,依题意得40a w 800,解得a w 20,当a>20 时,贝V W= 800+0.8 (40a- 800)= 32a+160,即W ,,,>国旗贴纸需要:1200 X 2= 2400张,小红旗需要:1200 X 1 = 1200面,则a ——48袋,b - 60袋,总费用W= 32 X 48+160 = 1696 元.25. ( 10分)如图1,在正方形ABCD中,点E是AB边上的一个动点(点E与点A,B不重合),连接CE,过点B作BF丄CE于点G,交AD于点F.(1)求证:△ ABFBCE;(2)如图2,当点E运动到AB中点时,连接DG,求证:DC = DG;(3)如图3,在(2)的条件下,过点C作CM丄DG于点H,分别交AD , BF于点M , N,求——的值.第30页(共473页)D C U ______________ C r D ______________ C匮11 関3【解答】(1)证明:T BF丄CE,••上 CGB = 90°,/•Z GCB+Z CBG = 90,•••四边形ABCD是正方形,•Z CBE = 90°=Z A, BC= AB,•Z FBA+ Z CBG = 90,•Z GCB = Z FBA,•△ ABF BCE (ASA);(2)证明:如图2,过点D作DH丄CE于H ,设AB = CD = BC= 2a,•••点E是AB的中点,•EA = EB -AB = a,•CE a,在Rt A CEB中,根据面积相等,得BG?CE= CB?EB,•BG —a,•CG —a,T Z DCE + Z BCE= 90°,Z CBF+ Z BCE = 90 ° ,• Z DCE = Z CBF,•••CD = BC,Z CQD = Z CGB= 90•••△CQD ◎△ BGC (AAS),CQ= BG a,•GQ = CG - CQ —a= CQ,•DQ = DQ,上 CQD = Z GQD = 90•△DGQ ◎△ CDQ (SAS),•CD = GD;(3)解:如图3,过点D作DQ丄CE于Q,S A CDG -?DQ?CH -CH?DG,•- CH ---------- —a,在Rt A CHD 中,CD = 2a,•DH -a,•Z MDH + Z HDC = 90°,/ HCD + Z HDC = 90 .•Z MDH =Z HCD ,•△CHD sA DHM ,•HM —a,在Rt A CHG 中,CG ——a, CH -a,•GH - a,第24页(共473页)•Z MGH+ Z CGH = 90°,Z HCG + Z CGH = 90•••/ QGH =Z HCG , •••△ QGH s\GCH ,•-——,•HN ——-a,•MN = HM - HN —a.D C26. ( 10分)如果抛物线C i的顶点在拋物线C2上,抛物线C2的顶点也在拋物线C i上时,那么我们称抛物线C i与C2 “互为关联”的抛物线•如图1,已知抛物线C i:y i -x2+x 与C2:y2= ax2+x+c是“互为关联"的拋物线,点A, B分别是抛物线C i, C2的顶点,抛物线C2经过点D (6,- i).(i)直接写出A, B的坐标和抛物线C2的解析式;(2)抛物线C2上是否存在点E,使得△ ABE是直角三角形?如果存在,请求出点E的坐标;如果不存在,请说明理由;(3)如图2,点F (- 6, 3)在抛物线C i上,点M , N分别是抛物线C i, C2上的动点,且点M , N的横坐标相同,记△ AFM面积为Si (当点M与点A, F重合时Si =0),厶ABN的面积为Q (当点N与点A,B重合时,S2= 0),令S= S+S2,观察图象,当y i< y2时,写出x的取值范围,并求出在此范围内S的最大值.匮II【解答】解:由抛物线C i: y i -x2+x可得A (- 2,- 1), 将A (- 2,- 1), D (6,- 1)代入y2= ax2+x+c得,解得一,二y2 - x+2,二 B (2, 3);(2)易得直线AB的解析式:y= x+1,①若B为直角顶点,BE丄AB, k BE?k AB=- 1,二k BE=- 1 ,直线BE解析式为y=- x+5联立解得x = 2, y= 3或x= 6, y=- 1,二 E (6,- 1);若A为直角顶点,AE丄AB,同理得AE 解析式:y =- x - 3,联立 ,解得 x =— 2, y =— 1 或 x = 10, y =— 13, 二 E (10,— 13);2③若E 为直角顶点,设 E (m , -m+m+2)由 AE 丄 BE 得 k BE ?k AE =— 1,解得m = 2或-2 (不符合题意舍去),•••点 E 的坐标二 E (6, — 1 )或 E (10, — 13);(3)v y 1< y 2,则 Q (- ,- ),Si -QM?|y F — y A |设AB 交MN 于点P ,易知P (t , t+1), S 2 -PN?|X A - X B |设 M (t,-),N (t,-),且-2<t w 2,易求直线AF 的解析式:y =- x — 3, 过M 作x 轴的平行线MQ 交AF 于Q ,=2 —S= S i+S2= 4t+8,当t= 2时,S的最大值为16.2018年广西南宁市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。

中考数学题型训练网格作图

中考数学题型训练网格作图

中考题型训练——网格作图1.(07.云南)(6分)如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)作出格点△ABC关于直线DE对称的△A1B1C1; (2)作出△A1B1C1绕点B1顺时针方向旋转90°后的△A2B1C2;(3)求△A2B1C2的周长;(第1题)(第2题)2.(06.云南)(7分)在如图的方格纸中,每个小正方形的边长都是1, △ABC与△A1B1C1构成的图形是中心对称图形. (1)画出此中心对称图形的对称中心O; (2)画出将△A1B1C1沿直线DE方向向上平移5格得到的△A2B2C2;(3)要使△A2B2C2与△CC1C2重合,则△A2B2C2绕点C2顺时针方向旋转,至少要旋转多少度?(不要求证明)3.(05.云南)(7分)如图,梯形ABMN是直角梯形.(1)请在图中拼上一个直角梯形,使它与梯形ABMN构成一个等腰梯形;(3)将补上的直角梯形以点M为旋转中心,逆时针方向旋转180°,再向上平移一格,画出这个直角梯形(不要求写作法)(第3题)(第4题)4.(07.安徽) △ABC和点S在平面直角坐标系中的位置如图所示:(1)将△ABC向右平移4个单位得到△A1B1C1,则点A1 、B1的坐标分别为和.(2)将△ABC绕点S按顺时针方向旋转90°,画出旋转后的图形.5.(07.江苏)如图,网格中每一个小正方形的边长为1个单位长度.(1)请在所给的网格内画出以线段AB,BC为边的菱形ABCD;(2)填空:菱形ABCD的面积等于 .(第5题)(第6题)6.(07.福州)如图的方格纸中,每个小正方形的边长都为1个单位的正方形,在建立平面直角坐标系后, △ABC的顶点均在格点上,点C的坐标为(4,-1).(1)把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1,并写出点C1的坐标;(2)以原点O为对称中心,再画出与△A1B1C1关于原点O对称的△A2B2C2,并写出点C2的坐标.7.(07.哈尔滨)△ABC在平面直角坐标系中的位置如图所示.(1)作出与△ABC关于y轴对称的△A1B1C;(2)将△ABC向下平移3个单位长度,画出平移后的△A2B2C2.(第7题)(第8题)8.(07.辽宁)如图, 在平面直角坐标系中,图○1与图○2关于点P成中心对称.(1)画出对称中心P,并写出点P的坐标;(2)将图形○2向下平移4个单位,画出平移后的图形○3,并判断图形○3与图形○1的位置关系.(直接写出结果)9.(07.安徽)如图,在直角坐标系中△ABC的A、B、C三点坐标为A(7,1)、B(8,2)、C(9,0).(1)请在图中画出△ABC的一个以点P(12,0)为位似中心,相似比为3的位似图形(要求与△ABC同在P点一侧);(2)求线段BC的对应线段B′C′所在直线的表达式.(第9题)(第10题)10.(07.长沙)如图是某设计师在方格纸中设计图案的一部分,请你帮他完成余下的工作: (1)作出关于直线AB的轴对称图形;(2)将你画出的部分连同原图形绕点O逆时针旋转90°;(3)发挥你的想象,给得到的图案适当涂上阴影,让图案变得更加美丽.11.(07.海南)在如图的方格纸中,△ABC的顶点坐标分别为A(-2,5)、B(-4,1)和C(-1,3).(1)作出△ABC关于x轴对称的△A1B1C1,并写出点A、B、C的对称点A1、B1、C1的坐标;(2)作出△ABC关于原点O对称的△A2B2C2,并写出点A、B、C的对称点A2、B2、C2的坐标;(3)试判断:△A1B1C1与△A2B2C2是否关于y轴对称(只需写出判断结果)(第11题)(第12题)12.(07.青海)如图所示,图○1和图○2中的每个小正方形的边长都为1个单位长度.(1)将图○1中的格点△ABC(顶点都在网格线交点的三角形叫格点三角形)向在平移2个单位长度得到△A1B1C1,请你在图中画出△A1B1C1;(2)在图○2中画一个与格点△ABC相似的格点△A2B2C2,且△A2B2C2与△ABC的相似比为2:1.13.(07.广西)如图,在正方形网格中,△ABC的三个顶点A、B、C均在格点上,将△ABC 向右平移5格,得到△A1B1C1,再将△A1B1C1绕点B1按顺时针方向旋转90°,得到△A2B2C2.(1)请在网格中画出△A1B1C1和△A2B2C2(不要求写画法)(2)画出△A1B1C1和△A2B2C2后,填空:∠C1B1C2= 度, ∠A2= 度.(第13题)14.(06.成都)如图,在平面直角坐标系中,点B的坐标为(-1,-1).(1)把△ABC向左平移8格后得到△A1B1C1,画出△A1B1C1并写出点B1的坐标;(2)把△ABC绕点C按顺时针方向旋转90°后得到△A2B2C,画出△A2B2C并写出点B2的坐标;(3)把△ABC以点A为位似中心放大,使放大前后对应边长的比为1:2,画出△AB3C3.(第14题)15.(06.广东)如图,图中的小正方形是边长为1的正方形,△ABC与是关于O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O;(2)求出△ABC与的位似比;(3)以点O为位似中心,再画一个△A1B1C1,使它与△ABC的位似比为1.5;。

2024年广西壮族自治区南宁三中初中部中考数学模拟试题

2024年广西壮族自治区南宁三中初中部中考数学模拟试题

2024年广西壮族自治区南宁三中初中部中考数学模拟试题一、单选题1.如图,数轴上表示3-的点A 到原点的距离是( )A .3-B .3C .13-D .132.近年来,全球新能源汽车发展如火如荼,下列图案是我国四款新能源汽车的标志,其中既是轴对称图形又是中心对称图形的是( ) A .B .C .D .3.将一副三角板按如图所示的位置摆放在直尺上,则1∠的度数为( )A .70°B .75°C .80°D .85°4.若34x =,36y =,则23x y -的值是( ) A .19B .9C .13D .35.如图,过直线外一点画已知直线的平行线的方法叫“推平行线”法(图中三角形ABC 是三角板),其依据是( )A .同旁内角互补,两直线平行B .两直线平行,同旁内角互补C .同位角相等,两直线平行D .两直线平行,同位角相等6.如图,在四边形ABCD 中,AD BC ∥,添加下列条件后仍不能..判定四边形ABCD 是平行四边形的是( )A .AD BC =B .AB DC ∥ C .A C ∠=∠D .AB DC =7.我们可以用图形中的面积关系解释很多代数恒等式.能用下面图形的面积关系解释的代数恒等式是( )A .()()22a b a b a b +-=-B .()2222a b a ab b -=-+ C .()2222a b a ab b +=++D .()()224a b a b ab -=+-8.下表是某社团20名成员的年龄分布统计表,数据不小心被撕掉一块,仍能够分析得出关于这20名成员年龄的统计量是( )A .平均数B .方差C .中位数D .众数9.小王和小李两位同学准备用720元班费给班里买一定数量的篮球,已知甲、乙两个商店某种品牌的篮球标价相同,如下是两位同学了解到的具体情况:下面是两位同学分别列出来的两个方程: 小王:720720480.72x x-⨯=-;小李:7202720480.7x x x+-=; 其中的x 表示的意义为( ) A .均为篮球的数量 B .均为篮球的单价C .小王方程中的x 表示篮球的数量,小李方程中的x 表示篮球的单价D .小王方程中的x 表示篮球的单价,小李方程中的x 表示篮球的数量10.数学活动课上,李老师给出一组按一定规律排列的数:2,4-,8,16-,32,…,第n 个数是( )A .2nB .2n -C .()12nn -⨯D .()112n n +-⨯11.月亮门是中国古典园林、住宅中常见的圆弧形洞门(如图1),因圆形如月而得名.月亮门因其寓意美好且形态优美,被广泛使用.图2是小智同学家中的月亮门示意图,经测量,水平跨径AB 为1.8米,水平木条BD 和铅锤木条CD 长都为0.3米,点C 恰好落在O e 上,则此月亮门的半径为( )A .1.8米B .1.6米C .1.5米D .1.4米12.如图,ABC V 中,10AB =,8AC =,6BC =,一束光线从AB 上的点P 出发,以垂直于AB 的方向射出,经镜面AC ,BC 反射后,需照射到AB 上的“探测区”MN 上,已知2MN =,1NB =,则AP 的长需满足( )A .142455AP ≤≤ B .182455AP ≤≤ C .192955AP ≤≤ D .243255AP ≤≤二、填空题13.14.如图,数轴上点A 表示的数为a ,化简2a -=.15.如图是某几何体的三视图及相关数据,请根据有关信息得这个几何体的全面积是.16.如图1,在某个盛有部分水的容器内放一个小水杯,现在匀速持续地向容器内注水,小水杯内水的高度()cm y 和注水时间()s t 之间的关系如图2所示,则从开始注水至把小水杯注满水需要的时间为秒.17.抽屉中有两双不同的袜子,小茗同学从中任取两只,那么两只袜子刚好配对的概率是. 18.如图,在Rt ABC △中,AC BC =,点A ,B 均落在坐标轴上且1OA =,点C 的坐标为33(,)22,将ABC V 向上平移得到A B C '''V ,若点B '、C '恰好都在反比例函数(0)k y x x=>的图象上,则k 的值是.三、解答题19.计算:26(23)(2)4⨯-+-÷. 20.解方程:2312x x x -+=+.21.利用勾股定理,L 的线段,如图:在Rt ABC △中,90B ??,2AB =,1BC =,则AC 的长等于______.在按同样的方法,L 的点.(1)在数轴上作出表示M (尺规作图,保留痕迹). (2N (尺规作图,保留痕迹).22.为了弘扬传统文化,某校组织八年级全体学生参加“恰同学少年,品诗词美韵”的古诗词比赛.比赛结束后,学校随机抽取的部分学生成绩作为样本,并进行整理后分成下面5组,50~60分506()0x ≤<的小组称为“诗词少年”组,60~70分607()0x ≤<的小组称为“诗词居士”组,70~80分708()0x ≤<的小组称为“诗词圣手”组,80~90分809()0x ≤<的小组称为“诗词达人”组,90~100分(90100)x ≤≤的小组称为“诗词泰斗”组;下面是将整理的样本绘制的不完整的频数分布直方图,请结合提供的信息解答下列问题:(1)若“诗词泰斗”组成绩的频率12.5%,求出样本容量,补全频数分布直方图;(2)以各组组中值代表本组的选手的平均成绩,计算样本中不含“诗词圣手”组的其他四组学生的平均成绩;(3)学校决定对成绩进入“诗词圣手”、“诗词达人”、“诗词泰斗“组的学生进行奖励,若八年级共有240名学生,请通过计算推断,大约有多少名学生获奖.23.某工厂接受了15天内生产1200台GH型电子产品的总任务.已知每台GH型产品由4个G型装置和3个H型装置配套组成.工厂现有80名工人,每个工人每天能加工8个G 型装置或4个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好全部配套组成GH型产品.(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G 型装置的加工,且每人每天只能加工4个G型装置.请问至少需要补充多少名新工人?24.综合与实践主题任务:“我的校园我做主”草坪设计任务背景:学校举办“迎五一,爱劳动”主题实践活动,九(2)班参加校园美化设计任务:校园内有一块宽为31米,长为40米的矩形草坪,在草坪上设计两条小路,具体要求:(1)矩形草坪每条边上必须有一个口宽相等的路口;(2)两条小路必须设计成平行四边形;驱动任务一:九(2)班各个实践小组的设计方案汇总后,主要有甲、乙、丙三种不同的方案(如图1):(1)直观猜想:方案中小路的总面积大小关系S 甲_________S 乙,S 甲_________S 丙;(请填“相等”或“不相等”)驱动任务二:验证猜想:各个实践小组用如表格进行研究:(2)请用含x 的代数式表示甲方案中小路总面积:______________; 驱动任务三:(3)如果甲种方案除小路后草坪总面积约为1170平方米.请计算两条小路的宽度是多少? 驱动任务四:为了深入研究,各个小组选择丙方案(如图2)进行研究.若两条小路与矩形两组对边所夹锐角BGF AEF θ∠=∠=.若1x =时,请用含θ的三角函数表示两条路重叠部分四边形FHPQ 的面积,并直接写出sin θ最小值.25.如图,ABC V 内接于O e ,BAC ∠的平分线AF 交O e 于点G ,过G 作DE ∥BC 分别交AB ,AC 的延长线于点D ,E .(1)求证:DE 是O e 的切线; (2)已知6AG =,23CF GE =,点I 为ABC V 的内心,求GI 的长. 26.某课外小组利用几何画板来研究二次函数的图象,给出二次函数解析式2y x bx c =++,通过输入不同的b ,c 的值,在几何画板的展示区内得到对应的图象(1)若输入2b =,3c =-,得到如图①所示的图象,求顶点C 的坐标及抛物线与x 轴的交点A ,B 的坐标(2)已知点()1,10P -,()4,0Q .①若输入b ,c 的值后,得到如图②的图象恰好经过P ,Q 两点,求出b ,c 的值; ②淇淇输入b ,嘉嘉输入1c =-,若得到二次函数的图象与线段PQ 有公共点,求淇淇输入b 的取值范围.。

2023年广西壮族自治区中考数学真题(解析版)

2023年广西壮族自治区中考数学真题(解析版)

2023年广西初中学业水平考试数 学(全卷满分120分,考试时间120分钟)注意事项:1. 答题前,考生务必将姓名、准考证号填写在试卷和答题卡上.2. 考生作答时,请在答题卡上作答(答题注意事项见答题卡),在本试卷、草稿纸上作答无效.3. 不能使用计算器.4. 考试结束后,将本试卷和答题卡.......一并交回. 一、单项选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B 铅笔把答题卡上对应题目的答案标号涂黑.)1. 若零下2摄氏度记为2C −°,则零上2摄氏度记为( )A. 2C −°B. 0C °C. 2C +°D. 4C +°【答案】C【解析】【分析】根据正负数的实际意义可进行求解.【详解】解:由题意可知零上2摄氏度记为2C +°;故选C .【点睛】本题主要考查正负数的意义,熟练掌握正负数的意义是解题的关键.2. 下列数学经典图形中,是中心对称图形的是( )A. B. C. D.【答案】A【解析】【分析】根据中心对称图形的概念:一个图形如果绕某个点旋转180度后能与原图形完全重合的图形;由此问题可求解.【详解】解:选项中符合中心对称图形的只有A 选项;故选A .【点睛】本题主要考查中心对称图形的识别,熟练掌握中心对称图形的概念是解题的关键.3. 若分式11x +有意义,则x 的取值范围是( ) A. 1x ≠−B. 0x ≠C. 1x ≠D. 2x ≠ 【答案】A【解析】【分析】根据分式有意义的条件可进行求解.【详解】解:由题意得:10x +≠,∴1x ≠−;故选A .【点睛】本题主要考查分式有意义的条件,熟练掌握分式有意义的条件是解题的关键.4. 如图,点A 、B 、C 在O 上,40C ∠=°,则AOB ∠的度数是( )A. 50°B. 60°C. 70°D. 80°【答案】D【解析】【分析】根据圆周角定理的含义可得答案.【详解】解:∵40C ∠=°,∴280AOB C ∠=∠=°,故选:D .【点睛】本题考查的是圆周角定理的应用,熟记圆周角定理是解题的关键.5. 2x ≤在数轴上表示正确的是( )A.B. C.D.【答案】C【解析】【分析】在数轴上表示不等式的解集,需要确定“边界点”:若边界点是不等式的解,则用实心圆点,若边界点不是不等式的解,则用空心圆圈;确定“方向”:对边界点a 而言,x a >或x a ≥向右画,x a <或x a ≤向左画.【详解】解:2x ≤在数轴上表示为:故选:C .【点睛】本题考查了在数轴上表示不等式的解集,熟知表示的方法是解题的关键.6. 甲、乙、丙、丁四名同学参加立定跳远训练,他们成绩的平均数相同,方差如下:22.1S =甲,2 3.5S =乙,29S =丙,20.7S =丁,则成绩最稳定的是( )A. 甲B. 乙C. 丙D. 丁【答案】D【解析】【分析】根据方差可进行求解.【详解】解:由题意得:2222S S S S <<<丁乙丙甲;∴成绩最稳定的是丁;故选D .【点睛】本题主要考查方差,熟练掌握方差是解题的关键.7. 如图,一条公路两次转弯后又回到与原来相同的方向,如果130A ∠=°,那么B ∠的度数是()A. 160°B. 150°C. 140°D. 130°【答案】D【解析】【分析】根据题意得到AC BD ∥,即可得到130B A ∠=∠=°.【详解】解:∵公路两次转弯后又回到与原来相同的方向,∴AC BD ∥,∴130B A ∠=∠=°.故选:D【点睛】本题考查了平行线的性质“两直线平行,内错角相等”,熟知平行线的性质定理,根据题意得到AC BD ∥是解题关键.8. 下列计算正确的是( )A. 347a a a +=B. 347a a a ⋅=C. 437a a a ÷=D. ()437a a = 【答案】B【解析】【分析】根据合并同类项,同底数幂的乘法,同底数幂的除法,幂的乘方进行计算即可.【详解】A. 347a a a +≠,故该选项不符合题意;B. 347a a a ⋅=,故该选项符合题意;C. 437a a a a ÷=≠,故该选项不符合题意;D. ()43127a a a =≠,故该选项不符合题意;故选:B .【点睛】本题考查了合并同类项,同底数幂的乘法,同底数幂的除法,幂的乘方,熟练掌握以上运算法则是解题的关键.9. 将抛物线2y x =向右平移3个单位,再向上平移4个单位,得到的抛物线是( )A. 2(3)4y x =−+B. 2(3)4y x =++C. 2(3)4y x =+−D. 2(3)4y x =−− 【答案】A【解析】【分析】根据“左加右减,上加下减”的法则进行解答即可.【详解】解:将抛物线2y x =向右平移3个单位,再向上平移4个单位,得到的抛物线的函数表达式为:2(3)4y x =−+.故选:A .【点睛】本题考查了二次函数图象的平移,熟知二次函数图象平移的法则是解答此题的关键.10. 赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为37m ,拱高约为7m ,则赵州桥主桥拱半径R 约为( )A. 20mB. 28mC. 35mD. 40m【答案】B【解析】 【分析】由题意可知,37m AB =,7m =CD ,主桥拱半径R ,根据垂径定理,得到37m 2AD =,再利用勾股定理列方程求解,即可得到答案.【详解】解:如图,由题意可知,37m AB =,7m =CD ,主桥拱半径R , ()7m OD OC CD R ∴=−=−,OC 是半径,且OC AB ⊥,137m 22AD BD AB ∴===, 在Rt △ADO 中,222AD OD OA +=,()2223772R R ∴+−= , 解得:156528m 56R =≈, 故选B【点睛】本题考查了垂径定理,勾股定理,利用直角三角形求解是解题关键.11. 据国家统计局发布的《2022年国民经济和社会发展统计公报》显示,2020年和2022年全国居民人均可支配收入分别为3.2万元和3.7万元.设2020年至2022年全国居民人均可支配收入的年平均增长率为x ,依题意可列方程为( )A. 23.2(1) 3.7x −=B. 23.2(1) 3.7x +=C. 23.7(1) 3.2x −=D. 23.7(1) 3.2x +=【答案】B【解析】 【分析】设2020年至2022年全国居民人均可支配收入的年平均增长率为x ,根据题意列出一元二次方程即可.【详解】设2020年至2022年全国居民人均可支配收入的年平均增长率为x ,根据题意得,23.2(1) 3.7x +=.故选:B .【点睛】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解题的关键.12. 如图,过(0)k y x x =>的图象上点A ,分别作x 轴,y 轴的平行线交1y x=−的图象于B ,D 两点,以AB ,AD 为邻边的矩形ABCD 被坐标轴分割成四个小矩形,面积分别记为1S ,2S ,3S ,4S ,若23452S S S ++=,则k 的值为( )A. 4B. 3C. 2D. 1【答案】C【解析】 【分析】设(),A a b ,则1,B b b− ,1,D a a − ,11,C b a −−,根据坐标求得1S ab k ==,241S S ==,推得31211S b a =−×− = ,即可求得. 详解】设(),A a b ,则1,B b b− ,1,D a a −,11,C b a −− 【∵点A 在(0)k y x x=>的图象上 则1S ab k ==, 同理�B ,D 两点在1y x=−的图象上, 则241S S == 故3511122S −−==, 又�31211S b a =−×−= , 即112ab =, 故2ab =,∴2k =,故选:C .【点睛】本题考查了反比例函数的性质,矩形的面积公式等,熟练掌握反比例函数的性质是解题的关键.二、填空题(本大题共6小题,每小题2分,共12分.)13.=______.【答案】3【解析】【分析】根据算术平方根的概念求解即可.【详解】解:因32=9,.故答案为:3.【点睛】此题主要考查了算术平方根的意义,关键是确定被开方数是哪个正数的平方.14. 分解因式:a 2 + 5a =________________.【答案】a (a+5)【解析】【分析】提取公因式a 进行分解即可.【详解】a 2+5a=a �a+5��故答案是:a �a+5��【点睛】考查了因式分解-提公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而为将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.15. 函数3y kx =+的图象经过点()2,5,则k =______. 【答案】1【解析】【分析】把点()2,5代入函数解析式进行求解即可.【详解】解:由题意可把点()2,5代入函数解析式得:235k +=,解得:1k =;故答案为1.【点睛】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键. 16. 某班开展“梦想未来、青春有我”主题班会,第一小组有2位男同学和3位女同学,现从中随机抽取1位同学分享个人感悟,则抽到男同学的概率是______. 【答案】25##0.4 【解析】【分析】根据概率公式,即可解答.【详解】解:抽到的同学总共有5种等可能情况,抽到男同学总共有2种可能情况, 故抽到男同学的概率是25, 故答案为:25. 【点睛】本题考查了根据概率公式求概率,熟知概率公式是解题的关键.17. 如图,焊接一个钢架,包括底角为37°的等腰三角形外框和3m 高的支柱,则共需钢材约______m (结果取整数).(参考数据:sin 370.60°≈,cos370.80°≈,tan 370.75°≈)【答案】21【解析】【分析】根据解直角三角形及等腰三角形的性质可进行求解.【详解】解:∵ABC 是等腰三角形,且CD AB ⊥,∴AD BD =,∵3m CD =, ∴5m,4m sin 37tan 37CD CD AC BC AD BD ======°°, ∴共需钢材约为2221m AC AD CD ++=;故答案为21.【点睛】本题主要考查解直角三角形,熟练掌握三角函数是解题的关键.18. 如图,在边长为2的正方形ABCD 中,E ,F 分别是,BC CD 上的动点,M ,N 分别是EF AF ,的中点,则MN 的最大值为______.【解析】【分析】首先证明出MN 是AEF △的中位线,得到12MN AE =,然后由正方形的性质和勾股定理得到AE BE 最大时,AE 最大,此时MN 最大,进而得到当点E 和点C 重合时,BE 最大,即BC 的长度,最后代入求解即可.【详解】如图所示,连接AE ,�M ,N 分别是EF AF ,的中点,�MN 是AEF △的中位线, �12MN AE =, ∵四边形ABCD 是正方形,�90B ?,�AE�当BE 最大时,AE 最大,此时MN 最大,�点E 是BC 上的动点,�当点E 和点C 重合时,BE 最大,即BC 长度,�此时AE ==�12MN AE ==,�MN.故答案.【点睛】此题考查了正方形的性质,三角形中位线的性质,勾股定理等知识,解题的关键是熟练掌握以上知识点.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.) 19. 计算:2(1)(4)2(75)−×−+÷−.【答案】6【解析】【分析】根据有理数的混合运算法则求解即可.【详解】2(1)(4)2(75)−×−+÷−442=+÷42=+6=.【点睛】本题主要考查了含乘方的有理数混合计算,熟知相关计算法则是解题的关键.20. 解分式方程:211x x =−. 【答案】=1x −【解析】【分析】去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 【详解】解:211x x=− 去分母得,21x x =−移项,合并得,=1x −检验:当=1x −时,()120x x −=≠,的为所以原分式方程的解为=1x −.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21. 如图,在ABC 中,30A ∠=°,90B ??.(1)在斜边AC 上求作线段AO ,使AO BC =,连接OB ;(要求:尺规作图并保留作图痕迹,不写作法,标明字母)(2)若2OB =,求AB 的长.【答案】(1)图见详解(2)AB =【解析】【分析】(1)以A 为圆心,BC 长为半径画弧,交AC 于点O ,则问题可求解;(2)根据含30度直角三角形的性质可得2AC BC =,则有OC AO =,进而问题可求解.【小问1详解】解:所作线段AO 如图所示:【小问2详解】解:∵30A ∠=°,90ABC ∠=°,∴2AC BC =,∵AO BC =,∴2AC AO =,∴OC AO =,即点O 为AC 的中点,∵2OB =,∴24AC OB ==,∴2BC =,∴AB =.【点睛】本题主要考查含30度直角三角形的性质、直角三角形斜边中线定理及勾股定理,熟练掌握含30度直角三角形的性质、直角三角形斜边中线定理及勾股定理是解题的关键.22. 4月24日是中国航天日,为激发青少年崇尚科学、探索未知的热情,航阳中学开展了“航空航天”知识问答系列活动.为了解活动效果,从七、八年级学生的知识问答成绩中,各随机抽取20名学生的成绩进行统计分析(6分及6分以上为合格),数据整理如下:学生成绩统计表七年级 八年级 平均数7.55 7.55 中位数8 c 众数a 7 合格率b 85%根据以上信息,解答下列问题:(1)写出统计表中a ,b ,c 的值;(2)若该校八年级有600名学生,请估计该校八年级学生成绩合格的人数;(3)从中位数和众数中任选其一,说明其在本题中的实际意义.【答案】(1)8a =,80%b =,7.5c =(2)510人 (3)用中位数的特征可知七,八年级学生成绩的集中趋势,表示了七,八年级学生成绩数据的中等水平.【解析】【分析】(1)根据中位数,众数的定义求解即可,根据合格率=合格人数÷总人数即可求得;(2)根据八年级抽取人数的合格率进行求解即可;(3)根据中位数和众数的特征进行说明即可.【小问1详解】根据八年级的成绩分布可得:5分的有3人,6分的有2人,7分的有5人,8分的有4人,9分的有3人,10分的有3人, 故中位数是787.52+=, 根据扇形统计图可得:5分的有2020%4×=人,6分的有2010%2×=人,7分的有2010%2×=人,8分的有2030%6×=人,9分的有2015%3×=人,10分的有2015%3×=人, 故众数是8,合格人数为:2263316++++=人, 故合格率为:1680%20=, 故8a =,80%b =,7.5c =.【小问2详解】八年级学生成绩合格的人数为:60085%510×=人,即若该校八年级有600名学生,该校八年级学生成绩合格的人数有510人.【小问3详解】根据中位数的特征可知七,八年级学生成绩的集中趋势和七,八年级学生成绩数据的中等水平.【点睛】本题考查了中位数,众数,合格率,用样本估计总体等,熟练掌握中位数和众数的定义是解题关键.23. 如图,PO 平分APD ∠,PA 与O 相切于点A ,延长AO 交PD 于点C ,过点O 作OB PD ⊥,垂足为B .(1)求证:PB 是O 的切线;(2)若O 的半径为4,5OC =,求PA 的长.【答案】(1)见解析 (2)12AP =【解析】【分析】(1)首先根据切线的性质得到OA PA ⊥,然后根据角平分线的性质定理得到OA OB =即可证明;(2)首先根据勾股定理得到3BC =,然后求得459AC OA OC =+=+=,最后利用tan tan BCO ACP ∠=∠,代入求解即可.【小问1详解】�PA 与O 相切于点A ,�OA PA ⊥,�PO 平分APD ∠,OB PD ⊥,�OA OB =,�PB 是O 的切线;【小问2详解】�O 的半径为4,�4OA OB ==,�OB PD ⊥,5OC =,�3BC =,459AC OA OC =+=+=,�BCO ACP ∠=∠,�tan tan BCO ACP ∠=∠, �BO AP BC AC =,即439AP =, �12AP =.【点睛】此题考查了圆切线的性质和判定,勾股定理,三角函数等知识,解题的关键是熟练掌握以上知识点.24. 如图,ABC 是边长为4的等边三角形,点D ,E ,F 分别在边AB ,BC ,CA 上运动,满足AD BE CF ==.(1)求证:ADF BED ≌;(2)设AD 的长为x ,DEF 的面积为y ,求y 关于x 的函数解析式;(3)结合(2)所得的函数,描述DEF 的面积随AD 的增大如何变化.【答案】(1)见详解 (2)2y x =−+ (3)当24x <<时,DEF 的面积随AD 的增大而增大,当02x <<时,DEF 的面积随AD 的增大而减小【解析】【分析】(1)由题意易得AF BD =,60A B ∠=∠=°,然后根据“SAS ”可进行求证;(2)分别过点C 、F 作CH AB ⊥,FG AB ⊥,垂足分别为点H 、G ,根据题意可得ABC S = 4AF x =−,然后可得)4FG x =−,由(1)易得ADF BED CFE≌≌,则有()4ADF BED CFE S S S x x ===− ,进而问题可求解;(3)由(2)和二次函数的性质可进行求解.【小问1详解】证明:∵ABC 是边长为4的等边三角形,∴60∠=∠=∠=°A B C ,4AB BC AC ===,∵AD BE CF ==,∴AF BD CE ==,在ADF △和BED 中,AF BDA B AD BE= ∠=∠= ,∴()SAS ADF BED ≌;【小问2详解】解:分别过点C 、F 作CH AB ⊥,FG AB ⊥,垂足分别为点H 、G ,如图所示:在等边ABC 中,60A B ACB ∠=∠=∠=°,4AB BC AC ===,∴sin 60CH AC =⋅°=∴12ABC S AB CH =⋅= 设AD 的长为x ,则AD BE CF x ===,4AF x =−,∴)sin 604FG AF x =⋅°=−,∴()142ADF S AD FG x x =⋅=− , 同理(1)可知ADF BED CFE ≌≌,∴()4ADF BED CFES S S x x ===− , ∵DEF 的面积为y ,∴()234ABC ADF y S S x x x =−=−=−+ 【小问3详解】解:由(2)可知:2y x =−+,∴0a =>,对称轴为直线2x =, ∴当2x >时,y 随x 的增大而增大,当2x <时,y 随x 的增大而减小;即当24x <<时,DEF 的面积随AD 的增大而增大,当02x <<时,DEF 的面积随AD 的增大而减小.【点睛】本题主要考查锐角三角函数、二次函数的综合及等边三角形的性质,熟练掌握锐角三角函数、二次函数的综合及等边三角形的性质是解题的关键.25. 【综合与实践】有言道:“杆秤一头称起人间生计,一头称起天地良心”.某兴趣小组将利用物理学中杠杆原理制作简易杆秤.小组先设计方案,然后动手制作,再结合实际进行调试,请完成下列方案设计中的任务.【知识背景】如图,称重物时,移动秤砣可使杆秤平衡,根据杠杆原理推导得:()0()m m l M a y +⋅=⋅+.其中秤盘质量0m 克,重物质量m 克,秤砣质量M 克,秤纽与秤盘的水平距离为l 厘米,秤纽与零刻线的水平距离为a 厘米,秤砣与零刻线的水平距离为y 厘米.【方案设计】目标:设计简易杆秤.设定010m =,50M =,最大可称重物质量为1000克,零刻线与末刻线的距离定为50厘米.任务一:确定l 和a 的值.(1)当秤盘不放重物,秤砣在零刻线时,杆秤平衡,请列出关于l ,a 的方程;(2)当秤盘放入质量为1000克的重物,秤砣从零刻线移至末刻线时,杆秤平衡,请列出关于l ,a 的方程;(3)根据(1)和(2)所列方程,求出l 和a 的值.任务二:确定刻线的位置.(4)根据任务一,求y 关于m 的函数解析式;(5)从零刻线开始,每隔100克在秤杆上找到对应刻线,请写出相邻刻线间的距离.【答案】(1)5l a =(2)1015250l a −=(3) 2.5,0.5l a =(4)120y m =(5)相邻刻线间的距离为5厘米【解析】【分析】(1)根据题意可直接进行求解;(2)根据题意可直接代值求解;(3)由(1)(2)可建立二元一次方程组进行求解;(4)根据(3)可进行求解;(5)分别把0m =,100m =,200m =,300m =,400m =,500m =,600m =,700m =,800m =,900m =,1000m =代入求解,然后问题可求解.【小问1详解】解:由题意得:0,0m y ==, ∴1050l a =,∴5l a =;【小问2详解】解:由题意得:1000,50m y ==, ∴()()1010005050l a +=+, ∴1015250l a −=;【小问3详解】解:由(1)(2)可得:51015250l a l a = −=, 解得: 2.50.5l a = = ; 【小问4详解】解:由任务一可知: 2.5,0.5l a =,∴()()2.510500.5my +=+, ∴120y m =; 【小问5详解】解:由(4)可知120y m =, ∴当0m =时,则有0y =;当100m =时,则有5y =;当200m =时,则有10y =;当300m =时,则有15y =;当400m =时,则有20y =;当500m =时,则有25y =;当600m =时,则有30y =;当700m =时,则有35y =;当800m =时,则有40y =;当900m =时,则有45y =;当1000m =时,则有50y =;∴相邻刻线间的距离为5厘米.【点睛】本题主要考查一次函数的应用,解题的关键是理解题意.26. 【探究与证明】折纸,操作简单,富有数学趣味,我们可以通过折纸开展数学探究,探索数学奥秘.【动手操作】如图1,将矩形纸片ABCD 对折,使AD 与BC 重合,展平纸片,得到折痕EF ;折叠纸片,使点B 落在EF 上,并使折痕经过点A ,得到折痕AM ,点B ,E 对应点分别为B ′,E ′,展平纸片,连接AB ′,BB ′,BE ′.请完成:(1)观察图1中1∠,2∠和3∠,试猜想这三个角的大小关系....; (2)证明(1)中的猜想;【类比操作】如图2,N 为矩形纸片ABCD 的边AD 上的一点,连接BN ,在AB 上取一点P ,折叠纸片,使B ,P 两点重合,展平纸片,得到折痕EF ;折叠纸片,使点B ,P 分别落在EF ,BN 上,得到折痕l ,点B ,P 的对应点分别为B ′,P ′,展平纸片,连接,P B ′′.请完成:(3)证明BB ′是NBC ∠的一条三等分线.【答案】(1)123∠=∠=∠(2)见详解 (3)见详解【解析】【分析】(1)根据题意可进行求解;(2)由折叠的性质可知AB BB ′′=,AB AB ′=,然后可得AB BB AB ′′==,则有ABB ′ 是等边三角形,的进而问题可求证;(3)连接PB ′,根据等腰三角形性质证明12PB E BB E BB P ′′′==∠∠∠,根据平行线的性质证明12BB E CBB BB P ′′′==∠∠∠,证明()SAS PBB P B B ′′′ ≌,得出P BB PB B ′′′=∠∠,即可证明13CBB CBN ′=∠∠.【小问1详解】解:由题意可知123∠=∠=∠;【小问2详解】证明:由折叠的性质可得:AB BB ′′=,AB AB ′=,AE AE ′=,AE BE =, ∴AB BB AB ′′==,AE B E ′′′=,∴ABB ′ 是等边三角形,∵AE B E ′′′=,60ABB ′∠=°, ∴1302ABE B BE ABB ′′′′∠=∠=∠=°,∵四边形ABCD 是矩形,∴90ABC ∠=°,∴330∠°,∴123∠=∠=∠;【小问3详解】证明:连接PB ′,如图所示:由折叠的性质可知:BB PB ′′=,PB P B ′′=,PBB P B B ′′′=∠∠, ∵折痕B E AB ′⊥,BB PB ′′=,∴12PB E BB E BB P ′′′==∠∠∠, ∵四边形ABCD 为矩形,∴90EBC ∠=°,∴CB AB ⊥,∵B E AB ′⊥,∴B E BC ′∥, ∴12BB E CBB BB P ′′′==∠∠∠, ∵在PBB ′△和P B B ′′ 中,PB P B PBB P B B BB B B ′′′′′′′= ∠=∠ =, ∴()SAS PBB P B B ′′′ ≌,∴P BB PB B ′′′=∠∠, ∴12CBB NBB ′′=∠∠, ∴13CBB CBN ′=∠∠, ∴BB ′是NBC ∠的一条三等分线.【点睛】本题主要考查折叠的性质、线段垂直平分线的性质、等腰三角形的性质与判定及矩形的性质,三角形全等的判定和性质,作出辅助线,熟练掌握折叠的性质,证明,PBB P B B ′′′ ≌是解题的关键.。

中考数学专题复习之尺规作图精选训练题

中考数学专题复习之尺规作图精选训练题

中考数学专题复习之尺规作图精选训练题一.选择题(共10小题)1.利用直角三角板,作△ABC 的高,下列作法正确的是( )A .B .C .D .2.已知线段AB ,按如下步骤作图: ①取线段AB 中点C ; ②过点C 作直线l ,使l ⊥AB ;③以点C 为圆心,AB 长为半径作弧,交l 于点D ;④作∠DAC 的平分线,交l 于点E .则tan ∠DAE 的值为( )A .12B .2√55C .√5+12D .√5−123.阅读以下作图步骤:①在OA 和OB 上分别截取OC ,OD ,使OC =OD ;②分别以C ,D 为圆心,以大于12CD 的长为半径作弧,两弧在∠AOB 内交于点M ;③作射线OM ,连接CM ,DM ,如图所示. 根据以上作图,一定可以推得的结论是( )A.∠1=∠2且CM=DM B.∠1=∠3且CM=DMC.∠1=∠2且OD=DM D.∠2=∠3且OD=DM4.用直尺和圆规作一个角等于已知角,如图,能得出∠A'O'B'=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS5.如图,在△ABC中,∠B=42°,∠C=48°,DI是AB的垂直平分线,连接AD.以A为圆心,任意长为半径画弧,分别交AD,AC于点E,F,分别以E,F为圆心,以大于1EF长为半径画弧,两圆弧交于G点,作射线AG交BC于点H,则∠DAH的度数为()2A.36°B.25°C.24°D.21°6.如图,用直尺和圆规作∠MAN的角平分线,根据作图痕迹,下列结论不一定正确的是()A.AD=AE B.AD=DF C.DF=EF D.AF⊥DE7.如图,在Rt △ABC 中,以点A 为圆心,适当长为半径作弧,交AB 于点F ,交AC 于点E ,分别以点E ,F 为圆心,大于12EF 长为半径作弧,两弧在∠BAC 的内部交于点G ,作射线AG 交BC 于点D .若AC =3,BC =4,则CD 的长为( )A .78B .1C .32D .28.如图,在▱ABCD 中,分别以B ,D 为圆心,大于12BD 的长为半径画弧,两弧相交于点M ,N ,过M ,N 两点作直线交BD 于点O ,交AD ,BC 于点E ,F ,下列结论不正确的是( )A .AE =CFB .DE =BFC .OE =OFD .DE =DC9.如图,Rt △ABC 中,∠C =90°,∠B =30°,要求用圆规和直尺作图,把它分成两个三角形,其中一个三角形是等腰三角形.其作法错误的是( )A .B .C .D .10.如图所示,AB ∥CD ,以点A 为圆心,小于AC 长为半径作圆弧,分别交AB ,AC 于E ,F 两点,再分别以E ,F 为圆心,大于12EF 长为半径作圆弧,两条圆弧交于点P ,作射线AP ,交CD 于点M .若∠ACD =110°,则∠AMC 的度数为( )A .70°B .35°C .30°D .45°二.填空题(共10小题)11.如图,在△ABC 中,∠B =30°,∠C =50°,通过观察尺规作图的痕迹,∠DEA 的度数是 .12.如图,在△ABC 中,∠A =45°,∠B =30°,尺规作图作出BC 的垂直平分线与AB 交于点D ,则∠ACD 的度数为 .13.如图.△ABC 中,∠B =32°,∠BCA =78°,请依据尺规作图的作图痕迹,计算∠α= .14.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是 .15.如图,在平行四边形ABCD (AB <AD )中,按如下步骤作图:①以点A 为圆心,以适当长为半径画弧,分别交AB ,AD 于点M ,N ;②分别以点M ,N 为圆心,以大于12MN 的长为半径画弧,两弧在∠BAD 内交于点P ;③作射线AP 交BC 于点E .若∠B =120°,则∠EAD 为 °.16.如图,在△ABC 中,∠A =90°,分别以点B 和点C 为圆心,大于12BC 的长为半径画弧,两弧相交于M ,N 两点;作直线MN 交AB 于点E .若线段AE =5,AC =12,则BE 长为 .17.如图,在Rt △ABC 中,∠B =90°,以点A 为圆心,适当长为半径画弧,分别交AB 、AC 于点D ,E ,再分别以点D ,E 为圆心,大于12DE 长为半径画弧,两弧交于点F ,作射线AF 交边BC 于点G ,若BG =1,AC =4,则△ACG 的面积为 .18.如图,在△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,大于12BC 的长为半径画弧,两弧相交于M ,N 两点;②作直线MN 交AB 于点D ,连接CD .若∠B =24°,则∠CDA 的度数为 .19.如图,在矩形ABCD 中,连接AC ,以点A 为圆心,小于AD 的长为半径画弧,分别交AD ,AC 于点E ,F ,分别以点E ,F 为圆心,大于12EF 的长为半径画弧,两弧在∠DAC内交于点G ,作射线AG ,交DC 于点H .若AD =6,AB =8,则△AHC 的面积为 .20.如图,已知∠AOB ,以点O 为圆心,以任意长为半径画弧,与OA 、OB 分别于点C 、D ,再分别以点C 、D 为圆心,以大于12CD 为半径画弧,两弧相交于点E ,过OE 上一点M作MN ∥OA ,与OB 相交于点N ,∠MNB =50°,则∠AOM = .三.解答题(共5小题)21.如图,AB =AE ,BC =ED ,∠B =∠E . (1)求证:AC =AD .(2)用直尺和圆规作图:过点A 作AF ⊥CD ,垂足为F .(不写作法,保留作图痕迹)22.如图,AC 是菱形ABCD 的对角线.(1)作边AB 的垂直平分线,分别与AB ,AC 交于点E ,F (尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,连接FB ,若∠D =140°,求∠CBF 的度数.23.如图,点A 、B 、C 在⊙O 上且AB =AC ,AB ⊥AC ,请你利用直尺和圆规,用三种不同的方法,找到圆心O .(保留作图痕迹)24.如图,已知△ABC,P为边AB上一点,请用尺规作图的方法在边AC上求作一点E,使AE+EP=AC.(保留作图痕迹,不写作法)25.如图,网格中每个小正方形的边长均为1,点A、B在小正方形的顶点上.(1)画出以AB为底的等腰直角△ABC(点C在小正方形的顶点上);(2)画出以AB为一边且面积为20的平行四边形ABDE,(点D、E都在小正方形的顶点上),连接CE,请直接写出线段CE的长.。

广西南宁二中学2024届中考联考数学试题含解析

广西南宁二中学2024届中考联考数学试题含解析

广西南宁二中学2024年中考联考数学试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题(共10小题,每小题3分,共30分)1.如图,数轴上有A ,B ,C ,D 四个点,其中表示互为相反数的点是A .点A 和点CB .点B 和点DC .点A 和点D D .点B 和点C2.在△ABC 中,点D 、E 分别在边AB 、AC 上,如果AD=1,BD=3,那么由下列条件能够判断DE ∥BC 的是( ) A .31DE BC = B .DE1BC 4= C .31AE AC = D .AE 1AC 4=3.关于x 的方程x 2+(k 2﹣4)x+k+1=0的两个根互为相反数,则k 值是( )A .﹣1B .±2C .2D .﹣24.若正六边形的边长为6,则其外接圆半径为( )A .3B .32C .33D .65.在同一平面直角坐标系中,一次函数y =kx ﹣2k 和二次函数y =﹣kx 2+2x ﹣4(k 是常数且k ≠0)的图象可能是() A . B .C .D .6.一个几何体的三视图如图所示,这个几何体是( )A .三菱柱B .三棱锥C .长方体D .圆柱体7.一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是()A.x>1 B.x≥1C.x>3 D.x≥38.用加减法解方程组323415x yx y-=⎧⎨+=⎩①②时,如果消去y,最简捷的方法是()A.①×4﹣②×3 B.①×4+②×3 C.②×2﹣①D.②×2+①9.在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠A的正切值为()A.3 B.13C.1010D.3101010.如图,在四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,分别以AB、BC、DC为边向外作正方形,它们的面积分别为S1、S2、S1.若S2=48,S1=9,则S1的值为()A.18 B.12 C.9 D.1二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,AB,AC分别为⊙O的内接正六边形,内接正方形的一边,BC是圆内接n边形的一边,则n等于_____.12.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B-C-D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是( )A.B.C.D.13.现在网购越来越多地成为人们的一种消费方式,天猫和淘宝的支付交易额突破67000000000元,将67000000000元用科学记数法表示为_____.14.分解因式:2x2-8x+8=__________.15.二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(12,﹣2);⑤当x<12时,y随x的增大而减小;⑥a+b+c>0中,正确的有______.(只填序号)16.⊙M的圆心在一次函数y=12x+2图象上,半径为1.当⊙M与y轴相切时,点M的坐标为_____.三、解答题(共8题,共72分)17.(8分)如图,AB是⊙O直径,BC⊥AB于点B,点C是射线BC上任意一点,过点C作CD切⊙O于点D,连接AD.求证:BC=CD;若∠C=60°,BC=3,求AD的长.18.(8分)先化简,再求值1xx-÷(x﹣21xx-),其中x=76.19.(8分)已知P是⊙O外一点,PO交⊙O于点C,OC=CP=2,弦AB⊥OC,∠AOC的度数为60°,连接PB.求BC的长;求证:PB是⊙O的切线.20.(8分)已知平行四边形.尺规作图:作的平分线交直线于点,交延长线于点(要求:尺规作图,保留作图痕迹,不写作法);在(1)的条件下,求证:.21.(8分)某商场计划从厂家购进甲、乙、丙三种型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍.具体情况如下表:甲种乙种丙种进价(元/台)1200 1600 2000售价(元/台)1420 1860 2280经预算,商场最多支出132000元用于购买这批电冰箱.(1)商场至少购进乙种电冰箱多少台?(2)商场要求甲种电冰箱的台数不超过丙种电冰箱的台数.为获得最大利润,应分别购进甲、乙、丙电冰箱多少台?获得的最大利润是多少?22.(10分)(1)计算:(﹣2)2﹣8+(2+1)2﹣4cos60°;(2)化简:2321x xx x-+-÷(1﹣1x)23.(12分)如图,在平面直角坐标系中,函数的图象经过点,直线与x轴交于点.求的值;过第二象限的点作平行于x轴的直线,交直线于点C,交函数的图象于点D.①当时,判断线段PD与PC的数量关系,并说明理由;②若,结合函数的图象,直接写出n的取值范围.24.先化简,再求值:22111211a a a a a a ---÷----,其中21a =.参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解题分析】根据相反数的定义进行解答即可.【题目详解】解:由A 表示-2,B 表示-1,C 表示0.75,D 表示2.根据相反数和为0的特点,可确定点A 和点D 表示互为相反数的点.故答案为C.【题目点拨】本题考查了相反数的定义,掌握相反数和为0是解答本题的关键.2、D【解题分析】如图,∵AD=1,BD=3, ∴AD 1AB 4=, 当AE 1AC 4=时,AD AE AB AC=,又∵∠DAE=∠BAC,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,而根据选项A、B、C的条件都不能推出DE∥BC,故选D.3、D【解题分析】根据一元二次方程根与系数的关系列出方程求解即可.【题目详解】设方程的两根分别为x1,x1,∵x1+(k1-4)x+k-1=0的两实数根互为相反数,∴x1+x1,=-(k1-4)=0,解得k=±1,当k=1,方程变为:x1+1=0,△=-4<0,方程没有实数根,所以k=1舍去;当k=-1,方程变为:x1-3=0,△=11>0,方程有两个不相等的实数根;∴k=-1.故选D.【题目点拨】本题考查的是根与系数的关系.x1,x1是一元二次方程ax1+bx+c=0(a≠0)的两根时,x1+x1=−ba,x1x1=ca,反过来也成立.4、D【解题分析】连接正六边形的中心和各顶点,得到六个全等的正三角形,于是可知正六边形的边长等于正三角形的边长,为正六边形的外接圆半径.【题目详解】如图为正六边形的外接圆,ABCDEF是正六边形,∴∠AOF=10°, ∵OA=OF, ∴△AOF是等边三角形,∴OA=AF=1.所以正六边形的外接圆半径等于边长,即其外接圆半径为1.故选D.【题目点拨】本题考查了正六边形的外接圆的知识,解题的关键是画出图形,找出线段之间的关系.5、C【解题分析】根据一次函数与二次函数的图象的性质,求出k的取值范围,再逐项判断即可.【题目详解】解:A、由一次函数图象可知,k>0,∴﹣k<0,∴二次函数的图象开口应该向下,故A选项不合题意;B、由一次函数图象可知,k>0,∴﹣k<0,-22k-=1k>0,∴二次函数的图象开口向下,且对称轴在x轴的正半轴,故B选项不合题意;C、由一次函数图象可知,k<0,∴﹣k>0,-22k-=1k<0,,∴二次函数的图象开口向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x=2时,二次函数值y=﹣4k>0,故C选项符合题意;D、由一次函数图象可知,k<0,∴﹣k>0,-22k-=1k<0,,∴二次函数的图象开口向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x=2时,二次函数值y=﹣4k>0,故D选项不合题意;故选:C.【题目点拨】本题考查一次函数与二次函数的图象和性质,解决此题的关键是熟记图象的性质,此外,还要主要二次函数的对称轴、两图象的交点的位置等.6、A【解题分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【题目详解】由于左视图和俯视图为长方形可得此几何体为柱体,由主视图为三角形可得为三棱柱.故选:B.【题目点拨】此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.7、C【解题分析】试题解析:一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是x>1.故选C.考点:在数轴上表示不等式的解集.8、D【解题分析】试题解析:用加减法解方程组323415x yx y-=⎧⎨+=⎩①②时,如果消去y,最简捷的方法是②×2+①,故选D.9、A【解题分析】【分析】根据锐角三角函数的定义求出即可.【题目详解】∵在Rt△ABC中,∠C=90°,AC=1,BC=3,∴∠A的正切值为31BCAC==3,故选A.【题目点拨】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题的关键.10、D【解题分析】过A作AH∥CD交BC于H,根据题意得到∠BAE=90°,根据勾股定理计算即可.【题目详解】∵S2=48,∴BCA作AH∥CD交BC于H,则∠AHB=∠DCB.∵AD∥BC,∴四边形AHCD是平行四边形,∴CH=BH=AD,AH=CD=1.∵∠ABC+∠DCB=90°,∴∠AHB+∠ABC=90°,∴∠BAH=90°,∴AB2=BH2﹣AH2=1,∴S1=1.故选D.【题目点拨】本题考查了勾股定理,正方形的性质,平行四边形的判定和性质,正确的作出辅助线是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、12【解题分析】连接AO,BO,CO,如图所示:∵AB、AC分别为⊙O的内接正六边形、内接正方形的一边,∴∠AOB=36060o=60°,∠AOC=3604o=90°,∴∠BOC=30°,∴n=36030oo=12,故答案为12.12、C【解题分析】分出情况当P点在BC上运动,与P点在CD上运动,得到关系,选出图象即可【题目详解】由题意可知,P从B开始出发,沿B—C—D向终点D匀速运动,则当0<x≤2,s=1 2 x当2<x≤3,s=1所以刚开始的时候为正比例函数s=12x 图像,后面为水平直线,故选C 【题目点拨】 本题主要考查实际问题与函数图像,关键在于读懂题意,弄清楚P 的运动状态13、106.710⨯【解题分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【题目详解】67000000000的小数点向左移动10位得到6.7,所以67000000000用科学记数法表示为106.710⨯,故答案为:106.710⨯.【题目点拨】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14、2(x-2)2【解题分析】先运用提公因式法,再运用完全平方公式.【题目详解】:2x 2-8x+8=()()2224422x x x -+=-. 故答案为2(x-2)2.【题目点拨】本题考核知识点:因式分解.解题关键点:熟练掌握分解因式的基本方法.15、①②③⑤【解题分析】根据图象可判断①②③④⑤,由x=1时,y <0,可判断⑥【题目详解】由图象可得,a >0,c <0,b <0,△=b 2﹣4ac >0,对称轴为x=1,2∴abc >0,4ac <b 2,当12x <时,y 随x 的增大而减小.故①②⑤正确,∵11,22bxa=-=<∴2a+b>0,故③正确,由图象可得顶点纵坐标小于﹣2,则④错误,当x=1时,y=a+b+c<0,故⑥错误故答案为:①②③⑤【题目点拨】本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.16、(1,52)或(﹣1,32)【解题分析】设当⊙M与y轴相切时圆心M的坐标为(x,12x+2),再根据⊙M的半径为1即可得出y的值.【题目详解】解:∵⊙M的圆心在一次函数y=12x+2的图象上运动,∴设当⊙M与y轴相切时圆心M的坐标为(x, 12x+2),∵⊙M的半径为1,∴x=1或x=−1,当x=1时,y=52,当x=−1时,y=3 2 .∴P点坐标为:(1, 52)或(−1,32).故答案为(1, 52)或(−1,32).【题目点拨】本题考查了切线的性质与一次函数图象上点的坐标特征,解题的关键是熟练的掌握切线的性质与一次函数图象上点的坐标特征.三、解答题(共8题,共72分)17、(1)证明见解析;(2)3.【解题分析】(1)根据切线的判定定理得到BC是⊙O的切线,再利用切线长定理证明即可;(2)根据含30°的直角三角形的性质、正切的定义计算即可.【题目详解】(1)∵AB是⊙O直径,BC⊥AB,∴BC是⊙O的切线,∵CD切⊙O于点D,∴BC=CD;(2)连接BD,∵BC=CD,∠C=60°,∴△BCD是等边三角形,∴BD=BC=3,∠CBD=60°,∴∠ABD=30°,∵AB是⊙O直径,∴∠ADB=90°,∴AD=BD•tan∠ABD=3.【题目点拨】本题考查了切线的性质、直角三角形的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.18、6【解题分析】【分析】括号内先通分进行分式加减运算,然后再与括号外的分式进行乘除运算,化简后代入x的值进行计算即可得.【题目详解】原式=2121 x x xx x--+÷=()211x x x x -⋅- =11x -, 当x=76,原式=1716-=6. 【题目点拨】本题考查了分式的化简求值,根据所给的式子确定运算顺序、熟练应用相关的运算法则是解题的关键.19、(1)BC=2;(2)见解析【解题分析】试题分析:(1)连接OB ,根据已知条件判定△OBC 的等边三角形,则BC=OC=2;(2)欲证明PB 是⊙O 的切线,只需证得OB ⊥PB 即可.(1)解:如图,连接OB .∵AB ⊥OC ,∠AOC=60°,∴∠OAB=30°,∵OB=OA ,∴∠OBA=∠OAB=30°,∴∠BOC=60°,∵OB=OC ,∴△OBC 的等边三角形,∴BC=OC .又OC=2,∴BC=2;(2)证明:由(1)知,△OBC 的等边三角形,则∠COB=60°,BC=OC .∵OC=CP ,∴BC=PC ,∴∠P=∠CBP .又∵∠OCB=60°,∠OCB=2∠P ,∴∠P=30°,∴∠OBP=90°,即OB ⊥PB .又∵OB 是半径,∴PB 是⊙O 的切线.考点:切线的判定.20、(1)见解析;(2)见解析.【解题分析】试题分析:(1)作∠BAD的平分线交直线BC于点E,交DC延长线于点F即可;(2)先根据平行四边形的性质得出AB∥DC,AD∥BC,故∠1=∠2,∠3=∠1.再由AF平分∠BAD得出∠1=∠3,故可得出∠2=∠1,据此可得出结论.试题解析:(1)如图所示,AF即为所求;(2)∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,∴∠1=∠2,∠3=∠1.∵AF平分∠BAD,∴∠1=∠3,∴∠2=∠1,∴CE=CF.考点:作图—基本作图;平行四边形的性质.21、(1)商场至少购进乙种电冰箱14台;(2)商场购进甲种电冰箱28台,购进乙种电冰箱14(台),购进丙种电冰箱38台.【解题分析】(1)设商场购进乙种电冰箱x台,则购进甲种电冰箱2x台,丙种电冰箱(80-3x)台,根据“商场最多支出132000元用于购买这批电冰箱”列出不等式,解之即可得;(2)根据“总利润=甲种冰箱利润+乙种冰箱利润+丙种冰箱利润”列出W关于x的函数解析式,结合x的取值范围,利用一次函数的性质求解可得.【题目详解】(1)设商场购进乙种电冰箱x台,则购进甲种电冰箱2x台,丙种电冰箱(80﹣3x)台.根据题意得:1200×2x+1600x+2000(80﹣3x)≤132000,解得:x≥14,∴商场至少购进乙种电冰箱14台;(2)由题意得:2x≤80﹣3x且x≥14,∴14≤x≤16,∵W=220×2x+260x+280(80﹣3x)=﹣140x+22400,∴W随x的增大而减小,∴当x=14时,W取最大值,且W最大=﹣140×14+22400=20440,此时,商场购进甲种电冰箱28台,购进乙种电冰箱14(台),购进丙种电冰箱38台.【题目点拨】本题主要考查一次函数的应用与一元一次不等式的应用,解题的关键是理解题意找到题目蕴含的不等关系和相等关系,并据此列出不等式与函数解析式.22、(1)5(2)11 x【解题分析】(1)根据实数的运算法则进行计算,要记住特殊锐角三角函数值;(2)根据分式的混合运算法则进行计算. 【题目详解】解:(1)原式=4﹣2+2+2+1﹣4×=7﹣2=5;(2)原式=÷=•=.【题目点拨】本题考核知识点:实数运算,分式混合运算. 解题关键点:掌握相关运算法则.23、(1).(2)①判断:.理由见解析;②或.【解题分析】(1)利用代点法可以求出参数;(2)①当时,即点P的坐标为,即可求出点的坐标,于是得出;②根据①中的情况,可知或再结合图像可以确定的取值范围;【题目详解】解:(1)∵函数的图象经过点,∴将点代入,即,得:∵直线与轴交于点,∴将点代入,即,得:(2)①判断:.理由如下:当时,点P的坐标为,如图所示:∴点C的坐标为,点D的坐标为∴,.∴.②由①可知当时所以由图像可知,当直线往下平移的时也符合题意,即,得;当时,点P的坐标为∴点C的坐标为,点D的坐标为∴,∴当时,即,也符合题意,所以的取值范围为:或.【题目点拨】本题主要考查了反比例函数和一次函数,熟练求反比例函数和一次函数解析式的方法、坐标与线段长度的转化和数形结合思想是解题关键.24、1a-1,22【解题分析】先根据完全平方公式进行约分化简,再代入求值即可.【题目详解】原式=2a 1--2a-11a-1⋅()=21-a-1a-1=1a-1,将a +1. 【题目点拨】本题主要考查了求代数式的值、分式的运算,解本题的要点在于正确化简,从而得到答案.。

2021年广西南宁市数学中考真题含答案解析

2021年广西南宁市数学中考真题含答案解析

2021年广西南宁市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出代号为(A)、(B)、(C)、(D)四个结论,其中只有一个是正确的.请考生用2B铅笔在答题卷上将选定的答案标号涂黑.1.(3分)(2015•南宁)3的绝对值是( ) A.3B.﹣3C.D.2.(3分)(2015•南宁)如图是由四个大小相同的正方体组成的几何体,那么它的主视图是( ) A.B.C.D.3.(3分)(2015•南宁)南宁快速公交(简称:BRT)将在今年底开始动工,预计2016年下半年建成并投入试运营,首条BRT西起南宁火车站,东至南宁东站,全长约为11300米,其中数据11300用科学记数法表示为( ) A.0.113×105B.1.13×104C.11.3×103D.113×1024.(3分)(2015•南宁)某校男子足球队的年龄分布如图条形图所示,则这些队员年龄的众数是( ) A.12B.13C.14D.155.(3分)(2015•南宁)如图,一块含30°角的直角三角板ABC的直角顶点A在直线DE上,且BC∥DE,则∠CAE等于( ) A.30°B.45°C.60°D.90°6.(3分)(2015•南宁)不等式2x ﹣3<1的解集在数轴上表示为( )A .B .C .D.7.(3分)(2015•南宁)如图,在△ABC 中,AB=AD=DC,∠B=70°,则∠C 的度数为( )A .35°B .40°C .45°D .50° 8.(3分)(2015•南宁)下列运算正确的是( )A .4ab ÷2a=2abB .(3x 2)3=9x 6C .a 3•a 4=a 7D .9.(3分)(2015•南宁)一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )A .60°B .72°C .90°D .108°10.(3分)(2015•南宁)如图,已知经过原点的抛物线y=ax 2+bx+c (a ≠0)的对称轴是直线x=﹣1,下列结论中:①ab >0, ②a+b+c >0, ③当﹣2<x <0时,y <0.正确的个数是( )A .0个B .1个C .2个D .3个11.(3分)(2015•南宁)如图,AB 是⊙O 的直径,AB=8,点M 在⊙O 上,∠MAB=20°,N 是弧MB 的中点,P 是直径AB 上的一动点.若MN=1,则△PMN 周长的最小值为( ) A .4B .5C .6D .712.(3分)(2015•南宁)对于两个不相等的实数a、b,我们规定符号Max{a,b}表示a、b中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{x,﹣x}=的解为( ) A.1﹣B.2﹣C.1+或1﹣D.1+或﹣1二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2015•南宁)分解因式:ax+ay= .14.(3分)(2015•南宁)要使分式有意义,则字母x的取值范围是 .15.(3分)(2015•南宁)一个不透明的口袋中有5个完全相同的小球,把它们分别标号为1,2,3,4,5,随机提取一个小球,则取出的小球标号是奇数的概率是 .16.(3分)(2015•南宁)如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是 .17.(3分)(2015•南宁)如图,点A在双曲线y=(x>0)上,点B在双曲线y=(x>0)上(点B在点A的右侧),且AB∥x轴.若四边形OABC是菱形,且∠AOC=60°,则k= .18.(3分)(2015•南宁)如图,在数轴上,点A表示1,现将点A沿x轴做如下移动,第一次点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点,按照这种移动规律移动下去,第n次移动到点A n,如果点A n与原点的距离不小于20,那么n的最小值是 .三、(本大题共2小题,每小题满分12分,共12分)19.(6分)(2015•南宁)计算:20150+(﹣1)2﹣2tan45°+.20.(6分)(2015•南宁)先化简,再求值:(1+x)(1﹣x)+x(x+2)﹣1,其中x=.四、解答题21.(8分)(2015•南宁)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣1,1),B(﹣3,1),C(﹣1,4).(1)画出△ABC关于y轴对称的△A1B1C1。

2022年广西南宁市中考数学试卷(解析版)

2022年广西南宁市中考数学试卷(解析版)

2022年广西南宁市中考数学试卷一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)1.(3分)﹣的相反数是()A.B.﹣C.3D.﹣32.(3分)2022北京冬残奥会的会徽是以汉字“飞”为灵感来设计的,展现了运动员不断飞跃,超越自我,奋力拼搏,激励世界的冬残奥精神.下列的四个图中,能由如图所示的会徽经过平移得到的是()A.B.C.D.3.(3分)空气由多种气体混合而成,为了直观介绍空气中各成分的百分比,最适合使用的统计图是()A.条形图B.折线图C.扇形图D.直方图4.(3分)如图,数轴上的点A表示的数是﹣1,则点A关于原点对称的点表示的数是()A.﹣2B.0C.1D.25.(3分)不等式2x﹣4<10的解集是()A.x<3B.x<7C.x>3D.x>76.(3分)如图,直线a∥b,∠1=55°,则∠2的度数是()A.35°B.45°C.55°D.125°7.(3分)下列事件是必然事件的是()A.三角形内角和是180°B.端午节赛龙舟,红队获得冠军C.掷一枚均匀骰子,点数是6的一面朝上D.打开电视,正在播放神舟十四号载人飞船发射实况8.(3分)如图,某博物馆大厅电梯的截面图中,AB的长为12米,AB与AC的夹角为α,则高BC是()A.12sinα米B.12cosα米C.米D.米9.(3分)下列运算正确的是()A.a+a2=a3B.a•a2=a3C.a6÷a2=a3D.(a﹣1)3=a3 10.(3分)《千里江山图》是宋代王希孟的作品,如图,它的局部画面装裱前是一个长为2.4米,宽为1.4米的矩形,装裱后,整幅图画宽与长的比是8:13,且四周边衬的宽度相等,则边衬的宽度应是多少米?设边衬的宽度为x米,根据题意可列方程()A.=B.=C.=D.=11.(3分)如图,在△ABC中,CA=CB=4,∠BAC=α,将△ABC绕点A逆时针旋转2α,得到△AB′C′,连接B′C并延长交AB于点D,当B′D⊥AB时,的长是()A.πB.πC.πD.π12.(3分)已知反比例函数y=(b≠0)的图象如图所示,则一次函数y=cx﹣a(c≠0)和二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.二、填空题(本大题共6小题,每小题2分,共12分.)13.(2分)化简:=.14.(2分)当x=时,分式的值为零.15.(2分)如图,一个质地均匀的正五边形转盘,指针的位置固定,当转盘自由转动停止后,观察指针指向区域内的数(若指针正好指向分界线,则重新转一次),这个数是一个奇数的概率是.16.(2分)古希腊数学家泰勒斯曾利用立杆测影的方法,在金字塔影子的顶部直立一根木杆,借助太阳光测金字塔的高度.如图,木杆EF长2米,它的影长FD是4米,同一时刻测得OA是268米,则金字塔的高度BO是米.17.(2分)阅读材料:整体代值是数学中常用的方法.例如“已知3a﹣b=2,求代数式6a ﹣2b﹣1的值.”可以这样解:6a﹣2b﹣1=2(3a﹣b)﹣1=2×2﹣1=3.根据阅读材料,解决问题:若x=2是关于x的一元一次方程ax+b=3的解,则代数式4a2+4ab+b2+4a+2b ﹣1的值是.18.(2分)如图,在正方形ABCD中,AB=4,对角线AC,BD相交于点O.点E是对角线AC上一点,连接BE,过点E作EF⊥BE,分别交CD,BD于点F,G,连接BF,交AC于点H,将△EFH沿EF翻折,点H的对应点H′恰好落在BD上,得到△EFH′.若点F为CD的中点,则△EGH′的周长是.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)计算:(﹣1+2)×3+22÷(﹣4).20.(6分)先化简,再求值:(x+y)(x﹣y)+(xy2﹣2xy)÷x,其中x=1,y=.21.(10分)如图,在▱ABCD中,BD是它的一条对角线.(1)求证:△ABD≌△CDB;(2)尺规作图:作BD的垂直平分线EF,分别交AD,BC于点E,F(不写作法,保留作图痕迹);(3)连接BE,若∠DBE=25°,求∠AEB的度数.22.(10分)综合与实践【问题情境】数学活动课上,老师带领同学们开展“利用树叶的特征对树木进行分类”的实践活动.【实践发现】同学们随机收集芒果树、荔枝树的树叶各1片,通过测量得到这些树叶的长y(单位:cm),宽x(单位:cm)的数据后,分别计算长宽比,整理数据如下:123456789103.8 3.7 3.5 3.4 3.84.0 3.6 4.0 3.6 4.0芒果树叶的长宽比荔枝树叶2.0 2.020 2.4 1.819 1.8 2.0 1.3 1.9的长宽比【实践探究】分析数据如下:平均数中位数众数方差3.74m4.00.0424芒果树叶的长宽比荔枝树叶的长宽1.912.0n0.0669比【问题解决】(1)上述表格中:m=,n=;(2)①A同学说:“从树叶的长宽比的方差来看,我认为芒果树叶的形状差别大.”②B同学说:“从树叶的长宽比的平均数、中位数和众数来看,我发现荔枝树叶的长约为宽的两倍.”上面两位同学的说法中,合理的是(填序号);(3)现有一片长11cm,宽5.6cm的树叶,请判断这片树叶更可能来自于芒果、荔枝中的哪种树?并给出你的理由.23.(10分)打油茶是广西少数民族特有的一种民俗.某特产公司近期销售一种盒装油茶,每盒的成本价为50元,经市场调研发现,该种油茶的月销售量y(盒)与销售单价x(元)之间的函数图象如图所示.(1)求y与x的函数解析式,并写出自变量x的取值范围;(2)当销售单价定为多少元时,该种油茶的月销售利润最大?求出最大利润.24.(10分)如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E,延长BA交⊙O于点F.(1)求证:DE是⊙O的切线;(2)若=,AF=10,求⊙O的半径.25.(10分)已知抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B的左侧).(1)求点A,点B的坐标;(2)如图,过点A的直线l:y=﹣x﹣1与抛物线的另一个交点为C,点P为抛物线对称轴上的一点,连接P A,PC,设点P的纵坐标为m,当P A=PC时,求m的值;(3)将线段AB先向右平移1个单位长度,再向上平移5个单位长度,得到线段MN,若抛物线y=a(﹣x2+2x+3)(a≠0)与线段MN只有一个交点,请直接写出a的取值范围.26.(10分)已知∠MON=α,点A,B分别在射线OM,ON上运动,AB=6.(1)如图①,若α=90°,取AB中点D,点A,B运动时,点D也随之运动,点A,B,D的对应点分别为A′,B′,D′,连接OD,OD′.判断OD与OD′有什么数量关系?证明你的结论;(2)如图②,若α=60°,以AB为斜边在其右侧作等腰直角三角形ABC,求点O与点C的最大距离;(3)如图③,若α=45°,当点A,B运动到什么位置时,△AOB的面积最大?请说明理由,并求出△AOB面积的最大值.2022年广西南宁市中考数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)1.(3分)﹣的相反数是()A.B.﹣C.3D.﹣3【分析】根据只有符号不同的两个数互为相反数求解后选择即可.【解答】解:﹣的相反数是.故选:A.【点评】本题主要考查了互为相反数的定义,是基础题,熟记概念是解题的关键.2.(3分)2022北京冬残奥会的会徽是以汉字“飞”为灵感来设计的,展现了运动员不断飞跃,超越自我,奋力拼搏,激励世界的冬残奥精神.下列的四个图中,能由如图所示的会徽经过平移得到的是()A.B.C.D.【分析】平移是指在同一平面内,将一个图形整体按照某个直线方向移动一定的距离,这样的图形运动叫做平移,平移不改变图形的形状大小.【解答】解:根据平移的性质可知:能由如图经过平移得到的是D,故选:D.【点评】本题考查了利用平移设计图案,解决本题的关键是熟记平移的定义.确定一个基本图案按照一定的方向平移一定的距离,连续作图即可设计出美丽的图案.通过改变平移的方向和距离可使图案变得丰富多彩.3.(3分)空气由多种气体混合而成,为了直观介绍空气中各成分的百分比,最适合使用的统计图是()A.条形图B.折线图C.扇形图D.直方图【分析】扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,易于显示各组之间频数的差别.【解答】解:根据题意,得要求直观反映空气的组成情况,即各部分在总体中所占的百分比,结合统计图各自的特点,应选择扇形统计图.故选:C.【点评】此题考查扇形统计图、折线统计图、条形统计图各自的特点.4.(3分)如图,数轴上的点A表示的数是﹣1,则点A关于原点对称的点表示的数是()A.﹣2B.0C.1D.2【分析】关于原点对称的数是互为相反数.【解答】解:∵关于原点对称的数是互为相反数,又∵1和﹣1是互为相反数,故选:C.【点评】本题考查数轴和相反数的知识,掌握基本概念是解题的关键.5.(3分)不等式2x﹣4<10的解集是()A.x<3B.x<7C.x>3D.x>7【分析】根据解一元一次不等式的方法可以求得该不等式的解集.【解答】解:2x﹣4<10,移项,得:2x<10+4,合并同类项,得:2x<14,系数化为1,得:x<7,故选:B.【点评】本题考查解一元一次不等式,解答本题的关键是明确解一元一次不等式的方法.6.(3分)如图,直线a∥b,∠1=55°,则∠2的度数是()A.35°B.45°C.55°D.125°【分析】根据两直线平行,同位角相等可得∠3=∠1,再根据对顶角相等可得∠2=∠3.【解答】解:如图,∵a∥b,∴∠3=∠1=55°,∴∠2=∠3=55°.故选:C.【点评】本题考查了平行线的性质,对顶角相等的性质,熟记性质是解题的关键.7.(3分)下列事件是必然事件的是()A.三角形内角和是180°B.端午节赛龙舟,红队获得冠军C.掷一枚均匀骰子,点数是6的一面朝上D.打开电视,正在播放神舟十四号载人飞船发射实况【分析】根据三角形内角和定理,随机事件,必然事件,不可能事件的定义,逐一判断即可解答.【解答】解:A、三角形内角和是180°,是必然事件,故A符合题意;B、端午节赛龙舟,红队获得冠军,是随机事件,故B不符合题意;C、掷一枚均匀骰子,点数是6的一面朝上,是随机事件,故C不符合题意;D、打开电视,正在播放神舟十四号载人飞船发射实况,是随机事件,故D不符合题意;故选:A.【点评】本题考查了三角形内角和定理,随机事件,熟练掌握随机事件,必然事件,不可能事件的定义是解题的关键.8.(3分)如图,某博物馆大厅电梯的截面图中,AB的长为12米,AB与AC的夹角为α,则高BC是()A.12sinα米B.12cosα米C.米D.米【分析】直接根据∠A的正弦可得结论.【解答】解:Rt△ABC中,sinα=,∵AB=12,∴BC=12sinα.故选:A.【点评】本题考查了解直角三角形的应用,掌握正弦的定义是解本题的关键.9.(3分)下列运算正确的是()A.a+a2=a3B.a•a2=a3C.a6÷a2=a3D.(a﹣1)3=a3【分析】按照整式幂的运算法则逐一计算进行辨别.【解答】解:∵a与a2不是同类项,∴选项A不符合题意;∵a•a2=a3,∴选项B符合题意;∵a6÷a2=a4,∴选项C不符合题意;∵(a﹣1)3=()3=,∴选项D不符合题意,故选:B.【点评】此题考查了整式幂的相关运算能力,关键是能准确理解并运用该计算法则.10.(3分)《千里江山图》是宋代王希孟的作品,如图,它的局部画面装裱前是一个长为2.4米,宽为1.4米的矩形,装裱后,整幅图画宽与长的比是8:13,且四周边衬的宽度相等,则边衬的宽度应是多少米?设边衬的宽度为x米,根据题意可列方程()A.=B.=C.=D.=【分析】根据题意可知,装裱后的长为2.4+2x,宽为1.4+2x,再根据整幅图画宽与长的比是8:13,即可得到相应的方程.【解答】解:由题意可得,,故选:D.【点评】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的分式方程.11.(3分)如图,在△ABC中,CA=CB=4,∠BAC=α,将△ABC绕点A逆时针旋转2α,得到△AB′C′,连接B′C并延长交AB于点D,当B′D⊥AB时,的长是()A.πB.πC.πD.π【分析】根据旋转的性质可得AC′∥B′D,则可得∠C′AD=∠C′AB′+∠B′AB=90°,即可算出α的度数,根据已知可算出AD的长度,根据弧长公式即可得出答案.【解答】解:根据旋转的性质可得,AC′∥B′D,∵B′D⊥AB,∴∠C′AD=∠C′AB′+∠B′AB=90°,∵∠C′AD=α,∴α+2α=90°,∴α=30°,∵AC=4,∴AD=AC•cos30°=4×=2,∴,∴的长度l==.故选:B.【点评】本题主要考查了弧长的计算及旋转的性质,熟练掌握弧长的计算及旋转的性质进行求解是解决本题的关键.12.(3分)已知反比例函数y=(b≠0)的图象如图所示,则一次函数y=cx﹣a(c≠0)和二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.【分析】本题形数结合,根据二次函数y=(b≠0)的图象位置,可判断b>0;再由二次函数y=ax2+bx+c(a≠0)的图象性质,排除A,B,再根据一次函数y=cx﹣a(c ≠0)的图象和性质,排除C.【解答】解:∵反比例函数y=(b≠0)的图象位于一、三象限,∴b>0;∵A、B的抛物线都是开口向下,∴a<0,根据同左异右,对称轴应该在y轴的右侧,故A、B都是错误的.∵C、D的抛物线都是开口向上,∴a>0,根据同左异右,对称轴应该在y轴的左侧,∵抛物线与y轴交于负半轴,∴c<0由a>0,c<0,排除C.故选:D.【点评】此题考查一次函数,二次函数及反比例函数中的图象和性质,因此,掌握函数的图象和性质是解题的关键.二、填空题(本大题共6小题,每小题2分,共12分.)13.(2分)化简:=2.【分析】应用二次根式的化简的方法进行计算即可得出答案.【解答】解:===2.故答案为:2.【点评】本题主要考查了二次根式的化简,熟练掌握二次根式的化简的计算方法进行求解是解决本题的关键.14.(2分)当x=0时,分式的值为零.【分析】根据分式值为0的条件:分子为0,分母不为0,可得2x=0且x+2≠0,然后进行计算即可解答.【解答】解:由题意得:2x=0且x+2≠0,∴x=0且x≠﹣2,∴当x=0时,分式的值为零,故答案为:0.【点评】本题考查了分式值为0的条件,熟练掌握分式值为0的条件是解题的关键.15.(2分)如图,一个质地均匀的正五边形转盘,指针的位置固定,当转盘自由转动停止后,观察指针指向区域内的数(若指针正好指向分界线,则重新转一次),这个数是一个奇数的概率是.【分析】根据题意可写出所有的可能性,然后再写出其中指向的区域内的数是奇数的可能性,从而可以计算出指向的区域内的数是一个奇数的概率.【解答】解:由图可知,指针指向的区域有5种可能性,其中指向的区域内的数是奇数的可能性有3种,∴这个数是一个奇数的概率是,故答案为:.【点评】本题考查概率公式,解答本题的关键是明确题意,求出相应的概率.16.(2分)古希腊数学家泰勒斯曾利用立杆测影的方法,在金字塔影子的顶部直立一根木杆,借助太阳光测金字塔的高度.如图,木杆EF长2米,它的影长FD是4米,同一时刻测得OA是268米,则金字塔的高度BO是134米.【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【解答】解:据相同时刻的物高与影长成比例,设金字塔的高度BO为x米,则可列比例为,,解得:x=134,经检验,x=134是原方程的解,∴BO=134.答:金字塔的高度BO是134米,故答案为:134.【点评】本题主要考查同一时刻物高和影长成正比.考查利用所学知识解决实际问题的能力.17.(2分)阅读材料:整体代值是数学中常用的方法.例如“已知3a﹣b=2,求代数式6a ﹣2b﹣1的值.”可以这样解:6a﹣2b﹣1=2(3a﹣b)﹣1=2×2﹣1=3.根据阅读材料,解决问题:若x=2是关于x的一元一次方程ax+b=3的解,则代数式4a2+4ab+b2+4a+2b ﹣1的值是14.【分析】根据x=2是关于x的一元一次方程ax+b=3的解,可得:b=3﹣2a,直接代入所求式即可解答.【解答】解:∵x=2是关于x的一元一次方程ax+b=3的解,∴2a+b=3,∴b=3﹣2a,∴4a2+4ab+b2+4a+2b﹣1=4a2+4a(3﹣2a)+(3﹣2a)2+4a+2(3﹣2a)﹣1=4a2+12a﹣8a2+9﹣12a+4a2+4a+6﹣4a﹣1=14.故答案为:14.【点评】此题主要考查了一元一次方程的解和代数式求值,要熟练掌握,解答此题的关键是判断出a、b的关系.18.(2分)如图,在正方形ABCD中,AB=4,对角线AC,BD相交于点O.点E是对角线AC上一点,连接BE,过点E作EF⊥BE,分别交CD,BD于点F,G,连接BF,交AC于点H,将△EFH沿EF翻折,点H的对应点H′恰好落在BD上,得到△EFH′.若点F为CD的中点,则△EGH′的周长是5+.【分析】作辅助线,构建全等三角形,先根据翻折的性质得△EGH'≌△EGH,所以△EGH′的周长=△EGH的周长,接下来计算△EGH的三边即可;证明△BME≌△FNE (ASA)和△BEO≌△EFP(AAS),得OE=PF=2,OB=EP=4,利用三角函数和勾股定理分别计算EG,GH和EH的长,相加可得结论.【解答】解:如图,过点E作EM⊥BC于M,作EN⊥CD于N,过点F作FP⊥AC于P,连接GH,∵将△EFH沿EF翻折得到△EFH′,∴△EGH'≌△EGH,∵四边形ABCD是正方形,∴AB=CD=BC=4,∠BCD=90°,∠ACD=∠ACB=45°,∴BD=BC=8,△CPF是等腰直角三角形,∵F是CD的中点,∴CF=CD=2,∴CP=PF=2,OB=BD=4,∵∠ACD=∠ACB,EM⊥BC,EN⊥CD,∴EM=EN,∠EMC=∠ENC=∠BCD=90°,∴∠MEN=90°,∵EF⊥BE,∴∠BEF=90°,∴∠BEM=∠FEN,∵∠BME=∠FNE,∴△BME≌△FNE(ASA),∴EB=EF,∵∠BEO+∠PEF=∠PEF+∠EFP=90°,∴∠BEO=∠EFP,∵∠BOE=∠EPF=90°,∴△BEO≌△EFP(AAS),∴OE=PF=2,OB=EP=4,∵tan∠OEG==,即=,∴OG=1,∴EG==,∵OB∥FP,∴∠OBH=∠PFH,∴tan∠OBH=tan∠PFH,∴=,∴==2,∴OH=2PH,∵OP=OC﹣PC=4﹣2=2,∴OH=×2=,在Rt△OGH中,由勾股定理得:GH==,∴△EGH′的周长=△EGH的周长=EH+EG+GH=2+++=5+.故答案为:5+.【点评】本题考查了正方形的判定和性质,全等三角形的判定和性质,解直角三角形,图形的翻折等知识,本题十分复杂,解决问题的关键是关注特殊性,添加辅助线,需要十分扎实的基础和很强的能力.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)计算:(﹣1+2)×3+22÷(﹣4).【分析】先算乘方,再算括号里面的和乘除法,最后算加减.【解答】解:原式=1×3+4÷(﹣4)=3﹣1=2.【点评】本题考查了有理数的混合运算,掌握有理数的运算法则和运算律是解决本题的关键20.(6分)先化简,再求值:(x+y)(x﹣y)+(xy2﹣2xy)÷x,其中x=1,y=.【分析】根据平方差公式和多项式除以单项式,可以将题目中的式子化简,然后将x、y 的值代入化简后的式子计算即可.【解答】解:(x+y)(x﹣y)+(xy2﹣2xy)÷x=x2﹣y2+y2﹣2y=x2﹣2y,当x=1,y=时,原式=12﹣2×=0.【点评】本题考查整式的混合运算—化简求值,解答本题的关键是明确整式混合运算的运算法则,注意平方差公式的应用.21.(10分)如图,在▱ABCD中,BD是它的一条对角线.(1)求证:△ABD≌△CDB;(2)尺规作图:作BD的垂直平分线EF,分别交AD,BC于点E,F(不写作法,保留作图痕迹);(3)连接BE,若∠DBE=25°,求∠AEB的度数.【分析】(1)由平行四边形的性质得出AB=CD,AD=BC,再由BD=BD,即可证明△ABD≌△CDB;(2)利用线段垂直平分线的作法进行作图即可;(3)由垂直平分线的性质得出EB=ED,进而得出∠DBE=∠BDE=25°,再由三角形外角的性质即可求出∠AEB的度数.【解答】(1)证明:如图1,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∵BD=BD,∴△ABD≌△CDB(SSS);(2)如图所示,(3)解:如图3,∵EF垂直平分BD,∠DBE=25°,∴EB=ED,∴∠DBE=∠BDE=25°,∵∠AEB是△BED的外角,∴∠AEB=∠DBE+∠BDE=25°+25°=50°.【点评】本题考查了平行四边形的性质,全等三角形的判定,线段垂直平分线的性质,基本作图,三角形外角的性质,掌握平行四边形的性质,全等三角形的判定方法,线段垂直平分线的作法,线段垂直平分线的性质,三角形外角的定义与性质是解决问题的关键.22.(10分)综合与实践【问题情境】数学活动课上,老师带领同学们开展“利用树叶的特征对树木进行分类”的实践活动.【实践发现】同学们随机收集芒果树、荔枝树的树叶各1片,通过测量得到这些树叶的长y(单位:cm),宽x(单位:cm)的数据后,分别计算长宽比,整理数据如下:12345678910芒果树叶 3.8 3.7 3.5 3.4 3.8 4.0 3.6 4.0 3.6 4.0的长宽比2.0 2.020 2.4 1.819 1.8 2.0 1.3 1.9荔枝树叶的长宽比【实践探究】分析数据如下:平均数中位数众数方差3.74m4.00.0424芒果树叶的长宽比荔枝树叶的长宽1.912.0n0.0669比【问题解决】(1)上述表格中:m= 3.75,n= 2.0;(2)①A同学说:“从树叶的长宽比的方差来看,我认为芒果树叶的形状差别大.”②B同学说:“从树叶的长宽比的平均数、中位数和众数来看,我发现荔枝树叶的长约为宽的两倍.”上面两位同学的说法中,合理的是B(填序号);(3)现有一片长11cm,宽5.6cm的树叶,请判断这片树叶更可能来自于芒果、荔枝中的哪种树?并给出你的理由.【分析】(1)根据中位数和众数的定义解答即可;(2)根据题目给出的数据判断即可;(3)根据树叶的长宽比判断即可.【解答】解:(1)把10片芒果树叶的长宽比从小到大排列,排在中间的两个数分别为3.7、3.8,故m==3.75;10片荔枝树叶的长宽比中出现次数最多的是2.0,故n=2.0;故答案为:3.75;2.0;(2)∵0.0424<0.0669,∴芒果树叶的形状差别小,故A同学说法不合理;∵荔枝树叶的长宽比的平均数1.91,中位数是2.0,众数是2.0,∴B同学说法合理.故答案为:B;(3)∵一片长11cm,宽5.6cm的树叶,长宽比接近2,∴这片树叶更可能来自荔枝.【点评】本题考查了众数,中位数,平均数和方差,掌握相关定义是解答本题的关键.23.(10分)打油茶是广西少数民族特有的一种民俗.某特产公司近期销售一种盒装油茶,每盒的成本价为50元,经市场调研发现,该种油茶的月销售量y(盒)与销售单价x(元)之间的函数图象如图所示.(1)求y与x的函数解析式,并写出自变量x的取值范围;(2)当销售单价定为多少元时,该种油茶的月销售利润最大?求出最大利润.【分析】(1)可用待定系数法来确定y与x之间的函数关系式,根据图象可得x的取值范围即可;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润.【解答】解:(1)设函数解析式为y=kx+b,由题意得:,解得:,∴y=﹣5x+500,当y=0时,﹣5x+500=0,∴x=100,∴y与x之间的函数关系式为y=﹣5x+500(50<x<100);(2)设销售利润为w元,w=(x﹣50)(﹣5x+500)=﹣5x2+750x﹣25000=﹣5(x﹣75)2+3125,∵抛物线开口向下,∴50<x<100,∴当x=75时,w有最大值,是3125,∴当销售单价定为75元时,该种油茶的月销售利润最大,最大利润是3125元.【点评】本题考查了一次函数的应用,二次函数的最值问题,在本题中,还需注意的是自变量的取值范围.24.(10分)如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E,延长BA交⊙O于点F.(1)求证:DE是⊙O的切线;(2)若=,AF=10,求⊙O的半径.【分析】(1)连接OD,进而判断出OD∥AB,即可得出结论;(2)设AE=2m,DE=3m,进而表示出AD=m,再判断出△ABD∽△ADE,得出比例式,进而表示出AB=m,BD=m,再判断出△ADB∽△CFB,得出比例式建立方程求出m,最后根据勾股定理求出AC=26,即可求出答案.【解答】(1)证明:如图1,连接OD,则OD=OC,∴∠ODC=∠OCD,∵AB=AC,∴∠B=∠OCD,∴∠B=∠ODC,∴OD∥AB,∵DE⊥AB,∴OD⊥DE,∵OD为⊙O的半径,∴DE是⊙O的切线;(2)解:如图2,连接AD,∵=,∴设AE=2m,DE=3m,∵DE⊥AB,∴∠AED=∠BED=90°,在Rt△ADE中,根据勾股定理得,AD==m,∵AC为直径,∴∠ADB=∠ADC=90°=∠AED,∴∠A=∠A,∴△ABD∽△ADE,∴=,∴,∴AB=m,BD=m,∵AB=AC,∠ADC=90°,∴DC=m,BC=2BD=3m,连接AF,则∠ADB=∠F,∵∠B=∠B,∴△ADB∽△CFB,∴,∵AF=10,∴BF=AB+AF=m+10,∴,∴m=4,∴AD=4,CD=6,在Rt△ADC中,根据勾股定理得,AC==26,∴⊙O的半径为AC=13.【点评】此题是圆的综合题,主要考查了切线的判定,平行线的性质,相似三角形的判定和性质,勾股定理,作出辅助线构造出相似三角形是解本题的关键.25.(10分)已知抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B的左侧).(1)求点A,点B的坐标;(2)如图,过点A的直线l:y=﹣x﹣1与抛物线的另一个交点为C,点P为抛物线对称轴上的一点,连接P A,PC,设点P的纵坐标为m,当P A=PC时,求m的值;(3)将线段AB先向右平移1个单位长度,再向上平移5个单位长度,得到线段MN,若抛物线y=a(﹣x2+2x+3)(a≠0)与线段MN只有一个交点,请直接写出a的取值范围.【分析】(1)令y=0,从而﹣x2+2x+3=0,解方程进而求得结果;(2)设点P(1,m),根据P A=PC列出方程,进一步求得结果;(3)分为a>0和a<0两种情形.当a>0时,抛物线的顶点等于5及x=0时,y>0,当a<0时,将x=4代入抛物线解析式,y的值大于等于5,从而求得结果.【解答】解:(1)当y=0时,﹣x2+2x+3=0,∴x1=﹣1,x2=3,∴A(﹣1,0),B(3,0);(2)∵抛物线对称轴为:x==1,∴设P(1,m),由﹣x2+2x+3=﹣x﹣1得,x3=﹣1(舍去),x4=4,当x=4时,y=﹣4﹣1=﹣5,∴C(4,﹣5),由P A2=PC2得,22+m2=(4﹣1)2+(m+5)2,∴m=﹣3;(3)可得M(0,5),N(4,5),当a>0时,∵y=﹣a(x﹣1)2+4a,∴抛物线的顶点为:(1,4a),当4a=5时,只有一个公共点,∴a=,当x=0时,y>5,∴3a>5,∴a>,∴a>或a=,当a<0时,(﹣16+8+3)a≥5,∴a≤﹣1,综上所述:a>或a=或a≤﹣1.【点评】本题考查二次函数图象与x轴的交点与一元二次方程的关系,勾股定理列方程,分类讨论等知识思想,解决问题的关键是正确分类.26.(10分)已知∠MON=α,点A,B分别在射线OM,ON上运动,AB=6.(1)如图①,若α=90°,取AB中点D,点A,B运动时,点D也随之运动,点A,B,D的对应点分别为A′,B′,D′,连接OD,OD′.判断OD与OD′有什么数量关系?证明你的结论;(2)如图②,若α=60°,以AB为斜边在其右侧作等腰直角三角形ABC,求点O与点C的最大距离;(3)如图③,若α=45°,当点A,B运动到什么位置时,△AOB的面积最大?请说明理由,并求出△AOB面积的最大值.【分析】(1)根据“直角三角形斜边中线等于斜边一半”可得OD=,OD′=,进而得出结论;(2)作△AOB的外接圆I,连接CI并延长,分别交⊙I于O′和D,当O运动到O′时,OC最大,求出CD和等边三角形AO′B上的高O′D,进而求得结果;(3)作等腰直角三角形AIB,以I为圆心,AI为半径作⊙I,取AB的中点C,连接CI 并延长交⊙I于O,此时△AOB的面积最大,进一步求得结果.【解答】解:(1)OD=OD′,理由如下:在Rt△AOB中,点D是AB的中点,∴OD=,同理可得:OD′=,∵AB=A′B′,∴OD=OD′;(2)如图1,作△AOB的外接圆I,连接CI并延长,分别交⊙I于O′和D,当O运动到O′时,OC最大,此时△AOB是等边三角形,∴BO′=AB=6,OC最大=CO′=CD+DO′=+BO′=3+3;(3)如图2,作等腰直角三角形AIB,以I为圆心,AI为半径作⊙I,∴AI==3,∠AOB=,则点O在⊙I上,取AB的中点C,连接CI并延长交⊙I于O,此时△AOB的面积最大,∵OC=CI+OI=AB+3=3+3,∴S△AOB最大==9+9.【点评】本题考查了直角三角形性质,等腰三角形性质,确定圆的条件等知识,解决问题的关键是熟练掌握“定弦对定角”的模型.。

初中毕业升学考试(广西南宁卷)数学(解析版)(初三)中考真卷.doc

初中毕业升学考试(广西南宁卷)数学(解析版)(初三)中考真卷.doc

初中毕业升学考试(广西南宁卷)数学(解析版)(初三)中考真卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx 题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】﹣2的相反数是()A.﹣2 B.0 C.2 D.4【答案】C【解析】试题分析:根据只有符号不同的两个数叫做互为相反数解答.﹣2的相反数是2考点:相反数【题文】把一个正六棱柱如图1摆放,光线由上向下照射此正六棱柱时的正投影是()A. B. C. D.【答案】A【解析】试题分析:根据平行投影特点以及图中正六棱柱的摆放位置即可求解.把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是正六边形.考点:平行投影.【题文】据《南国早报》报道:2016年广西高考报名人数约为332000人,创历史新高,其中数据332000用科学记数法表示为()A.0.332×106 B.3.32×105 C.3.32×104 D.33.2×104【答案】B【解析】试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.将332000用科学记数法表示为:3.32×105.考点:科学记数法—表示较大的数.【题文】已知正比例函数y=3x的图象经过点(1,m),则m的值为()评卷人得分A. B.3 C.﹣ D.﹣3【答案】B【解析】试题分析:本题较为简单,把坐标代入解析式即可求出m的值.把点(1,m)代入y=3x,可得:m=3考点:一次函数图象上点的坐标特征.【题文】某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是()A.80分 B.82分 C.84分 D.86分【答案】D【解析】试题分析:利用加权平均数的公式直接计算即可得出答案.由加权平均数的公式可知===86考点:加权平均数.【题文】如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD(D为底边中点)的长是()A. 5sin36°米B. 5cos36°米C. 5tan36°米D. 10tan36°米【答案】C【解析】试题分析:∵AB=AC,AD⊥BC,BC=10米,∴DC=BD=5米,在Rt△ADC中,∠B=36°,∴tan36°=,即AD=BD•tan36°=5tan36°(米).故选C.考点:解直角三角形的应用.【题文】下列运算正确的是()A.a2﹣a=a B.ax+ay=axy C.m2•m4=m6 D.(y3)2=y5【答案】C【解析】试题分析:结合选项分别进行幂的乘方与积的乘方、合并同类项、同底数幂的乘法等运算,然后选择正确答案.A、a2和a不是同类项,不能合并,故本选项错误;B、ax和ay不是同类项,不能合并,故本选项错误;C、m2•m4=m6,计算正确,故本选项正确;D、(y3)2=y6≠y5,故本选项错误.考点:(1)幂的乘方与积的乘方;(2)合并同类项;(3)同底数幂的乘法.【题文】下列各曲线中表示y是x的函数的是()A. B. C. D.【答案】D【解析】试题分析:根据函数的意义求解即可求出答案.根据函数的意义可知:对于自变量x的任何值,y 都有唯一的值与之相对应,故D正确.考点:函数的概念.【题文】如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,则∠P的度数为()A.140° B.70° C.60° D.40°【答案】B【解析】试题分析:先根据四边形内角和定理求出∠DOE的度数,再由圆周角定理即可得出结论.∵CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,∴∠DOE=180°﹣40°=140°,∴∠P=∠DOE=70°考点:圆周角定理.【题文】超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x ﹣10=90【答案】A【解析】试题分析:设某种书包原价每个x元,根据题意列出方程解答即可.设某种书包原价每个x元,可得:0.8x﹣10=90考点:由实际问题抽象出一元一次方程.【题文】有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()A.1: B.1:2 C.2:3 D.4:9【答案】D【解析】试题分析:设小正方形的边长为x,再根据相似的性质求出S1、S2与正方形面积的关系,然后进行计算即可得出答案.设小正方形的边长为x,根据图形可得:∵=,∴=,∴=,∴S1=S正方形ABCD,∴S1=x2,∵=,∴=,∴S2=S正方形ABCD,∴S2=x2,∴S1:S2=x2:x2=4:9考点:正方形的性质.【题文】二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()A.大于0 B.等于0 C.小于0 D.不能确定【答案】C【解析】试题分析:设ax2+bx+c=0(a≠0)的两根为x1,x2,由二次函数的图象可知x1+x2>0,a>0,设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b再根据根与系数的关系即可得出结论.设ax2+bx+c=0(a≠0)的两根为x1,x2,∵由二次函数的图象可知x1+x2>0,a>0,∴﹣>0.设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b,则a+b=﹣=﹣l【答案】50°【解析】试题分析:根据两直线平行,同位角相等可得∠1=∠A.∵AB∥CD,∴∠A=∠1,∵∠1=50°,∴∠A=50°,考点:平行线的性质【题文】分解因式:a2﹣9=.【答案】(a+3)(a-3)【解析】试题分析:直接利用平方差公式分解因式进而得出答案.a2﹣9=(a+3)(a﹣3)考点:因式分解-运用公式法【题文】如图,在4×4正方形网格中,有3个小正方形已经涂黑,若再涂黑任意一个白色的小正方形(2016•南宁)如图所示,反比例函数y=(k≠0,x>0)的图象经过矩形OABC的对角线AC的中点D.若矩形OABC 的面积为8,则k的值为.【答案】2【解析】试题分析:过D作DE⊥OA于E,设D(m,),于是得到OA=2m,OC=,根据矩形的面积列方程即可得到结论.过D作DE⊥OA于E,设D(m,),∴OE=m.DE=,∵点D是矩形OABC的对角线AC的中点,∴OA=2m,OC=,∵矩形OABC的面积为8,∴OA•OC=2m•=8,∴k=2考点:反比例函数系数k的几何意义【题文】观察下列等式:在上述数字宝塔中,从上往下数,2016在第层.【答案】44【解析】试题分析:先按图示规律计算出每一层的第一个数和最后一个数;发现第一个数分别是每一层层数的平方,那么只要知道2016介于哪两个数的平方即可,通过计算可知:442<2016<452,则2016在第44层.第一层:第一个数为12=1,最后一个数为22﹣1=3,第二层:第一个数为22=4,最后一个数为23﹣1=8,第三层:第一个数为32=9,最后一个数为24﹣1=15,∵442=1936,452=2025,又∵1936<2016<2025,∴在上述数字宝塔中,从上往下数,2016在第44层考点:(1)规律型:(2)数字的变化类【题文】计算:|﹣2|+4cos30°﹣()﹣3+.【答案】4-6【解析】试题分析:直接利用绝对值的性质以及特殊角的三角函数值、负整数指数幂的性质、二次根式的性质化简,进而求出答案.试题解析:原式=2+4×﹣8+2=2+2-8+2=4-6考点:(1)实数的运算;(2)负整数指数幂;(3)特殊角的三角函数值.【题文】解不等式组,并把解集在数轴上表示出来.【答案】﹣3<x≤1;数轴见解析【解析】试题分析:首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.试题解析:,解①得x≤1,解②得x>﹣3,不等式组的解集是:﹣3<x≤1.考点:(1)解一元一次不等式组;(2)在数轴上表示不等式的解集.【题文】如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4)(1)请画出△ABC向左平移6个单位长度后得到的△A1B1C1;(2)以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在y轴右侧画出△A2B2C2,并求出∠A2C2B2的正弦值.【答案】(1)答案见解析;(2)【解析】试题分析:(1)将A、B、C三点分别向左平移6个单位即可得到的△A1B1C1;(2)连接OA、OC,分别取OA、OB、OC的中点即可画出△A2B2C2,求出直线AC与OB的交点,求出∠ACB的正弦值即可解决问题.试题解析:(1)如图1所示,(2)如图2所示,∵A(2,2),C(4,﹣4),B(4,0),∴直线AC解析式为y=﹣3x+8,与x轴交于点D(,0),∵∠CBD=90°,∴CD==,∴sin∠DCB===.∵∠A2C2B2=∠ACB,∴sin∠A2C2B2=sin∠DCB=.考点:(1)作图-位似变换;(2)作图-平移变换.【题文】在图“书香八桂,阅读圆梦”读数活动中,某中学设置了书法、国学、诵读、演讲、征文四个比赛项目(2016•南宁)如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB 为半径的圆经过点D,交BC于点E.(1)求证:AC是⊙O的切线;(2)若OB=10,CD=8,求BE的长.【答案】(1)证明过程见解析;(2)12.【解析】试题分析:(1)连接OD,由BD为角平分线得到一对角相等,根据OB=OD,等边对等角得到一对角相等,等量代换得到一对内错角相等,进而确定出OD与BC平行,利用两直线平行同位角相等得到∠ODA为直径,即可得证;(2)由OD与BC平行得到三角形OAD与三角形BAC相似,由相似得比例求出OA的长,进而确定出AB的长,连接EF,过O作OG垂直于BC,利用勾股定理求出BG的长,由BG+GC求出BC的长,再由三角形BEF与三角形BAC相似,由相似得比例求出BE的长即可.试题解析:(1)连接OD,∵BD为∠ABC平分线,∴∠1=∠2,∵OB=OD,∴∠1=∠3,∴∠2=∠3,∴OD∥BC,∵∠C=90°,∴∠ODA=90°,则AC为圆O的切线;(2)过O作OG⊥BC,∴四边形ODCG为矩形,∴GC=OD=OB=10,OG=CD=8,在Rt△OBG中,利用勾股定理得:BG=6,∴BC=BG+GC=6+10=16,∵OD∥BC,∴△AOD∽△ABC,∴=,即=,解得:OA=,∴AB=+10=,连接EF,∵BF为圆的直径,∴∠BEF=90°,∴∠BEF=∠C=90°,∴EF∥AC,∴=,即=,解得:BE=12.考点:切线的判定【题文】在南宁市地铁1号线某段工程建设中,甲队单独完成这项工程需要150天,甲队单独施工30天后增加乙队,两队又共同工作了15天,共完成总工程的.(1)求乙队单独完成这项工程需要多少天?(2)为了加快工程进度,甲、乙两队各自提高工作效率,提高后乙队的工作效率是,甲队的工作效率是乙队的m倍(1≤m≤2),若两队合作40天完成剩余的工程,请写出a关于m的函数关系式,并求出乙队的最大工作效率是原来的几倍?【答案】(1)450天;(2)7.5倍.【解析】试题分析:(1)设乙队单独完成这项工程需要x天,根据题意得方程即可得到结论;(2)根据题意得(+)×40=,即可得到a=60m+60,根据一次函数的性质得到=,即可得到结论.试题解析:(1)设乙队单独完成这项工程需要x天,根据题意得×(30+15)+×15=,解得:x=450,经检验x=450是方程的根,答:乙队单独完成这项工程需要450天;(2)根据题意得(+)×40=,∴a=60m+60,∵60>0,∴a随m的增大增大,∴当m=1时,最大,∴=,∴÷=7.5倍,答:乙队的最大工作效率是原来的7.5倍考点:(1)一次函数的应用;(2)分式方程的应用【题文】已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.【答案】(1)AE=EF=AF;(2)证明过程见解析;(3)3-【解析】试题分析:(1)结论AE=EF=AF.只要证明AE=AF即可证明△AEF是等边三角形;(2)欲证明BE=CF,只要证明△BAE≌△CAF即可;(3)过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,根据FH=CF•cos30°,因为CF=BE,只要求出BE即可解决问题.试题解析:(1)结论AE=EF=AF.理由:如图1中,连接AC,∵四边形ABCD是菱形,∠B=60°,∴AB=BC=CD=AD,∠B=∠D=60°,∴△ABC,△ADC是等边三角形,∴∠BAC=∠DAC=60°∵BE=EC,∴∠BAl在RT△AGB中,∵∠ABC=60°AB=4,∴BG=2,AG=2,在RT△AEG中,∵∠AEG=∠EAG=45°,∴AG=GE=2,∴EB=EG﹣BG=2﹣2,∵△AEB≌△AFC,∴AE=AF,EB=CF=2﹣2,∠AEB=∠AFC=45°,∵∠EAF=60°,AE=AF,∴△AEF是等边三角形,∴∠AEF=∠AFE=60°∵∠AEB=45°,∠AEF=60°,∴∠CEF=∠AEF﹣∠AEB=l【题文】如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点.(1)求抛物线的解析式及点C的坐标;(2)求证:△ABC是直角三角形;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.【答案】(1)y=﹣x2+2x;C(-1,-3);(2)证明过程见解析;(3)(,0)或(,0)或(﹣1,0)或(5,0)【解析】试题分析:(1)可设顶点式,把原点坐标代入可求得抛物线解析式,联立直线与抛物线解析式,可求得C 点坐标;(2)分别过A、C两点作x轴的垂线,交x轴于点D、E两点,结合A、B、C三点的坐标可求得∠ABO=∠CBO=45°,可证得结论;(3)设出N点坐标,可表示出M点坐标,从而可表示出MN、ON的长度,当△MON和△ABC相似时,利用三角形相似的性质可得=或=,可求得N点的坐标.试题解析:(1)∵顶点坐标为(1,1),∴设抛物线解析式为y=a(x﹣1)2+1,又抛物线过原点,∴0=a(0﹣1)2+1,解得a=﹣1,∴抛物线解析式为y=﹣(x﹣1)2+1,即y=﹣x2+2x ,联立抛物线和直线解析式可得,解得或,∴B(2,0),C(﹣1,﹣3);(2)如图,分别过A、C两点作x轴的垂线,交x轴于点D、E两点,则AD=OD=BD=1,BE=OB+OE=2+1=3,EC=3,∴∠ABO=∠CBO=45°,即∠ABC=90°,∴△ABC是直角三角形;(3)假设存在满足条件的点N,设N(x,0),则M(x,﹣x2+2x),∴ON=|x|,MN=|﹣x2+2x|,由(2)在Rt△ABD和Rt△CEB中,可分别求得AB=,BC=3,∵MN⊥x轴于点N∴∠ABC=∠MNO=90°,∴当△ABC和△MNO相似时有=或=,①当=时,则有=,即|x||﹣x+2|=|x|,∵当x=0时M、O、N不能构成三角形,∴x≠0,∴|﹣x+2|=,即﹣x+2=±,解得x=或x=,此时N点坐标为(,0)或(,0);②当=时,则有=,即|x||﹣x+2|=3|x|,∴|﹣x+2|=3,即﹣x+2=±3,解得x=5或x=﹣1,此时N点坐标为(﹣1,0)或(5,0),综上可知存在满足条件的N点,其坐标为(,0)或(,0)或(﹣1,0)或(5,0).考点:(1)二次函数综合题;(2)三角形相似;(3)分类讨论思想。

广西南宁中考数学试题及答案解析

广西南宁中考数学试题及答案解析

2016年南宁初中毕业升学考试数学试卷考试时间:120分钟;满分:120分一、选择题本大题共12小题;每小题3分;共36分;每小题给出的四个选项;只有一项是符合题目要求的 1. -2的相反数是A -2B 0C 2D 42. 把一个正六棱柱如图1摆放;光线由上向下照射此正六棱柱时的正投影是3. 据南国早报报道:2016年广西高考报名人数约为332000人;创历史新高..其中数据332000用科学记数法表示为A 0.332×106B 3.32×105C 3.32×104D 33.2×1044. 已知正比例函数y=3x 的图像经过点1;m;则m 的值为A31 B 3 C -31D -3 5. 某校规定学生的学期数学成绩满分为100分;其中研究性学习成绩占40%;期末卷面成绩占60%;小明的两项成绩百分制依次是80分;90分;则小明这学期的数学成绩是A 80分B 82分C 84分D 86分6. 如图2;厂房屋顶人字形等腰三角形钢架跨度BC=10米;∠B=36°; 则中柱ADD 为底边中点的长是A 5sin36°米B 5cos36°米C 5tan36°米D 10tan36°米 7. 下列运算正确的是 A a 2-a=a B ax+ay=axy C m 2· m 4=m 6D y 32=y 58. 下列各曲线中表示y 是x 的函数的是9. 如图3;点A;B;C;P 在⊙O 上;CD ⊥OA;CE ⊥OB;垂足分别为D;E;∠DCE=40°;则∠P 的度数为A 140°B 70°C 60°D 40°10. 超市店庆促销;某种书包原价每个x 元;第一次降价打“八折”;第二次降价每个又减10元;经两次降价后售价为90元..则得到方程A 0.8x-10=90B 0.08x-10=90C 90-0.8x=10D x-0.8x-10=9011. 有3个正方形如图4所示放置;阴影部分的面积依次记为S 1;S 2;则S 1: S 2等于 A1:2 B1:2 C2:3 D4:912. 二次函数y=ax2+bx+c a ≠0 和正比例函数y=32x 的图象..如图5所示;则 方程 ax2+b-32x+c=0 a ≠0的两根和A 大于0B 等于0C 小于0D 不能确定 二、填空题本大题共6小题;每小题3分;共18分 13. 若二次根式1x -有意义;则x 的取值范围_______________14. 如图6;平行线AB 、CD 被直线AE 所截..∠1=50°..则∠A=_______________ 15. 分解因式:a2-9=_______________图7图1 A B C D DAC图2B36Oу0 y=23x χy=ax 2+bx+c图5EABDC12图6 S 1图4S 216. 如图7;在4×4正方形网格中;有3个小正方形已经涂黑;若再涂黑任意一个白色的小正方形每一个白色的小正方形被涂黑的可能性相同;使新构成的黑色部分的图形是轴对称图形的概率是_______________ 17. 如图8所示;反比例函数()k0,0y k x x=≠>的图象经过矩形OABC 的对角线AC 的中点D;若矩形OABC 的面积为8;则k 的值为_______________ 18. 观察下列等式: 第一层 1+2=3 第二层 4+5+6=7+8 第三层 9+10+11+12=13+14+15 第四层 16+17+18+19+20=21+22+23+24 ……在上述的数字宝塔中;从上往下数;2016在第______________层..三、解答题本大题共8小题;共66分..解答应写出文字说明、证明过程或演算步骤19.6分计算:122130cos 42-1+⎪⎭⎫⎝⎛-︒+-20.6分解不等式组⎪⎩⎪⎨⎧+<+≤-2151223x x x x ;并把解集在数轴上表示出来21.8分如图9;在平面直角坐标系中;已知△ABC 三个顶点的坐标分别是A2;2;B4;0;C4;-4. 1请画出△ABC 向左平移6个单位长度后得到的△A 1B 1C 1; 2以点O 为位似中心;将△ABC 缩小为原来的21;得到△A 2B 2C 2;请在y 轴右侧画出△A 2B 2C 2;并求出∠A 2C 2B 2的正弦值. 22. 8分在“书香八桂;阅读圆梦”读书活动中;某中学设置了书法、国学诵读、演讲、征文四个比赛项目每人只参加一个项目;九2班全班同学都参加了比赛;该班班长为了了解本班同学参加各项比赛的情况;收集 整理数据后;绘制以下不完整的折线统计图图10-2.根据图表中的信息解答下列各题: 1请求出九2班全班人数;2请把折线统计图补充完整;3南南和宁宁参加了比赛;请用“列表法”或“画树状图法”求出他们参加的比赛项目相同的概率.23.8分如图11;在Rt △ABC 中; C=90°;BD 是角平分线;点O 在AB 上;以点O 为圆心;OB 为半径的圆经过点D;交BC 于点E..Dy xBCOA图81求证:AC 是⊙O 的切线; 2若OB=10;CD=8;求BE 的长..24.10分在南宁市地铁1号线某段工程建设中;甲队单独完成这项工程需要150天;甲队单独施工30天后增加乙队;两队又共同工作了15天;共完成总工程的13.. 1求乙队单独完成这项工程需要多少天2为了加快工程进度;甲、乙两队各自提高工作效率;提高后乙队的工作效率是1a;甲队的工作效率是乙队的m 倍12m ≤≤..若两队合作40天完成剩余的工程;请写出a 关于m 的函数关系式;并求出乙队的最大工作效率是原来的几倍25.10分已知四边形ABCD 是菱形;AB=4;∠ABC=60°;∠EAF 的两边分别与射线CB 、DC 相交于点E 、F;且∠EAF=60° . 1如图12-1;当点E 是线段CB 的中点时;直接写出....线段AE;EF;AF 之间的数量关系; 2如图12-2;当点E 是线段CB 上任意一点时点E 不与B 、C 重合;求证:BE=CF ; 3如图12-3;当点E 在线段CB 的延长线上;且∠EAB=15°时;求点F 到BC 的距离.. 26.10分如图13;已知抛物线经过原点O;顶点为A1;1;且与直线y=x-2交于B;C 两点.. 1求抛物线的解析式及点C 的坐标; 2求证:△ABC 是直角三角形;3若点N 为x 轴上的一个动点;过点N 作MN ⊥x 轴与抛物线交于点M;则是否存在以O;M;N 为顶点的三角形与△ABC 相似;若存在;请求出点N 的坐标;若不存在;请说明理由..2016年南宁中考数学答案及解析考试时间:120分钟;满分:120分一、选择题本大题共12小题;每小题3分;共36分;每小题给出的四个选项;只有一项是符合题目要求的 2. -2的相反数是(A ) -2 B 0 C 2 D 4 答案C考点相反数-初一上册2. 把一个正六棱柱如图1摆放;光线由上向下照射此正六棱柱时的正投影是 答案A考点投影-初三下册11. 据南国早报报道:2016年广西高考报名人数约为332000人;创历史新高..其中数据332000用科学记数法表示为A 0.332×106B 3.32×105C 3.32×104D 33.2×104 答案B考点科学计数法-初一上册海壁点评本题关注广西高考时事;与时俱进;也恭喜我们海壁学生高考数学再创新高;平均分高达120.. 12. 已知正比例函数y=3x 的图像经过点1;m;则m 的值为(A ) 31 B 3 C -31D -3 答案B考点正比例函数-初二下册图1 A B C DDAC图2B36Oуy=23x χy=ax 2+bx+c图513. 某校规定学生的学期数学成绩满分为100分;其中研究性学习成绩占40%;期末卷面成绩占60%;小明的两项成绩百分制依次是80分;90分;则小明这学期的数学成绩是A 80分B 82分C 84分D 86分 答案D考点加权平均数-初二下册14. 如图2;厂房屋顶人字形等腰三角形钢架跨度BC=10米;∠B=36°; 则中柱ADD 为底边中点的长是 A 5sin36°米 B 5cos36°米 C 5tan36°米 D 10tan36°米 答案C考点等腰三角形-八年级上册;锐角三角函数-九年级下册15. 下列运算正确的是 A a 2-a=a B ax+ay=axy C m 2· m 4=m 6D y 32=y 5答案C考点整式加减-初一上册;整式的乘除-初二上册 16. 下列各曲线中表示y 是x 的函数的是 答案D考点函数的定义-初二下册海壁点评本题回归根本又联系未来;对函数的认知;对函数与解析几何的区别有所探讨 9. 如图3;点A;B;C;P 在⊙O 上;CD ⊥OA;CE ⊥OB;垂足分别为D;E;∠DCE=40°;则∠P 的度数为A 140°B 70°C 60°D 40°答案B考点四边形内角和-八年级上册;圆心角和圆周角-九年级上册10. 超市店庆促销;某种书包原价每个x 元;第一次降价打“八折”;第二次降价每个又减10元;经两次降价后售价为90元..则得到方程A 0.8x-10=90B 0.08x-10=90C 90-0.8x=10D x-0.8x-10=90 答案A考点一元一次方程-七年级上册13. 有3个正方形如图4所示放置;阴影部分的面积依次记为S 1;S 2;则S 1: S 2等于 A1:2 B1:2 C2:3 D4:9答案D考点正方形-八年级下册;相似-九年级下册海壁点评看起来像几比几 相信很多同学会猜1:2吧..猜是一种很好的直觉思维;海壁鼓励的是先猜后证..这道题通过相似;面积比等于边长比的平方证明就ok;也可以代入边长的特殊值来计算..14. 二次函数y=ax2+bx+c a ≠0 和正比例函数y=32x 的图象如图5所示;则 方程 ax2+b-32x+c=0 a ≠0的两根和A 大于0B 等于0C 小于0D 不能确定 答案AS 1图4S 2考点一次函数-八年级下册;二次函数-九年级上册;韦达定理-九年级上册解答联立⎪⎩⎪⎨⎧=++=xy cbx ax y 322得到ax2+b-32x+c=0;通过观察图像两交点横坐标的和可得.. 或由x 1+x 2=a b 32--. 观察图象可得a>0 ; a b 2->0推出b<0 ∴两根和ab 32-->0. 海壁点评这道题的题眼是两根和;初三的学生应该清楚;韦达定理是唯一的选择..含有参数的一元二次方程;这是海壁老师多次强调的重点;也是我们总结的数与式体系的选择压轴七大类型题中考频非常高的一种..今年是将函数图像的交点和韦达定理结合起来考察;学生要清楚两根和代表两个交点横坐标的和..这道题难度有限..学生如果还对答案存疑;完全可以代入具体的数字进行验证..韦达定理是南宁中考的重点;在2013年的26题、2015年的26题中都有涉及..它是高中解析几何重点应用的一个知识点..二、填空题本大题共6小题;每小题3分;共18分 19. 若二次根式1x -有意义;则x 的取值范围_______________答案x ≥1考点二次根式-八年级下册20. 如图6;平行线AB 、CD 被直线AE 所截..∠1=50°..则∠A=_______________ 答案50°考点相交线与平行线-七年级下册 21. 分解因式:a2-9=_______________ 答案a+3a-3考点因式分解-八年级上册22. 如图7;在4×4正方形网格中;有3个小正方形已经涂黑;若再涂黑任意一个白色的小正方形每一个白色的小正方形被涂黑的可能性相同;使新构成的黑色部分的图形是轴对称图形的概率是_______________ 答案考点轴对称图形-八年级上册;概率-九年级上册23. 如图8所示;反比例函数()k0,0y k x x=≠>的图象经过矩形OABC 的对角线AC 的中点D;若矩形OABC 的面积为8;则k 的值为_______________ 答案2考点矩形-八年级下册;反比例函数-九年级下册;相似-九年级下册海壁点评反比例函数结合相似是函数选择填空压轴题中比较常考的类型..这道题目在这个类型中属于比较简单的;充分体现了出题老师的和蔼.. 24. 观察下列等式: 第一层 1+2=3 第二层 4+5+6=7+8 第三层 9+10+11+12=13+14+15 第四层 16+17+18+19+20=21+22+23+24 ……图7EABDC12图6Dy xBCOA图8在上述的数字宝塔中;从上往下数;2016在第______________层.. 答案44考点找规律—数列—高二解答由题易知;首项为1、4、9、16……第n 层首项为n 2也可讨论:末尾项3、8、15、24……第n 层末尾项为:n 2+2n;方法一样;但规律难找 442=1936;452=2025;202520161936<<..所以;2016在第44层海壁点评找规律题型是南宁市中考的重点题型;近几年只有2014没有出现2010年的18题;2011年的18题;2012年的18题;2013年的17题;2015年的18题海壁对规律题相较于学校和其他机构有更为深刻的理解..这种理解是基于对初高中知识体系和联系的把握..找规律本质是数列..今年的找规律是海壁所总结的四大规律中的平方数列;我们有两种以上的方法求出n 项的代数式也就是高中的通项公式..我们对找规律可拓展的方向也有非常明确地分析..在海壁学习的学生不但对于初中的难题能够高人一筹;对于高中的掌握也能快人一步..三、解答题本大题共8小题;共66分..解答应写出文字说明、证明过程或演算步骤21.6分计算:122130cos 42-1+⎪⎭⎫⎝⎛-︒+-答案考点绝对值-七年级上册;负次幂、根数-七年级下册;锐角三角函数-九年级下册22.6分解不等式组⎪⎩⎪⎨⎧+<+≤-2151223x x x x ;并把解集在数轴上表示出来答案考点不等式组-七年级下册21.8分如图9;在平面直角坐标系中;已知△ABC 三个顶点的坐标分别是A2;2;B4;0;C4;-4.1请画出△ABC 向左平移6个单位长度后得到的△A 1B 1C 1; 2以点O 为位似中心;将△ABC 缩小为原来的21;得到△A 2B 2C 2;请在y 轴右侧画出△A 2B 2C 2;并求出∠A 2C 2B 2的正弦值.答案1△A1B1C1如右图所示: 2分 2△A 2B 2C 2如右图所示: 2分解:如图;A 2-1;-1;B 2-2;0;C 2-2;2 设直线A 2C 2解析式为:y=kx+b 将A 2-1;-1;C 2-2;2代入; 求得:y=-3x-4;则直线A 2C 2与x 轴交点的坐标D 为 34-;0 1分 在RT △B 2DC 2中;B 2D=32; C 2D=3102 1分sin ∠A 2C 2B 2=DC DB 22= 2分 考点平面直角坐标系;平移—七年级下册;位似—九年级下册;一次函数-八年级下册;勾股定理-八年级下册;三角函数—九年级下册海壁点评本题相比南宁往年中考题的创新之处在将三角函数与平面直角坐标系结合起来;形成了“二选一”题型解直角三角形+作图的合二为一..难度中等;有点意思..22. 8分在“书香八桂;阅读圆梦”读书活动中;某中学设置了书法、国学诵读、演讲、征文四个比赛项目每人只参加一个项目;九2班全班同学都参加了比赛;该班班长为了了解本班同学参加各项比赛的情况;收集 整理数据后;绘制以下不完整的折线统计图图10-2.根据图表中的信息解答下列各题: 1请求出九2班全班人数;2请把折线统计图补充完整;3南南和宁宁参加了比赛;请用“列表法”或“画树状图法”求出他们参加的比赛项目相同的概率. 答案1解:根据演讲人数推断总人数:12÷25%=48人; 2分2如右图所示.. 2分 3答:两人参加比赛项目相同的概率为:4÷16= 2分树形图:如图 2分 or 列表法: 2分考点折线统计图和扇形统计图—七年级下册;统计:利用部分推测总体—七年级下册;概率树形图与列表法—九年级上册海壁点评本题毫无悬念..阅读作为背景传递了数学出题老师的心声..读书也是专注数学的海壁的每一位老师都大力提倡的..只有读书才能圆梦;也只有读好书;好读书;才能学好数学哦..当然;除了国学以外;还有传记、心理学、历史、艺术、经济学和哲学等;都可以成为中学生不错的选择..23.8分如图11;在Rt △ABC 中; C=90°;BD 是角平分线;点O 在AB 上;以点O 为圆心;OB 为半径的圆经过点D;交BC 于点E..1求证:AC 是⊙O 的切线; 2若OB=10;CD=8;求BE 的长.. 答案1证明:连接OD 如图蓝线所示OD=OB ∠OBD=∠ODBBD 是∠ABC 的角平分线 ∠OBD=∠CBD∠CBD=∠ODB OD ∥BC 1分∴∴∴∴∠C=90° ∠ODC=90° OD ⊥AC 点D 在⊙O 上; ∴ AC 是⊙O 的切线 2分 海壁备注:方法很多;如等角代换 2解:过圆心O 作OM ⊥BC 交BC 于M 如右图蓝线所示 BE 为⊙O 的弦;且OM ⊥BE∴BM=EM 1分 ∠ODC=∠C=∠OMC= 90°∴四边形ODCH 为矩形;则OM=DC=8 OB=10∴BM=22810-=6=EM 2分∴ BE=BM+EM=12 2分 海壁备注:方法很多;如作DH ⊥AB考点角平分线、平行—七年级下册;矩形—八年级下册;圆、切线、垂径定理—九年级上册海壁点评南宁中考的传统是23题-三角形和四边形;25题-圆与直角三角形;今年互换了位置..这在南宁尚属首次..但在广西省外却不新鲜..对于用天利38套作为主要练习册的海壁学生们;想必也不会奇怪..单论这道题目;第一问非常常规;考圆的切线的证明;海壁的同学们练习过多次;轻车熟路;第二问主要考察辅助线;想比以前的三角形和四边形;难度有所提升..方法很多;如果做DH ⊥AB 也能做出来;但明显做OM ⊥BC 更加简单..为什么能想到OM ⊥BC;请注意ODCB 是一个直角梯形啊;直角梯形的辅助线还有哪条 哪条 条 ……24.10分在南宁市地铁1号线某段工程建设中;甲队单独完成这项工程需要150天;甲队单独施工30天后增加乙队;两队又共同工作了15天;共完成总工程的13.. 1求乙队单独完成这项工程需要多少天2为了加快工程进度;甲、乙两队各自提高工作效率;提高后乙队的工作效率是1a;甲队的工作效率是乙队的m 倍12m ≤≤..若两队合作40天完成剩余的工程;请写出a 关于m 的函数关系式;并求出乙队的最大工作效率是原来的几倍答案1解:设乙队单独完成这项工程需要x 天;则乙队每天的工作效率为 ;依题意;得:2分解得:x =450 1分 经检验:x =450是原分式方程的解. 1分 答:乙队单独完成这项工程需要450天..2解:乙队的工作效率为a 1;依题意可得甲队的工作效率为am ;可列出等式为: 40a m +a 1=321分 转化得:a =60m +60 2分要求乙队最大工作效率;即求a 1的最大值..当正数a 最小时;a1最大21≤≤m m =1时;a 小=120此时;a 1=12011分 即:75.345011201=÷2分∴∴答:乙队最大工作效率是原来的3.75倍..考点分式方程—八年级上册;一次函数—八年级下册;反比例函数—九年级下册海壁点评今天是6月28日;南宁地铁正式运营可喜可贺啊能提升市民骄傲城市热点话题入应用题都是老套路;好吗 工程问题是不错的选择海壁归纳的三大类之一;工程总量看成单位1也天然契合..第二小问初看让人迷糊;好家伙;a 和m 两个参数;会吓到一批只注重颜值、只看到表面的小伙伴..其实呢;会审题的朋友们发现;都是纸老虎..用万能表格法把式子列出来;so easy 当我们很高兴的时候;又来一个坑——a1和a 的大小关系是反过来的..&……%¥..不要凌乱;只要检查..把两个边界值代入检验下;看看哪个效率更高不就好了吗 这次应用题说实话不算难特别是相对去年的应用题第三小问;计算量惨无人道;简单的不检查;才难25.10分已知四边形ABCD 是菱形;AB=4;∠ABC=60°;∠EAF 的两边分别与射线CB 、DC 相交于点E 、F;且∠EAF=60° . 1如图12-1;当点E 是线段CB 的中点时;直接写出....线段AE;EF;AF 之间的数量关系; 2如图12-2;当点E 是线段CB 上任意一点时点E 不与B 、C 重合;求证:BE=CF ; 3如图12-3;当点E 在线段CB 的延长线上;且∠EAB=15°时;求点F 到BC 的距离.. 答案1AE=EF=AF 2分2证明:连接AC 如右图蓝色部分所示 四边形ABCD 为菱形;∠ABC=60AB=AD=AC;∠ABC=∠ACB=∠ACD=60 ∠EAF=60;即∠EAC+∠FAC=60∠ABC =60;即∠EAC+∠BAE=60∠FAC=∠BAE 1分又 ∠ABE=∠ACD=60 且AC=AB △ABE △ACFASA 2分BE=CF 1分海壁备注:方法很多;如△AEC ≌△AFD3过点A 作AG ⊥BC 于点G;过点F 作FH ⊥EC 于点H 如下图蓝线部分所示∠EAB=15;∠ABC=60∠AEB=45Rt △AGB 中;∠ABC=60;AB=4 BG=2;AG=32 Rt △AGE 中;∠AEB=45;AG=EG=32 ∴ EB=EG-BG=32-2 1分 由2易同理可证;△AEB △AFC∴AE=AF; EB=CF=32-2 ;∠AEB=∠AFC=45 1分 ∠EAF=60 ;AE=AF△AEF 为等边三角形;∴ ∠AEF=∠AFE=60 ∠AEB=45;∠AEF=60∠CEF=∠AEF -∠AEB=15Rt △EFH 中;∠CEF=15;∴ ∠EFH=75又∠AFE=60; ∠AFH=∠EFH -∠AFE=15 又∠AFC=45;∠CFH=∠AFC -∠AFH =30 1分Rt △CHF 中;∠CFH=30°;CF=32-2∴ FH=CF ·cos30°=32-2·23= 2分海壁备注:方法很多;如用三角函数 FH 的长度即为点F 到BC 的距离 .考点等边三角形;三角形全等—八年级上册;菱形—八年级下册;30°和45°直角三角形—九年级下册海壁点评如果学生问我;一般来说;四边形和圆谁更难 我会说;都不难..相似才难;辅助线更难..如果学生问我;今年的这道压轴难不难 我会说;按这个标准;今年的题目难度一般..因为没有眼花缭乱的相似三角形当然;有也不要怕;海壁有五大模型;因为没有出其不意的辅助线做垂线;很套路..出题老师的善良让人敬仰..第一题;送分题;善良不解释..第二题;中等以上的同学都应该做出来;难度在于要做一条辅助线..对于海壁的学生来说;“动中不变量”还说的少 第三小问;继续遵循不变字母都不变的全等三角形;通过放大局部;再做两条辅助线解决问题..15°;我们还不联系联想到30°、45°和60°;我们还不联想到特殊直角三角形;我们还有什么脸面号称数学学霸同学们;不要局限于是圆还是四边形;这不重要;海壁要告诉大家;一二问都是套路;圆和四边形套路不同而已;第三问归根究底就是三个字这个在海壁的同学都知道我们还是保留一些悬念吧..26.10分如图13;已知抛物线经过原点O;顶点为A1;1;且与直线y=x-2交于B;C 两点.. 1求抛物线的解析式及点C 的坐标; 2求证:△ABC 是直角三角形;3若点N 为x 轴上的一个动点;过点N 作MN ⊥x 轴与抛物线交于点M;则是否存在以O;M;N 为顶点的三角形与△ABC 相似;若存在;请求出点N 的坐标;若不存在;请说明理由.. 答案1解:抛物线顶点为1;1;设解析式为()112+-=x a y代入0;0;解得a=-1∴ 抛物线为:2分抛物线与直线2-=x y 交于B 、C 两; 得⎩⎨⎧-=+-=222x y x x y解得;⎩⎨⎧-=-=3111y x ⎩⎨⎧==0222y x ∴ C 点坐标为-1;-3 1分2由题目和1得;B2;0;C-1;-3;A1;1;根据两点间距离公式 ()()52131122=--+--=AC 1分 ∴ 根据勾股逆定理;得出ABC ∆是直角三角形. 2分海壁备注:方法很多;如直线斜率乘积-1 3 要使得存在O 、M 、N 为顶点的三角形与ABC ∆相似又∵ ∠ABC=∠ONM=90°∴ AB ON BC NM = 或 AB NM BC ON =设N x ;0 MN ⊥x 轴. ∴ M x ;x x 2-2+∴ MN=|x x 2-2+| ON=|x | 当AB ON BC NM =时; 2232-2x x x =+解得; 5=x 或1-=x 或0=x 舍去 2分当AB NM BC ON =时; 22232x x x +-= 解得;35=x 或37=x 或0=x 舍去 2分 ∴N 坐标为5;0;-1;0; ;0; ;0考点抛物线的解析式;一次函数与二次函数的交点—九年级上册;勾股定理—八年级下册;相似—九年级下册;两点间的距离公式—哪年级海壁点评欢笑吧;2016的数学中考少年相比前几年的中考压轴题;今年第三小问的难度下降一个档次;新颖度下降一个档次..第一小问;常规的求二次函数的解析式;用顶点式较快;海壁推荐先求解析式后转化三种形式让错误不再来;第二小问;两点间的距离公式;得出三边长度后;用勾股逆定理判断直角三角形..也可以求出AB 的斜率;然后用K AB ·K CB =-1这个高中的知识点;当然会损失一点超纲分;第三小问;海壁总结的四大类型中的“存在问题”;稍有难度的是需要分类讨论;第一是边比会换;第二是有正有负;稍不注意就会漏点..日常在学校模考中能得A+的同学;甚至A 的同学;都应该能写出2点以上..据我们统计;海壁的学生情况非常乐观;这题的难度在80%的海壁学生的能力范围内..2017年;来吧;海壁带你飞 海壁教育的几个观点1、 今年难度创下2011年以来的新低;各档次分数线自然水涨船高..我们预计今年的A+分数线在112分以上;相比去年的107提升不少..2、 2017年的初三少年请做好难度上的准备;毕竟中考是选拔性考试;数学是最具选拔性的学科;不可能年年容易..3、 海壁的老师觉得中考简单、高考也不难..但是广西这样的老师太少了..我们希望优秀的老师们一起努力;让高考的平均分上到100理科60;文科47满分150;孩子们得这个分数;谁还喜欢数学4、 数学是有用的;不仅仅只是考试;数学是有趣的;不仅仅只是做题;数学是美丽的;不仅仅只有逻辑大师陈省身说过;数学好玩..与同学和老师们共勉..。

广西南宁市(六市同城)中考数学真题试题(含解析)

广西南宁市(六市同城)中考数学真题试题(含解析)

h3 3 3 广西南宁市(六市同城)xx 年中考数学真题试题(考试时间:120 分钟 满分:120 分)注意事项:1. 本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分,请在答题卡上作答,在试卷上作答无效。

2. 答题前,请认真阅读答题卡上的注意事项。

3. 不能使用计算器,考试结束前,将本试卷和答题卡一并交回。

一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中只有一项是符合要求的,用 2B 铅笔把答题卡上对应题目的答案标号涂黑.)1. -3 的倒数是 A. -3B. 3C. -1D. 1【答案】C【考点】倒数定义,有理数乘法的运算律,【解析】根据倒数的定义,如果两个数的乘积等于 1,那么我们就说这两个数互为倒数.除 0 以外的数都存在倒数。

因此-3 的倒数为-1【点评】主要考察倒数的定义2. 下列美丽的壮锦图案是中心对称图形的是【答案】A【考点】中心对称图形【解析】在平面内,如果把一个图形绕某个点旋转 180°后,能与自身重合,那么这个图形就叫做中心对称图形。

【点评】掌握中心对称图形的概念,中心对称图形是要寻找对称中心,旋转 180 度后两部分重合.3.xx 年俄罗斯世界杯开幕式于 6 月 14 日在莫斯科卢日尼基球场举行,该球场可容纳 81000名观众,其中数据 81000 用科学计数法表示为()A. 81103B.8.1104C.8.1105D. 0.81105【答案】B【考点】科学计数法【解析】81000 8.1104,故选 B【点评】科学计数法的表示形式为a 10n的形式,其中1 a 10,n为整数4.某球员参加一场篮球比赛,比赛分 4 节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为()A.7 分B.8 分C.9 分D.10 分【答案】 B【考点】求平均分 【解析】124 10 684【点评】本题考查用折线图求数据的平均分问题5. 下列运算正确的是A. a (a +1)=a 2+1B. (a 2)3=a 5C. 3a 2+a =4a 3D. a 5÷a 2=a 3【答案】D【考点】整式的乘法;幂的乘方;整式的加法;同底数幂的除法【解析】选项 A 错误,直接运用整式的乘法法则,用单项式去乘多项式的每一项,再把结果相加,可得 a (a +1)=a 2+a ;选项 B 错误,直接运用幂的乘方法则,底数不变,指数相乘,可得(a 2)3=a 6; 选项 C 错误,直接运用整式的加法法则,3a 2 和 a 不是同类项,不可以合并;选项 D 正确,直接运用同底数幂的除法,底数不变,指数相减,可得 a 5÷a 2=a 3. 【点评】本题考查整式的四则运算,需要记住运算法则及其公式,属于基础题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y A B C
O
x
2013 年
21、如图 9, ABC 三个顶点坐标分别为 A(-1,3) ,B(-1,1) ,C(-3,2) 。
(1) 请画出 ABC 关于 Y 轴对称的 ∆A1 B1 C1 。 (2)以原点 O 为位似中心,将∆A1 B1 C1 放大为 原 来 的 2 倍 , 得 到 ∆A2 B2 C2 , 并 求 出 S∆A 1 B 1 C 1 :S∆A 2 B 2 C 2 的值。
图 图8 图 10
x
2011 年 21.如图,方格纸中的每个小方格都是边长为 1 个单位长度的正方形,△ABC 的顶点都在格 点上,建立平面直角坐标系. (1)点 A 的坐标为 ,点 C 的坐标为 . (2)将△ABC 向左平移 7 个单位,请画出平移后的△A1B1C1.若 M 为△ABC 内的一点, 其坐标为(a,b),则平移后点 M 的对应点 M1 的坐标为 . (3)以原点 O 为位似中心,将△ABC 缩小,使变换后得到的△A2B2C2 与△ABC 对应边的 比为 1∶2.请在网格内画出△A2B2C2,并写出点 A2 的坐标: .
2006 年 21.正方形网格中有一条简笔画“鱼” ,请你以点 O 为位似中心放大,使新图形与原图形的 对应线段的比是 2 :1 (不要求写作法) .
2009 年 22.已知 △ ABC 在平面直角坐标系中的位置如图 10 所示. (1)分别写出图中点 A和点C 的坐标; (2)画出 △ ABC 绕点 C 按顺时针方向旋转 90°后的△ ABC ; (3)求点 A 旋转到点 A 所经过的路线长(结果保留 y 8 7 6 5 A 4 3 2 1 . π)
相关文档
最新文档