第13章热力学基础习题解

合集下载

大学物理热力学基础习题与解答

大学物理热力学基础习题与解答

1T2 T1
[D]
p a
b b
T1
d c c T2 V
填空题
1. 要使一热力学系统的内能增加,可以通过 做功 或 传热 两种方式,或者两种
方式兼用来完成。理想气体的状态发生变 化时,其内能的增量只决定于
温度的变化 ,而与 过程 无关。
2 .一气缸内储有 10 mol 单原子分子理想气体,
在压缩过程中,外力做功 209 J,气体温度升高 1
大学物理
热力学基础
选择题
1. 有两个相同的容器,容积不变,一个盛有氦气, 另一个盛有氢气(均可看成刚性分子),它们的压 强和温度都相等。现将5J 的热量传给氢气,使氢
气温度升高,如果使氦气也升高同样的温度,则 应向氦气传递的热量是
(A) 6 J (C) 3 J
(B) 5 J (D) 2 J
[C]
ΔQ M mCvΔT
3. 对于室温下的双原子分子理想气体,在等压
膨胀的情况下,系统对外所作的功与从外
界吸收的热量之比W / Q 等于:
(A)1 / 3
(B)1 / 4
(C)2 / 5
(D)2 / 7
(D )
WpΔVmRΔT M
QΔEWm5ΔTmRΔT7mRΔT
M2 M
2M
4.热力学第一定律表明: (A)系统对外所作的功小于吸收的热量; (B)系统内能的增量小于吸收的热量; (C)热机的效率小于1; (D)第一类永动机是不可能实现的。
(P1,V1)开始,经过一个等容过程达到压强为 P1/4 的 b 态,再经过一个等压过程达到状态 c , 最后经过等温过程而完成一个循环。求该循环
过程中系统对外做的功 A 和吸收的热量 Q .
解:设状态 c 的体积为V2 , 由于a , c 两状态的温度相同

大学物理学热力学基础练习题

大学物理学热力学基础练习题

《大学物理学》热力学基础一、选择题13-1.如图所示,bca 为理想气体的绝热过程,b 1a 和b 2a 是任意过程,则上述两过程中气体做功与吸况是 ( )(A )b 1a 过程放热、作负功,b 2a (B )b 1a 过程吸热、作负功,b 2a 过程放热、作负功; (C )b 1a 过程吸热、作正功,b 2a 过程吸热、作负功; (D )b 1a 过程放热、作正功,b 2a 过程吸热、作正功。

【提示:体积压缩,气体作负功;三个过程中a 和b 两点之间的内能变化相同,bca 线是绝热过程,既不吸热也不放热,b 1a 过程作的负功比b 2a 过程作的负功多,由Q W E =+∆知b 2a 过程放热,b 1a 过程吸热】13-2.如图,一定量的理想气体,由平衡态A 变到平衡态B ,且他们的压强相等,即A B P P =。

问在状态A 论经过的是什么过程,气体必然 ( ) (A )对外作正功;(B )内能增加; (C )从外界吸热;(D )向外界放热。

【提示:由于ABTT <,必有AB EE <;而功、热量是过程量,与过程有关】13-3.两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性理想气体),开始时它们的压强和温度都相同,现将 3 J 的热量传给氦气,使之升高到一定的温度,若氢气也升高到同样的温度,则应向氢气传递热量为 ( )(A )6J ; (B )3J ; (C )5J ; (D )10J 。

【提示:等体过程不做功,有Q E =∆,而2mol M iE R T M ∆=∆,所以需传5J 】13-4.有人想象了如图所示的四个理想气体的循环过程,则在理)不能相交】 13-5.一台工作于温度分别为327℃和( )(A )2000J ; (B )1000J ; (C )4000J ; (D )500J 。

【卡诺热机的效率为211T T η=-,W Qη=,可求得300150%600η=-=,则1000W Q J η==】13-6.根据热力学第二定律( )(A )自然界中的一切自发过程都是不可逆的; (B )不可逆过程就是不能向相反方向进行的过程;(C )热量可以从高温物体传到低温物体,但不能从低温物体传到高温物体;(D )任何过程总是沿熵增加的方向进行。

热力学练习题全解

热力学练习题全解

热力学练习题全解热力学是研究热能转化和热力学性质的科学,它是物理学和化学的重要分支之一。

在热力学中,我们通过解决一系列练习题来巩固和应用所学知识。

本文将为您解答一些热力学练习题,帮助您更好地理解和应用热力学的基本概念和计算方法。

1. 练习题一题目:一个理想气体在等体过程中,吸收了50 J 的热量,对外界做了30 J 的功,求该气体内能的变化量。

解析:根据热力学第一定律,内能变化量等于热量和功之和。

即ΔU = Q - W = 50 J - 30 J = 20 J。

2. 练习题二题目:一摩尔理想气体从A状态经过两个等温过程和一段绝热过程转变为B状态,A状态和B状态的压强和体积分别为P₁、P₂和V₁、V₂,已知 P₂ = 4P₁,V₁ = 2V₂,求这个过程中气体对外界做的总功。

解析:由两个等温过程可知,气体对外界做的总功等于两个等温过程的功之和。

即 W = W₁ + W₂。

根据绝热过程的特性,绝热过程中气体对外做功为零。

因此,只需要计算两个等温过程的功即可。

根据理想气体的状态方程 PV = nRT,结合已知条件可得:P₁V₁ = nRT₁①P₂V₂ = nRT₂②又已知 P₂ = 4P₁,V₁ = 2V₂,代入式①和式②可得:8P₁V₂ = nRT₁③4P₁V₂ = nRT₂④将式③和式④相减,可得:4P₁V₂ = nR(T₁ - T₂) ⑤由于这两个等温过程温度相等,即 T₁ = T₂,代入式⑤可得:4P₁V₂ = 0所以,这个过程中气体对外界做的总功 W = 0 J。

通过以上两个练习题的解答,我们可以看到在热力学中,我们通过应用热力学第一定律和理想气体的状态方程等基本原理,可以解答各种热力学问题。

熟练掌握这些计算方法,有助于我们更深入地理解热力学的基本概念,并应用于实际问题的解决中。

总结:本文对两道热力学练习题进行了详细解答,分别涉及了等体过程和等温过程。

通过这些例题的解析,读者可以理解和掌握热力学的基本计算方法,并将其应用于实际问题的求解中。

第13章 热力学基础习题及答案

第13章 热力学基础习题及答案

第十三章习题热力学第一定律及其应用1、关于可逆过程和不可逆过程的判断:(1) 可逆热力学过程一定是准静态过程.(2) 准静态过程一定是可逆过程.(3) 不可逆过程就是不能向相反方向进行的过程.(4) 凡有摩擦的过程,一定是不可逆过程.以上四种判断,其中正确的是。

2、如图所示,一定量理想气体从体积V1,膨胀到体积V2分别经历的过程是:A→B等压过程,A→C等温过程;A→D绝热过程,其中吸热量最多的过程。

3、一定量的理想气体,分别经历如图(1) 所示的abc过程,(图中虚线ac为等温线),和图(2) 所示的def过程(图中虚线df为绝热线).判断这两种过程是吸热还是放热.abc过程热,def过程热.4、如图所示,一绝热密闭的容器,用隔板分成相等的两部分,左边盛有一定量的理想气体,压强为p0,右边为真空.今将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压强是。

(=γC p/C V)5、一定量理想气体,从同一状态开始使其体积由V1膨胀到2V1,分别经历以下三种过程:(1) 等压过程;(2) 等温过程;(3)绝热过程.其中:__________过程气体对外作功最多;____________过程气体内能增加最多;__________过程气体吸收的热量最多.VV答案1、(1)(4)是正确的。

2、是A-B 吸热最多。

3、abc 过程吸热,def 过程放热。

4、P 0/2。

5、等压, 等压, 等压理想气体的功、内能、热量1、有两个相同的容器,容积固定不变,一个盛有氦气,另一个盛有氢气(看成刚性分子的理想气体),它们的压强和温度都相等,现将5J 的热量传给氢气,使氢气温度升高,如果使氦气也升高同样的温度,则应向氨气传递热量是 。

2、 一定量的理想气体经历acb 过程时吸热500 J .则经历acbda 过程时,吸热为 。

3、一气缸内贮有10 mol 的单原子分子理想气体,在压缩过程中外界作功209J ,气体升温1 K ,此过程中气体内能增量为 _____ ,外界传给气体的热量为___________________. (普适气体常量 R = 8.31 J/mol· K)4、一定量的某种理想气体在等压过程中对外作功为 200 J .若此种气体为单 原子分子气体,则该过程中需吸热_____________ J ;若为双原子分子气体,则 需吸热______________ J.p (×105 Pa)3 m 3)5、 1 mol 双原子分子理想气体从状态A (p 1,V 1)沿p -V 图所示直线变化到状态B (p 2,V 2),试求:(1) 气体的内能增量. (2) 气体对外界所作的功. (3) 气体吸收的热量. (4) 此过程的摩尔热容.(摩尔热容C =T Q ∆∆/,其中Q ∆表示1 mol 物质在过程中升高温度T ∆时所吸收的热量.)答案1、3J2、-700J3、124.7 J ,-84.3 J4、500J ;700J5、解:)(25)(112212V p V p T T C E V -=-=∆ (2) ))((211221V V p p W -+=, W 为梯形面积,根据相似三角形有p 1V 2= p 2V 1,则)(211122V p V p W -=. (3) Q =ΔE +W =3( p 2V 2-p 1V 1 ).(4) 以上计算对于A →B 过程中任一微小状态变化均成立,故过程中ΔQ =3Δ(pV ). 由状态方程得 Δ(pV ) =R ΔT , 故 ΔQ =3R ΔT ,摩尔热容 C =ΔQ /ΔT =3R .p p p 12循环过程1、 如图表示的两个卡诺循环,第一个沿ABCDA 进行,第二个沿A D C AB ''进行,这两个循环的效率1η和2η的关系及这两个循环所作的净功W 1和W 2的关系是 η1 η2 ,W 1 W 22、 理想气体卡诺循环过程的两条绝热线下的面积大小(图中阴影部分)分别为S 1和S 2,则二者的大小关系是:3、一卡诺热机(可逆的),低温热源的温度为27℃,热机效率为40%,其高温热源温度为_______ K .今欲将该热机效率提高到50%,若低温热源保持不变,则高温热源的温度应增加________ K .4、如图,温度为T 0,2 T 0,3 T 0三条等温线与两条绝热线围成三个卡诺循环:(1) abcda ,(2) dcefd ,(3) abefa ,其效率分别为η1_________,η2__________,η 3 __________.5、一卡诺热机(可逆的),当高温热源的温度为 127℃、低温热源温度为27℃时,其每次循环对外作净功8000 J .今维持低温热源的温度不变,提高高温热源温度,使其每次循环对外作净功 10000 J .若两个卡诺循环都工作在相同的两条绝热线之间,试求: (1) 第二个循环的热机效率; (2) 第二个循环的高温热源的温度.6、 1 mol 单原子分子理想气体的循环过程如T -V 图所示,其中c 点的温度为T c =600 K .试求:(1) ab 、bc 、c a 各个过程系统吸收的热量; (2) 经一循环系统所作的净功; (3) 循环的效率. BAC DC 'D 'p p-3m 3)p O 3T 0 2T 0 T 0fad b c e(注:循环效率η=W /Q 1,W 为循环过程系统对外作的净功,Q 1为循环过程系统从外界吸收的热量ln2=0.693)答案 1、=;<2、S 1 = S 2.3、500 ; 1004、33.3% ; 50%; 66.7%5、解:(1) 1211211T T T Q Q Q Q W -=-==η 2111T T T W Q -= 且 1212T TQ Q =∴ Q 2 = T 2 Q 1 /T 1即 212122112T T T W T T T T T Q -=⋅-==24000 J 由于第二循环吸热 221Q W Q W Q +'='+'=' ( ∵ 22Q Q =') =''='1/Q W η29.4% (2) ='-='η121T T 425 K6、解:单原子分子的自由度i =3.从图可知,ab 是等压过程,V a /T a = V b /T b ,T a =T c =600 KT b = (V b /V a )T a =300 K (1) )()12()(c b c b p ab T T R i T T C Q -+=-= =-6.23×103 J (放热) )(2)(b c b c V bc T T R iT T C Q -=-= =3.74×103 J (吸热) Q ca =RT c ln(V a /V c ) =3.46×103 J (吸热) (2) W =( Q bc +Q ca )-|Q ab |=0.97×103 J (3) Q 1=Q bc +Q ca , η=W / Q 1=13.4%热力学第二定律1、根据热力学第二定律判断下列说法的正误: (A) 功可以全部转换为热,但热不能全部转换为功. ( ) (B) 热可以从高温物体传到低温物体,但不能从低温物体传到高温物体 ( )(C) 不可逆过程就是不能向相反方向进行的过程.()(D) 一切自发过程都是不可逆的.()2、热力学第二定律的开尔文表述和克劳修斯表述是等价的,表明在自然界中与热现象有关的实际宏观过程都是不可逆的,开尔文表述指出了___________________________的过程是不可逆的,而克劳修斯表述指出了________________的过程是不可逆的.3、所谓第二类永动机是指________________________________________,它不可能制成是因为违背了________________________________________.答案1、⨯,⨯,⨯,√2、功变热;热传导3、从单一热源吸热,在循环中不断对外作功的热机;热力学第二定律。

热力学练习题理解热平衡和热力学第一定律

热力学练习题理解热平衡和热力学第一定律

热力学练习题理解热平衡和热力学第一定律热力学练习题:理解热平衡和热力学第一定律热力学是研究能量转化和能量守恒的科学,对于理解能量转移、热平衡和热力学第一定律至关重要。

在本练习题中,我们将探索和理解热平衡和热力学第一定律的概念,以加深对热力学的理解。

1. 热平衡的定义热平衡是指两个物体或系统之间没有任何温度差异或温度梯度的状态。

在热平衡状态下,热量不再从一个物体传递到另一个物体,两者之间的能量转移达到平衡。

这是一个重要的概念,因为热平衡是热力学研究的基石。

2. 热平衡的示例假设我们有一个绝热容器,内部分为两个部分:A和B。

初始时,A部分的温度为100摄氏度,而B部分的温度为50摄氏度。

我们将容器隔离并观察一段时间后。

在达到热平衡状态时,A和B两部分之间的温度将趋于相等,最终稳定在75摄氏度。

这种情况下,热平衡的达成意味着没有热量再从高温区域传递到低温区域。

3. 热力学第一定律的定义热力学第一定律,也被称为能量守恒定律,是指能量在系统中的转移和转化是由于热和功的相互作用。

简而言之,能量既不能被创造也不能被消灭,只能从一种形式转化为另一种形式。

4. 热力学第一定律的表达式热力学第一定律可以用以下表达式表示:ΔU = Q - W其中,ΔU表示系统内能的改变,Q表示系统吸收的热量,W表示系统对外做的功。

5. 热力学第一定律的应用热力学第一定律在能量转移和转化的过程中起着重要的作用。

我们可以通过热力学第一定律来计算系统的内能变化,以及热量和功之间的相互转化。

这使得我们能够更好地理解和分析各种物理和化学过程中的能量变化。

6. 热力学练习题现在让我们来尝试解答一些关于热力学的练习题,以加深对热平衡和热力学第一定律的理解。

(1) 一个物体吸收了100J的热量,同时对外做了50J的功,那么它的内能变化是多少?(2) 一个物体从A状态经过一系列过程,最终回到了A状态。

这些过程中,物体的内能变化是多少?(3) 一个汽车发动机从燃料中释放了2000J的能量,其中有1000J被用于对外做功。

物理化学《化学热力学基础》习题及答案

物理化学《化学热力学基础》习题及答案

物理化学《化学热力学基础》习题及答案1-2 选择题1、273K ,θp 时,冰融化为水的过程中,下列关系是正确的有(B )A.0<WB.p Q H =∆C.0<∆HD.0<∆U2、体系接受环境做功为160J ,热力学能增加了200J ,则体系(A )A.吸收热量40JB.吸收热量360JC.放出热量40JD.放出热量360J3、在一绝热箱内,一电阻丝浸入水中,通以电流。

若以水和电阻丝为体系,其余为环境,则(C )A.0,0,0>∆=>U W QB.0,0,0>∆==U W QC.0,0,0>∆>=U W QD.0,0,0<∆=<U W Q4、任一体系经一循环过程回到始态,则不一定为零的是(D )A.G ∆B.S ∆C.U ∆D.Q5、对一理想气体,下列关系式不正确的是(A )A.0=⎪⎭⎫ ⎝⎛∂∂p T UB.0=⎪⎭⎫ ⎝⎛∂∂T V H C.0=⎪⎪⎭⎫ ⎝⎛∂∂T p H D.0=⎪⎪⎭⎫ ⎝⎛∂∂T p U 6、当热力学第一定律写成pdV Q dU -=δ时,它适用于(C )A.理想气体的可逆过程B.封闭体系的任一过程C.封闭体系只做体积功过程D.封闭体系的定压过程7、在一绝热刚壁体系内,发生一化学反应,温度从21T T →,压力由21p p →,则(D )A.0,0,0>∆>>U W QB.0,0,0<∆<=U W QC.0,0,0>∆>=U W QD.0,0,0=∆==U W Q 8、理想气体定温定压混合过程中,下列体系的性质不正确的是(C )A.0>∆SB.0=∆HC.0=∆GD.0=∆U9、任意的可逆循环过程,体系的熵变(A )A.一定为零B.一定大于零C.一定为负D.是温度的函数10、一封闭体系从B A →变化时,经历可逆R 和不可逆IR 途径,则(B )A.IR R Q Q =B.T Q dS IRδ> C.IR R W W = D.TQ T Q IR R =11、理想气体自由膨胀过程中(D )A.0,0,0,0=∆>∆>=H U Q WB.0,0,0,0>∆>∆=>H U Q WC.0,0,0,0=∆=∆><H U Q WD.0,0,0,0=∆=∆==H U Q W12、2H 和2O 在绝热定容的体系中生成水,则(D )A.0,0,0=∆>∆=孤S H QB.0,0,0>∆=>U W QC.0,0,0>∆>∆>孤S U QD.0,0,0>∆==孤S W Q13、理想气体可逆定温压缩过程中,错误的有(A )A.0=∆体SB.0=∆UC.0<QD.0=∆H14、当理想气体反抗一定外压做绝热膨胀时,则(D )A.焓总是不变的B.热力学能总是不变的C.焓总是增加的D.热力学能总是减小的15、环境的熵变等于(B 、C ) A.环体T Q δ B.环体T Q δ- C.环环T Q δ D.环环T Q δ-16、在孤立体系中进行的变化,其U ∆和H ∆的值一定是(D )A.0,0<∆>∆H UB.0,0=∆=∆H UC.0,0<∆<∆H UD.不能确定H U ∆=∆,017、某体系经过不可逆循环后,错误的答案是(A )A.0=QB.0=∆SC.0=∆UD.0=∆H18、C 6H 6(l)在刚性绝热容器中燃烧,则(D )A.0,0,0=<∆=∆Q H UB.0,0,0=>∆=∆W H UC.0,0,0==∆≠∆Q H UD.0,0,0=≠∆=∆W H U19 、下列化学势是偏摩尔量的是( B ) A.Zn V T B n F ,,⎪⎭⎫ ⎝⎛∂∂ B.Z n p T B n G ,,⎪⎭⎫ ⎝⎛∂∂ C.Z n V S B n U ,,⎪⎭⎫ ⎝⎛∂∂ D.Z n p S B n H ,,⎪⎭⎫ ⎝⎛∂∂ 20、在℃10-,θp ,1mol 过冷的水结成冰时,下述表示正确的是( C )A.00,0,0>∆>∆>∆<∆孤环体,S S S GB.00,0,0<∆<∆<∆>∆孤环体,S S S GC.00,0,0>∆>∆<∆<∆孤环体,S S S GD.00,0,0<∆<∆>∆>∆孤环体,S S S G21、下述化学势的公式中,不正确的是( D ) A.B B Z n p T n Gμ=⎪⎪⎭⎫ ⎝⎛∂∂,, B.m B pS T ,-=⎪⎭⎫ ⎝⎛∂∂μ C.m B TV p ,=⎪⎪⎭⎫ ⎝⎛∂∂μ D.Z n p T B n U ,,⎪⎪⎭⎫ ⎝⎛∂∂ 22、在373.15K ,101.325Pa ,)(2l O H μ与)(2g O H μ的关系是( B )A.)()(22g O H l O H μμ>B.)()(22g O H l O H μμ=C.)()(22g O H l O H μμ<D.无法确定23、制作膨胀功的封闭体系,pT G ⎪⎭⎫ ⎝⎛∂∂的值( B ) A.大于零 B.小于零 C.等于零 D.无法确定24、某一过程0=∆G ,应满足的条件是( D )A.任意的可逆过程B.定温定压且只做体积中的过程C.定温定容且只做体积功的可逆过程D.定温定压且只做体积功的可逆过程25、1mol 理想气体经一定温可逆膨胀过程,则( A )A.F G ∆=∆B.F G ∆>∆C.F G ∆<∆D.无法确定26、纯液体在正常相变点凝固,则下列量减少的是( A )A.SB.GC.蒸汽压D.凝固热27、右图中哪一点是稀溶液溶质的标准态的点( B )A.a 点B.b 点C.c 点D.d 点28、在θp 下,当过冷水蒸气凝结为同温度的水,在该过程中正、负号无法确定的是( D )A.G ∆B.S ∆C.H ∆D.U ∆29、实际气体的化学势表达式为θθμμp f RT T ln)(+=,其中标准态 化学势为( A )A.逸度θp f =的实际气体的化学势B.压力θp p =的实际气体的化学势C.压力θp p =的理想气体的化学势D.逸度θp f =的理想气体的化学势30、理想气体的不可逆循环,G ∆( B )A.0<B.0=C.0>D.无法确定31、在βα,两相中含A 、B 两种物质,当达平衡时,正确的是( B )A.ααμμB A =B.ααμμA A =C.βαμμB A =D.ββμμB A =32、多组分体系中,物质B 的化学势随压力的变化率,即)(,B Z B Z n T p ≠⎪⎪⎭⎫ ⎝⎛∂∂μ的值( A ) A.0> B.0< C.0= D.无法确定33、℃10-、标准压力下,1mol 过冷水蒸汽凝集成冰,则体系、环境及总的熵变为( B )A.0,0,0<∆<∆<∆univ sur sys S S SB.0,0,0>∆>∆<∆univ sur sys S S SC.0,0,0>∆>∆>∆univ sur sys S S SD.0,0,0<∆>∆<∆univ sur sys S S S34、p-V 图上,1mol 单原子理想气体,由状态A 变到状态B ,错误的是( B )A.Q U =∆B.Q H =∆C.0<∆SD.0<∆U35、体系经不可逆过程,下列物理量一定大于零的是( C )A.U ∆B.H ∆C.总S ∆D.G ∆36、一个很大的恒温箱放着一段电阻丝,短时通电后,电阻丝的熵变( D )A.0>B.0<C.0=D.无法确定37、热力学的基本方程Vdp SdT dG +-=可使用与下列哪一过程( B )A.298K ,标准压力的水蒸发的过程B.理想气体向真空膨胀C.电解水制备氢气D.合成氨反应未达平衡38、温度为T 时,纯液体A 的饱和蒸汽压为*A p ,化学势为*A μ,在1θp 时,凝固点为0f T ,向A 溶液中加入少量溶质形成稀溶液,该溶质是不挥发的,则A p 、A μ、f T 的关系是( D )A.f f A A A A T T p p <<<0,**,μμB.f f A A A A T T p p <<>0,**,μμC.f f A A A A T T p p ><>0,**,μμD.f f A A A A T T p p >>>0,**,μμ39下列性质不符合理想溶液通性的是: ( D )A. ∆mix V =0B. ∆mix S >0C. ∆mix G <0D. ∆mix G >040、从A 态到B 态经不可逆过程ΔS 体是: ( D )A.大于零B.小于零C.等于零D.无法确定41、常压下-10℃过冷水变成-10℃的冰,在此过程中,体系的ΔG 与ΔH 如何变化: ( D )A. ΔG<0,ΔH>0B. ΔG>0,ΔH>0C. ΔG=0,ΔH=0D. ΔG<0,ΔH<042、某绝热封闭体系在接受了环境所做的功之后,其温度:( A )A.一定升高B.一定降低C.一定不变D.不一定改变43、对于纯物质的标准态的规定,下列说法中不正确的是: (C)A. 气体的标准态就是温度为T ,压力为100kPa 下具有理想气体性质的纯气体状态。

《热学》期末复习用 各章习题+参考答案

《热学》期末复习用 各章习题+参考答案

(
29 × 10 3
)
485������
(4) 空气分子的碰撞频率为
√2������ ������
√2
6 02 × 10 × 22 4 × 10
3 3
×
(3
7 × 10−10)
× 485
(5) 空气分子的平均自由程为
7 9 × 109
������
485 7 9 × 109
6 1 × 10 8������
(������ + ������ )������������ ������ ������������ + ������ ������������
(4)
联立方程(1)(2)(3)(4)解得
������ + ������
������
2
������ ������ ������ (������ ������ + ������ ������ ) (������ + ������ )
������ (������ + ∆������) ������
������
������
(������ + ∆������) ������
������
ln
������������ ������
ln ������
������ + ∆������
ln
Hale Waihona Puke 133 101000ln
2
2
+
20 400
269
因此经过 69 × 60 40 后才能使容器内的压强由 0.101MPa 降为 133Pa.
1-7 (秦允豪 1.3.6) 一抽气机转速������ 400������ ∙ ������������������ ,抽气机每分钟能抽出气体20������.设 容器的容积������ 2 0������,问经过多长时间后才能使容器内的压强由 0.101MPa 降为 133Pa.设抽 气过程中温度始终不变.

热力学基础练习题答案版

热力学基础练习题答案版

热⼒学基础练习题答案版热⼒学基础练习题1、热⼒学第⼀定律ΔU=Q+W 只适⽤于( D )(A) 单纯状态变化 (B) 相变化(C) 化学变化 (D) 封闭物系的任何变化2、关于焓的性质, 下列说法中正确的是( D )(A) 焓是系统内含的热能, 所以常称它为热焓(B) 焓是能量, 它遵守热⼒学第⼀定律(C) 系统的焓值等于内能加体积功(D) 焓的增量只与系统的始末态有关3、第⼀类永动机不能制造成功的原因是( A )(A) 能量不能创造也不能消灭(B) 实际过程中功的损失⽆法避免(C) 能量传递的形式只有热和功(D) 热不能全部转换成功4、下列叙述中不具状态函数特征的是( D )A.系统状态确定后,状态函数的值也确定B.系统变化时,状态函数的改变值只由系统的初终态决定C.经循环过程,状态函数的值不变D.状态函数均有加和性5、下列叙述中,不具可逆过程特征的是( C )A.过程的每⼀步都接近平衡态,故进⾏得⽆限缓慢B.沿原途径反向进⾏时,每⼀⼩步系统与环境均能复原C.过程的初态与终态必定相同D.过程中,若做功则做最⼤功,若耗功则耗最⼩功6、在下列关于焓的描述中,正确的是( C )A.因为ΔH=Q,所以焓是恒压热PB.⽓体的焓只是温度的函数C.⽓体在节流膨胀中,它的焓不改变D.因为ΔH=ΔU+Δ(PV),所以任何过程都有ΔH>0的结论7、下⾯关于标准摩尔⽣成焓的描述中,不正确的是( C )C.⽣成反应的温度必须是298.15KD.⽣成反应中各物质所达到的压⼒必须是100KPa8、选出下列性质参数中属于容量性质的量 ( C )A.温度TB.浓度cC.体积VD.压⼒p9、关于节流膨胀, 下列说法正确的是( B )(A) 节流膨胀是绝热可逆过程 (B) 节流膨胀中系统的内能变化(C) 节流膨胀中系统的焓值改变(D) 节流过程中多孔塞两边的压⼒不断变化10、如图,在绝热盛⽔容器中,浸⼊电阻丝,通电⼀段时间,通电后⽔及电阻丝的温度均略有升⾼,今以电阻丝为体系有:( B )(A) W =0,Q <0,U <0 (B). W>0,Q <0,U >0(C) W <0,Q <0,U >0 (D). W <0,Q =0,U >011、若将⼈作为⼀个体系,则该体系为 ( C )A.孤⽴体系B.封闭体系C.敞开体系D.⽆法确定12、刚性绝热箱内发⽣⼀化学反应,则反应体系为 ( A )A.孤⽴体系B.敞开体系C.封闭体系D.绝热体系13、下列性质属于强度性质的是 ( D )A.内能和焓B.压⼒与恒压热容C.温度与体积差A.状态⼀定,值⼀定B.在数学上有全微分性质C.其循环积分等于零D.所有状态函数的绝对值都⽆法确定15、关于等压摩尔热容和等容摩尔热容,下⾯的说法中不正确的是 ( B )A.Cp,m 与Cv,m不相等,因等压过程⽐等容过程系统多作体积功B.Cp,m –Cv,m=R既适⽤于理想⽓体体系,也适⽤于实际⽓体体系C.Cv,m=3/2R适⽤于单原⼦理想⽓体混合物D.在可逆相变中Cp,m 和Cv,m都为⽆限⼤16、对于理想⽓体,⽤等压热容Cp计算ΔH的适⽤范围为 ( C )A.只适⽤于⽆相变,⽆化学变化的等压变温过程B.只适⽤于⽆相变,⽆化学变化的等容变温过程C.适⽤于⽆相变,⽆化学变化的任意过程D.以上答案均不正确17、H=Q p此式适⽤于哪⼀个过程:( B )(A)理想⽓体从101325Pa反抗恒定的10132.5Pa膨胀到10132.5Pa (B)在0℃、101325Pa下,冰融化成⽔(C)电解CuSO4的⽔溶液(D)⽓体从(298K,101325Pa)可逆变化到(373K,10132.5Pa )2=2NH3的反应进度ξ=1mol时,它表⽰系统中 ( A )A.有1molN2和3molH2变成了2molNH3B.反应已进⾏完全,系统中只有⽣成物存在C.有1molN2和3molH2参加了反应D.有2molNH3参加了反应19、对于化学反应进度,下⾯表述中正确的是 ( B )A.化学反应进度之值,与反应完成的程度⽆关B.化学反应进度之值,与反应式写法有关C.对于指定反应,化学反应进度之值与物质的选择有关D.反应进度之值与平衡转化率有关20、对于化学反应进度,下⾯表述中不正确的是 ( B )A.化学反应进度随着反应进⾏⽽变化,其值越⼤,反应完成的程度越⼤B.化学反应进度之值与反应式写法⽆关C.对于指定的反应,反应进度之值与物质的选择⽆关D.化学反应进度与物质的量具有相同的量纲21、欲测定有机物的燃烧热Q p ,⼀般使反应在氧弹中进⾏,实测得热效为Q V。

热力学基础

热力学基础

热力学基础习 题一、单选题1、一定量的理想气体,从同一初态分别经历等温可逆膨胀、绝热可逆膨胀到具有相同体积的终态,在绝热过程中的压强0p ∆与等温过程中的压强T p ∆的关系为( )A. T p p ∆<∆0B. T p p ∆>∆0C. T p p ∆=∆0D. 无法确定 2、系统的状态改变了,其内能值则( )A. 必定改变B. 必定不变C. 不一定改变D. 状态与内能无关3、将20g 的氦气(理想气体,且RC 23V =)在不与外界交换热量情况下,从17℃升至27℃,则气体系统内能的变化与外界对系统作的功为( )A.J 1023.62⨯=∆E ,J 1023.62⨯=A B.J 1023.62⨯=∆E ,J 1023.63⨯=AC. J 1023.62⨯=∆E ,0=A D. 无法确定4、将温度为300 K ,压强为105Pa 的氮气分别进行绝热压缩与等温压缩,使其容积变为原来的1/5。

则绝热压缩与等温压缩后的压强和温度的关系分别为( )A. 等温绝热P P >,等温绝热T T > B.等温绝热P P <, 等温绝热T T > C.等温绝热P P <,等温绝热T T > D.等温绝热P P >,等温绝热T T <5、质量为m 的物体在温度为T 时发生相变过程(设该物质的相变潜热为λ),则熵变为( )A. T m S λ=∆ B.Tm S λ>∆C.Tm S λ<∆D. 0=∆S6、质量一定的理想气体,从相同状态出发,分别经历不同的过程,使其体积增加一倍,然后又回到初态,则( )A. 内能最大B. 内能最小C. 内能不变D. 无法确定7、一定量的理想气体,经历某一过程后,温度升高了。

则根据热力学定律可以断定为:(1)该理想气体系统在此过程中吸热;(2)在此过程中外界对该理想气体系统作正功;(3)该理想气体系统的内能增加了;(4)在此过程中理想气体系统从外界吸热,又对外作正功。

热力学中的热量传递与功练习题及

热力学中的热量传递与功练习题及

热力学中的热量传递与功练习题及解答题目:热力学中的热量传递与功练习题及解答热力学是研究能量转化与传递的学科,其中热量传递和功是研究的重点内容。

本文将为读者提供一些热力学中有关热量传递与功的练习题,并给出详细解答,帮助读者巩固和加深对该知识点的理解。

题目1:一个物体从20℃升到80℃,在这个过程中吸收了500J的热量。

该物体的内能变化和对外界所做的功分别是多少?解答:根据热力学第一定律,物体的内能变化等于吸收的热量减去对外界做的功。

因此,物体的内能变化为:ΔU = Q - W其中,ΔU表示内能的变化,Q表示吸收的热量,W表示对外界做的功。

根据题目,吸收的热量Q等于500J,代入公式可得:ΔU = 500J - W题目并没有直接给出对外界做功W的数值,所以我们需要通过其他方式来求解。

根据热力学第二定律,物体的温度升高时,它对外界所做的功为正值,即W>0。

在这个过程中,物体的内能增加,所以ΔU>0。

根据物体升温的公式,可以得到:ΔU = mcΔT其中,m表示物体的质量,c表示物体的比热容,ΔT表示温度变化。

根据上述公式,可以得到:500J - W = mcΔT由题可知,初始温度T1为20℃,末温度T2为80℃,代入公式可得:500J - W = mc(T2 - T1)由此,我们可以求解出对外界所做的功W的数值。

解答完毕。

题目2:一个气缸中有一升的理想气体,初始温度为300K,末温度为600K。

在这个过程中,系统对外界做了40J的功,求该过程中的热量变化量。

解答:根据热力学第一定律,系统对外界所做的功等于系统吸收的热量减去内能的变化量。

由于题目给出了功W的数值,我们可以使用下面的公式来求解热量变化量Q:Q = ΔU + W其中,Q表示热量变化量,ΔU表示内能的变化,W表示对外界所做的功。

根据题目可知,系统对外界做的功W为40J,代入公式可得:Q = ΔU + 40J由题目可知,初始温度T1为300K,末温度T2为600K。

物理化学第二版习题答案

物理化学第二版习题答案

物理化学第二版习题答案物理化学是研究物质的物理性质和化学性质以及它们之间的相互关系的一门学科。

对于学习物理化学的学生来说,习题是巩固知识、提高能力的重要途径之一。

下面将为大家提供物理化学第二版习题的答案,希望对广大学生有所帮助。

第一章:热力学基础1. 答案:热力学是研究物质在能量转化过程中的规律的科学。

它主要研究能量的转化和守恒规律,以及物质在这个过程中的性质变化。

2. 答案:热力学第一定律是能量守恒定律,即能量可以从一种形式转化为另一种形式,但总能量守恒不变。

3. 答案:热力学第二定律是能量转化过程中的不可逆性原理,即自发过程的方向是从有序向无序的方向进行。

第二章:热力学函数1. 答案:热力学函数是描述物质性质和状态的函数,如内能、焓、自由能等。

2. 答案:内能是系统所拥有的全部能量的总和,包括系统的动能和势能。

3. 答案:焓是系统的内能和对外界做的功之和,常用符号表示为H。

第三章:热力学第一定律的应用1. 答案:热容量是物质吸收或释放热量时的温度变化与热量变化之比。

2. 答案:绝热过程是指在过程中系统与外界没有热交换,即系统的热容量为零。

3. 答案:等温过程是指在过程中系统的温度保持不变,即系统与外界的热交换量为零。

第四章:热力学第二定律的应用1. 答案:熵是描述系统无序程度的物理量,表示系统的混乱程度。

2. 答案:熵增原理是热力学第二定律的数学表达式,它指出孤立系统的熵总是增加的。

3. 答案:卡诺循环是一种理想的热机循环,它由等温膨胀、绝热膨胀、等温压缩和绝热压缩四个过程组成。

第五章:相变和化学平衡1. 答案:相变是指物质由一种相转变为另一种相的过程,如固态到液态、液态到气态等。

2. 答案:平衡态是指系统各种性质的变化不再随时间变化,达到动态平衡的状态。

3. 答案:化学平衡是指在封闭容器中,反应物和生成物浓度达到一定比例时,反应速率前后保持不变的状态。

第六章:化学动力学1. 答案:化学动力学是研究化学反应速率和反应机理的学科。

马文蔚《物理学》(第6版)(下册)配套题库【名校考研真题+课后习题+章..

马文蔚《物理学》(第6版)(下册)配套题库【名校考研真题+课后习题+章..

目 录第一部分 名校考研真题第9章 振 动第10章 波 动第11章 光 学第12章 气体动理论第13章 热力学基础第14章 相对论第15章 量子物理第二部分 课后习题第9章 振 动第10章 波 动第11章 光 学第12章 气体动理论第13章 热力学基础第14章 相对论第15章 量子物理第三部分 章节题库第9章 振 动第10章 波 动第11章 光 学第12章 气体动理论第13章 热力学基础第14章 相对论第15章 量子物理第四部分 模拟试题马文蔚等《物理学》配套模拟试题及详解第一部分 名校考研真题第9章 振 动一、选择题一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动.当重物通过平衡位置且向规定的正方向运动时开始计时,则其振动方程为( ).[电子科技大学2007研]A.B .C .D.E.二、填空题一物体作简谐振动,其振动方程为(国际单位制).则此简谐振动的周期为______;当t =0.6s 时,物体的速度为______.[南京航空航天大学2008研]三、计算题1.考虑n =2摩尔的理想气体氦气,置于一垂直放置的圆柱体所缸中,如图9-1所示.水平放置的活塞可以在气缸中无摩擦上下运动.活塞质量为,气缸截面积为.活塞被一无质量的弹簧与气缸上端连接,活塞向下运动时将氦气向下压缩,活塞上方为真空.系统开始阶段活塞与氦气处于平衡状态时,弹簧处于未形变状态,氦气压强为B【答案】1.2s ;-20.9cm/s【答案】、温度为、体积为.假定弹簧弹性常数,气体常数,对于单原子氦气,热容比.活塞在平衡位置作小幅谐振动,计算其谐振频率f.[南京大学2006研]图9-1解:对弹簧,由牛顿第二定律可得: ①由于振动很快,系统来不及与外界发生热量交换,视为绝热过程,因此有:由于活塞在平衡位置作小幅谐振动,因此V0与V之间的变化很小,利用泰勒展开得: ②将②式代入①式有: ③初始时活塞处于平衡状态,有: ④将④代入③有: 整理得: 解得振动频率为: 2.质量分别为和的两个物体A、B,固定在倔强系数为的弹簧两端,竖直地放在水平桌面上,如图9-2所示.用一力垂直地压在A上,并使其静止不动.然后突然撤去,问欲使B离开桌面至少应多大?[中科院–中科大2007研]图9-2解:欲使B刚好弹起,则A到达最高点时弹簧的伸长量至少应为.假设力F作用下弹簧的压缩量为(初始位置),弹簧无变形时A的坐标为0(平衡位置).运动方程为: 当时,,则方程的解为:利用对称性,在最高点有.整理可得:又,于是:3.如图9-3所示,已知轻弹簧的劲度系数为k,定滑轮可看作质量为M,半径为R的均质圆盘,物体的质量为m,试求:(1)系统的振动周期;(2)当将m托至弹簧原长并释放时,求m的运动方程(以向下为正方向).[南京理工大学2005研]图9-3 图9-4解:(1)受力分析如图9-4所示,设平衡位置为原点,向下为正,则将物体拉至处时:对m:对: (为角加速度)解得:即: 则系统振动圆频率: 振动周期: (2)设振动方程,其中,.初始条件,当时: 解得: 求得m的运动方程为: 第10章 波 动一、选择题一平面简谐波沿x 轴正方向传播,振幅为A ,频率为.设时刻的波形曲线如图10-1所示,则x=0处质点的振动方程为( ).[电子科技大学2006研]图10-1A.B .C .D.二、填空题1.一质点沿x 轴作简谐振动,它的振幅为A ,周期为T .时,质点位于x 轴负向离平衡最大位移的一半处且向负方向运动,则质点的振动方程为x =______.在一周期内质点从初始位置运动到正方向离平衡位置为最大位移的一半处的时间为______.[南京航空航天大学2007研]2.一平面简谐机械波在弹性媒质中传播,一媒质质元在通过平衡位置时,其振动动能与弹性势能______(填相同或不同).[湖南大学2007研]B 【答案】【答案】相同【答案】3.以波速u 向x 正方向传播的平面简谐波,振幅为A ,圆频率为,设位于坐标处的质点,t =0时,位移,且向y 负方向运动,则该质点的振动方程为______,该平面简谐波的波动方程(波函数)为______.[南京理工大学2005研]三、计算题1.火车以匀速行驶而过,铁路边探测器所测得的火车汽笛最高和最低频率分别为和,设声速为,求火车的行驶速度.[南京大学2006研]解:由多普勒效应可得: ① ②①、②两式相除,得:解得火车车速为:2.一列平面简谐纵波在均匀各向同性弹性介质中传播,求单位体积介质所具有的能量?(自设相关物理量).[北京师范大学2008研]解:波动方程:振动速度: 设介质的密度为,用dV 表示体元体积,则该体积元动能:体积应变: 则势能: 因为,所以: 则有: 所以,单位体积介质所具有的能量为:【答案】3.已知一平面简谐波的表达式为y=0.25cos(125t-0.37x)(SI).(1)分别求x1=10m,x2=25m两点处质点的振动方程.(2)求x1、x2两点间的振动相位差.(3)求x1点在t=4s时的振动位移.[浙江大学2008研]解:(1),(2)由,可得: 所以: (3)时的振动位移为:4.甲火车以43.2千米/小时的速度行驶,其上一乘客听到对面驶来的乙火车鸣笛声的频率为v1=512赫兹;当这一火车过后,听其鸣笛声的频率为v2=428赫兹.求乙火车上的人听到乙火车鸣笛的频率v0和乙火车对于地面的速度u.设空气中声波的速度为340米/秒.[中科院—中科大2009研]解:由题可得: 其中,v=340m/s,v0=43.2km/h=12m/s.解得:v0=468Hz,u=18.4m/s=66.3km/h5.如图10-2所示,一平面简谐波沿x轴正方向传播,已知振幅为A,频率为,波速为u.(1)若t=0时,原点O处质元正好由平衡位置向位移正方向运动,写出此波的波函数.(2)若该波在离原点处被竖直的墙面反射,欲使坐标原点处为波节,求满足的条件(设反射时无能量损失).[厦门大学2006研]图10-2解:(1)t=0时,y0=0,u0>0,所以初始相位,故波动方程为:(2)欲使波在x0处反射后到达y0处与原行波叠加产生波节,则原点O处两振动必须反相.即:所以有: ,k=0,1,2,…6.已知一平面余弦波振幅A=0.03m,波速u=1ms-1,波长,若以坐标原点O处质点恰好在平衡位置且向负方向运动时作为计时起点,求:(1)O点振动方程.(2)波动方程.(3)与原点相距处,t=1秒时,质点的位移、速度;(4)和两点间的相位差.[南京航空航天大学2006研]解:(1)设O点振动方程为:.其中,,由题意知:.于是: (2)波动方程为:.得:(3)与原点相距处,波动方程:得质点速度: 当t=1秒时: (4)相位差: 7.设入射波的表达式为,在处发生反射,反射点为一固定端,设反射时无能量损失,求:(1)反射波的表达式.(2)合成的驻波的表达式.(3)波腹和波节的位置.[湖南大学2007研]解:(1)反射波的表达式为: (2)驻波的表达式为:(3)由,可得波腹位置为:由,可得波节位置为:,8.图10-3所示为一沿x轴正方向传播的平面余弦行波在t=2s时刻的波形曲线,波速u=0.5m/s,求:(1)原点o的振动方程;(2)波动方程.[电子科技大学2007研]图10-3解:(1)由已知得:.可得振动方程:(2)波动方程为: 9.一横波沿绳子传播,其波的表达式为.(1)求此波的振幅、波速、频率和波长.(2)求绳子上各质点的最大振动速度和最大振动加速度.(3)求处和处二质点振动的相位差.[宁波大学2009研]解:(1)将波的表达式与标准形式比较,得:,(2) (3),二振动反相.第11章 光 学一、选择题1.在迈克耳孙干涉仪的一条光路中,放入一折射率为n 厚度为d 的透明介质片后,两光路光程差的改变量为( ).[暨南大学2010研]A.B.C.D.【解析】迈克尔孙干涉仪的原理为光的干涉,两束光进过G1平面镜被分为两束光,这两束光发生干涉.当在其中一条光路中放入折射率为n 的厚透明介质时,被放入介质的那条光路光程将发生变化,由于需要两次穿过新加入的透明介质,故光程差的改变量为:.2.自然光从空气入射到某介质表面上,当折射角为30°时,反射光是完全偏振光,则此介质的折射率为( ).[暨南大学2010研]A.B.C.D.3.若把牛顿环装置(都是用折射率为1.52的玻璃制成的)由空气搬入折射率为1.33的水中,则干涉条纹( ).[暨南大学2010研]C【答案】B【答案】当折射光线与反射光线垂直时反射完全偏振光,由折射公式得.【解析】A .中心暗斑变成亮斑B .间距不变C .变疏D .变密【解析】设牛顿环中某处的空气薄层厚度为e ,互相干涉的两束反射光的光程差为,若n 增大,则每个位置处的光程差增大,形成更大级数的干涉条纹,所以条纹变密.4.根据惠更斯——菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的( ).[暨南大学2010研]A .振动的相干叠加B .振动振幅之和C .光强之和D .振动振幅平方之和5.在单缝夫琅和费衍射实验中,波长为l 的单色光垂直入射在宽度为a=4l 的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为( ).[暨南大学2010研]A .2个B .6个C .4个D .8个D【答案】A【答案】由惠更斯—菲涅耳原理,统一波阵面各点发出的子波,经传播而在空间某点相遇,发生的是相干叠加.【解析】C【答案】可近似将单缝所在平面看作波阵面,则每一半波带都沿单缝方向,设总半波带【解析】得N=4.6.一束白光垂直入射在光栅上,在形成的同一级光栅光谱中,偏离中央明纹最远的是( ).[暨南大学2010研]A .紫光B .黄光C .红光D .绿光【解析】根据光栅公式,同一级条纹满足,可见光中红光波长最长,故偏离中央明纹最远.7.光强为I 0的自然光依次垂直通过两个偏振片,且此两偏振片的偏振化方向夹角a=45°,若不考虑偏振片的反射和吸收,则透射偏振光的强度I 是( ).[暨南大学2010研]A.B.C.D.由此可得,8.一光波分别通过两种不同介质的光程相同,则( ).[暨南大学2011研]数为N ,则C【答案】A【答案】自然光经过任一偏振片后光强减半,再经过另一个偏振片,根据马吕斯定律【解析】A .光波通过这两种介质的时间不相同B .光波通过这两种介质的时间相同C .光波通过这两种介质后的位相不相同D .光波通过这两种介质后的位相相同9.在迈克耳孙干涉仪的一臂中放入一折射率为厚度为的透明介质片,同时在另一臂中放入一折射率为厚度为的透明介质片,设没有放两透明介质片时两臂的光程差为 则放入两透明介质片后两臂的光程差为( ).[暨南大学2011研]A.;B .C.D.10.关于光学仪器的分辨本领,下述表述错误的是( ).[暨南大学2011研]A .分辨本领受到衍射极限的限制B .分辨本领和光学仪器的通光口径有关C .分辨本领和照明光的波长有关D .分辨本领和照明光的强度有关B【答案】光程差公式为 L =nd ,在不同介质中光速不同,v =c/n,故传播时间为 t =d/v =L/c ,对不同的介质相同.出射光的位相与入射光有关,故不能确定.【解析】B【答案】放入介质片后,相应光路中的光两次经过此介质,光程变化为2nd ,所以放入两个介质片后,两臂的光程差变化为2(n2-n1)d【解析】D【答案】光学仪器的分辨率,与由衍射导致的像点的展宽有关,而衍射条纹与通光孔径【解析】11.自然光从空气入射到某透明介质表面上,则( ).[暨南大学2011研]A .反射光一定是完全偏振光B .反射光一定是部分偏振光C .折射光一定是部分偏振光D .折射光一定是完全偏振光12.眼镜片上的增透膜是根据光的以下什么现象做成的( ).[暨南大学2011研]A .光的干涉B .光的衍射C .光的布儒斯特定律D .光的马吕斯定律13.光强度( ).[暨南大学2011研]A .和光波的振幅成正比B .和光波的振幅的平方成正比C .和光波的位相成正比D .和光波的位相的平方成正比和波长有关,与光强无关.C【答案】根据菲涅耳反射折射公式,自然光入射产生的反射和折射光都将变成部分偏振光.但当入射角为布鲁斯特角时,反射光为完全偏振光.【解析】A【答案】增透膜的原理是通过在镜片表面镀膜,使得某波长的光在膜前后表面反射光之间光程差是半波长的奇数倍,从而使反射光相干抵消,增加透射.【解析】B【答案】光强度是单位面积单位时间内辐射光的平均能量,此平均能量与电场分量或磁场分量的振幅的平方成正比,而由于是时间平均效果,与位相无关.【解析】14.一束白光垂直入射在单缝上,在第一级夫琅和费衍射明纹中,靠近中央明纹的颜色是( ).[暨南大学2011研]A .紫光B .黄光C .红光D .绿光【解析】单缝衍射明纹满足,故条纹到中央明纹的距离与波长正相关,所以紫光一级明纹最靠近中间.15.光强为I0的自然光依次垂直通过三个偏振片,且第一和第三偏振片的偏振化方向夹角a=90°,第二和第三偏振片的偏振化方向夹角a=45°,若不考虑偏振片的反射和吸收,则从第三偏振片透射出的光强I 是( ).[暨南大学2011研]A.B.C.D.二、填空题1.一个平凸透镜的顶点和一平板玻璃接触,用单设光垂直照射,观察反射光形成的牛顿环,测得中央暗斑外第k 个暗环半径为r 1.现将透镜和玻璃板之间的空气换成某种液体(其折射率小于玻璃的折射率),第k 个暗环的半径变为变为r 2,由此可知该液体的折射率为______.[南京航空航天大学2008研]A【答案】C【答案】自然光经过第一个偏振片,光强减半.第一偏振片的偏振方向与第二个,第二个与第三个,夹角都是45°,根据马吕斯定律,【解析】2.自然光入射到空气和某玻璃的分界面上,当入射角为60°时,反射光为完全偏振光,则该玻璃的折射率为______;一束强度为的自然光垂直入射于两种平行放置且透光轴方向夹角为60°的偏振片上,则透射光强度为______.[南京理工大学2005研]三、计算题1.一平凸透镜置于一平板玻璃上,波长为6700Å的红光垂直从上方入射,由透镜凸表面和平板玻璃表面反射的光形成牛顿环干涉条纹.透镜和平玻璃的接触点处为暗纹,测得第12条暗纹的半径为11mm ,求透镜的曲率半径R .[暨南大学2010研]解:牛顿环上r半径处空气层的厚度为第12条暗纹处与第一条暗纹处光程差相差11个波长,可得透镜的曲率半径为 2.(5分)将麦克耳孙干涉仪的一臂稍微调长(移动镜面),观察到有150条暗纹移过视场.若所用光的波长为480nm ,求镜面移动的距离.[暨南大学2010研]解:在迈克尔孙干涉仪中,沿两条光路的光发生干涉,它们之间光程差每变化一个波长,则有一条暗纹移过视场.设镜面移动距离为d,则得.3.在杨氏双缝实验中,两缝相距2mm ,用l =750nm 和l¢=900nm 的混合光照明,若屏幕到缝的距离为2m ,问两种波长的光的干涉明纹重合的位置到中央明纹中线的最小距离为多少?[暨南大学2010研]解:双缝干涉第k级干涉明纹满足,【答案】【答案】要想使不同波长的两束光条纹重合,需要某级条纹距离相同,即可得,k最小值为6,故4.如何利用偏振片和波晶片(1/4波片、半波片等)将一束自然光转化为圆偏振光?又如何利用波晶片将一线偏振光的偏振方向旋转90度?[暨南大学2010研]解:(1)首先将自然光通过偏振片,变成线偏光.然后使线偏光通过1/4波片,保证线偏振方向与波片光轴方向呈45°角,从而出射的o光和e光方向相同,振幅相等,相位差,从而变成圆偏振光.(2)首先将线偏光通过一个1/4波片,变成圆偏光,再经过一个与原偏振方向垂直的偏振片,变成新方向的线偏光.5.白光垂直照射到一厚度为370nm的肥皂膜(膜的两侧都为空气)上,设肥皂的折射率为1.32,试问该膜的正面呈现什么颜色?[暨南大学2011研]解:肥皂膜前后表面反射光的光程差为青色光的波长范围是476-495 nm,所以L正好是青色光波长的二倍;红色光的波长范围是 620-750 nm,所以L正好是红色光波长的3/2倍.所以前后表面反射的红光相干相消,青光相干相长,所以呈青色.6.用波长500nm的单色光垂直照射到宽0.5mm的单缝上,在缝后置一焦距为0.5m的凸透镜,用一屏来观察夫琅和费衍射条纹,求在屏上中央明纹的宽度和第一级明纹的宽度?并定性解释级次越高,明纹的强度越低的原因.[暨南大学2011研]解:(1)单缝夫琅禾费衍射产生暗纹条件为中央和第一级明纹处衍射角很小,可以近似.所以各暗纹距离中央的位置为所以中央明纹和第一级明纹的宽度分别为(2)明纹级次越高,说明单缝两个位置单色光距明纹处的光程差越大,相位差越大.根据光振幅矢量性,相同幅值的相干光相位差越大,合成振幅越小,从而光强越低.7.请解释为什么劈尖干涉条纹是等间距的直条纹而牛顿环是非等间距的圆条纹?如果看到牛顿环的中央是暗纹,解释之?[暨南大学2011研]解:(1)根据干涉原理,不论是劈尖干涉条纹还是牛顿环条纹,相邻条纹处干涉光光程差的差为.因为劈尖上到顶点的距离和厚度成正比,而厚度和光程差成正比,所以会形成等间距的直条纹;而牛顿环空气层厚度与光程差成正比,但由于棱镜下表面是球形,使得厚度与到中心的水平距离不成正比,所以形成非等间距的圆条纹.(2)中央处空气层厚度为0,棱镜底面与平面玻璃表面发射光的光程差为0.但光由光疏介质(空气)进入光密介质(平面玻璃)进行反射时会产生半波损失,使得两束相干光完全相消,出现中央暗纹.8.杨氏双缝实验中,在两缝S1和S2前分别放置两偏振片P1和P2,在两缝S1和S2后放置一偏振片P3,如图11-1所示,照明光为一自然光.问 (1) 当P1和P2偏振化方向相同,P1和P3偏振片的偏振化方向夹角为45°,屏上是否会出现干涉条纹?为什么?(2)当P1和P2偏振化方向垂直,P1和P3偏振片的偏振化方向夹角为45°,屏上是否会出现干涉条纹?为什么?[暨南大学2011研]图11-1解:(1)会出现干涉条纹.因为经过两个偏振片的光具有相同的偏振方向,都沿P3的方向偏振,所以同频率的光会产生相干叠加,出现干涉条纹.(2)会出现干涉条纹.因为虽然经过第一个偏振片的两束光具有垂直的偏振方向,但由于两束光的偏振方向都与P3偏振化方向呈45°角,根据马吕斯定律,经过P3后的两束光偏振方向相同,且振幅相等.所以依然会产生干涉条纹.9.(1)迈克尔逊干涉仪的M2镜前,当插入一薄玻璃片时,可以观察到有150条干涉条纹向一方移过.若玻璃片的折射率为n=1.632,所用单色光的波长为500nm,试求玻璃片的厚度.(2)用钠光灯(,)照明迈克尔逊干涉仪,首先调整干涉仪得到最清晰的干涉条纹,然后移动M1,干涉图样逐渐变得模糊,到第一次干涉现象消失时,M1由原来位置移动了多少距离?[南京大学2006研]解:(1)插入玻璃片后,光程差改变量为,则:解得玻璃片厚度: (2)干涉条纹消失,即、两个波长照射下的亮纹和暗纹重合,即:解得: 10.试按下列要求设计光栅:当白光垂直照射时,在30°衍射方向上观察到波长为600nm 的第二级主极大,且能分辨Δλ=0.05nm的两条谱线,同时该处不出现其他谱线的主极大.[浙江大学2008研]解:由光栅方程: .则:当时,可得: 当,.因为时,主极大,即缺级,因此有:所以有: 11.如图11-2所示,有一缝宽分别为a和2a、两缝中心相距为d的双缝衍射屏,今在缝宽为2a的左半缝前覆盖一个宽度为a的相移片.导出正入射时其夫琅禾费衍射强度分布公式.[山东大学1997研]图11-2解:x方向振幅: y方向振幅: 光强: 12.如图11-3所示,在偏振化方向夹角为60°的两偏振片和之间插入一个四分之一波片C,其光轴与两偏振片偏振化方向的夹角均为30°.一强度为的自然光先后通过偏振片、四分之一波片C和偏振片,求出射的光强度.[厦门大学2006研]图11-3解:经过P1后: ,经过四分之一波片后: ,得出射光振幅: 出射光光强: 第12章 气体动理论一、选择题若为气体分子速率分布函数,则的物理意义是( ).[电子科技大学2005研]A .速率区间内的分子数B .分子的平均速率C .速率区间内的分子数占总分子数的百分比D .速率分布在附近的单位速率区间中的分子数二、填空题1.三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,而最概然速率之比为,则单位体积内的内能之比为______.[南京航空航天大学2007研]2.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m .根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值为______.[北京工业大学2004研]3.由绝热材料包围的窗口被隔板隔为两半,左边是理想气体,右边真空,如果把隔板撤去,气体将进行自由膨胀过程,达到平衡后气体的温度______(填升高、降低或不变),气体的熵______(填增加、减小或不变).[湖南大学2007研]4.27℃的1mol 氧气分子的最概然速率为______,其物理意义为______,分子的平均平动动能为______,1mol 理想氧气的内能为______.[南京理工大学2005研]三、计算题B【答案】1∶4∶9【答案】【答案】不变;增加【答案】【答案】1.设气体分子的速率分布满足麦克斯韦分布律.(1)求气体分子速率与最可几速率相差不超过0.5%的分子占全部分子的百分之几?(2)设氦气的温度为300K,求速率在3000~3010m/s之间的分子数与速率在1500~1510m/s之间的分子数之比.(3)某种气体的温度为100K和400K时的最可几速率分别为和.在100K时与相差不超过1m/s的分子数为总数的a%,求400K时与相差不超过1m/s的分子数占总数的百分比.[南京大学2006研]解:(1)设气体分子速率与最可几速率相差不超过0.5%的分子数为,全部分子数为,则:(2)设速率在3000~3010m/s之间的分子数为,速率在1500~1510m/s之间的分子数为,则:(3)2.1摩尔双原子理想气体的某一过程的摩尔热容量,其中为定容摩尔热容量,R 为气体的普适恒量.(1)导出此过程的过程方程;(2)设初态为(,),求沿此过程膨胀到时气体的内能变化,对外做功及吸热(或放热).[北京师范大学2006研]解:(1)理想气体的状态方程为,其微分形式为:由热力学第一定律,则:由上述两式消去,得: 则由的积分可得:上式即为双原子分子理想气体的过程方程.(2)初态,其中;末态.由过程方程,可知:所以,末态为.①气体内能的变化:②对外做功: ③吸收的热量:负号表示与题设相反,即此过程向外放热 .3.0.2g氢气盛于3.0 L的容器中,测得压强为8.31×104Pa,则分子的最概然速率、平均速率和方均根速率各为多大?[浙江大学2008研]解:气体状态方程: 最概然速率:平均速率:方均根速率: 4.设有N个气体分子组成的系统,每个分子质量为m,分子的速率分布函数为求:(1)常数a.(2)分子的平均速率.(3)若分子只有平动,且忽略分子间的相互作用力,求系统的内能E.[厦门大学2006研]解:(1)由归一化条件可得:解得: (2)N个分子的平均速度:=(3)由,得:5.许多星球的温度达到108K,在这温度下原子已经不存在了,而氢核(质子)是存在的,若把氢核视为理想气体,求:(1)氢核的方均根速率是多少?(2)氢核的平均平均平动动能是多少电子伏特?[宁波大学2009研](普适气体常量,玻尔兹曼常量)解:(1)由于,而氢核,所以有:(2)第13章 热力学基础一、选择题在一定量的理想气体向真空作绝热自由膨胀,体积由增至,在此过程中气体的( ).[电子科技大学2007研]A.内能不变,熵增加B.内能不变,熵减少C.内能不变,熵不变D.内能增加,熵增加二、填空题热力学第二定律表明在自然界中与热现象有关的实际宏观过程都是不可逆的.开尔文表述指出了______的过程是不可逆的,而克劳修斯表述指出了______的过程是不可逆的.[北京工业大学2004研]三、计算题1.假设地球大气为干燥空气,导热性能不好.气流上升缓慢,可以视为准静态过程.试导出大气的垂直温度梯度dT/dz,并估算其量值的大小.[南京大学2005研]解:对于绝热过程有: 对上式两边同时求导,得:于是有: 对于大气层,气压强变化满足,再结合理想气体状态方程,得:A【答案】功变热;热传导【答案】。

化学热力学基础习题解答

化学热力学基础习题解答

第一章 化学热力学基础1-1 气体体积功的计算式 dV P W e ⎰-= 中,为什么要用环境的压力e P 在什么情况下可用体系的压力体P答: 在体系发生定压变化过程时,气体体积功的计算式 dV P W e ⎰-= 中,可用体系的压力体P 代替e P ;1-2 298K 时,5mol 的理想气体,在1定温可逆膨胀为原体积的 2 倍; 2 定压下加热到373K ;3定容下加热到373K;已知 C v,m = ·mol -1·K -1;计算三过程的Q 、W 、△U 、△H 和△S;解 1 △U = △H = 02 kJ nC Q H m P P 72.13)298373(,=-==∆W = △U – Q P = - kJ3 kJ nC Q U m V V 61.10)298373(,=-==∆W = 01-3 容器内有理想气体,n=2mol , P=10P,T=300K;求 1 在空气中膨胀了1dm 3,做功多少 2 膨胀到容器内压力为 lP,做了多少功3膨胀时外压总比气体的压力小 dP , 问容器内气体压力降到 lP 时,气体做多少功解:1此变化过程为恒外压的膨胀过程,且Pa P e 510=2此变化过程为恒外压的膨胀过程,且Pa P e 510=3 VnRT P dP P P e =≈-= 1-4 1mol 理想气体在300K 下,1dm 3定温可逆地膨胀至10dm 3,求此过程的 Q 、W 、△U 及△H;解: △U = △H = 01-5 1molH 2由始态25℃及P 可逆绝热压缩至 5dm -3, 求1最后温度;2最后压力; 3 过程做功;解:1 3511178.2410298314.81-=⨯⨯==dm P nRT V W f dl p A dl p dVδ=-⋅=-⋅⋅=-⋅外外外2 Pa V nRT P 53222104.91053.565314.81⨯=⨯⨯⨯==- 3 )2983.565(314.85.21)(12,-⨯⨯⨯-=--=∆-=T T nC U W m V1-6 40g 氦在3P 下从25℃加热到50℃,试求该过程的△H 、△U 、Q 和W ;设氦是理想气体; He 的M=4 g·mol -1解: J nC Q H m P P 3.519625314.825440)298323(,=⨯⨯⨯=-==∆ W = △U – Q P =1-7 已知水在100℃ 时蒸发热为 J·g -1,则100℃时蒸发30g 水,过程的△U 、△H 、 Q 和W为多少计算时可忽略液态水的体积解: mol n 67.11830== 1-8 298K 时将1mol 液态苯氧化为CO 2 和 H 2O l ,其定容热为 -3267 kJ·mol -1 , 求定压反应热为多少解: C 6H 6 l + g → 6CO 2 g +3 H 2O l1-9 300K 时2mol 理想气体由ldm -3可逆膨胀至 10dm -3 ,计算此过程的嫡变;解: 11229.3810ln 314.82ln -⋅=⨯==∆K J V V nR S 1-10.已知反应在298K 时的有关数据如下C 2H 4 g + H 2O g → C 2H 5OH l△f H m /kJ·mol -1 - -C P , m / J·K -1·mol -1计算1298K 时反应的△r H m ;2反应物的温度为288K,产物的温度为348K 时反应的△r H m ;解1 △r H m = - + - = - kJ·mol -12 288K C 2H 4 g + H 2O g → C 2H 5OH l 348K↓△H 1 ↓△H 2 ↑△H 3298K C 2H 4 g + H 2O g → C 2H 5OH l 298K△r H m = △r H m 298K + △H 1 + △H 2 + △H 3= - + + ×298-288 + × 348-298×10-3= - kJ·mol -11-11 定容下,理想气体lmolN 2由300K 加热到600K ,求过程的△S;已知11,,)006.000.27(2--⋅⋅+=mol K J T C N m P解: T R C C m P m V 006.069.18,,+=-=1-12 若上题是在定压下进行,求过程的嫡变;解: ⎰+=∆600300006.000.27dT T T S 1-13 下,2mol 甲醇在正常沸点时气化,求体系和环境的嫡变各为多少已知甲醇的气化热△H m = ·mol -1解: 132.2082.337101.352-⋅=⨯⨯=∆=∆K J T H n S m 体系 1-14 绝热瓶中有373K 的热水,因绝热瓶绝热稍差,有4000J 的热量流人温度为298K 的空气中,求1绝热瓶的△S 体;2环境的△S 环;3总熵变△S 总;解:近似认为传热过程是可逆过程△S 总 = △S 体 + △S 环 = ·K -11-15 在298K 及标准压力下,用过量100%的空气燃烧 1mol CH 4 , 若反应热完全用于加热产物,求燃烧所能达到的最高温度;CH 4 O 2 CO 2 H 2O g N 2△f H m /k J ·mol -1- 0 - -C P , m / J·K -1·mol -1解; 空气中 n O 2 = 4mol , n N 2 = n O 2 ×79%÷21%= 15molCH 4g +2 O 2 → CO 2 g + 2H 2O g△r H m 298K = 2× + – = - kJ反应后产物的含量为:O 2 CO 2 H 2O g N 2n / mol 2 1 2 15 - ×103 + 2×+ 15× + + 2× T-298 = 0T = 1754K1-16.在110℃、105Pa 下使 1mol H 2Ol 蒸发为水蒸气,计算这一过程体系和环境的熵变;已知H 2Og 和H 2Ol 的热容分别为 J·K -1·g -1和 J·K -1·g -1,在100℃、105Pa 下H 2Ol 的的汽化热为 J·g -1;解: 1mol H 2Ol , 110℃, 105Pa ----→ 1mol H 2Og , 110℃, 105Pa↓H1 , S1↑H3 , S31mol H2Ol , 100℃, 105Pa ----→1mol H2Og , 100℃, 105PaH2 , S2= kJ= J·K-11-17 1mol ideal gas with C v,m= 21J·K-1·mol-1,was heated from 300K to 600K by 1 reversible isochoric process; 2reversible isobaric process. Calculate the △U separately.解:1由题知△U = n C v,m △T = 1×21×600-300= 6300J2 对由于△U只是温度的函数,所以△U2 = △U1 = 6300J1-18 Calculate the heat of vaporization of 1mol liquid water at 20℃, . △vap H m water = kJ·mol-1, C p,m water = J·K-1·mol-1, C p,m water vapor = J·K-1·mol-1 at 100℃, .解:1mol H2Ol , 20℃, 105Pa ----→1mol H2Og , 20℃, 105Pa↓H1 , ↑H3 ,1mol H2Ol , 100℃, 105Pa ----→1mol H2Og , 100℃, 105PaH2H+ nCp,mg △T△H =△H1 + △H2 +△H3 = nCp,ml △T+ n△vapθm= 1××100-20×10-3+ 1× + 1××20-100×10-3= kJ。

热力学习题

热力学习题

热力学基础习题练习一、选择题1. 对于物体的热力学过程, 下列说法中正确的是[ ] (A) 内能的改变只决定于初、末两个状态, 与所经历的过程无关 (B) 摩尔热容量的大小与所经历的过程无关(C) 在物体内, 若单位体积内所含热量越多, 则其温度越高(D) 以上说法都不对2. 热力学第一定律表明[ ] (A) 系统对外做的功不可能大于系统从外界吸收的热量 (B) 系统内能的增量等于系统从外界吸收的热量(C) 不可能存在这样的循环过程, 在此过程中, 外界对系统所做的功 不等于系统传给外界的热量 (D) 热机的效率不可能等于13. 一定量的理想气体从状态),(V p 出发, 到达另一状态)2,(V p . 一次是等温压缩到2V, 外界做功A ;另一次为绝热压缩到2V, 外界做功W .比较这两个功值的大小是 [ ] (A) A >W (B) A = W (C) A <W (D) 条件不够,不能比较 (C) ?A -?W -?Q (D) ?Q +?A -?W4. 理想气体由初状态( p 1, V 1, T 1)绝热膨胀到末状态( p 2, V 2, T 2),对外做的功为 [ ] (A))(12T T C M m V - (B) )(12T T C M m p - (C) )(12T T C M m V --(D) )(12T T C Mmp -- 5. 一定量的理想气体分别经历了等压、等体和绝热过程后其内能均由E 1变化到E 2 .在上述三过程中, 气体的[ ] (A) 温度变化相同, 吸热相同 (B) 温度变化相同, 吸热不同 (C) 温度变化不同, 吸热相同 (D) 温度变化不同, 吸热也不同6. 一定质量的理想气体从某一状态经过压缩后, 体积减小为原来的一半, 这个过程可以是绝热、等温或等压过程.如果要使外界所做的机械功为最大, 这个过程应是 [ ] (A) 绝热过程 (B) 等温过程(C) 等压过程 (D) 绝热过程或等温过程均可7. 一定量的理想气体从初态),(T V 开始, 先绝热膨胀到体积为2V , 然后经等容过程使温度恢复到T , 最后经等温压缩到体积V ,如图9-1-34所示.在这个循环中, 气体必然[ ] (A) 内能增加 (B) 内能减少(C) 向外界放热 (D) 对外界做功8. 在下面节约与开拓能源的几个设想中, 理论上可行的是[ ] (A) 在现有循环热机中进行技术改进, 使热机的循环效率达100% (B) 利用海面与海面下的海水温差进行热机循环做功 (C) 从一个热源吸热, 不断作等温膨胀, 对外做功 (D) 从一个热源吸热, 不断作绝热膨胀, 对外做功9. 卡诺循环的特点是[ ] (A) 卡诺循环由两个等压过程和两个绝热过程组成 (B) 完成一次卡诺循环必须有高温和低温两个热源 (C) 卡诺循环的效率只与高温和低温热源的温度有关(D) 完成一次卡诺循环系统对外界做的净功一定大于010. 热力学第二定律表明[ ] (A) 不可能从单一热源吸收热量使之全部变为有用功 (B) 在一个可逆过程中, 工作物质净吸热等于对外做的功 (C) 摩擦生热的过程是不可逆的(D) 热量不可能从温度低的物体传到温度高的物体11. 图9-1-50所列四图分别表示某人设想的理想气体的四个循环过程,请选出其中一个在理论上可能实现的循环过程的图的符号. [ ]和I b II 是任意过 [ b II 负功 b II 负功 (C) I a II 过程吸热,做正功;I b II 过程吸热,做负功(D) I a II 过程放热,做正功;I b II 过程吸热,做正功 二、填空题1. 各为1 mol 的氢气和氦气, 从同一状态(p ,V )开始作等温膨胀.若氢气膨胀后体积变为2V , 氦气膨胀后压强变为2p, 则氢气和氦气从外界吸收的热量之比为 . 2. 一定量气体作卡诺循环, 在一个循环中, 从热源吸热1000 J, 对外做功300 J . 若冷凝器的温度为7?C, 则热源的温度为 .3. 1mol 理想气体(设VPC C =γ为已知)的循环过程如图9-2-11所示,其中CA 为绝热过程,A 点状态参量(11,V T ),和B 点的状态参量(21,V T )为已知.则C点的状态参量为:=C V , =C T , =C p .4. 一定量的理想气体,从A 状态),2(11V p 经历如图T 12T 2p 11(C)(A)(B)图9-1-509-2-12所示的直线过程变到B 状态)2,(11V p ,则AB 过程中系统做功___________, 内能改变△E =_________________.5. 质量为m 、温度为0T 的氦气装在绝热的容积为V 的封闭容器中,容器一速率v 作匀速直线运动.当容器突然停止后,定向运动的动能全部转化为分子热运动的动能,平衡后氦气的温度增大量为 .6. 一定量理想气体,从同一状态开始使其体积由V 1膨胀到2V 1,分别经历以下三种过程:(1) 等压过程;(2) 等温过程;(3) 绝热过程.其中:__________过程气体对外做功最多;____________过程气体内能增加最多;__________过程气体吸收的热量最多.7. 一定量的理想气体,从状态a 出发,分别经历等压、等温、绝热三种过程由体积V 1膨胀到体积V 2,试在图9-2-17中示意地画出这三种过程的p -V图曲线.在上述三种过程中:(1) 气体的内能增加的是__________过程;(2) 气体的内能减少的是__________过程.8. 将热量Q 传给一定量的理想气体,(1) 若气体的体积不变,则其热量转化为 ; (2) 若气体的温度不变,则其热量转化为 ;(3) 若气体的压强不变,则其热量转化为 . 三、计算题1. 1 mol 刚性双原子分子的理想气体,开始时处于Pa 1001.151⨯=p 、331m 10-=V 的状态,然后经图9-3-1所示的直线过程I 变到Pa 1004.452⨯=p 、332m 102-⨯=V 的状态.后又经过方程为C pV =21(常量)的过程II 变到压强Pa 1001.1513⨯==p p 的状态.求:(1) 在过程I 中气体吸的热量;(2) 整个过程气体吸的热量.C 127ο、低温热源2. 一卡诺热机(可逆的),当高温热源的温度为温度为C 27ο时,其每次循环对外做净功8000 J .今维持低温热源的温度不变,提高高温热源的温度,使其每次循环对外做净功10000 J .若两个卡诺循环都工作在相同的两条绝热线之间,试求:(1) 第二个循环热机的效率; (2) 第二个循环的高温热源的温度.3. 如图9-3-6所示,一金属圆筒中盛有1 mol 刚性双原子分子的理想气体,用可动活塞封住,圆筒浸在冰水混合物中.迅速推动活塞,使气体从标准状态(活塞位置I)压缩到体积为原来一半的状态(活塞位置II),然后维持活塞不动,待气体温度下降至0℃,再让活塞缓慢上升到位置I ,完成一次循环.(1) 试在p ?V 图上画出相应的理想循环曲线;1p 12(2) 若作100 次循环放出的总热量全部用来熔解冰,则有多少冰被熔化 (已知冰的熔解热=λ×105 J · kg -1,普适气体常量 R = J · mol -1 · K -1) 4. 比热容比=γ的理想气体,进行如图9-3-7所示的abca 循环,状态a 的温度为300 K .(1)求状态b 、c 的温度; (2) 计算各过程中气体所吸收的热量、气体所做的功和气体内能的增量; (3) 求循环效率.5. 绝热壁包围的汽缸被一绝热的活塞分成A ,B两室,活塞在汽缸内可无摩擦自由滑动,每室内部有1mol 的理想气体,定容热容量R C V 25=.开始时,气体都处在平衡态),,(000T V p .现在对A 室加热,直到A 中压强变为20p 为止.(1) 求加热之后,A 、B 室中气体的体积和温度; (2) 在这过程中A 室中的气体做了多少功 (3) 加热器传给A 室的热量多少6. 图9-3-19所示为一循环过程的T -V 曲线.该循环的工质的物质的量为mol n 的理想气体,其中V C 和γ均已知且为常量.已知a 点的温度为1T ,体积为V 1,b 点的体积为V 2,ca 为绝热过程.求:(1) c 点的温度; (2) 循环的效率.7. 设一动力暖气装置由一台卡诺热机和一台卡诺制冷机组合而成.热机靠燃烧时释放的热量工作并向暖气系统中的水放热;同时,热机带动制冷机.制冷机自天然蓄水池中吸热,也向暖气系统放热.假定热机锅炉的温度为C 2101ο=t ,天然蓄水池中水的温度为C 152ο=t ,暖气系统的温度为C 603ο=t ,热机从燃料燃烧时获得热量×107J ,计算暖气系统所得热量.热力学基础 答案一、选择题1. A2. C3. C4. C5. B6. A7. C8. B9. C 10. C 11. B 12. B 二、填空题1. 1:12. 127 ?C3. 2V , 1121T VV -⎪⎪⎭⎫ ⎝⎛γ,12121-⎪⎪⎭⎫ ⎝⎛γV V V RT4. 0,2311V p A = 5. R M T 32v =∆6. 等压,等压,等压7. 过程曲线如解图9-2-17所示,其中ab 为等压过程, ac 为等温过程, ad 为绝热过程.(1) 等压; (2) 绝热.8. (1) 气体内能;(2) 气体对外做功;(3) 内能和对外做功)3图9-3-1912三、计算题1. 解:(1) 在过程Ⅰ中气体对外做功为 内能增量为由热力学第一定律,此过程气体吸收的热量为(2) 在过程II 中气体对外做功为⎰=322V V p A d ()2233222d 32V p V p V VV p V V V -==⎰ 又据C pV =21可得 所以过程II 气体内能增量为 ()()22332322525V p V p T T R E -=-=∆ 过程II 气体吸热 J 1009.1J 1006.6J 1085.4433222⨯=⨯+⨯=∆+=E A Q 整个过程气体吸收热量 21Q Q Q +=2. 解:(1) J 32000J 4003001800011112=-==→=-=ηη净净A Q Q A T T ,净A Q Q +=21第二个热机2Q 不变,则 J 34000J 10000J 2400021=+='+='净A Q Q (2) 由 121T T '-='η 得 K 425K %4.291300121=-='-='ηT T 3. 解:(1) p –V 图上循环曲线如解图9-3-6所示,其中ab 为绝热线,bc 为等体线,ca 为等温线.(2) 等体过程放热为 Q V = C V (T 2-T 1) (1)等温过程吸热为 2ln 111V VRT Q T = (2) 绝热过程方程 211111)2(T V T V --=γγ (3) 双原子分子气体 R C V 25= 4.1=γ由(1)~(3)式解得系统一次循环放出的净热量为若100 次循环放出的总热量全部用来熔解冰,则熔解的冰的质量为21016.7100-⨯==λQm kg4. 解:(1) c →a 等体过程有 cca a T p T p = 所以 75)(==ac a c p pT T Kb →c 等压过程有 cc a b T VT V =1p OV11所以 225)(==cbc b V V T T K (2) 气体的物质的量为 mol 321.0===aa a RT V p M mν 由 40.1=γ 可知气体为双原子分子气体,故 c →a 等体吸热过程 0=ca A b →c 等压压缩过程 J 400)(-=-=b c b bc V V p AJ 1000)(-=-=∆b c V bc T T C E ν 整个循环过程0=∆E ,循环过程净吸热为 a →b 过程净吸热 ca bc ab Q Q Q Q --=(3) 0>ab Q 为净吸热,a →b 过程经历了升温、降温过程,设温度转折点为x , a →b 过程)d d (2d 2d p V V p iT R i M m E +==, V p A d d = 由热力学第一定律ab 直线方程为43006100-=--V p ? V p d 75d -=于是有令0d =Q 解得3m 28.4=x V ,即a →x 吸热,x →b 放热5. 解:(1) B 室中进行的是绝热过程. 设初始平衡时状态为),,(000T V p ,达到平衡终态时,两室的状态为),,(A A A T V p 和),,(B B B T V p ,则有B A 02p p p == (1)由初终态的状态方程00A A B BA 0Bp V p V p V T T T == (2) 利用(1)式可得0A BA 0B22V V V T T T == (3) 对B 室有准静态绝热过程方程B B 00p V p V γγ= (4)由(3)、(4)式和57==Vp C C γ得 γγ1011B 222V V V ==- 和0011B 22.12T T T ≈=-γ由总体积一定,得A 室的终态体积为 代入(3)式(2) 因活塞处无功耗,故A 气体推动活塞对B 气体做功的值等于B 气体的内能增量 (3) A 室中吸收的热量等于它对B 室做的功,加上自己内能的增量解图9-3-723/m V 6Pa 10/2p a2bc 4134•x6. 解:(1) ca 为绝热过程,则 12111--⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛=γγV V T V V T T c a a c(2 ) ab 为等温过程,工质吸热 1211ln V V nRT Q = bc 为等容过程,工质放热为 循环过程的效率7. 解:卡诺热机效率131211T T Q Q-=-=η热机传给暖气系统热量 1132Q T TQ = (1)卡诺热机向致冷机输出的功1131)1(Q T T Q A -==η 卡诺致冷机从天然蓄水池中吸收热量为 于是卡诺致冷机传给暖气的热量为)1(''132313121T TT T Q T Q wA A Q Q --=+=+=η (2)从(1)、(2)两式,再考虑到J 101.271⨯=Q ,可得暖气系统共吸收热量。

热力学基础习题集-学生版

热力学基础习题集-学生版

第13章热力学基础一、简答题:1、什么是准静态过程?答案:一热力学系统开始时处于某一平衡态,经过一系列状态变化后到达另一平衡态,若中间过程进行是无限缓慢的,每一个中间态都可近似看作是平衡态,那么系统的这个状态变化的过程称为准静态过程。

2、从增加内能来说,做功和热传递是等效的。

但又如何理解它们在本质上的差别呢?答:做功是机械能转换为热能,热传递是热能的传递而不是不同能量的转换。

3、一系统能否吸收热量,仅使其内能变化? 一系统能否吸收热量,而不使其内能变化?答:可以吸热仅使其内能变化,只要不对外做功。

比如加热固体,吸收的热量全部转换为内能升高温度;不能吸热使内能不变,否则违反了热力学第二定律。

4、有人认为:“在任意的绝热过程中,只要系统与外界之间没有热量传递,系统的温度就不会改变。

”此说法对吗? 为什么?答:不对。

对外做功,则内能减少,温度降低。

5、分别在Vp-图、Tp-图上,画出等体、等压、等温和绝热过程的V-图和T曲线。

6、 比较摩尔定体热容和摩尔定压热容的异同。

答案:相同点:都表示1摩尔气体温度升高1摄氏度时气体所吸收的热量。

不同点:摩尔定体热容是1摩尔气体,在体积不变的过程中,温度升高1摄氏度时气体所吸收的热量。

摩尔定压热容是1摩尔气体,在压强不变的过程中,温度升高1摄氏度时气体所吸收的热量。

两者之间的关系为R C C v p +=7、什么是可逆过程与不可逆过程答案:可逆过程:在系统状态变化过程中,如果逆过程能重复正过程的每一状态,而且不引起其它变化;不可逆过程:在系统状态变化过程中,如果逆过程能不重复正过程的每一状态,或者重复正过程时必然引起其它变化。

8、简述热力学第二定律的两种表述。

答案:开尔文表述:不可能制成一种循环工作的热机,它只从单一热源吸收热量,并使其全部变为有用功而不引起其他变化。

克劳修斯表述:热量不可能自动地由低温物体传向高温物体而不引起其他变化。

9、什么是第一类永动机与第二类永动机?答案:违背热力学第一定律(即能量转化与守恒定律)的叫第一类永动机,不违背热力学第一定律但违背热力学第二定律的叫第二类永动机。

热力学基础习题课

热力学基础习题课

解:两种气体经历等容过程,升高相同温度 Q2 CV2 ,m 5 对于氦气 对于氢气 3 Q C 1 V , m 1 Q2 CV2 ,m 2 RT Q1 CV1 ,m 1 RT, 由于两种气体初始状态 pV RT 具有完全相同的p,V,T
1 2
4. 如图,一定质量的理想气体,其状态在p-T图上沿着 一条直线从平衡态a变到平衡态b,下列说法正确的是:
p
b
80 C
20 C
a
V1
c
d
2V1 V
解:初态:1mol氢气, p=1atm,20C
对abc过程:
p
5 E CV ,m T R(80 20) 150R 2 2V W RT1 ln 1 (273 80)R ln 2 353R ln 2 V1
b
80 C
20 C
a
V1
c
d
Q E W 150R 353R ln2
2V1 V
对adc过程:
E CV ,m T 5 R(80 20) 150R 2
2V1 W RT2 ln (273 20)R ln 2 293R ln 2 V1
Q E W 150 R 293R ln 2
(2)等压过程
(4)绝热过程
2
E
解:理想气体的内能 E i RT 理想气体状体方程 pV RT
i E pV 2
O
V
因此,在E~V中p表示直线的 斜率,即在该过程p保持恒量
6. 处于平衡态A的一定量的理想气体,若经准静态等 体过程变到平衡态B,将从外界吸收热量416J,若经 准静态等压过程变到与平衡态B有相同温度的平衡态 C,将从外界吸收热量582J,所以,从平衡态A变到 平衡态C的准静态等压过程中气体对外界所作的功为 166 J 解:题设包括两个的过程T相同E相同 AB,等容过程 AC,等压过程

第十三章课后习题答案

第十三章课后习题答案

第十三章 热力学基础13 -1 如图所示,bca 为理想气体绝热过程,b1a 和b2a 是任意过程,则上述两过程中气体作功与吸收热量的情况是( )(A) b1a 过程放热,作负功;b2a 过程放热,作负功(B) b1a 过程吸热,作负功;b2a 过程放热,作负功(C) b1a 过程吸热,作正功;b2a 过程吸热,作负功(D) b1a 过程放热,作正功;b2a 过程吸热,作正功分析与解 bca ,b1a 和b2a 均是外界压缩系统,由⎰=V p W d 知系统经这三个过程均作负功,因而(C)、(D)不对.理想气体的内能是温度的单值函数,因此三个过程初末态内能变化相等,设为ΔE .对绝热过程bca ,由热力学第一定律知ΔE =-W bca .另外,由图可知:|W b2a |>|W bca |>|W b1a |,则W b2a <W bca <W b1a .对b1a 过程:Q =ΔE +W b1a >ΔE +W bca =0 是吸热过程.而对b2a 过程:Q =ΔE +W b2a <ΔE +W bca =0 是放热过程.可见(A)不对,正确的是(B).13 -2 如图,一定量的理想气体,由平衡态A 变到平衡态B ,且它们的压强相等,即p A =p B ,请问在状态A 和状态B 之间,气体无论经过的是什么过程,气体必然( )(A) 对外作正功 (B) 内能增加(C) 从外界吸热 (D) 向外界放热分析与解 由p -V 图可知,p A V A <p B V B ,即知T A <T B ,则对一定量理想气体必有E B >E A .即气体由状态A 变化到状态B,内能必增加.而作功、热传递是过程量,将与具体过程有关.所以(A)、(C)、(D)不是必然结果,只有(B)正确.13 -3 两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性分子理想气体).开始时它们的压强和温度都相同,现将3J 热量传给氦气,使之升高到一定的温度.若使氢气也升高同样的温度,则应向氢气传递热量为( )(A) 6J (B) 3 J (C) 5 J (D) 10 J分析与解 当容器体积不变,即为等体过程时系统不作功,根据热力学第一定律Q =ΔE +W ,有Q =ΔE .而由理想气体内能公式T R i M m E Δ2Δ=,可知欲使氢气和氦气升高相同温度,须传递的热量 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=e e e 222e 2H H H H H H H H /:i M m i M m Q Q .再由理想气体物态方程pV =mM RT ,初始时,氢气和氦气是具有相同的温度、压强和体积,因而物质的量相同,则3/5/:e 2e 2H H H H ==i i Q Q .因此正确答案为(C).13 -4 有人想像了四个理想气体的循环过程,则在理论上可以实现的为( )分析与解由绝热过程方程pVγ=常量,以及等温过程方程pV=常量,可知绝热线比等温线要陡,所以(A)过程不对,(B)、(C)过程中都有两条绝热线相交于一点,这是不可能的.而且(B)过程的循环表明系统从单一热源吸热且不引起外界变化,使之全部变成有用功,违反了热力学第二定律.因此只有(D)正确.13 -5一台工作于温度分别为327 ℃和27 ℃的高温热源与低温源之间的卡诺热机,每经历一个循环吸热2 000 J,则对外作功()(A) 2 000J(B) 1 000J(C) 4 000J(D) 500J分析与解热机循环效率η=W/Q吸,对卡诺机,其循环效率又可表为:η=1-T2 /T1,则由W /Q吸=1 -T2 /T1可求答案.正确答案为(B).13 -6根据热力学第二定律()(A) 自然界中的一切自发过程都是不可逆的(B) 不可逆过程就是不能向相反方向进行的过程(C) 热量可以从高温物体传到低温物体,但不能从低温物体传到高温物体(D) 任何过程总是沿着熵增加的方向进行分析与解 对选项(B):不可逆过程应是指在不引起其他变化的条件下,不能使逆过程重复正过程的每一状态,或者虽然重复但必然会引起其他变化的过程.对选项(C):应是热量不可能从低温物体自动传到高温物体而不引起外界的变化.对选项(D):缺少了在孤立系统中这一前提条件.只有选项(A)正确. 13 -7 位于委内瑞拉的安赫尔瀑布是世界上落差最大的瀑布,它高979m.如果在水下落的过程中,重力对它所作的功中有50%转换为热量使水温升高,求水由瀑布顶部落到底部而产生的温差.( 水的比热容c 为4.18×103 J·kg -1·K -1 ) 分析 取质量为m 的水作为研究对象,水从瀑布顶部下落到底部过程中重力作功W =mgh ,按题意,被水吸收的热量Q =0.5W ,则水吸收热量后升高的温度可由Q =mc ΔT 求得.解 由上述分析得mc ΔT =0.5mgh水下落后升高的温度ΔT =0.5gh /c =1.15K13 -8 如图所示,一定量的空气,开始在状态A ,其压强为2.0×105Pa ,体积为2.0 ×10-3m 3 ,沿直线AB 变化到状态B 后,压强变为1.0 ×105Pa ,体积变为3.0 ×10-3m 3 ,求此过程中气体所作的功.分析 理想气体作功的表达式为()⎰=V V p W d .功的数值就等于p -V 图中过程曲线下所对应的面积.解 S ABCD =1/2(BC +AD)×CD故 W =150 J13 -9 汽缸内储有2.0mol 的空气,温度为27 ℃,若维持压强不变,而使空气的体积膨胀到原体积的3s 倍,求空气膨胀时所作的功.分析 本题是等压膨胀过程,气体作功()1221d V V p V p W V V -==⎰,其中压强p 可通过物态方程求得.解 根据物态方程11RT pV v =,汽缸内气体的压强11/V RT p v = ,则作功为 ()()J 1097.92/31112112⨯==-=-=RT V V V RT V V p W v v 13 -10 一定量的空气,吸收了1.71×103J 的热量,并保持在1.0 ×105Pa 下膨胀,体积从1.0×10-2m 3 增加到1.5×10-2m 3 ,问空气对外作了多少功? 它的内能改变了多少?分析 由于气体作等压膨胀,气体作功可直接由W =p (V 2 -V 1 )求得.取该空气为系统,根据热力学第一定律Q =ΔE +W 可确定它的内能变化.在计算过程中要注意热量、功、内能的正负取值.解 该空气等压膨胀,对外作功为W =p (V 2-V 1 )=5.0 ×102J其内能的改变为Q =ΔE +W =1.21 ×103J13 -11 0.1kg 的水蒸气自120 ℃加热升温到140℃,问(1) 在等体过程中;(2) 在等压过程中,各吸收了多少热量? 根据实验测定,已知水蒸气的摩尔定压热容C p,m =36.21J·mol -1·K -1,摩尔定容热容C V,m =27.82J·mol -1·K -1. 分析 由量热学知热量的计算公式为T C Q m Δv =.按热力学第一定律,在等体过程中,T C E Q ΔΔm V ,V v ==;在等压过程中, T C E V p Q ΔΔd m p,p v =+=⎰.解 (1) 在等体过程中吸收的热量为J 101.3ΔΔ3m V,V ⨯===T C Mm E Q (2) 在等压过程中吸收的热量为 ()J 100.4Δd 312m p,p ⨯=-=+=⎰T T C M m E V p Q 13 -12 如图所示,在绝热壁的汽缸内盛有1mol 的氮气,活塞外为大气,氮气的压强为1.51 ×105 Pa ,活塞面积为0.02m 2 .从汽缸底部加热,使活塞缓慢上升了0.5m.问(1) 气体经历了什么过程? (2) 汽缸中的气体吸收了多少热量? (根据实验测定,已知氮气的摩尔定压热容C p ,m =29.12J·mol -1·K -1,摩尔定容热容C V,m =20.80J·mol -1·K -1 )分析 因活塞可以自由移动,活塞对气体的作用力始终为大气压力和活塞重力之和.容器内气体压强将保持不变.对等压过程,吸热T C Q Δm p,p v =.ΔT 可由理想气体物态方程求出.解 (1) 由分析可知气体经历了等压膨胀过程.(2) 吸热T C Q Δm p,p v =.其中ν =1 mol ,C p,m =29.12J·mol -1·K-1.由理想气体物态方程pV =νRT ,得ΔT =(p 2V 2 -p 1 V 1 )/R =p(V 2 -V 1 )/R =p· S· Δl /R则 J 105.293m p,p ⨯==pS ΔSΔl C Q13 -13 一压强为1.0 ×105Pa,体积为1.0×10-3m 3的氧气自0℃加热到100 ℃.问:(1) 当压强不变时,需要多少热量?当体积不变时,需要多少热量?(2) 在等压或等体过程中各作了多少功?分析 (1) 求Q p 和Q V 的方法与题13-11相同.(2) 求过程的作功通常有两个途径.① 利用公式()V V p W d ⎰=;② 利用热力学第一定律去求解.在本题中,热量Q 已求出,而内能变化可由()12m V ,V ΔT T C E Q -==v 得到.从而可求得功W .解 根据题给初态条件得氧气的物质的量为mol 1041.4/2111-⨯===RT V p Mm v 氧气的摩尔定压热容R C 27m p,=,摩尔定容热容R C 25m V,=. (1) 求Q p 、Q V等压过程氧气(系统)吸热()J 1.128Δd 12m p,p =-=+=⎰T T C E V p Q v等体过程氧气(系统)吸热()J 5.91Δ12m V ,V =-==T T C E Q v(2) 按分析中的两种方法求作功值解1 ① 利用公式()V V p W d ⎰=求解.在等压过程中,T R Mm V p W d d d ==,则得 J 6.36d d 21p ===⎰⎰T T T R Mm W W 而在等体过程中,因气体的体积不变,故作功为()0d V ==⎰V V p W② 利用热力学第一定律Q =ΔE +W 求解.氧气的内能变化为()J 5.91Δ12m V,V =-==T T C Mm E Q 由于在(1) 中已求出Q p 与Q V ,则由热力学第一定律可得在等压过程、等体过程中所作的功分别为J 6.36Δp p =-=E Q W0ΔV V =-=E Q W13 -14 如图所示,系统从状态A 沿ABC 变化到状态C 的过程中,外界有326J 的热量传递给系统,同时系统对外作功126J.当系统从状态C 沿另一曲线CA 返回到状态A 时,外界对系统作功为52J ,则此过程中系统是吸热还是放热?传递热量是多少?分析 已知系统从状态C 到状态A ,外界对系统作功为W CA ,如果再能知道此过程中内能的变化ΔE AC ,则由热力学第一定律即可求得该过程中系统传递的热量Q CA .由于理想气体的内能是状态(温度)的函数,利用题中给出的ABC 过程吸热、作功的情况,由热力学第一定律即可求得由A 至C 过程中系统内能的变化ΔE AC ,而ΔE AC =-ΔE AC ,故可求得Q CA .解 系统经ABC 过程所吸收的热量及对外所作的功分别为Q ABC =326J , W ABC =126J则由热力学第一定律可得由A 到C 过程中系统内能的增量ΔE AC =Q ABC -W ABC =200J由此可得从C 到A ,系统内能的增量为ΔE CA =-200J从C 到A ,系统所吸收的热量为Q CA =ΔE CA +W CA =-252J式中负号表示系统向外界放热252 J.这里要说明的是由于CA 是一未知过程,上述求出的放热是过程的总效果,而对其中每一微小过程来讲并不一定都是放热.13 -15 如图所示,一定量的理想气体经历ACB 过程时吸热700J ,则经历ACBDA 过程时吸热又为多少?分析 从图中可见ACBDA 过程是一个循环过程.由于理想气体系统经历一个循环的内能变化为零,故根据热力学第一定律,循环系统净吸热即为外界对系统所作的净功.为了求得该循环过程中所作的功,可将ACBDA 循环过程分成ACB 、BD 及DA 三个过程讨论.其中BD 及DA 分别为等体和等压过程,过程中所作的功按定义很容易求得;而ACB 过程中所作的功可根据上题同样的方法利用热力学第一定律去求.解 由图中数据有p A V A =p B V B ,则A 、B 两状态温度相同,故ACB 过程内能的变化ΔE CAB =0,由热力学第一定律可得系统对外界作功W CAB =Q CAB -ΔE CAB =Q CAB =700J在等体过程BD 及等压过程DA 中气体作功分别为()⎰==0d BD V V p W()⎰-=-==J 1200d 12A DA V V P V p W则在循环过程ACBDA 中系统所作的总功为J 500D A BD A CB -=++=W W W W负号表示外界对系统作功.由热力学第一定律可得,系统在循环中吸收的总热量为J 500-==W Q负号表示在此过程中,热量传递的总效果为放热.13 -16 在温度不是很低的情况下,许多物质的摩尔定压热容都可以用下式表示2m p,2--+=cT bT a C式中a 、b 和c 是常量,T 是热力学温度.求:(1) 在恒定压强下,1 mol 物质的温度从T 1升高到T 2时需要的热量;(2) 在温度T 1 和T 2 之间的平均摩尔热容;(3) 对镁这种物质来说,若C p ,m 的单位为J·mol -1·K -1,则a =25.7J·mol -1·K-1 ,b =3.13 ×10-3J·mol -1·K-2,c =3.27 ×105J·mol -1·K.计算镁在300K时的摩尔定压热容C p,m ,以及在200K和400K之间C p,m 的平均值. 分析 由题目知摩尔定压热容C p,m 随温度变化的函数关系,则根据积分式⎰=21d m p,p T T T C Q 即可求得在恒定压强下,1mol 物质从T 1 升高到T 2所吸收的热量Qp .故温度在T 1 至T 2之间的平均摩尔热容()12p m p,/T T Q C -=. 解 (1) 11 mol 物质从T 1 升高到T 2时吸热为()()()()11122122122m p,p d 2d 21----+-+-=-+==⎰⎰T T c T T b T T a T cT bT a T C Q T T (2) 在T 1 和T 2 间的平均摩尔热容为()()21212p m p,//T T c T T a T T Q C -+=-=(3) 镁在T =300 K 时的摩尔定压热容为-1-12m p,K mol J 9.232⋅⋅=-+=-cT bT a C镁在200 K 和400 K 之间C p ,m 的平均值为()-1-12112m p,K mol J 5.23/⋅⋅=-+=T T c T T a C13 -17 空气由压强为1.52×105 Pa ,体积为5.0×10-3m 3 ,等温膨胀到压强为1.01×105 Pa ,然后再经等压压缩到原来的体积.试计算空气所作的功. 解 空气在等温膨胀过程中所作的功为()()2111121T /ln /ln p p V p V V RT Mm W == 空气在等压压缩过程中所作的功为()⎰-==12d V V p V p W 利用等温过程关系p 1 V 1 =p 2 V 2 ,则空气在整个过程中所作的功为()J 7.55/ln 11122111=-+=+=V p V p p p V p W W W T p13 -18 如图所示,使1mol 氧气(1) 由A 等温地变到B ;(2) 由A 等体地变到C ,再由C 等压地变到B.试分别计算氧气所作的功和吸收的热量.分析 从p -V 图(也称示功图)上可以看出,氧气在AB 与ACB 两个过程中所作的功是不同的,其大小可通过()V V p W d ⎰=求出.考虑到内能是状态的函数,其变化值与过程无关,所以这两个不同过程的内能变化是相同的,而且因初、末状态温度相同T A =T B ,故ΔE =0,利用热力学第一定律Q =W +ΔE ,可求出每一过程所吸收的热量.解 (1) 沿AB 作等温膨胀的过程中,系统作功()()J 1077.2/ln /ln 31⨯===A B B A A B AB V V V p V V RT Mm W 由分析可知在等温过程中,氧气吸收的热量为Q AB =W AB =2.77 ×103J (2) 沿A 到C 再到B 的过程中系统作功和吸热分别为W ACB =W AC +W CB =W CB =p C (V B -V C )=2.0×103JQ ACB =W A CB =2.0×103 J13 -19 将体积为1.0 ×10-4m 3 、压强为1.01×105Pa 的氢气绝热压缩,使其体积变为2.0 ×10-5 m 3 ,求压缩过程中气体所作的功.(氢气的摩尔定压热容与摩尔定容热容比值γ=1.41)分析 可采用题13-13 中气体作功的两种计算方法.(1) 气体作功可由积分V p W d ⎰=求解,其中函数p (V )可通过绝热过程方程pV C γ= 得出.(2)因为过程是绝热的,故Q =0,因此,有W =-ΔE ;而系统内能的变化可由系统的始末状态求出.解 根据上述分析,这里采用方法(1)求解,方法(2)留给读者试解.设p 、V 分别为绝热过程中任一状态的压强和体积,则由γγpV V p =11得 γγV V p p -=11氢气绝热压缩作功为J 0.231d d 121211121-=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-===⎰⎰-V V V V γp V V V p V p W V V γγ 13 -20 试验用的火炮炮筒长为3.66 m ,内膛直径为0.152 m ,炮弹质量为45.4kg ,击发后火药爆燃完全时炮弹已被推行0.98 m ,速度为311 m·s -1 ,这时膛内气体压强为2.43×108Pa.设此后膛内气体做绝热膨胀,直到炮弹出口.求(1) 在这一绝热膨胀过程中气体对炮弹作功多少?设摩尔定压热容与摩尔定容热容比值为 1.2γ=.(2) 炮弹的出口速度(忽略摩擦).分析 (1) 气体绝热膨胀作功可由公式1d 2211--==⎰γV p V p V p W 计算.由题中条件可知绝热膨胀前后气体的体积V 1和V 2,因此只要通过绝热过程方程γγV p V p 2211=求出绝热膨胀后气体的压强就可求出作功值.(2) 在忽略摩擦的情况下,可认为气体所作的功全部用来增加炮弹的动能.由此可得到炮弹速度.解 由题设l =3.66 m,D =0.152 m ,m =45.4 kg ,l 1=0.98 m ,v 1=311 m·s -1 ,p 1 =2.43×108Pa ,γ=1.2.(1) 炮弹出口时气体压强为()()Pa 1000.5//7112112⨯===γγl l p V V p p 气体作功J 1000.54π11d 6222112211⨯=--=--==⎰D γl p l p γV p V p V p W (2) 根据分析2122121v v m m W -=,则 -121s m 563⋅=+=v 2W/m v13 -21 1mol 氢气在温度为300K,体积为0.025m 3 的状态下,经过(1)等压膨胀,(2)等温膨胀,(3)绝热膨胀.气体的体积都变为原来的两倍.试分别计算这三种过程中氢气对外作的功以及吸收的热量.分析 这三个过程是教材中重点讨论的过程.在p -V 图上,它们的过程曲线如图所示.由图可知过程(1 ) 作功最多, 过程( 3 ) 作功最少.温度T B >T C >T D ,而过程(3) 是绝热过程,因此过程(1)和(2)均吸热,且过程(1)吸热多.具体计算时只需直接代有关公式即可.解 (1) 等压膨胀()()J 1049.23⨯==-=-=A A B AA AB A p RT V V V RT V V p W v()J 1073.8273,,⨯===-=+=A A m p A B m p p p T R T C T T C E ΔW Q v v (2) 等温膨胀 J 1073.12ln /3⨯===A A RT V W C T vRTlnV对等温过程ΔE =0,所以J 1073.13⨯==T T W Q(3) 绝热膨胀T D =T A (V A /V D )γ-1=300 ×(0.5)0.4=227.4K对绝热过程a 0Q =,则有 ()()J 1051.125Δ3,⨯=-=-=-=D A D A m V a T T R T T C E W v 13 -22 绝热汽缸被一不导热的隔板均分成体积相等的A 、B 两室,隔板可无摩擦地平移,如图所示.A 、B 中各有1mol 氮气,它们的温度都是T0 ,体积都是V0 .现用A 室中的电热丝对气体加热,平衡后A 室体积为B 室的两倍,试求(1) 此时A 、B 两室气体的温度;(2) A 中气体吸收的热量.分析 (1) B 室中气体经历的是一个绝热压缩过程,遵循绝热方程TVγ-1 =常数,由此可求出B 中气体的末态温度TB .又由于A 、B 两室中隔板可无摩擦平移,故A 、B 两室等压.则由物态方程pV A =νRT A 和pV B =νRT B 可知T A =2T B .(2) 欲求A 室中气体吸收的热量,我们可以有两种方法.方法一:视A 、B 为整体,那么系统(汽缸)对外不作功,吸收的热量等于系统内能的增量.即QA =ΔE A +ΔE B .方法二:A 室吸热一方面提高其内能ΔE A ,另外对“外界”B 室作功WA.而对B 室而言,由于是绝热的,“外界” 对它作的功就全部用于提高系统的内能ΔEB .因而在数值上W A =ΔE B .同样得到Q A =ΔE A +ΔE B . 解 设平衡后A 、B 中气体的温度、体积分别为T A ,T B 和V A ,V B .而由分析知压强p A =p B =p .由题已知⎩⎨⎧=+=022V V V V V B A B A ,得⎩⎨⎧==3/23/400V V V V BA (1) 根据分析,对B 室有B γB γT V T V 1010--=得 ()0010176.1/T T V V T γB B ==-;0353.2T T T B A == (2) ()()0007.312525ΔΔT T T R T T R E E Q B A A A A =-+-=+= 13-23 0.32 kg 的氧气作如图所示的ABCDA 循环,V 2 =2V 1 ,T 1=300K,T 2=200K,求循环效率.分析 该循环是正循环.循环效率可根据定义式η=W /Q 来求出,其中W 表示一个循环过程系统作的净功,Q 为循环过程系统吸收的总热量. 解 根据分析,因AB 、CD 为等温过程,循环过程中系统作的净功为()()()J 1076.5/ln /ln 32121211⨯=-==+=V V T T R M m V V RT Mm W W W CD AB由于吸热过程仅在等温膨胀(对应于AB 段)和等体升压(对应于DA 段)中发生,而等温过程中ΔE =0,则AB AB W Q =.等体升压过程中W =0,则DA DA E Q Δ=,所以,循环过程中系统吸热的总量为()()()()J 1081.325/ln /ln Δ42112121,121⨯=-+=-+=+=+=T T R M m V V RT Mm T T C M m V V RT Mm E W Q Q Q m V DAAB DA AB 由此得到该循环的效率为 %15/==Q W η13 -24 图(a)是某单原子理想气体循环过程的V -T 图,图中V C =2V A .试问:(1) 图中所示循环是代表制冷机还是热机? (2) 如是正循环(热机循环),求出其循环效率.分析 以正、逆循环来区分热机和制冷机是针对p -V 图中循环曲线行进方向而言的.因此,对图(a)中的循环进行分析时,一般要先将其转换为p -V 图.转换方法主要是通过找每一过程的特殊点,并利用理想气体物态方程来完成.由图(a)可以看出,BC 为等体降温过程,CA 为等温压缩过程;而对AB 过程的分析,可以依据图中直线过原点来判别.其直线方程为V =CT ,C 为常数.将其与理想气体物态方程pV =m/MRT 比较可知该过程为等压膨胀过程(注意:如果直线不过原点,就不是等压过程).这样,就可得出p -V 图中的过程曲线,并可判别是正循环(热机循环)还是逆循环(制冷机循环),再参考题13-23的方法求出循环效率.解 (1) 根据分析,将V -T 图转换为相应的p -V 图,如图(b)所示.图中曲线行进方向是正循环,即为热机循环.(2) 根据得到的p -V 图可知,AB 为等压膨胀过程,为吸热过程.BC 为等体降压过程,CA 为等温压缩过程,均为放热过程.故系统在循环过程中吸收和放出的热量分别为()A B m p T T C M m Q -=,1 ()()A C A A B m V V V RT Mm T T C M m Q /ln ,2+-= CA 为等温线,有T A =T C ;AB 为等压线,且因V C =2V A ,则有T A =T B /2.对单原子理想气体,其摩尔定压热容C p ,m =5R/2,摩尔定容热容C V ,m =3R/2.故循环效率为()()3/125/2ln 2312/5/2ln 321/112=+-=⎥⎦⎤⎢⎣⎡+-=-=A A A T T T Q Q η 13 -25 一卡诺热机的低温热源温度为7℃,效率为40%,若要将其效率提高到50%,问高温热源的温度需提高多少?解 设高温热源的温度分别为1T '、1T '',则有12/1T T η'-=', 12/1T T η''-=''其中T 2 为低温热源温度.由上述两式可得高温热源需提高的温度为K 3.931111Δ211=⎪⎪⎭⎫ ⎝⎛'--''-='-''=T ηηT T T 13 -26 一定量的理想气体,经历如图所示的循环过程.其中AB 和CD 是等压过程,BC 和DA 是绝热过程.已知B 点温度T B =T 1,C 点温度T C =T 2.(1) 证明该热机的效率η=1-T 2/T 1 ,(2) 这个循环是卡诺循环吗?分析 首先分析判断循环中各过程的吸热、放热情况.BC 和DA 是绝热过程,故Q BC 、Q DA 均为零;而AB 为等压膨胀过程(吸热)、CD 为等压压缩过程(放热),这两个过程所吸收和放出的热量均可由相关的温度表示.再利用绝热和等压的过程方程,建立四点温度之间的联系,最终可得到求证的形式. 证 (1) 根据分析可知 ()()⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=---=---=-=B A C D B C A B D CA B m p C D m p AB CD T T T T T T T T T T T T C MT T C M m Q Q η1/11111,, (1) 与求证的结果比较,只需证得BA C D T T T T = .为此,对AB 、CD 、BC 、DA 分别列出过程方程如下V A /T A =V B /T B (2)V C /T C =V D /T D (3) C γC B γB T V T V 11--= (4)A γA D γD T V T V 11--= (5)联立求解上述各式,可证得η=1-T C /T B =1-T 2/T 1(2) 虽然该循环效率的表达式与卡诺循环相似,但并不是卡诺循环.其原因是:① 卡诺循环是由两条绝热线和两条等温线构成,而这个循环则与卡诺循环不同;② 式中T 1、T 2的含意不同,本题中T 1、T 2只是温度变化中两特定点的温度,不是两等温热源的恒定温度.13 -27 一小型热电厂内,一台利用地热发电的热机工作于温度为227℃的地下热源和温度为27℃的地表之间.假定该热机每小时能从地下热源获取1.8 ×1011J的热量.试从理论上计算其最大功率为多少?分析 热机必须工作在最高的循环效率时,才能获取最大的功率.由卡诺定理可知,在高温热源T 1和低温热源T 2之间工作的可逆卡诺热机的效率最高,其效率为η=1-T 2/T 1 .由于已知热机在确定的时间内吸取的热量,故由效率与功率的关系式Q pt Q W η//==,可得此条件下的最大功率.解 根据分析,热机获得的最大功率为()-1712s J 100.2//1/⋅⨯=-==t Q T T t Q ηp13 -28 有一以理想气体为工作物质的热机,其循环如图所示,试证明热()()1/1/12121---=p p V V γη 分析 该热机由三个过程组成,图中AB 是绝热过程,BC 是等压压缩过程,CA 是等体升压过程.其中CA 过程系统吸热,BC 过程系统放热.本题可从效率定义CA BC Q Q Q Q η/1/112-=-=出发,利用热力学第一定律和等体、等压方程以及γ=C p,m 桙C V,m 的关系来证明.证 该热机循环的效率为CA BC Q Q Q Q η/1/112-=-=其中Q BC =m /M C p,m (T C -T B ),Q CA =m/M C V,m (T A -T C ),则上式可写为1/1/11---=---=C A CB C A B C T T T T γT T T T γη 在等压过程BC 和等体过程CA 中分别有T B /V 1 =T C /V 2,T A /P 1 =T C /P 2,代入上式得()()1/1/12121---=p p V V γη 13 -29 如图所示为理想的狄赛尔(Diesel)内燃机循环过程,它由两绝热线AB 、CD 和等压线BC 及等体线DA 组成.试证此内燃机的效率为()()()1//1/12312123---=-V V V V γV V ηγγ证 求证方法与题13-28相似.由于该循环仅在DA 过程中放热、BC 过程中吸热,则热机效率为 ()()B C AD B C m p A D m V BCDA T T T T γT T C M T T C M m Q Q η---=---=-=111/1,, (1) 在绝热过程AB 中,有1211--=γB γA V T V T ,即()121//-=γA B V V T T (2)在等压过程BC 中,有23//V T V T B C =,即23//V V T T B C = (3)再利用绝热过程CD,得1311--=γC γD V T V T (4)解上述各式,可证得()()()1//1/12312123---=-V V V V γV V ηγγ 13 -30 如图所示,将两部卡诺热机连接起来,使从一个热机输出的热量,输入到另一个热机中去.设第一个热机工作在温度为T 1和T 2的两热源之间,其效率为η1 ,而第二个热机工作在温度为T 2 和T 3 的两热源之间,其效率为η2.如组合热机的总效率以η=(W 1 +W 2 )/Q 1 表示.试证总效率表达式为η=(1 -η1 )η2 +η1 或 η=1 -T 3/T 1分析 按效率定义,两热机单独的效率分别为η1=W 1 /Q 1和η2=W 2 /Q 2,其中W 1 =Q 1-Q 2 ,W 2 =Q 2-Q 3 .第一个等式的证明可采用两种方法:(1) 从等式右侧出发,将η1 、η2 的上述表达式代入,即可得证.读者可以一试.(2) 从等式左侧的组合热机效率η=(W 1 +W 2 )/Q 1出发,利用η1、η2的表达式,即可证明.由于卡诺热机的效率只取决于两热源的温度,故只需分别将两个卡诺热机的效率表达式η1=1-T 2 /T 1 和η2=1-T 3 /T 2 代入第一个等式,即可得到第二个等式.证 按分析中所述方法(2) 求证.因η1=W 1 /Q 1 、η2=W 2 /Q 2 ,则组合热机效率12211211121Q Q ηηQ W Q W Q W W η+=+=+= (1) 以Q 2 =Q 1-W 1 代入式(1) ,可证得η=η1 +η2 (1-η1 ) (2) 将η1=1-T 2 /T 1 和η2=1-T 3 /T 2代入式(2),亦可证得η=1-T 2 /T 1 +(1-T 3 /T 2 )T 2 /T 1 =1-T 3 /T 113 -31 在夏季,假定室外温度恒定为37℃,启动空调使室内温度始终保持在17 ℃.如果每天有2.51 ×108 J 的热量通过热传导等方式自室外流入室内,则空调一天耗电多少? (设该空调制冷机的制冷系数为同条件下的卡诺制冷机制冷系数的60%)分析 耗电量的单位为kW·h ,1kW·h =3.6 ×106J.图示是空调的工作过程示意图.因为卡诺制冷机的制冷系数为212T T T e k -=,其中T 1为高温热源温度(室外环境温度),T 2为低温热源温度(室内温度).所以,空调的制冷系数为e =e k · 60% =0.6 T 2/( T 1 -T 2 )另一方面,由制冷系数的定义,有e =Q 2 /(Q 1 -Q 2 )其中Q 1为空调传递给高温热源的热量,即空调向室外排放的总热量;Q 2是空调从房间内吸取的总热量.若Q ′为室外传进室内的热量,则在热平衡时Q 2=Q ′.由此,就可以求出空调的耗电作功总值W =Q 1-Q 2 .解 根据上述分析,空调的制冷系数为7.8%60212=-=T T T e在室内温度恒定时,有Q 2=Q ′.由e =Q 2 /(Q 1-Q 2 )可得空调运行一天所耗电功W =Q 1-Q 2=Q 2/e =Q ′/e =2.89×107=8.0 kW·h13 -32 一定量的理想气体进行如图所示的逆向斯特林循环(回热式制冷机中的工作循环),其中1→2为等温(T 1 )压缩过程,3→4为等温(T 2 )膨胀过程,其他两过程为等体过程.求证此循环的制冷系数和逆向卡诺循环制冷系数相等.(这一循环是回热式制冷机中的工作循环,具有较好的制冷效果.4→1过程从热库吸收的热量在2→3过程中又放回给了热库,故均不计入循环系数计算.)证明 1→2 过程气体放热2111lnV V RT Q v = 3→4 过程气体吸热 2122lnV V RT Q v = 则制冷系数 e =Q 2 /(Q 1-Q 2 )= T 2/( T 1-T 2 ).与逆向卡诺循环的制冷系数相同.13 -33 物质的量为ν的理想气体,其摩尔定容热容C V,m =3R/2,从状态A(p A ,V A ,T A )分别经如图所示的ADB 过程和ACB 过程,到达状态B(p B ,V B ,T B ).试问在这两个过程中气体的熵变各为多少? 图中AD 为等温线.分析 熵是热力学的状态函数,状态A 与B 之间的熵变ΔSAB 不会因路径的不同而改变.此外,ADB 与ACB 过程均由两个子过程组成.总的熵变应等于各子过程熵变之和,即DB AD AB S S S ΔΔΔ+=或CB AC AB S S S ΔΔΔ+=. 解 (1) ADB 过程的熵变为()()D B p,m A D B D D A T BD P D A T DBAD AB T T C V V T T C T W T Q T Q S S S /ln /ln /d /d /d /d ΔΔΔm p,v vR v +=+=+=+=⎰⎰⎰⎰ (1)在等温过程AD 中,有T D =T A ;等压过程DB 中,有V B /T B =V D /T D ;而C p ,m =C V ,m +R ,故式(1)可改写为()()()()A B A B A B p,m A B B D ADB V T V V V T C V T V T S /ln 23/ln /ln /ln ΔvR vR v vR +=+=(2) ACB 过程的熵变为()()C B V,m A C p,m CB AC BA ACB T TC V T C S S Q/T S /ln /ln ΔΔd Δv v +=+==⎰ (2)利用V C =V B 、p C =p A 、T C /V C =T A /V A 及T B /p B =T C /p C ,则式(2)可写为()()()()()()()A B A B A A B B V,m A B A B A B V,m ACB V T V V V p V p C V V p p V V R C S /ln 23/ln /ln /ln /ln /ln ΔvR vR v vR v v +=+=++=通过上述计算可看出,虽然ADB 及ACB 两过程不同,但熵变相同.因此,在计算熵变时,可选取比较容易计算的途径进行.13 -34 有一体积为2.0 ×10-2m 3的绝热容器,用一隔板将其分为两部分,如图所示.开始时在左边(体积V 1 =5.0 ×10-3m 3)一侧充有1mol 理想气体,右边一侧为真空.现打开隔板让气体自由膨胀而充满整个容器,求熵变.分析 在求解本题时,要注意⎰=BA T Q S d Δ 的适用条件.在绝热自由膨胀过程中,d Q =0,若仍运用上式计算熵变,必然有ΔS =0.显然,这是错误的结果.由于熵是状态的单值函数,当初态与末态不同时,熵变不应为零.出现上述错误的原因就是忽视了公式的适用条件. ⎰=BA T Q S d Δ 只适用于可逆过程,而自由膨胀过程是不可逆的.因此,在求解不可逆过程的熵变时,通常需要在初态与末态之间设计一个可逆过程,然后再按可逆过程熵变的积分式进行计算.在选取可逆过程时,尽量使其积分便于计算.解 根据上述分析,在本题中因初末态时气体的体积V 1 、V 2 均已知,且温度相同,故可选一可逆等温过程.在等温过程中,d Q =d W =p d V ,而VRT M m p =,则熵变为 ()1-12K J 52.11/ln d 1d d Δ12⋅=====⎰⎰⎰V V R M m V V R M m T V p T Q S V V。

大学物理气体动理论热力学基础复习题及答案详解

大学物理气体动理论热力学基础复习题及答案详解

⼤学物理⽓体动理论热⼒学基础复习题及答案详解第12章⽓体动理论⼀、填空题:1、⼀打⾜⽓的⾃⾏车内胎,若在7℃时轮胎中空⽓压强为4.0×510pa .则在温度变为37℃,轮胎内空⽓的压强是。

(设内胎容积不变)2、在湖⾯下50.0m 深处(温度为4.0℃),有⼀个体积为531.010m -?的空⽓泡升到⽔⾯上来,若湖⾯的温度为17.0℃,则⽓泡到达湖⾯的体积是。

(取⼤⽓压强为50 1.01310p pa =?)3、⼀容器内储有氧⽓,其压强为50 1.0110p pa =?,温度为27.0℃,则⽓体分⼦的数密度为;氧⽓的密度为;分⼦的平均平动动能为;分⼦间的平均距离为。

(设分⼦均匀等距排列)4、星际空间温度可达2.7k ,则氢分⼦的平均速率为,⽅均根速率为,最概然速率为。

5、在压强为51.0110pa ?下,氮⽓分⼦的平均⾃由程为66.010cm -?,当温度不变时,压强为,则其平均⾃由程为1.0mm 。

6、若氖⽓分⼦的有效直径为82.5910cm -?,则在温度为600k ,压强为21.3310pa ?时,氖分⼦1s 内的平均碰撞次数为。

7、如图12-1所⽰两条曲线(1)和(2),分别定性的表⽰⼀定量的某种理想⽓体不同温度下的速率分布曲线,对应温度⾼的曲线是 .若图中两条曲线定性的表⽰相同温度下的氢⽓和氧⽓的速率分布曲线,则表⽰氧⽓速率分布曲线的是 .8、试说明下列各量的物理物理意义:(1)12kT ,(2)32kT ,(3)2i kT ,(4)2i RT ,(5)32RT ,(6)2M i RT Mmol 。

参考答案:1、54.4310pa ? 2、536.1110m -? 图12-13、25332192.4410 1.30 6.2110 3.4510m kg m J m ---- 4、2121121.6910 1.8310 1.5010m s m s m s --- 5、6.06pa 6、613.8110s -? 7、(2),(2)8、略⼆、选择题:教材习题12-1,12-2,12-3,12-4. (见课本p207~208)参考答案:12-1~12-4 C, C, B, B.第⼗三章热⼒学基础⼀、选择题1、有两个相同的容器,容积不变,⼀个盛有氦⽓,另⼀个盛有氢⽓(均可看成刚性分⼦)它们的压强和温度都相等,现将 5 J 的热量传给氢⽓,使氢⽓温度升⾼,如果使氦⽓也升⾼同样的温度,则应向氦⽓传递的热量是()(A ) 6 J (B ) 5 J (C ) 3 J (D ) 2 J2、⼀定量理想⽓体,经历某过程后,它的温度升⾼了,则根据热⼒学定理可以断定:(1)该理想⽓体系统在此过程中作了功;(2)在此过程中外界对该理想⽓体系统作了正功;(3)该理想⽓体系统的内能增加了;(4)在此过程中理想⽓体系统既从外界吸了热,⼜对外作了正功。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十三章热力学基础习题解
13-21 1mol 氢气在温度k 300,体积为3
025.0m 的状态下,经过(1)等压膨胀;(2)等温膨胀;(3)绝热膨胀。

气体的体积都变为原来的两倍。

试分别计算这三种过程中氢气对外作的功以及吸收的热量。

解:(1)PdV dW P =
()12112
1
21
V V P dV P PdV W V V V V P -===⎰⎰
而111RT V P ν=,1
11V RT P = ()J RT V V V RT W P 3
111111049.22⨯==-=∴
⎰=21T T m p P dT C Q ,,R R i C m p 22
522+=+=
, ()1227
2721T T R RdT Q T T P -==⎰
而2211V T V T =,11
2
2T V V T = J T T V V R Q P 311121073.827⨯=⎪⎭
⎫ ⎝⎛-=
(2)0=dE
dV V
RT
PdV dW dQ T T ν=
==
J V V RT V dV RT W Q V V T T 3
1
21073.1ln 2
1⨯====⎰ν
(3)0=dQ ,0=Q
()122
1T T C dT C E W M V T T M V --=-=∆-=⎰,,νν
21
2
111T V T V --=γγ,1
212-⎪


⎝⎛=γV V T ,4.1==M
V M
P C C ,,γ
()[]
J T V V T R W 3
112111051.1/2
5⨯=--=-γ
13-23 kg 32.0的氧气作图中所示循环ABCDA ,设122V V =,k T 3001=,k T 2002=,求循环效率。

解:1
Q W

净功CD AB DA CD BC AB W W W W W W W +=+++=
⎰⎰+=D C B A V V V V V
dV RT V dV RT 21ννJ V V RT V V RT C
D A B 3
211076.5ln ln ⨯=+=νν
DA T DA AB E W Q Q Q ∆+=+=11
()211T T C V dV
RT M V V V B
A
-+=⎰,νν ()J T T R V V RT A B 4
2111084.32
5ln ⨯=-+=νν
%1510
84.310
76.54
3
1=⨯⨯==Q W η 13-26 一定质量的理想气体,经历如图所示的循环过程。

其中AB 和CD 是等压过程,BC 和DA 是绝热过程。

已知B 点温度1T T B =,C 点温度2T T C =,(1)
证明该热机的效率为1
21T T -=η,(2)这个循环是卡
诺循环吗?
解:1
2
11Q Q Q W -
==η ()A B M P AB AB T T C E E W Q -=∆=∆+=,ν1
()C D M P CD CD T T C E E W Q -=∆=∆+=,ν2
()()A
B D
C A B M P C
D M P T T T T T T C T T C ---
=---=11,,ννη ()()
B A B
C
D C T T T T T T ---
=111 对于AB 、CD 的等压过程和BC 、DA 的绝热过程有
B B A A V T V T =,D
D
C C V T V T =, C C B B T V T V 1
1
--=γγ,D D A A T V T V 1
1
--=γγ
解得C
D
B A T T T T =
()()1
2
11111T T T T T T T T T T B C B A B C D C -=-=---=η。

相关文档
最新文档