最新2018-2019学年江西省七年级数学上册期中模拟试题有答案-精编试题
2018-2019学年江西省南昌市七年级(上)期中数学试卷
2018-2019 学年江西省南昌市七年级(上)期中数学试卷一、选择题(本大题共8 小题 ,每小题 3 分,共 24分 )在每小题给出的四个选项中,只有一项是正确的 ,请将正确答案前的字母填入题后的括号内,每小题选对得 3 分 ,选错、不选或多选均得零分 .1.( 3 分)在 4, 1.5, 0,﹣ 2 四个数中,属于正分数的是()A .4B .1.5C. 0D.﹣ 22.( 3 分)若 a 的相反数为 1,则 a2019 是()A .2019B .﹣ 2019C. 1D.﹣ 13.( 3 分)计算 1﹣ 3+5﹣ 7+9 =( 1+5+9 )+(﹣ 3﹣ 7)是应用了()A .加法交换律B.加法结合律C.分配律D.加法交换律与结合律4.( 3 分)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若收入80 元记作 +80元,则﹣ 60 元表示()A.收入 60 元B.收入 20 元C.支出 60 元D.支出 20 元5.( 3 分)化简 x+y﹣( x﹣ y)的最后结果是()A .2x+2yB .2y C. 2x D. 06.( 3 分)若两个非零的有理数a、b,满足: |a|= a,|b|=﹣ b,a+b< 0,则在数轴上表示数a、 b 的点正确的是()A .B.C.D.7.( 3 分)某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌由 1 个分裂为64 个,则这个过程要经过()A.1 小时B.2 小时C.3 小时D.4 小时8.( 3 分)按某种标准,多项式a 2﹣ 2a﹣ 1 与 ab+b+2 属于同一类,则下列符合此类标准的多项式是()22C. a+3b﹣ 22A .x ﹣ yB .a+4x+3D. x y+y﹣ 1二、填空题(本大题共6小题,每小题 3分,共 18分)9.(3 分)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为.第1页(共 13页)10.( 3分)数轴上点 A 表示﹣ 1,点 B 表示 2,则表示 A、 B 两点间的距离是.11.(3 分)若多项式22.x +kxy+4x﹣ 2xy+y﹣1 不含 xy 项,则 k 的值是12.( 3分)在﹣ 1,2,﹣ 3,4 中,任取 3 个不同的数相乘,则其中最小的积是.13.( 322.分)若 a ﹣ 2a=﹣ 1,则 3﹣ 2a +4a 的值是14.( 3 分)有一列数:0, 1, 3, 4,12, 13, 39, 40, 120, a, b, c,这串数是由小明按照一定的规则写下米的,他第 1 次写下 0,1,第 2 次接着写“ 3,4”,第 3 次接着写“ 12,13”,第 4 次接着写“39, 40”,就这样一直接着往下写,则这列数中的a=, b =, c=.三、解答题(本大题共4小题,每小题 6分,共 24分)15.( 6分)计算:( 1)(﹣ 1 )×+(﹣ 1 )×(﹣ 2 );( 2)﹣ 32+( 5﹣× 42)÷(﹣ 1 )16.( 6分)化简:22( 1) 2( x y﹣ 3x)﹣ 3( x y﹣ 2x﹣1)( 2) 4x 2﹣ [7x2﹣ 3( x2﹣ x) ]17.( 6分)若 |a|= 4, |b|< 2,且 b 为整数.(1)求 a, b 的值;(2)当 a, b 为何值时, a+b 有最大值或最小值?此时,最大值或最小值是多少?18.( 6 分)已知 A= 3a 22﹣ ab﹣ 2a, B=﹣ a +ab﹣ 2.( 1)求 4A﹣ 3( A﹣ B)的值;( 2)若 A+3B 的值与 a 的取值无关,求 b 的值.四、解答题(本大题共3小题,每小题 8分,共 24分)19.( 8 分)用“⊕”定义一种新运算,对于任意的有理数a, b,都有 a⊕ b= |a|+b.(1)求(﹣ 1⊕2)⊕(﹣ 3)的值;(2)当 x, y 满足什么条件时,“ x⊕ y”与“ y⊕ x”的值互为相反数.20.( 8 分)学校需要到印刷厂印刷x 份材料,甲印刷厂提出:每份材料收0.2 元印刷费,另收 200 元的制版费;乙印刷厂提出:每份材料收0.4 元印刷费,不收制版费.( 1)求两印刷厂各收费多少元?(用含x 的代数式表示)( 2)若学校要印刷1500 份材料,不考虑其他因素,选择哪家印刷厂比较合算?请通过第2页(共 13页)计算说明理由.21.(8 分)一个三位数,它的个位数字为a,十位数字比个位数字的 2 倍小 1,百位数字比个位数字大 6.(1)用含 a 的代数式表示这个三位数;(2)根据题目中的条件, a 的取值可能是多少?此时相应的三位数是多少?五、探究题 (本大题共 1 小题 ,共 10 分 )22.( 10 分) A、 B、 C 为数轴上三点,若点 C 到点 A 的距离是点C 到点 B 的距离的 2 倍,则称点 C 是( A,B)的奇异点,例如图 1 中,点 A 表示的数为﹣ 1,点 B 表示的数为2,表示 1 的点 C 到点 A 的距离为2,到点 B 的距离为 1,则点 C 是( A, B)的奇异点,但不是( B, A)的奇异点.( 1)在图 1 中,直接说出点 D 是( A, B)还是( B, C)的奇异点;( 2)如图 2,若数轴上M、N 两点表示的数分别为﹣ 2 和 4,( M,N)的奇异点K 在 M、N 两点之间,请求出K 点表示的数;( 3)如图 3,A、B 在数轴上表示的数分别为﹣20 和 40,现有一点P 从点 B 出发,向左运动.①若点 P 到达点 A 停止,则当点P 表示的数为多少时,P、A、B 中恰有一个点为其余两点的奇异点?②若点 P 到达点 A 后继续向左运动,是否存在使得P、A、 B 中恰有一个点为其余两点的奇异点的情况?若存在,请直接写出此时PB 的距离;若不存在,请说明理由.第3页(共 13页)2018-2019 学年江西省南昌市七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8 小题 ,每小题 3 分 ,共 24 分 )在每小题给出的四个选项中,只有一项是正确的 ,请将正确答案前的字母填入题后的括号内,每小题选对得 3 分 ,选错、不选或多选均得零分 .1.( 3 分)在 4, 1.5, 0,﹣ 2 四个数中,属于正分数的是()A .4B.1.5C.0D.﹣ 2【分析】利用正分数定义判断即可.【解答】解:在 4, 1.5,0,﹣ 2 四个数中,属于正分数的是 1.5,故选: B.【点评】此题考查了有理数,熟练掌握正分数的定义是解本题的关键.2.( 3 分)若 a 的相反数为 1,则 a2019 是()A .2019B .﹣ 2019C. 1D.﹣ 1【分析】直接利用相反数的定义结合有理数的乘方运算法则计算得出答案.【解答】解:∵ a 的相反数为1,∴ a=﹣ 1,则 a 2019=(﹣ 1)2019=﹣ 1.故选: D.【点评】此题主要考查了相反数的定义,正确得出 a 的值是解题关键.3.( 3 分)计算1﹣ 3+5﹣ 7+9 =( 1+5+9 )+(﹣ 3﹣ 7)是应用了()A .加法交换律B.加法结合律C.分配律D.加法交换律与结合律【分析】根据加法交换律与结合律即可求解.【解答】解:计算 1﹣3+5﹣ 7+9=( 1+5+9)+(﹣ 3﹣ 7)是应用了加法交换律与结合律.故选: D.【点评】考查了有理数的加减混合运算,方法指引:① 在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.② 转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.4.( 3 分)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若第4页(共 13页)其意义相反,则分别叫做正数与负数.若收入80 元记作 +80 元,则﹣ 60 元表示()A .收入 60 元B .收入 20 元C.支出 60 元D.支出 20 元【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:根据题意,若收入80 元记作 +80 元,则﹣ 60 元表示支出60 元.故选: C.【点评】本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.5.( 3 分)化简x+y﹣( x﹣ y)的最后结果是()A .2x+2yB .2y C. 2x D. 0【分析】原式去括号合并即可得到结果.【解答】解:原式= x+y﹣x+y=2y.故选: B.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.6.( 3 分)若两个非零的有理数a、b,满足: |a|= a,|b|=﹣ b,a+b< 0,则在数轴上表示数a、 b 的点正确的是()A.B.C.D.【分析】根据 |a|=a 得出 a 是正数,根据|b|=﹣ b 得出 b 是负数,根据a+b< 0 得出 b 的绝对值比 a 大,在数轴上表示出来即可.【解答】解:∵ a、 b 是两个非零的有理数满足:|a|= a, |b|=﹣ b, a+b< 0,∴ a> 0, b< 0,∵ a+b<o,∴ |b|> |a|,∴在数轴上表示为:故选: B.【点评】本题考查了数轴,绝对值,有理数的加法法则等知识点,关键是确定出a> 0,b <0, |b|> |a|.7.( 3 分)某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌第5页(共 13页)由 1 个分裂为 64 个,则这个过程要经过()A .1 小时B .2 小时C .3 小时D .4 小时【分析】 每半小时分裂一次,一个变为2 个,实际是 21个.分裂第二次时, 2 个就变为了 22个.那么经过 3 小时,就要分裂 6 次.根据有理数的乘方的定义可得.【解答】 解:由题意可得: 2n = 64=26,则这个过程要经过: 3 小时.故选: C .【点评】 本题考查了有理数的乘方在实际生活中的应用,应注意观察问题得到规律.8.( 3 分)按某种标准,多项式 a 2﹣ 2a ﹣ 1 与 ab+b+2 属于同一类,则下列符合此类标准的多项式是()22 C . a+3b ﹣ 2 2A .x ﹣ yB .a +4x+3 D . x y+y ﹣ 1【分析】 直接利用多项式次数与项数确定方法分析得出答案.【解答】 解:∵多项式 a 2﹣ 2a ﹣ 1 与 ab+b+2 属于同一类,∴它们都是二次三项式,2A 、 x ﹣y ,是二次二项式,不合题意;2B 、 a +4x+3 ,是二次三项式,符合题意;C 、 a+3b ﹣ 2,是一次三项式,不合题意;2D 、x y+y ﹣ 1,是三次三项式,不合题意;故选: B .【点评】 此题主要考查了多项式,正确把握多项式次数与项数确定方法是解题关键.二、填空题(本大题共6小题,每小题 3分,共 18分)9.(3 分)中国倡导的 “一带一路” 建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000 人,这个数用科学记数法表示为4.4× 109.【分析】 科学记数法的表示形式为a × 10n的形式,其中 1≤ |a|< 10,n 为整数.确定n的值时, 要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值> 1 时, n 是正数;当原数的绝对值<1 时, n 是负数.【解答】 解:将 4400000000 用科学记数法表示为4.4× 109.故答案为: 4.4×109.【点评】 此题考查科学记数法的表示方法.科学记数法的表示形式为a × 10n的形式,其中 1≤ |a|< 10, n 为整数,表示时关键要正确确定 a 的值以及 n 的值.第6页(共 13页)10.( 3 分)数轴上点 A 表示﹣ 1,点 B 表示 2,则表示A、 B 两点间的距离是3.【分析】数轴上两点之间的距离等于这两点的数的差的绝对值,即较大的数减去较小的数.【解答】解: 2﹣(﹣ 1)= 3.故表示 A、 B 两点间的距离是3.故答案为: 3.【点评】此题考查了数轴上两点之间的距离的计算方法:右边的数减去左边的数.2211.(3 分)若多项式 x +kxy+4x﹣ 2xy+y ﹣1 不含 xy 项,则 k的值是 2.【分析】直接利用多项式中不含xy 项,得出 k﹣2= 0,进而得出答案.22【解答】解:∵多项式 x +kxy+4x﹣ 2xy+y ﹣1 不含 xy 项,∴kxy﹣ 2xy= 0,解得: k= 2.故答案为: 2.【点评】此题主要考查了合并同类项,正确合并同类项是解题关键.12.( 3 分)在﹣ 1,2,﹣ 3,4 中,任取 3 个不同的数相乘,则其中最小的积是﹣24 .【分析】根据有理数的乘法和有理数的大小比较求出最小的积即可得解.【解答】解:最小的积= 2×(﹣ 3)× 4=﹣ 24.故答案为:﹣ 24.【点评】本题考查了有理数的乘法,有理数的大小比较,熟记运算法则并确定出最小乘积的列式是解题的关键.2213.( 3 分)若 a ﹣ 2a=﹣ 1,则3﹣ 2a +4a 的值是 5 .【分析】根据整体代入求值解答即可.22【解答】解:把 a ﹣ 2a=﹣ 1代入 3﹣ 2a +4 a= 3﹣ 2×(﹣ 1)= 5,故答案为: 5【点评】此题考查代数式求值,关键是根据整体代入求值解答.14.( 3 分)有一列数:0, 1, 3, 4,12, 13, 39, 40, 120, a, b, c,这串数是由小明按照一定的规则写下米的,他第 1 次写下 0,1,第 2 次接着写“ 3,4”,第 3 次接着写“ 12,13”,第 4 次接着写“ 39, 40”,就这样一直接着往下写,则这列数中的a=121,b =363 , c= 364 .【分析】由所写数字的规律得到,每次所写两个数为连续的两个整数,且第 1 个数为上第7页(共 13页)一次所写的两个数中的第2 个数的三倍,利用此方法可分别计算出 a 、 b 、 c 的值.【解答】 解: 3= 3× 1, 4= 3+1;12= 3× 4, 13=12+1;39= 3× 13, 40= 39+1 ;120= 40× 3, a = 120+1 = 121;b = 121× 3= 363,c = 363+1= 364.故答案为 121; 363; 364.【点评】 本题考查了规律型:数字的变化类:认真观察、仔细思考,利用数字与序号数的关系解决这类问题.三、解答题(本大题共4小题,每小题 6分,共 24分)15.( 6 分)计算:( 1)(﹣ 1 )×+(﹣ 1 )×(﹣ 2 );( 2)﹣ 32+( 5﹣× 42)÷(﹣ 1 )【分析】( 1)原式先计算乘法运算,再计算加减运算即可求出值;( 2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】 解:( 1)原式=﹣× + ×=﹣ 2+3= 1;( 2)原式=﹣ 9+3×(﹣)=﹣ 9﹣ 2=﹣ 11.【点评】 此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16.( 6 分)化简:22( 1) 2( x y ﹣ 3x )﹣ 3( x y ﹣ 2x ﹣1)( 2) 4x 2﹣ [7x 2﹣ 3( x 2﹣ x ) ]【分析】( 1)先去括号,再合并同类项即可;( 2)先去小括号,再去中括号,然后合并同类项即可.22【解答】 解:( 1)原式= 2x y ﹣ 6x ﹣ 3x y+6x+3 2=﹣ x y+3;222( 2)原式= 4x ﹣ [7x ﹣ 3x +3 x]222= 4x ﹣ 7x +3x ﹣ 3x第8页(共 13页)=﹣ 3x .【点评】 本题考查了整式的加减, 整式加减的实质就是去括号、 合并同类项. 去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“﹣”时,去括号后括号内的各项都要改变符号.17.( 6 分)若 |a|= 4, |b|< 2,且 b 为整数.( 1)求 a , b 的值;( 2)当 a , b 为何值时, a+b 有最大值或最小值?此时,最大值或最小值是多少?【分析】( 1)直接利用绝对值的性质得出a ,b 的值;( 2)直接利用( 1)中所求,分别分析得出答案.【解答】 解:( 1)∵ |a|= 4,∴ a =± 4.∵ |b|< 2,且 b 有整数,∴ b =﹣ 1, 0, 1;( 2)当 a = 4, b = 1 时, a+b 有最大值为 5;当 a =﹣ 4, b =﹣ 1 时, a+b 有最小值为 5.【点评】 此题主要考查了绝对值,正确分类讨论是解题关键.2 218.( 6 分)已知 A = 3a ﹣ ab ﹣ 2a , B =﹣ a +ab ﹣ 2.( 1)求 4A ﹣ 3( A ﹣ B )的值;( 2)若 A+3B 的值与 a 的取值无关,求 b 的值. 【分析】( 1)先化简,然后把A 和B 代入求解;( 2)根据题意可得 A+3B =( 2b ﹣ 2) a ﹣ 6 与 a 的取值无关,即化简之后 a 的系数为 0,据此求 b 值即可.22【解答】 解:( 1)∵ A =3a ﹣ ab ﹣2a , B =﹣ a +ab ﹣2, ∴原式= 4A ﹣3A+3B = A+3B=( 3a 2﹣ ab ﹣ 2a ) +3 (﹣ a 2+ab ﹣ 2)= 3a 2﹣ ab ﹣ 2a ﹣ 3a 2+3ab ﹣6= 2ab ﹣2a ﹣ 6.( 2)∵ A+3B =( 2b ﹣2) a ﹣ 6 与 a 的取值无关,∴ 2b ﹣2= 0,解得 b = 1.第9页(共 13页)【点评】本题考查了整式的加减,解答本题的关键是掌握去括号法则以及合并同类项法则.四、解答题(本大题共3小题,每小题 8分,共 24分)19.( 8 分)用“⊕”定义一种新运算,对于任意的有理数a, b,都有 a⊕ b= |a|+b.(1)求(﹣ 1⊕2)⊕(﹣ 3)的值;(2)当 x, y 满足什么条件时,“ x⊕ y”与“ y⊕ x”的值互为相反数.【分析】( 1)原式利用题中的新定义计算即可求出值;(2)根据题中的新定义将各式化简,利用相反数性质判断即可.【解答】解:( 1)∵﹣ 1⊕2= |﹣ 1|+2=3,∴(﹣ 1⊕ 2)⊕(﹣ 3)= 3⊕(﹣ 3)= |3|+(﹣ 3)= 0;(2)由题意,得( x⊕ y)+( y⊕ x)= 0,即 |x|+y+|y|+x= 0,∴ |x|+|y|=﹣ x﹣ y,∴ |x|=﹣ x,|y|=﹣ y,∴当 x≤0, y≤ 0 时,“ x⊕y”与“ y⊕ x”的值互为相反数.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.( 8 分)学校需要到印刷厂印刷x 份材料,甲印刷厂提出:每份材料收0.2 元印刷费,另收 200 元的制版费;乙印刷厂提出:每份材料收0.4 元印刷费,不收制版费.( 1)求两印刷厂各收费多少元?(用含x 的代数式表示)(2)若学校要印刷 1500 份材料,不考虑其他因素,选择哪家印刷厂比较合算?请通过计算说明理由.【分析】( 1)甲印刷厂收费表示为:甲厂每份材料印刷费×材料份数x+制版费,乙印刷厂收费表示为:乙厂每份材料印刷费×材料份数x;( 2)先把 x= 1500 代入( 1)中所求的代数式,分别计算出此时甲、乙两印刷厂的收费,然后比较即可.【解答】解:( 1)甲印刷厂收费是0.2x+200 (元).乙印刷厂收费是0.4x(元).(2)当 x= 1500 时,甲印刷厂收费是0.2× 1500+200= 500(元).乙印刷厂收费是0.4× 1500= 600(元)∵500< 600,第 10 页(共 13 页)∴甲印刷厂比较合算.【点评】此题考查代数式求值,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出用含材料份数x 来表示甲、乙两印刷厂的收费的代数式.注意题中甲印刷厂的收费=印刷x 份材料的费用 +制版费,乙印刷厂的收费=印刷x 份材料的费用.21.(8 分)一个三位数,它的个位数字为a,十位数字比个位数字的 2 倍小 1,百位数字比个位数字大6.(1)用含 a 的代数式表示这个三位数;(2)根据题目中的条件, a 的取值可能是多少?此时相应的三位数是多少?【分析】( 1)根据三位数表示方法解答即可;(2)根据题意得出 a 的几种取值解答即可.【解答】解:( 1)当个位数字为 a 时,则十位数字为2a﹣ 1,百位数字为a+6,∴这个三位数是100( a+6) +10 ( 2a﹣ 1) +a= 121a+590,( 2)由题意,可知 a 的取值是1,2, 3.当a=1 时,三位数是 711,当a=2 时,三位数是 832,当a=3 时,三位数是 953.【点评】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.五、探究题 (本大题共 1 小题 ,共 10 分 )22.( 10 分) A、 B、 C 为数轴上三点,若点 C 到点 A 的距离是点C 到点 B 的距离的 2 倍,则称点 C 是( A,B)的奇异点,例如图 1 中,点 A 表示的数为﹣ 1,点 B 表示的数为2,表示 1 的点 C 到点 A 的距离为2,到点 B 的距离为 1,则点 C 是( A, B)的奇异点,但不是( B, A)的奇异点.( 1)在图 1 中,直接说出点 D 是( A, B)还是( B, C)的奇异点;( 2)如图 2,若数轴上M、N 两点表示的数分别为﹣ 2 和 4,( M,N)的奇异点K 在 M、N 两点之间,请求出K 点表示的数;( 3)如图 3,A、B 在数轴上表示的数分别为﹣20 和 40,现有一点P 从点 B 出发,向左运动.①若点 P 到达点 A 停止,则当点P 表示的数为多少时,P、A、B 中恰有一个点为其余两第 11 页(共 13 页)点的奇异点?②若点 P 到达点 A 后继续向左运动,是否存在使得P、A、 B 中恰有一个点为其余两点的奇异点的情况?若存在,请直接写出此时PB 的距离;若不存在,请说明理由.【分析】( 1)根据“奇异点”的概念解答;( 2)设奇异点表示的数为x,根据“奇异点”的定义列出方程并解答;( 3)① 需要分类讨论:当点P 是( B, A)的奇异点;当点 A 是( B,P)的奇异点;当点 B 是( A,P)的奇异点.② 同上,需要分类讨论.【解答】解:( 1)在图 1 中,点 D 到点 A 的距离为1,到点 B 的距离为2,∴点 D 是( B, C)的奇异点,不是(A, B)的奇异点;(2)设奇异点表示的数为 x,则由题意,得 x﹣(﹣ 2)= 2( 4﹣x).解得 x=2.∴( M, N)的奇异点表示的数是2;( 3)① 设点 P 表示的数为y.当点 P 是( A, B)的奇异点时,则有 y+20= 2( 40﹣ y),解得 y=20.当点 P 是( B, A)的奇异点时,则有 40﹣ y= 2(y+20),解得 y=0.当点 A 是( B, P)的奇异点时,第 12 页(共 13 页)则有 40+20= 2(y+20),解得 y=10.当点 B 是( A, P)的奇异点时,则有 40+20= 2(40﹣ y),解得 y= 10.∴当点 P 表示的数是0 或 10 或 20 时,P、A、 B 中恰有一个点为其余两点的奇异点.②当点 P 为( B, A)的奇异点时,PB= 120;当点 A 为( P, B)的奇异点时,PB= 180;当点 A 为( B, P)的奇异点时,PB= 90;当点 B 为( P, A)的奇异点时,PB= 120.【点评】考查了数轴,一元一次方程的应用,解题的关键是掌握“奇异点”的概念和运算法则,找出题中的等量关系,列出方程并解答,难度一般.第 13 页(共 13 页)。
2018-2019学年七年级(上)期中数学试卷参考答案与试题解析
2018-2019学年七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共计36分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填在括号内)1.(3分)在数轴上,原点及原点右边的点表示的数是()A.正数B.负数C.非正数D.非负数分析:本题可根据数轴的定义,原点表示的数是0,原点右边的点表示的数是正数,都是非负数.解答:解:依题意得:原点及原点右边所表示的数大于或等于0.故选D.点评:解答此题只要知道数轴的定义即可.在数轴上原点左边表示的数为负数,原点右边表示的数为正数,原点表示数0.2.(3分)当x=1时,代数式2x+5的值为()A. 3 B. 5 C.7 D.﹣2考点:代数式求值.专题:计算题.分析:将x=1代入代数式2x+5即可求得它的值.解答:解:当x=1时,2x+5=2×1+5=7.故选:C.点评:本题考查代数式的求值问题,直接把值代入即可.3.(3分)计算:﹣32+(﹣2)3的值是()A.0 B.﹣17 C.1D.﹣1考点:有理数的乘方.专题:计算题.分析:根据有理数的乘方法则计算:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.解答:解:﹣32+(﹣2)3=﹣9﹣8=﹣17.故选B.点评:本题考查了有理数的乘方法则,解题的关键是牢记法则,此题比较简单,易于掌握.4.(3分)x增加2倍的值比x扩大5倍少3,列方程得()A.2x=5x+3 B.2x=5x﹣3 C.3x=5x+3 D.3x=5x﹣3考点:由实际问题抽象出一元一次方程.专题:和差倍关系问题.分析:首先理解题意,x增加2倍即是3x,x扩大5倍即为5x,从而列出方程即可.解答:解:因为x增加2倍的值应为x+2x=3x,x扩大5倍即为5x,所以由题意可得出方程:3x=5x﹣3.故选D.点评:此题的关键是理解增加和扩大的含义,否则很容易出错.5.(3分)方程2x+a﹣4=0的解是x=﹣2,则a等于()A.﹣8 B.0 C. 2 D.8考点:方程的解.分析:方程的解就是能够使方程左右两边相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.解答:解:把x=﹣2代入方程2x+a﹣4=0,得到:﹣4+a﹣4=0解得a=8.故选D.点评:本题主要考查了方程解的定义,已知x=﹣2是方程的解实际就是得到了一个关于a 的方程.6.(3分)如果a与b互为相反数,x与y互为倒数,则代数式|a+b|﹣2xy值为()A.0 B.﹣2 C.﹣1 D.无法确定考点:有理数的减法;相反数;倒数.专题:计算题.分析:根据相反数的定义:a与b互为相反数,必有a+b=0,即|a+b|=0;x与y互为倒数,则xy=1;据此代入即可求得代数式的值.解答:解:∵a与b互为相反数,∴必有a+b=0,即|a+b|=0;又∵x与y互为倒数,∴xy=1;∴|a+b|﹣2xy=0﹣2=﹣2.故选B.点评:主要考查相反数、倒数的定义.相反数的定义:只有符号相反的两个数互为相反数,0的相反数是0.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.本题所求代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式a+b和xy的值,然后利用“整体代入法”求代数式的值.7.(3分)减去2﹣x等于3x2﹣x+6的整式是()A.3x2﹣2x+8 B.3x2+8 C.3x2﹣2x﹣4 D.3x2+4考点:整式的加减.分析:设该整式为A,则A﹣(2﹣x)=3x2﹣x+6,求出A即可.解答:解:设该整式为A,∵A减去2﹣x等于3x2﹣x+6,∴A﹣(2﹣x)=3x2﹣x+6,∴A=3x2﹣x+6+2﹣x=3x2﹣2x+8.故选A.点评:本题考查的是整式的加减,熟知整式加减的法则是解答此题的关键.8.(3分)在①近似数39.0有三个有效数字;②近似数2.5万精确到十分位;③如果a<0,b>0,那么ab<0;④多项式a2﹣2a+1是二次三项式中,正确的个数有()A.1个B.2个C.3个D. 4个考点:不等式的性质;近似数和有效数字;多项式.分析:根据有效数字、精确度的定义,有理数的乘法符号法则及多项式的次数和项数的定义作答.解答:解:①正确;②近似数2.5万精确到千位,错误;③正确;④正确.故选C.点评:本题主要考查了有效数字、精确度、多项式的次数和项数的定义,以及有理数的乘法符号法则.有效数字:在四舍五入后的近似数中,从左边第一个不是0的数字起到右边最后一个精确的数位止,所有的数字都叫它的有效数字.精确度:一个近似数,四舍五入到哪一位,就叫精确到哪一位.有理数的乘法符号法则:两数相乘,同号得正,异号得负.多项式的次数:一个多项式中,次数最高项的次数叫做这个多项式的次数.多项式的项数:一个多项式含有几项,就叫几项式.9.(3分)一批电脑进价为a元,加上20%的利润后优惠8%出售,则售出价为()A.a(1+20%)B.a(1+20%)8% C.a(1+20%)(1﹣8%)D.8%a考点:列代数式.分析:此题要根据题意列出代数式.可先求加上20%的利润价格后,再求出又优惠8%的价格.解答:解:依题意可知加上20%的利润后价格为a(1+20%)又优惠8%的价格是a(1+20%)(1﹣8%)∴售出价为a(1+20%)(1﹣8%).故选C.点评:读懂题意,找到关键语列出代数式.需注意用字母表示数时,在代数式中出现的乘号,通常简写做“•”或者省略不写,数字与数字相乘一般仍用“×”号.10.(3分)已知有理数a,b在数轴上的位置如图所示,则下列结论中正确的是()A.a+b>0 B.a﹣b>0 C.a﹣1>0 D.b+1>0考点:数轴.分析:根据数轴上a|的位置可以判定a与b大小与符号;然后据此来求a、b与1的大小比较.解答:解:根据图示知:b<﹣1<0<a<1;∴a+b<0,a﹣b>0,a﹣1<0,b+1<0.故选B.点评:本题考查了数轴.解答本题时,需注意:b在﹣1的左边,a在1的左边.11.(3分)个位数字为a,十位数字为b,则这个两位数可用代数式表示为()A.ab B.ba C.10a+b D. 10b+a考点:列代数式.分析:两位数=10×十位数字+个位数字,把相关字母代入即可求解.解答:解:∵个位上的数字是a,十位上的数字是b,∴这个两位数可表示为10b+a.故选:D.点评:本题考查列代数式,找到所求式子的等量关系是解决问题的关键.用到的知识点为:两位数=10×十位数字+个位数字.12.(3分)小明在一张日历上圈出一个竖列且相邻的三个日期,算出它们的和是48,则这三天分别是()A.6,16,26 B.15,16,17 C.9,16,23 D.不确定考点:一元一次方程的应用.专题:数字问题.分析:竖列且相邻的三个日期,则上边的数总比下边的数小7,根据这个关系可以设中间的数是x,列出方程求解.解答:解:设中间的数是x,则上边的数是x﹣7,下边的数是x+7,根据题意列方程得:x+(x﹣7)+(x+7)=48解得:x=16,x﹣7=9,x+7=23这三天分别是9,16,23.故选C.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.二、填空题(本大题共10小题,每题3分,共计30分.不需写出解答过程,请把答案直接填写在横线上)13.(4分)单项式的系数是,次数是3.考点:单项式.专题:应用题.分析:根据单项式系数、次数的定义来求解.单项式中的数字因数叫做这个单项式的系数,所有字母的指数和叫做这个单项式的次数.解答:解:单项式的数字因数是,所有字母的指数和为1+2=3,所以它的系数是,次数是3.故答案为,3.点评:确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.本题注意π不是字母,是一个数,应作为单项式的数字因数.14.(4分)比较大小:﹣3<2;﹣>﹣|﹣|.考点:有理数大小比较.专题:计算题.分析:根据正数大于一切负数进行比较即可;先比较两个数的绝对值的大小,再根据两个负数相比较,绝对值大的反而小比较即可.解答:解:﹣3<2;|﹣|=,﹣|﹣|=﹣,|﹣|=,=,=,<,∴﹣>﹣|﹣|.故答案为:<,>.点评:本题考查了有理数的大小比较,熟记正数大于一切负数,两个负数相比较,绝对值大的反而小是解题的关键.15.(4分)已知:2x+3y=4,则代数式(2x+3y)2+4x+6y﹣2的值是22.考点:代数式求值.专题:整体思想.分析:把2x+3y的值整体代入所求代数式求值即可.解答:解:当2x+3y=4时,原式=(2x+3y)2+2(2x+3y)﹣2=42+2×4﹣2=22.点评:代数式求值以及整体代入的思想.16.(4分)若单项式与﹣2x m y3是同类项,则m﹣n的值为﹣1.考点:同类项.专题:计算题.分析:此题的切入点是由同类项列等式.由已知与﹣2x m y3是同类项,根据其意义可得,x2=x m,y n=y3,所以能求出m,n的值.解答:解:∵单项式与﹣2x m y3是同类项,∴x2=x m,y n=y3,∴m=2,n=3,则m﹣n=2﹣3=﹣1,故答案为:﹣1点评:此题考查了学生对同类项的理解和掌握.关键是根据题意得出关系式x2=x m,y n=y3求得m,n的值.17.(4分)如果3x5a﹣2=﹣6是关于x的一元一次方程,那么a=,方程的解x=﹣2.考点:一元一次方程的定义.专题:计算题.分析:若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.据此可得出关于m的方程,继而可求出m的值.解答:解:由一元一次方程的特点得5a﹣2=1,解得:a=,故原方程可化为3x=﹣6,解得:x=﹣2.点评:判断一元一次方程,第一步先看是否是整式方程,第二步化简后是否只含有一个未知数,且未知数的次数是1,此类题目可严格按照定义解题.18.(4分)2008年北京奥运会火炬接力传递距离约为137000千米,将137000用科学记数法表示为 1.37×105.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:137000=1.37×105,故答案为:1.37×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.19.(4分)某股票星期一收盘时每股18元,星期二收盘每股跌了1.8元,星期三收盘每股涨了1.1元,则星期三的收盘价为每股17.3元.考点:有理数的加减混合运算.专题:应用题.分析:根据股票的涨跌信息,转化为数学问题,这里根据具有相反意义的量规定一个为正,则另一个为负,再运用有理数的加减混合运算规则.就可以容易的得到答案.解答:解:星期三的收盘价为每股18+(﹣1.8)+1.1=17.3元.故答案为:17.3.点评:考查了有理数的加减混合运算.有理数加减混合运算的方法:有理数加减法统一成加法.方法指引:(1)在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.(2)转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.20.(4分)按下面程序计算:输入x=﹣3,则输出的答案是﹣12.考点:代数式求值.专题:图表型.分析:根据程序写出运算式,然后把x=﹣3代入进行计算即可得解.解答:解:根据程序可得,运算式为(x3﹣x)÷2,输入x=﹣3,则(x3﹣x)÷2=[(﹣3)3﹣(﹣3)]÷2=(﹣27+3)÷2=﹣12所以,输出的答案是﹣12.故答案为:﹣12.点评:本题考查了代数式求值,根据题目提供程序,准确写出运算式是解题的关键.21.(4分)若m、n满足|m﹣2|+(n+3)2=0,则n m=9.考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质可求出m、n的值,再将它们代入n m中求解即可.解答:解:∵m、n满足|m﹣2|+(n+3)2=0,∴m﹣2=0,m=2;n+3=0,n=﹣3;则n m=(﹣3)2=9.点评:本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.22.(4分)有两桶水,甲桶水装有180升,乙桶装有150升,要使两桶水的重量相同,则甲桶应向乙桶倒水15升.考点:一元一次方程的应用.专题:应用题.分析:要求甲桶应向乙桶倒水多少,可先设甲桶应向乙桶倒水x升,然后根据甲桶﹣倒水=乙桶+倒水这个等量关系列出方程求解.解答:解:设甲桶应向乙桶倒水x升.则180﹣x=150+x解得:x=15故填15.点评:此题的关键是找出等量关系,即:甲桶﹣倒水=乙桶+倒水.三、解答题(本大题共5小题,23至28小题每题8分,共计84分,请在指定区域内作答,解答时应写出必要文字说明、证明过程或演算步骤.)23.(16分)(1)1+(﹣1)+4﹣4(2)﹣14+(1﹣0.5)××|2﹣(﹣3)2|(3)6a2+4ab﹣4(2a2+ab)(4)2(a2﹣2ab﹣b2)+(a2+3ab+3b2)(5)3x﹣(2x+7)=32(6)=1﹣.考点:有理数的混合运算;整式的加减;解一元一次方程.专题:计算题.分析:(1)原式结合后,相加即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(3)原式去括号合并即可得到结果;(4)原式去括号合并即可得到结果;(5)方程去括号,移项合并,将x系数化为1,即可求出解;(6)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.解答:解:(1)原式=6﹣6=0;(2)原式=﹣1+××7=﹣1+=;(3)原式=6a2+4ab﹣8a2﹣2ab=﹣2a2+2ab;(4)原式=2a2﹣4ab﹣2b2+a2+3ab+3b2=3a2﹣ab+b2;(5)方程去括号得:3x﹣2x﹣7=32,移项合并得:x=41;(6)去分母得:10x+5=15﹣3x+3.移项合并得:13x=13,解得:x=1.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.(14分)有这样一道计算题:“计算2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y2﹣x3+3x2y﹣y2的值,其中x=,y=﹣1”,王聪同学把“x=”错看成“x=﹣”,但计算结果仍正确,许明同学把“y=﹣1”错看成“y=1”,计算结果也是正确的,你知道其中的道理吗?请加以说明.考点:整式的混合运算—化简求值.分析:先将2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y2﹣x3+3x2y﹣y2合并同类项,再进行分析.解答:解:将原式合并同类项得﹣2y2,此代数式与x的取值无关,所以王聪将“x=”错看成“x=﹣”,计算结果仍正确;又因为当y取互为相反数时,﹣2y2的值相同,所以许明同学把“y=﹣1”错看成“y=1”,计算结果也是正确的.点评:本题是一道生活问题,解答时要读出题中的隐含条件:把“x=”错看成“x=﹣”,但计算结果仍正确,即可考虑此代数式与x的取值无关,进而想到先合并同类项.25.(16分)某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一21 二三四五六日增减+5 ﹣2 ﹣4 +13 ﹣10 +16 ﹣9(1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3)产量最多的一天比产量最少的一天多生产自行车多少辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?考点:有理数的加法.专题:应用题;图表型.分析:(1)该厂星期四生产自行车200+13=213辆;(2)该厂本周实际生产自行车(5﹣2﹣4+13﹣10+16﹣9)+200×7=1409辆;(3)产量最多的一天比产量最少的一天多生产自行车16﹣(﹣10)=26辆;(4)这一周的工资总额是200×7×60+(5﹣2﹣4+13﹣10+16﹣9)×(60+15)=84675辆.解答:解:(1)超产记为正、减产记为负,所以星期四生产自行车200+13辆,故该厂星期四生产自行车213辆;(2)根据题意5﹣2﹣4+13﹣10+16﹣9=9,200×7+9=1409辆,故该厂本周实际生产自行车1409辆;(3)根据图示产量最多的一天是216辆,产量最少的一天是190辆,216﹣190=26辆,故产量最多的一天比产量最少的一天多生产自行车26辆;(4)根据图示本周工人工资总额=7×200×60+9×75=84675元,故该厂工人这一周的工资总额是84675元.点评:此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.26.(12分)列方程解应用题.把一批图书分给某班学生阅读,如果每人分3本,则剩余20本,如果每人分4本,则还缺25本.这个班有多少名学生?考点:一元一次方程的应用.专题:应用题.分析:可设有x名学生,根据总本数相等和每人分3本,剩余20本,每人分4本,缺25本可列出方程,求解即可.解答:解:设有x名学生,根据书的总量相等可得:3x+20=4x﹣25,解得:x=45(名).答:这个班有45名学生.点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目中书的总量相等的等量关系列出方程,再求解.27.(16分)先阅读下列解题过程,然后解答问题(1)、(2)解方程:|x+3|=2.解:当x+3≥0时,原方程可化为:x+3=2,解得x=﹣1;当x+3<0时,原方程可化为:x+3=﹣2,解得x=﹣5.所以原方程的解是x=﹣1,x=﹣5.(1)解方程:|3x﹣2|﹣4=0;(2)探究:当b为何值时,方程|x﹣2|=b+1 ①无解;②只有一个解;③有两个解.考点:同解方程.专题:应用题;分类讨论.分析:(1)首先要认真审题,解此题时要理解绝对值的意义,要会去绝对值,然后化为一元一次方程即可求得.(2)运用分类讨论进行解答.解答:答:(1)当3x﹣2≥0时,原方程可化为:3x﹣2=4,解得x=2;当3x﹣2<0时,原方程可化为:3x﹣2=﹣4,解得x=﹣.所以原方程的解是x=2或x=﹣;(2)∵|x﹣2|≥0,∴当b+1<0,即b<﹣1时,方程无解;当b+1=0,即b=﹣1时,方程只有一个解;当b+1>0,即b>﹣1时,方程有两个解.点评:此题比较难,提高了学生的分析能力,解题的关键是认真审题.。
2019学年江西省七年级上学期期中考试数学试卷【含答案及解析】
12.规定一种新运算:a*b=—a2+(a—b),如:2*3=—22+(2—3).请比较:
(—3)*44*(—3).(在横线上填“〉”、“=”或“V”)
13.若|x|=5, |y|=4,且|x—y|=y—x,(那■幺=.
14.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第个图形中一共有6
(1)用含a,b的代数式表示C;
(2)若(fl +l)3+(i-2|-0,求C的值.
20.某自行车厂计划一周生产自行车2100辆,平均每天计划生产300辆,但由于种种原
因,实际每天生产量与计划量相比有出入•下表是某周的生产情况:(超过每天计划生产
数记为正、不足每天计划生产数记为负):
21.星期一二三四五日增减+5-1-6+13-10+15-9td
个小圆圈,其中第个图形中一共有9个小圆圈,其中第 个图形中一共有12个小圆 圈,…,按此规律排列,则第n个图形中小圆圈的个数为
二、计算题
5
7|-(-3) + (-5尸(-”■扌卜讣■(•3刃
四、解答题
17.先化简,再求值:
-1一; - :>I--一,其中m为最大的负整数.
19. 已知长方形的长为(3a+4b),宽比长短(
22.我们自从有了用字母表示数,发现表达有关的数和数量关系更加的简洁明了,从而更 助于我们发现更多有趣的结论,请你按要求试一试:
(1)用代数式表示:
1…'与■的平方的差;
2「,■两数的和与・,■两数的差的乘积.
(2)当,沁二时,求第(1)题中①②所列的代数式的值,根据计算的结果你发现 了什么等式?
(3)利用(2)中发现的结论,用简便方法计算9「-1^'的值.
2019七年级数学上学期期中试题
2019七年级数学上学期期中试题有很多的同学会觉得数学很难,所以大家要多多学习一下数学哦,下面小编就给大家整理一下七年级数学,希望大家来阅读哦有关七年级数学上期中试题一、选择题(每题3分,共10小题)1.-(-2)等于( )A.-2B.2C.D.22.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数,如果收入100元记作+100元,那么-80元表示( )A.支出20元B.收入20元C.支出80元D.收入80元3.已知a、b在数轴上的位置如图所示,那么下面结论正确的是( )A.a-b<0B.a+b>0C.ab<0D.>04.若数轴上表示-2和3的两点分别是点A和B,则点A和点B之间的距离是( )A.-5B.-1C.1D.55.计算(-)÷(-7)的结果为( )A.1B.-1C.D.-6.一次数学达标检测的成绩以80分为标准成绩,“奋斗”小组4名学生的成绩与标准成绩的差如下: -7分、-6分、+9分、+2分,他们的平均成绩为( )A.78分B.82分C.80.5分D.79.5分7.设a是最小的自然数,b是最大的负整数,c是绝对值最小的有理数,a, b, c三个数的和为( )A.-1B.0C.1D.不存在8.下列说法:①若|a|=a,则a=0;②若a,b互为相反数,且ab≠0,则=-1;③若a2=b2,则a=b;④若a<0, b<0,则|ab-a|=ab-a.其中正确的个数有( )A.1个B.2个C.3个D.4个9.等边△ABC在数轴上的位置如图所示,点A、C对应的数分别为0和-1,若△ABC绕顶点沿顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为1,则连续翻转2012次后,点B( )A.不对应任何数B.对应的数是2010C.对应的数是2011D.对应的数是201210.已知a,b,c为非零的实数,则+++的可能值的个数为( )A.4B.5C.6D.7二、填空题(每题3分,共6小题)11.某地某天的最高气温是6℃,最低气温是-4℃,则该地当天的温差为℃.12.若a-3=0,则a的相反数是 .13.点A表示数轴上的一个点,将点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A表示的数是 .14.若|x|+3=|x-3|,则x的取值范围是 .15.规定图形表示运算a-b+c,图形表示运算x+z-γ-w.则 += (直接写出答案) .16.已知a,b,c,d分别是一个四位数的千位,百位,十位,个位上的数字,且低位上的数字不小于高位上的数字,当|a-b|+|b-c|+|c-d|+|d-a|取得最大值时,这个四位数的最小值是 .三、解答题(共8小题)17.(12分)计算题(1)(-78) +(+5)+(+78) (2)(+23)+(-17)+(+6)+(-22)(3)[45-(-+)×36]÷5 (4)99×(-36)18.(6分)把下列各数填入它所属的集合内:5.2,0,,,+(-4),-2,-(-3),0.2555,-0.0300003(1)分数集合:{ }(2)非负整数集合: { }(3)有理数集合: { }19.(8分)在数轴上表示下列各数: 0,-1.6,,-6,+5,,并用“<”号连接.20.(8分)十一黄金周期间,花果山7天中每天旅游人数的变化情况如下表(正数表示比9月30日多的人数,负数表示比9月30日少的人数):日期 1日 2日 3日 4日 5日 6日 7日人数变化/万人 +0.5 +0.7 +0.8 -0.4 -0.6 +0.2 -0.1(1)请判断7天内游客人数量最多和最少的各是哪一天?它们相差多少万人?(2)如果9月30日旅游人数为2万人,平均每人消费300元,请问风景区在此7天内总收入为多少万元?21.(8分)如图,数轴上的三点A、B、C分别表示有理数a、b、C.(1)填空: a-b 0,a+c 0,b-c 0.(用<或>或=号填空)(2)化简: |a-b|-|a+c|+|b-c|22.(8分)已知|x|=3,|y|=7.(1)若x23.(10分)同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离,(1) |5-(-2)|= .(2)同理|x+5|+|x-2|表示数轴上有理数x所对应的点到-5和2所对应的两点距离之和,请你求出所有符合条件的整数x,使得|x+5|+|x-2|=7.(3)由以上探索猜想对于任何有理数x,|x+6|+|x-3|是否有最小值?如果有,写出最小值;如果没有,说明理由.24.(12分)已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长AB=2 (单位长度),慢车长CD=4 (单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O为原点,取向右方向为正方向画数轴,此时快车头A在数轴上表示的数是a,慢车头C 在数轴上表示的数是b.若快车AB以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD以2个单位长度/秒的速度向左匀速继续行驶,且|a+8|与(b-16)2互为相反数.(1)求此时刻快车头A与慢车头C之间相距多少单位长度?(2)从此时刻开始算起,问再行驶多少秒钟两列火车行驶到车头AC 相距8个单位长度?(3)此时在快车AB上有一位爱动脑筋的七年级学生乘客P,他发现行驶中有一段时间t秒钟,他的位置P到两列火车头A、C的距离和加上到两列火车尾B、D的距离和是一个不变的值(即PA+PC+PB+PD为定值).你认为学生P发现的这结论是否正确?若正确,求出这个时间及定值;若不正确,请说明理由.七年级数学上期中考试试卷阅读一、选择题(本题共10个小题,每小题3分,共30分)1.下列计算正确的是( )A.=6B.-=-16C.-8-8=0D.-5-2=-32.室内温度是15℃,室外温度是-3℃,要计算“室外温度比室内温度低多少度?”可以列的计算式为( )A.15+(-3)B.15-(-3)C.-3+15D.-3-153.若a+3=0,则a的相反数是( )A.3B.C.-D.-34.下列说法中正确的是( )A.整数只包括正整数和负整数B.0既是正数也是负数C.没有最小的有理数D.-1是最大的负有理数5在代数式,,0,-5,x-y,中,单项式有( )A.2个B.3个C.4个D.5个6.一个多项式与-2x+1的和是3x-2,则这个多项式为( )A.-5x+3B.-+x-1C.-+5x-3D.-5x-137.枝江市2015年公共财政收入约为31.68亿元,对这个近似数而言,下列说法正确的是( )A.精确到亿位B.精确到百分位C.精确到百万位D.精确到千万位8.如图,A、B两点在数轴上表示的数分别是a,b,下列式子成立的是( )A.ab>0B.a+b<0C.(b-1)(a+1)>0D.(b-1)(a-1)>09.将正整数依次按如表规律排成4列,根据表中的排列规律,数2018应在( )第1列第2列第3列第4列第1行 1 2 3第2行 6 5 4第3行 7 8 9第4行 12 11 10A.第673行第1列;B.第672行第3列;C.第672行第2列;D.第673行第2列10.已知a,b,c为有理数,且a+b+c=0,a≥-b>lcl,则a,b,c三个数的符号是( )A.a>0,b<0,c<0B.a>0,b<0,c>0C.a<0,b>0,c≥0D.a>0,b<0,c≤0第二部分非选择题(共120分)二、填空题(每小题3分,共18分)11比较大小- 。
勤学早2018-2019学年度七年级数学(上)期中模拟题(word版有答案)
勤学早七年级数学(上)期中模拟题(测试范围:七年级第1章——第2章,解答参考时间:120分钟满分:120分)一、选择题(每小题3分,共30分) 1.四个数-3,2,1,0中,最大的数是( ) 2.-2的倒数是( )A .2B .-2C .0D .21-3. 用“<”将-π,-3.14,-3连接起来,正确的是( )A . -3<-π<-3.14B .-3.14<-3<-πC . -π< -3.14<-3D .-π< - 3< -3.14 4. 电冰箱的冷藏室温度是5℃,冷冻室温度是-3℃,则冷藏室比冷冻室温度高( )A .3℃B .-8℃C .8℃D .-3℃5.冥王星围绕太阳公转的轨道半径长度约为5900000000千米,这个数用科学计数法表示为( )A .5.9×109千米 B .5.9×1010千米C .0. 59×1010千米D .59×108千米6.如果代数式丢21x a y b +3与代数式一32x 3 y 2是同类项,则a ,b 的值分别是( ) A .a =3,b =1 B .a = -3,b = -1 C .a = -3,b =1 D .a =3,b =-1 7.下列各题中,正确的是( )A .a 2b -ba 2=0B .3y 2-y 2=3C .x +x =x 2D .3x +3y =6xy8.下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图 形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形 中一共有12个小圆圈,…,按此规律排列,则第⑥个图形中小圆圈的 个数为( )A . 21个B .24个C .27个D .30个9.某水果店贩卖西瓜、梨子及苹果,已知一个西瓜的价钱比6个梨子多元,一个苹果的价钱比2个梨子少2元,下列叙述正确的是( )A .一个西瓜的价钱是一个苹果的3倍B .若一个西瓜降价4元,则其价钱是一个苹果的3倍C .若一个西瓜降价8元,则其价钱是一个苹果的3倍D .若一个西瓜降价12元,则其价钱是一个苹果的3倍10.如图,A ,B 两点在数轴上表示的数分别为a ,b ,下列式子成立的是( )A .ab >0B .a +b <0C .(b -1) (a +1)>0D .(b -1) (a -1)>0二、填空题(每小题3分,共18分)11.化简:①-(-2)= ;②2-= ;③(-2)2=_______. 12.数轴上距离原点5个单位长度的数是 . 13.若(m -5)2+6 n =0,则(m +n )2017的值是 .14.若a =10,b =5,且ab <0,则ba的值是_______. 15.如图,从边长为(a +4)的正方形纸片中剪去一个边长为(a +l )的正 方形(a >0),剩余部分沿虚线又剪拼成一个长方形(不重叠、无缝 隙),若拼成的长方形一边的长为3,则另一边的长为 .16.如图,数轴上的有理数a ,6满足a b a b a =+--23,则ba的值为____________. 三、解答题(共8题,共72分)17.(本题8分)把下列各数填入表示它所在的数集的括号内:-2.4,3, 2. 012,310-,411,-0.1•5•,0,-(-2.28),3.14,4-. 正有理数集合:( ……) 整数集合:( ……) 负分数集合:( ……) 负有理数集合:( ……) 解:略.18.(本题8分)计算:(1)(-2)3÷4-(-4); (2)(61-125+94)÷(-361).19.(本题8分)某市质量技术监督局从某食品厂生产的袋装食品中抽出 样品20袋,检测每袋的质量是否符合标准,把超过或不足的部分分 别用正、负数来表示,记录如下表:(1)(2)若该种食品的合格标准为500土3g ,求该食品的抽样检测的合格率,20.(本题8分)若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值是2,n 在有理数范围内既不是正数也不是负数,求2017)(mb a ++m 4-(-cd )2017+n (a +b +c +d )的值.21.(本题8分)已知a +b =5,ab = -3,求代数式(6a -5b -2ab ) -2(a -4b +ab )+b 的值.22.(10分)有理数a ,b ,c 在数轴上的位置如图所示.(1)判断正负,用“>”或“<”填空: b -c ____0,a -b ____0,c +a ____0; (2)化简:丨b -c 丨+丨a -b 丨-丨c +a 丨.23.(本题10分)已知代数式2(6X 2一y +bx ) +9 -2(2ax 2-x -5y +1)的值与x 无关. (1)求a ,b 的值; (2)求5-2a -6b 的值;(3)在(1)的条件下,求5a 2—6b 2+ (ab - b 2).(a + 3b ) -2(3a 2—3ab +7b 2)的值.24.(本题12分)已知b 是最小的正整数,且a ,b ,c 满足(c -5)2+丨a +b 丨=0. (1)填空:a =____,b =____,c =____;(2)a ,b ,c 在数轴上所对应的点分别为A ,B ,C ,点P 为数轴上一动点,其对应的数为x ,点P 在1到2之间运动时(即1≤x ≤2时),请化简式子:5211-+--+x x x (请写出化简过程);(3)在(1),(2)的条件下,点A ,B ,C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动....,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t 秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .则BC -AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值,1-5BDCCA 6-10DAADC 11.2;2;4 12.±5 13.-1 14.-2 15.2a +5 16. 31-17. 略18. 解:(1)2;(2)一7. 19. 解:(1)10017克;(2)80%.20. 解:由题意,得a +6=0,cd =1,m =2 ,n =0,∴原式=0+16+1+0= 17. 21.解:原式=4a +4b -4ab =4(a +b ) -4ab ,当a +b =5,ab = -3时,原式=32. 22. 解:(1)<,<,<;(2)2c 23.解:(1)a =3,b =-1; (2)5-2a -6b =5-2(a +3b )=5;(3)原式=-a 2+6ab -20b 2=-9-18-20=-47.24.解:(1)a =-1,b =1,c =5; (2) 12 -2x ;(3)AB =3t +2,BC =3t +4,∴BC --AB =2,不随时间t 的改变而改变.。
江西省赣州市2018-2019学年七年级上数学期中试卷及答案
2018-2019学年度第一学期期中考试七年级数学试卷亲爱的同学,时间过得真快啊!升入中学已经半个学期了,你与新课程一起成长,相信你已经掌握了许多新的数学知识,能力有了较大的提高,现在是展示你实力的时候了,你可要尽情的发挥哦!祝你成功!一、选择题(本大题共6小题,每题3分,共18分)1. 34-的相反数是 ( ) A .34 B . 34- C .43 D . 43- 2.下列各式:532b a -,25-,x 1,π,2y x -,中单项式的个数有 ( ) A .1个 B .2个 C . 3个 D . 4个3.为加快赣州的交通发展,将建设赣州至深圳的高速铁路,项目总投资为641.3亿元,用科学记数法表示641.3亿元..为( )元.A .21041.6⨯B .810641⨯C .101041.6⨯D . 111041.6⨯ 4.下列运算正确..的是 ( ) A .352a a a -=B . 23ab ab ab -=-C .32a a a -=D . 235a b ab += 5.下列说法中,正确..的个数有 ( ) ①倒数等于它本身的数有±1, ②绝对值等于它本身的数是正数,③ c b a 3232-是五次单项式, ④r π2的系数是2,次数是2次, ⑤3222+-a b a 是四次三项式, ⑥22ab 与23ba 是同类项。
A .4个B .3个C .2个D .1个 6.观察下列各式数:x 2-,24x ,38x -,416x ,532x -,…则第n 个式子是 ( )A .12n n x --B .1(2)n n x --C .2n n x -D .(2)n n x -二、填空题(本大题共6小题,每题3分,共18分)7.甲数x 的5倍与乙数y 的41的差可以表示为: . 8.0|2|)3(2=+-++y x ,则y x 的值是 .9.若34b a n 与153--m b a 是同类项,则m n - = .10.定义运算a ⊗b =a (1-b ),则 =⊗-5)3( .11.绝对值大于2,且小于5的所有整数的和是:____________ .12.观察上面的图形,它们是按一定规律排列的,依照此规律,第100个图形共有_____个.三、(本大题共5题,每题6分,共30分)13.计算:(1) ()754--+-- (2)[]22)3(7312--⨯÷-14.计算:(1) )3(3)23(2b a b a --- (2) )(2)3(2222222y x xy y x xy xy ---+15. 已知:a 、b 互为相反数,c 、d 互为倒数,2x =,且0x >,计算:22()a b x cdx x +-+的值.16.01)2(2=++-b a ,求:2)(23b a ab a +-的值.17.某同学做数学题:已知两个多项式A 、B ,其中6352+-=x x B ,他在求A B -时,把A B -错看成了A B +,求得的结果为2821x x ++.请你帮助这位同学求出A B +的正确结果.四、(本大题共4小题,每小题8分,共32分)18.计算:(1) 433)1(275.342--+- (2))512(21115211523-÷-⨯+⨯-19.先化简,再求值:)24(3)3(42222ab b a ab b a +--+-,其中2=a ,1-=b20.已知有理数a 、b 、c 在数轴上的位置如图所示,化简:a b a c c a a b c b c --+--++++-21.探索规律:将连续的偶2,4,6,8,…,排成如下表:44 46 48 50 52 54 56… …(1)若将十字框上下左右移动,可框住五位数,设中间的数为x ,用代数式表示十字框中的五个数的和;(2)若将十字框上下左右移动,可框住五位数的和能等于2000吗?如能,写出这五位数,如不能,说明理由。
新课标人教版2018-2019学年七年级(上)名校联考期中数学试卷附答案
2018-2019学年七年级(上)名校联考期中数学试卷一.选择题(每题3分,共30分)1.下列四个式子中,是一元一次方程的是()A.2x﹣6B.x﹣1=0C.2x+y=25D.=12.x=2是下列方程()的解.A.2x=6B.(x﹣3)(x+2)=0C.x2=3D.3x﹣6=03.下列等式变形中,结果不正确的是()A.如果a=b,那么a+2b=3b B.如果a=b,那么a﹣m=b﹣mC.如果a=b,那么=D.如果3x=6y﹣1,那么x=2y﹣14.如图,若m∥n,∠1=105°,则∠2=()A.55°B.60°C.65°D.75°5.如图,图中∠1与∠2是同位角的是()A.(2)(3)B.(2)(3)(4)C.(1)(2)(4)D.(3)(4)6.如图,由AD∥BC可以得到的是()A.∠1=∠2B.∠3+∠4=90°C.∠DAB+∠ABC=180°D.∠ABC+∠BCD=180°7.如图,AB∥EF,EF∥CD,EG∥BD,则图中与∠1相等的角(除∠1外)共有()A.6个B.5个C.4个D.2个8.某校在举办“读书月”的活动中,将一些图书分给了七年一班的学生阅读,如果每人分3本,则剩余20本:如果每人分4本,则还缺25本.若设该校七年一班有学生x人,则下列方程正确的是()A.3x﹣20=24x+25B.3x+20=4x﹣25C.3x﹣20=4x﹣25D.3x+20=4x+259.下列说法中①过一点有且只有一条直线与已知直线平行;②在同一平面内,过一点有且只有一条直线与已知直线垂直;③两直线平行,同旁内角互补;④直线外一点到已知直线的垂线段就是点到直线的距离,其中正确的有()个A.4个B.3个C.2个D.1个10.下面的程序计算,若开始输入的值为正数,最后输出的结果为131,则满足条件的x的不同值最多有()A.0个B.1个C.2个D.3个二、填空题(每題3分,共30分)11.关于x的方程ax+1=4的解是x=1,则a=.12.已知∠1与∠2是对顶角,∠2与∠3是邻补角,则∠1+∠3=.13.若2x3﹣2k+2k=41是关于x的一元一次方程,则k=.14.如图所示,∠1=100°,∠3=110°,∠2=100°,则∠4的度数为.15.若关于x的方程3x+2=0与5x+k=20的解相同,则k的值为.16.如图,直线AB与直线CD相交于点O,E是∠AOD内一点,已知OE⊥AB,∠BOD=45°,则∠COE的度数是.17.已知小名比小丽大3岁,一天小名对小丽说“再过十五年,咱俩年龄和的2倍就是110岁了”那么现在小名年龄是岁.18.如图,已知DE∥BC,∠ABC=100°,点F在射线BA上,且∠EDF=120°,则∠DFB的度数为.19.某轮船在松花江沿岸的两城市之间航行,已知顺流航行要6小时由A市到达B市,逆流航行要10小时由B市到达A市,则江面上的一片树叶由A市漂到B市需要小时.20.如图,有两个正方形夹在AB与CD中,且AB∥CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为度(正方形的每个内角为90°)三、解答題(21題10分,22、23题各7分,24、25题各8分,26、27题各10分,共计60分21.解方程(1)2x+5=3x﹣3(2)=2﹣22.已知x=3是方程4(x﹣1)﹣mx+6=8的解,求m2+2m﹣3的值.23.某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个.两个甲种部件和三个乙种部件配成一套,问加工甲乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?24.如图,BD是∠ABC的平分线,ED∥BC,∠4=∠5,则EF也是∠AED的平分线.完成下列推理过程:证明:∵BD是∠ABC的平分线(已知)∴∠1=∠2(角平分线定义)∵ED∥BC(已知)∴∠5=∠2()∴∠1=∠5(等量代换)∵∠4=∠5(已知)∴EF∥()∴∠3=∠1()∴∠3=∠4(等量代换)∴EF是∠AED的平分线(角平分线定义)25.如图,E为DF上的点,B为AC上的点,DF∥AC,∠C=∠D,求证:∠2=∠1.26.小明爸爸装修要粉刷断居室的墙面,在家装商场选购某品牌的乳胶漆:小明爸估算家里的粉刷面积,若买“大桶装”,则需若干桶但还差2升;若买“小桶装”,则需多买11桶但会剩余1升,(1)小明爸预计墙面的粉刷需要乳胶漆多少升?(2)喜迎新年,商场进行促销:满1000减120元现金,并且该品牌商家对“小桶装”乳胶漆有“买4送1“的促销活动,小明爸打算购买“小桶装”,比促销前节省多少钱?(3)在(2)的条件下,商家在这次乳胶漆的销售买卖中,仍可盈利25%,则小桶装乳胶漆每桶的成本是多少元?27.已知,点A,点B分别在线段MN,PQ上∠ACB﹣∠MAC=∠CBP(1)如图1,求证:MN∥PQ;(2)分别过点A和点C作直线AG、CH使AG∥CH,以点B为顶点的直角∠DBI绕点B旋转,并且∠DBI的两边分别与直线CH,AG交于点F和点E,如图2试判断∠CFB、∠BEG是之间的数量关系,并证明;(3)在(2)的条件下,若BD和AE恰好分别平分∠CBP和∠CAN,并且∠ACB=60°,求∠CFB的度数.参考答案一.选择题(每题3分,共30分)BDDDC CBBCD11.3.12.180°.13.1.14.70°.15..16.135°.1714岁.18.20°或140°.①如图,延长ED交AB于G,∵DE∥BC,∴∠FGD=∠B=100°,又∵∠EDF=120°,∴∠DFB=120°﹣100°=20°;②如图,过F作FG∥BC,∵DE∥BC,∴FG∥DE,∴∠D+∠DFG=180°,∠B+∠BFG=180°,又∵∠ABC=100°,∠EDF=120°,∴∠BFG=80°,∠DFG=60°,∴∠DFB=140°,193020.70解:如图,延长KH交EF的延长线于M,作MG⊥AB于G,交CD于H.∵∠GHM=∠GFM=90°,∴∠HMF=180°﹣150°=30°,∵∠HMF=∠MKG+∠MEH,∠MEH=10°,∴∠MKG=20°,∴∠1=90°﹣20°=70°,21.解:(1)2x﹣3x=﹣3﹣5,﹣x=﹣8,x=8;(2)3(3y﹣2)=24﹣4(2y﹣1),9y﹣6=24﹣8y+4,9y+8y=24+4+6,17y=34,y=2.22.解:根据题意,将x=3代入方程4(x﹣1)mx+6=8,得:4×(3﹣1)﹣3m+6=8,解得:m=2,则m2+2m﹣3=22+2×2﹣3=4+4﹣3=5.23.解:设加工的甲部件的有x人,加工的乙部件的有y人.,由②得:12x﹣5y=0③,①×5+③得:5x+5y+12x﹣5y=425,即17x=425,解得x=25,把x=25代入①解得y=60,所以答:加工的甲部件的有25人,加工的乙部件的有60人.24.证明:∵BD是∠ABC的平分线(已知)∴∠1=∠2(角平分线定义)∵ED∥BC(已知)∴∠5=∠2(两直线平行,内错角相等)∴∠1=∠5(等量代换)∵∠4=∠5(已知)∴EF∥BD(内错角相等,两直线平行)∴∠3=∠1(两直线平行,同位角相等)∴∠3=∠4(等量代换)∴EF是∠AED的平分线(角平分线定义)25.证明:∵DF∥AC,∴∠C=∠CEF,又∵∠C=∠D,∴∠CEF=∠D,∴BD∥CE,∴∠3=∠4,又∵∠3=∠2,∠4=∠1,∴∠2=∠1.26.解:(1)设需购买“大桶装”乳胶漆x桶,则需购买“小桶装”乳胶漆(x+11)桶,依题意,得:18x+2=5(x+11)﹣1,解得:x=4,∴18x+2=74.答:小明爸预计墙面的粉刷需要乳胶漆74升.(2)由(1)可知,需购买15桶“小桶装”乳胶漆.∵商家对“小桶装”乳胶漆有“买4送1“的促销活动,∴只需购买15×=12(桶),∴比促销前可节省15×90﹣(12×90﹣120)=390(元).答:比促销前节省390元钱.(3)设“小桶装”乳胶漆每桶的成本是y元,依题意,得:12×90﹣120﹣15y=15y×25%,解得:y=51.2.答:“小桶装”乳胶漆每桶的成本是51.2元.27.解:(1)过C作CE∥MN,∴∠1=∠MAC,∵∠2=∠ACB﹣∠1,∴∠2=∠ACB﹣∠MAC,∵∠ACB﹣∠MAC=∠CBP,∴∠2=∠CBP,∴CE∥PQ,∴MN∥PQ;(2)过B作BR∥AG,∵AG∥CH,∴BR∥HF,∴∠BEG=∠EBR,∠RBF+∠CFB=180°,∵∠EBF=90°,∴∠BEG=∠EBR=90°﹣∠RBF,∴∠BEG=90°﹣∠RBF=90°﹣(180°﹣∠CFB),∴∠CFB﹣∠BEG=90°;(3)过E作ES∥MN,∵MN∥PQ,∴ES∥PQ,∴∠NAE=∠AES,∠QBE=∠EBC,∵BD和AE分别平分∠CBP和∠CAN,∴∠NAE=∠EAC,∠CBD=∠DBP,∴∠CAE=∠AES,∵∠EBD=90°,∴∠EBQ+∠PBD=∠EBC+∠CBD=90°,∴∠QBE=∠EBC,∴∠AEB=∠AES+∠BES=∠CAE+∠CBE=,∵∠ACB=60°,∴∠AEB=150°,∴∠BEG=30°,∵∠CFB﹣∠BEG=90°,∴∠CFB=120°.。
初中七年级数学上册期中试卷
初中七年级数学上册期中试卷
我们如果学习好了数学我们的学习肯定可以更加的好了,下面小编就给大家整理一下七年级数学, 需要的来阅读哦
七年级数学上册期中试卷阅读 一、单选题(共 10 题,每题 3 分,共 30 分) 1. 据统计,2018 年某市的初中毕业生人数约有 63 900 人,这个数字用科学记数法可以表示为( ) A. 6.39 105 B. 63.9 104 C. 6.39 104 D. 0.639 105 2. 在 ,3.14,0, 中,属于分数的是( ) 3 A. B.3.14 C.0 D. 3 3. 把数轴上表示 3 的点沿数轴移动 4 个单位后所得的点所表示的数为( ) A.7 B.-1 C.7 或-1 D.-7 或 1 4. 在数-(-3),0,(-3)2, 9 ,-14 中,正数的有( )个. A.2 B.3 C.4 D.5 5. 下列计算正确的是( ) A. 2 B. 6 C. D. 3 6. 下列实数: 2 , 3 9 ,1,-π, 0.31,0.301 001 000 1,0.101 001 000 1…(相邻两个 1 7 之间依次多一个 0),无理数有( ) A.2 个 B.3 个 C.4 个 D.5 个 7. 的平方根是( ) A.4 B.±4 C.2 D.±2 8. 购买 2 个单价为 a 元的面包和 3 瓶单价为 b 元的牛奶,所需的钱数为( ) A.(a+b)元 B.(2a+b)元 C.(a+3b)元 D.(2a+3b)元 9. 若代数式 x2+2x-1=0,则 3x2+6x-2 的值是( ) A.3 B.-3 C.1 D.-1 10.已知[a]表示不超过 a 的最大整数,如[1.7]=1,[-1.5]= -2,若 A 1 k k 1 , k k 3 3 其中 k 是正整数,则 A2018 的值为( ) A. 2 3
人教版2018-2019学年七年级上册期中数学考试题及答案
2019-2019学年七年级上册期中数学试卷一、选择题:1.如果水位下降3米记作﹣3米,那么水位上升4米,记作()A.1米B.7米C.4米D.﹣7米2.用小正方体搭一个几何体,使它的主视图和俯视图如图所示,这样的几何体最少需要正方体个数为( )A.5 B.6 C.7 D.83.给出下列判断:①单项式的系数是5;②是二次三项式;③多项式-3a2b+7a2b2-2ab+1的次数是9;④几个有理数相乘,当负因数有奇数个时,积为负.其中判断正确的是()A.1个 B.2个 C.3个 D.4个4.若│x│=2,│y│=3,则│x+y│的值为( )A.5B.-5C.5或1D.以上都不对5.明天数学课要学“勾股定理”.小敏在“百度”搜索引擎中输入“勾股定理”,能搜索到与之相关的结果个数约为12 500 000,这个数用科学记数法表示为( )A.1.25×105B.1.25×106C.1.25×107D.1.25×1086.买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要( )A.(7m+4n)元B.28mn元C.(4m+7n)元D.11mn元7.点A,B在数轴上的位置如图所示,其对应的数分别是a和b,对于以下结论:甲:b﹣a<0;乙:a+b>0;丙:|a|<|b|;丁:ab>0,其中正确的是()A.甲、乙B.丙、丁C.甲、丙D.乙、丁8.两个互为相反数的有理数相乘,积为( )A.正数B.负数C.零D.负数或零9.下列运算中结果正确的是()A.3a+2b=5abB.﹣4xy+2xy=﹣2xyC.3y2﹣2y2=1D.3x2+2x=5x310.已知一列数:1,-2,3,-4,5,-6,7,…将这列数排成下列形式:。
建华区2018-2019学年上学期七年级期中数学模拟题
故选 C. 【考点】:正数、负数、有理数 【难度】:较容易
6. 【答案】B
【解析】【解析】: 解:A、上升的反义词是下降是正确的,但这句话没有说明是哪两个量,故选项错误; B、胜于负是有相反意义的量,故选项正确; C、向东走 3 米与向南走 3 米是具有相反意义的量,故选项错误; D、减产-10 吨,就是增产 10 吨,故选项错误. 故选 B. 【考点】:正数、负数、有理数 【难度】:容易
建华区 2018-2019 学年上学期七年级期中数学模拟题
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. (2008•南昌)下列四个点,在反比例函数 y= 的图象上的是( )
A.(1,﹣6)B.(2,4) C.(3,﹣2) D.(﹣6,﹣1)
A.400 cm2 B.500 cm2 C.600 cm2 D.4000 cm2 9. 零上 23℃,记作+23℃,零下 8℃,可记作( ) A. 8 B. -8 C. 8℃ D. -8℃ 10. 质检员抽查某种零件的质量,超过规定长度的记为正数,短于规定长度的记为负数,检查结果如下: 第一个为 0.13 豪米,第二个为-0.12 毫米,第三个为-0.15 毫米,第四个为 0.11 毫米,则质量最差的零件 是( ) A. 第一个 B. 第二个 C. 第三个 D. 第四个 11.学校、家、书店,依次坐落在一条南北走向的大街上,学校在家的南边 20 米,书店在家的北边 70 米, 小明同学从家出发,向北走了 50 米,接着又向南走了-20 米,此时小明的位置是( )
2. 下列所给的算式中正确的是( )
A. 3a+2b=5ab B. 5mn﹣3nm=2mn
2018-2019学年江西省赣州市蓉江新区七年级(上)期中数学试卷试题及答案(解析版)
2018-2019学年江西省赣州市蓉江新区七年级(上)期中数学试卷一、选择题(本大题共6小题,每小题3分,共18分)1.计算:2017(1)-的值是( )A .1B .1-C .2017D .2017-2.小星同学在“百度”搜索引擎中输入“庆祝国庆”,能搜索到与之相关的结果条数约为3710000个,这个数用科学记数法表示为( )A .437110⨯B .537.110⨯C .63.7110⨯D .70.37110⨯3.下列说法正确的是( )A .单项式ab 的系数0,次数是2B .单项式3232a b -的系数2-,次数是5C .2a b -,3ab ,5是多项式235a b ab -+-的项D .13xy -是二次二项式 4.如果单项式232a x y +-与45b x y 是同类项,那么b a 的值是( )A .8B .5C .6D .95.观察下面的一列单项式:x -、22x 、34x -、48x 、516x -、⋯根据其中的规律,得出的第10个单项式是( )A .9102x -B .9102xC .992x -D .992x6.13世纪数学家斐波那契的《计算书》中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为( )A .42B .49C .67D .77二、填空题(本大题共6小题,每小题3分,共18分)7.在2-,15-,9,0,|10|-这五个有理数中,最大的数是 ,最小的数是 .8.用四舍五入法把4.036精确到0.1的近似值是 .9.已知,长方形的长是2a ,宽是()a b -,则长方形的长比宽多 .10.若3m n +=,2mn =-,则式子(453)(36)m n mn m n mn ----+的值为 .11.如图,数轴上的三点A 、B 、C 分别表示有理数a ,b ,c ,化简||||||a b a c b c --++-= .12.如果有理数m 所对应的点到3所对应的点的距离是4个单位长度,a ,b 互为相反数,且都不为零,c 、d 互为倒数,那么代数式22(3)a a b cd m b++--的值为 . 三、(本大题共5小题,每小题10分,共30分)13.(1)2018251(5)()|0.81|3-÷-⨯--- (2)2222(3)[5()2]ab a a ab a ab --+-+--14.2331(5)()32(2)(1)54-⨯-+÷-⨯- 15.如图是小明的计算过程,请仔细阅读,并解答下列问题.回答:(1)解题过程中有两处错误:第1处是第 步,错误原因是 .第2处是第 步,错误原因是 .(2)请写出正确的解答过程.16.先化简,再求值:22225(3)4(3)x y xy xy x y ---+,其中2x =-,3y =.17.已知:x ,y 的值满足2|3|(2)0x y -++=,有三个整式222x xy y ++,22x y -,22x y +,请你从这三个整式中任选两个整式进行加(或减)运算,再将你的运算结果求值.四、(本大题共3小题,每小题8分,共24分)18.王先生到市行政中心大楼办事,假定乘电梯向上一楼记作1+,向下一楼记作1-,王先生从1楼出发,电梯上下楼层依次记录如下(单位:层):6+,3-,10+,8-,12+,7-,10-.(1)请你通过计算说明王先生最后是否回到出发点1楼.(2)该中心大楼每层高3m ,电梯每向上或下1m 需要耗电0.2度,根据王先生现在所处位置,请你算算,他办事时电梯需要耗电多少度?19.已知多项式22(26)(2351)x ax y bx x y +-+--+-.(1)若多项式的值与字母x 的取值无关,求a ,b 的值;(2)在(1)的条件下,先化简多项式22223()(3)a ab b a ab b -+-++,再求它的值.20.某地区的手机收费有两种方式,用户可任选其一:A 、月租费20元,0.25元/分;B 、月租费25元,0.20元/分.(1)某用户某月打手机x 小时,请你写出两种方式下该用户应交付的费用;(2)若某用户估计一个月内打手机时间为25小时,你认为采用哪种方式更合算.五、(本大题共2小题,每小题9分,共18分)21.(9分)(1)根据下表填写空白处的代数式的值:(2)比较表中两代数式计算结果,请写出你所发现的22a b -与()()a b a b +-之间的关系?(3)利用你发现的结论求:22889111-的值.22.(9分)A 、B 两地分别有水泥20吨和30吨,C 、D 两地分别需要水泥15吨和35吨;已知从A 、B 到C 、D 的运价如下表:(1)若从A 地运到C 地的水泥为x 吨,则用含x 的式子表示从A 地运到D 地的水泥为 吨,从A 地将水泥运到D 地的运输费用为 元;(2)用含x 的代数式表示从A 、B 两地运到C 、D 两地的总运输费,并化简该式子.五、(本大题12分)23.如图,已知数轴上有A 、B 、C 三个点,它们表示的数分别是24-,10-,10,我们约定点A 与点B 之间的距离记为AB ,点B 与点C 之间的距离记为BC .(1)线段AB的长度为,线段BC的长度为;(2)若点B向左运动6个单位长度,则运动后的点表示的数为;若点B向右运动6个单位长度,则运动后的点表示的数为;(3)若点A以每秒1个单位长度的速度向左运动,同时点B和点C分别以每秒3个单位长度和7个单位长度的速度向右运动,设运动时间为t秒.①试用含t的式子分别表示点A、B、C运动t秒后的位置所对应的数;:A:CB:②试探索:BC AB的值是否为定值?若是,请求出其定值;若不是,请说明理由.2018-2019学年江西省赣州市蓉江新区七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)1.计算:2017(1)-的值是( )A .1B .1-C .2017D .2017-【解答】解:2017(1)1-=-.故选:B .2.小星同学在“百度”搜索引擎中输入“庆祝国庆”,能搜索到与之相关的结果条数约为3710000个,这个数用科学记数法表示为( )A .437110⨯B .537.110⨯C .63.7110⨯D .70.37110⨯【解答】解:3710000用科学记数法表示为63.7110⨯,故选:C .3.下列说法正确的是( )A .单项式ab 的系数0,次数是2B .单项式3232a b -的系数2-,次数是5C .2a b -,3ab ,5是多项式235a b ab -+-的项D .13xy -是二次二项式 【解答】解:A 、单项式ab 的系数是1,次数是2,原说法错误,故本选项不符合题意; B 、单项式3232a b -的系数是32-,次数是5,原说法错误,故本选项不符合题意; C 、2a b -,3ab ,5-是多项式235a b ab -+-的项,原说法错误,故本选项不符合题意; D 、13xy -是二次二项式,原说法正确,故本选项符合题意; 故选:D .4.如果单项式232a x y +-与45b x y 是同类项,那么b a 的值是( )A .8B .5C .6D .9【解答】解:单项式232a x y +-与45b x y 是同类项,24a ∴+=,3b =,解得2a =,3b =,328b a ∴==.故选:A .5.观察下面的一列单项式:x -、22x 、34x -、48x 、516x -、⋯根据其中的规律,得出的第10个单项式是( )A .9102x -B .9102xC .992x -D .992x【解答】解:依题意得:(1)n 为奇数,单项式为:(1)2n n x --;(2)n 为偶数时,单项式为:(1)2n n x -.综合(1)、(2),本数列的通式为:12()n n x --,∴第10个单项式为:9102x .故选:B .6.13世纪数学家斐波那契的《计算书》中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为( )A .42B .49C .67D .77【解答】解:依题意有,刀鞘数为67.故选:C .二、填空题(本大题共6小题,每小题3分,共18分)7.在2-,15-,9,0,|10|-这五个有理数中,最大的数是 |10|- ,最小的数是 .【解答】解:因为|10|10-=,15209|10|-<-<<<-,所以最大的数是|10|-,最小的数是15-.故答案为:|10|-,15-.8.用四舍五入法把4.036精确到0.1的近似值是 4.0 .【解答】解:用四舍五入法把4.036精确到0.1的近似值是4.0;故答案为:4.0.9.已知,长方形的长是2a ,宽是()a b -,则长方形的长比宽多 a b + .【解答】解:根据题意得:2()2a a b a a b a b --=-+=+,故答案为:a b +10.若3m n +=,2mn =-,则式子(453)(36)m n mn m n mn ----+的值为 11 .【解答】解:原式453364m n mn m n mn m n mn =---+-=+-,当3m n +=,2mn =-时,原式3811=+=,故答案为:11.11.如图,数轴上的三点A 、B 、C 分别表示有理数a ,b ,c ,化简||||||a b a c b c --++-= 2c .【解答】解:由数轴得,0c >,0a b <<,因而0a b -<,0a c +<,0b c -<.||||||2a b a c b c b a a c c b c ∴--++-=-+++-=.故答案为:2c .12.如果有理数m 所对应的点到3所对应的点的距离是4个单位长度,a ,b 互为相反数,且都不为零,c 、d 互为倒数,那么代数式22(3)a a b cd m b++--的值为 3-或11- . 【解答】解:根据题意知7m =或1m =-,0a b +=,1a b=-,1cd =, 当7m =时,原式20(13)7=⨯+---047=-- 11=-;当1m =-时,原式20(13)(1)=⨯+----041=-+3=-;综上,代数式的值为11-或3-,故答案为:3-或11-.三、(本大题共5小题,每小题10分,共30分)13.(1)2018251(5)()|0.81|3-÷-⨯--- (2)2222(3)[5()2]ab a a ab a ab --+-+--【解答】解:(1)原式151321()0.2253151515=-⨯⨯--=-=-; (2)原式22226552ab a a ab a ab ab =-+-+--=.14.2331(5)()32(2)(1)54-⨯-+÷-⨯- 【解答】解:23(5)(5-⨯- 31)32(2)(14+÷-⨯- ) 312532(8)(154=-⨯+÷-⨯- ) 1154(14=--⨯- ) 155=-+10=-.15.如图是小明的计算过程,请仔细阅读,并解答下列问题.回答:(1)解题过程中有两处错误:第1处是第 二 步,错误原因是 .第2处是第 步,错误原因是 .(2)请写出正确的解答过程.【解答】解:(1)根据分析,可得第1处是第二步,错误原因是运算顺序错误.第2处是第三步,错误原因是符号错误.(2)13(15)(3)632-÷--⨯ 25(15)()66=-÷-⨯ 1865=⨯ 1085= 故答案为:二、运算顺序错误;三、符号错误.16.先化简,再求值:22225(3)4(3)x y xy xy x y ---+,其中2x =-,3y =.【解答】解:原式2222155412x y xy xy x y =-+-223x y xy =-,当2x =-,3y =时,原式223(2)3(2)3=⨯-⨯--⨯3618=+54=.17.已知:x ,y 的值满足2|3|(2)0x y -++=,有三个整式222x xy y ++,22x y -,22x y +,请你从这三个整式中任选两个整式进行加(或减)运算,再将你的运算结果求值.【解答】解:2|3|(2)0x y -++=,30x ∴-=,20y +=,3x ∴=,2y =-,2222(2)()212x xy y x y xy ∴++-+==-(其他取法,结果正确也可).四、(本大题共3小题,每小题8分,共24分)18.王先生到市行政中心大楼办事,假定乘电梯向上一楼记作1+,向下一楼记作1-,王先生从1楼出发,电梯上下楼层依次记录如下(单位:层):6+,3-,10+,8-,12+,7-,10-.(1)请你通过计算说明王先生最后是否回到出发点1楼.(2)该中心大楼每层高3m ,电梯每向上或下1m 需要耗电0.2度,根据王先生现在所处位置,请你算算,他办事时电梯需要耗电多少度?【解答】解:(1)(6)(3)(10)(8)(12)(7)(10)++-+++-+++-+-,6310812710=-+-+--,2828=-,0=,∴王先生最后能回到出发点1楼;(2)王先生走过的路程是3(|6||3||10||8||12||7||10|)++-+++-+++-+-,3(6310812710)=++++++,356=⨯,168()m =,∴他办事时电梯需要耗电1680.233.6⨯=(度).19.已知多项式22(26)(2351)x ax y bx x y +-+--+-.(1)若多项式的值与字母x 的取值无关,求a ,b 的值;(2)在(1)的条件下,先化简多项式22223()(3)a ab b a ab b -+-++,再求它的值.【解答】解:(1)原式22262351x ax y bx x y =+-+-+-+(22)b =- 2(3)67x a x y ++-+,由结果与x 取值无关,得到30a +=,220b -=,解得:3a =-,1b =;(2)原式22223333a ab b a ab b =-+---242ab b =-+,当3a =-,1b =时,原式24(3)12112214=-⨯-⨯+⨯=+=.20.某地区的手机收费有两种方式,用户可任选其一:A 、月租费20元,0.25元/分;B 、月租费25元,0.20元/分.(1)某用户某月打手机x 小时,请你写出两种方式下该用户应交付的费用;(2)若某用户估计一个月内打手机时间为25小时,你认为采用哪种方式更合算.【解答】解:(1)x 小时60x =分钟,政策:200.25602015A x x +⨯=+;政策:250.2602512B x x +⨯=+;(2)当25x =小时时,政策A 的收费:2015201525395x +=+⨯=(元),政策B 的收费:2512251225325x +=+⨯=(元).∴采用B 方式合算.五、(本大题共2小题,每小题9分,共18分)21.(9分)(1)根据下表填写空白处的代数式的值:(2)比较表中两代数式计算结果,请写出你所发现的22a b -与()()a b a b +-之间的关系?(3)利用你发现的结论求:22889111-的值.【解答】解:(1)填表如下:(2)22()()a b a b a b -=+-;(3)22889111(889111)(889111)778000-=+⨯-=.22.(9分)A 、B 两地分别有水泥20吨和30吨,C 、D 两地分别需要水泥15吨和35吨;已知从A 、B 到C 、D 的运价如下表:(1)若从A 地运到C 地的水泥为x 吨,则用含x 的式子表示从A 地运到D 地的水泥为 (20)x - 吨,从A 地将水泥运到D 地的运输费用为 元;(2)用含x 的代数式表示从A 、B 两地运到C 、D 两地的总运输费,并化简该式子.【解答】解:(1)根据题意得出:从A 地运到D 地的水泥为:(20)x -,从A 地将水泥运到D 地的运输费用为:(24012)x -;故答案为:(20)x -,(24012)x -;(2)根据题意得出:1512(20)10(15)9[35(20)]2525x x x x x +-+-+--=+.五、(本大题12分)23.如图,已知数轴上有A 、B 、C 三个点,它们表示的数分别是24-,10-,10,我们约定点A 与点B 之间的距离记为AB ,点B 与点C 之间的距离记为BC .(1)线段AB 的长度为 14 ,线段BC 的长度为 ;(2)若点B 向左运动6个单位长度,则运动后的点表示的数为 ;若点B 向右运动6个单位长度,则运动后的点表示的数为 ;(3)若点A 以每秒1个单位长度的速度向左运动,同时点B 和点C 分别以每秒3个单位长度和7个单位长度的速度向右运动,设运动时间为t 秒. ①试用含t 的式子分别表示点A 、B 、C 运动t 秒后的位置所对应的数; :A :B :C②试探索:BC AB -的值是否为定值?若是,请求出其定值;若不是,请说明理由.【解答】解:如图所示:(1)A 、B 、C 三个点表示的数分别是24-,10-,10, 10(24)102414AB ∴=---=-+=,10(10)101020BC =--=+=,故答案为14,20;(2)若点B 向左运动6个单位后对应的数为x ,依题意义得: 106x --=,解得:16x =-,若点B 向右运动6个单位长度对应的数为y ,依题意义得: (10)6x --=,解得:4x =-,故答案为:16-,4-;(3)①若点A 向左运动t 秒后对应点所对的数为m ,1A V =个单位长度/秒,A T t =秒,1A A A S V T t t ∴==⨯=,24m t ∴--=,解得:24m t =--;若点B 向右运动t 秒后对应点所对的数为n , 3B V =个单位长度/秒,B T t =秒, 33B B B S V T t t ∴==⨯=,(10)3n t ∴--=,解得:103n t =-+;若点C 向右运动t 秒后对应点所对的数为k , 7C V =个单位长度/秒,C T t =秒, 77C C C S V T t t ∴==⨯=,107k t ∴-=,解得:107k t =+;故答案为:24t --,103t -+,107t +; ②定值,理由如下:(107)(103)204BC t t t =+--+=+, (103)(24)144AB t t t =-+---=+, (204)(144)6BC AB t t ∴-=+-+=, 即BC AB -的定值为6.。
2018年秋人教版(江西)七年级数学(上)期中检测卷(含答案)
期中检测卷时间:120分钟 满分:120分一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.a 的相反数是( )A .|a | B.1a C .-a D .以上都不对2.计算-3+(-1)的结果是( )A .2B .-2C .4D .-4 3.在1,-2,0,53这四个数中,最大的数是( )A .-2B .0 C.53 D .14.若2x 2m y 3与-5xy 2n 是同类项,则|m -n |的值是( )A .0B .1C .7D .-15.长方形窗户上的装饰物如图所示,它是由半径均为b 的两个四分之一圆组成,则能射进阳光部分的面积是( )A .2a 2-πb 2B .2a 2-π2b 2C .2ab -πb 2D .2ab -π2b 2第5题图 第6题图6.如图,将一张等边三角形纸片沿各边中点剪成4个小三角形,称为第一次操作;然后将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作;……,根据以上操作,若要得到100个小三角形,则需要操作的次数是( )A .25B .33C .34D .50 二、填空题(本大题共6小题,每小题3分,共18分)7.-0.5的绝对值是________,相反数是________,倒数是________.8.2018年1月4日,在萍乡市第十五届人民代表大会第三次会议报告中指出,去年我市城镇居民人均可支配收入为33080元,33080用科学记数法可表示为________.9.五次单项式(k -3)x |k |y 2的系数为________.10.若关于a ,b 的多项式3(a 2-2ab -b 2)-(a 2+mab +2b 2)中不含有ab 项,则m =________.11.已知|x |=2,|y |=5,且x >y ,则x +y =________.12.已知两个完全相同的大长方形,长为a ,各放入四个完全一样的白色小长方形后,得到图①、图②,那么,图①中阴影部分的周长与图②中阴影部分的周长的差是________(用含a 的代数式表示).三、(本大题共5小题,每小题6分,共30分) 13.计算:(1)-20-(-14)-|-18|-13; (2)-23-(1+0.5)÷13×(-3).14.化简:(1)3a 2+2a -4a 2-7a ; (2)13(9x -3)+2(x +1).15.已知a 、b 互为相反数,c 、d 互为倒数,|m |=2,求代数式2m -(a +b -1)+3cd 的值.16.先化简,再求值:-a2b+(3ab2-a2b)-2(2ab2-a2b),其中a=-1,b=-2.17.若多项式4x n+2-5x2-n+6是关于x的三次多项式,求代数式n3-2n+3的值.四、(本大题共3小题,每小题8分,共24分)18.对于有理数a,b,定义一种新运算“”,规定:a b=|a|-|b|-|a-b|.(1)计算(-2)的值;(2)当a,b在数轴上的位置如图所示时,化简a b.19.如图所示,将面积为a2的小正方形和面积为b2的大正方形放在同一水平面上(b>a>0).(1)用a、b表示阴影部分的面积;(2)计算当a=3,b=5时,阴影部分的面积.20.邮递员骑车从邮局O出发,先向西骑行2km到达A村,继续向西骑行3km到达B 村,然后向东骑行8km,到达C村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1cm表示2km,画出数轴,并在该数轴上表示出A、B、C三个村庄的位置;(2)C村距离A村有多远?(3)邮递员共骑行了多少km?五、(本大题共2小题,每小题9分,共18分)21.操作探究:已知在纸面上有一数轴(如图所示).操作一:(1)折叠纸面,使1表示的点与-1表示的点重合,则-3表示的点与________表示的点重合;操作二:(2)折叠纸面,使-1表示的点与3表示的点重合,回答以下问题:①5表示的点与数________表示的点重合;②若数轴上A、B两点之间距离为11(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少.22.“十一”黄金周期间,淮安动物园在7天假期中每天接待的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数),把9月30日的游客人数记为a万人.(1)请用含a的代数式表示10月2日的游客人数;(2)请判断七天内游客人数最多的是哪天,有多少人?(3)若9月30日的游客人数为2万人,门票每人10元,问黄金周期间淮安动物园门票收入是多少元?六、(本大题共12分)23.探索规律,观察下面算式,解答问题.1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52;……(1)请猜想:1+3+5+7+9+…+19=________;(2)请猜想:1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)=________;(3)试计算:101+103+…+197+199.参考答案与解析1.C 2.D 3.C 4.B 5.D6.B 解析:∵第一次操作后,三角形共有4个;第二次操作后,三角形共有4+3=7(个);第三次操作后,三角形共有4+3+3=10(个)……∴第n 次操作后,三角形共有4+3(n -1)=(3n +1)(个).当3n +1=100时,解得n =33.故选B.7.0.5 0.5 -2 8.3.308×104 9.-6 10.-6 11.-3或-712.a 解析:由图②知小长方形的长为宽的2倍,设大长方形的宽为b ,小长方形的宽为x ,长为2x ,由图②得2x +x +x =a ,则4x =a .图①中阴影部分的周长为2b +2(a -2x )+2x ×2=2a +2b ,图②中阴影部分的周长为2(a +b -2x )=2a +2b -4x ,∴图①中阴影部分的周长与图②中阴影部分的周长之差为(2a +2b )-(2a +2b -4x )=4x =a .13.解:(1)原式=-6-18-13=-37.(3分)(2)原式=-8-1.5÷13×(-3)=-8-4.5×(-3)=-8+13.5=5.5.(6分)14.解:(1)原式=-a 2-5a .(3分)(2)原式=5x +1.(6分)15.解:根据题意得a +b =0,cd =1,m =2或-2.(2分)当m =2时,原式=4-(-1)+3=4+1+3=8;(4分)当m =-2时,原式=-4-(-1)+3=-4+1+3=0.(6分)16.解:原式=-a 2b +3ab 2-a 2b -4ab 2+2a 2b =-ab 2,(3分)当a =-1,b =-2时,原式=4.(6分)17.解:由题意可知该多项式最高次数项为3次,分如下两种情况:当n +2=3时,n =1,∴原多项式为4x 3-5x +6,符合题意,∴n 3-2n +3=13-2×1+3=2;(3分)当2-n =3时,n =-1,∴原多项式为4x -5x 3+6,符合题意,∴n 3-2n +3=(-1)3-2×(-1)+3=4.(5分)综上所述,代数式n 3-2n +3的值为2或4.(6分)18.解:(1)根据题中的新定义知,原式=|-2|-|3|-|-2-3|=2-3-5=-6.(4分) (2)由a ,b 在数轴上的位置,可得a >0,b <0,a -b >0,则a b =|a |-|b |-|a -b |=a +b -a +b =2b .(8分)19.解:(1)阴影部分的面积为12b 2+12a (a +b ).(4分)(2)当a =3,b =5时,12b 2+12a (a +b )=12×25+12×3×(3+5)=492,即阴影部分的面积为492.(8分)20.解:(1)如图所示:(3分)(2)C、A两村的距离为3-(-2)=5(km).答:C村距离A村5km.(5分)(3)|-2|+|-3|+|+8|+|-3|=16(km).答:邮递员共骑行了16km.(8分)21.解:(1)3(3分)(2)①-3(6分)②由题意可得,A、B两点距离对称点的距离为11÷2=5.5.∵对称点是表示1的点,∴A、B两点表示的数分别是-4.5,6.5.(9分)22.解:(1)10月2日的游客人数为(a+2.4)万人.(2分)(2)10月3日游客人数最多,人数为(a+2.8)万人.(4分)(3)(a+1.6)+(a+2.4)+(a+2.8)+(a+2.4)+(a+1.6)+(a+1.8)+(a+0.6)=7a+13.2.(6分)当a=2时,(7×2+13.2)×10=272(万元).(8分)答:黄金周期间淮安动物园门票收入是272万元.(9分)23.解:(1)102(3分)(2)(n+2)2(6分)(3)原式=(1+3+5+…+197+199)-(1+3+…+97+99)=1002-502=7500.(12分) 。
2019秋人教版(江西)七年级数学上册期中检测题含答案
七年级数学上册期中检测题(RJ)(时间:120分钟 满分:120分)一、选择题(本大题共6小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.-⎪⎪⎪⎪⎪⎪-23的相反数是( C )A .-32B.32C.23D .-232.下列结果是负数的是( B ) A .-[-(-6)]+6B .-|-5|-(+9)C .-32+(-3)2-(-5)D .[(-1)3+(-3)2]×(-1)43.(2019·天水)已知a +b =12,则代数式2a +2b -3的值是( B ) A .2B .-2C .-4D .-3124.(2019·玉林)南宁到玉林城际铁路投资约278亿元,将数据278亿用科学记数法表示是( C )A .278×108B .27.8×109C .2.78×1010D .2.78×1085.某种书每本定价8元,若购书不超过10本,按原价付款;若一次购书10本以上,超过10本部分按八折付款.设一次购书数量为x 本(x >10),则付款金额为( C )A .6.4x 元B .(6.4x +80)元C .(6.4x +16)元D .(144-6.4x)元6.(易错题)如图①,是长为a ,宽为b 的长方形卡片,把六张这样的小长方形卡片不重叠地放在一个底面为长方形(长为4,宽为3)的盒子底部(如图②),盒子底部未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长之和为( C )A .8B .10C .12D .14二、填空题(本大题共6小题,每小题3分,共18分)7.数轴上点M 到-2的点的距离为5,则点M 表示的数为 -7或3 . 8.规定a △b =a +b -3,则(-4)△6= -1 . 9.比较大小:-(-5)2 > -|-62|.10.如图所示,一只蚂蚁从点A 沿着数轴向右爬了2个单位到达点B ,点A 表示的数为-112,设点B 表示的数为m ,则代数式|m -1|+(m +6)的值为 7 .11.若多项式2x 3-8x 2-1与多项式x 3+2mx 2-5x +2的和不含二次项,则m 的值为 4 .12.小明背对小亮,让小亮按下列四个步骤操作:第一步:分发左、中、右三堆牌,每堆牌不少于3张,且各堆牌的张数相同;第二步:从左边一堆拿出3张,放入中间一堆; 第三步:从右边一堆拿出2张,放入中间一堆;第四步:左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆. 这时,小明准确说出了中间一堆牌现有的张数. 你认为中间一堆牌现有的张数是 8 . 三、(本大题共5小题,每小题6分,共30分) 13.计算:(1)215×⎝ ⎛⎭⎪⎫12-13÷114×311;解:原式=115×16×45×311=225. (2)⎝ ⎛⎭⎪⎫-3122+612×413-(-2)4÷(-12). 解:原式=494+132×413+16÷12 =494+2+43 =15712.14.化简下列各式:(1)-2(2x 2-x -7)+32(4x 2-8x -2);解:原式=-4x 2+2x +14+6x 2-12x -3 =2x 2-10x +11.(2)-3a 2-⎣⎢⎡⎦⎥⎤5a -⎝ ⎛⎭⎪⎫12a -3+2a 2-1. 解:原式=-3a 2-⎣⎢⎡⎦⎥⎤5a -12a +3+2a 2-1=-3a 2-92a -3-2a 2-1=-5a 2-92a -4.15.已知|x |=4,|y |=12,且xy >0.求x -y 的值. 解:因为|x|=4,|y|=12,所以x =±4,y =±12.又因为xy >0,所以x ,y 同号.当x ,y 同为正时,x -y =312;当x ,y 同为负时,x -y =-312.16.如图所示,在数轴上有三个点A ,B ,C ,回答下列问题: (1)A ,C 两点间的距离是多少?(2)若点E 与点B 的距离是8,则E 点表示的数是什么?(3)若点F 与点A 的距离是b (b >0),点F 表示的数是多少?(用字母b 表示)解:(1)2-(-3)=5, A ,C 两点间的距离为5.(2)-2+8=6,-2-8=-10,E 表示的数是6或-10. (3)-3+b 或-3-b. 17.先化简,再求值:3x 2y -⎣⎢⎡⎦⎥⎤2xy 2-2⎝ ⎛⎭⎪⎫xy -32x 2y +xy +3xy 2,其中,x =3,y =-13.解:原式=3x 2y -()2xy 2-2xy +3x 2y +xy +3xy 2=3x 2y -2xy 2+2xy -3x 2y -xy +3xy 2 =xy 2+xy .当x =3,y =-13时,原式=3×⎝ ⎛⎭⎪⎫-132+3×⎝ ⎛⎭⎪⎫-13=-23.四、(本大题共3小题,每小题8分,共24分)18.小明早晨跑步,他从自己家出发,向东跑了2 km 到达小彬家,继续向东跑了1.5 km 到达小红家,然后又向西跑了4.5 km 到达学校,最后又向东跑回到自己家.(1)以小明家为原点,向东为正方向,用1个单位长度表示1 km ,在数轴上分别用点A 表示出小彬家,用点B 表示出小红家,用点C 表示出学校的位置;(2)求小彬家与学校之间的距离;(3)如果小明跑步的速度是250 m /min ,那么小明跑步一共用了多长时间? 解:(1)如图所示.(2)2-(-1)=3 km .答:小彬家与学校之间的距离是3 km .(3)2+1.5+|-4.5|+1=9 km ,9 km =9 000 m ,9 000÷250=36 min . 答:小明跑步一共用了36 min .19.如图所示,将面积为a 2的小正方形和面积为b 2的大正方形放在同一水平面上(b >a >0).(1)用a ,b 表示阴影部分的面积;(2)计算当a =3,b =5时,阴影部分的面积.解:(1)阴影部分的面积为 12b 2+12a 2+12ab ; (2)当a =3,b =5时,12b 2+12a 2+12ab =12×25+12×9+12×3×5=492.20.有三个有理数x ,y ,z 若x =2(-1)n -1,且x 与y 互为相反数,y是z 的倒数.(1)当n 为奇数时,你能求出x ,y ,z 这三个数吗?当n 为偶数时,你能求出x ,y ,z 这三个数吗?若能,请计算并写出结果;若不能,请说明理由;(2)根据(1)的结果计算xy-y n-(y-z)2 019的值.解:(1)当n为奇数时,x=2(-1)n-1=2-1-1=-1,因为x与y互为相反数,所以y=-x=1,因为y,z互为倒数,所以z=1y=1,所以x=-1,y=1,z=1;当n为偶数时,(-1)n-1=1-1=0,因为分母不能为零,所以不能求出x,y,z这三个数.(2)当x=-1,y=1,z=1时,xy-y n-(y-z)2 019=(-1)×1-1n-(1-1)2 019=-2.五、(本大题共2小题,每小题9分,共18分)21.操作探究:已知在纸面上有一数轴(如图所示).操作一:(1)折叠纸面,使1表示的点与-1表示的点重合,则-3表示的点与3表示的点重合;操作二:(2)折叠纸面,使-1表示的点与3表示的点重合,回答以下问题:①5表示的点与数-3表示的点重合;②若数轴上A,B两点之间距离为11(A在B的左侧),且A,B两点经折叠后重合,求A,B两点表示的数是多少.解:由题意可得,A,B两点距离对称点的距离为11÷2=5.5.因为对称点是表示1的点,所以A,B两点表示的数分别是-4.5,6.5.22.A,B两地果园分别有苹果30吨和50吨,全部运送到C,D两地,而C,D两地分别需要苹果45吨和35吨.已知从A,B两地到C,D两地的运价如下:到C地运价到D地运价A果园每吨15元每吨12元B果园每吨10元每吨9元(1)若从B果园运到C地的苹果为x吨,则从B果园运到D地的苹果为多少吨?从A果园将苹果运到D地的运输费用为多少元?(2)用含x的式子表示出总运输费用;(3)当x为40吨时的总运输费用是多少?解:(1)从B果园运到D地的苹果为(50-x)吨,从A果园将苹果运到D地的运输费用为12[35-(50-x)]=12(x-15)=(12x-180)(元).(2)由题意,得10x+9(50-x)+15(45-x)+12(x-15)=-2x+945.即总运输费用为(-2x+945)元.(3)当x=40时,总运输费用是945-2×40=865(元).六、(本大题共12分)23.某商场销售一种西装和领带,西装每套定价1 000元,领带每条定价200元.“国庆节”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该商场购买西装20套,领带x(x>20)条.(1)若该客户按方案一购买,需付款多少元?若该客户按方案二购买,需付款多少元?(用含x的式子表示)(2)若x=30,通过计算说明此时按哪种方案购买较合算?(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并计算此时应付的费用.解:(1)该客户要到该商场购买西装20套,领带x(x>20)条.方案一费用:1 000×20+200(x-20)=20 000+200x-4 000=200x+16 000.方案二费用:1 000×90%×20+200×90%x=180x+18 000.(2)当x=30时,方案一费用:200×30+16 000=22 000(元);方案二费用:180×30+18 000=23 400(元).因为22 000<23 400,所以按方案一购买较合算.(3)先按方案一购买20套西装赠送20条领带,再按方案二购买10条领带.则此时应付的费用为1 000×20+200×10×90%=21 800(元).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学上学期期中模拟试题
一、选择题(本大题共6小题,每小题3分,共18)
1.下列方程中是一元一次方程的是( )
A.x+3=y+2
B.x+3=3-x
C. 11=x
D.x 2
=1 2. 中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为( )
A.44×108
B.4.4×109
C.4.4×108
D.4.4×1010
3.下列判断正确的是( )
A .3a 2bc 与bca 2不是同类项 B.m 2n 5和a +b 2都是单项式 C .单项式-x 3y 2的次数是3,系数是-1 D .3x 2-y +2xy 2是三次三项式
4. 下列等式变形:①若a b =,则a b x x
=;②如果a=b ,那么ac 2=bc 2; ③x+7=5﹣3x 变形为4x=﹣2; ④4y-2y+y=4,得(4-2)y=4;其中一定正确的个数是( ).
(A)1个 (B)2个 (C)3个 (D)4个
5.铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是( )
A .5(211)6(1)x x +-=-
B .5(21)6(1)x x +=-
C .5(211)6x x +-=
D .5(21)6x x +=
6. 如图所示的运算程序中,若开始输入的x 值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第2017次输出的结果为( )
A .3
B .6
C .4
D .2
二、填空题(本大题共6小题,每小题3分,共18分)
7.﹣的相反数是 ;绝对值是 .
8.已知关于x 的方程1(2)53k k x k --+=是一元一次方程,则k= .
9.关于x 的方程321x m +=-与方程221x x +=+的解相同,则m 的值为 .
10.已知3232572A x x x m =+-++,223B x mx =+-,若多项式A B +不含一次项,则多项式A B +的常数项是 .
11.a ※b 是新规定的这样一种运算法则:a ※b=a+2b ,例如3※(﹣2)=3+2×(﹣2)=﹣1.若(﹣2)※x=2+x ,则x 的值是 .
12.已知|a|=3,|b|=2,且a ·b <0,则a +b 的值为 .
三、(本大题共5小题,每小题6分,共30分)
13.(本题共2小题,每小题3分)
(1) (2)x x 23273-=+
14.已知a 是绝对值等于4的负数,b 是最小的正整数,c 的倒数的相反数是-2,求:2323234[2(57)]a b abc a b abc a b -+--
.
15.(6分)有理数a ,b ,c 在数轴上的位置如图所示,且|a|=|c|.
(1)若|a +c|+|b|=2,求b 的值;
(2)用“>”从大到小把a ,b ,-b ,c 连接起来.
16.小王在解关于x 的方程2a ﹣2x=15时,误将﹣2x 看作+2x ,得方程的解x=3,求原方程的解.
17、已知a ,b ,c 在数轴上的位置如图所示,求|a+b|﹣3|b+c|+2|a ﹣b|﹣|c ﹣b|的值.
四、(本大题共3题,每小题8分,共24分)
18.已知:A=2a 2+3ab ﹣2a ﹣1,B=﹣a 2
+ab ﹣1
(1)求4A ﹣(3A ﹣2B )的值;
(2)若A+2B 的值与a 的取值无关,求b 的值.
19 关于x的方程x-2m=-3x+4与2-m=x的解互为相反数.
(1)求m的值.
(2)求这两个方程的解.
20.学校需要到印刷厂印刷x份材料,甲印刷厂提出:每份材料收0.2元印刷费,另收500元制版费;乙印刷厂提出:每份材料收0.4元印刷费,不收制版费。
⑴两印刷厂的收费各是多少元?(用含x的代数式表示)
⑵学校要到印刷2400份材料,若不考虑其他因素,选择哪家印刷厂比较合算?试说明理由。
五(本大题共2小题,每题9分,共18分)
21.某农场要对一块麦地施底肥,现有化肥若干千克.如果每公顷施肥400 kg,那么余下化肥800 kg;如果每公顷施肥500 kg,那么缺少化肥300 kg.这块麦田的面积是多少公顷?现有化肥多少千克?
22.如图,一个长方形运动场被分隔成A,B,A,B,C共5个区,A区是边长为a m的正方形,C区是边长为c m的正方形.
(1)列式表示每个B区长方形场地的周长,并将式子化简;
(2)列式表示整个长方形运动场的周长,并将式子化简;
(3)如果a=40,c=10,求整个长方形运动场的面积.
六(本大题共12分)
23.为鼓励节约用电,某地用电收费标准规定:如果每月每户用电不超过150度,那么每度电0.5元;如果该月用电超过150度,那么超过部分每度电0.8元.
(1)如果小张家一个月用电128度,那么这个月应缴纳电费多少元?
(2)如果小张家一个月用电a度,那么这个月应缴纳电费多少元?(用含a的代数式表示)(3)如果这个月缴纳电费为147.8元,那么小张家这个月用电多少度?
七年级数学答案
一、选择题
1----6: B B D B A D
二、填空题
7. ;
8. -2
9. -2
10. 34
11. 4
12. -1或1
三
13. (1) 0 (2) 5
14. 解:2323234[2(57)]a b abc a b abc a b -+--
=5abc
因为a 是绝对值等于4的负数,b 是最小的正整数,c 的倒数的相反数是-2 所以a = -4;b=1;c=1/2
把a = -4;b=1;c=1/2代入原式= -10
15 . (1).b= -2
(2)a >-b >b >c
16.
解:∵2a+2x=15的解是x=3,
∴2a+2×3=15,
∴2a+6=15,
解得a=2
9, ∴2×2
9﹣2x=15, ∴9﹣2x=15,
移项,可得2x=9﹣15,
整理,可得2x=﹣6,
∴原方程的解是x=﹣3.
17.
解:由数轴上点的位置关系,得a<0<b<c,|a|>|b|.
|a+b|﹣3|b+c|+2|a﹣b|﹣|c﹣b|
=﹣(a+b)﹣3(b+c)+2(b﹣a)﹣(c﹣b)
=﹣a﹣b﹣3b﹣3c+2b﹣2a﹣c+b
=﹣3a﹣b﹣4c.
四
18解:(1)4A﹣(3A﹣2B)=A+2B
∵A=2a2+3ab﹣2a﹣1,B=﹣a2+ab﹣1,
∴原式=A+2B=2a2+3ab﹣2a﹣1+2(﹣a2+ab﹣1)=5ab﹣2a﹣3;
(2)若A+2B的值与a的取值无关,则5ab﹣2a+1与a的取值无关,
即:(5b﹣2)a+1与a的取值无关,∴5b﹣2=0,解得:b=0.4即b的值为0.4.
19.解:(1)第一个方程的解x=0.5m+1;第二个方程的解:x=2-m,所以0.5m+1+2-m=0,m=6;(2)将m=6代入得:第一个方程的解为4;第二方程的解为-4;
20.解:(1)甲印刷厂收费表示为:(0.2x+500)元,乙印刷厂收费表示为:0.4x元.(2)选择乙印刷厂.理由:
当x=2400时,甲印刷费为0.2x+500=980(元),
乙印刷费为0.4x=960(元).因为980>960,所以选择乙印刷厂比较合算.
五
21 解:设这块麦田的面积是x公顷,根据题意可得
400x+800=500x-300,
解得x=11.
400x+800=5 200.
答:这块麦田的面积是11公顷,现有化肥5 200 kg.
22.
解:(1)2[(a+c)+(a-c)]=2(a+c+a-c)=4a(m)
(2)2[(a+a+c)+(a+a-c)]=2(a+a+c+a+a-c)=8a(m)
(3)当a=40,c=10时,长=2a+c=90(m),宽=2a-c=70(m),
所以面积=90×70=6300(m2)
23.
解:(1)0.5×128=64(元)
答:这个月应缴纳电费64元;
(2)当0<a≤150时应缴纳的电费为0.5x
当a>150时应缴纳的电费为
0.5×150+0.8(a﹣150),
=75+0.8a﹣120,
=0.8a﹣45,
答:如果小张家一个月用电a度当0<a≤150时应缴纳的电费为0.5x
当a>150时,那么这个月应缴纳电费(0.8a﹣45)元.
(3)解:设此时用电a度
0.5×150=75(元)
75<147.8 所以a>150
0.5×150+0.8(a﹣150)=147.8,0.8a﹣45=147.8,解得a=241.
答:如果这个月缴纳电费为147.8元,那么小张家这个月用电241度.。