5.30电磁感应 章末检测 (2)
章末综合测评1 电磁感应
章末综合测评1 电磁感应电动势为定值,所以感应电流大小恒定.第2 s内磁场方向向外,穿过线圈的磁通量减少,由楞次定律判断知感应电流为逆时针方向,A项正确.]3.如图3,直角三角形金属框abc放置在匀强磁场中,磁感应强度大小为B,方向平行于ab边向上.当金属框绕ab边以角速度ω逆时针转动时,a、b、c 三点的电势分别为U a、U b、U c.已知bc边的长度为l.下列判断正确的是()图3A.U a>U c,金属框中无电流B.U b >U c,金属框中电流方向沿a→b→c→aC.U bc=-12Bl2ω,金属框中无电流D.U bc=12Bl2ω,金属框中电流方向沿a→c→b→aC[金属框abc平面与磁场平行,转动过程中磁通量始终为零,所以无感应电流产生,选项B、D错误.转动过程中bc边和ac边均切割磁感线,产生感应电动势,由右手定则判断U a<U c,U b<U c,选项A错误;由转动切割产生感应电动势的公式得U bc=-12Bl2ω,选项C正确.]4.如图4所示,匀强磁场中有两个导体圆环a、b,磁场方向与圆环所在平面垂直.磁感应强度B随时间均匀增大.两圆环半径之比为2∶1,圆环中产生的感应电动势分别为E a和E b.不考虑两圆环间的相互影响.下列说法正确的是()【导学号:97752078】图4A.E a∶E b=4∶1,感应电流均沿逆时针方向B.E a∶E b=4∶1,感应电流均沿顺时针方向C.E a∶E b=2∶1,感应电流均沿逆时针方向D.E a∶E b=2∶1,感应电流均沿顺时针方向B[由楞次定律知,题中圆环感应电流产生的磁场与原磁场方向相反,故感应电流沿顺时针方向.由法拉第电磁感应定律知E=ΔΦΔt =ΔBSΔt=ΔB·πR2Δt,由于两圆环半径之比R a∶R b=2∶1,所以E a∶E b=4∶1,选项B正确.]5.如图5所示,a、b两个闭合正方形线圈用同样的导线制成,匝数均为10匝,边长l a=3l b,图示区域内有垂直纸面向里的匀强磁场,且磁感应强度随时间均匀增大,不考虑线圈之间的相互影响,则()图5A.两线圈内产生顺时针方向的感应电流B.a、b线圈中感应电动势之比为9∶1C.a、b线圈中感应电流之比为3∶4D.a、b线圈中电功率之比为3∶1B[当磁感应强度变大时,由楞次定律知,线圈中感应电流的磁场方向垂直纸面向外,由安培定则知,线圈内产生逆时针方向的感应电流,选项A错误;由法拉第电磁感应定律E=SΔBΔt及S a∶S b=9∶1知,E a=9E b,选项B正确;由R=ρLS′知两线圈的电阻关系为R a=3R b,其感应电流之比为I a∶I b=3∶1,选项C错误;两线圈的电功率之比为P a∶P b=E a I a∶E b I b=27∶1,选项D错误.] 6.如图6所示,L是自感系数很大的理想线圈,a、b为两只完全相同的小灯泡,R0是一个定值电阻,则下列有关说法中正确的是()【导学号:97752079】图6A.当S闭合瞬间,a灯比b灯亮B.当S闭合待电路稳定后,两灯亮度相同C.当S突然断开瞬间,a灯比b灯亮些D.当S突然断开瞬间,b灯立即熄灭C[S闭合瞬间,a、b同时亮,b比a亮;稳定后,a灯不亮;S断开瞬间,a 灯比b 灯亮.]7.如图7所示,纸面内有一矩形导体闭合线框abcd ,ab 边长大于bc 边长,置于垂直纸面向里、边界为MN 的匀强磁场外,线框两次匀速地完全进入磁场,两次速度大小相同,方向均垂直于MN .第一次ab 边平行MN 进入磁场,线框上产生的热量为Q 1,通过线框导体横截面的电荷量为q 1;第二次bc 边平行MN 进入磁场,线框上产生的热量为Q 2,通过线框导体横截面的电荷量为q 2,则( )图7A .Q 1>Q 2,q 1=q 2B .Q 1>Q 2,q 1>q 2C .Q 1=Q 2,q 1=q 2D .Q 1=Q 2,q 1>q 2A [根据法拉第电磁感应定律E =Bl v 、欧姆定律I =E R 和焦耳定律Q =I 2Rt ,得线圈进入磁场产生的热量Q =B 2l 2v 2R ·l ′v =B 2Sl v R ,因为l ab >l bc ,所以Q 1>Q 2.根据E =ΔΦΔt,I =E R 及q =I Δt 得q =BS R ,故q 1=q 2.选项A 正确,选项B 、C 、D 错误.]8.紧靠在一起的线圈A 与B 如图8甲所示,当给线圈A 通以图8乙所示的电流(规定由a 进入b 流出为电流正方向)时,则线圈cd 两端的电势差不可能为图中的( )甲 乙图8A B C DBCD [0~1 s 内,A 线圈中电流均匀增大,产生向左均匀增大的磁场,由楞次定律可知,B 线圈中外电路的感应电流方向由c 到d ,大小不变,c 点电势高,所以U c d -t 图为选项A ,不可能为选项B 、C 、D .]9.如图9所示,线圈内有条形磁铁,将磁铁从线圈中拔出来时( )图9A .φa >φbB .φa <φbC .电阻中电流方向由a 到bD .电阻中电流方向由b 到aBD [线圈中磁场方向向右,磁铁从线圈中拔出时,磁通量减少,根据楞次定律,线圈中产生感应电动势,右端为正极,左端为负极,所以电阻中电流方向由b 到a ,故φb >φa .B 、D 项正确.]10.单匝矩形线圈在匀强磁场中匀速转动,转动轴垂直于磁场.若线圈所围面积的磁通量随时间变化的规律如图10所示,则( )【导学号:97752080】图10A .线圈中0时刻感应电动势最小B .线圈中C 时刻感应电动势为零C .线圈中C 时刻感应电动势最大D .线圈从0至C 时间内平均感应电动势为0.4 VBD [感应电动势E =ΔΦΔt,而磁通量变化率是Φ-t 图线的切线斜率,当t =0时Φ=0,但ΔΦΔt ≠0;t =C 时Φ=2×10-3 Wb ,但ΔΦΔt=0,选项B 正确,A 、C 错误.从0至C 时间内ΔΦ=2×10-3 Wb ,E =ΔΦΔt =2×10-30.005V =0.4 V ,选项D 正确.]11.电吉他中电拾音器的基本结构如图11所示,磁体附近的金属弦被磁化,因此弦振动时,在线圈中产生感应电流,电流经电路放大后传送到音箱发出声音.下列说法正确的有( )图11A .选用铜质弦,电吉他仍能正常工作B .取走磁体,电吉他将不能正常工作C .增加线圈匝数可以增大线圈中的感应电动势D.弦振动过程中,线圈中的电流方向不断变化BCD[铜不能被磁化,铜质弦不能使电吉他正常工作,选项A错误;取走磁体后,弦的振动无法通过电磁感应转化为电信号,音箱不能发声,选项B正确;增加线圈匝数,根据法拉第电磁感应定律E=NΔΦ知,线圈的感应电动势变Δt大,选项C正确;弦振动过程中,线圈中感应电流的磁场方向发生变化,则感应电流的方向不断变化,选项D正确.]12.如图12所示,固定在水平绝缘平面上足够长的金属导轨不计电阻,但表面粗糙,导轨左端连接一个电阻R,质量为m的金属棒(电阻也不计)放在导轨上,并与导轨垂直,整个装置放在匀强磁场中,磁场方向与导轨平面垂直.用水平恒力F把ab棒从静止起向右拉动的过程中,下列说法正确的是()【导学号:97752081】图12A.恒力F做的功等于电路产生的电能B.恒力F和摩擦力的合力做的功等于电路中产生的电能C.克服安培力做的功等于电路中产生的电能D.恒力F和摩擦力的合力做的功等于电路中产生的电能和棒获得的动能之和CD[沿水平方向,ab棒受向右的恒力F、向左的摩擦力F f和安培力F安,随棒速度的增大,安培力增大,合力F-F f-F安减小,但速度在增大,最终可能达到最大速度.从功能关系来看,棒克服安培力做功等于其他形式的能转化成的电能,故A、B错误,C正确;由动能定理知,恒力F、安培力和摩擦力三者的合力做的功等于金属棒动能的增加量,D正确;也可从能量守恒角度进行判定,即恒力F做的功等于电路中产生的电能、因摩擦而产生的内能及棒动能的增加之和.]二、非选择题(本题共4小题,共52分)13. (12分)如图13所示,两平行金属导轨位于同一水平面上,相距l ,左端与一电阻R 相连;整个系统置于匀强磁场中,磁感应强度大小为B ,方向竖直向下.一质量为m 的导体棒置于导轨上,在水平外力作用下沿导轨以速度v 匀速向右滑动,滑动过程中始终保持与导轨垂直并接触良好.已知导体棒与导轨间的动摩擦因数为μ,重力加速度大小为g ,导轨和导体棒的电阻均可忽略.求:图13(1)电阻R 消耗的功率;(2)水平外力的大小.【解析】 (1)导体切割磁感线运动产生的电动势为E =Bl v根据欧姆定律,闭合回路中的感应电流为I =E R电阻R 消耗的功率为P =I 2R ,联立可得P =B 2l 2v 2R .(2)对导体棒受力分析,受到向左的安培力和向左的摩擦力,向右的外力,三力平衡,故有F 安+μmg =F① F 安=BIl =B 2l 2v R②故F =B 2l 2v R +μmg .【答案】 (1)B 2L 2v 2R (2)B 2l 2v R +μmg14.(12分)某同学设计一个发电测速装置,工作原理如图14所示.一个半径为R =0.1 m 的圆形金属导轨固定在竖直平面上,一根长为R 的金属棒OA ,A 端与导轨接触良好,O 端固定在圆心处的转轴上.转轴的左端有一个半径为r =R 3的圆盘,圆盘和金属棒能随转轴一起转动.圆盘上绕有不可伸长的细线,下端挂着一个质量为m =0.5 kg 的铝块.在金属导轨区域内存在垂直于导轨平面向右的匀强磁场,磁感应强度B =0.5 T .a 点与导轨相连,b 点通过电刷与O 端相连.测量a 、b 两点间的电势差U 可算得铝块速度.铝块由静止释放,下落h =0.3 m 时,测得U =0.15 V .(细线与圆盘间没有滑动,金属棒、导轨、导线及电刷的电阻均不计,重力加速度g 取10 m/s 2)图14(1)测U 时,与a 点相接的是电压表的“正极”还是“负极”?(2)求此时铝块的速度大小;(3)求此下落过程中铝块机械能的损失.【导学号:97752082】【解析】 (1)正极.(2)由电磁感应定律得U =E =ΔΦΔtΔΦ=12BR 2Δθ U =12BωR 2 v =rω=13ωR 所以v =2U 3BR =2 m/s. (3)ΔE =mgh -12m v 2 ΔE =0.5 J.【答案】 (1)正极 (2)2 m/s (3)0.5 J15.(14分)半径分别为r 和2r 的同心圆形导轨固定在同一水平面内,一长为r 、质量为m 且质量分布均匀的直导体棒AB 置于圆导轨上面,BA 的延长线通过圆导轨中心O ,装置的俯视图如图15所示.整个装置位于一匀强磁场中,磁感应强度的大小为B ,方向竖直向下.在内圆导轨的C 点和外圆导轨的D 点之间接有一阻值为R 的电阻(图中未画出).直导体棒在水平外力作用下以角速度ω绕O 逆时针匀速转动,在转动过程中始终与导轨保持良好接触.设导体棒与导轨之间的动摩擦因数为μ,导体棒和导轨的电阻均可忽略.重力加速度大小为g .求:图15(1)通过电阻R 的感应电流的方向和大小;(2)外力的功率.【解析】 (1)根据右手定则,得导体棒AB 上的电流方向为B →A ,故电阻R 上的电流方向为C →D .设导体棒AB 中点的速度为v ,则v =v A +v B 2而v A =ωr ,v B =2ωr根据法拉第电磁感应定律,导体棒AB 上产生的感应电动势E =Br v根据闭合电路欧姆定律得I =E R ,联立以上各式解得通过电阻R 的感应电流的大小为I =3Bωr 22R. (2)根据能量守恒定律,外力的功率P 等于安培力与摩擦力的功率之和,即P =BIr v +f v ,而f =μmg解得P =9B 2ω2r 44R +3μmgωr 2. 【答案】 (1)方向为C →D 大小为3Bωr 22R(2)9B 2ω2r 44R +3μmgωr 216.(14分)如图16甲所示,一电阻不计且足够长的固定光滑平行金属导轨MN 、PQ 间距L =0.8 m ,下端接有阻值R =3 Ω的电阻,导轨平面与水平面间的夹角θ=30°.整个装置处于方向垂直导轨平面向上的匀强磁场中.一质量m =0.1 kg 、阻值r =0.15 Ω的金属棒垂直导轨放置并用绝缘细线通过光滑的定滑轮与质量M =0.9 kg 的重物相连,左端细线连接金属棒中点且沿NM 方向.棒由静止释放后,沿NM 方向位移x 与时间t 之间的关系如图16乙所示,其中ab 为直线.已知棒在0~0.3 s 内通过的电荷量是0.3~0.4 s 内通过电荷量的2倍,取g =10 m/s 2,求:甲 乙图16(1)0~0.3 s 内棒通过的位移x 1的大小;(2)电阻R 在0~0.4 s 内产生的热量Q 1.【解析】 (1)棒在0~0.3 s 内通过的电荷量q 1=I -Δt 1平均感应电流I -=E -R +r回路中平均感应电动势E -=Bx 1L Δt 1得q 1=BLx 1R +r同理,棒在0.3~0.4 s 内通过的电荷量q 2=BL (x 2-x 1)R +r由题图乙读出0.4 s 时刻位移大小x 2=0.9 m又q 1=2q 2解得x 1=0.6 m.(2)由题图乙知棒在0.3~0.4 s 内做匀速直线运动,棒的速度大小v =0.9-0.60.4-0.3m/s =3 m/s对系统,根据能量守恒定律Q =Mgx 2-mgx 2sin θ-12(M +m )v 2 代入数据解得Q =3.15 J根据焦耳定律有Q 1Q =R R +r代入数据解得Q1=3 J.【答案】(1)0.6 m(2)3 J。
电磁感应章末检测
电磁感应章末检测一、单项选择题1.已知一灵敏电流计,当电流从正接线柱流入时,指针向正接线柱一侧偏转,现把它与线圈串联接成如图所示电路,当条形磁铁按如图所示情况运动时,以下判断不正确的是( )A.甲图中电流表偏转方向向右B.乙图中磁铁下方的极性是N 极C.丙图中磁铁的运动方向向下D.丁图中线圈的绕制方向从上往下看为顺时针方向2.如图甲所示,电路的左侧是一个电容为C 的电容器,电路的右侧是一个环形导体,环形导体所围的面积为S .在环形导体中有一垂直纸面向里的匀强磁场,磁感应强度的大小随时间变化的规律如图乙所示.则在0~t 0时间内电容器( )A.上极板带正电,所带电荷量为CS (B 2-B 1)t 0B.上极板带正电,所带电荷量为C (B 2-B 1)t 0C.上极板带负电,所带电荷量为CS (B 2-B 1)t 0D.上极板带负电,所带电荷量为C (B 2-B 1)t 03.如图所示,abcd 为水平放置的平行“⊂”形光滑金属导轨,间距为l ,导轨间有垂直于导轨平面的匀强磁场,磁感应强度大小为B ,导轨电阻不计,已知金属杆MN 倾斜放置,与导轨成θ角,单位长度的电阻为r ,保持金属杆以速度v 沿平行于cd 的方向滑动(金属杆滑动过程中与导轨接触良好).则( )A.电路中感应电动势的大小为Bl v sin θ B.电路中感应电流的大小为B v sin θrC.金属杆所受安培力的大小为B 2l v sin θrD.金属杆的热功率为B 2l v 2r sin θ4.如图所示是研究通电自感实验的电路图,A 1、A 2是两个规格相同的小灯泡,闭合开关调节滑动变阻器R 的滑动触头,使两个灯泡的亮度相同,调节滑动变阻器R 1的滑动触头,使它们都正常发光,然后断开开关S.重新闭合开关S ,则 ( )A .闭合瞬间,A 1立刻变亮,A 2逐渐变亮B .闭合瞬间,A 1、A 2均立刻变亮C .稳定后,L 和R 两端的电势差一定相同D .稳定后,A 1和A 2两端的电势差不相同5.如图所示,两条水平放置的长直金属导轨间距为L,左端与阻值为R的定值电阻相连,金属直杆ab 和cd的电阻阻值均为R,两端刚好能与导轨接触,ab、cd两杆用绝缘细线连接,间距为l,ab杆右侧l处有一宽度为l的匀强磁场区域,磁感应强度大小为B,方向垂直于导轨所在平面向里.若金属导轨电阻忽略不计,两金属杆和导轨始终接触良好,当两杆始终以恒定速度v向右运动时,用I cd表示金属杆cd中流过的电流(c→d为电流的正方向)、用U cd表示金属杆cd两端的电势差,正确描述I cd、U cd随位移变化的图象是()二、多项选择题6.如图8所示,在一磁感应强度B=0.5 T的匀强磁场中,垂直于磁场方向水平放着两根相距为h=0.1 m 的平行金属导轨MN和PQ,导轨电阻忽略不计,在两根导轨的端点N、Q之间连接一阻值R=0.3 Ω的电阻,导轨上跨放着一根长为L=0.2 m,每米阻值r=2.0 Ω的金属棒ab,金属棒与导轨正交放置,交点为c、d,当金属棒在水平拉力作用下以速度v=4.0 m/s向左做匀速运动时,则下列说法正确的是()A.金属棒a、b两端点间的电势差为0.2 VB.水平拉金属棒的力的大小为0.02 NC.金属棒a、b两端点间的电势差为0.32 VD.回路中的发热功率为0.06 W7.如图所示,竖直平行金属导轨MN、PQ上端接有电阻R,金属杆ab质量为m,跨在平行导轨上,垂直导轨平面的水平匀强磁场的磁感应强度为B,不计ab与导轨电阻及一切摩擦,且ab与导轨接触良好.若ab杆在竖直向上的外力F作用下匀速上升,则以下说法正确的是()A.拉力F所做的功等于电阻R上产生的热量B.杆ab克服安培力做的功等于电阻R上产生的热量C.电流所做的功等于重力势能的增加量D.拉力F与重力做功的代数和等于电阻R上产生的热量三、非选择题8.如图所示,两根足够长的平行金属导轨固定在倾角θ=30°的斜面上,导轨电阻不计,间距L=0.4 m,导轨所在空间被分成区域Ⅰ和Ⅱ,两区域的边界与斜面的交线为MN.Ⅰ中的匀强磁场方向垂直斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁感应强度大小均为B=0.5 T.在区域Ⅰ中,将质量m1=0.1 kg、电阻R1=0.1 Ω的金属条ab放在导轨上,ab刚好不下滑.然后,在区域Ⅱ中将质量m2=0.4 kg,电阻R2=0.1 Ω的光滑导体棒cd置于导轨上,由静止开始下滑.cd在滑动过程中始终处于区域Ⅱ的磁场中,ab、cd始终与导轨垂直且两端与导轨保持良好接触,取g=10 m/s2,问:(1)cd下滑的过程中,ab中的电流方向;(2)ab刚要向上滑动时,cd的速度v多大;(3)从cd开始下滑到ab刚要向上滑动的过程中,cd滑动的距离x=3.8 m,此过程中ab上产生的热量Q 是多少.9.如图所示,一边长L=0.2 m,质量m1=0.5 kg,电阻R=0.1 Ω的正方形导体线框abcd,与一质量为m2=2 kg的物块通过轻质细线跨过两定滑轮相连.起初ad边距磁场下边界为d1=0.8 m,磁感应强度B=2.5 T,磁场宽度d2=0.3 m,物块放在倾角θ=53°的斜面上,物块与斜面间的动摩擦因数μ=0.5.现将物块由静止释放,经一段时间后发现当ad边从磁场上边缘穿出时,线框恰好做匀速运动(g取10 m/s2,sin 53°=0.8,cos 53°=0.6).求:(1)线框ad边从磁场上边缘穿出时速度的大小;(2)线框刚全部进入磁场时动能的大小;(3)整个运动过程中线框产生的焦耳热.。
电磁感应 章末检测
章末检测试卷二(第一章)(时间:90分钟满分:100分)一、选择题(本题共12小题,每小题4分,共计48分.1~8题为单选题,9~12题为多选题,全部选对的得4分,选对但不全的得2分,有选错的得0分)1.(2019·定州中学周练)在如图1所示的几种情况中,不能产生感应电流的是()图1A.甲图,竖直面内的矩形闭合导线框绕与线框在同一平面内的竖直轴在水平方向的匀强磁场中匀速转动的过程中B.乙图,水平面内的圆形闭合导线圈静止在磁感应强度正在增大的非匀强磁场中C.丙图,金属棒在匀强磁场中垂直于磁场方向匀速向右运动的过程中D.丁图,导体棒在水平向右的恒力F作用下紧贴水平固定的U形金属导轨运动的过程中答案 C2.如图2所示,两根平行金属导轨置于水平面内,导轨之间接有电阻R.金属棒ab与两导轨垂直并保持良好接触,整个装置放在匀强磁场中,磁场方向垂直于导轨平面向下.现使磁感应强度随时间均匀减小,ab始终保持静止,下列说法正确的是()图2A.ab中的感应电流方向由b到aB.ab中的感应电流逐渐减小C.ab所受的安培力保持不变D.ab所受的静摩擦力逐渐减小答案 D解析磁感应强度随时间均匀减小,ab始终保持静止,所以闭合回路面积不发生改变,根据楞次定律和法拉第电磁感应定律可知,ab中产生由a到b的恒定电流,A、B错误;由于电流恒定,磁感应强度逐渐减小,所以安培力逐渐减小,静摩擦力与安培力是一对平衡力,所以静摩擦力逐渐减小,C 错误,D 正确.3.(2018·阳江市阳东区广雅中学高二上检测)如图3所示,一端接有定值电阻的平行金属轨道固定在水平面内,通有恒定电流的长直绝缘导线垂直并紧靠轨道固定,导体棒与轨道垂直且接触良好.在向右匀速通过M 、N 两区域的过程中,导体棒所受安培力分别用F M 、F N 表示,不计轨道电阻,以下叙述不正确的是( )图3A .在M 区时通过R 的电流为b →aB .在N 区时通过R 的电流为a →bC .F M 向右且增大D .F N 向左且减小 答案 C解析 根据直导线电流产生的磁场分布情况知,M 区的磁场方向垂直纸面向外,N 区的磁场方向垂直纸面向里.当导体棒匀速通过M 、N 两区时,由右手定则可知,选项A 、B 正确;根据左手定则可知,导体棒在M 、N 两区域运动时,受到的安培力均向左,离直导线越近,磁感应强度B 越大,F 安=BIL =BL ·BL v R =B 2L 2v R ,F 安也越大,选项C 错误,D 正确.4. (2019·辽河油田二中高二期末)如图4,一个匝数为100匝的圆形线圈,面积为0.4 m 2,电阻为r =1 Ω.在线圈中存在面积为0.2 m 2的垂直线圈平面向外的匀强磁场区域,磁感应强度B =0.3+0.15t (T).将线圈两端a 、b 与一个阻值R =2 Ω的电阻相连接,b 端接地.则下列说法正确的是( )图4A .通过电阻R 的电流方向向下B .回路中的电流大小不变C .电阻R 消耗的电功率为3 WD .a 端的电势为-3 V 答案 B解析 磁通量随时间均匀增加,根据楞次定律可知,感应电流通过R 的方向向上,选项A 错误;由ΔBΔt =0.15 T/s 可知,回路中产生的感应电动势不变,则感应电流大小不变,选项B 正确;E =n ΔB Δt S =100×0.15×0.2 V =3 V ,则回路的电流I =E R +r =32+1 A =1 A ,电阻R 消耗的电功率为P R =I 2R =2 W ,选项C 错误;R 两端的电压U R =IR =2 V ,即φb -φa =2 V ,因φb =0可得φa =-2 V ,选项D 错误.5.如图5所示,匀强磁场方向垂直矩形线框平面,先后两次将线框从磁场中同一位置匀速拉出有界磁场.第一次速度为v 1=v ,第二次速度为v 2=4v .则在先后两次过程中有( )图5A .流过线框任一横截面的电荷量之比为1∶4B .线框中感应电动势之比为1∶4C .线框所受安培力大小之比为1∶8D .沿运动方向作用在线框上的外力的功率之比为1∶8 答案 B解析 线框在磁场中运动产生感应电动势,E 1=Bl v ,E 2=4Bl v ,则E 1∶E 2=1∶4,B 正确;电荷量q =I Δt =ΔΦR ,则q 1∶q 2=1∶1,A 错误;安培力F =BIl =B 2l 2v R ,则F 1∶F 2=1∶4,C 错误;由于匀速运动,外力的功率等于安培力的功率,P 外=F ·v =B 2l 2v 2R ,则P外1∶P 外2=1∶16,D 错误.6.(2019·青岛市调研)如图6甲所示,A 、B 为两个相同的环形线圈,共轴并靠近放置.若A 线圈中通有如图乙所示的变化电流i ,则下列说法正确的是( )图6A .t 1到t 2时间内B 线圈电流方向与A 线圈内电流方向相反 B .t 1到t 3时间内B 线圈电流方向一直没有发生变化C .t 1时刻两线圈间作用力最大D.t2时刻两线圈间作用力最大答案 B解析在t1到t2时间内,若设逆时针(从左向右看)方向为正,则A线圈电流方向沿逆时针且逐渐减小,所以根据右手螺旋定则可判定穿过B线圈方向向左的磁通量减小,由楞次定律和右手螺旋定则可知,B线圈的电流沿逆时针方向,因此A、B中电流方向相同,故A错误;在t2到t3时间内,A线圈电流方向沿顺时针且逐渐增大,所以根据右手螺旋定则知,穿过B 线圈方向向右的磁通量增大,由楞次定律和右手螺旋定则可知,B线圈的电流沿逆时针方向,所以在t1到t3时间内B线圈电流方向为逆时针一直没有发生变化,故B正确;由题意可知,在t1时刻,线圈A中的电流最大,而磁通量的变化率为零,所以线圈B中感应电流为零,因此两线圈间作用力为零,故C错误;在t2时刻,线圈A中的电流为零,而磁通量的变化率是最大的,所以线圈B中感应电流也是最大,但A、B间的相互作用力为零,故D错误.7.(2019·长春十一中月考)如图7所示,等腰直角三角形AOB内部存在着垂直纸面向外的匀强磁场,OB在x轴上,长度为2L.纸面内一边长为L的正方形导线框的一边在x轴上,沿x 轴正方向以恒定的速度穿过磁场区域.规定顺时针方向为导线框中感应电流的正方向,t=0时刻导线框正好处于图示位置.则下面四幅图中能正确表示导线框中感应电流i随位移x变化的是()图7答案 B解析根据法拉第电磁感应定律,当位移为0~L时,通过线框的磁通量均匀增加,产生顺时针的感应电流;当位移为L~2L时,右边切割磁感线的长度减小,左边切割磁感线的长度增大,由法拉第电磁感应定律可判断两个边切割磁感线产生的电流方向相反,所以合电流逐渐减小,在位移为1.5L时电流减小到零,随后左边切割磁感线的长度大于右边,电流反向,所以B选项正确.8.如图8所示,一刚性矩形铜制线圈从高处自由下落,进入一水平的匀强磁场区域,然后穿出磁场区域,则()图8A.若线圈进入磁场过程是匀速运动,则离开磁场过程一定是匀速运动B.若线圈进入磁场过程是加速运动,则离开磁场过程一定是加速运动C.若线圈进入磁场过程是减速运动,则离开磁场过程一定是加速运动D.若线圈进入磁场过程是减速运动,则离开磁场过程一定是减速运动答案 D解析线圈从高处自由下落,以一定的速度进入磁场,会受到重力和安培力.线圈全部进入磁场后只受重力,在磁场内部会做一段加速运动,所以线圈出磁场时的速度要大于进磁场的速度.若线圈进入磁场过程是匀速运动,说明重力等于安培力,离开磁场时安培力大于重力,就会做减速运动,故A错误.若线圈进入磁场过程是加速运动,说明重力大于安培力,离开磁场时安培力变大,安培力与重力大小关系无法确定,故B错误.若线圈进入磁场过程是减速运动,说明重力小于安培力,离开磁场时安培力变大,安培力仍然大于重力,所以也是减速运动,故C错误,D正确.9.有一个垂直于纸面的匀强磁场,它的边界MN左侧为无场区,右侧是匀强磁场区域,如图9甲所示.现让一个金属线框在纸平面内以垂直于MN方向的恒定速度从MN左侧进入匀强磁场区域,线框中的电流随时间变化的i-t图像如图乙所示,则进入磁场区域的金属线框可能是选项图中的()图9答案 BC解析 线框切割磁感线产生的感应电动势E =BL v ,设线框总电阻是R ,则感应电流I =BL vR ,由题图乙所示图像可知,感应电流先均匀变大,后恒定,最后均匀减小,由于B 、v 、R 是定值,则线框的有效长度L 应先均匀增加,后恒定,最后均匀减小.闭合圆环匀速进入磁场时,有效长度L 先变大,后变小,不符合题意,A 项错误;六边形线框进入磁场时,有效长度L 先均匀增大,后恒定,最后均匀减小,符合题意,B 项正确;梯形线框匀速进入磁场时,有效长度L 先均匀增大,后不变,最后均匀减小,符合题意,C 项正确;三角形线框匀速进入磁场时,有效长度L 先增大,后减小,不符合题意,D 项错误.10.电吉他中的拾音器的基本结构如图10所示,磁体附近的金属弦被磁化,当拨动金属弦时,拾音器中的线圈能将振动产生的声音信号转换为电信号并传送到音箱发出声音,下列说法正确的是( )图10A .选用铜质弦,电吉他仍能正常工作B .取走磁体,电吉他将不能正常工作C .增加线圈匝数可以增大线圈中的感应电动势D .金属弦振动过程中,线圈中的电流方向不断变化 答案 BCD解析 选用铜质弦时,不会被磁化,不会产生电磁感应现象,电吉他不能正常工作,选项A 错误;取走磁体时,金属弦磁性消失,电吉他不能正常工作,选项B 正确;根据法拉第电磁感应定律可知,增加线圈匝数可以增大线圈中的感应电动势,选项C 正确;根据楞次定律可知,金属弦振动过程中,线圈中的电流方向不断变化,选项D 正确.11.如图11所示,在磁感应强度为B 、方向竖直向下的匀强磁场中有一水平放置的U 形金属导轨,导轨宽度为L ,导轨左端连接一阻值为R 的电阻,导轨电阻不计.在导轨上垂直放置一根长度为L 、电阻为r 的金属棒MN ,金属棒与导轨接触良好,用外力拉着金属棒向右以速度v 做匀速运动,则金属棒运动过程中( )图11A .金属棒中的电流方向为由N 到MB .电阻R 两端的电压为BL vC .金属棒受到的安培力大小为B 2L 2vR +rD .电阻R 产生的焦耳热的功率为B 2L 2vR答案 AC解析 由右手定则可知金属棒MN 中的电流方向为由N 到M ,故A 正确;MN 产生的感应电动势为E =BL v ,则电阻R 两端的电压为U =RBL v R +r ,故B 错误;回路中感应电流大小为I =BL vR +r ,金属棒MN 受到的安培力大小为F =BIL =B 2L 2vR +r ,故C 正确;电阻R 产生的焦耳热的功率为P =I 2R =(BL vR +r)2R =B 2L 2v 2R(R +r )2,故D 错误.12.如图12甲所示,两根间距为L 的粗糙导轨水平放置,在导轨上垂直导轨放置一根导体棒MN ,导体棒MN 接入回路中电阻为R ,与导轨接触良好,且处在竖直向上的匀强磁场B 1中.导轨的左端与一个半径为l 的导线圈连接,P 、Q 两点距离很小,导线圈内存在着竖直向下的磁场B 2,B 2随时间变化的图像如图乙所示.已知导体棒MN 始终保持静止状态,导轨与导线圈电阻不计,则在B 2均匀减弱的过程中,下列说法正确的是( )图12A .导体棒MN 受到水平向左的摩擦力B .导体棒MN 受到水平向右的摩擦力C .摩擦力大小为B 1πB 2Rt 2LD .摩擦力大小为B 1πB 2l 2Rt 2L答案 BD解析 根据楞次定律可知,导线圈内的感应电流方向为顺时针,根据左手定则,导体棒MN 受到水平向左的安培力,根据平衡条件可知导体棒MN 受到水平向右的摩擦力,故B 正确,A 错误;根据法拉第电磁感应定律有E =ΔΦΔt =S ΔB Δt =B 2πl 2t 2,由欧姆定律可知I =ER ,安培力大小为F =B 1IL ,摩擦力大小为F f =F =πB 1B 2l 2LRt 2,故D 正确,C 错误.二、非选择题(本题共5小题,共计52分)13.(8分)(2018·南充市高级中学高二下期中)一灵敏电流计,当电流从它的正接线柱流入时,指针向正接线柱一侧偏转.现把它与一个线圈串联,将磁铁从线圈上方插入或拔出,如图13所示.请完成下列填空:图13(1)图甲中灵敏电流计指针的偏转方向为________.(填“偏向正极”或“偏向负极”) (2)图乙中磁铁下方的极性是________.(填“N 极”或“S 极”) (3)图丙中磁铁的运动方向是________.(填“向上”或“向下”)(4)图丁中线圈从上向下看的电流方向是________.(填“顺时针”或“逆时针”) 答案 (1)偏向正极(2分) (2)S 极(2分) (3)向上(2分) (4)顺时针(2分)解析 (1)磁铁向下运动,穿过线圈的磁通量增加,原磁场方向向下,根据楞次定律可知线圈中感应电流方向(从上向下看)为逆时针方向,即电流从正接线柱流入电流计,指针偏向正极. (2)由题图乙可知,电流从负接线柱流入电流计,根据安培定则,感应电流的磁场方向向下,又知磁通量增加,根据楞次定律可知,磁铁下方为S 极.(3)磁场方向向下,电流从负接线柱流入电流计,根据安培定则,感应电流的磁场方向向下,根据楞次定律可知,磁通量减小,磁铁向上运动.(4)磁铁向下运动,穿过线圈的磁通量增加,原磁场方向向上,根据楞次定律可知感应电流方向(从上向下看)为顺时针方向.14.(8分)(2019·黑龙江大庆实验中学月考)如图14甲所示,一个匝数n =100的圆形导体线圈,面积S 1=0.4 m 2,电阻r =1 Ω.在线圈中存在面积S 2=0.3 m 2的垂直线圈平面向外的匀强磁场区域,磁感应强度B 随时间t 变化的关系如图乙所示.有一个R =2 Ω的电阻,将其两端a 、b 分别与图甲中的圆形线圈相连接,求:图14(1)ab 两点间的电势差U ab ;(2)在0~4 s 时间内通过电阻R 的电荷量; (3)在0~4 s 时间内电阻R 上产生的热量. 答案 (1)-3 V (2)6 C (3)18 J解析 (1)由法拉第电磁感应定律可得E =n ΔBS 2Δt ,(1分) 解得E =4.5 V (1分) 电流I =Er +R =1.5 A(1分) U ab =-IR =-3 V(1分) (2)通过电阻R 的电荷量q =I Δt =6 C .(2分) (3)由焦耳定律可得Q =I 2Rt ,得Q =18 J .(2分)15.(10分)如图15所示,在匀强磁场中倾斜放置的两根平行光滑的金属导轨,它们所构成的导轨平面与水平面成θ=30°角,平行导轨间距L =1.0 m .匀强磁场方向垂直于导轨平面向下,磁感应强度B =0.2 T .两根金属杆ab 和cd 可以在导轨上无摩擦地滑动.两金属杆的质量均为m =0.2 kg ,电阻均为R =0.2 Ω.若用与导轨平行的拉力作用在金属杆ab 上,使ab 杆沿导轨匀速上滑并使cd 杆在导轨上保持静止,整个过程中两金属杆均与导轨垂直且接触良好.金属导轨的电阻可忽略不计,取重力加速度g =10 m/s 2.求:图15(1)cd 杆受到的安培力F 安的大小; (2)通过金属杆的感应电流大小I ; (3)作用在金属杆ab 上拉力的功率.答案(1)1.0 N(2)5.0 A(3)20 W解析(1)金属杆cd静止在金属导轨上,所受安培力方向平行于导轨平面向上.则F安=mg sin 30°(2分) 解得:F安=1.0 N (1分) (2)F安=BIL (1分) 解得:I=5.0 A (1分) (3)金属杆ab所受安培力方向平行于导轨平面向下,金属杆ab在拉力F、安培力F安和重力mg沿导轨方向分力作用下匀速上滑,则F=BIL+mg sin 30°(2分) 根据法拉第电磁感应定律,金属杆ab上产生的感应电动势为E=BL v (1分) 根据闭合电路欧姆定律,通过金属杆ab的电流I=E2R(1分) 根据功率公式:P=F v=20 W (1分) 16.(12分)某同学设计一个发电测速装置,工作原理如图16所示.一个半径为R=0.1 m的圆形金属导轨固定在竖直平面上,一根长为R的金属棒OA,A端与导轨接触良好,O端固定在圆心处的转轴上,转轴的左端有一个半径为r=R3的圆盘,圆盘和金属棒能随转轴一起转动.圆盘上绕有不可伸长的细线,下端挂着一个质量为m=0.5 kg的铝块.在金属导轨区域内存在垂直于导轨平面向右的匀强磁场,磁感应强度B=0.5 T.a点与金属导轨相连,b点通过电刷与O端相连.测量a、b两点间的电势差U可求得铝块速度.铝块由静止释放,下落h=0.3 m时,测得U=0.15 V.(细线与圆盘间没有滑动,金属棒、导轨、导线及电刷的电阻均不计,重力加速度g=10 m/s2)图16(1)测U时,与a点相接的是电压表的正极还是负极?(2)求此时铝块的速度大小;(3)求此下落过程中铝块损失的机械能.答案(1)正极(2)2 m/s(3)0.5 J解析(1)由右手定则判断,金属棒中电流方向为由O到A,则A端为等效电源正极,则与a 点相接的是电压表的正极.(2分)(2)由法拉第电磁感应定律得U =E =BR v (2分) v =12Rω(1分) 得U =12BωR 2(1分)圆盘和金属棒一起转动,则两者角速度相同,铝块的速度与圆盘边缘的线速度大小相等,(1分)v =rω=13ωR(1分) 所以v =2U3BR =2 m/s.(1分)(3)ΔE =mgh -12m v 2(2分)解得ΔE =0.5 J .(1分)17.(14分)如图17甲所示,一电阻不计且足够长的固定光滑平行金属导轨MN 、PQ 间距L =0.8 m ,其下端接有阻值R =3 Ω的电阻,导轨平面与水平面间的夹角θ=30°.整个装置处于方向垂直导轨平面向上的匀强磁场中.一质量m =0.1 kg 、阻值r =0.15 Ω的金属棒垂直导轨放置并用绝缘细线通过光滑的定滑轮与质量M =0.9 kg 的重物相连,左端细线连接金属棒中点且沿NM 方向.棒由静止释放后,沿NM 方向位移x 与时间t 之间的关系如图乙所示,其中ab 为直线.已知棒在0~0.3 s 内通过的电荷量是0.3~0.4 s 内通过电荷量的2倍,取g =10 m/s 2,求:图17(1)0~0.3 s 内棒通过的位移x 1的大小; (2)电阻R 在0~0.4 s 内产生的热量Q 1. 答案 (1)0.6 m (2)3 J解析 (1)棒在0~0.3 s 内通过的电荷量q 1=I Δt 1(1分)平均感应电流I =ER +r(1分)回路中平均感应电动势E =Bx 1LΔt 1(1分)得q 1=BLx 1R +r(1分)同理,棒在0.3~0.4 s 内通过的电荷量 q 2=BL (x 2-x 1)R +r(1分)由题图乙读出0.4 s 时刻位移大小x 2=0.9 m 又q 1=2q 2联立解得x 1=0.6 m .(2分)(2)由题图乙知棒在0.3~0.4 s 内做匀速直线运动,棒的速度大小v =0.9-0.60.4-0.3 m /s =3 m/s(1分)0~0.4 s 内,对整个系统,根据能量守恒定律得 Q =Mgx 2-mgx 2sin θ-12(M +m )v 2(3分)代入数据解得Q =3.15 J (1分) 根据焦耳定律有Q 1Q=RR +r(1分)代入数据解得Q 1=3 J . (1分)。
电磁感应章末测试(原卷版+解析)
电磁感应章末测试一、单项选择题1、如图所示,左右两套装置完全相同,用导线悬挂的金属细棒ab、cd分别位于两个蹄形磁铁的中央,悬挂点用导线分别连通.现用外力使ab棒向右快速摆动,则此时cd棒受到的安培力方向及这个过程中右侧装置的工作原理相当于()A.cd棒受到的安培力向右,右侧装置的工作原理相当于电动机B.cd棒受到的安培力向左,右侧装置的工作原理相当于发电机C.cd棒受到的安培力向右,右侧装置的工作原理相当于发电机D.cd棒受到的安培力向左,右侧装置的工作原理相当于电动机2、图示装置是某同学探究感应电流产生条件的实验装置。
在电路正常接通并稳定后,他发现:当开关断开时,电流表的指针向右偏转。
则能使电流表指针向左偏转的操作是()A.拔出线圈AB.在线圈A中插入铁芯C.滑动变阻器的滑动触头向左匀速滑动D.滑动变阻器的滑动触头向左加速滑动3、同一平面内固定有一长直导线PQ和一带缺口的刚性金属圆环,在圆环的缺口两端引出两根导线,分别与两块垂直于圆环所在平面固定放置的平行金属板M、N连接,如图甲所示。
导线PQ中通有正弦交变电流i,i的变化如图乙所示,规定从Q到P为电流的正方向,则在1~2 s 内()A.M板带正电,且电荷量增加B.M板带正电,且电荷量减小C.M板带负电,且电荷量增加D.M板带负电,且电荷量减小4、如图甲所示,带缺口的刚性金属圆环在纸面内固定放置,在圆环的缺口两端引出两根导线,分别与两块垂直于纸面正对固定放置的平行金属板P、Q连接。
圆环内有垂直于纸面变化的磁场,变化规律如图乙所示(规定磁场方向垂直于纸面向里为正方向)。
图中可能正确表示P、Q两极板间电场强度E(规定电场方向由P 板指向Q板为正方向)随时间t变化情况的是()5、如图所示,在直角梯形区域内存在垂直纸面向里的匀强磁场,BC=CD=2AB=2L。
高为2L、宽为L的矩形金属闭合线圈由图中位置以向右的恒定速度匀速通过磁场区域,其长边始终与CD平行。
_新教材高中物理第二章电磁感应章末检测含解析新人教版选择性必修第二册
章末综合检测( 二 ) 电磁感应(时间:90分钟满分:100分)一、选择题(本题包括12小题,共40分。
第1~8小题,在每小题给出的四个选项中,只有一个选项符合题目要求,每小题3分;第9~12小题有多个选项符合题目要求,每小题4分,全部选对的得4分,选对但不全的得2分,有选错的得0分)1.电磁炉采用感应电流(涡流)的加热原理,其原理图如图所示。
它是通过电子线路产生交变磁场,把铁锅放在炉面上时,在铁锅底部产生交变电流。
它具有升温快、效率高、体积小、安全性好等优点。
下列关于电磁炉的说法正确的是( )A.电磁炉面板可采用陶瓷材料,发热部分为铁锅底部B.电磁炉面板可采用金属材料,通过面板发热加热锅内食品C.电磁炉可以用陶瓷器皿作为锅具对食品加热D.电磁炉的锅具一般用铁锅,是因为铝锅、铜锅中不能形成涡流解析:选A 电磁炉面板如果采用金属材料,在交变磁场中产生涡流发热,会使线圈烧毁,故B错误;用陶瓷器皿作为锅具不能形成涡流,不能对食品加热,故C错误;铝锅、铜锅在电磁炉上也能形成涡流,但由于铝、铜导磁性弱,通过它们的磁场只是一小部分,因此在铝锅、铜锅中形成的涡流远比铁锅中的小,不是不能形成涡流,故D错误,A正确。
2.如图所示,左侧闭合电路中的电流大小为I1,ab为一段长直导线;右侧平行金属导轨的左端连接有与ab平行的长直导线cd,在远离cd导线的右侧空间存在与导轨平面垂直的匀强磁场,在磁场区域放置垂直导轨且与导轨接触良好的导体棒MN,当导体棒沿导轨匀速运动时,可以在cd上产生大小为I2的感应电流。
已知I1>I2,用f1和f2分别表示导线cd 产生的磁场对ab的安培力大小和ab产生的磁场对cd的安培力大小,下列说法正确的是( )A.若MN向左运动,ab与cd两导线相互吸引,f1=f2B.若MN向右运动,ab与cd两导线相互吸引,f1=f2C.若MN向左运动,ab与cd两导线相互吸引,f1>f2D.若MN向右运动,ab与cd两导线相互吸引,f1>f2解析:选B 若MN 向左运动,由右手定则可知cd 中的电流方向由d →c ,而ab 中的电流方向由a →b ,故二者方向相反,相互排斥。
人教版高中物理选修3-2第四章《电磁感应》章末检测 .docx
高中物理学习材料桑水制作人教版高中物理选修3-2第四章《电磁感应》章末检测(时间:90分钟,满分:100分)一、选择题(本题共10小题,每小题4分,共40分)1.竖直平面内有一金属环,半径为a ,总电阻为R ,磁感应强度为B 的匀强磁场垂直穿过环平面,与环的最高点A 铰链连接的长度为2a ,电阻为R2的导体棒AB 由水平位置紧贴环面摆下(如图1所示).当摆到竖直位置时,B 点的线速度为v ,则这时AB 两端的电压大小为( )图1A .2BavB .Bav C.2Bav 3 D.Bav3答案 D解析 由推论知,当导体棒摆到竖直位置时,产生的感应电动势E =Blv 中=B ·2a ·12v =Bav ,此时回路总电阻R 总=R 4+R 2=3R 4,这时AB 两端的电压大小U =E R 总·R 4=Bav3,D 项正确.2.如图2所示,光滑的水平桌面上放着两个完全相同的金属环a 和b ,当一条形磁铁的S 极竖直向下迅速靠近两环中间时,则( )图2A .a 、b 均静止不动B .a 、b 互相靠近C .a 、b 互相远离D .a 、b 均向上跳起 答案 C3. 如图3所示,闭合导线框的质量可以忽略不计,将它从如图所示的位置匀速拉出匀强磁场.若第一次用0.3 s 时间拉出,外力所做的功为W 1,通过导线截面的电荷量为q 1;第二次用0.9 s 时间拉出,外力所做的功为W 2,通过导线截面的电荷量为q 2,则( )图3A.W1<W2,q1<q2 B.W1<W2,q1=q2C.W1>W2,q1=q2 D.W1>W2,q1>q2答案 C解析设线框长为l1,宽为l2,第一次拉出速度为v1,第二次拉出速度为v2,则v1=3v2.匀速拉出磁场时,外力所做的功恰等于克服安培力所做的功,有W1=F1·l1=BI1l2l1=B2l22l1v1R,同理W2=B2l22l1v2R,故W1>W2;又由于线框两次拉出过程中,磁通量的变化量相等,即ΔΦ1=ΔΦ2,由q=ΔΦR,得q1=q2.4. 如图4所示,在PQ、QR区域中存在着磁感应强度大小相等、方向相反的匀强磁场,磁场方向均垂直于纸面.一导线框abcdefa位于纸面内,框的邻边都相互垂直,bc边与磁场的边界P重合.导线框与磁场区域的尺寸如图所示.从t=0时刻开始,线框匀速横穿两个磁场区域.以a→b→c→d→e→f 为线框中的电动势E的正方向,以下四个E-t关系示意图中正确的是 ( )图4答案 C解析楞次定律或右手定则可判定线框刚开始进入磁场时,电流方向,即感应电动势的方向为顺时针方向,故D选项错误;1 s~2 s内,磁通量不变化,感应电动势为0,A选项错误;2 s~3 s 内,产生感应电动势E=2Blv+Blv=3Blv,感应电动势的方向为逆时针方向(正方向),故C选项正确.5.如图5所示,用恒力F将闭合线圈自静止开始(不计摩擦)从图示位置向左加速拉出有界匀强磁场,则在此过程中( )图5A.线圈向左做匀加速直线运动B.线圈向左运动且速度逐渐增大C.线圈向左运动且加速度逐渐减小D .线圈中感应电流逐渐增大 答案 BCD解析 加速运动则速度变大,电流变大,安培力变大.安培力是阻力,故加速度减小.故选B 、C 、D 项.6. 两块水平放置的金属板间的距离为d ,用导线与一个n 匝线圈相连,线圈电阻为r ,线圈中有竖直方向的磁场,电阻R 与金属板连接,如图6所示,两板间有一个质量为m 、电荷量+q 的油滴恰好处于静止.则线圈中的磁感应强度B 的变化情况和磁通量的变化率分别是( )图6A .磁感应强度B 竖直向上且正增强,ΔΦΔt =dmgnqB .磁感应强度B 竖直向下且正增强,ΔΦΔt =dmgnqC .磁感应强度B 竖直向上且正减弱,ΔΦΔt =dmg R +rnRqD .磁感应强度B 竖直向下且正减弱,ΔΦΔt =dmgr R +rnRq答案 C解析 油滴静止说明电容器下极板带正电,线圈中电流自上而下(电源内部),由楞次定律可以判断,线圈中的磁感应强度B 为向上的减弱或向下的增强.又E =n ΔΦΔt①U R =R R +r ·E ②qU Rd=mg ③ 由①②③式可解得:ΔΦΔt =mgd R +rnRq7.如图7所示,粗细均匀的电阻丝绕制的矩形导线框abcd 处于匀强磁场中,另一种材料的导体棒MN 可与导线框保持良好接触并做无摩擦滑动.当导体棒MN 在外力作用下从导线框左端开始做切割磁感线的匀速运动一直滑到右端的过程中,导线框上消耗的电功率的变化情况可能为( )图7A .逐渐增大B .先增大后减小C .先减小后增大D .先增大后减小,再增大,接着再减小 答案 BCD解析 导体棒MN 在框架上做切割磁感线的匀速运动,相当于电源,其产生的感应电动势相当于电源的电动势E ,其电阻相当于电源的内阻r ,线框abcd 相当于外电路,等效电路如下图所示.由于MN 的运动,外电路的电阻是变化的,设MN 左侧电阻为R 1,右侧电阻为R 2,导线框的总电阻为R =R 1+R 2,所以外电路的并联总电阻:R 外=R 1R 2/(R 1+R 2)=R 1R 2/R由于R 1+R 2=R 为定值,故当R 1=R 2时,R 外最大.在闭合电路中,外电路上消耗的电功率P 外是与外电阻R 外有关的.P 外=⎝ ⎛⎭⎪⎫E R 外+r 2·R 外=E 2R 外-r 2R 外+4r可见,当R 外=r 时,P 外有最大值,P 外随R 外的变化图象如右图所示. 下面根据题意,结合图象讨论P 外变化的情况有:(1)若R 外的最大值R max <r ,则其导线框上消耗的电功率是先增大后减小.(2)若R 外的最大值R max >r ,且R 外的最小值R min <r ,则导线框上消耗的电功率是先增大后减小,再增大,接着再减小.(3)若是R 外的最小值R min >r ,则导线框上消耗的电功率是先减小后增大. 综上所述,B 、C 、D 均可选. 8.在如图8所示的电路中,a 、b 为两个完全相同的灯泡,L 为自感线圈,E 为电源,S 为开关.关于两灯泡点亮和熄灭的先后次序,下列说法正确的是( )图8A .合上开关,a 先亮,b 逐渐变亮;断开开关,a 、b 同时熄灭B .合上开关,b 先亮,a 逐渐变亮;断开开关,a 先熄灭,b 后熄灭C .合上开关,b 先亮,a 逐渐变亮;断开开关,a 、b 同时熄灭D .合上开关,a 、b 同时亮;断开开关,b 先熄灭,a 后熄灭 答案 C解析 合上开关S 后,电流由零突然变大,电感线圈产生较大的感应电动势,阻碍电流的增大,故I b >I a ,随电流逐渐增大至稳定过程,电感的阻碍作用越来越小,故合上开关,b 先亮,a 逐渐变亮;开关S 断开后,虽然由于电感L 产生自感电动势的作用,灯a 、b 回路中电流要延迟一段时间熄灭,且同时熄灭,故选C.9.如图9所示,用细线悬吊一块薄金属板,在平衡位置时,板的一部分处于匀强磁场中,磁场的方向与板面垂直,当让薄板离开平衡位置附近做微小的摆动时,它将( )图9A .做简谐振动B .在薄板上有涡流产生C .做振幅越来越小的阻尼振动D .以上说法均不正确 答案 BC解析 本题考查涡流的产生.由于电磁感应现象,薄板上出现电流,机械能减少,故正确答案为B 、C.10.如图10所示,相距为d 的两水平虚线分别是水平向里的匀强磁场的边界,磁场的磁感应强度为B,正方形线框abcd边长为L(L<d)、质量为m.将线框在磁场上方高h处由静止开始释放,当ab边进入磁场时速度为v0,cd边刚穿出磁场时速度也为v0.从ab边刚进入磁场到cd边刚穿出磁场的整个过程中( )图10A.线框一直都有感应电流B.线框有一阶段的加速度为gC.线框产生的热量为mg(d+h+L)D.线框做过减速运动答案BD解析从ab边进入时到cd边刚穿出有三个过程(四个特殊位置)如图由Ⅰ位置到Ⅱ位置,和由Ⅲ位置到Ⅳ位置线框中的磁通量发生变化,所以这两个过程中有感应电流,但由Ⅱ位置到Ⅲ位置,线框中磁通量不变化,所以无感应电流;故A错,由Ⅱ到Ⅲ加速度为g,故B正确.因线框的速度由v0经一系列运动再到v0且知道有一段加速度为g的加速过程故线框一定做过减速运动,故D正确;由能量守恒知,线框产生的热量为重力势能的减少量即mg(d+L),故C错误.二、填空题(本题共2小题,第11题9分,第12题4分,共13分)11.(9分)如图11所示,是“研究电磁感应现象”的实验装置.图11(1)将图中所缺导线补充完整.(2)如果在闭合开关时发现灵敏电流计的指针向右偏了一下,那么合上开关后,将原线圈迅速插入副线圈中,电流计指针将________.(3)原线圈插入副线圈后,将滑动变阻器滑片迅速向左移动时,电流计指针将________.答案(1)如图所示(2)向右偏(3)向左偏12.(4分)如图12所示,两根平行光滑长直金属导轨,其电阻不计,导体棒ab和cd跨在导轨上,ab电阻大于cd电阻.当cd在外力F2作用下匀速向右滑动时,ab在外力F1作用下保持静止,则ab两端电压U ab和cd两端电压U cd相比,U ab________U cd,外力F1和F2相比,F1________F2(填>、=或<).图12答案 = =三、计算题(本题共4小题,第13、14题各10分,第15题12分,第16题15分,共47分) 13.(10分)如图13所示,匀强磁场竖直向上穿过水平放置的金属框架,框架宽为L ,右端接有电阻R ,磁感应强度为B ,一根质量为m 、电阻不计的金属棒以v 0的初速度沿框架向左运动,棒与框架的动摩擦因数为μ,测得棒在整个运动过程中,通过任一截面的电量为q ,求:图13(1)棒能运动的距离; (2)R 上产生的热量. 答案 见解析解析 (1)设在整个过程中,棒运动的距离为l ,磁通量的变化量ΔΦ=BLl ,通过棒的任一截面的电量q =I Δt =ΔΦR ,解得l =qRBL.(2)根据能的转化和守恒定律,金属棒的动能的一部分克服摩擦力做功,一部分转化为电能,电能又转化为热能Q ,即有12mv 20=μmgl +Q ,解得Q =12mv 20-μmgl =12mv 20-μmgqRBL.14.(10分)U 形金属导轨abcd 原来静止放在光滑绝缘的水平桌面上,范围足够大、方向竖直向上的匀强磁场穿过导轨平面,一根与bc 等长的金属棒PQ 平行bc 放在导轨上,棒左边靠着绝缘的固定竖直立柱e 、f .已知磁感应强度B =0.8 T ,导轨质量M =2 kg ,其中bc 段长0.5 m 、电阻r =0.4 Ω,其余部分电阻不计,金属棒PQ 质量m =0.6 kg 、电阻R =0.2 Ω、与导轨间的摩擦因数μ=0.2.若向导轨施加方向向左、大小为F =2 N 的水平拉力,如图14所示.求:导轨的最大加速度、最大电流和最大速度(设导轨足够长,g 取10 m/s 2).图14答案 见解析解析 导轨受到PQ 棒水平向右的摩擦力F f =μmg , 根据牛顿第二定律并整理得F -μmg -F 安=Ma ,刚拉动导轨时,I 感=0,安培力为零,导轨有最大加速度a m =F -μmg M =2-0.2×0.6×102m/s 2=0.4 m/s 2随着导轨速度的增大,感应电流增大,加速度减小,当a =0时,速度最大.设速度最大值为v m ,电流最大值为I m ,此时导轨受到向右的安培力F 安=BI m L ,F -μmg -BI m L =0I m =F -μmg BL代入数据得I m =2-0.2×0.6×100.8×0.5A =2 AI =E R +r ,I m =BLv mR +r v m =I m R +r BL =2×0.2+0.40.8×0.5m/s =3 m/s.15.(12分)如图15所示,a 、b 是两根平行直导轨,MN 和OP 是垂直跨在a 、b 上并可左右滑动的两根平行直导线,每根长为l ,导轨上接入阻值分别为R 和2R 的两个电阻和一个板长为L ′、间距为d 的平行板电容器.整个装置放在磁感应强度为B 、垂直导轨平面的匀强磁场中.当用外力使MN 以速率2v 向右匀速滑动、OP 以速率v 向左匀速滑动时,两板间正好能平衡一个质量为m 的带电微粒,试问:图15(1)微粒带何种电荷?电荷量是多少?(2)外力的功率和电路中的电功率各是多少?答案 (1)负电 mgd Blv (2)3B 2l 2v 2R 3B 2l 2v2R解析 (1)当MN 向右滑动时,切割磁感线产生的感应电动势E 1=2Blv ,方向由N 指向M . OP 向左滑动时产生的感应电动势E 2=Blv ,方向由O 指向P . 两者同时滑动时,MN 和OP 可以看成两个顺向串联的电源,电路中总的电动势:E =E 1+E 2=3Blv ,方向沿NMOPN .由全电路欧姆定律得电路中的电流强度I =ER +2R =BlvR,方向沿NMOPN .电容器两端的电压相当于把电阻R 看做电源NM 的内阻时的路端电压,即U =E 1-IR =2Blv -BlvR·R =Blv由于上板电势比下板高,故在两板间形成的匀强电场的方向竖直向下,可见悬浮于两板间的微粒必带负电.设微粒的电荷量为q ,由平衡条件mg =Eq =U dq ,得q =mgd U =mgd Blv(2)NM 和OP 两导线所受安培力均为F =BIl =B Blv R l =B 2l 2vR,其方向都与它们的运动方向相反.两导线都匀速滑动,由平衡条件可知所加外力应满足条件F 外=F =B 2l 2vR因此,外力做功的机械功率P 外=F ·2v +Fv =3Fv =3B 2l 2v2R.电路中产生感应电流总的电功率P 电=IE =Blv R ·3Blv =3B 2l 2v2R可见,P 外=P 电,这正是能量转化和守恒的必然结果. 16.(15分)如图16所示,质量m 1=0.1 kg ,电阻R 1=0.3 Ω,长度l =0.4 m 的导体棒ab 横放在U 形金属框架上.框架质量m 2=0.2 kg ,放在绝缘水平面上,与水平面间的动摩擦因数μ=0.2.相距0.4 m 的MM ′、NN ′相互平行,电阻不计且足够长.电阻R 2=0.1 Ω的MN 垂直于MM ′.整个装置处于竖直向上的匀强磁场中,磁感应强度B =0.5 T .垂直于ab 施加F =2 N 的水平恒力,ab 从静止开始无摩擦地运动,始终与MM ′、NN ′保持良好接触.当ab 运动到某处时,框架开始运动.设框架与水平面间最大静摩擦力等于滑动摩擦力,g 取10 m/s 2.图16(1)求框架开始运动时ab 速度v 的大小;(2)从ab 开始运动到框架开始运动的过程中,MN 上产生的热量Q =0.1 J ,求该过程ab 位移x的大小.答案 (1)6 m/s (2)1.1 m解析 (1)ab 对框架的压力F 1=m 1g 框架受水平面的支持力F N =m 2g +F 1依题意,最大静摩擦力等于滑动摩擦力,则框架受到最大静摩擦力F 2=μF N ab 中的感应电动势E =BlvMN 中电流I =ER 1+R 2MN 受到的安培力F 安=IlB 框架开始运动时F 安=F 2由上述各式,代入数据解得v =6 m/s(2)闭合回路中产生的总热量Q 总=R 1+R 2R 2Q由能量守恒定律,得Fx =12m 1v 2+Q 总代入数据解得x =1.1 m。
电磁感应章末检测-2018年高三物理一轮总复习名师伴学 含解析 精品
一、选择题(共15小题,每小题4分,共60分,在每小题给出的四个选项中,第1~9小题只有一个选项符合题目要求,第10~15小题有多个选项符合题目要求,全部选对的得4分,选不全的得2分,有选错或不答的得0分)1. 如图所示的下列实验中,有感应电流产生的是 ( )【答案】D2.目前金属探测器已经广泛应用于各种安检、高考及一些重要场所,关于金属探测器的下列有关论述正确的是( )A.金属探测器可用于月饼生产中,用来防止细小的金属颗粒混入月饼馅中B.金属探测器能帮助医生探测儿童吞食或扎到手脚中的金属物,是因为探测器的线圈中能产生涡流C.使用金属探测器的时候,应该让探测器静止不动,探测效果会更好D.能利用金属探测器检测考生是否携带手机等违禁物品,是因为探测器的线圈中通有直流电【答案】A【解析】金属探测器是通过其通有交流电的探测线圈,会在隐蔽金属中激起涡流,反射回探测线圈,从而改变原交流电的大小和相位,从而起到探测作用,B、D项错;当探测器对于被测金属发生相对移动时,探测器中的线圈的交流电产生的磁场相对变化较快,在金属中产生的涡流会更强,检测效果更好,故C选项错,正确选项为A。
3. 竖直平面内有一金属环,半径为a,总电阻为R,磁感应强度为B 的匀强磁场垂直穿过环平面,与环的最高点A 铰链连接的长度为2a,电阻为R2的导体棒AB由水平位置紧贴环面摆下(如图所示)。
当摆到竖直位置时,B 点的线速度为v,则这时AB 两端的电压大小为 ( )A.2Bav B.BavC. 23BavD.3Bav【答案】D4. 物理课上,老师做了一个奇妙的“跳环实验”。
如图所示,她把一个带铁芯的线圈L、开关S和电源用导线连接起来后,将一金属套环置于线圈L上,且使铁芯穿过套环。
闭合开关S的瞬间,套环立刻跳起。
某同学另找来器材再探究此实验。
他连接好电路,经重复试验,线圈上的套环均末动。
对比老师演示的实验,下列四个选项中,导致套环未动的原因可能是 ( )A.线圈接在了直流电源上 B.电源电压过高C.所选线圈的匝数过多 D.所用套环的材料与老师的不同【答案】D【解析】闭合开关瞬间,只要套环产生感应电流,套环就会跳起。
高中物理-电磁感应章末综合测试
高中物理-电磁感应章末综合测试(时间:90分钟分值:100分)一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,第1~6题只有一项符合题目要求,第7~10题有多项符合题目要求.全选对得4分,选对但不全的得2分,全选错的得0分)1.下列说法正确的是( )A.法拉第发现了电流的磁效应B.楞次发现了电磁感应现象C.奥斯特发现了电磁感应现象D.安培提出了关于磁现象电本质的分子电流假说D[发现电流的磁效应即电生磁的是奥斯特,而法拉第的贡献是发现了电磁感应现象,选项A、C错.楞次并不是发现电磁感应现象,而是总结了电磁感应中产生感应电流的方向的判断方法即楞次定律,选项B错.安培针对磁现象最早提出了分子电流假说,即由于磁体内的分子环形电流形成同向的磁场叠加而形成磁性,选项D对.]2.水平放置的金属框架cdef处于如图所示的匀强磁场中,金属棒ab处于粗糙的框架上且接触良好,从某时刻开始,磁感应强度均匀增大.金属棒ab始终保持静止,则( )A.ab中电流增大,ab棒所受摩擦力也增大B.ab中电流不变,ab棒所受摩擦力也不变C.ab中电流不变,ab棒所受摩擦力增大D.ab中电流增大,ab棒所受摩擦力不变C[磁感应强度均匀增大时,磁通量的变化率ΔΦΔt恒定,故回路中的感应电动势和感应电流都是恒定的;又ab棒所受的摩擦力等于安培力,即f=FA=BIL,故当B增加时,摩擦力增大,选项C正确.]3.如图所示,导线ab、cd放在电阻不计,间距为L的长直光滑导轨上,ab的电阻比cd的电阻大,当cd在外力F1的作用下,匀速向右滑动时,ab在外力F2作用下保持静止,则两力及两导线端电压的大小关系是( )A.F1>F2,Uab>UcdB.F1<F2,Uab=UcdC.F1=F2,Uab>UcdD.F1=F2,Uab=UcdD[cd导线向右运动切割磁感线产生感应电流,根据右手定则,电流的方向从d→c→a→b,这时cd导线与ab导线都受安培力作用,大小都为BIL,ab在安培力与F2的作用下保持静止,F2=BIL.cd导线做匀速运动,F1=BIL,所以F1=F2.由于金属导轨电阻忽略不计,则ab两端与cd两端的电压都是路端电压,大小相等,即Uab =Ucd.选D.]4.如图所示,两个闭合正方形线框A、B的中心重合,放在同一水平面内.当小线框A中通有不断增大的顺时针方向的电流时,对于线框B,下列说法中正确的是 ( )A.有顺时针方向的电流且有收缩的趋势B.有顺时针方向的电流且有扩张的趋势C.有逆时针方向的电流且有收缩的趋势D.有逆时针方向的电流且有扩张的趋势D[根据右手螺旋定则可得,A中电流的磁场向里且逐渐增大,根据楞次定律可得,穿过线框B的磁场增大,感应电流的磁场的方向向外,感应电流的方向为逆时针方向,A环外的磁场的方向与A环内的磁场的方向相反,当A环内的磁场增强时,B环具有面积扩展的趋势,故D正确.] 5.小明在研究性学习中设计了一种可测量磁感应强度的实验,其装置如图所示.在该实验中,磁铁固定在水平放置的电子测力计上,此时电子测力计的读数为G1,磁铁两极之间的磁场可视为水平匀强磁场,其余区域磁场不计,直铜条AB的两端通过导线与一电阻连接成闭合回路,总阻值为R.若让铜条水平且垂直于磁场,以恒定的速率v在磁场中竖直向下运动,这时电子测力计的读数为G2,铜条在磁场中的长度为L.根据本次实验情况,以下说法不正确的是 ( )A.当铜条AB向下运动时,铜条中电流由B端流向A端,它的安培力的方向竖直向下B.两次电子测力计的读数大小关系是G2>G1C.铜条匀速运动时所受安培力的大小为G2-G1D.磁感应强度大小B=1L(G2-G1)RvA[由右手定则和左手定则可知,AB向下运动时,AB所受安培力方向竖直向上,A项错误;由牛顿第三定律可知,磁铁受竖直向下的作用力,大小等于AB所受安培力,即FA =G2-G1,则G 2>G1,B、C项正确;由B2L2vR=FA=G2-G1,可知D项正确.]6.如图所示,在PQ、QR区域中存在着磁感应强度大小相等、方向相反的匀强磁场,磁场方向均垂直于纸面.一导线框abcdefa位于纸面内,框的邻边都相互垂直,bc边与磁场的边界P 重合.导线框与磁场区域的尺寸如图所示.从t=0时刻开始,线框匀速横穿两个磁场区域.以a→b→c→d→e→f为线框中的电动势E的正方向,以下四个Et关系示意图中正确的是( )A BC DC[由楞次定律或右手定则可判定线框刚开始进入磁场时的电流方向,即感应电动势的方向为顺时针方向,故D错误;1~2时间段内,磁通量不变化,感应电动势为0,A错误;2~3时间段内,产生感应电动势E=2Blv+Blv=3Blv,感应电动势的方向为逆时针方向(正方向),故C项正确.]7.电吉他中电拾音器的基本结构如图所示,磁体附近的金属弦被磁化,因此弦振动时,在线圈中产生感应电流,电流经电路放大后传送到音箱发出声音,下列说法正确的有( )A.选用铜质弦,电吉他仍能正常工作B.取走磁体,电吉他将不能正常工作C.增加线圈匝数可以增大线圈中的感应电动势D.磁振动过程中,线圈中的电流方向不断变化BCD[选用铜质弦时,不会被磁化,不会产生电磁感应现象,电吉他不能正常工作,A项错误;取走磁体时,金属弦磁性消失,电吉他不能正常工作,选项B正确;根据法拉第电磁感应定律可知,增加线圈匝数可以增大线圈中的感应电动势,C项正确;根据楞次定律可知,磁振动过程中,线圈中的电流方向不断变化,D项正确.]8.如图所示是研究通电自感实验的电路图,A1、A2是两个规格相同的小灯泡,闭合开关,调节滑动变阻器R的滑片,使两个灯泡的亮度相同,调节滑动变阻器R1的滑片,使它们都正常发光,然后断开开关S.重新闭合开关S,则( )A.闭合瞬间,A2立刻变亮,A1逐渐变亮B.闭合瞬间,A1、A2均立刻变亮C.稳定后,L和R两端的电势差一定相同D.稳定后,A1和A2两端的电势差不相同AC[断开开关再重新闭合开关的瞬间,根据自感原理可判断,A2立刻变亮,而A1逐渐变亮,A正确,B错误;稳定后,自感现象消失,根据题设条件可判断,闭合开关调节滑动变阻器R的滑片,使两个灯泡的亮度相同,说明此时滑动变阻器R接入电路的阻值与线圈L的电阻一样大,线圈L和R两端的电势差一定相同,A1和A2两端的电势差也相同,所以C正确,D错误.]9.如图所示,相距为d的两水平虚线分别是水平向里的匀强磁场的边界,磁场的磁感应强度为B,正方形线框abcd边长为L(L<d)、质量为m.将线框在磁场上方高h处由静止开始释放,当ab边进入磁场时速度为v0,cd边刚穿出磁场时速度也为v.从ab边刚进入磁场到cd边刚穿出磁场的整个过程中 ( )A.线框一直都有感应电流B.线框有一阶段的加速度为gC.线框产生的热量为mg(d+h+L)D.线框做过减速运动BD[从ab边进入时到cd边刚穿出有三个过程(四个特殊位置),如答图所示:ⅠⅡⅢⅣ由Ⅰ位置到Ⅱ位置,和由Ⅲ位置到Ⅳ位置线框中的磁通量发生变化,所以这两个过程中有感应电流,但由Ⅱ位置到Ⅲ位置,线框中磁通量不变化,所以无感应电流;故A项错误,由Ⅱ到Ⅲ加速度为g,故B项正确.因线框的速度由v0经一系列运动再到v,且知道有一段加速度为g的加速过程,故线框一定做过减速运动,故D项正确;由能量守恒知,线框产生的热量为重力势能的减少量即mg(d+L),故C项错误.]10.用一根横截面积为S、电阻率为ρ的硬质导线做成一个半径为r的圆环,ab为圆环的一条直径.如图所示,在ab的左侧存在一个匀强磁场,磁场垂直圆环所在平面,方向如图,磁感应强度大小随时间的变化率ΔBΔt=k(k<0).则( )A.圆环中产生逆时针方向的感应电流B.圆环具有扩张的趋势C.圆环中感应电流的大小为krS 2ρD.图中a、b两点间的电势差大小为Uab =|14πkr2|BD[由题意可知磁感应强度均匀减小,穿过闭合线圈的磁通量减小,根据楞次定律可以判断,圆环中产生顺时针方向的感应电流,圆环具有扩张的趋势,故A错误,B正确;圆环中产生的感应电动势为E=ΔΦΔt=ΔBΔtS=|12πr2k|,圆环的电阻为R=ρlS=2πρrS,所以圆环中感应电流的大小为I=ER=|krS4ρ|,故C错误;图中a、b两点间的电势差Uab=I×12R=|14πkr2|,故D正确.]二、非选择题(本题共5小题,共60分)11.(9分)如图所示,是“研究电磁感应现象”的实验装置.(1)将图中所缺导线补充完整;(2)如果在闭合开关时发现灵敏电流计的指针向右偏了一下,那么合上开关后,将原线圈迅速插入副线圈中,电流计指针将________;(3)原线圈插入副线圈后,将滑动变阻器滑片迅速向左移动时,电流计指针将________.答案:(1)如答图所示(2)向右偏(3)向左偏12.(10分)导体棒MN的电阻R=2 Ω,质量m=0.1 kg,长L=0.5 m,导体棒架在光滑的金属框架上,金属框架与水平面的夹角为30°,如图所示,它们处于磁感应强度B为1 T的匀强磁场中,磁场方向与框架平面垂直.1 s后导体棒沿斜面向上滑行的距离是3 m时,MN刚好获得稳定的速度,电动机牵引棒时,电压表、电流表的读数分别为5 V、1 A,电动机内阻r为1 Ω,不计框架电阻及一切摩擦,求:(1)导体棒能达到的稳定速度;(2)导体棒上产生的热量.解析:(1)电动机的机械功率P=UI-I2r=4 W导体棒在斜面上受力如图所示,导体棒在拉力F的作用下做加速度越来越小的加速运动,当导体棒达到稳定速度时,受力平衡,则mgsin α+FA=F即mgsin α+B2L2vR=Pv,解得v=4 m/s.(2)在导体棒上升的过程中能量守恒,有Pt=mgssin α+12mv2+Q解得Q=1.7 J.答案:(1)4 m/s (2)1.7 J13.(11分)如图所示,光滑弧形轨道和一足够长的光滑水平轨道相连,水平轨道上方有一足够长的金属杆,杆上挂有一光滑螺线管A.在弧形轨道上高为h的地方由静止释放一磁铁B(可视为质点),B下滑至水平轨道时恰好沿螺线管A的中心轴运动,设A、B的质量分别为M、m,若最终A、B的速度分别为vA 、vB,则:(1)螺线管A将向哪个方向运动?(2)整个过程中电路所消耗的电能为多少?解析:(1)磁铁B向右运动时,螺线管中产生感应电流,感应电流产生电磁驱动作用,使得螺线管A向右运动.(2)整个过程中,磁铁减少的重力势能转化为A、B的动能和螺线管中的电能,所以有mgh=1 2Mv2A+12mv2B+Q电,即Q电=mgh-12Mv2A-12mv2B.答案:(1)向右(2)mgh-12Mv2A-12mv2B14.(14分)如图甲所示,匀强磁场中有一矩形闭合线圈abcd,线圈平面与磁场方向垂直.已知线圈的匝数N=100,边长ab=1.0 m、bc=0.5 m,电阻r=2 Ω.磁感应强度B随时间变化的曲线如图乙所示,取垂直纸面向里为磁场的正方向,求:甲乙(1)3 s时线圈内感应电动势的大小和感应电流的方向;(2)在1~5 s内通过线圈的电荷量q;(3)在0~5 s内线圈产生的焦耳热Q.解析:(1)3 s时感应电动势E1=NΔΦ1Δt1磁通量的变化量ΔΦ1=ΔB1S解得E1=NΔB1SΔt1,代入数据解得E1=5 V感应电流方向为a→b→c→d→a.(2)在1~5 s内线圈中的感应电动势E 2=NΔΦ2Δt2=NΔB2SΔt2感应电流I2=E2r,电荷量q=I2Δt2解得q=N ΔB2Sr,代入数据解得q=10 C.(3)0~1 s内线圈中的感应电动势E 3=NΔΦ3Δt3=NΔB3SΔt3=10 V0~1 s内线圈中的感应电流I3=E3r=5 A0~1 s内线圈产生的焦耳热Q1=I23rΔt3=50 J1~5 s内线圈产生的焦耳热Q2=I22rΔt2=50 JQ=Q1+Q2=100 J.答案:(1)5 V a→b→c→d→a(2)10 C (3)100 J15.(16分)如图,两固定的绝缘斜面倾角均为θ,上沿相连.两细金属棒ab(仅标出a端)和cd(仅标出c端)长度均为L,质量分别为2m和m;用两根不可伸长的柔软轻导线将它们连成闭合回路abdca,并通过固定在斜面上沿的两光滑绝缘小定滑轮跨放在斜面上,使两金属棒水平.右斜面上存在匀强磁场,磁感应强度大小为B,方向垂直于斜面向上.已知两根导线刚好不在磁场中,回路电阻为R,两金属棒与斜面间的动摩擦因数均为μ,重力加速度大小为g.已知金属棒ab匀速下滑.求:(1)作用在金属棒ab上的安培力的大小;(2)金属棒运动速度的大小.解析:(1)设导线的张力的大小为T,右斜面对ab棒的支持力的大小为N1,作用在ab棒上的安培力的大小为F,左斜面对cd棒的支持力大小为N2.对于ab棒,由力的平衡条件得2mgsin θ=μN1+T+F ①N1=2mgcos θ②对于cd棒,同理有mgsin θ+μN2=T ③N2=mgcos θ④联立①②③④式得F=mg(sin θ-3μcos θ).⑤(2)由安培力公式得F=BIL ⑥这里I是回路abdca中的感应电流.ab棒上的感应电动势为E=BLv ⑦式中v是ab棒下滑速度的大小.由欧姆定律得I=ER⑧联立⑤⑥⑦⑧式得v=(sin θ-3μcos θ)mgRB2L2. ⑨答案:(1)mg(sin θ-3μcos θ)(2)(sin θ-3μcos θ)mgR B2L2。
(常考题)人教版高中物理选修二第二章《电磁感应》检测(含答案解析)(2)
一、选择题1.(0分)[ID:128565]如图所示,一宽为40cm的匀强磁场区域,磁场方向垂直纸面向里,一边长为20cm的正方形导线框位于纸面内,以垂直于磁场边界的恒定速度v=20cm/s,通过磁场区域。
在运动过程中,线框有一边始终与磁场区域的边界平行、取它刚进入磁场时刻t=0时,则选项中能正确反映感应电流强度随时间变化规律的是(电流沿逆时针绕向为正)()A.B.C.D.2.(0分)[ID:128553]如图所示,A、B两个闭合单匝线圈用完全相同的导线制成,半径r A=3r B,图示区域内有匀强磁场,且磁感应强度随时间均匀减小,则()A.A、B线圈中产生的感应电动势E A:E B=3:1B.A、B线圈中产生的感应电动势E A:E B=6:1C.A、B线圈中产生的感应电流I A:I B=3:1D.A、B线圈中产生的感应电流I A:I B=1:13.(0分)[ID:128549]单匝矩形线圈在匀强磁场中匀速运动,转轴垂直于磁场,若线圈所围面积里磁通量随时间变化的规律如图所示,则由O到D的过程中,下列说法错误的是()A.O时刻线圈中感应电动势不为零B.D时刻线圈中感应电动势为零C.D时刻线圈中感应电动势最大D.由O至D时间内线圈中平均感应电动势为0.4 V4.(0分)[ID:128545]在如图所示的电路中,ab为两个完全相同的灯泡,L为自感系数较大而电阻不能忽略的线圈,E为电源,S为开关;关于两灯泡点亮和熄灭的下列说法正确的是()A.断开开关,a逐渐熄灭、b先变得更亮后再与a同时熄灭B.断开开关,b逐渐熄灭、a先变得更亮后再与b同时熄灭C.合上开关,a先亮,b后亮;稳定后a、b一样亮D.合上开关,b先亮,a后亮;稳定后b比a更亮一些5.(0分)[ID:128537]如图所示,导体棒ab在匀强磁场中沿金属导轨向右加速运动,c为铜制圆线圈,线圈平面与螺线管中轴线垂直,圆心在螺线管中轴线上,则()A.导体棒ab中的电流由b流向a B.螺线管内部的磁场方向向左C.铜制圆线圈c被螺线管吸引D.铜制圆线圈c有收缩的趋势6.(0分)[ID:128524]关于感应电动势、磁通量、磁通量的变化量,下列说法不正确的是()A.穿过回路的磁通量越大,磁通量的变化量不一定越大,回路中的感应电动势也不一定越大B.穿过回路的磁通量的变化量与线圈的匝数无关,回路中的感应电动势与线圈的匝数有关C.穿过回路的磁通量的变化率为0,回路中的感应电动势一定为0D.某一时刻穿过回路的磁通量为0,回路中的感应电动势一定为07.(0分)[ID:128514]如图所示,两根间距为L的平行光滑金属导轨,放置在倾角为θ的斜面上,质量为 m的金属棒 ab 与导轨垂直。
章末检测9:电磁感应
章末检测卷(电磁感应)(时间:90分钟满分:100分)一、单项选择题(本题共6小题,每小题4分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.宇航员登月后想探测一下月球表面是否有磁场,他手边有一只灵敏电流表和一个小线圈,则下列推断正确的是()A.直接将电流表放于月球表面,看是否有示数来判断磁场有无B.将电流表与线圈组成闭合回路,使线圈沿某一方向运动,如果电流表无示数,则判断月球表面无磁场C.将电流表与线圈组成闭合回路,使线圈沿某一方向运动,如果电流表有示数,则可判断月球表面有磁场D.将电流表与线圈组成闭合回路,使线圈在某个平面内沿两个互相垂直的方向运动,月球表面若有磁场,则电流表至少有一次示数不为零2.如图1所示是研究通电自感实验的电路图,A1、A2是两个规格相同的小灯泡,闭合开关调节滑动变阻器R的滑动触头,使两个灯泡的亮度相同,调节滑动变阻器R1的滑动触头,使它们都正常发光,然后断开开关S.重新闭合开关S,则()图1A.闭合瞬间,A1立刻变亮,A2逐渐变亮B.闭合瞬间,A1、A2均立刻变亮C.稳定后,L和R两端的电势差一定相同D.稳定后,A1和A2两端的电势差不相同3.匀强磁场方向垂直纸面,规定向里的方向为正,磁感应强度B随时间t的变化规律如图2甲所示.在磁场中有一细金属圆环,圆环平面位于纸面内,t=0时刻磁场的方向垂直纸面向里,如图乙所示,令I1、I2、I3分别表示Oa、ab、bc段的感应电流,F1、F2、F3分别表示感应电流为I1、I2、I3时金属圆环上很小一段受到的安培力,则()图2A.I1沿逆时针方向,I2沿顺时针方向B.I2沿逆时针方向,I3沿顺时针方向C.F1方向指向圆心,F2方向指向圆心D.F2方向背离圆心向外,F3方向背离圆心向外4.如图3所示,一个闭合三角形导线框ABC位于竖直平面内,其下方(略靠前)固定一根与导线框平面平行的水平直导线,导线中通以图示方向的恒定电流.释放导线框,它由实线位置下落到虚线位置未发生转动,在此过程中()图3A.导线框中感应电流的方向依次为ACBA→ABCA→ACBAB.导线框的磁通量为零时,感应电流也为零C.导线框所受安培力的合力方向依次为向上→向下→向上D.导线框所受安培力的合力为零,做自由落体运动5.如图4所示,A为多匝线圈,与开关、滑动变阻器相连后接在M、N间的交流电源上,B 为一接有小灯泡的闭合多匝线圈,下列关于小灯泡发光情况的说法正确的是()图4A.闭合开关后小灯泡一定发光B.若闭合开关后,小灯泡发光,则再将B线圈靠近A,小灯泡会更亮C.闭合开关瞬间,小灯泡才能发光D.若闭合开关后小灯泡不发光,将滑动变阻器滑片左移后,小灯泡可能会发光6.在边长为L的等边三角形区域abc内存在着垂直纸面向外的匀强磁场,一个边长也为L的等边三角形导线框def 在纸面上以某一速度向右匀速运动,底边ef 始终与磁场的底边界bc 在同一直线上,如图5所示.取沿顺时针的电流为正,在线框通过磁场的过程中,其感应电流随时间变化的图象是( )图5二、多项选择题(本题共4小题,每小题5分,共20分.每小题至少有两个选项正确,选对得5分,漏选得2分,错选得0分)7.如图6所示,一均匀金属圆盘绕通过其圆心且与盘面垂直的轴逆时针匀速转动.现施加一垂直穿过圆盘的有界匀强磁场,圆盘开始减速.在圆盘减速过程中,以下说法正确的是( )图6A .处于磁场中的圆盘部分,靠近圆心处电势高B .所加磁场越强越易使圆盘停止转动C .若所加磁场反向,圆盘将加速转动D .若所加磁场穿过整个圆盘,圆盘将匀速转动8.用一根横截面积为S 、电阻率为ρ的硬质导线做成一个半径为r 的圆环,ab 为圆环的一条直径.如图7所示,在ab 的左侧存在一个匀强磁场,磁场垂直圆环所在平面,方向如图,磁感应强度大小随时间的变化率ΔB Δt=k (k <0).则 ( )图7A .圆环中产生逆时针方向的感应电流B .圆环具有扩张的趋势C .圆环中感应电流的大小为|krS 2ρ|D .图中a 、b 两点间的电势差大小为U ab =|14πkr 2| 9.如图8所示,边长为L 的正方形线框,从图示位置开始沿光滑斜面向下滑动,中途穿越垂直纸面向里、有理想边界的匀强磁场区域,磁场的宽度大于L ,以i 表示导线框中的感应电流,从线框刚进入磁场开始计时,取逆时针方向为电流正方向,以下i -t 关系图象,可能正确的是 ( )图810.如图9所示,竖直平行金属导轨MN 、PQ 上端接有电阻R ,金属杆ab 质量为m ,跨在平行导轨上,垂直导轨平面的水平匀强磁场的磁感应强度为B ,不计ab 与导轨电阻及一切摩擦,且ab 与导轨接触良好.若ab 杆在竖直向上的外力F 作用下匀速上升,则以下说法正确的是( )图9A .拉力F 所做的功等于电阻R 上产生的热量B .杆ab 克服安培力做的功等于电阻R 上产生的热量C .电流所做的功等于重力势能的增加量D .拉力F 与重力做功的代数和等于电阻R 上产生的热量三、非选择题(本题共5小题,共56分)11.(10分)小明同学设计了一个“电磁天平”,如图10所示,等臂天平的左臂为挂盘,右臂挂有矩形线圈,两臂平衡.线圈的水平边长L =0.1 m ,竖直边长H =0.3 m ,匝数为N 1.线圈的下边处于匀强磁场内,磁感应强度B 0=1.0 T ,方向垂直线圈平面向里.线圈中通有可在0~2.0 A 范围内调节的电流I .挂盘放上待测物体后,调节线圈中电流使天平平衡,测出电流即可测得物体的质量.(重力加速度取g =10 m/s 2)图10 图11(1)为使电磁天平的量程达到0.5 kg ,线圈的匝数N 1至少为多少?(2)进一步探究电磁感应现象,另选N 2=100匝、形状相同的线圈,总电阻R =10 Ω.不接外电流,两臂平衡.如图11所示,保持B 0不变,在线圈上部另加垂直纸面向外的匀强磁场,且磁感应强度B 随时间均匀变大,磁场区域宽度d =0.1 m .当挂盘中放质量为0.01 kg 的物体时,天平平衡,求此时磁感应强度的变化率ΔB Δt.12.(10分)如图12所示,光滑金属导轨PN 与QM 相距1 m ,电阻不计,两端分别接有电阻R 1和R 2,且R 1=6 Ω,R 2=3 Ω,ab 导体棒的电阻为2 Ω.垂直穿过导轨平面的匀强磁场的磁感应强度为1 T .现使ab 以恒定速度v =3 m/s 匀速向右移动,求:图12(1)导体棒上产生的感应电动势 E ;(2)R 1与R 2消耗的电功率分别为多少?(3)拉ab 棒的水平向右的外力F 为多大?13.(12分)轻质细线吊着一质量为m =0.32 kg 、边长为L =0.8 m 、匝数n =10的正方形线圈,总电阻为r =1 Ω.边长为L 2的正方形磁场区域对称分布在线圈下边的两侧,如图13甲所示,磁场方向垂直纸面向里,大小随时间变化关系如图乙所示,从t =0开始经t 0时间细线开始松弛,取g =10 m/s 2.求:图13(1)在前t 0时间内线圈中产生的电动势;(2)在前t 0时间内线圈的电功率;(3)t 0的值.14.(12分)如图14(a)所示,平行长直金属导轨水平放置,间距L =0.4 m .导轨右端接有阻值R =1 Ω的电阻,导体棒垂直放置在导轨上,且接触良好,导体棒及导轨的电阻均不计,导轨间正方形区域abcd内有方向竖直向下的匀强磁场,bd连线与导轨垂直,长度也为L.从t=0时刻开始,磁感应强度B的大小随时间t变化,规律如图(b)所示;同一时刻,棒从导轨左端开始向右匀速运动,1 s后刚好进入磁场,若使棒在导轨上始终以速度v=1 m/s做直线运动,求:图14(1)棒进入磁场前,回路中的电动势E;(2)棒在运动过程中受到的最大安培力F,以及棒通过三角形abd区域时电流i与时间t的关系式.15.(12分)如图15所示,一边长L=0.2 m,质量m1=0.5 kg,电阻R=0.1 Ω的正方形导体线框abcd,与一质量为m2=2 kg的物块通过轻质细线跨过两定滑轮相连.起初ad边距磁场下边界为d1=0.8 m,磁感应强度B=2.5 T,磁场宽度d2=0.3 m,物块放在倾角θ=53°的斜面上,物块与斜面间的动摩擦因数μ=0.5.现将物块由静止释放,经一段时间后发现当ad边从磁场上边缘穿出时,线框恰好做匀速运动(g取10 m/s2,sin 53°=0.8,cos 53°=0.6).求:图15(1)线框ad边从磁场上边缘穿出时速度的大小;(2)线框刚全部进入磁场时动能的大小;(3)整个运动过程中线框产生的焦耳热.答案精析1.C [电流表有示数时可判断有磁场存在,沿某方向运动而无示数不能确定磁场是否存在,只有C 正确.]2.C [断开开关再重新闭合开关的瞬间,根据自感原理可判断,A 2立刻变亮,而A 1逐渐变亮,A 、B 均错误;稳定后,自感现象消失,根据题设条件可判断,闭合开关调节滑动变阻器R 的滑动触头,使两个灯泡的亮度相同,说明此时滑动变阻器R 接入电路的阻值与线圈L 的电阻一样大,线圈L 和R 两端的电势差一定相同,A 1和A 2两端的电势差也相同,所以C 正确,D 错误.]3.A [根据楞次定律“增反减同”的规律可推知A 正确,B 错误;由“增缩减扩”的规律可知,F 1与F 3的方向指向圆心,F 2方向背离圆心向外,故C 、D 错误.]4.A [根据右手螺旋定则可知导线上方的磁场方向垂直纸面向外,下方的磁场方向垂直纸面向里,而且越靠近导线磁场越强,所以闭合导线框ABC 在下降过程中,导线框内垂直于纸面向外的磁通量先增大,当BC 边与导线重合时,达到最大,再向下运动,导线框内垂直于纸面向外的磁通量逐渐减小至零,然后随导线框的下降,导线框内垂直于纸面向里的磁通量增大,当达到最大,继续下降时由于导线框逐渐远离导线,使导线框内垂直于纸面向里的磁通量再逐渐减小,所以根据楞次定律可知,感应电流的磁场总是阻碍内部磁通量的变化,所以感应电流的磁场先向里,再向外,最后向里,所以导线框中感应电流的方向依次为ACBA →ABCA →ACBA ,A 正确;当导线框内的磁通量为零时,内部的磁通量仍然在变化,有感应电动势产生,所以感应电流不为零,B 错误.根据对楞次定律的理解,感应电流的效果总是阻碍导体间的相对运动,由于导线框一直向下运动,所以导线框所受安培力的合力方向一直向上,不为零,C 、D 错误.]5.B [根据电磁感应的条件,当闭合回路的磁通量发生变化时,回路中会有感应电流,所以当闭合开关后,A 线圈中的交变电流会在空间中产生变化的磁场,穿过B 线圈的磁通量发生变化,使B 线圈和小灯泡组成的回路中有感应电流产生,但电流要大于一定值,我们才能看到小灯泡发光,因此A 、C 、D 错误.闭合开关后小灯泡发光,则再将B 线圈靠近A ,那么B 线圈中的磁通量变化率变大,感应电动势变大,感应电流变大,小灯泡更亮,B 正确.]6.B [线框进入磁场后,切割的有效长度为:l =12v t tan 60°,切割产生的感应电动势为:E =Bl v =12B v 2t tan 60°,所以感应电流为:I =12B v 2t tan 60°R,从开始进入磁场到d 与a 重合之前,电流与t 是成正比的,由楞次定律判得线框中的电流方向是顺时针的,此后线框切割的有效长度均匀减小,电流随时间变化仍然是线性关系,由楞次定律判得线框中的电流方向是逆时针的,综合以上分析可知B 正确,A 、C 、D 错误.]7.ABD [由右手定则可知,处于磁场中的圆盘部分,靠近圆心处电势高,选项A 正确;根据E =Blv 可知所加磁场越强,则感应电动势越大,感应电流越大,产生的阻碍圆盘转动的安培力越大,则圆盘越容易停止转动,选项B 正确;若加反向磁场,根据楞次定律可知安培力阻碍圆盘的转动,故圆盘仍减速转动,选项C 错误;若所加磁场穿过整个圆盘,则圆盘中无感应电流,不产生安培力,圆盘匀速转动,选项D 正确.]8.BD [由题意可知磁感应强度均匀减小,穿过闭合线圈的磁通量减小,根据楞次定律可以判断,圆环中产生顺时针方向的感应电流,圆环具有扩张的趋势,故A 错误,B 正确;圆环中产生的感应电动势为E =ΔΦΔt =ΔB Δt S =|12πr 2k |,圆环的电阻为R =ρl S =2πρr S,所以圆环中感应电流的大小为I =E R =|krS 4ρ|,故C 错误;图中a 、b 两点间的电势差U ab =I ×12R =|14πkr 2|,故D 正确.]9.BC [边长为L 的正方形线框,从图示位置开始沿光滑斜面向下滑动,若进入磁场时所受安培力与重力沿斜面方向的分力平衡,则线框做匀速直线运动,感应电流为一恒定值;完全进入后磁通量不变,感应电流为零,线框做匀加速直线运动;从磁场中出来时,感应电流方向相反,所受安培力大于重力沿斜面方向的分力,线框做加速度减小的减速运动,感应电流减小,选项B 正确.同理可知,C 正确.]10.BD [当外力F 拉着金属杆匀速上升时,拉力要克服重力和安培力做功,拉力做的功等于克服安培力和重力做功之和,即等于电阻R 上产生的热量和金属杆增加的重力势能之和,选项A 错误,D 正确.克服安培力做多少功,电阻R 上就产生多少热量,选项B 正确.电流做的功不等于重力势能的增加量,选项C 错误.]11.(1)25匝 (2)0.1 T/s解析 (1)“电磁天平”中的线圈受到安培力F =N 1B 0IL由天平平衡可知:mg =N 1B 0IL代入数据解得:N 1=25匝.(2)由法拉第电磁感应定律得:E =N 2ΔΦΔt =N 2ΔB ΔtLd 由欧姆定律得:I ′=E R线圈受到的安培力F ′=N 2B 0I ′L由天平平衡可得:m ′g =N 22B 0ΔB Δt ·dL 2R代入数据可得ΔB Δt=0.1 T/s. 12.(1)3 V (2)38 W 34 W (3)34N 解析 (1)ab 棒匀速切割磁感线,产生的电动势为:E =Bl v =3 V .(2)电路的总电阻为:R =r +R 1R 2R 1+R 2=4 Ω 由欧姆定律:I =E R =34A U =E -Ir =1.5 V电阻R 1的功率:P 1=U 2R 1=38W 电阻R 2的功率:P 2=U 2R 2=34W. (3)由平衡知识得:F =F 安=BIl =34N. 13.(1)0.4 V (2)0.16 W (3)2 s解析 (1)由法拉第电磁感应定律得E =n ΔΦΔt =n ×12×(L 2)2×ΔB Δt =10×12×(0.82)2×0.5 V =0.4 V . (2)I =E r=0.4 A ,P =I 2r =0.16 W. (3)分析线圈受力可知,当细线松弛时有:F 安=nBt 0I L 2=mg ,I =E rBt 0=2mgr nEL=2 T 由题图乙知:Bt 0=1+0.5t 0(T),解得t 0=2 s.14.(1)0.04 V (2)0.04 Ni =(t -1)A(1 s ≤t ≤1.2 s)解析 (1)正方形磁场的面积为S ,则S =L 22=0.08 m 2.在棒进入磁场前,回路中的感应电动势是由于磁场的变化而产生的.由B -t 图象可知ΔB Δt =0.5 T/s ,根据E =n ΔΦΔt,得回路中的感应电动势E =ΔB ΔtS =0.5×0.08 V =0.04 V . (2)当导体棒通过bd 位置时感应电动势、感应电流最大,导体棒受到的安培力最大.此时感应电动势E ′=BL v =0.5×0.4×1 V =0.2 V ;回路中感应电流I ′=E ′R =0.21A =0.2 A 导体棒受到的安培力F =BI ′L =0.5×0.2×0.4 N =0.04 N当导体棒通过三角形abd 区域时,导体棒切割磁感线的有效长度l =2v (t -1)(1 s ≤t ≤1.2 s) 感应电动势e =Bl v =2B v 2(t -1)=(t -1)V感应电流i =e R=(t -1)A (1 s ≤t ≤1.2 s). 15.(1)2 m/s (2)0.9 J (3)1.5 J解析 (1)由于线框匀速穿出磁场,则对m 2有m 2g sin θ-μm 2g cos θ-F =0.对m 1有F -m 1g -BIL =0.又因为I =BL v R. 联立可得v =m 2g (sin θ-μcos θ)-m 1g B 2L 2R =2×10×(0.8-0.5×0.6)-0.5×102.52×0.22×0.1 m/s =2 m/s.(2)从线框刚全部进入磁场到线框ad 边刚要离开磁场,由能量守恒定律得m 2g sin θ·(d 2-L )-m 1g (d 2-L )=μm 2g cos θ·(d 2-L )+12(m 1+m 2)v 2-E k 将速度v 代入,整理可得线框刚全部进入磁场时,线框与物块的动能和E k =4.5 J.所以此时线框的动能E k ′=m 1m 1+m 2E k =0.50.5+2×4.5 J =0.9 J. (3)从初状态到线框完全出磁场,由能量守恒定律可得(m 2g sin θ-μm 2g cos θ)(d 1+d 2+L )-m 1g (d 1+d 2+L )=Q +12(m 1+m 2)v 2 将数据代入,整理可得线框在整个运动过程中产生的焦耳热Q =1.5 J.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁感应综合测试37.如图5所示,一端接有定值电阻的平行金属轨道固定在水平面内,通有恒定电流的长直绝缘导线垂直并紧靠轨道固定,导体棒与轨道垂直且接触良好.在向右匀速通过M 、N 两区的过程中,导体棒所受安培力分别用F M 、F N 表示.不计轨道电阻,以下叙述正确的是()图5A .F M 向右B .F N 向左C .F M 逐渐增大D .F N 逐渐减小答案 BCD解析 根据直线电流产生磁场的分布情况知,M 区的磁场方向垂直纸面向外,N 区的磁场方向垂直纸面向里,离导线越远,磁感应强度越小.当导体棒匀速通过M 、N 两区时,感应电流的效果总是反抗引起感应电流的原因,故导体棒在M 、N 两区运动时,受到的安培力均向左,故选项A 错误,选项B 正确;导体棒在M 区运动时,磁感应强度B 变大,根据E =Bl v ,I =ER 及F =BIl 可知,F M 逐渐变大,故选项C 正确;导体棒在N 区运动时,磁感应强度B 变小,根据E =Bl v ,I =ER及F =BIl 可知,F N 逐渐变小,故选项D 正确.8.两圆环A 、B 置于同一水平面上,其中A 为均匀带电绝缘环,B 为导体环.当A 以如图6所示的方向绕中心转动的角速度发生变化时,B 中产生如图所示方向的感应电流,则()图6A .A 可能带正电且转速减小B .A 可能带正电且转速增C .A 可能带负电且转速减小D .A 可能带负电且转速增大 答案 BC解析 B 环中产生如图所示的感应电流的感应磁场方向为垂直纸面向外,所以引起感应电流的原磁场应为垂直纸面向外减弱或垂直纸面向里增强.若A 环带正电,其顺时针转动方向即为等效电流方向,转速增大则相当于电流增大,由楞次定律可知A 错,B 对;若A 环带负电,其顺时针转动方向为等效电流的相反方向,转速减小相当于电流减小,则磁场减弱,B 环则产生如图所示感应电流,故C 对,D 错.故应选B 、C.9.用一根横截面积为S 、电阻率为ρ的硬质导线做成一个半径为r 的圆环,ab 为圆环的一条直径.如图7所示,在ab 的左侧存在一个匀强磁场,磁场垂直圆环所在平面,方向如图,磁感应强度大小随时间的变化率ΔBΔt=k (k <0).则 ()图7A .圆环中产生逆时针方向的感应电流B .圆环具有扩张的趋势C .圆环中感应电流的大小为|krS 2ρ|D .图中a 、b 两点间的电势差大小为U ab =|14πkr 2|答案 BD解析 由题意可知磁感应强度均匀减小,穿过闭合线圈的磁通量减小,根据楞次定律可以判断,圆环中产生顺时针方向的感应电流,圆环具有扩张的趋势,故A 错误,B 正确;圆环中产生的感应电动势为E =ΔΦΔt =ΔBΔtS =|12πr 2k |,圆环的电阻为R =ρl S =2πρr S ,所以圆环中感应电流的大小为I =E R =|krS 4ρ|,故C 错误;图中a 、b 两点间的电势差U ab =I ×12R =|14πkr 2|,故D 正确.10.如图8所示,竖直平行金属导轨MN 、PQ 上端接有电阻R ,金属杆ab 质量为m ,跨在平行导轨上,垂直导轨平面的水平匀强磁场的磁感应强度为B ,不计ab 与导轨电阻及一切摩擦,且ab 与导轨接触良好.若ab 杆在竖直向上的外力F 作用下匀速上升,则以下说法正确的是 ()图8A .拉力F 所做的功等于电阻R 上产生的热量B .杆ab 克服安培力做的功等于电阻R 上产生的热量C .电流所做的功等于重力势能的增加量D .拉力F 与重力做功的代数和等于电阻R 上产生的热量 答案 BD解析 当外力F 拉着金属杆匀速上升时,拉力要克服重力和安培力做功,拉力做的功等于克服安培力和重力做功之和,即等于电阻R 上产生的热量和金属杆增加的重力势能之和,选项A 错误,D 正确.克服安培力做多少功,电阻R 上就产生多少热量,选项B 正确.电流做的功不等于重力势能的增加量,选项C 错误.综上所述,本题的正确选项为B 、D.9.图8在光滑的水平面上方,有两个磁感应强度大小均为B ,方向相反的水平匀强磁场,如图8所示.PQ 为两个磁场的边界,磁场范围足够大.一个边长为a 、质量为m 、电阻为R 的金属正方形线框,以速度v 垂直磁场方向从如图实线位置开始向右运动,当线框运动到分别有一半面积在两个磁场中时,速度为v /2,则下列说法正确的是( )A .此过程中通过线框截面的电荷量为2Ba 2R B .此时线框的加速度为B 2a 2v 2mRC .此过程中回路产生的电能为38m v 2D .此时线框中的电功率为B 2a 2v 2R解析 对此过程,由能量守恒定律可得,回路产生的电能E =12m v 2-12m ×14v 2=38m v 2,选项C 正确;线圈磁通量的变化ΔΦ=Ba 2,则由电流定义和欧姆定律可得q =ΔΦR =Ba2R ,选项A 错误;此时线框产生的电流I =2Ba v R=2Ba v R ,由牛顿第二定律和安培力公式可得加速度a 1=2BIa m =4B 2a 2vmR ,选项B 错误;由电功率定义可得P =I 2R =B 2a 2v 2R ,选项D 正确. 答案 CD15. (12分)[2014·江苏高考]如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为L ,长为3d ,导轨平面与水平面的夹角为θ,在导轨的中部刷有一段长为d 的薄绝缘涂层。
匀强磁场的磁感应强度大小为B ,方向与导轨平面垂直。
质量为m 的导体棒从导轨的顶端由静止释放,在滑上涂层之前已经做匀速运动,并一直匀速滑到导轨底端。
导体棒始终与导轨垂直,且仅与涂层间有摩擦,接在两导轨间的电阻为R ,其他部分的电阻均不计,重力加速度为g 。
求:(1)导体棒与涂层间的动摩擦因数μ; (2)导体棒匀速运动的速度大小v ;(3)整个运动过程中,电阻产生的焦耳热Q 。
解析:(1)在绝缘涂层上导体棒受力平衡有mg sin θ=μmg cos θ 解得μ=tan θ (2)在光滑导轨上 感应电动势E =BL v 感应电流I =ER安培力F 安=BIL导体棒受力平衡有F 安=mg sin θ 解得v =mgR sin θB 2L 2(3)摩擦生热Q T =μmgd cos θ由能量守恒定律有3mgd sin θ=Q +Q T +12m v 2解得Q =2mgd sin θ-m 3g 2R 2sin 2θ2B 4L 4。
答案:(1)tan θ (2)mgR sin θB 2L 2(3)2mgd sin θ-m 3g 2R 2sin 2θ2B 4L 416. (14分)[2014·唐山高二检测]如图所示,一个100匝的圆形线圈(图中只画了2匝),面积为200 cm 2,线圈的电阻为1 Ω,在线圈外接一个阻值为4 Ω的电阻和一个理想电压表。
电阻的一端B 与地相接,线圈放入方向垂直线圈平面指向纸内的匀强磁场中,磁感应强度随时间变化规律如B -t 图所示,求:(1)t =3 s 时穿过线圈的磁通量; (2)t =5 s 时,电压表的读数;(3)若取B 点电势为零,A 点的最高电势是多少?解析:(1)t =3 s 时,Φ=BS =3.5×10-1×200×10-4 Wb =7×10-3 Wb 。
(2)4~6 s 内的感应电动势为E 1=n ΔB Δt S =100×(4-0)×10-16-4×200×10-4 V =0.4 V ,电压表的读数为 U =E 1R +r R =0.44+1×4 V =0.32 V 。
(3)0~4 s ,A 点电势高于零;4~6 s ,A 点电势低于零。
0~4 s 内的感应电动势为E 2=n ΔB Δt S =100×(4-2)×10-14-0×200×10-4 V =0.1 VA 、B 两端的电势差为U AB =E 1R +r R =0.14+1×4 V =0.08 V ,故A 点的最高电势为φA =0.08 V 。
答案:(1)7×10-3 Wb (2)0.32 V (3)0.08 V11.(18分)如图所示,两根足够长的光滑直金属导轨MN 、PQ 平行固定在倾角θ=37°的绝缘斜面上,两导轨间距L =1 m ,导轨的电阻可忽略.M 、P 两点间接有阻值为R 的电阻.一根质量m =1 kg 、电阻r =0.2 Ω的均匀直金属杆ab 放在两导轨上,与导轨垂直且接触良好.整套装置处于磁感应强度B =0.5 T 的匀强磁场中,磁场方向垂直斜面向下.自图示位置起,杆ab 受到大小为F =0.5v +2(式中v 为杆ab 运动的速度,力F 的单位为N)、方向平行导轨沿斜面向下的拉力作用,由静止开始运动,测得通过电阻R 的电流随时间均匀增大.g 取10 m/s 2,sin 37°=0.6.(1)试判断金属杆ab 在匀强磁场中做何种运动,并写出推理过程; (2)求电阻R 的阻值;(3)求金属杆ab 自静止开始下滑通过位移s =1 m 所需的时间t.解析:(1)金属杆做匀加速运动(或金属杆做初速度为零的匀加速运动). 通过R 的电流I =E R +r =BL v R +r,因通过R 的电流I 随时间均匀增大,即杆的速度v 随时间均匀增大,杆的加速度为恒量,故金属杆做匀加速运动.(2)对回路,根据闭合电路欧姆定律I =BL vR +r, 对杆,根据牛顿第二定律有:F +mg sin θ-BIL =ma , 将F =0.5v +2代入得:2+mg sin θ+⎝⎛⎭⎫0.5-B 2L 2R +r v =ma ,因a 与v 无关,所以a =2+mg sin θm=8 m/s 2,0.5-B 2L 2R +r =0,得R =0.3 Ω.(3)由s =12at 2得,所需时间t =2sa=0.5 s. 答案:(1)见解析 (2)0.3 Ω (3)0.5 s14.(12分) (2014·江苏单科)如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为L ,长为3d ,导轨平面与水平面的夹角为θ,在导轨的中部刷有一段长为d 的薄绝缘涂层。
匀强磁场的磁感应强度大小为B ,方向与导轨平面垂直。
质量为m 的导体棒从导轨的顶端由静止释放,在滑上涂层之前已经做匀速运动,并一直匀速滑到导轨底端。
导体棒始终与导轨垂直,且仅与涂层间有摩擦,接在两导轨间的电阻为R ,其他部分的电阻均不计,重力加速度为g 。
求:(1)导体棒与涂层间的动摩擦因数μ; (2)导体棒匀速运动的速度大小v ;(3)整个运动过程中,电阻产生的焦耳热Q 。