七年级数学平面直角坐标系练习题

合集下载

初中数学函数之平面直角坐标系经典测试题附答案

初中数学函数之平面直角坐标系经典测试题附答案

初中数学函数之平面直角坐标系经典测试题附答案一、选择题1.如果点P (m +3,m +1)在x 轴上,则点P 的坐标为( )A .(0,2)B .(2,0)C .(4,0)D .(0,﹣4)【答案】B【解析】【分析】根据点P 在x 轴上,即y =0,可得出m 的值,从而得出点P 的坐标.【详解】根据点P 在x 轴上,即y =0,可得出m 的值,从而得出点P 的坐标.解:∵点P (m +3,m +1)在x 轴上,∴y =0,∴m +1=0,解得:m =﹣1,∴m +3=﹣1+3=2,∴点P 的坐标为(2,0).故选:B .【点睛】本题考查了点的坐标,注意平面直角坐标系中,点在x 轴上时纵坐标为0,得出m 的值是解题关键.2.在平面直角坐标系中,长方形ABCD 的三个顶点()(32),(12),1,1,A B C ---,,则第四个顶点D 的坐标是( ).A .()2,1-B .(3,1)-C .()2,3-D .(3,1)-【答案】B【解析】【分析】根据矩形的性质(对边相等且每个角都是直角),由矩形ABCD 点的顺序得到CD ⊥AD ,可以把D 点坐标求解出来.【详解】解:根据矩形ABCD 点的顺序可得到CD ⊥AD , 又∵()(32),(12),1,1,A B C ---,, ∴A 、B 纵坐标相等,B 、C 横坐标相等,∴A 、D 横坐标相等,即3;D 、C 纵坐标相等,即-1,因此(31)D -,【点睛】本题主要考查了矩形的性质和直角坐标系的基本概念,利用矩形四个角都是直角、对边相等是解题的关键.3.若点A (a+1,b ﹣2)在第二象限,则点B (﹣a ,1﹣b )在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【解析】分析:直接利用第二象限横纵坐标的关系得出a ,b 的符号,进而得出答案.详解:∵点A (a+1,b-2)在第二象限,∴a+1<0,b-2>0,解得:a <-1,b >2,则-a >1,1-b <-1,故点B (-a ,1-b )在第四象限.故选D .点睛:此题主要考查了点的坐标,正确记忆各象限内点的坐标符号是解题关键.4.如果点P (),3m 在第二象限,那么点Q ()3,m -在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】【分析】根据第二象限的横坐标小于零可得m 的取值范围,进而判定Q 点象限.【详解】解:由点P (),3m 在第二象限可得m <0,再由-3<0和m <0可知Q 点在第三象限, 故选择C.【点睛】本题考查了各象限内坐标的符号特征.5.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y轴于点N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b+1),则a 与b 的数量关系为( )A .a=bB .2a+b=﹣1C .2a ﹣b=1D .2a+b=1【答案】B【解析】试题分析:根据作图方法可得点P 在第二象限角平分线上,则P 点横纵坐标的和为0,即2a+b+1=0,∴2a+b=﹣1.故选B .6.如图,动点P 从()0,3出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P 第2018次碰到矩形的边时,点P 的坐标为( )A .()1,4B .()5,0C .()7,4D .()8,3【答案】C【解析】【分析】 理解题意,由反射角与入射角的定义作出图形,观察出反弹6次为一个循环的规律,解答即可.【详解】如图,经过6次反弹后动点回到出发点(0,3),∵2018÷6=336…2,∴当点P 第2018次碰到矩形的边时为第336个循环组的第2次反弹,点P 的坐标为(7,4).故选C .【点睛】本题考查了平面直角坐标系中点的坐标规律,首先作图,然后观察出每6次反弹为一个循环,据此解答即可.7.在平面直角坐标系中,点P(x ﹣3,x+3)是x 轴上一点,则点P 的坐标是( )A.(0,6) B.(0,﹣6) C.(﹣6,0) D.(6,0)【答案】C【解析】【分析】根据x轴上的点的纵坐标为0列式计算即可得解.【详解】∵点P(x﹣3,x+3)是x轴上一点,∴x+3=0,∴x=﹣3,∴点P的坐标是(﹣6,0),故选:C.【点睛】本题考查了点的坐标,是基础题,熟记x轴上的点的纵坐标为0是解题的关键.8.平面直角坐标系中,P(-2a-6,a-5)在第三象限,则a的取值范围是()A.a>5 B.a<-3 C.-3≤a≤5D.-3<a<5【答案】D【解析】【分析】根据第三象限的点的坐标特点:x<0,y<0,列不等式组,求出a的取值范围即可.【详解】∵点P在第三象限,∴26050aa--<⎧⎨-<⎩,解得:-3<a<5,故选D.【点睛】本题考查了象限点的坐标的符号特征以及解不等式,该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范围,比如本题中求a的取值范围.9.如图,正方形ABCD的顶点A(1,1),B(3,1),规定把正方形ABCD“先沿x轴翻折,再向左平移1个单位”为一次变换,这样连续经过2019次变换后,正方形ABCD的顶点C的坐标为()A.(﹣2018,3)B.(﹣2018,﹣3)C .(﹣2016,3)D .(﹣2016,﹣3)【答案】D【解析】【分析】 首先由正方形ABCD ,顶点A (1,1)、B (3,1)、C (3,3),然后根据题意求得第1次、2次、3次变换后的点C 的对应点的坐标,即可得规律:第n 次变换后的点C 的对应点的为:当n 为奇数时为(3-n ,-3),当n 为偶数时为(3-n ,3),继而求得把正方形ABCD 连续经过2019次这样的变换得到正方形ABCD 的点C 的坐标.【详解】∵正方形ABCD ,顶点A (1,1)、B (3,1),∴C (3,3).根据题意得:第1次变换后的点C 的对应点的坐标为(3﹣1,﹣3),即(2,﹣3), 第2次变换后的点C 的对应点的坐标为:(3﹣2,3),即(1,3),第3次变换后的点C 的对应点的坐标为(3﹣3,﹣3),即(0,﹣3),第n 次变换后的点C 的对应点的为:当n 为奇数时为(3﹣n ,﹣3),当n 为偶数时为(3﹣n ,3),∴连续经过2019次变换后,正方形ABCD 的点C 的坐标变为(﹣2016,﹣3). 故选D .【点睛】此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n 次变换后的点C 的对应点的坐标为:当n 为奇数时为(3-n ,-3),当n 为偶数时为(3-n ,3)是解此题的关键.10.在平面直角坐标系中,以原点为中心,把点()2,3A 逆时针旋转180︒,得到点B ,则点B 的坐标为( )A .()2,3-B .()2,3--C .(2,3)-D .(3,2)--【答案】B【解析】【分析】根据中心对称的性质解决问题即可.【详解】由题意A ,B 关于O 中心对称,∵A (2,3),∴B (-2,-3),故选:B .【点睛】此题考查中心对称,坐标与图形的变化,解题的关键是熟练掌握基本知识,属于中考常考题型.11.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“炮”和“車”的点的坐标分别为(1,2),(2,0)-,则表示棋子“馬”的点的坐标为( )A .(4,2)B .(2,4)C .(3,2)D .(2, 1)【答案】A【解析】【分析】 根据棋子“炮”和“車”的点坐标,推断出原点位置,进而可得出“馬”的点的坐标.【详解】如图所示,根据“車”的点坐标为()2,0-,可知x 轴在“車”所在的横线上,又根据“炮”的点坐标()1,2,可推出原点坐标如图所示,进而可知“馬”的点的坐标为()4,2,故选:A .【点睛】本题综合考查点的坐标位置的确定.解答本题的关键是由“炮”和“車”的点坐标确定出原点的坐标.12.如果点P 在第三象限内,点P 到x 轴的距离是4,到y 轴的距离是5,那么点P 的坐标是( )A .(﹣4,﹣5)B .(﹣4,5)C .(﹣5,4)D .(﹣5,﹣4)【答案】D【解析】【分析】根据第三象限内点的横坐标是负数,纵坐标是负数以及点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值解答.解:∵第三象限的点P 到x 轴的距离是4,到y 轴的距离是5,∴点P 的横坐标是﹣5,纵坐标是﹣4,∴点P 的坐标为(﹣5,﹣4).故选:D.【点睛】本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值是解题的关键.13.若点(24,24)P m m -+在y 轴上,那么m 的值为( )A .2B .2-C .2±D .0【答案】A【解析】【分析】依据点P (2m-4,2m+4)在y 轴上,其横坐标为0,列式可得m 的值.【详解】∵P (2m-4,2m+4)在y 轴上,∴2m-4=0,解得m=2,故选:A .【点睛】此题考查点的坐标,解题关键在于掌握y 轴上点的横坐标为0.14.如图,在平面直角坐标系中.四边形OABC 是平行四边形,其中()()2,03,1,A B 、将ABCD Y 在x 轴上顺时针翻滚.如:第一次翻滚得到111,AB C O Y 第二次翻滚得到1122B AO C Y ,···则第五次翻滚后,C 点的对应点坐标为( )A .(622,2+B .2,622+ C .2,622- D .(622,2- 【答案】A【解析】ABCD Y 在x 轴上顺时针翻滚,四次一个循环,推出第五次翻滚后,点A 的坐标,再利用平移的性质求出C 的对应点坐标即可.【详解】连接AC ,过点C 作CH ⊥OA 于点H ,∵四边形OABC 是平行四边形,A(2,0)、B(3,1),∴C(1,1),∴∠COA=45°,OC=AB=2, ∴OH= OC÷2=1,∴AH=2-1=1,∴OA=AH ,∴OC=AC ,∴∆OAC 是等腰直角三角形,∴AC ⊥OC ,∵ABCD Y 在x 轴上顺时针翻滚,四次一个循环,∴第五次翻滚后点,A 的坐标为(6+22,0),把点A 向上平移2个单位得到点C , ∴第五次翻滚后,C 点的对应点坐标为()622,2+.故选:A .【点睛】本题主要考查图形与坐标,涉及平行四边形的性质,等腰直角三角形的性质以及平移的性质,找到点的坐标的变化规律,是解的关键.15.如图所示,长方形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙分别由点A(2, 0)同时出发,沿长方形BCDE 的边作环绕运动,物体甲按逆时针方向以1个单位长度秒匀速运动,物体乙按顺时针方向以2个单位长度秒匀速运动,则两个物体运动后的第2020次相遇点的坐标是( )A .(2,0)B .(-1,-1)C .( -2,1)D .(-1, 1)【答案】D【解析】【分析】 利用行程问题中的相遇问题,由于长方形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答;【详解】∵A (2,0),四边形BCDE 是长方形,∴B (2,1),C (-2,1),D (-2,-1),E (2,-1),∴BC=4,CD=2,∴长方形BCDE 的周长为()2422612⨯+=⨯=,∵甲的速度为1,乙的速度为2,∴第一次相遇需要的时间为12÷(1+2)=4(秒),此时甲的路程为1×4=4,甲乙在(-1,1)相遇,以此类推,第二次甲乙相遇时的地点为(-1,-1),第三次为(2,0),第四次为(-1,1),第五次为(-1,-1),第六次为(2,0),L L ,∴甲乙相遇时的地点是每三个点为一个循环,∵202036733÷=L ,∴第2020次相遇地点的坐标为(-1,1);故选D.【点睛】本题主要考查了规律型:点的坐标,掌握甲乙运动相遇时点坐标的规律是解题的关键.16.如图,在平面直角坐标系中,四边形OABC 是菱形,点C 的坐标为()2,3,则菱形OABC 的面积是( )A .6B .13C .3132D .313【答案】D【解析】【分析】 作CH ⊥x 轴于点H ,利用勾股定理求出OC 的长,根据菱形的性质可得OA =OC ,即可求解.【详解】如图所示,作CH ⊥x 轴于点H ,∵四边形OABC 是菱形,∴OA =OC ,∵点C 的坐标为()2,3,∴OH =2,CH =3,∴OC =22OH CH +=2223+=13∴菱形OABC 的面积=OA·CH =313 故选:D【点睛】本题考查菱形的性质、勾股定理、坐标与图形的性质、菱形的面积公式,解题的关键是学会添加辅助线,构造直角三角形.17.在平面直角坐标系中,对于平面内任一点(a ,b ),若规定以下三种变换:①f (a ,b )=(-a ,b ),如f (1,2)=(-1,2);②g (a ,b )=(b ,a ),如g (1,2)=(2,1);③h (a ,b )=(-a ,-b ),如h (1,2)=(-1,-2);按照以上变换有:g (h (f (1,2)))=g (h (-1,2))=g (1,-2)=(-2,1),那么h (f (g (3,-4)))等于A .(4,-3)B .(-4,3)C .(-4,-3)D .(4,3)【答案】C【解析】【分析】根据f (a ,b )=(-a ,b ).g (a ,b )=(b ,a ).h (a ,b )=(-a ,-b ),可得答案.【详解】由已知条件可得h (f (g (3,-4)))= h (f (-4,3))= h (4,3)=(-4,-3) 故选:C【点睛】本题考查了点的坐标,利用f (a ,b )=(-a ,b ).g (a ,b )=(b ,a ).h (a ,b )=(-a ,-b )是解题关键.18.预备知识:线段中点坐标公式:在平面直角坐标系中,已知A (x 1,y 1),B (x 2,y 2),设点M 为线段AB 的中点,则点M 的坐标为(122x x +,122y y +)应用:设线段CD 的中点为点N ,其坐标为(3,2),若端点C 的坐标为(7,3),则端点D 的坐标为( )A .(﹣1,1)B .(﹣2,4)C .(﹣2,1)D .(﹣1,4) 【答案】A【解析】【分析】根据线段的中点坐标公式即可得到结论.【详解】设D (x ,y ), 由中点坐标公式得:7+x 2=3,3+y 2=2, ∴x =﹣1,y =1,∴D (﹣1,1),故选A .【点睛】此题考查坐标与图形性质,关键是根据线段的中点坐标公式解答.19.在直角坐标系中,若点P(2x -6,x -5)在第四象限,则x 的取值范围是( )A .3<x <5B .-5<x <3C .-3<x <5D .-5<x <-3【答案】A【解析】【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.解:∵点P(2x-6,x-5)在第四象限,∴260 {50xx->-<,解得:3<x<5.故选:A.【点睛】主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.20.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( )A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣5【答案】A【解析】分析:根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a+2|,a+2≠3,解得:a=−3,故选A.点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.。

人教版七年级数学第七章第1节《平面直角坐标系》训练题 (20)(含答案解析)

人教版七年级数学第七章第1节《平面直角坐标系》训练题 (20)(含答案解析)

第七章第1节《平面直角坐标系》训练题 (20)一、单选题1.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路程如图所示,第一次移动到点A 1,第二次移动到点A 2,第n 次移动到点A n ,则点A 2020的坐标是( )A .(1010,0)B .(1010,1)C .(1009,0)D .(1009,1)2.已知点M (9,﹣5)、N (﹣3,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( ) A .相交、相交B .平行、平行C .垂直相交、平行D .平行、垂直相交3.如图,一个粒子在第一象限内及x 轴,y 轴上运动,第一分钟内从原点运动到(1,0),第二分钟从(1,0)运动到(1,1),而后它接着按图中箭头所示的与x 轴,y 轴平行的方向来回运动,且每分钟移动1个长度单位,那么,第2017分钟时,这个粒子所在位置的坐标是( )A .(7,44)B .(8,45)C .(45,8)D .(44,7)4.点(0,-7)在( )A .x 轴正半轴上B .y 轴负半轴上C .y 轴正半轴上D .x 轴负半轴上 5.在平面直角坐标系中,点P 的坐标为(3,﹣1),那么点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限6.点P (3,1)m m ++在直角坐标系的x 轴上,则点P 的坐标为( )A .(0,2)B .(2,0)C .(4,0)D .(0,-2)7.若点P 位于第二象限,且距x 轴的距离为2个单位长度,距y 轴的距离为3个单位长度,则点P 的坐标是( )A .(2,﹣3)B .(2,3)C .(﹣3,2)D .(﹣3,﹣2)8.已知点()0,0O ,()1,2B ,点A 在坐标轴上,且4OAB S ∆=,则满足条件的点A 的个数为( )A .1B .2C .3D .49.如图所示,直角坐标系中四边形的面积是( )A .15.5B .20.5C .26D .3110.如果P (ab ,a+b )在第四象限,那么Q (a ,﹣b )在( )A .第一象限B .第二象限C .第三象限D .第四象限11.点A (n+2,1﹣n )不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限12.经过两点A (﹣2,2)、B (﹣2,﹣3)作直线AB ,则直线AB ( )A .平行于x 轴B .平行于y 轴C .经过原点D .无法确定13.在平面直角坐标系中,点P (−1,在( )A .第一象限B .第二象限C .第三象限D .第四象限14.法国数学家笛卡尔(),15961650Descartes -,最早引入平面直角坐标系,用代数方法研究几何,这种研究方法体现的数学思想是( )A .数形结合B .建模C .类比D .分类讨论15.若实数a ,b 30b -=,则点P(a ,b)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限16.点B (3,0)在( )上A .x 轴的正半轴B .x 轴的负半轴C .y 轴的正半轴D .y 轴的负半轴17.已知M(3,−2)与点N(x ,y)在同一条平行于x 轴的直线上,若线段MN 的长度为4,则点N 的坐标是( )A .(4,2)或(4,−2)B .(7,−2)或(−1,−2)C .(7,−2)或(−4,−2)D .(4,−2)或(−1,−2)18.如图,三角形OAB 的边OB 在x 轴的正半轴上,点O 是原点,点B 的坐标为()3,0,把三角形OAB 沿x 轴向右平移2个单位长度,得到三角形CDE ,连接AC DB 、,若三角形DBE 的面积为3,则图中阴影部分的面积为( )A .12B .1C .2D .3219.在平面直角坐标系中,点(3,—4)在( )A .第一象限B .第二象限C .第三象限D .第四象限 20.点(,)M x y 在第二象限,且230,40x y -=-=,则点M 的坐标是( )A .(3,2)-B .(3,2)-C .(2,3)-D .(2,3)-21.点P (2019,-2019)位于( )A .第一象限B .第二象限C .第三象限D .第四象限22.若某点A 位于x 轴上方,距x 轴5个单位长,且位于y 轴的左边,距y 轴10个单位长,则点A 的坐标是( )A .(510)-,B .(510)-,C .(105)-,D .(105)-,二、填空题 23.在电影院内找座位,将“4排3号”简记为(4,3),则(8,7)表示______24.点A (﹣3,4)到y 轴的距离为_____,到原点的距离为_____.25.如图,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2021秒时,点P 的坐标是__.26.已知点A (﹣3,2),AB ∥坐标轴,且AB =4,若点B 在x 轴的上方,则点B 坐标为__. 27.把所有正整数从小到大排列,并按如下规律分组:(1)、(2,3)、(4,5,6)、(7,8,9,10)、……,若A n =(a ,b )表示正整数n 为第a 组第b 个数(从左往右数),如A 7=(4,1),则A 20=______________.28.在平面直角坐标系中,点()62,4P m m --在第三象限,则m 的取值范围是______. 29.已知点Q 的坐标为(4,5),直线//PQ y 轴且PQ=6;则点P 的坐标是_______________.三、解答题30.已知平面直角坐标系中一点P(m+1,2m ﹣4),根据下列条件,求点P 的坐标.(1)若点Q(-3,2),且直线PQ 与y 轴平行;(2)若点P 到x 轴,y 轴的距离相等.【答案与解析】1.A【解析】根据图象可得移动4次图象完成一个循环,从而可得出点A2020的坐标.A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),…,2020÷4=505,所以A2020的坐标为(505×2,0),则A2020的坐标是(1010,0).故选:A.本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般.2.D【解析】根据点M、N的坐标可得直线MN的解析式,由此即可得.---,M N(9,5),(3,5)y=-,∴直线MN的解析式为5则直线MN与x轴平行,与y轴垂直相交,故选:D.本题考查了直线与坐标轴的位置关系,正确求出直线的解析式是解题关键.3.D【解析】根据题意依次写出第一象限角平分线上整数点的坐标及对应的运动分钟数,通过分析发现,点(n,n),运动时间n(n+1)分钟,n为奇数,运动方向向左,n为偶数,运动方向向下,找到规律后,将2017写成44×45+37,可以看做点(44,44)向下运动37个单位长度,进而求出答案.解:根据已知图形分析:坐标(1,1),2分钟,2=1×2,运动方向向左,坐标(2,2),6分钟,6=2×3,运动方向向下,坐标(3,3),12分钟,12=3×4,运动方向向左,坐标(4,4),20分钟,20=4×5,运动方向向下,由此发现规律,当点坐标(n,n),运动时间n(n+1)分钟,n为奇数,运动方向向左,n为偶数,运动方向向下,∵2017=44×45+37,∴可以看做点(44,44)向下运动37个单位长度,∴2017分钟后这个粒子所处的位置(坐标)是(44,7).故选:D .本题考查了点的坐标的规律变化,解决此类问题的关键是找到特殊点与变化序号之间的关系. 4.B【解析】根据坐标轴上点的特征判断即可.A.在x 轴正半轴上的点横坐标为正数,纵坐标为零,此选项不符合题意;B.在y 轴负半轴上的点横坐标为零,纵坐标为负数,此选项符合题意;C.在y 轴正半轴上的点横坐标为零,纵坐标为正数,此选项不符合题意;D.在x 轴负半轴上的点横坐标为负数,纵坐标为零,此选项不符合题意.故选:B .本题考查了点的坐标的性质,熟练掌握平面直角坐标系各个象限内,坐标轴上的点的特征是本题的关键.5.D【解析】解:点P 的坐标为(3,﹣1),那么点P 在第四象限,故选D .6.B【解析】根据题意易得m+1=0,进而求解m 的值,则问题得解.解:由点P ()3,1m m ++在直角坐标系的x 轴上,可得:10m +=,解得:1m =-,3132m ∴+=-+=,∴点()2,0P ;故选B .本题主要考查平面直角坐标系里点的坐标,熟练掌握平面直角坐标系里点的坐标特点是解题的关键.7.C【解析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度解答.∵点P 位于第二象限,距离x 轴2个单位长度,∴点P 的纵坐标为2,∵距离y 轴3个单位长度,∴点P 的横坐标为﹣3,∴点P 的坐标是(﹣3,2).故选:C .本题考查了点的坐标:坐标平面内的点与有序实数对是一一对应的关系.记住各象限点的坐标特征,理解坐标的意义.8.D【解析】分点A 在x 轴上和y 轴上两种情况,利用三角形的面积公式求出OA 的长度,再分两种情况讨论求解.解:若点A 在x 轴上,则1242OAB S OA ∆=⨯⨯=, 解得4OA =,所以,点A 的坐标为()4,0或()4,0-,若点A 在y 轴上,则1142OAB S OA ∆=⨯⨯=, 解得8OA =,所以,点A 的坐标为()0,8或()0,8-,综上所述,点A 的坐标为()4,0或()4,0-或()0,8或()0,8-.故选:D .本题考查了坐标与图形,解题的关键是利用三角形的面积公式求出OA 的长度,再分情况进行讨论.9.A【解析】图中四边形可以视为由两个直角三角形和一个梯形构成,分别计算其面积并求和即可. 图中四边形可以视为由两个直角三角形和一个梯形构成,则其面积为: 12⨯2×312+(3+4)×312+⨯1×4=3212++2=15.5.故选:A.本题考查了平面直角坐标系中的图形面积计算,数形结合分割求和是解题的关键.10.B【解析】根据第四象限点的特征为(+,-),得出a、b的符号,进而确定Q点所在象限.解:∵P(ab,a+b)在第四象限,∴ab>0,a+b<0,∴a<0,b<0,∴﹣b>0,∴Q(a,﹣b)在第二象限.故选:B.此题主要考查根据点的坐标判断所在象限,正确理解各象限点的特征是解题关键.11.C【解析】确定出n+2为负数时,1-n一定是正数,再根据各象限内点的坐标特征解答.解:当n+2<0时,n<﹣2,所以,1﹣n>0,即点A的横坐标是负数时,纵坐标一定是正数,所以,点A不可能在第三象限,有可能在第二象限;当n+2>0时,n>﹣2,所以,1﹣n有可能大于0也有可能小于0,即点A的横坐标是正数时,纵坐标是正数或负数,所以,点A可能在第一象限,也可能在第四象限;综上所述:点A不可能在第三象限.故选:C.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).12.B【解析】由A、B两点坐标已知,其横坐标都是-2,即x=-2,由此知A、B是x=-2直线上两点,AB⊥x轴,而y轴⊥x轴,即可判断.由A(﹣2,2)、B(﹣2,﹣3)其横坐标都是-2,即x=-2,由两点确定一直线,A、B是x=-2直线上两点,AB⊥x轴,y轴⊥x轴,则AB∥y轴.故选:B.本题考查两点确定的直线与坐标轴平行问题,关键掌握平行x轴,其纵坐标相同,横坐标不等,平行y 轴横坐标相同,纵坐标不等.13.B【解析】应先判断出所求点P 的横坐标、纵坐标的符号,进而判断其所在的象限.解:∵−1<0,0,∴点P 在第二象限.故选:B .本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).14.A【解析】直接利用引入坐标和变量的概念,得出数学思想.平面直角坐标系很好地体现了数形结合的数学思想.故选:A .此题主要考查了坐标确定位置,正确了解数学思想是解题关键.15.B【解析】由算术平方根和绝对值的非负性,求出a 、b 的值,然后即可判断点P 所在的象限.解:30b -=,∴20a +=,30b -=,∴2a =-,3b =,∴点P (2-,3)在第二象限;故选:B .本题考查了非负性的应用,以及判断点所在的象限,解题的关键是正确求出a 、b 的值. 16.A【解析】根据坐标轴上的点的坐标的特点解答.解:∵点B (3,0)的横坐标为3>0,纵坐标为0,∴点B (3,0)在x 轴的正半轴.故选A .本题考查了坐标轴上的点的坐标,熟记x 轴上的点的纵坐标为0,y 轴上的点的横坐标为0是解题的关键.17.B【解析】根据M 和N 在同一条平行于x 轴的直线上,可以得到它们纵坐标相等,再根据它们之间的距离得到它们横坐标之间的关系,求出N 的坐标.解:根据题意,M 和N 的纵坐标相等,∴2y =-,∵MN=4,∴347x =+=或341x =-=-,∴()1,2N --或()7,2-.故选:B .本题考查点坐标之间的关系,解题的关键是掌握点坐标的横纵坐标表示的意义.18.D【解析】根据平移的性质和等高的三角形面积比等于底边的比即可求解. 解:点B 的坐标为(3,0),把三角形OAB 沿x 轴向右平移2个单位长度,2BE ∴=,321BC =-=,图中阴影部分与三角形DBE 等高,三角形DBE 的面积为3,∴图中阴影部分的面积为13322=⨯=. 故选:D . 本题考查了坐标与图形变化-平移,三角形的面积,关键是得到三角形DBE 和图中阴影部分的底. 19.D【解析】试题分析:∵点的横坐标3>0,纵坐标﹣4<0,∴点P (3,﹣4)在第四象限.故选D考点: 点的坐标20.A先解绝对值方程和平方根确定x 、y 的值,然后根据第二象限坐标特点确定M 的坐标即可. 解:∵230,40x y -=-=∴x=±3,y=±2∵点(,)M x y 在第二象限∴x <0,y >0∴x=-3,y=2∴M 点坐标为(-3.2).故答案为A .本题考查了解绝对值方程和平方根以及直角坐标系内点坐标的特征,掌握坐标系内点坐标的特征是解答本题的关键.21.D【解析】根据四个象限的点的坐标特点解答即可.∵2019>0,-2019<0,∴点P (2019,-2019)在第四象限.故选:D .此题考查点的坐标,关键是根据四个象限的点的坐标特点解答.22.C【解析】应先判断出点所在的象限,进而利用这个点横纵坐标的绝对值求解.解:根据题意,则∵点A 位于x 轴上方,且位于y 轴的左边,∴点A 在第二象限,∵点A 距x 轴5个单位长,距y 轴10个单位长, ∴点A 的坐标为(105)-,; 故选:C .本题主要考查了点在第二象限时坐标的特点,注意到x 轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值.23.8排7号由已知条件知:横坐标表示第几排,纵坐标表示第几号.解:根据排在前,号在后,得(8,7)表示8排7号.故答案为:8排7号.本题是数学在生活中应用,平面位置对应平面直角坐标系,空间位置对应空间直角坐标系.可以做到在生活中理解数学的意义.24.3, 5【解析】根据点到到y 轴的距离等于横坐标的长度解答,再利用勾股定理列式计算即可求出点到原点的距离.点A (-3,4)到y 轴的距离为3,到x 轴的距离为4,到原点的距离.故答案是:3,5.考查了点的坐标,熟记点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度是解题的关键.25.(2021,1)【解析】根据图象可得移动4次图象完成一个循环,从而可得出点P 的坐标.半径为1个单位长度的半圆的周长为12⨯2π×1=π,∵点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度, ∴点P 每秒走12个半圆, 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为1秒时,点P 的坐标为(1,1), 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为2秒时,点P 的坐标为(2,0), 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为3秒时,点P 的坐标为(3,﹣1), 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为4秒时,点P 的坐标为(4,0), 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为5秒时,点P 的坐标为(5,1), 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为6秒时,点P 的坐标为(6,0), …,∵2021÷4=505余1,∴P 的坐标是(2021,1),故答案为:(2021,1).此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.26.(﹣3,6)或(1,2)或(﹣7,2)【解析】分//AB y 轴和//AB x 轴两种情况,平行于y 轴时,将纵坐标加或减4;平行与x 轴时,将横坐标加或减4;根据点B 在x 轴的上方舍去不合题意的点的坐标,从而得出答案.①当//AB y 轴时,∵()3,2A -,且AB =4,∴点B 坐标为()3,6-或()3,2--,又∵点B 在x 轴的上方,∴点B 的坐标为()3,6-;②当//AB x 轴时,∵()3,2A -,且AB =4,∴点B 坐标为()1,2或()7,2-;综上,点B 坐标为()3,6-或()1,2或()7,2-,故答案为:()3,6-或()1,2或()7,2-.本题主要考查坐标与图形,解题的关键是掌握平行与坐标轴的直线上点的坐标特点及两点间的距离公式.27.(6,5)【解析】通过新数组确定正整数n 的位置,A n =(a ,b )表示正整数n 为第a 组第b 个数(从左往右数),所有正整数从小到大排列第n 个正整数,第一组(1),1个正整数,第二组(2,3)2个正整数,第三组(4,5,6)三个正整数,…,这样1+2+3+4+…+a> n ,而1+2+3+4+…+(a -1)<n ,能确第a 组a 个数从哪一个是开起,直到第b 个数(从左往右数)表示正整数nA 7表示正整数7按规律排1+2+3+4=10>7,1+2+3=6<7,说明7在第4组,第四组应有4个数为(7,8,9,10)而7是这组的第一个数,为此P 7=(4,1),理解规律A 20,先求第几组排进20,1+2+3+4+5+6=21>20,由1+2+3+4+5=15,第六组从16开始,按顺序找即可.A 20是指正整数20的排序,按规律1+2+3+4+5+6=21>20,说明20在第六组,而1+2+3+4+5=15<20,第六组从16开始,取6个数即第六组数(16,17,18,19,20,21),从左数第5个数是20,故A 20=(6,5).故答案为:(6,5).本题考查按规律取数问题,关键是读懂An=(a ,b )的含义,会用新数组来确定正整数n 的位置.28.4m >根据题意列出关于m 的不等式组,解之即可得.解:根据题意,得:62040m m -<⎧⎨-<⎩①②,解不等式①,得:3m >,解不等式②,得:4m >,则不等式组的解集为4m >,故答案为:4m >.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.29.(4,11)或(4,-1).【解析】由//PQ y 得P 与Q 的横坐标相同,求得P 的横坐标;由PQ=6知P 、Q 的纵坐标差6,求得P 的纵坐标,问题得解.如图∵//PQ y ,点Q 的坐标为(4,5)∴P 点的横坐标为4∵PQ=6∴P 点与Q 点的纵坐标差6∴当点P 在点Q 下方时,得P 点纵坐标为-1;当点P 在点Q 上方时,得P 点纵坐标为11 所以点P 的坐标为(4,11)或(4,-1).本题考查与坐标轴平行的线段上点的坐标的特点.与纵轴平行的线段上的点的横坐标相同;与横轴平行的线段上的点的纵坐标相同.此题易错点是P 可能在Q 的上方也可能在其下方,有两种情况. 30.(1)()3,12P --;(2)()6,6P 或()2,2P -(1)根据题意易得m+1=-3,进而求出m 的值,然后求解点P 坐标即可;(2)由题意易得124m m +=-,进而求解m ,最后得到点P 的坐标.解:(1)∵点Q(-3,2),且直线PQ 与y 轴平行,点P(m+1,2m ﹣4),∴m+1=-3,解得m=-4,∴2m-4=-8-4=-12,∴()3,12P --;(2)∵点P 到x 轴,y 轴的距离相等, ∴124m m +=-,即124m m +=-或142m m +=-,解得5m =或1m =,∴m+1=5+1=6或m+1=1+1=2,2m-4=10-4=6或2m-4=2-4=-2,∴()6,6P 或()2,2P -.本题主要考查平面直角坐标系点的坐标,熟练掌握求平面直角坐标系点的坐标是解题的关键.。

人教版七年级下册数学第七章 平面直角坐标系含答案(各地真题)

人教版七年级下册数学第七章 平面直角坐标系含答案(各地真题)

人教版七年级下册数学第七章平面直角坐标系含答案一、单选题(共15题,共计45分)1、如图,在矩形COED中,点D的坐标是(1,3),则CE的长是()A.3B.C.D.42、在平面直角坐标系xoy中,已知A(4,2),B(2,-2),以原点O为位似中心,按位似比1:2把△OAB缩小,则点A的对应点A′的坐标为()A.(3,1)B.(-2,-1)C.(3,1)或(-3,-1)D.(2,1)或(-2,-1)3、如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A,B的坐标分别为(﹣1,0),(0,).现将该三角板向右平移使点A与点O重合,得到△OCB′,则点B的对应点B′的坐标是()A.(1,0)B.(,)C.(1,)D.(﹣1,)4、在平面直角坐标系中,点先向左平移个单位,再向下平移个单位,得到的()A. B. C. D.5、将△ABC的各点的横坐标都加上3,纵坐标不变,所得图形与原图形相比()A.向右平移了3个单位B.向左平移了3个单位C.向上平移了3个单位D.向下平移了3个单位6、点P是图①中三角形上一点,坐标为(a,b),图①经过变化形成图②,则点P在图②中的对应点P′的坐标为()A.(a,b)B.(a﹣1,b)C.(a﹣2,b)D.(a,b)7、在平面直角坐标系中,已知点A(﹣6,9)、B(﹣9,﹣3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣2,3)B.(﹣18,27)C.(﹣18,27)或(18,﹣27) D.(﹣2,3)或(2,﹣3)8、在平面直角坐标系中,点P(-2,3-π)所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限9、在平面直角坐标系中,点P的横坐标是-3,且点P到x轴距离为5,则点P 的坐标是()A.(5,-3)或(-5,-3)B.(-3,5)或(-3,-5)C.(-3,5)D.(-3,-3)10、将点B(5,-1)向上平移2个单位得到点A(a+b, a-b),则()A.a=2, b=3B.a=3, b=2C.a=-3, b=-2D.a=-2, b=-311、矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1)B.(3,)C.(3,)D.(3,2)12、某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形(如图所示).则小鱼上的点(a,b)对应大鱼上的点()A.(﹣2a,﹣2b)B.(﹣a,﹣2b)C.(﹣2b,﹣2a)D.(﹣2a,﹣b)13、点M(3,-4)关于x轴的对称点的坐标是()A.(3, 4)B.(-3,-4)C.(-3, 4)D.(-4,3)14、在平面直角坐标系中,点M(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限15、如图是株洲市的行政区域平面地图,下列关于方位的说法明显错误的是A.炎陵位于株洲市区南偏东约35°的方向上B.醴陵位于攸县的北偏东约16°的方向上C.株洲县位于茶陵的南偏东约40°的方向上D.株洲市区位于攸县的北偏西约21°的方向上二、填空题(共10题,共计30分)16、如图,把一块三角板放在直角坐标系第一象限内,其中30°角的顶点A落在y轴上,直角顶点C落在x轴的(,0)处,∠ACO=60°,点D为AB边上中点,将△ABC沿x轴向右平移,当点A落在直线y=x﹣3上时,线段CD扫过的面积为________.17、我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形的边在轴上,的中点是坐标原点,固定点,,把正方形沿箭头方向推,使点落在轴正半轴上点处,则点的对应点的坐标为________.18、已知点A(m,n)在第四象限,那么点B(m,﹣n)在第________象限.19、如图,象棋盘上,若“将”位于点(1,-1),“车”位于点(-3,-1),则“马”位于点________.20、点P(m+2,2m+1)向右平移1个单位长度后,正好落在y轴上,则m=________.21、点P(3,﹣2)到y轴的距离为________个单位.22、已知线段MN平行于x轴,且MN的长度为5,若M的坐标为(2,-2),那么点N的坐标是________;23、如界点在平面直角坐标系的第二象限,则m的取值范围是________.24、如图,学校在小明家________偏________度的方向上,距离约是________米.25、同学们玩过五子棋吗?它的比赛规则是只要同色5子先成一条直线就算胜如图是两人玩的一盘棋,若白的位置是(1,﹣5),黑的位置是(2,﹣4),现轮到黑棋走,你认为黑棋放在________位置就获得胜利了.三、解答题(共6题,共计25分)26、如图所示的马所处的位置为(2,3).⑴你能表示图中象的位置吗?⑵写出马的下一步可以到达的位置.(马走日字)27、如图是边长为4的正方形,请你建立适当的直角坐标系,并写出点A,B,C,D的坐标.28、某市有A、B、C、D四个大型超市,分别位于一条东西走向的平安大路两侧,如图,若C(﹣2,8)、D(0,0),请建立适当的直角坐标系,并写出A、B两个超市相应的坐标.29、王林同学利用暑假参观了幸福村果树种植基地(如图),他出发沿(1,3),(﹣3,3),(﹣4,0),(﹣4,﹣3),(2,﹣2),(5,﹣3),(5,0),(5,4)的路线进行了参观,请你按他参观的顺序写出他路上经过的地方,并用线段依次连接他经过的地点.30、古城黄州以其名胜古迹吸引了不少游客.从地图上看,较有名的六外景点在黄州城内的分布是∶东坡赤壁在市政府以西2km再往南3km处,黄冈中学在市政府以东1 km处,宝塔公园在市政府以东3km处,鄂黄长江桥在市政府以东7 km再往北8 km处,遗爱湖在市政府以东4km再往北4km处,博物馆在市政府以北2 km再往西1 km处。

人教版七年级下册数学平面直角坐标系课时练习(附答案)

人教版七年级下册数学平面直角坐标系课时练习(附答案)

人教版七年级下册数学平面直角坐标系课时练习(附答案)一、单选题1.在平面直角坐标系中,点P(3,-4)到x轴的距离是()A.3B.-3C.4D.-42.在平面直角坐标系中,已知点A(m﹣1,2m﹣2),B(﹣3,2).若直线AB∥y轴,则线段AB的长为()A.2B.4C.6D.83.如果把电影票上“5排3座”记作(5,3),那么(4,9)表示()A.“4排4座”B.“9排4座”C.“4排9座”D.“9排9座”4.若点A(-3,m)在x轴上,那么点B(m+1,m-2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限5.在平面直角坐标系中,点P(a,b)在第二象限,则点P(−a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限6.在平面直角坐标系中,点A(x,y)在第四象限,且|x|=2,|y|=3,将点A向左平移3个单位长度后得到点A′,则点A′的坐标是()A.(−2,3)B.(5,−3)C.(−1,−3)D.(2,−6)7.已知点A(2x−4,x+3)在第二象限,则x的取值范围是()A.−3<x<2B.x>−3C.x<2D.x>28.在平面直角坐标系中,点A(0,a),点B(0,4﹣a),且A在B的下方,点C(1,2),连接AC,BC,若在AB,BC,AC所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个,那么a的取值范围为()A.﹣1<a≤0B.0<a≤1C.1≤a<2D.﹣1≤a≤1二、填空题9.在平面直角坐标系中,点M在第四象限,且到x轴y轴的距离分别为6,4,则点M的坐标为.10.若点A(m+3,m−3)在x轴上,则m=.11.点(2,3)在哪个象限.12.已知平面直角坐标系中的点P(a﹣3,2)在第二象限,则a的取值范围是13.已知点P的坐标为(2,﹣5),则P点到x轴的距离为个单位长度.14.在平面直角坐标系中,若点P(m+3,3−m)在y轴上,则m的值是.15.已知点P(-2x,3x+1)是平面直角坐标系中第二象限内的点,且点P到两坐标轴的距离之和为11,则点P的坐标16.点A(m−1,m+2)在x轴上,则此点坐标为;点B(3,a−1)在二、四象限的角分线上,则此点坐标为;点C在x轴下方,距离x轴2个单位长度,距离y轴3个单位长度,则此点的坐标为.17.点P(3+a,a+1)到x轴距离为3,则点P到y轴的距离为.18.如图,李老师家在2街与2巷的十字路口附近,如果用(2,2)→(2,3)→(2,4)→(3,4)→(4,4)→(5,4)表示李老师从家到学校上班的一条路线.请你用同样的方式写出从家到学校的另外一线:.19.在平面直角坐标系中,若点A(a,−b)在第三象限,则点B(−ab,b)在第象限.20.如图,在平面直角坐标系中,一个质点P从点P1(−1,0)出发,运动到点P2(−1,−1),运动到点P3(1,−1),运动到点P4(1,1),运动到点P5(−2,1),运动到点P6(−2,−2)……按照上述规律运动下去,则点P2022的坐标为.三、作图题21.对于边长为6的等边三角形ABC,建立适当的直角坐标系,写出各个顶点的坐标.22.如图,是由边长为1个单位长度的小正方形组成的网格图.⑴请在图中建立平面直角坐标系,使A、B两点的坐标分别为A(2,3)、B(﹣2,0);⑴正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形,在图中画出格点⑴ABC使得AB=AC,请写出在⑴中所建坐标系内所有满足条件的点C的坐标.四、解答题23.如图所示,点A表示3街与5大道的十字路口,点B表示5街与3大道的十字路口,如果用(3,5)→(4,5)→(5,5)→(5,4)→(5,3)表示由A到B的一条路径,那么你能用同样的方法写出由A到B的其他几条路径吗?请至少给出3种不同的路径.24.五子棋和象棋、围棋一样,深受广大棋友的喜爱,其规则是:15×15的正方形棋盘中,由黑方先行,轮流弈子,在任一方向上连成五子者为胜.如下图是两个五子棋爱好者甲和乙的对弈图;(甲执黑子先行,乙执白子后走),观察棋盘思考:若A点的位置记做(8,4),甲必须在哪个位置上落子,才不会让乙马上获胜.答案1.C 2.D 3.C 4.D 5.A 6.C 7.A 8.B 9.(4,﹣6)10.3 11.第一象限12.a<3 13.5 14.-3 15.(-4,7)16.(−3,0);(3,−3);(−3,−2)或(3,−2)17.1或518.答案不唯一:如(2,2)→(3,2)→(4,2)→(5,2)→(5,3)→(5,4)19.一20.(-506,-506)21.解:以BC边所在直线为x轴,BC边的垂直平分线为y轴建立如图所示的直角坐标系.OA=√AC2−OC2=√62−32=√27=3√3∴各顶点坐标分别为:A(0,3√3),B(−3,0),C(3,0).22.解:⑴如图所示:⑴如图所示,点C即为所求,其坐标为(﹣3,3)或(﹣1,﹣1)或(2,﹣2)或(5,﹣1)或(6,0)或(7,3).23.解:答案不唯一,如:⑴(3,5)→(4,5)→(4,4)→(5,4)→(5,3);⑴(3,5)→(4,5)→(4,4)→(4,3)→(5,3);⑴(3,5)→(3,4)→(4,4)→(5,4)→(5,3);⑴(3,5)→(3,4)→(4,4)→(4,3)→(5,3);⑴(3,5)→(3,4)→(3,3)→(4,3)→(5,3)等.24.解:∵白棋已经有三个在一条直线上,∴甲必须在(5,3)或(1,7)位置上落子,才不会让乙马上获胜.。

七年级数学《平面直角坐标系》练习题及答案

七年级数学《平面直角坐标系》练习题及答案

七年级数学《平面直角坐标系》练习题A 卷•基础知识班级 姓名 得分一、选择题(4分×6=24分) 1.点A (4,3-)所在象限为( )A 、 第一象限B 、 第二象限C 、 第三象限D 、 第四象限 2.点B (0,3-)在()上A 、 在x 轴的正半轴上B 、 在x 轴的负半轴上C 、 在y 轴的正半轴上D 、 在y 轴的负半轴上3.点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为() A 、(3,2) B 、 (3,2--) C 、 (2,3-) D 、(2,3-) 4. 若点P (x,y )的坐标满足xy =0,则点P 的位置是()A 、 在x 轴上B 、 在y 轴上C 、 是坐标原点D 、在x 轴上或在y 轴上 5.某同学的座位号为(4,2),那么该同学的所座位置是()A 、 第2排第4列B 、 第4排第2列C 、 第2列第4排D 、 不好确定6.线段AB 两端点坐标分别为A (4,1-),B (1,4-),现将它向左平移4个单位长度,得到线段A 1B 1,则A 1、B 1的坐标分别为()A 、 A 1(0,5-),B 1(3,8--) B 、 A 1(7,3), B 1(0,5)C 、 A 1(4,5-) B 1(-8,1)D 、 A 1(4,3) B 1(1,0) 二、填空题( 1分×50=50分 ) 7.分别写出数轴上点的坐标:A ( )B ( )C ( )D ( )E ( ) 8.在数轴上分别画出坐标如下的点:)1(-A )2(B )5.0(C )0(D )5.2(E )6(-FA-19. 点)4,3(-A 在第 象限,点)3,2(--B 在第 象限 点)4,3(-C 在第 象限,点)3,2(D 在第 象限 点)0,2(-E 在第 象限,点)3,0(F 在第 象限10.在平面直角坐标系上,原点O 的坐标是( ),x 轴上的点的坐标的特点 是 坐标为0;y 轴上的点的坐标的特点是 坐标为0。

七年级下册数学平面直角坐标系练习题

七年级下册数学平面直角坐标系练习题

七年级下册数学平面直角坐标系练习题(一)课堂学习检测1.填空(1)平面内两条互相______并且原点______的______,组成平面直角坐标系.其中,水平的数轴称为______或______,习惯上取______为正方向;竖直的数轴称为______或______,取______为正方向;两坐标轴的交点叫做平面直角坐标系的______.直角坐标系所在的______叫做坐标平面.(2)有了平面直角坐标系,平面内的点就可以用一个______来表示.如果有序数对(a,b)表示坐标平面内的点A,那么有序数对(a,b)叫做______.其中,a叫做A点的______;b叫做A点的______.(3)建立了平面直角坐标系以后,坐标平面就被______分成了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,如图所示,分别叫做______、______、______、______.注意______不属于任何象限.(4)坐标平面内,点所在的位置不同,它的坐标的符号特征如下:(请用“+”、“-”、“0”分别填写)点的位置点的横坐标符号点的纵坐标符号在第一象限在第二象限在第三象限在第四象限在x轴的正半轴上在x轴的负半轴上在y轴的正半轴上在y轴的负半轴上在原点2.如图,写出图中各点的坐标.A( , );B( , );C( , );D( , );E( , );F( , );G( , );H( , );L( , );M( , );N( , );O( , );3.分别在平面直角坐标系中描出下列各点,并将各组内的点用线段依次连结起来.(1)A(-6,-4)、B(-4,-3)、C(-2,-2)、D(0,-1)、E(2,0)、F(4,1)、G(6,2)、H(8,3).(2)A(-5,-2)、B(-4,-1)、C(-3,0)、D(-2,1)、E(-1,2)、F(0,3)、G (1,2)、H (2,1)、L (3,0)、M (4,-1)、N (5,-2).4.分别在平面直角坐标系中描出下列各点,并将各组内的点,用平滑的曲线依次连结起来.(1)A (1,4)、 B (2,2)、C (1,34)、D (4,1)、E (6,32)、 F (-1,-4)、 G (-2,-2)、 H (-3,-34)、 L (-4,-1)、 M (-6,-32)(2)A (0,-4)、 B (1,-3)、C (-1,-3)、D (2,0)、E (-2,0)、F (2.5,2.25)、G (-2.5,2.25)、 H (3,5)、L (-3,5).5.下列各点A (-6,-3),B (5,2),C (-4,3.5),)43,2(D ,E (0,-9),F (3,0)中,属于第一象限的有______;属于第三象限的有______;在坐标轴上的有______.6.设P (x ,y )是坐标平面上的任一点,根据下列条件填空:(1)若xy >0,则点P 在______象限;(2)若xy <0,则点P 在______象限;(3)若y >0,则点P 在______象限或在______上;(4)若x <0,则点P 在______象限或在______上;(5)若y =0,则点P 在______上;(6)若x =0,则点P 在______上.7.已知正方形ABCD 的边长为4,它在坐标系内的位置如图所示,请你求出下列情况下四个顶点的坐标.(二)综合运用诊断8.试分别指出坐标平面内以下各直线上各点的横坐标、纵坐标的特征以及与两条坐标轴的位置关系.(1)在图1中,过A (-2,3)、B (4,3)两点作直线AB ,则直线AB 上的任意一点P (a ,b )的横坐标可以取______,纵坐标是______.直线AB 与y 轴______,垂足的坐标是______;直线AB 与x 轴______,AB与x 轴的距离是______.(2)在图1中,过A (-2,3)、C (-2,-3)两点作直线AC ,则直线AC 上的任意一点Q (c ,d )的横坐标是______,纵坐标可以是______.直线AC 与x 轴______,垂足的坐标是______;直线AC 与y 轴______,AC 与y 轴的距离是______.(3)在图2中,过原点O 和点E (4,4)两点作直线OE ,我们发现,直线OE 上的任意一点P (x ,y )的横坐标与纵坐标______,并且直线OE ______∠xOy .9.选择题 (1)已知点A (1,2),AC ⊥x 轴于C ,则点C 坐标为( ).A .(1,0)B .(2,0)C .(0,2)D .(0,1)(2)若点P 位于y 轴左侧,距y 轴3个单位长,位于x 轴上方,距x 轴4个单位长,则点P 的坐标是( ).A .(3,-4)B .(-4,3)C .(4,-3)D .(-3,4)(3)在平面直角坐标系中,点P (7,6)关于原点的对称点P ′在( ).A .第一象限B .第二象限C .第三象限D .第四象限(4)如果点E (-a ,-a )在第一象限,那么点F (-a 2,-2a )在( ).A .第四象限B .第三象限C .第二象限D .第一象限(5)给出下列四个命题,其中真命题的个数为( ).①坐标平面内的点可以用有序数对来表示;②若a >0,b 不大于0,则P (-a ,b )在第三象限内;③在x 轴上的点,其纵坐标都为0;④当m ≠0时,点P (m 2,-m )在第四象限内.A .1B .2C .3D .410.点P (-m ,m -1)在第三象限,则m 的取值范围是______.11.若点P (m ,n )在第二象限,则点Q (|m |,-n )在第______象限.12.已知点A 到x 轴、y 轴的距离分别为2和6,若A 点在y 轴左侧,则A 点坐标是______. 图1 图213.A(-3,4)和点B(3,-4)关于______对称.14.若A(m+4,n)和点B(n-1,2m+1)关于x轴对称,则m=______,n=______.(三)拓广、探究、思考15.如图的围棋盘放在某个平面直角坐标系内,白棋②的坐标为(-7,-4),白棋④的坐标为(-6,-8),那么黑棋①的坐标应该为______.16.如图,已知长方形ABCD的边长AB=3,BC=6,建立适当的坐标系并求A、B、C、D的坐标.17.求三角形ABC的面积.(1)已知:A(-4,-5)、B(-2,0)、C(4,0).(2)已知:A(-5,4)、B(-2,-2)、C(0,2).18.已知点A(a,-4),B(3,b),根据下列条件求a、b的值.(1)A、B关于x轴对称;(2)A、B关于y轴对称;(3)A、B关于原点对称.19.已知:点P(2m+4,m-1).试分别根据下列条件,求出P点的坐标.(1)点P在y轴上;(2)点P在x轴上;(3)点P的纵坐标比横坐标大3.(4)点P在过A(2,-3)点,且与x轴平行的直线上.20.x取不同的值时,点P(x-1,x+1)的位置不同,讨论当点P在不同象限或不同坐标轴上时,x的取值范围;并说明点P不可能在哪一个象限.。

七年级数学下册第七章【平面直角坐标系】经典测试题(培优专题)

七年级数学下册第七章【平面直角坐标系】经典测试题(培优专题)

一、选择题1.在直角坐标系中,ABC 的顶点()1,5A -,()3,2B ,()0,1C ,将ABC 平移得到A B C ''',点A 、B 、C 分别对应A '、B '、C ',若点()1,4A ',则点'C 的坐标( ) A .()2,0- B .()2,2- C .()2,0 D .()5,12.已知点32,)6(M a a -+.若点M 到两坐标轴的距离相等,则a 的值为( ) A .4 B .6- C .1-或4 D .6-或23 3.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A ()2,1-和B ()2,3--,那么第一架炸机C 的平面坐标是( )A .()2,1B .()3,1-C .()2,1-D .()3,14.太原植物园是山西省唯一集科学研究、科普教育、园艺观赏和文化旅游于一体的综合性植物园.其标志性建筑为热带植物馆、沙生植物馆、主题花卉馆三个展览温室,远远望去犹如镶嵌在湖边的3颗大小不一的“露珠”(图1).若利用网格(图2)建立适当的平面直角坐标系,表示东门的点的坐标为()3,2A ,表示热带植物馆入口的点的坐标为()3,3B -,那么儿童游乐园所在的位置C 的坐标应是( )A .()5,1-B .()2,4--C .()8,3--D .()5,1-- 5.若点P (x, y )在第二象限,且2,3x y ==,则x + y =( )A .-1B .1C .5D .-56.已知点M (9,﹣5)、N (﹣3,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( ) A .相交、相交B .平行、平行C .垂直相交、平行D .平行、垂直相交7.在平面直角坐标系中,点P 的坐标为(3,﹣1),那么点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限 8.若实数a ,b 满足2(2)30a b ++-=,则点P(a ,b)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 9.如图是医院、公园和超市的平面示意图,超市B 在医院O 的南偏东25︒的方向上,且到医院的距离为300m ,公园A 到医院O 的距离为400m .若∠90AOB =︒,则公园A 在医院O 的( )A .北偏东75︒方向上B .北偏东65︒方向上C .北偏东55︒方向上D .北偏西65°方向上10.在平面直角坐标系中,点()25,1N a -+一定在( )A .第一象限B .第二象限C .第三象限D .第四象限 11.如图,△ABC 的顶点坐标分别为A(1,0),B(4,0),C(1,4),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为( )A .4B .8C .2D .16二、填空题12.已知点P 的坐标为()2,6a -,且点P 到两坐标轴的距离相等,则a 的值为_________. 13.在平面直角坐标系内,把点A (5,-2)向右平移3个单位,再向下平移2个单位,得到的点B 的坐标为______.14.若电影票上座位是12排5号可记为(12,5),则(5,6)表示_______________. 15.如图,在平面直角坐标系中,对△ABC 进行循环往复的轴对称变换,若原来点A 坐标是(a ,b ),经过第1次变换后所得的1A 坐标是(),-a b ,则经过第2020次变换后所得的点2020A 坐标是_____.16.若不在第一象限的点(),22A x x -+到两坐标轴距离相等,则A 点坐标为 _________. 17.如图,在平面直角坐标系中,已如点A (1,1),B (-1,1),C (-1,-2),D (1,-2),把一根长为2019个单位长度没有弹性的细线(线的相细忽略不计)的一端固定在A 处,并按A B C D A →→→→的规律紧绕在四边形ABCD 的边上,则细线的另一端所在位置的点的坐标是__________.18.已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,2),且|a ﹣8b -0,将线段PQ 向右平移a 个单位长度,其扫过的面积为24,那么a+b+c 的值为_____. 19.已知点 P(b+1,b-2)在x 轴上,则P 的横坐标值为____20.已知P (a,b ),且ab <0,则点P 在第_________象限.21.已知线段AB 的长度为3,且AB 平行于y 轴,A 点坐标为()32,,则B 点坐标为______.三、解答题22.已知:△A 1B 1C 1三个顶点的坐标分别为A 1(﹣3,4),B 1(﹣1,3),C 1(1,6),把△A 1B 1C 1先向右平移3个单位长度,再向下平移3个单位长度后得到△ABC ,且点A 1的对应点为A ,点B 1的对应点为B ,点C 1的对应点为C .(1)在坐标系中画出△ABC ;(2)求△ABC 的面积;(3)设点P 在y 轴上,且△APB 与△ABC 的面积相等,求点P 的坐标.23.在平面直角坐标系中,画出点(0,0)A ,(4,0)B ,(3,3)C ,(0,5)D ,并求出BCD 的面积.24.如图,在平面直角坐标系中,点C (-1,0),点A (-4,2),AC ⊥BC 且AC=BC , 求点B 的坐标.''',若B的对应点B'的25.ABC在如图所示的平面直角坐标系中,将其平移得到A B C坐标为(1,1).''';(1)在图中画出A B C(2)此次平移可以看作将ABC向________平移________个单位长度,再向________平''';移________个单位长度,得A B C'''的面积并写出做题步骤.(3)求A B C一、选择题1.已知P(a ,b )满足ab=0,则点P 在( )A .坐标原点B .X 轴上C .Y 轴上D .坐标轴上 2.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的坐标分别为(2,1)A -和(2,3)B --,那么第一架轰炸机C 的坐标是( )A .(2,3)-B .(2,1)-C .(2,1)--D .(3,2)- 3.点M 在第二象限,距离x 轴5个单位长度,距离y 轴3个单位长度,则M 点的坐标为( )A .(-3,5)B .(5,- 3)C .(-5,3)D .(3,5)4.若点P (x, y )在第二象限,且2,3x y ==,则x + y =( )A .-1B .1C .5D .-55.如图,在棋盘上建立平面直角坐标系,若使“将”位于点(-1,-2),“象”位于点(4,-1),则“炮”位于点( )A .(2,-1)B .(-1,2)C .(-2,1)D .(-2,2) 6.在平面直角坐标系中,点P 的坐标为(3,﹣1),那么点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限7.点()1,3M m m ++在x 轴上,则M 点坐标为( )A .()0,4-B .()4,0C .()2,0-D .()0,2- 8.下列说法正确的是( )A .若0ab =,则点(,)P a b 表示原点B .点(1,)a 在第三象限C .已知点(3,3)A -与点(3,3)B ,则直线//AB x 轴D .若0ab >,则点(,)P a b 在第一或第三象限9.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,...,第n 次移动到n A .则22020OA A ∆的面积是( )A .210112mB .2505mC .220092m D .2504m 10.在平面直角坐标系中,点()25,1N a -+一定在( )A .第一象限B .第二象限C .第三象限D .第四象限 11.如图,将点A 0(-2,1)作如下变换:作A 0关于x 轴对称点,再往右平移1个单位得到点A 1,作A 1关于x 轴对称点,再往右平移2个单位得到点A 2,…,作A n -1关于x 轴对称点,再往右平移n 个单位得到点A n (n 为正整数),则点A 64的坐标为( )A .(2078,-1)B .(2014 ,-1)C .(2078 ,1)D .(2014 ,1)二、填空题12.对于平面直角坐标系xOy 中的点P (a ,b ),若点P 的坐标为(a +kb ,ka +b )(其中k 为常数,且k ≠0),则称点P 为点P 的“k 属派生点”,例如:P (1,4)的“2属派生点”为P (1+2×4,2×1+4),即P ′(9,6).若点P 在x 轴的正半轴上,点P 的“k 属派生点”为点P ′,且线段PP ′的长度为线段OP 长度的5倍,则k 的值为___.13.如下图,在平面直角坐标系中,第一次将OAB 变换成11OA B ,第二次将11OA B 变换成22OA B △,第三次将22OA B △变换成33OA B ,…,将OAB 进行n 次变换,得到n n OA B △,观察每次变换中三角形顶点坐标有何变化,找出规律,推测2020A 的坐标是__________.14.若线段AB 的端点为()1,3-,()1,3,线段CD 与线段AB 关于x 轴轴对称,则线段CD 上任意一点的坐标可表示为___________.15.在平面直角坐标系中,与点A (5,﹣1)关于y 轴对称的点的坐标是_____. 16.直角坐标系内,一动点按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),……,按这样的运动规律,动点第2021次运动到的点的坐标为____________.17.在平面直角坐标系中,点(,)A x y 的坐标满足方程34x y -=,(1)当点A 到两条坐标轴的距离相等时,点A 坐标为__________.(2)当点A 在x 轴上方时,点A 横坐标x 满足条件__________.18.如图,已知A 1(1,2),A 2(2,2),A 3(3,0),A 4(4,﹣2),A 5(5,﹣2),A 6(6,0)…,按这样的规律,则点A 2020的坐标为______.19.如图,在平面直角坐标系中,()()()()1,1,1,1,1,2,1,2A B C D ----,把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处, 并按A B C D A ----⋯的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是 ____.20.已知P (a,b ),且ab <0,则点P 在第_________象限.21.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,按这样的运动规律,经过第1000次运动后,动点P 的坐标是_______;经过第2019次运动后,动点P 的坐标是_______.三、解答题22.已知点(1,5)A a -和(2,1)B b -.试根据下列条件求出a ,b 的值.(1)A ,B 两点关于y 轴对称;(2)A ,B 两点关于x 轴对称;(3)AB ‖x 轴23.如图,已知每个小正方形的边长均为1的网格中有一个三角形.()1请你画出这个三角形向上平移3个单位长度,所得到的'''A B C ∆()2请以'A 为坐标原点建立平面直角坐标系(在图中画出),然后写出点B ,点C 及','B C 的坐标.24.已知()4,0A ,点B 在x 轴上,且5AB =.(1)直接写出点B 的坐标;(2)若点C 在y 轴上,且10ABC S =△,求点C 的坐标.(3)若点()3,2D a a -+,且15ABD S =,求点D 的坐标.25.如图,将△ABC 向右平移4个单位长度,再向下平移2个单位长度,得到△A′B′C′. (1)请画出平移后的图形△A ′B ′C ′.(2)写出△A ′B 'C '各顶点的坐标.(3)求出△A ′B ′C ′的面积.一、选择题1.一只跳蚤在第一象限及x 、y 轴上跳动,第一次它从原点跳到(0,1),然后按图中箭头所示方向跳动(0,0)→(0,1)→(1,1)→(1,0)→……,每次跳一个单位长度,则第2021次跳到点( )A .(3,44)B .(4,45)C .(44,3)D .(45,4) 2.第24届冬季奥林匹克运动会将于2022年由北京市和张家口市联合举行.以下能够准确表示张家口市地理位置的是( )A .离北京市200千米B .在河北省C .在宁德市北方D .东经114.8°,北纬40.8°3.下列各点中,在第二象限的是( )A .()1,0B .()1,1C .()1,1-D .()1,1- 4.点M 在第二象限,距离x 轴5个单位长度,距离y 轴3个单位长度,则M 点的坐标为( )A .(-3,5)B .(5,- 3)C .(-5,3)D .(3,5)5.下列关于有序数对的说法正确的是( )A .(3,4)与(4,3)表示的位置相同B .(a ,b )与(b ,a )表示的位置肯定不同C .(3,5)与(5,3)是表示不同位置的两个有序数对D .有序数对(4,4)与(4,4)表示两个不同的位置6.如图,一个粒子在第一象限内及x 轴,y 轴上运动,第一分钟内从原点运动到(1,0),第二分钟从(1,0)运动到(1,1),而后它接着按图中箭头所示的与x 轴,y 轴平行的方向来回运动,且每分钟移动1个长度单位,那么,第2017分钟时,这个粒子所在位置的坐标是( )A .(7,44)B .(8,45)C .(45,8)D .(44,7) 7.在平面直角坐标系中,点P 的坐标为(3,﹣1),那么点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限 8.在平面直角坐标系中,点P (−1,−2+3)在( )A .第一象限B .第二象限C .第三象限D .第四象限 9.过点A (﹣2,3)且垂直于y 轴的直线交y 轴于点B ,则点B 的坐标为( ) A .(0,﹣2) B .(3,0) C .(0,3) D .(﹣2,0) 10.如图,△ABC 的顶点坐标分别为A(1,0),B(4,0),C(1,4),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为( )A .4B .8C .82D .1611.如图,将点A 0(-2,1)作如下变换:作A 0关于x 轴对称点,再往右平移1个单位得到点A 1,作A 1关于x 轴对称点,再往右平移2个单位得到点A 2,…,作A n -1关于x 轴对称点,再往右平移n 个单位得到点A n (n 为正整数),则点A 64的坐标为( )A .(2078,-1)B .(2014 ,-1)C .(2078 ,1)D .(2014 ,1)二、填空题12.如图所示,点1,0A 、B(-1,1)、()2,2C ,则ABC 的面积是_________.13.已知点A (2m +,3-)和点B (4,1m -),若直线//AB x 轴,则m 的值为______. 14.如图,点A 的坐标(-2,3)点B 的坐标是(3,-2),则图中点C 的坐标是______.15.如图点A、B 的坐标分别为(1,2)、(3,0),将△AOB 沿x 轴向右平移,得到△CDE.已知点D 在的点B 左侧,且DB=1,则点C 的坐标为____ .16.已知点A(3a﹣6,a+4),B(﹣3,2),AB∥y轴,点P为直线AB上一点,且PA=2PB,则点P的坐标为_____.17.已知两点A(-2,m),B(n,-4),若AB//y轴,且AB=5,则m=_______;n=_______________.18.如图,已知A1(1,2),A2(2,2),A3(3,0),A4(4,﹣2),A5(5,﹣2),A6(6,0)…,按这样的规律,则点A2020的坐标为______.19.如图,已知点A的坐标为(−2,2),点C的坐标为(2,1),则点B的坐标是____.20.若点M(a-2,a+3)在y轴上,则点N(a+2,a-3)在第________象限.21.已知P(a,b),且ab<0,则点P在第_________象限.三、解答题22.如图,△ABC在直角坐标系中,(1)请写出△ABC 各点的坐标.(2)若把△ABC 向上平移2个单位,再向左平移1个单位得到△A ′B ′C ′,写出A ′、B ′、C ′的坐标.(3)求出三角形ABC 的面积.23.如图,在平面直角坐标系中,△ABC 的顶点都在格点上,点B 的坐标是(1,2).(1)将△ABC 先向右平移3个单位长度,再向下平移2个单位长度,得到△A 'B 'C '.请画出△A 'B 'C '并写出A ',B ′,C '的坐标;(2)在△ABC 内有一点P (a ,b ),请写出按(1)中平移后的对应点P ″的坐标. 24.对于平面直角坐标系 xOy 中的点P (a ,b ),若点P ' 的坐标为,b a ka b k ⎛⎫++ ⎪⎝⎭(其中k 为常数,且0k ≠),则称点P '为点P 的“k 之雅礼点”.例如:P (1,4)的“2之雅礼点”为41,2142P ⎛⎫'+⨯+ ⎪⎝⎭,即P '(3,6). (1)①点P (-1,-3)的“3之雅礼点”P '的坐标为____________; ②若点P 的“k 之雅礼点”P '的坐标为(2,2),请写出一个符合条件的点P 的坐标____________; (2)若点P 在x 轴的正半轴上,点P 的“k 之雅礼点”为P '点,且OPP '△为等腰直角三角形,则k 的值为____________;(3)在(2)的条件下,若关于x 的方程2kx mx mn +=+有无数个解,求m n 、的值. 25.如图,∠ABC 在建立了平面直角坐标系的方格纸中,方格纸中的每个小方格都是边长为1个单位长度的正方形.(1)请写出三角形ABC 各顶点的坐标;(2)直接写出三角形ABC 的面积;(3)把三角形ABC 平移得到A B C '''∆,点B 经过平移后对应点为()6,5B ',请在图中画出A B C '''∆.。

人教版数学七年级下册 第七章《平面直角坐标系》全章测试题(含答案)

人教版数学七年级下册 第七章《平面直角坐标系》全章测试题(含答案)

第七章《平面直角坐标系》检测卷题号一二三总分21 22 23 24 25 26 27 28分数一.选择题(共12小题)1、三角形A’B’C’是由三角形ABC平移得到的,点A(-1,-4)的对应点为A’(1,-1),则点B(1,1)的对应点B’、点C(-1,4)的对应点C’的坐标分别为()A、(2,2)(3,4)B、(3,4)(1,7)C、(-2,2)(1,7)D、(3,4)(2,-2)2、一个长方形在平面直角坐标系中三个顶点的坐标为(– 1,– 1)、(– 1,2)、(3,– 1),则第四个顶点的坐标为()A、(2,2)B、(3,2)C、(3,3)D、(2,3)3、如图,下列说法正确的是()A、A与D的横坐标相同B、 C 与D的横坐标相同C、B与C的纵坐标相同D、 B 与D的纵坐标相同4、已知A(-4,2),B(1,2),则A,B两点的距离是()。

A.3个单位长度 B.4个单位长度 C.5个单位长度 D.6个单位长度5.小米同学乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的结果如图所示,每相邻两个圆之间距离是1km(小圆半径是1km).若小艇C相对于游船的位置可表示为(270°,-1.5),则描述图中另外两个小艇A,B的位置,正确的是( )A.小艇A(60°,3),小艇B(-30°,2)B.小艇A(60°,3),小艇B(60°,2)C.小艇A(60°,3),小艇B(150°,2)D.小艇A(60°,3),小艇B(-60°,2)6.在平面直角坐标系中,点(-1,2m +1)一定在( )A.第一象限B.第二象限C.第三象限D.第四象限7.已知坐标平面内,线段AB∥x轴,点A(﹣2,4),AB=1,则B点坐标为()A.(﹣1,4)B.(﹣3,4)C.(﹣1,4)或(﹣3,4)D.(﹣2,3)或(﹣2,5)8.已知过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,则a的值为()A.﹣1 B.1 C.2 D.﹣29.如图,下列说法正确的是()A.A与D的横坐标相同 B.C与D的横坐标相同C.B与C的纵坐标相同 D.B与D的纵坐标相同10.已知点A的坐标为(1,3),点B的坐标为(3,1),将线段AB沿某一方向平移后,点A的对应点的坐标为(﹣2,1),则点B的对应点的坐标为()A.(6,3)B.(0,3)C.(6,﹣1)D.(0,﹣1)11.将点(﹣3,2)先向右平移3个单位,再向下平移4个单位后与N点重合,则点N坐标为()A.(﹣3,﹣2)B.(0,﹣2)C.(0,2)D.(﹣6,﹣2)12.如图,一个机器人从点O出发,向正西方向走2m到达点A1;再向正北方向走4m到达点A2,再向正东方向走6m到达点A3,再向正南方向走8m到达点A4,再向正西方向走10m到达点A5,按如此规律走下去,当机器人走到点A9时,点A9在第()象限A.一B.二C.三D.四二.填空题(共4小题)13.如果将电影票上“8排5号”简记为(8,5),那么“11排10号”可表示为;(5,6)表示的含义是.14.边长为1的正方形网格在平面直角坐标系中,线段A1B1是由线段AB平移得到的,已知A,B两点的坐标分别为A(3,3),B(5,0),若A1的坐标为(﹣5,﹣3),则B1的坐标为.15.点M(3,4)与x轴的距离是个单位长度,与原点的距离是个单位长度.16.已知,点A(a﹣1,b+2),B(3,4),C(﹣1,﹣2)在同一个坐标平面内,且AB所在的直线平行于x轴,AC所在的直线平行于y轴,则a+b=.三.解答题(共4小题)17.在平面直角坐标系中,有点A(a+1,2),B(﹣a﹣5,2a+1).(1)若线段AB∥y轴,求点A、B的坐标;(2)当点B在第二、四象限的角平分线上时,求A点坐标.18.已知在平面直角坐标系中有三点A(﹣2,1)、B(3,1)、C(2,3),请回答如下问题:(1)在平面直角坐标系内描出点A、B、C;(2)在坐标系内存在点P,使以A、B、C、P四个点组成的四边形中,相对的两边互相平行且相等,则点P的坐标为.(直接写出答案)(3)平移线段BC,使得C点的对应点刚好与坐标原点重合,求出线段BC在平移的过程中扫过的面积.19.已知平面直角坐标系中有一点M(2m﹣3,m+1).(1)若点M到y轴的距离为2时,求点M的坐标;(2)点N(5,﹣1)且MN∥x轴时,求点M的坐标.20.对于实数a,b定义两种新运算“※”和“*”:a※b=a+kb,a*b=ka+b(其中k为常数,且k≠0),若对于平面直角坐标系xOy中的点P(a,b),有点P′的坐标(a※b,a*b)与之对应,则称点P的“k衍生点”为点P′.例如:P (1,3)的“2衍生点”为P′(1+2×3,2×1+3),即P′(7,5).(1)点P(﹣1,5)的“3衍生点”的坐标为;(2)若点P的“5衍生点”P的坐标为(9,﹣3),求点P的坐标;(3)若点P的“k衍生点”为点P′,且直线PP′平行于y轴,线段PP′的长度为线段OP长度的3倍,求k的值.参考答案与试题解析一.选择题(共12小题)1.【解答】解:将点(2,3)向下平移1个单位长度,所得到的点的坐标是(2,2),故选:B.2.【解答】解:A、东经37°,北纬21°物体的位置明确,故本选项错误;B、电影院某放映厅7排3号物体的位置明确,故本选项错误;C、芝罘区南大街无法确定物体的具体位置,故本选项正确;D、烟台山灯塔北偏东60°方向,距离灯塔3千米物体的位置明确,故本选项错误;故选:C.3.【解答】解:如图所示:点C的坐标为(5,3),故选:D.4.【解答】解:∵A(﹣1,5)向右平移2个单位,向下平移1个单位得到A′(1,4),∴C(0,1)右平移2个单位,向下平移1个单位得到C′(2,0),故选:C.5.【解答】解:根据点A(m,n),且有mn≤0,所以m≥0,n≤0或m≤0,n≥0,所以点A一定不在第一象限,故选:A.6.【解答】解:在坐标系中,点(﹣3,2)先向右平移5个单位得(2,2),再把(2,2)向下平移3个单位后的坐标为(2,﹣1),则A点的坐标为(2,﹣1).故选:C.7.【解答】解:∵坐标平面内,线段AB∥x轴,∴点B与点A的纵坐标相等,∵点A(﹣2,4),AB=1,∴B点坐标为(﹣1,4)或(﹣3,4).故选:C.8.【解答】解:∵过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,∴a=﹣2,故选:D.9.【解答】解:根据题意,点Q的横坐标为:﹣2﹣3=﹣5;纵坐标为﹣3+2=﹣1;即点Q的坐标是(﹣5,﹣1).故选:C.10.【解答】解:∵A(1,3)的对应点的坐标为(﹣2,1),∴平移规律为横坐标减3,纵坐标减2,∴点B(3,1)的对应点的坐标为(0,﹣1).故选:D.11.【解答】解:如图,点A(﹣3,2)先向右平移3个单位得到B,再向下平移4个单位后与N点重合,观察图象可知N(0,﹣2),故选:B.12.【解答】解:由题可知,第一象限的规律为:3,7,11,15,19,23,27,…,3+4n;第二象限的规律为:2,6,10,14,18,22,26,…,2+4n;第三象限的规律为:1,5,9,13,17,21,25,…,1+4n;第四象限的规律为:4,8,12,16,20,24,…,4n;所以点A9符合第三象限的规律.故选:C.二.填空题(共4小题)13.【解答】解:∵8排5号简记为(8,5),∴11排10号表示为(11,10),(5,6)表示的含义是5排6号.故答案为:(11,10);5排6号.14.【解答】解:由点A到A1可知:各对应点之间的关系是横坐标加﹣8,纵坐标加﹣7,那点B到B1的移动规律也如此,则B1的横坐标为5+(﹣8)=﹣3;纵坐标为0+(﹣7)=﹣7;∴B1的坐标为(﹣3,﹣7).故答案为:(﹣3,﹣7).15.【解答】解:点M(3,4)与x轴的距离是4个单位长度,与原点的距离是5个单位长度,故答案为:4;516.【解答】解:由点A(a﹣1,b+2),B(3,4),C(﹣1,﹣2)在同一个坐标平面内,且AB所在的直线平行于x轴,AC所在的直线平行于y轴,可得:4=b+2,﹣1=a﹣1,解得:b=2,a=0,所以a+b=2,故答案为:2三.解答题(共4小题)17.【解答】解:(1)∵线段AB∥y轴,∴a+1=﹣a﹣5,解得:a=﹣3,∴点A(﹣2,2),B(﹣2,﹣5);(2)∵点B(﹣a﹣5,2a+1)在第二、四象限的角平分线上,∴(﹣a﹣5)+(2a+1)=0.解得a=4.∴点A的坐标为(5,2).18.【解答】解:(1)点A,B,C如图所示.(2)满足条件的点P的坐标为(8,3)或(﹣3,3)或(﹣1,﹣1).故答案为(8,3)或(﹣3,3)或(﹣1,﹣1).(3)线段BC在平移的过程中扫过的面积=2S△OBC=2×(3×3﹣×1×3﹣×1×2﹣×2×3)=7.19.【解答】解:(1)∵点M(2m﹣3,m+1),点M到y轴的距离为2,∴|2m﹣3|=2,解得m=2.5或m=0.5,当m=2.5时,点M的坐标为(2,3.5),当m=0.5时,点M的坐标为(﹣2,1.5);综上所述,点M的坐标为(2,3.5)或(﹣2,1.5);(2)∵点M(2m﹣3,m+1),点N(5,﹣1)且MN∥x轴,∴m+1=﹣1,解得m=﹣2,故点M的坐标为(﹣7,﹣1).20.【解答】解:(1)点P(﹣1,5)的“3衍生点”P′的坐标为(﹣1+3X5,﹣1X3+5),即(14,2),故答案为:(14,2);(2)设P(x,y)依题意,得方程组.解得.∴点P(﹣1,2);(3)设P(a,b),则P′的坐标为(a+kb,ka+b).∵PP′平行于y轴∴a=a+kb,即kb=0,又∵k≠0,∴b=0.∴点P的坐标为(a,0),点P'的坐标为(a,ka),∴线段PP′的长度为|ka|.∴线段OP的长为|a|.根据题意,有|PP′|=3|OP|,∴|ka|=3|a|.∴k=±3.。

七年级数学(下)第七章《平面直角坐标系》练习题含答案

七年级数学(下)第七章《平面直角坐标系》练习题含答案

七年级数学(下)第七章《平面直角坐标系》练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.点P(3,–2)在平面直角坐标系中所在的象限是A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】由点的坐标特征可得点P(3,–2)在第四象限,故选D.2.已知点P位于x轴上方,到x轴的距离为2,到y轴的距离为5,则点P坐标为A.(2,5)B.(5,2)C.(2,5)或(–2,5)D.(5,2)或(–5,2)【答案】D【解析】由题意得P(5,2)或(–5,2).故选D.3.在平面直角坐标系中,点P在x轴的下方,y轴右侧,且到x轴的距离为5,到y轴距离为1,则点P的坐标为A.(1,–5) B.(5,1)C.(–1,5) D.(5,–1)【答案】A故选A.4.如图,小手盖住的点的坐标可能为A.(5,2) B.(–6,3)C.(–4,–6) D.(3,–4)【答案】C【解析】根据图示,小手盖住的点在第三象限,第三象限的点坐标特点是:横负纵负;分析选项可得只有C符合.故选C.5.在平面直角坐标系中,将点P(–1,–3)向右平移2个单位后得到的点位于A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】先确定移动后的点,再根据各象限符号特征进行判断.由题意得移动后的点为(1,–3),再由1>0和–3<0可知移动后的该点位于第四象限.故选D.二、填空题:请将答案填在题中横线上.6.点A的坐标(–3,4),它到y轴的距离为__________.【答案】3【解析】点A的坐标(–3,4),它到y轴的距离为|–3|=3,故答案为:3.7.直线a平行于x轴,且过点(–2,3)和(5,y),则y=__________.【答案】3∴y=3.故填3.8.在平面直角坐标系中,若点A坐标为(–1,3),AB∥y轴,线段AB=5,则B点坐标为__________.【答案】(–1,8)或(–1,–2)【解析】∵AB与y轴平行,∴A、B两点的横坐标相同,又AB=5,∴A点纵坐标为:3+5=8,或3−5=−2,∴A点的坐标为:(−1,8)或(−1,−2).故答案为:(−1,8)或(−1,−2).9.在平面直角坐标系中,已知点A的坐标为(a–2,7–2a),若点A到两坐标轴的距离相等,则a的值为__________.【答案】3或5【解析】∵点A(a–2,7–2a)到两坐标轴的距离相等,∴|a–2|=|7–2a|,∴a–2=7–2a或a–2=–(7–2a),解得a=3或a=5.故答案为:3或5.10.将点A(–2,–3)先向右平移3个单位长度再向上平移4个单位长度得到点B,则点B所在象限是第__________象限.【答案】一【解析】将点A(–2,–3)先向右平移3个单位长度再向上平移4个单位长度得到点B(–2+3,–3+4),即(1,1),在第一象限.故答案为:一.三、解答题:解答应写出文字说明、证明过程或演算步骤.11.在如图所示的平面直角坐标系中,用有序数对表示出A,B,C,D各点的位置.【解析】A(1,2),B(2,1),C(–2,1),D(–1,–2).12.在直角坐标系中,标出下列各点的位置,并写出各点的坐标.(1)点A在x轴上,位于原点的左侧,距离坐标原点4个单位长度;(2)点B在y轴上,位于原点的上侧,距离坐标原点4个单位长度;(3)点C在y轴的左侧,在x轴的上侧,距离每个坐标轴都是4个单位长度.【解析】(1)如图所示:A(-4,0);(2)如图所示:B(0,4);(3)如图所示:C(-4,4).。

七年级数学下册第七章《平面直角坐标系》综合测试卷-人教版(含答案)

七年级数学下册第七章《平面直角坐标系》综合测试卷-人教版(含答案)

七年级数学下册第七章《平面直角坐标系》综合测试卷-人教版(含答案)一、选择题(每小题3分,共18分)1.根据下列表述,能确定位置的是( ).A.红星电影院第2排 B.北京市四环路C.北偏东30° D.东经118°,北纬40°2.下列关于有序数对的说法正确的是( ).A.(3,2)与(2,3)表示的位置相同B.(a,b)与(b,a)表示的位置一定不同C.(3,-2)与(-2,3)是表示不同位置的两个有序数对D.(4,4)与(4,4)表示两个不同的位置3.点P(3,﹣1)在第()象限.A.一 B.二 C.三 D.四a a>,那4.在平面直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加正数(1)么所得的图案与原来图案相比().A.形状不变,大小扩大到原来的a倍; B.图案向右平移了a个单位;C .图案向上平移了a 个单位;D .图案向右平移了a 个单位,并且向上平移了a 个单位.5.雷达二维平面定位的主要原理是:测量目标的两个信息——距离和角度,目标的表示方法为(m ,α),其中,m 表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A ,B ,C 处有目标出现,其中,目标A 的位置表示为A (5,30°),用这种方法表示目标B 的位置,正确的是( ).A .(﹣4,150°) B .(4,150°)C .(﹣2,150°) D .(2,150°)6.已知点P 在第二象限,有序数对(m ,n )中的整数m ,n 满足m -n =-6,则符合条件的点P 共有( )A .5个B .6个C .7个D .无数个 二,填空题(每小题3分,共18分)7.七(2)班教室里的座位共有7排8列,其中小明的座位在第3排第7列,简记为(3,7),小华坐在第5排第2列,则小华的座位可记作__________. 8.如果点P (x -4,y +1)是坐标原点,则2xy =_________9.若点P (x ,y )在第三象限,且点P 到x 轴的距离为3,到y 轴的距离为2,则点P 的坐标是_________10. 在平面直角坐标系中,若A 点坐标为(﹣3,3), B 点坐标为(2,0),则△ABO 的面积为__________. 11.若点P (a ,b )在第四象限,则点M (b -a ,a -b ) 在第________象限.(第5题)(第10题)12.线段AB与线段CD平行且相等,若端点坐标为A(1,3),B(2,7),C(2,-4),则另一个端点D的坐标为__________.三,解答题(每小题6分,共30分)13.已知平面直角坐标系中有一点)1m2(mM+,3-(1)若点M在y轴上,求M的坐标.(2)若点M在x轴上,求M的坐标.14.已知△ABC中,点A(1,-2),B(3,-2),C(2,0),D(4,1),E(2,4),F(0,1).在直角坐标系中,标出各点并按A—B—C—D—E—F—C—A顺次连接.(第14题)15.如图,如果“士”所在位置的坐标为(-2,-2),“相”所在位置的坐标为(1,-2),(1)画出直角坐标系.(2)“炮”现在所在位置的坐标为____ _. (3)下一步如果走“相”则走完后其坐标是______________.16.如图,已知单位长度为1的方格中有三角形ABC.(1)请画出三角形ABC向上平移3格再向右平移2格所得的三角形A′B′C′;(2)请以点A为坐标原点建立平面直角坐标系,然后写出点B,点B’的坐标:B(_____________),B’(______________).17.一个等腰直角三角形如图放置于直角坐标系内,∠ABO=90°,∠AOB=45°,若A点坐标为(8-6x,3x+1),求B点的坐标. (第15题)(第16题)(第17题)四,解答题(每小题8分,共24分)18.如图所示,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a,b满足0+b2a,点C的坐标为(0,3).4-=+(1)求A,B的坐标(2)求三角形ABC的面积(第18题)19.在平面直角坐标系中,点M的坐标为(a+3,a﹣3).(1)当a=﹣1时,点M在坐标系的第______象限;(直接填写答案)(2)无论a为何值,点M一定不在第______象限;(直接填写答案)(3)将点M向左平移2个单位,再向上平移1个单位后得到点N,当点N到两坐标轴距离相等时,求a的值.20.已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),求△ABO的面积.(第20题)五,解答题(每小题9分,共18分)21.如图,长方形ABCD 的各边与坐标轴都平行,点A ,C 的坐标分别为 (-1,1),(2,-3).(1)求点B 的坐标是_____.点D 的坐标是_____.(2)一动点P 从点A 出发,沿长方形的边AB ,BC 运动至点C 停止,运动速度为每秒1个单位长度,设运动时间为t s . ①当t =1 时,点P 的坐标是_____. ②当t =4.5 时,点P 的坐标是_____. ③当t =4.5 时,求三角形PDC 的面积.22.先阅读下列一段文字,再回答后面的问题.已知在平面内两点P 1(x 1,y 1)、P 2(x 2,y 2),其两点间的距离公式P 1P 2=212212)()(y y x x -+-,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x 2-x 1|或|y 2-y 1|. (1)已知P (-3,4)试求线段OP ;(第21题)(2)已知M、N在平行于y轴的直线上,点M的纵坐标为5,点N的纵坐标为-1,试求M、N两点间的距离.(3)已知A(3,2),点B在x轴上,若AB=5,求点B 的坐标.六,解答题(12分)23.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A、B 的对应点C,D,连接AC,BD,CD.(1)点C的坐标为,点D的坐标为(2)在y轴上是否存在一点P,连接P A,PB,使△P AB的面积与四边形ABDC的面积相等,若存在这样一点,求出点P的坐标;若不存在,试说明理由.(3)点Q从点C出发,沿“CD→DB”移动.若点P的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:①当t= 秒时,∠QOB=∠CAB;②当t= 秒时,∠QBA=∠CAB;(第23题)参考答案一、选择题(每小题3分,共18分)1. D. 2.C 3.D 4.D. 5.B. 6.A.二、填空题(每小题3分,共18分)7.(5,2) 8.-8 9.(-2,-3)10.3 11.二 12.(3,0)或(1,-8)三、解答题(每小题6分,共30分)13.解:(1)∵点M在y轴上∴2m-3=0解得:m=1.5 则m+1=2.5∴M的坐标为(0,2.5)(2)∵点M在x轴上∴m+1=0解得:m=-1 则2m-3=-5∴M的坐标为(-5,0)14.解:如图15.解:(1)如图所示(2) (-4,1) (3)(-1,0)或(3,0)16.解:(1)如图所示(2)B (1,2),B ’(3,5).17.解:由题意可知AB =BO ∵A 点坐标为(8-6x ,3x +1) ∴-(8-6x )=3x +1解得:x =3, 则8-6x= -10 ∴ B 点的坐标为(-10,0) 四、解答题(每小题8分,共24分) 18.解:(1)∵0=4-+2+b a ∴a =-2,b =4yxO∴A点的坐标为(-2,0), B点的坐标为(4,0)(2)∵A(-2,0), B(4,0)∴AB=6∵C(0,3).∴OC=3∴三角形ABC的面积S=6×3÷2=919.解:(1)四(2)二(3)∵M(a+3,a﹣3)向左平移2个单位向上平移1个单位得到点N∴N(a+1,a﹣2)∵点N到两坐标轴距离相等∴∣a+1│=∣a﹣2│∵a+1≠a﹣2∴a+1=-(a﹣2)解得a=0.520.解:S△ABO=S△ADO+S梯形ABCD-S△OBC=1×3÷2+(1+3)×2÷2-3×1÷2=4五、解答题(每小题9分,共18分)21.解(1)B的坐标是(2,1).点D的坐标是(-1,-3)P(2)①点P的坐标坐标是(0,1)②∵A(-1,1),B(2,1),C(2,-3).∴DC=AB=3,BC=4∵当t =4.5 时AB+BP=4.5,∴CP=3+4-4.5=2.5∴P 的坐标坐标是(2,-0.5)三角形PDC 的面积=3×2.5÷2=415 22.解(1)OP=525040322==+)()(---(2)MN=|y 2-y 1|=|5-(-1)|=6(3)由点B 在x 轴上可设B 的坐标为(x,0) 则AB =4)3)02()3222+=+x x ---(( ∵AB =5∴54)32=+x -(∴(3-x )2=1 解得:x =2或x =4∴B 的坐标为(2,0)或(4,0)六、解答题(12分)23.解(1)点C 的坐标为(0,2),点D 的坐标为(4,2)(2)由题意可知OC=2,AB=4,∴四边形ABDC 的面积=2×4=8∵△P AB 的面积=四边形ABDC 的面积=8且AB=4, ∴OP=4∴P的坐标为(0,4)或(0,-4)(3)①当t=1秒时,∠QOB=∠CAB;②当t=2秒时,∠QBA=∠CABQ。

七年级数学下册第七章平面直角坐标系测试卷(附答案)

七年级数学下册第七章平面直角坐标系测试卷(附答案)

七年级数学下册第七章平面直角坐标系测试卷(附答案)篇一:七年级数学下册第七章《平面直角坐标系》测七年级数学下册第七章《平面直角坐标系》测试题一、选择题:(每题2.5分,共50分)1、若a?5,b?4,且点M(a,b)在第二象限,则点M的坐标是()A、(5,4)B、(-5,4)C、(-5,-4)D、(5,-4)2、过A(4,-2)和B(-2,-2)两点的直线一定()A、垂直于x轴B、与y轴相交但不平于x轴C、平行于x轴D、与x轴、 y轴平行3、如右图所示的象棋盘上,若帅(1,-2)上,○位于点相○位于点(3,-2)上,则炮○位于点()A、(-1,1)B、(-1,2)C、(-2,1)D、(-2,2)图34、一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1)、(-1,2)、(3,-1),则第四个顶点的坐标为()A、(2,2)B、(3,2)C、(3,3)D、(2,3)5、若x轴上的点P到y轴的距离为3,则点P的坐标为()A、(3,0)B、(3,0)或(–3,0)C、(0,3)D、(0,3)或(0,–3)6、点M(x,y)满足x=0那么点M的可能位置是() yA.x轴上所有的点B.除去原点后x轴上的点的全体C.y轴上所有的点 D.除去原点后y轴上的点的全体7、如果两个点到x轴的距离相等,那么这两个点的坐标必须满足()A横坐标相等 B纵坐标相等C横坐标的绝对值相等 D纵坐标的绝对值相等8、线段CD是由线段AB平移得到的.点A(–1,4)的对应点为C(4,7),则点B(– 4,– 1)的对应点D的坐标为()A.(2,9)B.(5,3)C.(1,2)D.(– 9,– 4)9、已知三角形的三个顶点坐标分别是(-1,4),(1,1),(-4,-1),现将这三个点先向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是()A、(-2,2),(3,4),(1,7)B、(-2,2),(4,3),(1,7)C、(2,2),(3,4),(1,7)D、(2,-2),(3,3),(1,7)10、在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比()A、向右平移了3个单位B、向左平移了3个单位C、向上平移了3个单位D、向下平移了3个单位11、在平面直角坐标系中,点?1,m2?1一定在()A.第一象限B.第二象限 C.第三象限 D.第四象限12、若点P?m,n?在第二象限,则点Q??m,?n?在()A.第一象限 B.第二象限 C.第三象限 D.第四象限13、已知两圆的圆心都在x轴上,A、B为两圆的交点,若点A的坐标为?1,?1?,则点B坐标为()A.?1,1? B.??1,?1? C.??1,1?D.无法求出14、已知点A?2,?2?,如果点A关于x轴的对称点是B,点B关于原点的对称点是C,那么C点的坐标是()A.?2,2? B.??2,2? C.??1,?1?D.??2,?2? ??15、在平面直角坐标系中,以点P?1,2?为圆心,1为半径的圆必与x轴有个公共点()A.0 B.1C.2 D.316、已知点A?3a,2b?在x轴上方,y轴的左边,则点A到x轴.y轴的距离分别为()A.3a,?2b B.?3a,2b C.2b,?3a D.?2b,3ab)17、若点P(a,到x轴的距离是2,到y轴的距离是3,则这样的点P有()A.1个B.2个C.3个D.4个18、点(x,x?1)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限19、如果点P(?m,3)与点P1(?5,n)关于y轴对称,则m,n的值分别为()A.m??5,n?3 B.m?5,n?3C.m??5,n??3 D.m??3,n?520、一艘轮船从港口O出发,以15海里/时的速度沿北偏东60°的方向航行4小时后到达A处,此时观测到其正西方向50海里处有一座小岛B.若以港口O为坐标原点,正东方向为x轴的正方向,正北方向为y轴的正方向,1海里为1个单位长度建立平面直角坐标系(如图),则小岛B所在位置的坐标是()A A.50,B.(30, D.30) 50)C. (30,二、填空题:(每空2分,共54分)1、按下列条件确定点P(x,y)的位置:⑴x=0,y<0,则点P在____;⑵xy=0,则点P一定在____;⑶|x|+|y|=0,则点P在____第20题图 x_;⑷若xy>0,则点P在____.2、己知点P(x,y)位于第二象限,并且满足y≤x+4,x、y为整数,写出一个符合上述条件的点P的坐标___。

人教版七年级数学下册第七章 平面直角坐标系习题(含答案)

人教版七年级数学下册第七章 平面直角坐标系习题(含答案)

第七章 平面直角坐标系一、单选题1.在平面直角坐标系中,点A (﹣2,4)位于( )A .第一象限B .第二象限C .第三象限D .第四象限 2.点M (m +1,m +3)在y 轴上,则点M 的坐标为( )A .(0,−4)B .(4,0)C .(−2,0)D .(0,2)3.根据下列表述,能确定位置的是( )A .万达影城电影院5排B .怀远路,C .北偏东46°D .东经116°,北纬36°4.若点P(x,y)在第四象限,且2x =,3y = ,则x+y 等于:A .-1B .1C .5D .-55.生态园位于县城东北方向5千米处,如图中表示准确的是( )A .B .C .D . 6.如图,棋盘上若“将”位于(2,﹣2),“象”位于(4,﹣2),则“炮”位于( )A .(﹣2,1)B .(﹣1,2)C .(﹣1,1)D .(﹣2,2) 7.如图,A 、B 的坐标为(2,0)、(0,1),若将线段AB 平移至11A B ,则+a b 的值为( )A .3B .2C .5D .48b 20-=,则点(a ,b)在( )A .第一象限B .第二象限C .第三象限D .第四象限 9.点P 位于x 轴下方,y 轴左侧,距离x 轴4个单位长度,距离y 轴2个单位长度,那么点P 的坐标是( )A .(4,2)B .(-2,-4)C .(-4,-2)D .(2,4)10.在坐标平面内有一点P(x ,y),若xy =0,那么点P 的位置在( )A .原点B .x 轴上C .y 轴上D .坐标轴上二、填空题11.点P (a ,8)到两坐标轴的距离相等,则a =_____.12.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A (﹣2,1)和B (﹣2,﹣3),那么第一架轰炸机C 的平面坐标是_____.13.通过平移将点()7,6A -移到点()2,2A '-,若按同样的方法移动点()3,1B 到点B ',则点B '的坐标是______.14.在电影票上如果将“8排4号”记作(8,4),那么“3排5号”记作_____.三、解答题15.在平面直角坐标系中,已知点()1,3M a +-,()3,21N a +.(1)若点M 在y 轴上,求点N 的坐标;(2)若MN x P 轴,求a 的值.16.已知平面直角坐标系中有一点M(m -1,2m +3).(1)当m 为何值时,点M 到x 轴的距离为1?(2)当m 为何值时,点M 到y 轴的距离为2?17.如图,三角形BCO 是三角形BAO 经过某种变换得到的.(1)写出A ,C 的坐标;(2)图中A 与C 的坐标之间的关系是什么?(3)如果三角形AOB 中任意一点M 的坐标为(x ,y),那么它的对应点N 的坐标是什么?18.已知:△ABC 与△''A B C 在平面直角坐标系中的位置如图.(1)分别写出B、'B的坐标:B;'B;A B C内的对应点'P的坐标为(2)若点P(a,b)是△ABC内部一点,则平移居△''(3)求△ABC的面积答案1.B 2.D 3.D 4.A 5.B 6.C 7.A 8.B9.B10.D11.±812.(2,-1).13.(8,-3)14.(3,5)15.(1)()3,1N -;(2)2a =-.16.(1)m =-1或m =-2.(2)m =3或m =-1. 17.(1)A(5,3),C(5,-3)(2)关于x 轴对称(3)N(x ,-y)18.(1)(2,0),(2,2)--;(2)(4,2)a b --;(3)2。

初中七年级数学下册第七章 平面直角坐标系练习题

初中七年级数学下册第七章 平面直角坐标系练习题

初中七年级下册第七章平面直角坐标系练习题一、填空题:1.在坐标平面内,有序实数对与平面内的点是_______对应的。

2.点P在第二象限,且到x轴的距离是2,到y轴的距离是3,则点P的坐标是______。

3.如果直线L//x轴,且到x轴的距离为5,那么直线L与y轴的交点坐标是________。

4.已知点P(-2,7),则点P到x轴的距离为_______,到y轴的距离为_____。

5.过点M(3,2)且平行于x轴的直线上点的纵坐标是_______,过点M (3,2)且平行于y轴的直线上的点的横坐标是_______.6.地球上的点,人们常用_______来表示,如某地位于北纬20°,东经117°。

7.点A(-3,2)在第_____象限,点D(3,-2)在第__象限,点C(3,2)在第__象限,点F(0,2)在__轴上,点E(2,0)在__轴上。

8.点P在第二象限内,P到x轴的距离是4,到y轴的距离是5,那么点P的坐标是_____。

9.点P(-2,m)在第二象限的角平分线上,则m=____。

10.x轴上的点,其纵坐标为___,y轴上的点,其横坐标为___,原点的坐标为___。

11.七年级(1)班教室里的座位共有7排8列,其中小强的座位在第3排第7列,简记为(3,7),小华坐在第5排第2列,则小龙的座位可记作__________.12.若点P(a,b-)在第二象限,则点Q(ab-,a b+)在第_______象限.13.若点P到x轴的距离是12,到y轴的距离是15,那么P点坐标可以是________(写出一个即可).14.小红将直角坐标系中的猫的图案向右平移了3个单位长度,平移前猫眼的坐标为(-4,3),(-2,3),则移动后猫眼的坐标为_________.15.已知点P(x,y)在第四象限,且|x|=3,|y|=5,则点P的坐标是______.16.如图,中国象棋中的“象”,在图中的坐标为(1,0),•若“象”再走一步,试写出下一步它可能走到的位置的坐标________.A CB17.如下图,小明告诉小华图中A、B两点的坐标分别为(-3,5),(3,5),•小刚一下就说出了C在同一坐标系下的坐标________.18.已知点P的坐标(2a-,36a+),且点P到两坐标轴的距离相等,则点P的坐标是 .二、选择题:1.气象台为预报台风,首先要确定它的位置,下列说法能确定台风位置的是()A.西太平洋B.北纬26º,东经133º、 C.距台湾300海里 D.台湾与冲绳之间2.若点A(a,b)在第二象限,则点B(a-b,b-a)一定在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.若点A(n,2)与B(-3,m)关于原点对称,则n-m等于()A.-1 B.-5 C.1 D.54.若a﹥0,则点P(-a,2)应在()A.第一象限B.第二象限C.第三象限D.第四象限5.某同学的座位号为(4,2),那么该同学的位置是()(A)第2排第4列(B)第4排第2列(C)第2列第4排(D)不好确定6.下列各点中,在第二象限的点是()(A)(2,3)(B)(2,-3)(C)(-2,-3)(D)(-2,3)7.若x轴上的点P到y轴的距离为3,则点P的坐标为()(A)(3,0)(B)(0,3)(C)(3,0)或(-3,0)(D)(0,3)或(0,-3)18.点M(1m+)在x轴上,则点M坐标为().m+,3(A)(0,-4)(B)(4,0)(C)(-2,0)(D)(0,-2)9.点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为()(A)(3,2)(B)(3,3-)-)(D)(2,2--)(C)(2,310如果点P(5,y)在第四象限,则y的取值范围是()(A)0y≤(D)y>(C)0y<(B)0y≥11.如图:正方形ABCD中点A和点C的坐标分别为)3,2(-和Array )2,3(-,则点B和点D的坐标分别为().(A))2,2(和)3,3((B))2-和)3,3((-,2(C))2(--(-,2,3-(D))2,2(和)3,3(--和)312.一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1),(-1,2),(3,-1)•,则第四个顶点的坐标为()(A)(2,2)(B)(3,2)(C)(3,3)(D)(2,3)13线段AB两端点坐标分别为A(4,1-),B(1,4-),现将它向左平移4个单位长度,得到线段A1B1,则A1、B1的坐标分别为()(A)A1(0,5-)(B)A1(7,3),B1(0,5),8--),B1(3(C)A1(4,5-)B1(-8,1)(D)A1(4,3)B1(1,0)14.在方格纸上有A、B两点,若以B点为原点建立直角坐标系,则A点坐标为(2,5),若以A点为原点建立直角坐标系,则B点坐标为().(A)(-2,-5)(B)(-2,5)(C)(2,-5)(D)(2,5)三、解答题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.1.2 平面直角坐标系
2.在坐标平面内,已知点A(4,-6),那么点
A关于x轴的对称点A ′的坐标为_____,点A关于y轴的对称点A″的坐标为_______.
3.在坐标平面内,已知点A(a,b),那么点A关于x轴的对称点A ′的坐标为______,点A关于y轴的对称点A″的坐标为_____.
4.点A(-3,2)在第_______象限,点D(-3,-2)在第_______象限,点C( 3, 2) 在第______象限,点D(-3,-2)在第_______象限,点E(0,2)在______轴上, 点F( 2, 0) 在______轴上.
5.已知点M(a,b),当a>0,b>0时,M在第_______象限;当a____,b______时,M 在第二象限;当a_____,b_______时,M在第四象限;当a<0,b<0时,M在第______象限.
三、基础训练:(共12分)
如果点A的坐标为(a2+1,-1-b2),那么点A在第几象限?为什么?
四、提高训练:(共15分)
如果点A(t-3s,2t+2s),B(14-2t+s,3t+2s-2)关于x轴对称,求s,t的值.
五、探索发现:(共15分)
如图所示,C,D两点的横坐标分别为2,3,线段CD=1;B,D两点的横坐标分别为-2,3,线段BD=5;A,B两点的横坐标分别为-3,-2,线段AB=1.
(1)如果x轴上有两点M(x1,0),N(x2,0)(x1<x2),那么线段MN的长为多
少?
(2)如果y轴上有两点P(0,y1),Q(0,y2)(y1<y2),那么线段PQ的长为多少?
棋盘中的任何一个位置吗?若不能,指出哪些位置马
无法走到;若能,
请说明原因.
答案:
一、1.B 2.C 3.D 4.D 二、1.(-1,2) (-1,-2) (1,-2) 2. (4,6) (-4,-6) 3.(a,-b) (-a,b) 4. 二 四 一 三 y x 5.一 <0 >0 >0 <0 三 三、解:∵a2+1>0,-1-b2<0, ∴点A 在第四象限.
四、解:∵关于x 轴对称的两个点的横坐标相等,纵坐标互为相反数,
∴3142223220t s t s t s t s -=-+⎧⎨+++-=⎩
即3414
542
t s t s -=⎧⎨
+=⎩,两式相加得8t=16,t=2.
3×2-4s=14,s=-2.
五、(1)MN=x2-x1(2)PQ=y2-y1
六、解:根据题意可得3x-13y+16=0,x+3y-2=0,
由第2个方程可得x=2-3y,
∴第1个方程化为3(2-3y)-13y+16=0,。

相关文档
最新文档