七年级数学下学期第二次月考试卷(含解析) 新人教版
2022-2023学年新人教版七年级下数学月考试卷(含解析)
2022-2023学年初中七年级下数学月考试卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:120 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 12 小题 ,每题 5 分 ,共计60分 )1. 下列各数中,比小的数是( )A.B.C.D.2. 下列调查中,适合普查(全面调查)方法的是( )A.了解一批灯泡的使用寿命B.了解中央电视台《最强大脑》栏目的收视率C.了解全国中学生体重情况D.了解松桃全县居民是精准扶贫户的具体人数3. 已知点到轴的距离为( )A.B.C.D.4. 若成立,则下列不等式一定成立的是( )A.B.C.−1−2π−13A(4,−3)y 4−43−3x <y −3x <−3y3x >3y<x 2y2D.5. 在平面直角坐标系中,点在 A.第一象限B.第四象限C.第一或第四象限D.以上说法都不对6. 不等式组的解集在数轴上表示为( ) A. B. C. D.7. 下列命题正确的是( )A.对角线互相平分且相等的四边形是矩形B.对角线垂直的四边形是菱形C.对角线相等的四边形是矩形D.对角线互相垂直平分的四边形是正方形8.如图,给出了过直线外一点,作已知直线的平行线的方法,其依据是A.同位角相等,两直线平行B.内错角相等,两直线平行−x −2<−y −2P (2,)x 2(){x >3,x ≤1AB P AB ()C.同旁内角互补,两直线平行D.过直线外一点有且只有一条直线与这条直线平行9. 如图,两个较大正方形的面积分别为,,且中间夹的三角形是直角三角形,则字母所代表的正方形的面积为 A.B.C.D.10. 邵东市是全国重要的打火机生产基地.质检部门对市内某企业生产的型打火机的质量进行抽样检测,随机抽查盒(每盒个打火机),盒中合格打火机(单位:个)分别为,,,,个,则估计某企业该型号的打火机的合格率为( )A.B.C.D.11. 已知关于的不等式组仅有三个整数解,则的取值范围是( )A.B.C.D.12. 如图,已知平分,,若,则等于( )225289A ()481664A 5305262929302792%94%96%98%x {x >2a −3,2x ≥3(x −2)+5a ≤a <112≤a ≤112<a ≤112a <1OC ∠AOB CD//OB OD =3cm CDA.B.C.D.卷II (非选择题)二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )13. 的算术平方根是________.14. 如图,将一张含有角的三角形纸片的两个顶点叠放在矩形的两条对边上,若,则的大小为_________.15. 某校组织了一次初三科技小制作比赛,有,,,四个班共提供了件参赛作品.班提供的参赛作品的获奖率为,其它几个班的参赛作品情况及获奖情况绘制在下列图和图两幅尚不完整的统计图中.则获奖率最高的班级是________.16. 小明共有元零花钱,其中只有元,元和元的人民币,三种人民币共张,则小明有_________张元的人民币.17. 如图,将一长方形纸条按如图所示折叠,若,则________.3cm4cm1.5cm2cm16−−√30∘∠2=44∘∠1A B C D 100C 50%12401051105(AB//CD)∠1=40∘∠2=∘18. 不等式组的最小整数解是________.三、 解答题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )19. 计算: .20. 解方程组: 21. 某校为调查学生对“心理健康”知识的了解情况,从全校学生中随机抽取名学生进行测试,将测试成绩收集整理后,绘制成如下的扇形统计图和频数直方图(不完整).请根据图中信息解答下列问题:(1)补全频数直方图;(2)在扇形统计图中,“”这组的百分比________;(3)若成绩达到分以上(含分)为优秀,请你估计全校名学生对“心理健康”知识了解情况为优秀的学生人数. 22. 在平面直角坐标系中,,,轴,与轴相交于点,轴,与轴相交于点.{x +5>2,4−x ≥3−|1−|+−8−−−√33–√(−3)2−−−−−√ x −y =−5,12322(x −1)+y =6.a 70∼80m =80801000A (−4,0)B (2,4)BC//y x C BD//x y D如图,写出点与点坐标;在图中,平移三角形,使点的对应点为原点,点,的对应点分别为点,,①请画出平移后的图形;②写出与的关系;③求三角形平移到三角形的过程中,三角形扫过的面积. 23. 某电器商场销售,两种型号的电风扇,进价分别为元、元,下表是近两周的销售情况:销售时段销售型号销售收入种型号种型号第一周台台元第二周台台元求,两种型号的电风扇的销售单价;若商场准备用不多于元的金额再采购这两种型号的电风扇共台,求种型号的电风扇最多能采购多少台?在的条件下商场销售完这台电风扇能否实现利润超过元的目标?若能,请给出相应的采购方案;若不能,请说明理由. 24. 在平面直角坐标系中,已知点若点在轴上,求点的坐标;若点在第二、四象限的角平分线上,求的值.(1)C D (2)ABD D O A B A ′B ′AB A ′B ′ABD O A ′B ′ABD A B 160120A B 341200561900(1)A B (2)750050A (3)(2)501850M (m +2,2m −3).(1)M y M (2)M m参考答案与试题解析2022-2023学年初中七年级下数学月考试卷一、 选择题 (本题共计 12 小题 ,每题 5 分 ,共计60分 )1.【答案】A【考点】实数大小比较【解析】根据两个负数比较大小,绝对值大的负数反而小,可得答案.【解答】解:,故选项正确;,故选项错误;,故选项错误;,故选项错误.故选.2.【答案】D【考点】全面调查与抽样调查【解析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】、了解一批灯泡的使用寿命适合抽样调查;、了解中央电视台《最强大脑》栏目的收视率适合抽样调查;、了解全国中学生体重情况适合抽样调查;、了解松桃全县居民是精准扶贫户的具体人数适合全面调查;3.−2<−1A 0>−1B π>−1C −>−113D A A B C DA【考点】点的坐标【解析】根据点到轴的距离等于横坐标的长度解答.【解答】解:点到轴的距离为.故选.4.【答案】C【考点】不等式的性质【解析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.可得答案.【解答】解:、两边都乘以,不等号的方向改变,故错误;、两边都乘以,不等号的方向不变,故错误;、两边都除以,不等号的方向不变,故正确;、两边都乘以,不等号的方向改变,故错误;故选:.5.【答案】D【考点】点的坐标【解析】本题考查点的坐标.分两种情况:当时,点,在第一象限,当时,点,在轴正半轴上.即可判定,,错误.y A(4,−3)y |4|=4A A −3A B 3B C 2C D −1D C >0x 2P(2,)x 2=0x 2P(2,)x 2x A B C解:,当时,点在第一象限;当时,点在轴正半轴上,点在第一象限或在轴正半轴上.故选.6.【答案】A【考点】解一元一次不等式组在数轴上表示不等式的解集【解析】此题暂无解析【解答】解:由题意知不等式组的解集在数轴上表示为.故选.7.【答案】A【考点】命题与定理【解析】根据矩形的判定方法对、进行判断;根据菱形的判定对进行判断;根据正方形的判定对进行判断.【解答】解:、对角线互相平分且相等的四边形是矩形,所以选项为真命题;、对角线垂直的平行四边形是菱形,所以选项为假命题;、对角线相等的平行四边形是矩形,所以选项为假命题;、对角线互相垂直平分且相等的四边形是正方形,所以选项为假命题.故选.8.∵≥0x 2∴>0x 2P(2,)x 2=0x 2P(2,)x 2x ∴P(2,)x 2x D A A C B D A A B B C C D D AA【考点】平行线的判定与性质【解析】判定两条直线是平行线的方法有:可以由内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补两直线平行等,应结合题意,具体情况,具体分析.【解答】解:图中所示过直线外一点作已知直线的平行线,则利用了同位角相等,两直线平行的判定方法.故选.9.【答案】D【考点】勾股定理正方形的性质【解析】根据正方形的面积等于边长的平方,由正方形的面积和正方形的面积分别表示出的平方及的平方,又三角形为直角三角形,根据勾股定理求出的平方,即为所求正方形的面积.【解答】解:如图所示,∵正方形的面积等于,∴,∵正方形的面积为,∴,又为直角三角形,根据勾股定理得,∴,∴正方形的面积为,A PQED PRQF PR PQ PQR QR PQED 225P =Q 2225PRGF 289P =R 2289△PQR P =R 2P +Q Q 2R 2Q =R 2P −P R 2Q 2=289−225=64QMNR 64A即字母所代表的正方形的面积为.故选.10.【答案】B【考点】用样本估计总体【解析】用合格打火机的数量除以打火机的总数量即可.【解答】估计某企业该型号的打火机的合格率为=,11.【答案】A【考点】解一元一次不等式组【解析】根据解不等式组,可得不等式组的解,根据不等式组的解是整数,可得答案.【解答】解:解不等式,得:,∵不等式组有且仅有三个整数解,∴此不等式组的整数解为,,.又,∴,解得:.故选.12.【答案】A【考点】角平分线的性质A 64D ×100%94%2x ≥3(x −2)+5x ≤110−1x >2a −3−2≤2a −3<−1≤a <112A平行线的性质【解析】此题暂无解析【解答】解:平分,.,,,.故选.二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )13.【答案】【考点】算术平方根【解析】分别利用平方根、算术平方根的定义计算即可.平方根的定义:一个数的平方等于,这个数叫的平方根;算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根.【解答】解:∵,∴的算术平方根是,即的算术平方根是.故答案为:.14.【答案】【考点】∵OC ∠AOC ∴∠AOC =∠BOC ∵CD//OB ∴∠DCO =∠COB ∴∠DOC =∠DCO ∴OD =CD =3cm A 2x a x a =416−−√4216−−√2214∘三角形的外角性质平行线的性质【解析】依据平行线的性质,即可得到,再根据三角形外角性质,可得,进而得出.【解答】解:如图,∵矩形的对边平行,∴等于所在三角形的一个外角,可得,∴.故答案为:.15.【答案】【考点】扇形统计图条形统计图【解析】直接利用扇形统计图中百分数,进而求出班参赛作品数量;利用班提供的参赛作品的获奖率为 ,结合班参赛数量得出获奖数量;分别求出各班的获奖百分率,进而求出答案.【解答】解:组参赛作品数是: (件);班提供的参赛作品的获奖率为,∴班的参赛作品的获奖数量为:(件),如图所示:班的获奖率为:,班的获奖率为:,班的获奖率为:,∠2=∠3=44∘∠3=∠1+30∘∠1=−=44∘30∘14∘∠2∠1∠2=∠1+30∘∠1=−=44∘30∘14∘14∘CB C 50%C B 100×(1−35%−20%−20%)=25C 50%C 100×20%×50%=10A ×100%=40%14100×3.5%B ×100%=44%1125C 50%100%=40%8班的获奖率为:,故班的获奖率高.故答案为:.16.【答案】【考点】二元一次方程组的应用——其他问题【解析】根据题意设元的人民币为张,元的人民币张,元的人民币张,然后列方程组,根据未知数的取值范围讨论即可得到答案.【解答】解:设元的人民币张,元的人民币张,元的人民币张,根据题意得:得,,,,都是不大于的正整数,当时,,故答案为:.17.【答案】【考点】平行线的性质翻折变换(折叠问题)【解析】从折叠图形的性质入手,结合平行线的性质求解.【解答】解:如图,D ×100%=40%8100×20%C C 35x 10y 1z 5x 10y 1z {5x +10y +z =40①x +y +z =10②①−②4x +9y =30∵x y z 10∴y =2x =33110由折叠得:,,,,,.故答案为:.18.【答案】【考点】一元一次不等式组的整数解【解析】本题主要考察不等式组的解法,只要掌握方法即可.【解答】解:由得,最小整数解为.故答案为:.三、 解答题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )19.【答案】解:.【考点】算术平方根∠GEF =∠DEF ∵∠1=40∘∴∠GEF =∠DEF ==−∠1180∘270∘∵AB//CD ∴∠2+∠DEF =180∘∴∠2=−=180∘70∘110∘110−2{x +5>2,4−x ≥3{x >−3,x ≤1,∴−3<x ≤1∴−2−2−|1−|+−8−−−√33–√(−3)2−−−−−√=−2−(−1)+33–√=−2−+1+33–√=2−3–√立方根的性质绝对值【解析】利用绝对值,立方根,算术平方根的运算法则计算,然后根据运算顺序解答即可.【解答】解:.20.【答案】解:原方程组为:得:,整理得:,得: ,解得.把代入得:,解得.原方程组的解为【考点】加减消元法解二元一次方程组【解析】此题暂无解析【解答】解:原方程组为:得:,整理得:,得: ,解得.把代入得:,解得.原方程组的解为21.−|1−|+−8−−−√33–√(−3)2−−−−−√=−2−(−1)+33–√=−2−+1+33–√=2−3–√ x −y =−5,①12322(x −1)+y =6,②①×2x −3y =−10③②2x +y =8④③+④×37x =14x =2x =2④2×2+y =8y =4∴{x =2,y =4.x −y =−5,①12322(x −1)+y =6,②①×2x −3y =−10③②2x +y =8④③+④×37x =14x =2x =2④2×2+y =8y =4∴{x =2,y =4.【答案】(1)答案见解析;(2);(3)人.【考点】频数(率)分布直方图【解析】(1)可先根据成绩在之间的人数求出总人数的值,从而求出的人数,补全直方图即可;(2)从直方图中读出的人数,再除以总人数即可得到百分比;(3)用成绩达到分以上(含分)的学生人数除以总人数即为优秀率,再乘以即可得出结论【解答】(1)由直方图可知,成绩在之间的人数为人,…被调查的总人数为:人,∴成绩在之间的人数为:人,则补全直方图如图所示:测试成绩频数直方图(2)从直方图中可得,成绩在之间的人数为人,∴故答案为:(3)(人).答:了解情况为优秀的学生人数为人.22.【答案】解:点的坐标为,点的坐标为.①平移后的图形如图所示:20%56080∼90a 90∼10070∼808080100080−9012a =12÷24%=5090∼10050−4−8−10−12=1670−8010m =×100%=20%105020%1000×=56012+1650560(1)C (2,0)D (0,4)(2)②因为是由平移得来,每条对应边都平行,故与的关系为平行且相等.③扫过的面积为.【考点】点的坐标三角形的面积作图-平移变换平移的性质【解析】观察图像可知,点的坐标为,点的坐标为.【解答】解:点的坐标为,点的坐标为.①平移后的图形如图所示:②因为是由平移得来,每条对应边都平行,故与的关系为平行且相等.③扫过的面积为.23.【答案】△O A ′B ′△ABD AB A ′B ′++S △AOD S 长方形OCBD S △ACA ′=×4×4+2×4+×4×61212=8+8+12=28(1)C 2,0D (0,4)(1)C (2,0)D (0,4)(2)△O A ′B ′△ABD AB A ′B ′++S △AOD S 长方形OCBD S △ACA ′=×4×4+2×4+×4×61212=8+8+12=28(1)A解:设种型号电风扇单价为元,种型号电风扇单价为元,依题意得:解得:答:种型号电风扇单价为元,种型号电风扇单价为元.设采购种型号电风扇台,则采购种型号电风扇台.依题意得:,解得:,∵为正整数,∴,答:种型号的电风扇最多能采购台.根据题意得:,解得:,则,∵是正整数,∴或,∴采购方案有两种:方案一:采购种型号的电风扇台,种型号的电风扇台;方案二:采购种型号的电风扇台,种型号的电风扇台.【考点】二元一次方程组的应用——销售问题一元一次不等式的实际应用【解析】(1)设、两种型号电风扇的销售单价分别为元、元,根据台型号台型号的电扇收入元,台型号台型号的电扇收入元,列方程组求解;(2)设采购种型号电风扇台,则采购种型号电风扇台,根据金额不多余元,列不等式求解;(3)根据种型号电风扇的进价和售价、种型号电风扇的进价和售价以及总利润一台的利润总台数,列出不等式,求出的值,再根据为整数,即可得出答案.【解答】解:设种型号电风扇单价为元,种型号电风扇单价为元,依题意得:解得:答:种型号电风扇单价为元,种型号电风扇单价为元.设采购种型号电风扇台,则采购种型号电风扇台.依题意得:,解得:,∵为正整数,∴,答:种型号的电风扇最多能采购台.(1)A x B y {3x +4y =1200,5x +6y =1900,{x =200,y =150.A 200B 150(2)A a B (50−a)160a +120(50−a)≤7500a ≤3712a a =37A 37(3)(200−160)a +(150−120)(50−a)>1850a >3535<a ≤3712a a =3637A 36B 14A 37B 13A B x y 3A 4B 12005A 6B 1900A a B (50−a)7500A B =×a a (1)A x B y {3x +4y =1200,5x +6y =1900,{x =200,y =150.A 200B 150(2)A a B (50−a)160a +120(50−a)≤7500a ≤3712a a =37A 37(3)根据题意得:,解得:,则,∵是正整数,∴或,∴采购方案有两种:方案一:采购种型号的电风扇台,种型号的电风扇台;方案二:采购种型号的电风扇台,种型号的电风扇台.24.【答案】解:由题意可知,,所以,此时所以点坐标为(,).由题意可知,,解得【考点】象限中点的坐标坐标与图形性质点的坐标【解析】【解答】解:由题意可知,,所以,此时所以点坐标为(,).由题意可知,,解得(3)(200−160)a +(150−120)(50−a)>1850a >3535<a ≤3712a a =3637A 36B 14A 37B 13(1)m +2=0m =−22m −3=−7,M 0−7(2)m +2+2m −3=0m =.13(1)m +2=0m =−22m −3=−7,M 0−7(2)m +2+2m −3=0m =.13。
2022-2023学年新人教版七年级下数学月考试卷(含解析)
2022-2023学年初中七年级下数学月考试卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:150 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 10 小题 ,每题 4 分 ,共计40分 )1. 下列现象中不属于平移的是( )A.滑雪运动员在平坦的雪地上滑雪B.彩票打转盘在旋转C.高楼的电梯在上上下下D.火车在一段笔直的铁轨上行驶2. 下列所给方程是二元一次方程的是( )A.B.C.D.3. 用代入法解方程组时,将方程①代入②中,所得的方程正确的是( )A.B.C.D.4. 设“■●▲”表示三种不同的物体,现用天平称了两次,情况如图,那么“■● ▲”中质量最大的是( )x −y +22x −=32yx −y =2−y =2x 2{y =2x −3,①3x −2y =8②3x +4y −3=83x +4x −6=83x −4x +6=83x +2x −6=8A.▲B. ■C.●D.无法判断5. 如果是任意实数,则点一定不在( )A.第一象限B.第二象限C.第三象限D.第四象限6. 李老师用长为的铁丝做了一个长方形教具,其中一边长为,则其邻边长为( )A.B.C.D.7. 方程组的解是( )A.B.C.D.8. 下列命题是假命题的是( )A.平方根等于本身的实数只有B.两直线平行,内错角相等C.点到轴的距离为D.数轴上没有点表示这个无理数m P(m −4,m +1)6a b −a 7a −b2a −b4a −b8a −2b{x =2y,x +y =3{x =1y =2{x =1y =1{x =2y =−1{x =2y =1P (2,−5)x 5π9. 如图,,,过点的直线与平行,若,则的大小为( )A.B.C.D.10. 我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸:屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余尺;将绳子对折再量木条,木条剩余尺,问木条长多少尺?如果设木条长尺,绳子长尺,那么可列方程组为( )A.B.C.D.卷II (非选择题)二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )11. 若,则的值是________.12. 如图,与构成同位角的是________,与构成内错角的是________.AB =AC CD =CE C FG DE ∠1=55∘∠A 55∘50∘45∘40∘4.51x y {y =x +4.50.5y =x −1{y =x +4.5y =2x −1{y =x +4.50.5y =x +1{y =x −4.5y =2x −1+(b −2=a +3−−−−√)20a b ∠1∠213. 中国古代的数学专著《九章算术》有方程问题:“五只雀、六只燕,共重斤(等于两),雀重燕轻.互换其中一只,恰好一样重.”设每只雀、燕的重量各为两,两,可得方程组是________.14. 足球比赛中,胜一场可以积分,平一场可以积分,负一场得分,某足球队最后的积分是分,这个足球队获胜的场次最多是________场.三、 解答题 (本题共计 9 小题 ,每题 10 分 ,共计90分 )15. 解下列方程(组):, 16. 解不等式,并把它的解集在数轴上表示出来..17. 某商场正在热销年北京奥运会吉祥物“福娃”玩具和徽章两种奥运商品,根据下图提供的信息,求一盒“福娃”玩具和一枚徽章的价格各是多少元?18. 已知在平面直角坐标系中有三点,,.请回答如下问题:如图,在坐标系内描出点,,的位置,求出以,,三点为顶点的三角形的面积;在轴上是否存在点,使以,,三点为顶点的三角形的面积为,若存在,请直接写出点的坐标;若不存在,请说明理由.19. 用三张同样大小的长方形硬纸片拼接成一个面积为 的正方形,如图所示,按要求完成下列各小题116x y 31020(1)−=1x −322x +16(2){x +1=2y ,2(x +1)−y =8.−>−3x −25x +422008A(−2,1)B(3,1)C(2,3)(1)A B C A B C (2)y P A B P 10P 3600cm 2.求长方形硬纸片的长和宽;王涵想沿着该正方形硬纸片的边的方向裁出一块面积为 的长方形纸片,使得长方形的长、宽之比为 ,他的想法是否能实现?请说明理由;李鹏想通过裁剪该正方形硬纸片拼一个体积为 的正方体的无盖笔筒,请你判断该硬纸片是否够用?若够用,求剩余的硬纸片的面积;若不够用,求缺少的硬纸片的面积20. 甲、乙两人同时解方程组 时,甲看错了方程①中的,解得 乙看错了②中的,解得 求原方程组的正确解. 21. 在学习“二元一次方程组的解”时,数学张老师设计了一个数学活动.有、 两组卡片,每组各张,组卡片上分别写有,,;组卡片上分别写有,,.每张卡片除正面写有不同数字外,其余均相同.甲从组中随机抽取一张记为,乙从组中随机抽取一张记为.(1)若甲抽出的数字是,乙抽出的数是,它们恰好是=的解,求的值;(2)在(1)的条件下,求甲、乙随机抽取一次的数恰好是方程=的解的概率.(请用树形图或列表法求解) 22.如图,已知.求证:;若,,,分别平分,,求的度数. 23. 年“两会”召开以后,应势复苏的“地摊经济”带来了市场新活力,张阿姨购进,两种恤到夜市出售.已知件种恤和件种恤进价共元,件种恤和件种恤进价共元.问种恤、种恤进货的单价各是多少元?若张阿姨购进,两种恤各件,准备将两种恤混在一起销售,售价均定为每件元,销售一半后,将售价下降促销.要使所有恤销售完后盈利元,求的值.(1)(2)2250cm 25:2(3)729cm 3.{ax +by =15,①4x =by −2,②a {x =−3,y =−1,b {x =5,y =4,A B 3A 023B −5−11A x B y 2−1ax −y 5a ax −y 5∠MBA +∠BAC +∠NCA =360∘(1)MD//NE (2)∠ABD =77∘∠ACE =33∘BP CP ∠ABD ∠ACE ∠BPC 2020A B T 2A T 5B T 1503A T 2B T 104(1)A T B T (2)A B T 150T 30a%T 1800a参考答案与试题解析2022-2023学年初中七年级下数学月考试卷一、 选择题 (本题共计 10 小题 ,每题 4 分 ,共计40分 )1.【答案】B【考点】生活中的平移现象【解析】根据平移不改变图形的形状、大小和方向,结合图形对选项进行一一分析,选出正确答案.【解答】解:、滑雪运动员在平坦的雪地上滑雪,属于平移得到,故本选项错误;、彩票打转盘在旋转,不属于平移得到,故本选项正确;、高楼的电梯在上上下下,属于平移得到,故本选项错误;、火车在一段笔直的铁轨上行驶,属于平移得到,故本选项错误.故选:.2.【答案】C【考点】二元一次方程的定义【解析】依据二元一次方程的定义求解即可.【解答】解:、不是等式,故不是方程,故错误;、分母中含有未知数,不是二元一次方程,故错误;、是二元一次方程,故正确;、未知数的次数是,不是二元一次方程,故错误.故选.3.【答案】A B C D B A A B B C x −y =2C D x 2D CC【考点】代入消元法解二元一次方程组【解析】此题暂无解析【解答】解:将方程①代入②中得:,即,故选.4.【答案】A【考点】不等式的性质【解析】根据第一个不等式,可得■与▲的关系,根据第二个不等式,可得●与■的关系,根据不等式的传递性,可得答案.【解答】解:由第一个天平得,■▲,由第二个天平得,●■.由不等式的传递性可得, ▲质量最大.故选5.【答案】D【考点】象限中点的坐标【解析】此题暂无解析【解答】解:∵,3x −2(2x −3)=83x −4x +6=8C <<A.(m +1)−(m −4)=m +1−m +4=5∴点的纵坐标一定大于横坐标,∵第四象限的点的横坐标是正数,纵坐标是负数,∴第四象限的点的横坐标一定大于纵坐标,∴点一定不在第四象限.故选6.【答案】C【考点】整式的加减【解析】求出邻边之和,即可解决问题;【解答】解:另一边长.故选.7.【答案】D【考点】二元一次方程组的解代入消元法解二元一次方程组【解析】运用代入消元法解二元一次方程组,即可求解.【解答】解:将①代入②得:,,,将代入①得:,故方程组的解为故选.8.【答案】P P D.=3a −(b −a)=3a −b +a =4a −b C {x =2y,①x +y =3,②2y +y =33y =3y =1y =1x =2{x =2,y =1.DD【考点】命题与定理平方根平行线的性质点的坐标在数轴上表示无理数【解析】根据平方根的定义对进行判断;根据平行线的性质对进行判断;根据坐标的意义和点到直线的距离的定义对进行判断;根据在数轴上表示无理数对进行判断.【解答】解:,平方根等于本身的实数只有,是真命题,故不符合题意;,两直线平行,内错角相等,是真命题,故不符合题意;,点到轴的距离为,是真命题,故不符合题意;,数轴上有点表示这个无理数,是假命题,故符合题意.故选.9.【答案】D【考点】平行线的性质三角形内角和定理【解析】根据平行线的性质和等腰三角形的性质可以求出的度数,然后根据三角形内角和定理和等腰三角形的性质即可求出的度数.【解答】解:∵,∴,.∵,∴.∵,∴.∵,∴.∵,A B C D A 0A B B C P (2,−5)x 5C D πD D ∠C ∠A FG//DE ∠CED =∠1=55∘∠FCD =∠CDE CD =CE ∠FCD =∠CDE =∠CED =55∘∠FCD +∠ACB +∠1=180∘∠ACB =−∠FCD −∠1=−−=180∘180∘55∘55∘70∘AB =AC ∠B =∠ACB =70∘∠A +∠B +∠ACB =180∘∠A =−∠B −∠ACB =−−=180∘180∘70∘70∘40∘∴.故选.10.【答案】A【考点】由实际问题抽象出二元一次方程组【解析】设木条长尺,绳子长尺,根据绳子和木条长度间的关系,可得出关于的二元一次方程组,此题得解.【解答】解:设木条长尺,绳子长尺,依题意,由用一根绳子去量一根木条,绳子还剩余尺,可得;由将绳子对折再量木条,木条剩余尺,可得.故方程组为: 故选.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )11.【答案】【考点】非负数的性质:算术平方根非负数的性质:偶次方【解析】先根据二次根式与平方的非负性列出关于,的方程组,求得,的值后即可求得的值.【解答】解:由题意可知,,∴,,∴,,∴故答案为:∠A =−∠B −∠ACB =−−=180∘180∘70∘70∘40∘D x y x ,y x y 4.5y =x +4.51x −1=0.5y {y =x +4.5,0.5y =x −1.A 9a b a b ab =0a +3−−−−√=0(b −2)2a +3=0b −2=0a =−3b =2==9.a b (−3)29.12.【答案】,【考点】同位角、内错角、同旁内角【解析】两个角分别在被截线的同一方,并且都在截线的同侧,具有这种位置关系的两个角叫做同位角,与构成同位角的是;两个角都在被截线之间,并且都在截线的两侧,具有这种位置关系的两个角,叫做内错角,与构成内错角的是.【解答】解;根据同位角、内错角的定义,与构成同位角的是,与构成内错角的是.故答案为:.13.【答案】【考点】由实际问题抽象出二元一次方程组【解析】根据题意可得等量关系:①只雀的重量只燕的重量=两,②只雀的重量只燕的重量=只雀的重量只燕的重量,根据等量关系列出方程组即可.【解答】设每只雀、燕的重量各为两,两,由题意得:,14.【答案】【考点】一元一次不等式的运用【解析】∠B ∠BDE∠1∠B ∠2∠BDE ∠1∠B ∠2∠BDE ∠B ;∠BDE { 5x +6y =164x +y =5y +x5+6165+11+5x y {5x +6y =164x +y =5y +x6设获胜的场次是,平场,负场,根据最后的积分是分,可列方程求解.【解答】解:设获胜的场次是,平场,负场.由题意,∴,整数解为或或或或或或,∴最大可取到.故答案为:.三、 解答题 (本题共计 9 小题 ,每题 10 分 ,共计90分 )15.【答案】解:去分母得:,去括号得:,解得:.方程组整理得 得:,②-③得:,即 ,将代入①得:,则原方程组的解为【考点】加减消元法解二元一次方程组解一元一次方程【解析】此题暂无解析【解答】解:去分母得:,去括号得:,解得:.方程组整理得 得:,②-③得:,即 ,x y z 20x y z 3x +y +0⋅z =203x +y =20{x =0y =20{x =1y =17{x =2y =14{x =3y =11{x =4y =8{x =5y =5{x =6y =2x 66(1)3(x −3)−(2x +1)=63x −9−2x −1=6x =16(2){x −2y =−1①,2x −y =6②,①×22x −4y =−2③3y =8y =83y =83x =133x =,133y =.83(1)3(x −3)−(2x +1)=63x −9−2x −1=6x =16(2){x −2y =−1①,2x −y =6②,①×22x −4y =−2③3y =8y =83=8=13将代入①得:,则原方程组的解为16.【答案】解:去分母,得,去括号,得 ,移项,得,合并同类项,得,系数化为,得.这个不等式的解集在数轴上的表示如图所示.【考点】在数轴上表示不等式的解集解一元一次不等式【解析】【解答】解:去分母,得,去括号,得 ,移项,得,合并同类项,得,系数化为,得.这个不等式的解集在数轴上的表示如图所示.17.【答案】解:设一盒“福娃”玩具和一枚徽章的价格分别为元和元.依题意得 解这个方程组得答:一盒“福娃”玩具和一枚徽章的价格分别为元和元.【考点】y =83x =133 x =,133y =.832(x −2)−5(x +4)>−302x −4−5x −20>−302x −5x >−30+4+20−3x >−61x <22(x −2)−5(x +4)>−302x −4−5x −20>−302x −5x >−30+4+20−3x >−61x <2x y {x +2y =145,2x +3y =280,{x =125,y =10.12510二元一次方程组的应用——销售问题【解析】由图片的信息可知:一盒玩具的价钱两枚徽章的价钱元,两盒玩具的价钱三枚徽章的价钱元.据此可列出方程组求解.【解答】解:设一盒“福娃”玩具和一枚徽章的价格分别为元和元.依题意得 解这个方程组得答:一盒“福娃”玩具和一枚徽章的价格分别为元和元.18.【答案】解:描点如图:依题意,得轴,且,∴.存在.∵,,∴点到的距离为.又点在轴上,∴点的坐标为或.【考点】象限中点的坐标+=145+=280x y {x +2y =145,2x +3y =280,{x =125,y =10.12510(1)AB //x AB=3−(−2)=5=×5×(3−1)=5S △ABC 12(2)AB=5=10S △ABP P AB 4P y P (0,5)(0,−3)三角形的面积坐标与图形性质【解析】(1)根据点的坐标,直接描点;(2)根据点的坐标可知,轴,且==,点到线段的距离=,根据三角形面积公式求解;(3)因为=,要求的面积为,只要点到的距离为即可,又点在轴上,满足题意的点有两个.【解答】解:描点如图:依题意,得轴,且,∴.存在.∵,,∴点到的距离为.又点在轴上,∴点的坐标为或.19.【答案】解:由题可得正方形边长,由题易得正方形边长即为长方形的长,且正方形由三张同样大小的长方形硬纸片拼接成,AB //x AB 3−(−2)5C AB 3−12AB 5△ABP 10P AB 4P y P (1)AB //x AB=3−(−2)=5=×5×(3−1)=5S △ABC 12(2)AB=5=10S △ABP P AB 4P y P (0,5)(0,−3)(1)==60(cm)3600−−−−√=60÷3=20(cm)则长方形的宽.答:长方形的长为,宽为.不能实现,设裁出的长方形的长为,宽为,则有,解得,∴,.∵,∴不能实现.够用.笔筒长为,正方体一个面面积为,正方形所需总面积为,则剩下的面积为.【考点】算术平方根在实际问题中的应用立方根的应用【解析】此题暂无解析【解答】解:由题可得正方形边长,由题易得正方形边长即为长方形的长,且正方形由三张同样大小的长方形硬纸片拼接成,则长方形的宽.答:长方形的长为,宽为.不能实现,设裁出的长方形的长为,宽为,则有,解得,∴,.∵,∴不能实现.够用.笔筒长为,正方体一个面面积为,正方形所需总面积为,则剩下的面积为.20.【答案】解:根据题意,可得 解得=60÷3=20(cm)60cm 20cm (2)5x 2x 5x ⋅2x =2250x =155x =15×5=752x =15×2=3075>60(3)=9(cm)729−−−√39×9=81(c )m 281×5=405(c )m 23600−405=3195(c )m 2(1)==60(cm)3600−−−−√=60÷3=20(cm)60cm 20cm (2)5x 2x 5x ⋅2x =2250x =155x =15×5=752x =15×2=3075>60(3)=9(cm)729−−−√39×9=81(c )m 281×5=405(c )m 23600−405=3195(c )m 2{5a +4b =15,−12=−b −2,{a =−5,b =10,−5x +10y =15,①∴ ①②得:,解得,③将③代入①,可得:,解得,∴原方程组的正确解是【考点】二元一次方程组的解【解析】此题暂无解析【解答】解:根据题意,可得 解得∴ ①②得:,解得,③将③代入①,可得:,解得,∴原方程组的正确解是21.【答案】将=,=代入方程得:=,即=;列表得:所有等可能的情况有种,其中恰好为方程=的解的情况有,,,共种情况,则.【考点】二元一次方程的解列表法与树状图法【解析】{−5x +10y =15,①4x =10y −2,②+−x =13x =−13−5×(−13)+10y =15y =−5{x =−13,y =−5.{5a +4b =15,−12=−b −2,{a =−5,b =10,{−5x +10y =15,①4x =10y −2,②+−x =13x =−13−5×(−13)+10y =15y =−5{x =−13,y =−5.x 2y −12a +15a 2023−5(0,−5)(2,−5)(3,−5)−1(0,−1)(2,−1)(3,−1)1(0,1)(2,1)(3,1)9(x,y)2x −y 5(0,−5)(2,−1)(3,1)3P ==3913(1)将=,=代入方程计算即可求出的值;(2)列表得出所有等可能的情况数,找出甲、乙随机抽取一次的数恰好是方程=的解的情况数,即可求出所求的概率.【解答】将=,=代入方程得:=,即=;列表得:所有等可能的情况有种,其中恰好为方程=的解的情况有,,,共种情况,则.22.【答案】证明:过作,如图,∴,又∵,即,∴,∴,∴.解:过作,∵,分别平分 ,,x 2y −1a ax −y 5x 2y −12a +15a 2023−5(0,−5)(2,−5)(3,−5)−1(0,−1)(2,−1)(3,−1)1(0,1)(2,1)(3,1)9(x,y)2x −y 5(0,−5)(2,−1)(3,1)3P ==3913(1)A AF//MD ∠MBA +∠BAF =180∘∠MBA +∠BAC +∠NCA =360∘∠MBA +∠BAF +∠FAC +∠NCA =360∘∠FAC +∠NCA =180∘AF//NE MD//NE (2)P PQ//MD BP CP ∠ABD ∠ACE ∴∠DBP =∠ABD =×=11∘∘,,∵,∴,∵,,∴,∴,∴.【考点】平行线的性质平行线的判定角平分线的定义【解析】(),过点作,则由平行线的性质可得,结合以及角的和差关系,可推出,接下来结合“同旁内角互补,两直线平行”可得,至此再结合平行线的传递性即可证明结论;(),过点作,进而可推出,那么结合平行线的性质以及角的和差关系可得.【解答】证明:过作,如图,∴,又∵,即,∴,∴,∴.解:过作,∴∠DBP =∠ABD =×=121277∘38.5∘∠ECP =∠ACE =×=121233∘16.5∘PQ//MD ∠BPQ =∠DBP =38.5∘MD//NE PQ//MD PQ//NE ∠QPC =∠PCE =16.5∘∠BPC =∠BPQ +∠QPC =+=38.5∘16.5∘55∘1A AQ//MD MBA +∠BAQ =180∘∠MBA +∠BAC +∠NCA =360∘∠QAC +∠NCA =180∘AQ//NE 2A AQ//MD PF//NE ∠BPC =∠DBP +∠PCE (1)A AF//MD ∠MBA +∠BAF =180∘∠MBA +∠BAC +∠NCA =360∘∠MBA +∠BAF +∠FAC +∠NCA =360∘∠FAC +∠NCA =180∘AF//NE MD//NE (2)P PQ//MD∵,分别平分 ,,,,∵,∴,∵,,∴,∴,∴.23.【答案】解:设种恤进货的单价是元,种恤进货的单价是元.依题意,得解得答:种恤进货的单价是元,种恤进货的单价是元.由题意得,整理得,解得.故的值为.【考点】二元一次方程组的应用——销售问题一元一次方程的应用——打折销售问题【解析】无无【解答】解:设种恤进货的单价是元,种恤进货的单价是元.依题意,得解得答:种恤进货的单价是元,种恤进货的单价是元.由题意得,BP CP ∠ABD ∠ACE ∴∠DBP =∠ABD =×=121277∘38.5∘∠ECP =∠ACE =×=121233∘16.5∘PQ//MD ∠BPQ =∠DBP =38.5∘MD//NE PQ//MD PQ//NE ∠QPC =∠PCE =16.5∘∠BPC =∠BPQ +∠QPC =+=38.5∘16.5∘55∘(1)A T x B T y {2x +5y =150,3x +2y =104,{x =20,y =22.A T 20B T 22(2)30×150+30(1−a%)×150−150×22−150×20=18001−a%=45a =20a 20(1)A T x B T y {2x +5y =150,3x +2y =104,{x =20,y =22.A T 20B T 22(2)30×150+30(1−a%)×150−150×22−150×20=1800−a%=4整理得,解得.故的值为.1−a%=45a =20a 20。
2022-2023学年新人教版七年级下数学月考试卷(含解析)
2022-2023学年初中七年级下数学月考试卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:115 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1. 下列是二元一次方程组的是( )A.B.C.D.2. 不等式的解集在数轴上表示正确的是 A.B.C.D.3. 实数,在数轴上的对应点如图所示,则下列不等式中错误的是( )A.B.C.{x =1y +z =3{xy =7y −x =6+y =61x2x −3y =−5{x =4y =53x −5<1()a b a +b <0a −b <0|a |<|b |−a >−b4. 点 到轴的距离为( )A.B.C.D.5. 若,则的算术平方根为( )A.B.C.D.6. 对于解方程组①②下面是四位同学的解法,所用的解法比较简便的是( )小红:均用代入法. 小华:均用加减法.小丽:①用代入法,②用加减法. 小虎:①用加减法,②用代入法.A.小红B.小华C.小丽D.小虎7. 如果方程组的解为那么被“”“”遮住的两个数分别是( )A.,B.,C.,D.,8. 以方程组的解为坐标的点在( )A.第一象限(−1,−2)y 12−1−2|a −17|+=0(b −1)2a −b−−−−√42±4±2{y =2x +1,6x +5y =−11,{2x +3y =10,2x −3y =−6,{x +y =★,2x +y =16{x =6,y =■,★■104410310103{y =−x +2,y =x −1(x,y)C.第三象限D.第四象限9. 用加减法解方程组 下列解法正确的是( )A.,消去B.,消去C.,消去D.,消去10. 元宵节又称灯节,我国各地都有挂灯笼的习俗.灯笼又分为宫灯,纱灯等.若购买个宫灯和个纱灯共需元,小田用元购买了个同样的宫灯和个纱灯.若根据题意可得二元一次方程组则方程组中、分别表示为( )A.每个宫灯的价格,每个纱灯的价格B.每个纱灯的价格,每个宫灯的价格C.宫灯的数量,纱灯的数量D.纱灯的数量,宫灯的数量卷II (非选择题)二、 填空题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )11. 如果,,那么________.12. 已知=,用含的代数式表示,则________.13. 如图,是的角平分线,,如果,那么________度.{3x −2y =4,①2x +3y =3,②①×2−②×3y①×3+②×2y①×3+②×2x①×3−②×2x1175690610{x +y =75,6x +10y =690,x y +2a +b =0a 2−a +4b =0a 2−=a 2b 26x −2y 3y x AF ∠BAC EF//AC ∠BAC =50∘∠1=14. 若是方程的解,则的值是________.15. 用一组的值,说明命题“若,则”是错误的,这组值可以是________;_________;________.三、 解答题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )16. 计算 .17. 已知抛物线经过点求抛物线的解析式;点关于轴对称的点为点,抛物线上是否存在点,使得的面积是 面积的?若存在,直接写出点的坐标;若不存在,请说明理由.18. 已知关于,的方程组和的解相同,求的值.19. 已知,,点为射线上一点.如图,若,,求的度数;如图,当点在的延长线上时,此时与交于点,则,,之间满足怎样的关系,请说明你的结论. 20. 某工程队承包了某标段全长米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进米,经过天施工,两组共掘进了米.(1)求甲、乙两班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进米,乙组平均每天能比原来多掘进米.按此施工进度,能够比原来少用多少天完成任务? 21. 为了打造区域中心城市,建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:{x =2,y =1{2x +(m −1)y =2,nx +y =1(m +n)2016a,b,c a <b ac <bc a =b =c =−2cos +−|1−|18−−√(π−1)045∘()14−18–√y =ax 2A (1,3)(1)(2)A y B C △ABC △OAB 12C x y {2x −3y =3,mx +ny =−1{2mx +3ny =3,3x +2y =11(3m +n)2021AB//CD E FG (1)1∠EAF =42∘∠EDG =46∘∠AED (2)2E FG CD AE H ∠AED ∠EAF ∠EDG 1800256021540m 3/3租金(单位:元/台时)挖掘土石方量(单位:台时)甲型挖掘机乙型挖掘机若租用甲、乙两种型号的挖掘机共台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?如果每小时支付的租金不超过元,又恰好完成每小时的挖掘量,那么共有哪几种不同的租用方案? 22. 观察下列等式:第一个等式:第二个等式:第三个等式:第四个等式:按上述规律,回答下列问题:请写出第六个等式:________________;用含的代数式表示第个等式:________________;________(得出最简结果);计算:.23. 已知方程组与方程组的解相同,求,的值.⋅/m 3⋅1006012080(1)8(2)850==−a 121+3×2+2×2212+11+122==−a 2221+3×+2×(2222)21+1221+123==−a 3231+3×+2×(2323)21+1231+124==−a 4241+3×+2×(2424)21+1241+125(1)=a 6=(2)n n =a n =(3)+++++=a 1a 2a 3a 4a 5a 6(4)++...+a 1a 2a n {ax −by =4,ax +by =6{3x −y =5,4x −7y =1a b参考答案与试题解析2022-2023学年初中七年级下数学月考试卷一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1.【答案】D【考点】二元一次方程组的定义【解析】根据未知数的个数对选项进行判断;根据方程的次数对进行判断;根据整式方程对进行判断;根据二元一次方程组的概念对进行判断.【解答】解:、含有三个未知数,所以选项错误;、的次数为,所以选项错误;、为分式方程,所以选项错误;、是二元一次方程组,所以选项正确.故选.2.【答案】D【考点】在数轴上表示不等式的解集解一元一次不等式【解析】求出已知不等式的解集,表示在数轴上即可.【解答】解:,,,A B C D A A B xy 2B C +y =61x C D {x =4y =5D D 3x −5<13x <6x <2在数轴上表示为:故选.3.【答案】C【考点】在数轴上表示实数【解析】由数轴可知,再根据实数的加减运算、绝对值、不等式的性质即可得答案.【解答】解:由数轴可知,则,正确;,正确;,错误;,正确;故选:.4.【答案】A【考点】坐标与图形性质点的坐标【解析】根据点到轴的距离等于纵坐标的长度,到轴的距离等于横坐标的长度解答.【解答】解:点到轴的距离为.故选.5.【答案】B【考点】D a <b <0a <b <0a +b <0A a −b <0B |a |>|b |C −a >−b D C x y (−1,−2)y 1A非负数的性质:偶次方非负数的性质:绝对值算术平方根【解析】根据非负数的和为,则每个式子均为,列出关于,的等式,计算出,即可得解.【解答】解: ,,,,.∵的算术平方根为,∴的算术平方根为 .故选.6.【答案】C【考点】加减消元法解二元一次方程组代入消元法解二元一次方程组【解析】此题暂无解析【解答】解:方程组①有的形式,用代入法比较简单;方程组②中未知数的系数绝对值相等,用加减法比较简单.故选.7.【答案】A【考点】二元一次方程组的解【解析】00a b a b ∵|a −17|+=0(b −1)2∴a =17b =1∴a −b =17−1=16∴==4a −b −−−−√16−−√42a −b−−−−√2B y =2x +1C把代入方程组中第二个方程求出的值,确定出所求两个数即可.【解答】解:把代入,得,解得,再把代入,得.故选.8.【答案】A【考点】加减消元法解二元一次方程组象限中点的坐标【解析】求出二元一次方程组的解即可得出答案.【解答】解: ①②,得,解得,将代入①,得,解得,∴∴该点在第一象限.故选.9.【答案】B【考点】{x =6,y =■y {x =6,y =■2x +y =1612+■=16■=4{x =6,y =4x +y =★★=6+4=10A {y =−x +2①,y =x −1②,+2y =1y =12y =12=−x +212x =32 x =,32y =,12A加减消元法解二元一次方程组【解析】利用加减消元法判断即可.【解答】解:用加减消元法解方程组 时,,消去或,消去.故选.10.【答案】A【考点】由实际问题抽象出二元一次方程组【解析】设每个宫灯元,每个纱灯元,根据“购买个宫灯和个纱灯共需元,购买个言灯和个纱灯共需元”,即可得出关于,的二元一次方程组,此题得解.【解答】解:设每个宫灯元,每个纱灯元,依题意,得:故选.二、 填空题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )11.【答案】【考点】列代数式求值【解析】此题暂无解析【解答】{3x −2y =4,①2x +3y =3,②①×3+②×2y ①×2−②×3x B x y 1175610690x y x y {x +y =75,6x +10y =690.A 0+2a +b =02−a +4b =02解:∵,,∴将两式相减后可得,,解得,∴.故答案为:.12.【答案】【考点】二元一次方程的解【解析】把看做已知数求出即可.【解答】方程=,解得:,13.【答案】【考点】平行线的性质角平分线的定义【解析】先根据角平分线的定义求出的度数,再由两直线平行,内错角相等求出出的度数,再根据对顶角的定义得出的读数.【解答】解:是的平分线,,.,.与为对顶角,.故答案为:.14.+2a +b =0a 2−a +4b =0a 23a −3b =0a =b −=0a 2b 20x =3+2y 6y x 6x −2y 3x =3+2y 625∘∠FAC ∠EFA ∠1∵AF ∠BAC ∠BAC =50∘∴∠FAC =∠BAC =1225∘∵EF//AC ∴∠EFA =∠FAC =25∘∵∠1∠EFA ∴∠1=∠EFA =25∘25∘【考点】二元一次方程组的解有理数的乘方【解析】将,代入方程组求出与的值,即可确定出所求式子的值.【解答】解:将,代入方程组得:解得:,,则.故答案为:.15.【答案】,,【考点】不等式的性质【解析】此题暂无解析【解答】解:举例说明:当时,可以满足题意.故答案为:.三、 解答题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )16.【答案】解:.1x =2y =1m n x =2y =1{4+m −1=2,2n +1=1,m =−1n =0==1(m +n)2016(−1)20161−12−3a =−1;b =2;c =−3−1;2;−3−2cos +−|1−|18−−√(π−1)045∘()14−18–√=3×1−2×+4−(−1)2–√2–√28–√=3−+4−2+12–√2–√2–√=5负整数指数幂特殊角的三角函数值绝对值零指数幂实数的运算【解析】直接利用绝对值的性质以及负整数指数幂的性质、零指数幂的性质、特殊角的三角函数值分别化简得出答案.【解答】解:.17.【答案】解:∵抛物线过点,∴,∴抛物线的解析式为:.∵点,∴点关于轴的对称点的坐标为;∵点,,∴,;假设存在点,且点到的距离为,则,∵的面积等于面积的一半,∴,解得,①当点在下面时,点的纵坐标为,此时,,解得,,点的坐标为或,−2cos +−|1−|18−−√(π−1)045∘()14−18–√=3×1−2×+4−(−1)2–√2–√28–√=3−+4−2+12–√2–√2–√=5(1)y =ax 2A(1,3)a =3y =3x 2(2)A(1,3)A y B (−1,3)A(1,3)B(−1,3)AB =1−(−1)=1+1=2=×2×3=3S △OAB 12C C AB h =⋅AB ⋅h =×2h S △ABC 1212△ABC △OAB ×2h =×31212h =32C AB C 3−=32323=x 232=x 12–√2=−x 22–√2C (,)2–√232(−,)2–√232+=39②点在的上面时,点的纵坐标为,此时,解得,,点的坐标为或,综上所述,存在点或或或或,使的面积等于面积的一半.【考点】三角形的面积坐标与图形性质点的坐标【解析】此题暂无解析【解答】解:∵抛物线过点,∴,∴抛物线的解析式为:.∵点,∴点关于轴的对称点的坐标为;∵点,,∴,;假设存在点,且点到的距离为,则,∵的面积等于面积的一半,∴,解得,①当点在下面时,点的纵坐标为,此时,,解得,,点的坐标为或,②点在的上面时,点的纵坐标为,此时,C AB C 3+=32923=x 292=x 16–√2=−x 26–√2C (,)6–√292(−,)6–√292C (,)2–√232C (−,)2–√232C (,)6–√292C (−,)6–√292C (−,)6–√292△ABC △OAB (1)y =ax 2A(1,3)a =3y =3x 2(2)A(1,3)A y B (−1,3)A(1,3)B(−1,3)AB =1−(−1)=1+1=2=×2×3=3S △OAB 12C C AB h=⋅AB ⋅h =×2h S △ABC 1212△ABC △OAB ×2h =×31212h =32C AB C 3−=32323=x 232=x 12–√2=−x 22–√2C (,)2–√232(−,)2–√232C AB C 3+=32923=x 292–√−–√解得,,点的坐标为或,综上所述,存在点或或或或,使的面积等于面积的一半.18.【答案】解:根据题意得:解得:把代入得解得∴.【考点】同解方程组有理数的乘方二元一次方程组的解【解析】无【解答】解:根据题意得:解得:把代入得解得∴.19.【答案】解:如图,过点作,=x 16–√2=−x 26–√2C (,)6–√292(−,)6–√292C (,)2–√232C (−,)2–√232C (,)6–√292C (−,)6–√292C (−,)6–√292△ABC △OAB {2x −3y =3,3x +2y =11,{x =3,y =1,{x =3,y =1,{2mx +3ny =3,mx +ny =−1,{2m +n =1,3m +n =−1,{m =−2,n =5,(3m +n)2021=[3×(−2)+5]2021==−1(−1)2021{2x −3y =3,3x +2y =11,{x =3,y =1,{x =3,y =1,{2mx +3ny =3,mx +ny =−1,{2m +n =1,3m +n =−1,{m =−2,n =5,(3m +n)2021=[3×(−2)+5]2021==−1(−1)2021(1)1E EH//CD∴ .∵,∴,∴,∴..理由:如图,过点作,∴,∵,∴,∴,∵,∴.【考点】平行线的判定与性质【解析】暂无暂无【解答】解:如图,过点作,∠EDG =∠DEH =46∘AB//CD EH//AB ∠EAF =∠AEH =42∘∠AED =∠AEH +∠DEH =+=42∘46∘88∘(2)∠EAF =∠AED +∠EDG 2E EM//CD ∠EDG =∠DEM AB//CD EM//AB ∠EAF =∠AEM ∠MEA =∠AED +∠DEM ∠EAF =∠AED +∠EDG (1)1E EH//CD∴ .∵,∴,∴,∴..理由:如图,过点作,∴,∵,∴,∴,∵,∴.20.【答案】解:(1)设甲班组平均每天掘进米,乙班组平均每天掘进米,根据题意得:,解得:.答:甲班组平均每天掘进米,乙班组平均每天掘进米.(2)按原来的施工进程需要的时间为=(天),改进施工技术后还需要的时间为=(天),节省时间为=(天).答:改进施工技术后,能够比原来少用天完成任务.【考点】∠EDG =∠DEH =46∘AB//CD EH//AB ∠EAF =∠AEH =42∘∠AED =∠AEH +∠DEH =+=42∘46∘88∘(2)∠EAF =∠AED +∠EDG 2E EM//CD ∠EDG =∠DEM AB//CD EM//AB ∠EAF =∠AEM ∠MEA =∠AED +∠DEM ∠EAF =∠AED +∠EDG x y {x −y =25(x +y)=60{ x =7y =575(1800−60)÷(7+5)145(1800−60)÷(7+2+5+1)116145−1162929二元一次方程组的应用——工程问题【解析】本题考查了二元一次方程组的应用.(1)设甲班组平均每天掘进米,乙班组平均每天掘进米,根据“甲组比乙组平均每天多掘进米,经过天施工,两组共掘进了米”,即可得出关于、的二元一次方程组,解之即可得出结论;(2)根据工作时间=工作总量工作效率,分别求出按原来施工进程及改进施工技术后完成剩余工程所需时间,做差后即可得出结论.【解答】解:(1)设甲班组平均每天掘进米,乙班组平均每天掘进米,根据题意得:,解得:.答:甲班组平均每天掘进米,乙班组平均每天掘进米.(2)按原来的施工进程需要的时间为=(天),改进施工技术后还需要的时间为=(天),节省时间为=(天).答:改进施工技术后,能够比原来少用天完成任务.21.【答案】解:设甲、乙两种型号的挖掘机各需台,台.依题意得:解得 答:甲、乙两种型号的挖掘机各需台,台;设租用辆甲型挖掘机,辆乙型挖掘机.依题意得:,化简得:.∴,∴方程的解为或当,时,支付租金:元元,超出限额;当,时,支付租金:元元,符合要求.答:有一种租车方案,即租用辆甲型挖掘机和辆乙型挖掘机.【考点】二元一次方程组的应用——工程问题【解析】(1)设甲、乙两种型号的挖掘机各需台、台.等量关系:甲、乙两种型号的挖掘机共台;每小时挖掘土石方;(2)设租用辆甲型挖掘机,辆乙型挖掘机,根据题意列出二元一次方程,求出其正整数解;然x y 2560x y ÷x y {x −y =25(x +y)=60{ x =7y =575(1800−60)÷(7+5)145(1800−60)÷(7+2+5+1)116145−1162929(1)x y {x +y =8,60x +80y =540,{x =5,y =3.53(2)m n 60m +80n =5403m +4n =27m =9−n 43{m =5,n =3{m =1,n =6.m =5n =3100×5+120×3=860>850m =1n =6100×1+120×6=820<85016x y 8540m 3m n后分别计算支付租金,选择符合要求的租用方案.【解答】解:设甲、乙两种型号的挖掘机各需台,台.依题意得:解得 答:甲、乙两种型号的挖掘机各需台,台;设租用辆甲型挖掘机,辆乙型挖掘机.依题意得:,化简得:.∴,∴方程的解为或当,时,支付租金:元元,超出限额;当,时,支付租金:元元,符合要求.答:有一种租车方案,即租用辆甲型挖掘机和辆乙型挖掘机.22.【答案】,,原式.【考点】规律型:数字的变化类【解析】(1)根据已知个等式可得;(2)根据已知等式得出答案;(3)利用所得等式的规律列出算式,然后两两相消,计算化简后的算式即可得;(4)根据已知等式规律,裂项相消求解可得.【解答】解:由题意知,,(1)x y {x +y =8,60x +80y =540,{x =5,y =3.53(2)m n 60m +80n =5403m +4n =27m =9−n 43{m =5,n =3{m =1,n =6.m =5n =3100×5+120×3=860>850m =1n =6100×1+120×6=820<85016261+3×+2×(2626)2−1+1261+1272n 1+3×+2×(2n 2n )2−1+12n 1+12n+11443(4)=−+−12+11+1221+122+...+−1+1231+12n 1+12n+1=−12+11+12n+1=−22n+13(+1)2n+14(1)=a 6261+3×+2×(2626)2=−1+1261+1276故答案为:;.,故答案为:;.原式,故答案为:.原式.23.【答案】解:解方程组得 把代入方程组得解这个方程组,得【考点】二元一次方程组的解【解析】 261+3×+2×(2626)2−1+1261+127(2)==−a n 2n 1+3×+2×(2n 2n )21+12n 1+12n+12n 1+3×+2×(2n 2n )2−1+12n 1+12n+1(3)=−+−12+11+1221+122+−+1+1231+1231+124−+−1+1241+1251+125+−1+1261+1261+127=−12+11+127=14431443(4)=−+−12+11+1221+122+...+−1+1231+12n 1+12n+1=−12+11+12n+1=−22n+13(+1)2n+1{3x −y =5,4x −7y =1,{x =2,y =1.{x =2,y =1{ax −by =4,ax +by =6,{2a −b =4,2a +b =6.{a =2.5,b =1.【解答】解:解方程组得 把代入方程组得解这个方程组,得{3x −y =5,4x −7y =1,{x =2,y =1.{x =2,y =1{ax −by =4,ax +by =6,{2a −b =4,2a +b =6.{a =2.5,b =1.。
2022-2023学年新人教版七年级下数学月考试卷(含解析)
2022-2023学年初中七年级下数学月考试卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:130 分考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息;2.请将答案正确填写在答题卡上;卷I(选择题)一、选择题(本题共计 10 小题,每题 5 分,共计50分)1. 在下列各数0.51525354⋯,0,3π,227,6.1,316,√2中,无理数的个数是( )A.4B.3C.2D.12. 一个正数x的两个平方根分别用a+1与a−3表示,则a的值可能是( )A.2B.−1C.1D.03. 若x,y都是实数,且√2x−1+√1−2x+y=4,则xy的值为( )A.0B.12C.2D.不能确定4. 下列说法不正确的是( )A.经过两点有一条直线,并且只有一条直线B.射线OP和射线PO表示的不是同一条射线C.连接两点间的线段,叫做这两点的距离D.直线AB和直线BA表示同一条直线5. 已知M=√2×√8+√5,则M的取值范围是( )A.8<M<9B.7<M<8C.6<M<7D.5<M<66. 如图,已知:∠AOB=60∘,点A,B分别在∠AOB两边上,直线l,m,n分别过A,O,B三点,且满足直线l//m//n,OB与直线n所夹的角为25∘,则∠α的度数为( )A.25∘B.45∘C.35∘D.30∘7. 如图,已知直线AB//CD,BE平分∠ABC,交CD于点D,∠C=120∘,则∠CDE的度数为()A.120∘B.140∘C.150∘D.160∘8. 如图,把一张长方形纸片ABCD折叠后,点C、点D的对应点分别为点C′和点D′,若∠1=48∘,则∠2的度数为( )A.111∘B.121∘C.132∘D.138∘9. 将一块含45∘角的直角三角尺ABC按照如图所示的方式放置,点C落在直线a上,点B落在直线b上,a//b,∠1=25∘,则∠2的度数是()A.15∘B.20∘C.25∘D.30∘10. 如图OA⊥OB,∠BOC=30∘,OD平分∠AOC,则∠BOD的度数是()度.A.60B.40C.30D.20卷II(非选择题)二、填空题(本题共计 10 小题,每题 5 分,共计50分)11. √16的平方根是________.12. 已知:一个正数的两个平方根分别是2a−3和a−2,则a的值是________.13. 对于有理数a,b,定义min{a,b}的含义为:当a<b时,min{a,b}=a,当a>b时,min{a,b}=b.例如:min{1,−2}=−2,min{3,−1}=−1.已知min{√21,a}=√21,min{√21,b}=b,且a和b是两个连续的正整数,则a+b=________.14. 已知有理数a、b所对应的点在数轴上如图所示,化简|a−b|=________.15. 直线y=−x+1与x轴和y轴围成的三角形的面积是________.16. 如图,直线AB//CD,直线EC分别与AB,CD相交于点A,点C,AD平分∠BAC,已知∠ACD=80∘,则∠ADC的度数为________.17. 如图所示是用一张长方形纸条折成的.如果∠1=130∘,那么∠2=________∘.18. 如图,在矩形纸片ABCD中,AB=6,BC=8点P是对角线BD上一动点,将纸片折叠,使点C与点P重合,折痕为EF,折痕EF的两端分别在BC、DC边上(含端点),当△PDF为直角三角形时,FC的长为________.19. 如图,AB//CD,EF⊥AB于点F,若∠EPC=46∘,则∠FEP的度数为________.20. 探究并尝试归纳:探究1 如图1,已知直线a与直线b平行,夹在平行线间的一条折线形成一个角∠A,试求∠1+∠2+∠A的度数,请加以说明;探究2 如图2,已知直线a与直线b平行,夹在平行线间的一条折线增加一个折,形成两个角∠A和∠B,请直接写出∠1+∠2+∠A+∠B=________度.探究3 如图3,已知直线a与直线b平行,夹在平行线间的一条折线每增加一个折,就增加一个角.当形成n个折时,请归纳并写出所有角与∠1、∠2的总和=________.【结果用含有n的代数式表示,n是正整数,不用证明】三、解答题(本题共计 6 小题,每题 5 分,共计30分)21. 计算:3√−8+√36−√3+|1−√3|.22.(1)12x3=32 ;(2)13x2−12=0.23. 任意给出一个非零实数m,按如图所示的程序进行计算.(1)用含m的代数式表示该程序的运算过程.(2)当实数m+的一个平方根是-时,求输出的结果.24. 如图,已知EF//AD,∠1=∠2.求证∠DGA+∠BAC=180∘.请将下列证明过程填写完整.证明:∵EF//AD(已知),∴∠2=________(________),又∵∠1=∠2(已知),∴∠1=∠3,(________),∴AB//________(________),∴∠DGA+∠BAC=180∘(________).25. 如图1,点A、C,B不在同一条直线上,AD//BE.(1)求证:∠B+∠ACB−∠A=180∘;(2)如图2,HQ,BQ分别为∠DAC,∠EBC的平分线所在的直线,试探究∠C与∠AQB的数量关系. 26. 如图,在平面直角坐标系中,点A的坐标为(−3,5),点B的坐标为(0,1),点C的坐标为(4,5),将线段AB沿AC方向平移,平移距离为线段AC的长度.动手操作(1)直接写出B的对应点D的坐标;(2)连接BD,试探究∠BAC,∠BDC的数量关系,并证明你的结论;(3)若点E在线段BD上,连接AD,AE,且满足∠EAD=∠CAD,请求出∠ADB:∠AEB的值,并写出推理过程.参考答案与试题解析2022-2023学年初中七年级下数学月考试卷一、选择题(本题共计 10 小题,每题 5 分,共计50分)1.【答案】B【考点】无理数的识别【解析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:0.51525354…是无理数;0是整数,属于有理数;3π是无理数;227是分数,属于有理数;6.1是有限小数,属于有理数;316是分数,属于有理数;√2是无理数;∴无理数有0.51525354…,3π,√2,共3个.故选B.2.【答案】C【考点】平方根【解析】根据平方根的性质来解答即可.【解答】解:∵一个正数的两个平方根分别为a+1与a−3,∴(a+1)+(a−3)=0,解得a=1.故选C.3.【答案】C【考点】非负数的性质:算术平方根【解析】根据二次根式有意义的条件列出不等式,求出x、y的值,计算即可.【解答】解:由题意得,2x−1≥0,1−2x≥0,解得:x≥12,x≤12,∴x=12,∴y=4,则xy=2.故选C.4.【答案】C【考点】直线、射线、线段两点间的距离【解析】根据“两点之间,线段最短“,两点确定一条直线,两点间的距离,既可解答.【解答】解:A,经过两点有且只有一条直线,故选项A正确;B,射线OP和射线PO不是同一条射线,因为它们的端点不同,故选项B正确;C,连接两点间的线段长度,叫做这两点间的距离,故选项C错误;D,直线AB和直线BA是同一条直线,故选项D正确.故选C.5.【答案】C【考点】估算无理数的大小【解析】根据被开方数越大算术平方根越大,可得答案.【解答】M=√2×√8+√5=4+√5,∵2<√5<3,∴6<4+√5<7,∴6<M<7,6.【答案】C【考点】先根据m//n求出∠BCD的度数,再由△ABC是等边三角形求出∠ACB的度数,根据l//m即可得出结论.【解答】解:如图,∵m//n,边BO与直线n所夹的角为25∘,∴∠1=25∘.∵∠AOB=60∘,∴∠2=60∘−25∘=35∘.∵l//m,∴∠α=∠2=35∘.故选C.7.【答案】C【考点】角平分线的定义平行线的判定与性质【解析】由题可得∠ABD=∠BDC,∠ABC+∠C=180∘,即可得到∠ABC=60∘,根据BE平分∠ABC,可得∠ABD=∠ABC2=30∘,则∠BDC=30∘,即可得解∠CDE=180∘−∠CBD.【解答】解:∵AB//CD,∴∠ABD=∠BDC,∠ABC+∠C=180∘,∴∠ABC=180∘−∠C=180∘−120∘=60∘,∵BE平分∠ABC,∴∠ABD=∠ABC2=30∘,∴∠BDC=30∘,∴∠CDE=180∘−∠CBD=180∘−30∘=150∘.故选C.8.【答案】A【考点】翻折变换(折叠问题)直接利用长方形的性质结合平行线的性质得出∠3=∠6=∠4,再利用四边形内角和定理得出答案.【解答】解:如图所示:∵四边形ABCD 是长方形,∴AD//BC ,∴∠3=∠6,∵把一张长方形纸片ABCD 折叠后,点C 、点D 的对应点分别为点C ′和点D ′,∴∠3=∠4=∠6,∵∠1=48∘,∴∠5=132∘,∴∠6=∠4=360∘−90∘−132∘2=69∘,∴∠2=180∘−69∘=111∘.故选A .9.【答案】B【考点】平行线的性质【解析】利用两直线平行,同旁内角互补进行求解即可.【解答】解:如图:∵a//b ,∴∠FBC +∠ECB =180∘,∴∠1+90∘+∠2+45∘=180∘,又∵∠1=25∘,∴∠2=20∘.故选B.10.【答案】C【考点】角平分线的定义垂线【解析】此题主要考查了垂线和角平分线的定义在解题中的应用.【解答】解:∵OA⊥OB,∠BOC=30∘,∴∠AOC=∠AOB+∠BOC=120∘,∵OD平分∠AOC,∴∠AOD=12∠AOC=60∘,∴∠BOD=∠AOB−∠AOD=30∘.故选C.二、填空题(本题共计 10 小题,每题 5 分,共计50分)11.【答案】±2【考点】平方根算术平方根【解析】根据平方根及算术平方根,立方根的概念解答即可.【解答】解:∵,且{\left(\pm2\right)^2=4},{\therefore\sqrt{16}}的平方根是{\pm2}.故答案为:{\pm2}.12.【答案】{\dfrac{5}{3}}【考点】平方根【解析】此题暂无解析【解答】解:∵一个正数的两个平方根分别是{2a-3}和{a-2},∴{2a-3+a-2=0},解得:{a=\dfrac{5}{3}}.故答案为:{\dfrac{5}{3}} .13.【答案】{9}定义新符号估算无理数的大小【解析】根据已知和{4\lt \sqrt{21}\lt 5}得出{a}、{b}的值,再求出{a+ b}的值,最后根据平方根的定义得出即可.【解答】解:∵{\min \{\sqrt{21},\, a\} = \sqrt{21}},{\min \{\sqrt{21},\, b\}=b},且{a}和{b}为两个连续正整数,{4\lt \sqrt{21}\lt 5},∴{a=5},{b=4},∴{a+ b=9}.故答案为:{9}.14.【答案】{b-a}【考点】数轴绝对值【解析】此题暂无解析【解答】此题暂无解答15.【答案】{\dfrac{1}{2}}【考点】一次函数图象上点的坐标特点三角形的面积【解析】当{x=0}时,求出与{y}轴的交点坐标;当{y=0}时,求出与{x}轴的交点坐标;然后即可求出一次函数{y=-x+1}与坐标轴围成的三角形面积.【解答】解:当{x=0}时,{y=1},则与{y}轴的交点坐标为{\left( 0, 1\right)},当{y=0}时,{x=1},则与{x}轴的交点坐标为{\left( 1, 0\right)},则三角形的面积为{{\dfrac12}\times1\times1={\dfrac12}}.故答案为:{\dfrac12}.16.【答案】{50^{\circ }}角平分线的定义平行线的性质【解析】依据平行线的性质,即可得到{\angle BAC}的度数,再根据角平分线的定义,即可得到{\angle DAC}的度数,再根据三角形内角和定理可得{\triangle ADC}的度数.【解答】解:{\because AB//CD},{\angle ACD=80^{\circ }},{\therefore \angle ACD+\angle BAC=180^{\circ }},{\therefore \angle BAC=100^{\circ }}.又{\because AD}平分{\angle BAC},{\therefore \angle BAD=\dfrac{1}{2}\angle BAC=50^{\circ }},{\therefore \angle ADC=\angle BAD=50^{\circ }}.故答案为:{50^{\circ }}.17.【答案】{65^{{\circ}} }【考点】平行线的判定与性质翻折变换(折叠问题)【解析】此题暂无解析【解答】解:∵长方形的对边互相平行,又根据折叠的性质,{\therefore}{\angle1=2\angle2}(两直线平行,内错角相等).∵{\angle1=130^\circ},∴{\angle2={\dfrac12}\angle1=65^\circ}.故答案为:{65^\circ}.18.【答案】{\dfrac{24}{7}}或 {\dfrac{8}{3}}【考点】平移的性质【解析】此题暂无解析【解答】解:设{FC= x},由翻折知 {PF= CF= x},∴{DF= 6- x},∴{BD= \sqrt{AB^{2}+ AD^{2}}= \sqrt{6^{2}+ 8^{2}}= 10},①当 {\angle DPF= 90^{\circ }}时,∵{\angle PDF= \angle BDC, \angle DPF= \angle DCB= 90^{\circ }},∴{\triangle DPF\sim \triangle DCB},∴{ \dfrac{PF}{BC}= \dfrac{DF}{BD}},即{\dfrac{x}{8}= \dfrac{6- x}{10}},∴{10x= 48- 8x},解得{x=\dfrac{8}{3}}.②当 {\angle DFP= 90^{\circ }}时,∵{\angle PDF= \angle BDC, \angle DFP= \angle DCB= 90^{\circ }},∴{\triangle DPF\sim \triangle DBC},∴{\dfrac{PF}{BC}= \dfrac{DF}{DC}},∴{\dfrac{x}{8}= \dfrac{6- x}{6}},解得{x= \dfrac{24}{7}}.故答案为:{\dfrac{8}{3}}或{\dfrac{24}{7}}.19.【答案】{136^\circ }【考点】平行线的性质垂线【解析】作{EM\parallel CD},则可求出{\angle1=\angle EPC=46^\circ},{EM\parallel CD\parallel AB},由{EF\perp AB},求出{\angle FEM=90^\circ},即可得答案.【解答】解:如图,作{EM// CD},则{\angle PEM=\angle EPC=46^\circ},{EM// CD//AB}.∵{EF\perp AB},∴{\angle BFE=90^\circ},∴{\angle FEM=90^\circ},∴{\angle FEP=\angle PEM+\angle FEM=90^\circ+46^\circ=136^\circ}.故答案为:{136^\circ}.20.【答案】解:探究一:如图{1},过{A}作{AB\,//\,}直线{a},则{AB\,//\,}直线{b},∴{\angle 1+ \angle 3= \angle 4+ \angle 2= 180^{{\circ} }},∴{\angle 1+ \angle 2+ \angle A= 360^{{\circ} }}.探究二:如图{2},过{A}作{AC\,//\,}直线{a},{BD\,//\,}直线{a},则{AC\,//\,BD\,//\,}直线{b},∴{\angle 1+ \angle 3= \angle 5+ \angle 6= \angle 4+ \angle 2= 180^{{\circ} }},∴{\angle 1+ \angle 2+ \angle A+ \angle B= 540^{{\circ} }},故答案为:{540}.探究三:由探究一,探究二知,当形成{n}个折时,所有角与{\angle 1}、{\angle 2}的总和{= 180\cdot (n+ 1)^{{\circ} }},故答案为:{180\cdot (n+ 1)^{{\circ} }}.【考点】平行线的判定与性质【解析】根据平行线的性质即可得到结论.【解答】解:探究一:如图{1},过{A}作{AB\,//\,}直线{a},则{AB\,//\,}直线{b},∴{\angle 1+ \angle 3= \angle 4+ \angle 2= 180^{{\circ} }},∴{\angle 1+ \angle 2+ \angle A= 360^{{\circ} }}.探究二:如图{2},过{A}作{AC\,//\,}直线{a},{BD\,//\,}直线{a},则{AC\,//\,BD\,//\,}直线{b},∴{\angle 1+ \angle 3= \angle 5+ \angle 6= \angle 4+ \angle 2= 180^{{\circ} }},∴{\angle 1+ \angle 2+ \angle A+ \angle B= 540^{{\circ} }},故答案为:{540}.探究三:由探究一,探究二知,当形成{n}个折时,所有角与{\angle 1}、{\angle 2}的总和{= 180\cdot (n+ 1)^{{\circ} }},故答案为:{180\cdot (n+ 1)^{{\circ} }}.三、解答题(本题共计 6 小题,每题 5 分,共计30分)21.【答案】解:原式{=-2+6-\sqrt{3}+\sqrt{3}-1}{=3}.【考点】绝对值平方根立方根的性质【解析】暂无【解答】解:原式{=-2+6-\sqrt{3}+\sqrt{3}-1}{=3}.22.【答案】解:{(1)}{\dfrac{1}{2}x^{3}=32},{x^{3}=64},{x^{3}=4^{3}},{x=4}.{(2)}{\dfrac{1}{3}x^{2}-12=0},{\dfrac{1}{3}x^{2}=12},{x^{2}=36},{x=\pm6}.【考点】立方根的应用平方根【解析】此题暂无解析【解答】解:{(1)}{\dfrac{1}{2}x^{3}=32},{x^{3}=64},{x^{3}=4^{3}},{x=4}.{(2)}{\dfrac{1}{3}x^{2}-12=0},{\dfrac{1}{3}x^{2}=12},{x^{2}=36},{x=\pm6}.23.【答案】根据题意得:{(m^{2}+ m)\div m-2 \rm{m} }={m+ 1-2 \rm{m} }={-m+ 1};根据题意得:{m+ }=(-){^{2}},即{m}={3-},则{-m+ 1}={-3+ 1}={-2}.【考点】平方根实数的运算【解析】(1)根据程序中的运算列出关系式即可;(2)根据题意求出{m}的值,代入原式计算即可求出值.【解答】根据题意得:{(m^{2}+ m)\div m-2 \rm{m} }={m+ 1-2 \rm{m} }={-m+ 1};根据题意得:{m+ }=(-){^{2}},即{m}={3-},则{-m+ 1}={-3+ 1}={-2}.24.【答案】{\angle 3},两直线平行,同位角相等,等量代换,{DG},内错角相等,两直线平行,两直线平行,同旁内角互补【考点】平行线的判定与性质【解析】分别根据平行线的性质及平行线的判定定理解答即可.【解答】解:∵{EF\,//\,AD},(已知)∴{\angle 2= \angle 3}.(两直线平行,同位角相等)又∵{\angle 1= \angle 2},(已知)∴{\angle 1= \angle 3},(等量代换)∴{AB\,//\,DG},(内错角相等,两直线平行)∴{\angle DGA+ \angle BAC= 180^{{\circ} }}(两直线平行,同旁内角互补).故答案为:{\angle 3};两直线平行,同位角相等;等量代换;{DG};内错角相等,两直线平行;两直线平行,同旁内角互补.25.【答案】{(1)}证明:过点{C}作{CF//AD},则{CF//BE},{\because}{CF//AD//BE},{\therefore}{\angle ACF=\angle A},{\angle BCF+\angle B=180^{\circ}},{\therefore}{\angle B+\angle ACB-\angle A}{=\angle B+\angle BCF+\angle ACF-\angle A}{=\angle B+\angle BCF=180^{\circ}}.{(2)}解:过点{Q}作{QM//AD},则{QM//BE},{\because}{QM//AD},{QM//BE},{\therefore}{\angle AQM=\angle HAD},{\angle BQM=\angle EBQ},{\because}{HQ}平分{\angle CAD},{BQ}平分{\angle CBE},{\therefore}{\angle HAD=\dfrac{1}{2}\angle CAD},{\angle EBQ=\dfrac{1}{2}\angle CBE},{\therefore}{\angle AQB=\angle BQM-\angle AQM=\dfrac{1}{2}(\angle CBE-\angle CAD)},{\because}{\angle C=180^{\circ}-(\angle CBE-\angle CAD)=180^{\circ}-2\angle AQB},{\therefore}{2\angle AQB+\angle C=180^{\circ}}.【考点】平行线的判定与性质角平分线的定义【解析】{(1)}过点{C}作{CF//AD},则{CF//BE},根据平行线的性质可得出{\angle ACF=\angle A}、{\angle BCF+\angle B=180^{\circ}},代入{\angle B+\angle ACB-\angle A}即可算出角度;{(2)}过点{Q}作{QM//AD},则{QM//BE},根据平行线的性质、角平分线的定义可得出{\angle AQB=\dfrac{1}{2}(\angle CBE-\angle CAD)},结合{(1)}的结论可得出{2\angle AQB+\angle C=180^{\circ}}.【解答】{(1)}证明:过点{C}作{CF//AD},则{CF//BE},{\because}{CF//AD//BE},{\therefore}{\angle ACF=\angle A},{\angle BCF+\angle B=180^{\circ}},{\therefore}{\angle B+\angle ACB-\angle A}{=\angle B+\angle BCF+\angle ACF-\angle A}{=\angle B+\angle BCF=180^{\circ}}.{(2)}解:过点{Q}作{QM//AD},则{QM//BE},{\because}{QM//AD},{QM//BE},{\therefore}{\angle AQM=\angle HAD},{\angle BQM=\angle EBQ},{\because}{HQ}平分{\angle CAD},{BQ}平分{\angle CBE},{\therefore}{\angle HAD=\dfrac{1}{2}\angle CAD},{\angle EBQ=\dfrac{1}{2}\angle CBE},{\therefore}{\angle AQB=\angle BQM-\angle AQM=\dfrac{1}{2}(\angle CBE-\angle CAD)},{\because}{\angle C=180^{\circ}-(\angle CBE-\angle CAD)=180^{\circ}-2\angle AQB},{\therefore}{2\angle AQB+\angle C=180^{\circ}}.26.【答案】{(1)}解:点{D}的坐标为{\left(7,1\right)}.{(2)}证明:∵{AB}平移后得到线段{CD},∴{AB//CD},{AC//BD},∴{\angle ABD+\angle BDC=180^{\circ }},{\angle BAC+\angle ABD=180^{\circ }},∴{\angle BAC=\angle BDC}.{(3)}解:{ADB:\angle AEB=1:2},理由如下:如图,∵{AC//BD},∴{\angle CAD=\angle ADB},{\angle AEB=\angle CAE},∵{\angle EAD=\angle CAD},∴{\angle CAE=2\angle CAD},∴{\angle AEB=2\angle ADB},即{ \angle ADB:\angle AEB=1:2}.【考点】作图-平移变换平行线的判定与性质平行线的性质【解析】(1)利用{A}、{C}点的坐标确定平移的方向与距离,从而得到{D}点坐标;(2)利用平移的性质得到{AB//CD},{AC//BD},再根据平行线的性质得{\angle ABD+\angle BDC=180^\circ,\angle BAC+\angle ABD=180^\circ},所以{\angle BAC=\angle BDC}.(3)先由{AC//BD}得到{\angle CAD=\angle ADB,\angle AEB=\angle CAE},再由{\angle EAD=\angle CAD},然后利用等量代换可确定{\angle AEB=2\angle ADB}.【解答】{(1)}解:点{D}的坐标为{\left(7,1\right)}.{(2)}证明:∵{AB}平移后得到线段{CD},∴{AB//CD},{AC//BD},∴{\angle ABD+\angle BDC=180^{\circ }},{\angle BAC+\angle ABD=180^{\circ }},∴{\angle BAC=\angle BDC}.{(3)}解:{ADB:\angle AEB=1:2},理由如下:如图,∵{AC//BD},∴{\angle CAD=\angle ADB},{\angle AEB=\angle CAE},∵{\angle EAD=\angle CAD},∴{\angle CAE=2\angle CAD},∴{\angle AEB=2\angle ADB},即{ \angle ADB:\angle AEB=1:2}.。
人教版七年级第二学期 第二次月考数学试题含解析
人教版七年级第二学期第二次月考数学试题含解析一、选择题1.已知253.6=15.906,25.36=5.036,那么253600的值为( )A.159.06 B.50.36 C.1590.6 D.503.62.在有理数中,一个数的立方等于这个数本身,这种数的个数为()A.1 B.2 C.3 D.43.计算50﹣1的结果应该在下列哪两个自然数之间()A.3,4 B.4,5 C.5,6 D.6,74.如图,网格中的每个小正方形的边长为1,则图中正方形ABCD的边长是()A.2 B.5C.6D.35.正方形ABCD在数轴上的位置如图所示,点D、A对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是()A.点C B.点D C.点A D.点B6.下列说法不正确的是()A813B.12-是14的平方根C.带根号的数不一定是无理数D.a2的算术平方根是a7.下列判断正确的有几个()①一个数的平方根等于它本身,这个数是0和1;②实数包括无理数和有理数;33 3的立方根;④无理数是带根号的数;⑤22.A.2个B.3个C.4个D.5个8.下列说法正确的是()A.a2的正平方根是a B819=±C.﹣1的n次方根是1 D321a--一定是负数9.有下列说法:(1)16的算术平方根是4; (2)绝对值等于它本身的数是非负数; (3)某中学七年级有12个班,这里的12属于标号;(4)实数和数轴上的点一一对应;(5)一个有理数与一个无理数之积仍为无理数;(6)如果a ≈5.34,那么5.335≤a <5.345,其中说法正确的有( )个A .2B .3C .4D .510.下列各组数中互为相反数的是( )A .3和2(3)-B .﹣|﹣2|和﹣(﹣2)C .﹣38和38-D .﹣2和12二、填空题11.用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆b=. 例如:(-3)☆2= 32322-++-- = 2.从﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a ,b(a≠b)的值,并计算a ☆b ,那么所有运算结果中的最大值是_____.12.已知a n =()211n +(n =1,2,3,…),记b 1=2(1-a 1),b 2=2(1-a 1)(1-a 2),…,b n =2(1-a 1)(1-a 2)…(1-a n ),则通过计算推测出表达式b n =________ (用含n 的代数式表示).13.若x +1是125的立方根,则x 的平方根是_________.14.定义一种对正整数n 的“F”运算:①当n 为奇数时,结果为3n+5;②当n 为偶数时,结果为2k n (其中k 是使2kn 为奇数的正整数),并且运算重复进行.例如:取n=26,则:若449n =,则第201次“F”运算的结果是 .1564___________.16.对于三个数a ,b ,c ,用M{a ,b ,c}表示这三个数的平均数,用min{a ,b ,c}表示这三个数中最小的数.例如:M{-1,2,3}=123433-++=,min{-1,2,3}=-1,如果M{3,2x +1,4x -1}=min{2,-x +3,5x},那么x =_______. 172(2)-的平方根是 _______ ;38a 的立方根是 __________.18.写出一个大于3且小于4的无理数:___________.19.34330035.12=30.3512x =-,则x =_____________.20.﹣x|=x+3,则x 的立方根为_____.三、解答题21.先阅读第()1题的解法,再解答第()2题:()1已知a ,b是有理数,并且满足等式52b a =+,求a ,b 的值.解:因为52b a -=+所以()52b a =-所以2b a 52a 3-=⎧⎪⎨-=⎪⎩解得2a 313b 6⎧=⎪⎪⎨⎪=⎪⎩()2已知x ,y是有理数,并且满足等式2x 2y 17--=-x y +的值.22.七年某班师生为了解决“22012个位上的数字是_____”这个问题,通过观察、分析、猜想、验证、归纳等活动,从而使问题得以解决,体现了从特殊到一般的数学思想方法.师生共同探索如下:(1)认真填空,仔细观察.因为21=2,所以21个位上的数字是2 ;因为22=4,所以22个位上的数字是4;因为23=8,所以23个位上的数字是8;因为24= _____ ,所以24个位上的数字是_____;因为25= _____ ,所以25个位上的数字是_____;因为26= _____ ,所以26个位上的数字是_____;(2)小明是个爱动脑筋的学生,他利用上述方法继续探索,马上发现了规律,于是猜想:210个位上的数字是4,你认为对吗?(3)利用上述得到的规律,可知:22012个位上的数字是_____;(4)利用上述研究数学问题的思想与方法,试求:32013个位上的数字是_____.23.你能找出规律吗?(1=,=;=,= .“<”).(2)请按找到的规律计算:;(3)已知:a ,b = (可以用含a ,b 的式子表示).24.观察下列两个等式:112-2133=⨯+,225-5133=⨯+,给出定义如下:我们称使等式 1a b ab -=+ 成立的一对有理数a ,b 为“共生有理数对”,记为(a ,b ),如:数对(2,13),(5,23),都是“共生有理数对”. (1)数对(-2,1),(3,12)中是“共生有理数对”吗?说明理由. (2)若(m ,n )是“共生有理数对”,则(-n ,-m )是“共生有理数对”吗?说明理由.25.计算:(1)()2320181122⎛⎫-+- ⎪⎝⎭(2326.阅读下列解题过程:为了求23501222...2+++++的值,可设23501222...2S =+++++,则2345122222...2S =+++++,所以得51221S S -=-,所以5123505121:1222...221S =-+++++=-,即;仿照以上方法计算:(1)2320191222...2+++++= .(2)计算:2320191333...3+++++(3)计算:101102103200555...5++++【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据已知等式,利用算术平方根性质判断即可得到结果.【详解】,=×100=503.6,故选:D .【点睛】此题考查了算术平方根,熟练掌握算术平方根的性质是解本题的关键.2.C解析:C【分析】设这个数为x, 根据题意列出关于x的方程,求出方程的解即可.【详解】解:设这个数为x,根据题意得:3x x=,解得:x=0或-1或1,共3个;故选:C.【点睛】此题考查了有理数的立方,熟练掌握运算法则是解本题的关键.3.D解析:D【分析】直接利用已知无理数得出最接近的整数,进而得出答案.【详解】解:∵72=49,82=64,∴78<<,∴617<<,1的结果应该在自然数6,7之间.故选:D.【点睛】本题考查了无理数的整数解问题,掌握求无理数的整数解的方法是解题的关键.4.B解析:B【分析】由图可知;正方形面积为5.再由正方形的面积等于边长的平方依据算术平方根定义即可得出答案.【详解】解:由图可知,正方形面积=133-421=52⨯⨯⨯⨯,∴正方形边长故选:B.【点睛】本题考查勾股定理,无理数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5.B解析:B【分析】由题意可知转一周后,A 、B 、C 、D 分别对应的点为1、2、3、4,可知其四次一次循环,由此可确定出2016所对应的点.【详解】当正方形在转动第一周的过程中,1对应的点是A ,2所对应的点是B ,3对应的点是C ,4对应的点是D ,∴四次一循环,∵2016÷4=504,∴2016所对应的点是D ,故答案选B.【点睛】本题主要考查了数轴的应用,解本题的要点在于找出问题中的规律,根据发现的规律可以推测出答案.6.D解析:D【分析】根据平方根的定义,判断A 与B 的正误,根据无理数的定义判断C 的正误,根据算术平方根的定义判断D 的正误.【详解】±3,故A 正确;211()24-=,则12-是14的平方根,故B 正确;2=是有理数,则带根号的数不一定是无理数,故C 正确;∵a 2的算术平方根是|a|,∴当a≥0,算术平方根为a ,当a <0时,算术平方是﹣a ,故a 2的算术平方根是a 不正确.故D 不一定正确;故选:D .【点睛】本题主要考查了平方根,算术平方根,无理数的定义,熟记几个定义是解题的关键.7.B解析:B【分析】根据平方根的定义判断①;根据实数的定义判断②;根据立方根的定义判断③;根据无理数的定义判断④;根据算术平方根的定义判断⑤.【详解】解:①一个数的平方根等于它本身,这个数是0,因为1的平方根是±1,故①错误; ②实数包括无理数和有理数,故②正确;3的立方根,故③正确;④π是无理数,而π不带根号,所以无理数不一定是带根号的数,故④错误;⑤2,故⑤正确.故选:B .【点睛】本题考查了平方根、立方根、算术平方根及无理数、实数的定义,是基础知识,需熟练掌握.8.D解析:D【分析】根据平方根、算术平方根、立方根的定义判断A 、B 、D ,根据乘方运算法则判断C 即可.【详解】A :a 2的平方根是a ±,当0a ≥时,a 2的正平方根是a ,错误;B 9=,错误;C :当n 是偶数时,()1=1n - ;当n 时奇数时,()1=-1n -,错误;D :∵210a --< ,∴【点睛】本题考查平方根、算术平方根、立方根的定义以及乘方运算,掌握相关的定义与运算法则是解题关键. 9.B解析:B【分析】根据算术平方根的定义、绝对值的性质、数轴的意义实数的运算及近似数的表示方法逐一判断即可得答案.【详解】,4的算术平方根是22,故(1)错误,绝对值等于它本身的数是非负数;故(2)正确,某中学七年级共有12个班级,是对于班级数记数的结果,所以这里的12属于记数,故(3)错误,实数和数轴上的点一一对应;故(4)正确,0与无理数的乘积为0,0是有理数,故(5)错误,如果a ≈5.34,那么5.335≤a <5.345,故(6)正确,综上所述:正确的结论有(2)(4)(6),共3个,故选:B .【点睛】本题考查算术平方根的定义、实数的运算、绝对值的性质及近似数的表示方法,熟练掌握相关性质及运算法则是解题关键.10.B解析:B【分析】根据相反数的定义,找到只有符号不同的两个数即可.【详解】解:A 3,3B 、﹣||,﹣||)两数互为相反数,故本选项正确;C 22D 、﹣2和12两数不互为相反数,故本选项错误. 故选:B .【点睛】 考查了相反数的定义:要知道,只有符号不同的两个数互为相反数.二、填空题11.8【解析】解:当a >b 时,a☆b= =a,a 最大为8;当a <b 时,a☆b==b,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 解析:8【解析】解:当a >b 时,a ☆b =2a b a b ++- =a ,a 最大为8; 当a <b 时,a ☆b =2a b a b ++-=b ,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12..【解析】【详解】根据题意按规律求解:b1=2(1-a1)=,b2=2(1-a1)(1-a2)=,…,所以可得:bn=.解:根据以上分析bn=2(1-a1)(1-a2)…(1-an )=.“ 解析:12++n n . 【解析】【详解】 根据题意按规律求解:b 1=2(1-a 1)=131221-4211+⎛⎫⨯== ⎪+⎝⎭,b 2=2(1-a 1)(1-a 2)=314221-29321+⎛⎫⨯== ⎪+⎝⎭,…,所以可得:b n =12++n n . 解:根据以上分析b n =2(1-a 1)(1-a 2)…(1-a n )=12++n n . “点睛”本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.本题中表示b 值时要先算出a 的值,要注意a 中n 的取值.13.±2【分析】先根据立方根得出x 的值,然后求平方根.【详解】∵x+1是125的立方根∴x+1=,解得:x=4∴x 的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根,注意一个正解析:±2【分析】先根据立方根得出x 的值,然后求平方根.【详解】∵x+1是125的立方根∴x=4∴x 的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根,注意一个正数的平方根有2个,算术平方根只有1个.14..【详解】第一次:3×449+5=1352,第二次:,由题意k=3时结果为169;第三次:3×169+5=512,第四次:因为512是2的9次方,所以k=9,计算结果是1;第五次:1×3+5解析:8.【详解】第一次:3×449+5=1352,第二次:13522k,由题意k=3时结果为169;第三次:3×169+5=512,第四次:因为512是2的9次方,所以k=9,计算结果是1;第五次:1×3+5=8;第六次:82k,因为8是2的3次方,所以k=3,计算结果是1,此后计算结果8和1循环.因为201是奇数,所以第201次运算结果是8.故答案为8.15.2【分析】的值为8,根据立方根的定义即可求解.【详解】解:,8的立方根是2,故答案为:2.【点睛】本题考查算术平方根和立方根的定义,明确算术平方根和立方根的定义是解题的关键.解析:2【分析】8,根据立方根的定义即可求解.【详解】8=,8的立方根是2,故答案为:2.【点睛】本题考查算术平方根和立方根的定义,明确算术平方根和立方根的定义是解题的关键.16.或【解析】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}==2x+1解析:12或13【解析】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}=321413x x+++-=2x+1,∵M{3,2x+1,4x-1}=min{2,-x+3,5x},∴有如下三种情况:①2x+1=2,x=12,此时min{2,-x+3,5x}= min{2,52,52}=2,成立;②2x+1=-x+3,x=23,此时min{2,-x+3,5x}= min{2,73,103}=2,不成立;③2x+1=5x,x=13,此时min{2,-x+3,5x}= min{2,83,53}=53,成立,∴x=12或13,故答案为12或13.【点睛】本题考查了阅读理解题,一元一次方程的应用,分类讨论思想的运用等,解决问题的关键是读懂题意,依题意分情况列出一元一次方程进行求解.17.2a【分析】根据平方根的定义及立方根的定义解答.【详解】的平方根是,的立方根是2a,故答案为:,2a.【点睛】此题考查平方根及立方根的定义,利用定义求一个数的平方根及立解析:【分析】根据平方根的定义及立方根的定义解答.【详解】38a的立方根是2a,故答案为:,2a.【点睛】此题考查平方根及立方根的定义,利用定义求一个数的平方根及立方根.18.如等,答案不唯一.【详解】本题考查无理数的概念.无限不循环小数叫做无理数.介于和之间的无理数有无穷多个,因为,故而9和16都是完全平方数,都是无理数.解析:π等,答案不唯一.【详解】本题考查无理数的概念.无限不循环小数叫做无理数.介于3和4之间的无理数有无穷多个,因为2239,416==,故而9和16,15都是无理数.19.-0.0433【分析】三次根式变化规律为:三次根号内的式子扩大或缩小1000倍,则得到的结果扩大或缩小10倍,根据规律可得x 的值.【详解】从35.12变为-0.3512,缩小了100倍,且添解析:-0.0433【分析】三次根式变化规律为:三次根号内的式子扩大或缩小1000倍,则得到的结果扩大或缩小10倍,根据规律可得x 的值.【详解】从35.12变为-0.3512,缩小了100倍,且添加了“-”∴根据规律,三次根式内的式子应该缩小1000000倍,且添加“-”故答案为:-0.0433【点睛】本题考查三次根式的规律,二次根式规律类似:二次根号内的式子扩大或缩小100倍,则得到的结果扩大或缩小10倍.20.3【分析】直接利用二次根式有意义的条件得出x 的取值范围进而得出x 的值,求出答案.【详解】解:∵有意义,∴x﹣2≥0,解得:x≥2,∴+x﹣2=x+3,则=5,故x ﹣2=25,解得解析:3【分析】直接利用二次根式有意义的条件得出x 的取值范围进而得出x 的值,求出答案.【详解】∴x ﹣2≥0,解得:x≥2,﹣2=x+3,5,故x ﹣2=25,解得:x =27,故x 的立方根为:3.故答案为:3.【点睛】此题主要考查了二次根式有意义的条件,正确掌握二次根式的性质是解题关键.三、解答题21.x y 9+=或x y 1+=-.【分析】利用等式左右两边的有理数相等和二次根式相同,建立方程组,然后解方程即可.【详解】因为2x 2y 17--=-所以()2x 2y 17-=- 所以2x 2y 17y 4-=⎧=⎨⎩, 解得{x 5y 4==或{x 5y 4=-=,所以x y 9+=或x y 1+=-.【点睛】本题是一个阅读题目,主要考查了实数的运算,其中关键是理解解方程组的思路就是消元.对于阅读理解题要读懂阅读部分,然后依照同样的方法和思路解题.22.(1)16,6;32,2;64,4;(2)对;(3)6;(4)3.【分析】(1)利用乘方的概念分别求出24、25、26的结果,即可解决;(2)算出210的结果,即可知道个位数是多少,即可解决;(3)按照上述规律,以4为周期,个位数重复2、4、8、6,故2012中刚好有503组,故能得出答案;(4)分别求出31,32,33,34,找出规律,个位数重复3,9,7,1,2013中是4的503倍,而且余1,故得出结论.【详解】解:(1)∵24=16、25=32、26=64∴24的个位数为6;25的个位数为2;26的个位数为4;(2)∵210=1024∴个位数是4,该说法对(3)可以知道规律,以4为周期,各位数重复2、4、8、6,故2012中刚好有503组,故22012个位数刚好为6;(4)∵31=3,32=9,33=27,34=81,35=243;∴个位数重复3,9,7,1∵2013中是4的503倍,而且余1∴个位数为3.【点睛】本题主要考查了乘方的运算以及找规律,熟练乘方的运算以及找出规律是解决本题的关键.23.(1)6,6,20,20,=,=;(2)①10,②4;(3)2a b【分析】(1)0,0a b =≥≥,据此判断即可.(2=10===,4===,据此解答即可.(3)根据a =b =2a b ==,据此解答即可.【详解】解:(1236=⨯=6==;4520=⨯=20==.==故答案为:6,6,20,20,=,=;(210===;4===;(3)∵a =b =2a b ==, 故答案为:2a b .【点睛】 本题考查算数平方根,掌握求一个数算术平方根的方法为解题关键.24.(1) (−2,1)不是“共生有理数对”,13,2⎛⎫ ⎪⎝⎭是“共生有理数对”;理由见详解.(2) (−n ,−m )是“共生有理数对”, 理由见详解.【分析】(1)根据“共生有理数对”的定义即可判断;(2)根据“共生有理数对”的定义即可判断;【详解】(1)−2−1=−3,−2×1+1=1,∴−2−1≠−2×1+1,∴(−2,1)不是“共生有理数对”, ∵15153,312222-=⨯+=, ∴1133122-=⨯+, ∴(13,2)是“共生有理数对”;(2)是. 理由:− n −(−m )=−n +m ,−n ⋅(−m )+1=mn +1∵(m ,n )是“共生有理数对”∴m −n =mn +1∴−n +m =mn +1∴(−n ,−m )是“共生有理数对”,【点睛】考查有理数的混合运算,整式的加减—化简求值,等式的性质,读懂题目中“共生有理数对”的定义是解题的关键.25.(1)-34;(2)3【分析】(1)利用乘方、立方、二次根式、开立方等概念分别化简每项,再整理计算即可; (2)利用绝对值的意义化简每一项,再整理计算即可.【详解】解:(1)()2320181122⎛⎫-+- ⎪⎝⎭ ()()118444=-+-⨯+-⨯()1321=--+-=-34;(233=-+-+-3=【点睛】此题考查了有理数的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.26.(1)202021-;(2)2020312-;(3)201101554-. 【分析】 仿照阅读材料中的方法求出所求即可.【详解】解:(1)根据2350511222...221+++++=- 得:2320191222...2+++++=202021- (2)设2320191333...3S =+++++,则234202033333...3S =+++++,∴2020331S S -=-, ∴2020312S -= 即:2020232019311333 (32)-+++++= (3)设232001555...5S =+++++,则23420155555...5S =+++++,∴201551S S -=-, ∴201514S -= 即:20123200511555 (5)4-+++++= 同理可求⸫10123100511555 (5)4-+++++= ∵1011021032002320023100555...51555...5)(1555...5)++++=+++++-+++++( 201101201101101102103200515155555 (5444)---∴++++=-= 【点睛】此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.。
2022-2023学年新人教版七年级下数学月考试卷(含解析)
2022-2023学年初中七年级下数学月考试卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:105 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 如图,在中,,点在上,,若,则的度数为( )A.B.C.D.2. 某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知,,,则的度数是( )A.B.C.D.3. 如图,点,分别在和上,,,,则的度数( )△ABC ∠C =90∘D AC DE //AB ∠CDE =165∘∠B 15∘55∘65∘75∘AB //CD ∠BAE=87∘∠DCE=121∘∠E 28∘34∘46∘56∘D E AB AC DE//BC ∠ADE =60∘∠EBC =25∘∠ABEA.B.C.D.4. 如图,是的平分线,交于点,若,则的度数为( )A.B.C. D.5. 如图,直线与相交于点,,若,则 A.B.C.D.25∘30∘45∘35∘AF ∠BAC EF//AC AB E ∠1=35∘∠BEF 35∘60∘70∘80∘l 1l 2O OM ⊥l 1α=44∘β=()56∘46∘45∘44∘△ABC α(<α<)0∘180∘△EBD A6. 如图,将绕点逆时针旋转,得到,若点恰好在的延长线上,则的度数为 A.B.C.D.7. 平移小菱形可以得到美丽的“中国结”图案,下面四个图案是小菱形平移后得到的类似“中国结”的图案,按图中规律,第个图案中,小菱形的个数是( )A.B.C.D. 8.如图是一架婴儿车的示意图,其中,, ,那么的度数为( )A.B.C.D.△ABC B α(<α<)0∘180∘△EBD A ED ∠CAD ()−α90∘α−α180∘2α2080090010001100AB//CD ∠1=110∘∠3=40∘∠280∘90∘100∘70∘卷II (非选择题)二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )9. 把“等角的余角相等”改写成“如果那么”的形式是________,________,该命题是________命题(填“真”或“假”).10. 已知的两边与的两边分别平行,且比的倍少,那么________.11. 如图,直线相交于点,与互为余角,若,则________.12. 如图,将沿方向平移个单位得到,若的周长等于,则四边形的周长等于________.13. 两条平行直线被第三条直线所截,同旁内角的和为________度.14. 如图,在正方形中,,点是边的中点,点是边上一点,连接,若,则线段的长度为________.三、 解答题 (本题共计 7 小题 ,每题 5 分 ,共计35分 )15. 如图,直线与直线相交于,根据下列语句画图、解答.⋯⋯⋯⋯∠A ∠B ∠A ∠B 340∘∠A =AB ,CD O ∠BOD ∠BOE ∠AOC =72∘∠BOE =∘△ABC BC 1△DEF △ABC 10cm ABFD ABCD AB =2E BC F CD AF ∠FAE =∠BAE CF CD AB C (1)PQ //CD AB Q过点作,交于点;过点作,垂足为;若,猜想是多少度?并说明理由. 16.如图,已知,.求证.请将下列证明过程填写完整.证明:∵(已知),∴________________,又∵已知,∴,________,∴________________,∴________.17. 如图,在中,是高,点、、分别在、、上且,试判断与的数量关系,并说明理由.18.如图所示,已知, .若 ,求的度数;判断,的位置关系,并说明理由;若平分,求证:平分 .19. 综合与探究已知,分别为直线,直线上的点,且,点在,之间.如图,求证:;如图,点是上一点,连接,作,若.试探究与的数量关系,并说明理由.在的条件下,作交于点,平分,平分,若(1)P PQ //CD AB Q (2)P PR ⊥CD R (3)∠DCB =120∘∠PQC EF //AD ∠1=∠2∠DGA +∠BAC =180∘EF //AD ∠2=()∠1=∠2()∠1=∠3()AB //()∠DGA +∠BAC =180∘()△ABC CD E F G BC AB AC EF ⊥AB,∠1=∠2∠AGD ∠ACB AE//CF ∠A =∠C (1)∠1=40∘∠2(2)AD BC (3)DA ∠BDF BC ∠EBD M N AB CD AB//CD E AB CD (1)1∠BME +∠DNE =∠MEN (2)2P CD PM MQ//EN ∠QMP =∠BME ∠E ∠AMP (3)(2)NG ⊥CD PM G MP ∠QME NF ∠ENG ∠MGN =170∘∠MFN =,则________.20. 问题:如图,是的平分线,,且.求证:也是的平分线.完成下列推理过程:证明:∵是的平分线,(已知)∴________∵(已知)∴________∴______=______(等量代换),又∵(已知)∴( )(________,∴________∵(等量代换)∴是的平分线(_______)21. 如图,在中,,分别为半径,弦的中点,连接并延长,交过点的切线于点.求证:;若,,求半径的长.∠MGN =170∘∠MFN =BD ∠ABC ED //BC ∠FED =∠BDE EF ∠AED BD ∠ABC ∠ABD =∠DBC ()ED //BC ∠BDE =∠BDC()∠FED =∠BDE //())∠AEF =∠ABD ()∠AEF =∠DEF EF ∠AED ⊙O C D OB AB CD A E (1)AE ⊥CE (2)AE =2–√sin ∠ADE =13⊙O参考答案与试题解析2022-2023学年初中七年级下数学月考试卷一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】D【考点】平行线的性质三角形内角和定理【解析】利用平角的定义可得,再根据平行线的性质知,再由内角和定理可得答案.【解答】解:∵,∴.∵,∴,∴.故选.2.【答案】B【考点】平行线的性质【解析】延长交于,依据,=,可得=,再根据三角形外角性质,即可得到=.【解答】解:如图,延长交于,过点作交于,∠ADE =15∘∠A =∠ADE =15∘∠CDE =165∘∠ADE =15∘DE //AB ∠A =∠ADE =15∘∠B =−∠C −∠A =−−180∘180∘90∘15∘=75∘D DC AE F AB //CD ∠BAE 87∘∠CFE 87∘∠E ∠DCE −∠CFE DC AE F C GH//AE AB G∵,,∴,则,又∵,∴.故选.3.【答案】D【考点】平行线的性质【解析】利用平行线性质以及三角形外角性质即可求解.【解答】解:∵,∴,又∵,∴.故选.4.【答案】C【考点】角平分线的定义平行线的性质【解析】根据平行线的性质求出,根据角平分线的定义得出,根据平行线的性质得出,代入求出即可.【解答】AB //CD ∠BAE=87∘∠CFE=87∘∠DCH =∠EFC =87∘∠DCE=121∘∠E=∠HCE =∠DCE −∠DCH =−=121∘87∘34∘B DE//BC ∠DEB =∠EBC =25∘∠ADE =∠ABC =60∘∠ABE =∠ABC −∠EBC =−=60∘25∘35∘D ∠FAC =∠1=35∘∠BAC =2∠FAC =70∘∠BEF =∠BAC EF//AC ∠1=35∘解:∵,,∴.∵是的平分线,∴.∵,∴.故选.5.【答案】B【考点】垂线余角和补角【解析】由题意可得,把代入求解即可.【解答】解:∵,∴.把代入,得.故选.6.【答案】C【考点】多边形的内角和【解析】根据旋转的性质和四边形的内角和是,可以求得的度数,本题得以解决.【解答】解:由题意可得,,,∵,∴,∵,,∴.故选.7.EF//AC ∠1=35∘∠FAC =∠1=35∘AF ∠BAC ∠BAC =2∠FAC =70∘EF//AC ∠BEF =∠BAC =70∘C α+β=90∘α=44∘OM ⊥l 1β++α=90∘180∘α=44∘β=46∘B 360∘∠CAD ∠CBD =α∠ACB =∠EDB ∠EDB +∠ADB =180∘∠ADB +∠ACB =180∘∠ADB +∠DBC +∠BCA +∠CAD =360∘∠CBD =α∠CAD =−α180∘C【答案】A【考点】规律型:图形的变化类【解析】仔细观察图形发现第一个图形有个小菱形;第二个图形有个小菱形;第三个图形有个小菱形;由此规律得到通项公式,然后代入即可求得答案.【解答】解:∵第一个图形有个小菱形;第二个图形有个小菱形;第三个图形有个小菱形;以此类推,第个图形有个小菱形,∴第个图形有个小菱形.故选.8.【答案】D【考点】平行线的性质三角形的外角性质【解析】根据平行线性质求出,根据三角形外角性质得出,代入求出即可.【解答】解:∵,∴,∵,∴.故选.二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )9.【答案】如果两个角是等角的余角,那么这两个角相等,真2×=2122×=8222×=1832n =202×=2122×=8222×=1832⋯n 2n 2202×=800202A ∠A ∠2=∠1−∠A AB//CD ∠A =∠3=40∘∠1=110∘∠2=∠1−∠A =70∘D命题的组成真命题,假命题【解析】此题暂无解析【解答】解:命题“等角的余角相等”改写成“如果那么”的形式为:如果两个角是等角的余角,那么这两个角相等.这个命题正确,是真命题.故答案为:如果两个角是等角的余角,那么这两个角相等;真.10.【答案】或【考点】平行线的性质【解析】设的度数为,则的度数为,根据两边分别平行的两个角相等或互补得到=或=,再分别解方程,然后计算的值即可.【解答】解:设的度数为,则的度数为,当时,即,解得,所以;当时,即,解得,所以;所以的度数为或.故答案为:或.11.【答案】【考点】对顶角⋯⋯⋯⋯20∘125∘∠B x ∠A 3x −40∘x 3x −40∘x +3x −40∘180∘3x −40∘∠B x ∠A 3x −40∘∠A =∠B x =3x −40∘x =20∘3x −=40∘20∘∠A +∠B =180∘x +3x −=40∘180∘x =55∘3x −=40∘125∘∠A 20∘125∘20∘125∘18角的计算【解析】此题暂无解析【解答】解:∵,∴.∵与互余,∴.故答案为:.12.【答案】【考点】平移的性质【解析】根据平移的性质可得,,然后根据四边形的周长的定义列式计算即可得解.【解答】解:∵沿方向平移个单位得到,∴,,∴四边形的周长∵的周长,∴,∴四边形的周长.故答案为:.13.【答案】【考点】平行线的性质【解析】∠AOC =72∘∠BOD =72∘∠BOD ∠BOE ∠BOE =−=90∘72∘18∘1812cmAD =CF =1AC =DF △ABC BC 1△DEF AD =CF =1AC =DF ABFD =AB +(BC +CF)+DF +AD=AB +BC +AC +AD +CF.△ABC =10cm AB +BC +AC =10cm ABFD =10+1+1=12cm 12cm 180根两条直线被第三条直线所截,同旁内角互即可得解.【解答】解:两条直线被第三条直线所截,同旁内角互补,所以同旁内角的和为.故答案为:.14.【答案】【考点】勾股定理平行线的性质三角形中位线定理【解析】由平行线性质,梯形中位线定理得到,设,则,,在直角三角形中,利用勾股定理即可求解.【解答】解:过作交于,则,∴,又,∴,设,则,,在直角三角形中,,解得,∴.故答案为:.三、 解答题 (本题共计 7 小题 ,每题 5 分 ,共计35分 )180∘18012AF =AB +CF CF =x AF =2+x DF =2−x ADF E EM//AB AF M ∠FAE =∠BAE=∠MEA AM =ME =AF 12ME =(AB +CF)12AF =AB +CF CF =x AF =2+x DF =2−x ADF (2+x =+(2−x )222)2x =12CF =121215.【答案】解:如图所示,直线即为所求.如图所示,直线即为所求.猜想.理由如下:∵(已作),∴(两直线平行,同位角相等).∴(邻补角的定义).【考点】平行线的画法经过一点作已知直线的垂线平行线的性质邻补角【解析】(1)过点作,交于点;(2)过点作,垂足为;(3)利用两直线平行,同旁内角互补即可解决问题.【解答】解:如图所示,直线即为所求.如图所示,直线即为所求.猜想.理由如下:∵(已作),∴(两直线平行,同位角相等).∴(邻补角的定义).16.【答案】,两直线平行,同位角相等,等量代换,,内错角相等,两直线平行,两直线平行,同旁内角互补【考点】平行线的判定与性质(1)PQ (2)PR (3)∠PQC =60∘PQ //CD ∠PQB =∠DCB =120∘∠PQC =−∠PQB =−=180∘180∘120∘60∘P PQ //CD AB Q P PR ⊥CD R (1)PQ (2)PR (3)∠PQC =60∘PQ //CD ∠PQB =∠DCB =120∘∠PQC =−∠PQB =−=180∘180∘120∘60∘∠3DG【解析】分别根据平行线的性质及平行线的判定定理解答即可.【解答】解:∵,(已知)∴.(两直线平行,同位角相等)又∵,(已知)∴,(等量代换)∴,(内错角相等,两直线平行)∴(两直线平行,同旁内角互补).故答案为:;两直线平行,同位角相等;等量代换;;内错角相等,两直线平行;两直线平行,同旁内角互补.17.【答案】解: .理由:∵,,∴,∴,∵,∴,∴,∴ .【考点】平行线的判定与性质【解析】此题暂无解析【解答】解: .理由:∵,,∴,∴,∵,∴,∴,∴ .18.【答案】解:,,∵,∴ .解:∵,EF //AD ∠2=∠3∠1=∠2∠1=∠3AB //DG ∠DGA +∠BAC =180∘∠3DG ∠AGD =∠ACB CD ⊥AB EF ⊥AB EF//CD ∠2=∠BCD ∠1=∠2∠1=∠BCD DG//BC ∠AGD =∠ACB ∠AGD =∠ACB CD ⊥AB EF ⊥AB EF//CD ∠2=∠BCD ∠1=∠2∠1=∠BCD DG//BC ∠AGD =∠ACB (1)∵AE//CF ∴∠CDB =∠1=40∘∠CDB +∠2=∠180∘∠2=−∠CDB =−180∘180∘40∘=140∘(2)AE//CF ∴∠A =∠ADF,又∵,,∴ .证明:由得 ,,,,∵平分,,∴,∴平分 .【考点】平行线的性质邻补角平行线的判定与性质角平分线的定义【解析】此题暂无解析【解答】解:,,∵,∴ .解:∵,,又∵,,∴ .证明:由得 ,,,,∵平分,,∴,∴平分 . 19.【答案】证明:如图,过作.∴∠A =∠ADF ∠A =∠C ∴∠ADF =∠C AD//BC (3)(2)AD//BC ∴∠ADB =∠DBC ∵AE//CF ∴∠BDF =∠EBD DA ∠BDF ∴∠ADF =∠ADB =∠BDF 12∠DBC =∠EBD 12BC ∠EBD (1)∵AE//CF ∴∠CDB =∠1=40∘∠CDB +∠2=∠180∘∠2=−∠CDB =−180∘180∘40∘=140∘(2)AE//CF ∴∠A =∠ADF ∠A =∠C ∴∠ADF =∠C AD//BC (3)(2)AD//BC ∴∠ADB =∠DBC ∵AE//CF ∴∠BDF =∠EBD DA ∠BDF ∴∠ADF =∠ADB =∠BDF 12∠DBC =∠EBD 12BC ∠EBD (1)E EG//AB∵,∴,∴.∵,∴.解:.理由:∵,∴.∵,∴.∵,∴,∴,∴.【考点】平行线的性质【解析】此题暂无解析【解答】证明:如图,过作.∵,∴,∴.∵,∴.解:.理由:∵,∴.∵,∴.∵,∴,∴,∴.提示:在的条件下,.AB//CD EG//CD ∠BME =∠MEG,∠DNE =∠GEN ∠MEN =∠MEG +∠GEN ∠BME +∠DNE =∠MEN (2)∠E =∠AMP AB//CD ∠BMP +∠MPD =,∠MPD =∠AMP180∘MQ//EN ∠QME +∠E =180∘∠QMP =∠BME ∠QME =∠BMP ∠E =∠MPD ∠E =∠AMP 110∘(1)E EG//AB AB//CD EG//CD ∠BME =∠MEG,∠DNE =∠GEN ∠MEN =∠MEG +∠GEN ∠BME +∠DNE =∠MEN (2)∠E =∠AMP AB//CD ∠BMP +∠MPD =,∠MPD =∠AMP180∘MQ//EN ∠QME +∠E =180∘∠QMP =∠BME ∠QME =∠BMP ∠E =∠MPD ∠E =∠AMP (3)(2)∠AMP =∠E ∠QMP =∠BME∵,∴.∵平分,∴.∵,∴.∵,∴,∴.∵,平分,∴,∴.故答案为:.20.【答案】角平分线的定义两直线平行,内错角相等EF //BD,内错角相等,两直线平行两直线平行,同位角相等角平分线定义【考点】平行线的判定与性质【解析】先利用角平分线定义得到,再根据平行线的性质由得,则,接着由可判断,则利用平行线的性质得,,所以,从而得到结论.【解答】证明:∵是的平分线(已知),∴(角平分线定义);∵(已知),∴(两直线平行,内错角相等),∴(等量代换);又∵(已知),∴(内错角相等,两直线平行),∴(两直线平行,同位角相等),∴(等量代换),∴是的平分线(角平分线定义).21.【答案】证明:连接,如图,∠QMP =∠BME ∠AMQ =∠DNE MP ∠QME ∠PMQ =∠PME =∠BME ∠MGN =∠AMP +=90∘170∘∠AMP =∠AMQ +∠QMP =80∘∠AMQ +3∠QMP =180∘∠QMP =∠BME =50∘∠AMQ =∠DNE =30∘NG ⊥CD NF ∠ENG ∠FNG =∠ENF =∠DNE =30∘∠MFN =∠BME +∠FND =+=50∘60∘110∘110∘∠ABD =∠BDE∠ABD =∠CBD ED //BC ∠EDB =∠CBD ∠ABD =∠EDB ∠FED =∠BDE EF //BD ∠EDB =∠DEF ∠ABD =∠AEF ∠AEF =∠DEF BD ∠ABC ∠ABD =∠DBC ED //BC ∠BDE =∠DBC ∠ABD =∠BDE ∠FED =∠BDE EF //BD ∠AEF =∠ABD ∠AEF =∠DEF EF ∠AED (1)OA∵是的切线,∴,∴,∵,分别为半径,弦的中点,∴为的中位线.∴.∴.∴.解:连接,如图,∵,,∴,∴,在中,,∴,∵,∴.在中,,设,则,∴,即,解得,∴,即的半径长为.【考点】解直角三角形切线的性质三角形中位线定理勾股定理平行线的性质AE ⊙O AE ⊥OA ∠OAE=90∘C D OB AB CD △AOB CD //OA ∠E=90∘AE ⊥CE (2)OD AD=BD OA =OB OD ⊥AB ∠ODA=90∘Rt △AED sin ∠ADE ==AE AD 13AD=32–√CD //OA ∠OAD=∠ADE Rt △OAD sin ∠OAD =13OD=x OA=3x AD ==2x (3x −)2x 2−−−−−−−−√2–√2x 2–√=32–√x=32OA=3x =92⊙O 92【解析】(1)连接,如图,利用切线的性质得=,再证明为的中位线得到.则可判断;(2)连接,如图,利用垂径定理得到,再在中利用正弦定义计算出=,接着证明=.从而在中有,设=,则=,利用勾股定理可计算出=,从而得到=,然后解方程求出即可得到的半径长.【解答】证明:连接,如图,∵是的切线,∴,∴,∵,分别为半径,弦的中点,∴为的中位线.∴.∴.∴.解:连接,如图,∵,,∴,∴,在中,,OA ∠OAE 90∘CD △AOB CD //OA AE ⊥CE OD OD ⊥AB Rt △AED AD 32–√∠OAD ∠ADE Rt △OAD sin ∠OAD =13OD x OA 3x AD 2x 2–√2x 2–√32–√x ⊙O (1)OA AE ⊙O AE ⊥OA ∠OAE=90∘C D OB AB CD △AOB CD //OA ∠E=90∘AE ⊥CE (2)OD AD=BD OA =OB OD ⊥AB ∠ODA=90∘Rt △AED sin ∠ADE ==AE AD 13=3–√∴,∵,∴.在中,,设,则,∴,即,解得,∴,即的半径长为.AD=32–√CD //OA ∠OAD=∠ADE Rt △OAD sin ∠OAD =13OD=x OA=3x AD ==2x (3x −)2x 2−−−−−−−−√2–√2x 2–√=32–√x=32OA=3x =92⊙O 92。
人教版七年级下学期第二次月考数学试卷(含答案解析)
人教版七年级下学期第二次月考数学试卷一、选择题(本题共10小题,每题3分,共30分)1.下列计算正确的是()A.x2+x2=x4B.(2x)3=6x3C.(﹣2a﹣3)(2a﹣3)=9﹣4a2D.(2a﹣b)2=4a2﹣2ab+b22.如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3B.∠2=∠3C.∠4=∠5D.∠2+∠4=180°3.下列事件中,是必然事件的是()A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨4.如图,要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使BC=CD,再作出BF的垂线DE,使点A、C、E在同一条直线上(如图),可以说明△ABC≌△EDC,得AB=DE,因此测得DE的长就是AB的长,判定△ABC≌△EDC,最恰当的理由是()A.SAS B.HL C.SSS D.ASA5.某校八年级同学到距学校6千米的郊外春游,一部分同学步行,另一部分同学骑自行车,如图,l1、l2分别表示步行和骑车的同学前往目的地所走的路程y(千米)与所用时间x (分钟)之间的函数图象,则以下判断错误的是()A.骑车的同学比步行的同学晚出发30分钟B.步行的速度是6千米/时C.骑车的同学从出发到追上步行的同学用了20分钟D.骑车的同学和步行的同学同时到达目的地6.如图,已知方格纸中是4个相同的小正方形,则∠1+∠2的度数为()A.30°B.45°C.60°D.90°7.如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B 恰好落在AC边上的点E处,若∠A=26°,则∠CDE度数为()A.71°B.64°C.80°D.45°8.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论错误的是()A.BD平分∠ABC B.△BCD的周长等于AB+BCC.AD=BD=BC D.点D是线段AC的中点9.如图,两个正方形边长分别为a、b,如果a+b=18,ab=60,则图中阴影部分的面积为()A.144B.72C.68D.3610.如图,已知△ABC的周长是10,点O为∠ABC与∠ACB的平分线的交点,且OD⊥BC 于D.若OD=2,则△ABC的面积是()A.20B.12C.10D.8二、填空题(本大题共6个小题,每小题3分,共18分).11.若a m=3,a n=2,则a2m﹣n=.12.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为.13.三角形两边长分别是2,4,第三边长为偶数,第三边长为.14.如图,m∥n,直角三角板ABC的直角顶点C在两直线之间,两直角边与两直线相交所形成的锐角分别为α、β,则α+β=.15.如图,AD是∠BAC的平分线,EF垂直平分AD交BC的延长线于点F,若∠F AC=65°,则∠B的度数为.16.已知△ABC中,AB=AC,过点B的直线将△ABC分成两个等腰三角形,则∠ABC =°.三、解答题(共7小题,计52分,解答应写出过程)17.(8分)计算:(1)(﹣)﹣2+4×(﹣1)2019﹣(π﹣5)0.(2)﹣2a2b5•(﹣4a2b)﹣(﹣3a2b3)2.18.(5分)先化简,再求值:[4(x﹣y)2﹣(2x﹣y)(y+2x)]÷(﹣2y),其中x=2,y=﹣1.19.(6分)某商场为吸引顾客,设立了一个可以自由转动的转盘,并规定每购买100元商品可以获得一次转动转盘的机会,如果转盘停止转动时,指针正好落在哪个区域,就根据所转结果付账.求一个顾客转动一次转盘但不打折的概率.20.(6分)如图,已知Rt△ABC,∠C=90°,请用尺规作斜边AB边上的高CD,垂足为D.(保留作图痕迹,不写作法)21.(7分)如图,在四边形ABCD中,AB∥DC,点E是CD的中点,AE=BE.求证:∠D=∠C.22.(8分)南宁市某中学环保兴趣小组对南湖清除淤泥工程进行调查,并从《南宁晚报》中收集到下列数据:南湖面积(单位:平方米)淤泥平均厚度(单位:米)每天清淤泥量(单位:立方米)160万0.70.6万根据上表解答下列问题:(1)请你按体积=面积×高来估算,南湖的淤泥量大约有多少万立方米?(2)设清除淤泥x天后,剩余的淤泥量为y万米3,求y与x的函数关系.(不要求写出x的取值范围)(3)为了使南湖的生物链不遭破坏,仍需保留一定量的淤泥.若需保留的淤泥量约为22万米3,求清除淤泥所需天数.23.(12分)我们曾学过“两点之间线段最短”的知识,常可利用它来解决两条线段和最小的相关问题,下面是大家非常熟悉的一道习题:如图1,已知,A,B在直线l的同一侧,在l上求作一点,使得P A+PB最小.我们只要作点A关于l的对称点A',根据对称性可知,P A=P A',因此,求AP+BP最小就相当于求BP+P A'最小,显然当A'、P、B在一条直线上时A'P+PB最小,因此连接A'B,与直线1的交点,就是要求的点P.有很多问题都可用类似的方法去思考解决.(1)观察发现:如图1,在△ABC中,点D、E分别是AB、AC边的中点.请你在BC 边上确定一点P,使得△PDE的周长最小.(三角板、刻度尺画图,保留痕迹,不写作法)(2)实践运用:①如图2,为了做好五一期间的交通安全工作,西安市交警执勤小队从A处出发,先到公路m上设卡检查,再到公路n上设卡检查,最后再到达B地执行任务,他们应如何走才能使总路程最短?画出图形并说明做法.②如图3,△ABC中,∠BAC=90°,AB=6,BC=10,AC=8,BD是∠ABC的平分线,若P、Q分别是BD和AB上的动点,则P A+PQ的最小值是.(3)拓展延伸:如图4,在四边形ABCD的对角线AC上确定一点P,使∠APB=∠APD.(三角板、刻度尺画图,保留作图痕迹,不写作法)参考答案与试题解析一、选择题(本题共10小题,每题3分,共30分)1.下列计算正确的是()A.x2+x2=x4B.(2x)3=6x3C.(﹣2a﹣3)(2a﹣3)=9﹣4a2D.(2a﹣b)2=4a2﹣2ab+b2【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=2x2,故A错误.(B)原式=8x3,故B错误.(D)原式=4a2﹣4ab+b2,故D错误.故选:C.2.如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3B.∠2=∠3C.∠4=∠5D.∠2+∠4=180°【分析】根据平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行分别进行分析即可.【解答】解:A、根据内错角相等,两直线平行可判断直线l1∥l2,故此选项不合题意;B、∠2=∠3,不能判断直线l1∥l2,故此选项符合题意;C、根据同位角相等,两直线平行可判断直线l1∥l2,故此选项不合题意;D、根据同旁内角互补,两直线平行可判断直线l1∥l2,故此选项不合题意;故选:B.3.下列事件中,是必然事件的是()A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨【分析】必然事件就是一定发生的事件,依据定义即可判断.【解答】解:A、“任意买一张电影票,座位号是2的倍数”是随机事件,故此选项错误;B、“13个人中至少有两个人生肖相同”是必然事件,故此选项正确;C、“车辆随机到达一个路口,遇到红灯”是随机事件,故此选项错误;D、“明天一定会下雨”是随机事件,故此选项错误;故选:B.4.如图,要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使BC=CD,再作出BF的垂线DE,使点A、C、E在同一条直线上(如图),可以说明△ABC≌△EDC,得AB=DE,因此测得DE的长就是AB的长,判定△ABC≌△EDC,最恰当的理由是()A.SAS B.HL C.SSS D.ASA【分析】根据全等三角形的判定进行判断,注意看题目中提供了哪些证明全等的要素,要根据已知选择判断方法.【解答】解:因为证明在△ABC≌△EDC用到的条件是:CD=BC,∠ABC=∠EDC=90°,∠ACB=∠ECD,所以用到的是两角及这两角的夹边对应相等即ASA这一方法.故选:D.5.某校八年级同学到距学校6千米的郊外春游,一部分同学步行,另一部分同学骑自行车,如图,l1、l2分别表示步行和骑车的同学前往目的地所走的路程y(千米)与所用时间x (分钟)之间的函数图象,则以下判断错误的是()A.骑车的同学比步行的同学晚出发30分钟B.步行的速度是6千米/时C.骑车的同学从出发到追上步行的同学用了20分钟D.骑车的同学和步行的同学同时到达目的地【分析】根据图象上特殊点的坐标和实际意义即可求出答案.【解答】解:骑车的同学比步行的同学晚出发30分钟,所以A正确;步行的速度是6÷1=6千米/小时,所以B正确;骑车的同学从出发到追上步行的同学用了50﹣30=20分钟,所以C正确;骑车的同学用了54﹣30=24分钟到目的地,比步行的同学提前6分钟到达目的地,所以D错误;故选:D.6.如图,已知方格纸中是4个相同的小正方形,则∠1+∠2的度数为()A.30°B.45°C.60°D.90°【分析】首先判定△DAE≌△CAB,进而可得∠1=∠AED,再根据余角的性质可得答案.【解答】解:∵在△DAE和△CAB中,∴△DAE≌△CAB(SAS),∴∠1=∠AED,∵∠AED+∠2=90°,∴∠1+∠2=90°,故选:D.7.如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B 恰好落在AC边上的点E处,若∠A=26°,则∠CDE度数为()A.71°B.64°C.80°D.45°【分析】由折叠的性质可求得∠ACD=∠BCD,∠BDC=∠CDE,在△ACD中,利用外角可求得∠BDC,则可求得答案.【解答】解:由折叠可得∠ACD=∠BCD,∠BDC=∠CDE,∵∠ACB=90°,∴∠ACD=45°,∵∠A=26°,∴∠BDC=∠A+∠ACD=26°+45°=71°,∴∠CDE=71°,故选:A.8.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论错误的是()A.BD平分∠ABC B.△BCD的周长等于AB+BCC.AD=BD=BC D.点D是线段AC的中点【分析】由在△ABC中,AB=AC,∠A=36°,根据等边对等角与三角形内角和定理,即可求得∠ABC与∠C的度数,又由AB的垂直平分线是DE,根据线段垂直平分线的性质,即可求得AD=BD,继而求得∠ABD的度数,则可知BD平分∠ABC;可得△BCD 的周长等于AB+BC,又可求得∠BDC的度数,求得AD=BD=BC,则可求得答案;注意排除法在解选择题中的应用.【解答】解:∵在△ABC中,AB=AC,∠A=36°,∴∠ABC=∠C==72°,∵AB的垂直平分线是DE,∴AD=BD,∴∠ABD=∠A=36°,∴∠DBC=∠ABC﹣∠ABD=72°﹣36°=36°=∠ABD,∴BD平分∠ABC,故A正确;∴△BCD的周长为:BC+CD+BD=BC+CD+AD=BC+AC=BC+AB,故B正确;∵∠DBC=36°,∠C=72°,∴∠BDC=180°﹣∠DBC﹣∠C=72°,∴∠BDC=∠C,∴BD=BC,∴AD=BD=BC,故C正确;∵BD>CD,∴AD>CD,∴点D不是线段AC的中点,故D错误.故选:D.9.如图,两个正方形边长分别为a、b,如果a+b=18,ab=60,则图中阴影部分的面积为()A.144B.72C.68D.36【分析】由题意表示出AB,AD,CG、FG,进而表示出BG,阴影部分面积=正方形ABCD+正方形ECGF面积﹣三角形ABD面积﹣三角形FBG面积,求出即可.【解答】解:由题意得:AB=AD=a,CG=FG=b,BG=BC+CG=a+b,∴S阴影=S正方形ABCD+S正方形ECGF﹣S直角△ABD﹣S直角△FBG=AB•AD+CG•FG﹣AB•AD﹣BG•FG=a2+b2﹣a2﹣(a+b)b=(a2+b2﹣ab)=[(a+b)2﹣3ab],∵a+b=18,ab=60,∴S阴影=×(182﹣3×60)=72.故选:B.10.如图,已知△ABC的周长是10,点O为∠ABC与∠ACB的平分线的交点,且OD⊥BC 于D.若OD=2,则△ABC的面积是()A.20B.12C.10D.8【分析】作OE⊥AB于E,OF⊥AC于F,连接OA,根据角平分线的性质得到OE=OF =OD=2,根据三角形的面积公式计算即可.【解答】解:作OE⊥AB于E,OF⊥AC于F,连接OA,∵O为∠ABC与∠ACB的平分线的交点,OD⊥BC,OE⊥AB,OF⊥AC,∴OE=OF=OD=2,∴△ABC的面积=△AOB的面积+△BOC的面积+△AOC的面积=×(AB+BC+AC)×OD=×10×2=10,故选:C.二、填空题(本大题共6个小题,每小题3分,共18分).11.若a m=3,a n=2,则a2m﹣n=.【分析】根据a m÷a n=a m﹣n;(a m)n=a mn得到a2m﹣n=a2m÷a n=(a m)2÷a n,然后把a m=3,a n=2代入计算即可.【解答】解:∵a2m﹣n=a2m÷a n=(a m)2÷a n,而a m=3,a n=2,∴a2m﹣n=32÷2=.故答案为.12.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为7×10﹣9.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000007=7×10﹣9;故答案为:7×10﹣913.三角形两边长分别是2,4,第三边长为偶数,第三边长为4.【分析】利用三角形三边关系定理,先确定第三边的范围,进而就可以求出第三边的长.【解答】解:设第三边为a,根据三角形的三边关系知,4﹣2<a<4+2.即2<a<6,由周长为偶数,则a为4.故答案为:4.14.如图,m∥n,直角三角板ABC的直角顶点C在两直线之间,两直角边与两直线相交所形成的锐角分别为α、β,则α+β=90°.【分析】根据平行线的性质即可得到结论.【解答】解:过C作CE∥m,∵m∥n,∴CE∥n,∴∠1=∠α,∠2=∠β,∵∠1+∠2=90°,∴∠α+∠β=90°,故答案为:90°.15.如图,AD是∠BAC的平分线,EF垂直平分AD交BC的延长线于点F,若∠F AC=65°,则∠B的度数为65°.【分析】根据角平分线的定义得出∠CAD=∠BAD,根据线段垂直平分线的性质得出F A =FD,推出∠FDA=∠F AD,根据三角形的外角性质得出∠FDA=∠B+∠BAD,代入求出即可.【解答】解:∵AD平分∠CAB,∴∠CAD=∠BAD,设∠CAD=∠BAD=x°,∵EF垂直平分AD,∴F A=FD,∴∠FDA=∠F AD,∵∠F AC=65°,∴∠F AD=∠F AC+∠CAD=65°+x°,∵∠FDA=∠B+∠BAD=∠B+x°,∴65°+x°=∠B+x°,∴∠B=65°,故答案为:65°.16.已知△ABC中,AB=AC,过点B的直线将△ABC分成两个等腰三角形,则∠ABC=72或()°.【分析】分两种情况讨论,依据等腰三角形的性质以及三角形内角和定理,即可得到∠ABC的度数.【解答】解:①如下图,若AB=AC,AD=BD=BC,∴∠ABC=∠C,∠BAC=∠ABD,∠BDC=∠C,∵∠BDC=∠A+∠ABD=2∠BAC,∴∠ABC=∠C=2∠BAC,∵∠BAC+∠ABC+∠C=180°,∴5∠BAC=180°,∴∠BAC=36°,∴∠ABC=72°;②如图下图,若AB=AC,AD=BD,CD=BC,∴∠ABC=∠C,∠BAC=∠ABD,∠CDB=∠CBD,∵∠BDC=∠BAC+∠ABD=2∠BAC,∴∠ABC=∠C=3∠BAC,∵∠BAC+∠ABC+∠C=180°,∴7∠BAC=180°,∴∠BAC=()°,∴∠ABC=()°,故答案为:72或().三、解答题(共7小题,计52分,解答应写出过程)17.(8分)计算:(1)(﹣)﹣2+4×(﹣1)2019﹣(π﹣5)0.(2)﹣2a2b5•(﹣4a2b)﹣(﹣3a2b3)2.【分析】(1)直接利用负整数指数幂的性质以及零指数幂的性质分别化简得出答案;(2)直接利用积的乘方运算法则以及单项式乘以单项式运算法则计算得出答案.【解答】解:(1)(﹣)﹣2+4×(﹣1)2019﹣(π﹣5)0.=9﹣4﹣1=4;(2)﹣2a2b5•(﹣4a2b)﹣(﹣3a2b3)2.=8a4b6﹣9a4b6=﹣a4b6.18.(5分)先化简,再求值:[4(x﹣y)2﹣(2x﹣y)(y+2x)]÷(﹣2y),其中x=2,y=﹣1.【分析】根据平方差公式、完全平方公式、多项式除单项式的运算法则把原式化简,代入计算即可.【解答】解:[4(x﹣y)2﹣(2x﹣y)(y+2x)]÷(﹣2y)=[4(x2﹣2xy+y2)﹣(4x2﹣y2)]÷(﹣2y)=[(4x2﹣8xy+4y2)﹣(4x2﹣y2)]÷(﹣2y)=(5y2﹣8xy))÷(﹣2y)=4x﹣y,当x=2,y=﹣1时,原式=4×2﹣×(﹣1)=.19.(6分)某商场为吸引顾客,设立了一个可以自由转动的转盘,并规定每购买100元商品可以获得一次转动转盘的机会,如果转盘停止转动时,指针正好落在哪个区域,就根据所转结果付账.求一个顾客转动一次转盘但不打折的概率.【分析】用不打折的区域除以总区域即可得出答案.【解答】解:不打折的概率是:=.20.(6分)如图,已知Rt△ABC,∠C=90°,请用尺规作斜边AB边上的高CD,垂足为D.(保留作图痕迹,不写作法)【分析】利用基本作图,过点C作直线AB的垂线,垂足为D.【解答】解:如图,CD为所作.21.(7分)如图,在四边形ABCD中,AB∥DC,点E是CD的中点,AE=BE.求证:∠D=∠C.【分析】由等腰三角形的性质和平行线的性质证出∠DEA=∠CEB,由SAS证明△ADE ≌△BCE,即可得出结论.【解答】证明:∵AE=BE,∴∠EAB=∠EBA,∵AB∥DC,∴∠DEA=∠EAB,∠CEB=∠EBA,∴∠DEA=∠CEB,∵点E是CD的中点,∴DE=CE,在△ADE和△BCE中,,∴△ADE≌△BCE(SAS),∴∠D=∠C.22.(8分)南宁市某中学环保兴趣小组对南湖清除淤泥工程进行调查,并从《南宁晚报》中收集到下列数据:南湖面积(单位:平方米)淤泥平均厚度(单位:米)每天清淤泥量(单位:立方米)160万0.70.6万根据上表解答下列问题:(1)请你按体积=面积×高来估算,南湖的淤泥量大约有多少万立方米?(2)设清除淤泥x天后,剩余的淤泥量为y万米3,求y与x的函数关系.(不要求写出x的取值范围)(3)为了使南湖的生物链不遭破坏,仍需保留一定量的淤泥.若需保留的淤泥量约为22万米3,求清除淤泥所需天数.【分析】(1)根据给出的体积公式,列表已经给出了面积和高,直接求解即可.(2)剩余的淤泥量=淤泥总量﹣清除的淤泥的量,由此可得出y与x的函数关系式.(3)将y=22代入(2)所求的式子中,得出的x的值就是所求的天数.【解答】解:(1)160×0.7=112万米3;(2)由题意y=112﹣0.6x(3)当y=22时,112﹣0.6x=22,解得:x=150天答:需要150天.23.(12分)我们曾学过“两点之间线段最短”的知识,常可利用它来解决两条线段和最小的相关问题,下面是大家非常熟悉的一道习题:如图1,已知,A,B在直线l的同一侧,在l上求作一点,使得P A+PB最小.我们只要作点A关于l的对称点A',根据对称性可知,P A=P A',因此,求AP+BP最小就相当于求BP+P A'最小,显然当A'、P、B在一条直线上时A'P+PB最小,因此连接A'B,与直线1的交点,就是要求的点P.有很多问题都可用类似的方法去思考解决.(1)观察发现:如图1,在△ABC中,点D、E分别是AB、AC边的中点.请你在BC 边上确定一点P,使得△PDE的周长最小.(三角板、刻度尺画图,保留痕迹,不写作法)(2)实践运用:①如图2,为了做好五一期间的交通安全工作,西安市交警执勤小队从A处出发,先到公路m上设卡检查,再到公路n上设卡检查,最后再到达B地执行任务,他们应如何走才能使总路程最短?画出图形并说明做法.②如图3,△ABC中,∠BAC=90°,AB=6,BC=10,AC=8,BD是∠ABC的平分线,若P、Q分别是BD和AB上的动点,则P A+PQ的最小值是.(3)拓展延伸:如图4,在四边形ABCD的对角线AC上确定一点P,使∠APB=∠APD.(三角板、刻度尺画图,保留作图痕迹,不写作法)【分析】(1)如图1中,作点D关于直线BC的对称点D′,连接ED′交BC于点P,连接PE,点P即为所求.(2)①如图2中,分别作A、B关于公路m、n的对称点A′、B′,连接A′B′交m、n于M、N两点,连AM、BN,则A→M→N→B即为最短路线.②如图,作点Q关于直线BD的对称点Q′,作AM⊥BC于M.由P A+PQ=P A+PQ′,推出根据垂线段最短可知,当A,P,Q′共线,且与AM重合时,P A+PQ的值最小,最小值=线段AM的长.(3)作B关于AC的对称点E,连接DE并延长交AC于P,连接PB,点P即为所求的点.【解答】解:(1)如图1中,点P即为所求.(2)①如图2中,线路A→M→N→B即为所求.②解:如图3中,作点Q关于直线BD的对称点Q′,作AM⊥BC于M,∵P A+PQ=P A+PQ′,∴根据垂线段最短可知,当A,P,Q′共线,且与AM重合时,P A+PQ的值最小,最小值=线段AM的长.∵△ABC中,∠BAC=90°,AB=6,BC=10,∴AC=8,∴AM===.故答案为.(3)如图4中,作B关于AC的对称点E,连接DE并延长交AC于P,连接PB,点P 即为所求的点.∵点B、E关于AC对称,∴∠DPC=∠BPC,∴∠APB=∠APD.故点P即为所求的点.。
人教版七年级数学(下)学期 第二次月考测试卷含解析
人教版七年级数学(下)学期 第二次月考测试卷含解析一、选择题1.将不大于实数a 的最大整数记为[]a ,则33⎡⎤-=⎣⎦( )A .3-B .2-C .1-D .0 2.下列各式的值一定为正数的是 ( )A .aB .2aC .2(100)a -D .20.01a +3.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n+p=0,则m ,n ,p ,q 四个有理数中,绝对值最大的一个是( )A .pB .qC .mD .n4.在如图所示的数轴上,点B 与点C 关于点A 对称,A 、B 两点对应的实数分别是3和﹣1,则点C 所对应的实数是( )A .3B .3C .3 1D .35.下列各数中3.145,0.1010010001…,﹣17,2π38有理数的个数有( ) A .1个B .2个C .3个D .4个6.下列实数中,..31-4π0-8647,3,,,,,无理数的个数有( ) A .1个 B .2个 C .3个 D .4个7.若a 、b 为实数,且满足|a -2|2b -0,则b -a 的值为( ) A .2B .0C .-2D .以上都不对8.在下列实数中,无理数是( ) A .337B .πC 25D .139.已知实数x ,y 241x y -+y 2﹣9|=06x y + ) A .±3B .3C .﹣33D .3310.下列运算中,正确的是( ) A 93=±B 382=C |4|2-=-D 2(8)8-=-二、填空题11.已知a n =()211n +(n =1,2,3,…),记b 1=2(1-a 1),b 2=2(1-a 1)(1-a 2),…,b n =2(1-a 1)(1-a 2)…(1-a n ),则通过计算推测出表达式b n =________ (用含n 的代数式表示).12.估计12与0.5的大小关系是:12_____0.5.(填“>”、“=”、“<”) 13.对于这样的等式:若(x +1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5的值为_____.14.用⊕表示一种运算,它的含义是:1(1)(1)xA B A B A B ⊕=++++,如果5213⊕=,那么45⊕= __________.15.如果一个数的平方根和它的立方根相等,则这个数是______. 16.一个数的立方等于它本身,这个数是__.17.已知2m =,则m 的相反数是________.18.有若干个数,第1个数记作1a ,第2个数记为2a ,第3个数记为3a ,……,第n 个数记为n a ,若1a =13,从第2个数起,每个数都等于1与前面的那个数的差的倒数,则2019a =_____.19.35.12=0.3512=-,则x =_____________. 20.若一个正数的平方根是21a +和2a +,则这个正数是____________.三、解答题21.读一读,式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和.由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“1+2+3+4+5+…+100”表示为1001n n =∑,这里“∑”是求和符号.例如:1+3+5+7+9+…+99,即从1开始的100以内的连续奇数的和,可表示为501(21)n n =-∑,又知13+23+33+43+53+63+73+83+93+103可表示为1031n n=∑.通过对以上材料的阅读,请解答下列问题.(1)2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符合可表示为_________. (2)1+12+13+…+110用求和符号可表示为_________. (3)计算6211n n =-∑()=_________.(填写最后的计算结果)22.观察下列各式: (x -1)(x+1)=x 2-1 (x -1)(x 2+x+1)=x 3-1 (x -1)(x 3+x 2+x+1)=x 4-1……(1)根据以上规律,则(x -1)(x 6+x 5+x 4+x 3+x 2+x+1)=__________________.(2)你能否由此归纳出一般性规律(x -1)(x n +x n -1+x n -2+…+x+1)=____________.(3)根据以上规律求1+3+32+…+349+350的结果. 23.概念学习规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2, (﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把n aa a a a ÷÷÷÷个(a≠0)记作a ,读作“a 的圈n 次方”.初步探究(1)直接写出计算结果:2③=________,1)2-(⑤=________; (2)关于除方,下列说法错误的是________A .任何非零数的圈2次方都等于1;B .对于任何正整数n ,1=1;C .3④=4③D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数. 深入思考我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=________;5⑥=________;1)2-(⑩=________. (2)想一想:将一个非零有理数a 的圈n 次方写成幂的形式等于________; (3)算一算:()3242162÷+-⨯④.24.阅读下列材料:()1121230123⨯=⨯⨯-⨯⨯ 123(234123)3⨯=⨯⨯-⨯⨯()1343452343⨯=⨯⨯-⨯⨯ 由以上三个等式相加,可得读完以上材料,请你计算下列各题. (1)求1×2+2×3+3×4+…+10×11的值.(2)1×2+2×3+3×4+……+n×(n+1)=___________.25.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.小白在草稿纸上画了一条数轴进行操作探究: 操作一:(1)折叠纸面,若使表示的点1与﹣1表示的点重合,则﹣2表示的点与 表示的点重合; 操作二:(2)折叠纸面,若使1表示的点与﹣3表示的点重合,回答以下问题: ①3表示的点与数 表示的点重合;②若数轴上A 、B 两点之间距离为8(A 在B 的左侧),且A 、B 两点经折叠后重合,则A 、B 两点表示的数分别是__________________; 操作三:(3)在数轴上剪下9个单位长度(从﹣1到8)的一条线段,并把这条线段沿某点折叠,然后在重叠部分某处剪一刀得到三条线段(如图). 若这三条线段的长度之比为1:1:2,则折痕处对应的点所表示的数可能是_________________________.26.观察下列两个等式:112-2133=⨯+,225-5133=⨯+,给出定义如下:我们称使等式 1a b ab -=+ 成立的一对有理数a ,b 为“共生有理数对”,记为(a ,b ),如:数对(2,13),(5,23),都是“共生有理数对”. (1)数对(-2,1),(3,12)中是“共生有理数对”吗?说明理由. (2)若(m ,n )是“共生有理数对”,则(-n ,-m )是“共生有理数对”吗?说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】-的范围,即可得出答案3【详解】解:∵12∴﹣23<﹣1∴3⎤=⎦﹣2故答案为B【点睛】.2.D解析:D【分析】任何数的绝对值都是一个非负数.非负数(正数和0)的绝对值是它本身,非正数(负数和0)的绝对值是它的相反数.任何数的平方都是大于等于0的.【详解】选项A中,当a=0,则a=0;选项B中,当a=0,则a²=0;选项C中,当a=100,则(a-100)²=0;选项D中,无论a取何值,a²+0.01始终大于0.故选:D.【点睛】此题考查绝对值的非负性,算术平方根的非负性,解题关键在于掌握其性质.3.B解析:B【分析】根据n+p=0可以得到n和p互为相反数,原点在线段PN的中点处,从而可以得到绝对值最大的数.【详解】解:∵n+p=0,∴n和p互为相反数,∴原点在线段PN的中点处,∴绝对值最大的一个是Q点对应的q.故选B.【点睛】本题考查了实数与数轴及绝对值.解题的关键是明确数轴的特点.4.D解析:D【详解】设点C 所对应的实数是x .根据中心对称的性质,对称点到对称中心的距离相等,则有()x 1-,解得.故选D.5.C解析:C 【分析】直接利用有理数的定义进而判断得出答案. 【详解】解:3.14,0.1010010001…,-17 ,2π 3.14,-17=-2共3个. 故选C . 【点睛】此题主要考查了有理数,正确把握有理数的定义是解题关键.6.B解析:B 【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.由此分析判断即可. 【详解】解:∵=-24=,故是有理数;..0.23是无限循环小数,可以化为分数,属于有理数;17属于有理数;0是有理数;π2个.故选:B . 【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有如下三种形式:①含π的数,如π,2π等;②开方开不尽的数;③像0.1010010001…这样有一定规律的无限不循环小数.7.C解析:C 【详解】根据绝对值、算术平方根的非负性得a-2=0,20b -=, 所以a=2,b=0. 故b -a 的值为0-2=-2. 故选C.8.B解析:B【分析】分别根据无理数、有理数的定义即可判定选择项. 【详解】解:337,13是有理数, π是无理数, 故选B . 【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.9.D解析:D 【分析】由非负数的性质可得y 2=9,4x-y 2+1=0,分别求出x 与y 的值,代入所求式子即可. 【详解】2﹣9|=0, ∴y 2=9,4x ﹣y 2+1=0, ∴y =±3,x =2, ∴y+6=9或y+6=3,3= 故选:D . 【点睛】本题考查绝对值、二次根式的性质;熟练掌握绝对值和二次根式的性质,能够准确计算是解题的关键.10.B解析:B 【分析】根据平方根及立方根的定义逐一判断即可得答案. 【详解】,故该选项运算错误,2=,故该选项运算正确,2=,故该选项运算错误,8=,故该选项运算错误, 故选:B . 【点睛】本题考查平方根、算术平方根及立方根,一个正数的平方根有两个,它们互为相反数;其中正的平方根叫做这个数的算术平方根;一个数的立方根只有一个.二、填空题 11.. 【解析】 【详解】根据题意按规律求解:b1=2(1-a1)=,b2=2(1-a1)(1-a2)=,…,所以可得:bn=.解:根据以上分析bn=2(1-a1)(1-a2)…(1-an )=. “解析:12++n n . 【解析】 【详解】根据题意按规律求解:b 1=2(1-a 1)=131221-4211+⎛⎫⨯== ⎪+⎝⎭,b 2=2(1-a 1)(1-a 2)=314221-29321+⎛⎫⨯== ⎪+⎝⎭,…,所以可得:b n =12++n n . 解:根据以上分析b n =2(1-a 1)(1-a 2)…(1-a n )=12++n n . “点睛”本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.本题中表示b 值时要先算出a 的值,要注意a 中n 的取值.12.> 【解析】∵ . , ∴ , ∴ ,故答案为>.解析:> 【解析】∵10.52-=-=20-> , ∴0> , ∴0.5> ,故答案为>.13.-1. 【分析】根据多项式的乘法得出字母的值,进而代入解答即可. 【详解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1, ∵(x+1)5=a0x5+a1x4+a2x3+a3x2+解析:-1. 【分析】根据多项式的乘法得出字母的值,进而代入解答即可. 【详解】解:(x +1)5=x 5+5x 4+10x 3+10x 2+5x +1, ∵(x +1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5, ∴a 0=1,a 1=5,a 2=10,a 3=10,a 4=5,a 5=1,把a 0=1,a 1=5,a 2=10,a 3=10,a 4=5,a 5=1代入﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5中, 可得:﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5=﹣32+80﹣80+40﹣10+1=﹣1, 故答案为:﹣1 【点睛】本题考查了代数式求值,解题的关键是根据题意求得a 0,a 1,a 2,a 3,a 4,a 5的值.14.【分析】按照新定义的运算法先求出x ,然后再进行计算即可. 【详解】 解:由 解得:x=8故答案为. 【点睛】本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的 解析:1745【分析】按照新定义的运算法先求出x ,然后再进行计算即可. 【详解】 解:由1521=21(21)(11)3x ⊕=++++ 解得:x=818181745==45(41)(51)93045⊕=+++++ 故答案为1745. 【点睛】本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的值.15.0【解析】试题解析:平方根和它的立方根相等的数是0.解析:0【解析】试题解析:平方根和它的立方根相等的数是0.16.0或±1.【分析】根据立方的定义计算即可.【详解】解:∵(﹣1)3=﹣1,13=1,03=0,∴一个数的立方等于它本身,这个数是0或±1.故答案为:0或±1.【点睛】本题考查了乘方的解析:0或±1.【分析】根据立方的定义计算即可.【详解】解:∵(﹣1)3=﹣1,13=1,03=0,∴一个数的立方等于它本身,这个数是0或±1.故答案为:0或±1.【点睛】本题考查了乘方的定义,熟练掌握立方的定义是解题关键,注意本题要分类讨论,不要漏数.17.【分析】根据相反数的定义即可解答.【详解】解:的相反数是,故答案为:.【点睛】本题考查了求一个数的相反数以及实数,解题的关键是熟知只有符号不同的两个数是相反数.解析:2【分析】根据相反数的定义即可解答.【详解】解:m的相反数是2)2-=,故答案为:2 【点睛】本题考查了求一个数的相反数以及实数,解题的关键是熟知只有符号不同的两个数是相反数.18.-2 【分析】根据1与它前面的那个数的差的倒数,即,即可求得、、……,然后根据得到结果出现的规律,即可确定. 【详解】 解:= ……所以数列以,,三个数循环, 所以== 故答案为:. 【解析:-2 【分析】根据1与它前面的那个数的差的倒数,即111n na a +=-,即可求得2a 、3a 、4a ……,然后根据得到结果出现的规律,即可确定2019a . 【详解】 解:1a =132131213a ==-312312a ==--411123a ==+ ……所以数列以13,32,2-三个数循环, 20193673÷=所以2019a =3a =2- 故答案为:2-. 【点睛】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.19.-0.0433 【分析】三次根式变化规律为:三次根号内的式子扩大或缩小1000倍,则得到的结果扩大或缩小10倍,根据规律可得x 的值. 【详解】从35.12变为-0.3512,缩小了100倍,且添解析:-0.0433 【分析】三次根式变化规律为:三次根号内的式子扩大或缩小1000倍,则得到的结果扩大或缩小10倍,根据规律可得x 的值. 【详解】从35.12变为-0.3512,缩小了100倍,且添加了“-”∴根据规律,三次根式内的式子应该缩小1000000倍,且添加“-” 故答案为:-0.0433 【点睛】本题考查三次根式的规律,二次根式规律类似:二次根号内的式子扩大或缩小100倍,则得到的结果扩大或缩小10倍.20.1 【分析】一个正数有两个平方根,它们互为相反数,由此即可列式2a+1+a+2=0,求出a 再代回一个根再平方即可得到该正数. 【详解】由题意得2a+1+a+2=0, 解得a=-1, ∴a+2=1解析:1 【分析】一个正数有两个平方根,它们互为相反数,由此即可列式2a+1+a+2=0,求出a 再代回一个根再平方即可得到该正数.【详解】由题意得2a+1+a+2=0, 解得a=-1, ∴a+2=1,∴这个正数是22(2)11a +==, 故答案为:1. 【点睛】此题考查平方根的性质:一个正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.三、解答题21.(1)5012n n =∑;(2)1011n n =∑;(3)50 【分析】(1)根据题中的新定义得出结果即可; (2)根据题中的新定义得出结果即可;(3)利用题中的新定义将原式变形,计算即可得到结果. 【详解】解:解:(1)根据题意得:2+4+6+8+10+…+100=5012n n =∑;(2)1+12+13+…+110=1011n n =∑;(3)原式=1-1+4-1+9-1+16-1+25-1+36-1=85. 故答案为:(1)5012n n =∑;(2)1011n n =∑;(3)85. 【点睛】此题考查了有理数的加法和减法运算,弄清题中的新定义是解本题的关键.22.(1)x 7-1;(2)x n+1-1;(3)51312-.【分析】(1)仿照已知等式写出答案即可;(2)先归纳总结出规律,然后按规律解答即可; (3)先利用得出规律的变形,然后利用规律解答即可. 【详解】解:(1)根据题意得:(x -1)(x 6+x 5+x 4+x 3+x 2+x+1)=x 7-1; (2)根据题意得:(x-1)(x"+x"-1+.…+x+1)=x"+1-1;(3)原式=12×(3-1)(1+3+32+···+349+350)= 12×(x 50+1-1)=51312-故答案为:(1)x 7-1;(2)x n+1-1;(3)51312-.【点睛】本题考查了平方差公式以及规律型问题,弄清题意、发现数字的变化规律是解答本题的关键.23.初步探究(1)12;—8;(2)C ;深入思考(1)213;415;28;(2)21n a -;(3)—1. 【解析】试题分析:理解除方运算,利用除方运算的法则和意义解决初步探究,通过除方的法则,把深入思考的除方写成幂的形式解决(1),总结(1)得到通项(2).根据法则计算出(3)的结果. 试题解析: 概念学习(1)2③=2÷2÷2=,(﹣)⑤=(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)=1÷(﹣)÷(﹣)÷(﹣)=(﹣2)÷(﹣)÷(﹣)=﹣8 故答案为,﹣8;(2)A 、任何非零数的圈2次方就是两个相同数相除,所以都等于1; 所以选项A 正确; B 、因为多少个1相除都是1,所以对于任何正整数n ,1ⓝ都等于1; 所以选项B 正确; C 、3④=3÷3÷3÷3=,4③=4÷4÷4=,则 3④≠4③; 所以选项C 错误;D 、负数的圈奇数次方,相当于奇数个负数相除,则结果是负数,负数的圈偶数次方,相当于偶数个负数相除,则结果是正数.所以选项D 正确; 本题选择说法错误的,故选C ; 深入思考:(1)(﹣3)④=(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)=1×()2=;5⑥=5÷5÷5÷5÷5÷5=1×()4=;(﹣)⑩=(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣) =1×2×2×2×2×2×2×2×2 =28;故答案为,,28.(2)a ⓝ=a ÷a ÷a…÷a=1÷a n ﹣2=.(3):24÷23+(﹣8)×2③ =24÷8+(﹣8)× =3﹣4 =﹣1.【点睛】本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序. 24.(1)440;(2)()()1123n n n ++. 【分析】通过几例研究n(n+1)数列前n 项和,根据题目中的规律解得即可. 【详解】 .(1)1×2+2×3+3×4+…+10×11=1(123012)3⨯⨯-⨯⨯+1(234123)3⨯⨯-⨯⨯+1(345234)3⨯⨯-⨯⨯+…+1(10111291011)3⨯⨯-⨯⨯ =1101112=4403⨯⨯⨯. (2)1×2+2×3+3×4+……+n×(n+1)=1(123012)3⨯⨯-⨯⨯+1(234123)3⨯⨯-⨯⨯+1(345234)3⨯⨯-⨯⨯+…+()()()()121113n n n n n n ++--+⎡⎤⎣⎦ =()()1123n n n ++. 故答案为:()()1123n n n ++. 【点睛】本题考查数字规律问题,读懂题中的解答规律,掌握部分探究的经验,用题中规律进行计算是关键.25.(1)2 (2)①23--5,3(3)71937,,288【分析】(1)根据对称性找到折痕的点为原点O,可以得出-2与2重合;(2)根据对称性找到折痕的点为-1,①设3表示的点与数a表示的点重合,根据对称性列式求出a的值;②因为AB=8,所以A到折痕的点距离为4,因为折痕对应的点为-1,由此得出A、B两点表示的数;(3)分三种情况进行讨论:设折痕处对应的点所表示的数是x,如图1,当AB:BC:CD=1:1:2时,所以设AB=a,BC=a,CD=2a,得a+a+2a=9,a=94,得出AB、BC、CD的值,计算也x的值,同理可得出如图2、3对应的x的值.【详解】操作一,(1)∵表示的点1与-1表示的点重合,∴折痕为原点O,则-2表示的点与2表示的点重合,操作二:(2)∵折叠纸面,若使1表示的点与-3表示的点重合,则折痕表示的点为-1,①设3表示的点与数a表示的点重合,则3-(-1)=-1-a,a=-2-3;②∵数轴上A、B两点之间距离为8,∴数轴上A、B两点到折痕-1的距离为4,∵A在B的左侧,则A、B两点表示的数分别是-5和3;操作三:(3)设折痕处对应的点所表示的数是x,如图1,当AB:BC:CD=1:1:2时,设AB=a,BC=a,CD=2a,a+a+2a=9,a=94,∴AB=94,BC=94,CD=92,x=-1+94+98=198,如图2,当AB:BC:CD=1:2:1时,设AB=a,BC=2a,CD=a,a+a+2a=9,a=94,∴AB=94,BC=92,CD=94,x=-1+94+94=72,如图3,当AB:BC:CD=2:1:1时,设AB=2a,BC=a,CD=a,a+a+2a=9,a=94,∴AB=92,BC=CD=94,x=-1+92+98=378,综上所述:则折痕处对应的点所表示的数可能是198或72或378.26.(1) (−2,1)不是“共生有理数对”,13,2⎛⎫⎪⎝⎭是“共生有理数对”;理由见详解.(2)(−n,−m)是“共生有理数对”,理由见详解.【分析】(1)根据“共生有理数对”的定义即可判断;(2)根据“共生有理数对”的定义即可判断;【详解】(1)−2−1=−3,−2×1+1=1,∴−2−1≠−2×1+1,∴(−2,1)不是“共生有理数对”,∵1515 3,312222 -=⨯+=,∴1133122-=⨯+,∴(13,2)是“共生有理数对”;(2)是.理由:− n−(−m)=−n+m,−n⋅(−m)+1=mn+1∵(m,n)是“共生有理数对”∴m−n=mn+1∴−n+m=mn+1∴(−n,−m)是“共生有理数对”,【点睛】考查有理数的混合运算,整式的加减—化简求值,等式的性质,读懂题目中“共生有理数对”的定义是解题的关键.。
2022-2023学年新人教版七年级下数学月考试卷(含解析)
2022-2023学年初中七年级下数学月考试卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:115 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1. 下列实数为无理数的是( )A.B.C.D.2. 已知下列各式:①;②;③;④;⑤,其中为二元一次方程的个数是( )A.B.C.D.3. 如图,在一次“寻宝”游戏中,寻宝人找到了如图所示的两个标志点,,则“宝藏”点的位置是( )A.B.C.D.−572π+y =21x 2x −3y =5xy =2x +y =z −1=x +122x −131234A(3,1)B(2,2)C (1,0)(1,2)(2,1)(1,1)4. 若,则下列各式正确的是( )A.B.C.D.5. 如图,动点在平面直角坐标系中按图中箭头所示方向运动,第次从原点运动到,第次接着运动到点,第次接着运动到点,按这样的运动规律,经过第次运动后,动点的坐标是( )A.B.C.D.6. 已知直线,将一块含角的直角三角板按如图所示方式放置,其中,两点分别落在直线,上,若,则的度数为( )A.B.C.D.7. 下列说法正确的个数是( )①对角线互相垂直或有一组邻边相等的矩形是正方形;②对角线相等或有一个角是直角的菱形是正方形;③对角线互相垂直且相等的平行四边形是正方形;④对角线互相垂直平分且相等的四边形是正方形.m >n 2m −2n <0m −3>n −3−3m >−3n<m 2n 2P 1(1,1)2(2,0)3(3,2)2019P (2019,0)(2019,1)(2019,2)(2020,0)m//n 30∘ABC (∠ABC =)30∘A B m n ∠1=25∘∠225∘30∘45∘55∘A.个B.个C.个D.个8. 为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在准备配发的过程中发现:公羊刚好每户只;若每户发放母羊只,则多出只母羊,若每户发放母羊只,则有一户可分得母羊但不足只.这批种羊共( )只.A.B.C.D.9. 《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余尺;将绳子对折再量木头,则木头还剩余尺,问木头长多少尺?可设木头长为尺,绳子长为尺,则所列方程组正确的是 A.B.C.D.10. 两个数和在数轴上从左到右排列,那么关于的不等式的解集是( )A.B.C.D.卷II (非选择题)二、 填空题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )1234151773557283894.51x y (){x −y =4.5,x −0.5y =1{x −y =4.5,0.5y −x =1{y −x =4.5,x −0.5y =1{y −x =4.5,0.5y −x =12−m −1x (2−m)x +2>m x >−1x <−1x >1x <117−−√11. 小于的最大整数是________12.如图,在四边形中,,,则________.13. 若不等式组的解集为,则不等式的解集为________.14. 已知轴,,,则点坐标为________.15. 已知关于,的方程组和有公共解,则________,________.三、 解答题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )16.解方程组: 解不等式,并把不等式的解集在数轴上表示出来. 17. 点、、、在数轴上的位置如图所示,已知,,.若点为原点,则点表示的数是________.若点、、、分别表示有理数,,,,则________;如图,点、分别从、两点同时出发,点沿线段以每秒个单位长度的速度向右运动,到达点后立即按原速折返;点沿线段以每秒个单位长度的速度向左运动,到达点后立即按原速折返.当、中的某点回到出发点时,两点同时停止运动.①当点停止运动时,求点、之间的距离;②设运动时间为(单位:秒),则为________时,?18. 已知方程组的解能使等式成立,求的值.19. 三角形与三角形在平面直角坐标系中的位置如图所示,三角形是由三角形经过平移得到的.17−−√ABCD ∠C +∠D =180∘∠A −∠B =40∘∠B ={2x −b ≥0,x +a ≤03≤x ≤4ax +b <0AB//x A (−2,4)AB =5B x y {x −2y =1,x +2y =n {x +y =m ,2x −3y =5m =n =(1){x +y =1,3x −y =3;(2)≤x −227−x 3A B C D 1AB =3BC =2CD =4(1)C A (2)A B C D a b c d |a −c|+|d −b|−|a −d|=(3)2P Q A D P AB 1B Q CD 2C P Q P Q t t PQ =5{7x +3y =4,5x −2y =m −14x −3y =7m ABC A ′B ′C ′A ′B ′C ′ABC分别写出点的坐标;说明三角形是由三角形经过怎样的平移得到的?若点是三角形内的一点,则平移后三角形内的对应点为写出点的坐标.20. 将下列各数填入相应的集合内.,,,,,,,,①正有理数集合: ;②无理数集合: ;③实数集合: . 21. 解下列方程组:(1)(2).22. 为了保证春节的蔬菜供应,某公司准备提前收购蔬菜吨加工后上市销售.该公司的加工能力是:每天精加工吨或者粗加工吨.若计划用天完成加工任务,该公司应怎样安排加工时间,才能按期完成加工任务?如果按现在市场价格,预计每吨蔬菜粗加工后可获利润元,精加工后可获利润元,那么该公司出售这些加工后的蔬菜共可获利多少元?23. 如图,已知点,分别在,上,于点,,平分,.求证;求证;若,求的度数.(1),,A ′B ′C ′(2)A ′B ′C ′ABC (3)P(a ,b)ABC A ′B ′C ′P ′P ′−70.321208–√12−−√−64−−√3π0.303003...{}{}{}{ 3x −y =55y −1=3x +5+=2x 33y 41712−=−x 6y 213140616158001500E F AB CD AF ⊥DE G ∠1+∠D =90∘CE ∠BCD ∠BCD =2∠3(1)AF//EC (2)AB//CD (3)∠B =∠2+30∘∠A参考答案与试题解析2022-2023学年初中七年级下数学月考试卷一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1.【答案】D【考点】无理数的判定【解析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:是整数,是有理数,选项错误;是分数,是有理数,选项错误;是整数,是有理数,选项错误;是无理数,选项正确;故选.2.【答案】A【考点】二元一次方程的定义【解析】二元一次方程满足的条件:含有个未知数,未知数的项的次数是的整式方程.【解答】解:二元一次方程满足的条件:含有个未知数,未知数的项的次数是的整式方程.①不是二元一次方程;②是二元一次方程;③是二次方程,故不是二元一次方程;④有个未知数,故不是二元一次方程;A ,−5B ,72C ,0D ,πD 21213⑤是一元一次方程.故选.3.【答案】D【考点】位置的确定【解析】根据题意首先确定原点的位置,进而得出“宝藏”的位置.【解答】根据两个标志点,可建立如下所示的坐标系:由平面直角坐标系知,“宝藏”点的位置是,4.【答案】B【考点】不等式的性质【解析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.可得答案.【解答】、两边都乘以,不等号的方向不变,故不符合题意;、两边都减,不等号的方向不变,故符合题意;、两边都乘以,不等号的方向改变,故不符合题意;、两边都除以,不等号的方向不变,故不符合题意;故选:.5.A A(3,1)B(2,2)C (1,1)A 2AB 3BC −3CD 2D B【答案】C【考点】点的坐标【解析】分析点的运动规律,找到循环次数即可【解答】分析图象可以发现,点的运动每次位置循环一次.每循环一次向右移动四个单位.∴=,当第循环结束时,点位置在,在此基础之上运动三次到,6.【答案】D【考点】平行线的性质【解析】利用平行线的性质可求解.【解答】解:∵直线,∴.故选.7.【答案】D【考点】正方形的判定矩形的判定与性质菱形的判定与性质平行线的判定与性质【解析】P P 420194×504+3504P (2016,0)(2019,2)m//n ∠2=∠1+∠ABC =+25∘30∘=55∘D本题考查了正方形的判定,判定一个四边形是正方形的一般方法是:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个矩形有一个角为直角.【解答】解:①正确.对角线互相垂直或有一组邻边相等,是菱形的性质,具有菱形的性质的矩形一定是正方形;②正确.对角线相等或有一个角是直角,是矩形的性质,具有矩形的性质的菱形一定是正方形;③正确.对角线互相垂直的平行四边形是菱形,对角线相等的平行四边形是矩形,一个图形既是平行四边形,又是菱形,还是矩形,那么就一定是正方形;④正确.对角线互相平分的四边形是平行四边形,对角线互相垂直的平行四边形是菱形,对角线相等的平行四边形是矩形,一个图形既是平行四边形,又是菱形,还是矩形,那么就一定是正方形.故选.8.【答案】C【考点】一元一次不等式组的应用【解析】设该村共有户,则母羊共有只,根据“每户发放母羊只时有一户可分得母羊但不足只”列出关于的不等式组,解之求得整数的值,再进一步计算可得.【解答】解:设该村共有户,则公羊共有只,母羊共有只,由题意知,解得:,∵为整数,∴,则这批种羊共有(只).故选.9.【答案】C【考点】由实际问题抽象出二元一次方程组【解析】本题考查由实际问题抽象出二元一次方程组.D x (5x +17)73x x x x (5x +17){5x +17−7(x −1)>05x +17−7(x −1)<3<x <12212x x =1111+5×11+17=83C【解答】解:由题意得,可列方程组为:故选.10.【答案】B【考点】解一元一次不等式数轴【解析】先根据题意判断出 ,即 ,再根据不等式的基本性质求解即可.【解答】解:由题意知.,,不等式两边同时除以,得,不等式的解集为.故选.二、 填空题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )11.【答案】【考点】实数大小比较【解析】先估算出的范围,再求出即可.【解答】∵,∴小于的最大整数是,12.{y −x =4.5,x −0.5y =1.C 2−m <−12−m <02−m <−1∵(2−m)x +2>m ∴(2−m)x >m −22−m x <−1∴(2−m)x +2>m x <−1B 417−−√4<<517−−√17−−√4【答案】【考点】平行线的判定与性质【解析】先根据判定出,再根据两直线平行,同旁内角互补得到,然后联立求解即可.【解答】解:∵,∴,又∵,∴,.故答案为:.13.【答案】【考点】解一元一次不等式不等式的解集【解析】由题意求出、的值,代入不等式,求出解集即可.【解答】解:∵不等式组的解集为,即,∴即,,∴不等式为,解得.故答案为:.14.【答案】70∘∠C +∠D =180∘AD //BC ∠A +∠B =180∘∠C +∠D =180∘∠A +∠B =180∘∠A −∠B =40∘∠A =110∘∠B =70∘70∘x >32a b ax +b <0{2x −b ≥0,x +a ≤03≤x ≤4≤x ≤−ab 2 =3,b 2−a =4,a =−4b =6ax +b <0−4x +6<0x >32x >32(−7,4)(3,4)或【考点】点的坐标坐标与图形性质【解析】根据平行轴的坐标特点解答即可.【解答】解:∵轴,,∴点的纵坐标为,又,∴点的横坐标为或,∴点坐标为或.故答案为:或.15.【答案】,【考点】同解方程组二元一次方程组的解【解析】利用已知首先得出,进而求出即可.【解答】解:∵和有公共解,∴解得:故,即,.故答案为:;.三、 解答题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )16.(−7,4)(3,4)x AB//x A (−2,4)B 4AB =5B −2−5=−7−2+5=3B (−7,4)(3,4)(−7,4)(3,4)1310{x −2y =12x −3y =5{x −2y =1,x +2y =n {x +y =m ,2x −3y =5{x −2y =1,2x −3y =5,{x =7,y =3,x +2y =7+6=n n =13x +y =m =101310解:①②得,所以.把代人①得 ,所以原方程组的解为分式两边同时乘以,去分母得:,去括号得: ,移项、合并同类项得: ,系数化为得: ,所以不等式的解集为.其解集在数轴上表示为:【考点】加减消元法解二元一次方程组解一元一次不等式在数轴上表示不等式的解集【解析】(1)利用加减消元求出解即可.本题主要考查一元一次不等式及其解法.根据去分母,去括号,移项,合并同类项,系数化为等步骤解不等式.【解答】解:①②得,所以.把代人①得 ,所以原方程组的解为分式两边同时乘以,去分母得:,去括号得: ,移项、合并同类项得: ,系数化为得: ,所以不等式的解集为.其解集在数轴上表示为:17.(1){x +y =1,①3x −y =3.②+4x =4x =1x =1y =0{x =1,y =0.(2)63(x −2)≤2(7−x)3x −6≤14−2x 5x ≤201x ≤4x ≤41(1){x +y =1,①3x −y =3.②+4x =4x =1x =1y =0{x =1,y =0.(2)63(x −2)≤2(7−x)3x −6≤14−2x 5x ≤201x ≤4x ≤4①由题意知点回到起点需要秒,点回到起点需要秒,∴当时,运动停止,此时,,,∴;②时,分以下两种情况:当点未到达点时,可得方程: ,解得;当点由点折返时,可得方程,解得 ,综上,当或时, .【考点】数轴绝对值绝对值的意义一元一次方程的应用——其他问题动点问题【解析】()根据, 即可得;()由题意知.根据绝对值性质化简原式可得.结合可得答案;()①由题意知点回到起点需要秒,点回到起点需要秒知当时,运动停止,从而得出,继而可得;②分以下两种情况:、点未到达点时;、点由点折返时,根据列方程求解可得.【解答】解:若点为原点,则点表示,点表示,故答案为:.由题意知,,,则,∵,即,故答案为:.①由题意知点回到起点需要秒,点回到起点需要秒,∴当时,运动停止,−52(3)P 6Q 4t =4BP =1BC =2CQ =4PQ =7PQ =5I)Q C t +2t +5=3+2+4t =43II)P B (t −3)+2(t −2)+2=5t =103t =43t =103PQ =51AB =3BC =22a <c,d >b,a <d c −b BC =23P 6Q 4t =4BP =1,BC =2,CQ =4PQ 1Q C 2P B PQ =5(1)C B −2A −5−5(2)a <c d >b a <d |a −c|+|d −b|−|a −d|=c −a +d −b −(d −a)=c −a +d −b −d +a =c −b BC =2c −b =22(3)P 6Q 4t =4BC =2CQ =4此时,,,∴;②时,分以下两种情况:当点未到达点时,可得方程: ,解得;当点由点折返时,可得方程,解得 ,综上,当或时, .18.【答案】解:根据题意,得①②,得,解得,把代入①,得,所以原方程组的解为将,代入,解得,所以的值为.【考点】二元一次方程组的解【解析】先解方程组,求得、的值,即为原方程组的解,再将、的值代入,从而得出的值.【解答】解:根据题意,得①②,得,解得,把代入①,得,所以原方程组的解为将,代入,解得,所以的值为.19.【答案】BP =1BC =2CQ =4PQ =7PQ =5I)Q C t +2t +5=3+2+4t =43II)P B (t −3)+2(t −2)+2=5t =103t =43t =103PQ =5{7x +3y =4①,4x −3y =7②,+11x =11x =1x =1y =−1{x =1,y =−1,x =1y =−15x −2y =m −1m =8m 8{7x +3y =4①4x −3y =7②x y x y 5x −2y =m −1m {7x +3y =4①,4x −3y =7②,+11x =11x =1x =1y =−1{x =1,y =−1,x =1y =−15x −2y =m −1m =8m 8(1)(−3,1)A ′(−2,−2)B ′(−1,−1)C ′解:由图可知,,,;由图可知,,由到:横坐标,纵坐标,故由到向左平移个单位,向下平移个单位.经验证到,到符合上述规律,故向左平移个单位,向下平移个单位得到;三角形内的点满足中的规律,故点的坐标为.【考点】网格中点的坐标作图-平移变换平移的性质【解析】此题暂无解析【解答】解:由图可知,,,;由图可知,,由到:横坐标,纵坐标,故由到向左平移个单位,向下平移个单位.经验证到,到符合上述规律,故向左平移个单位,向下平移个单位得到;三角形内的点满足中的规律,故点的坐标为.20.【答案】解:①正有理数集合:;②无理数集合:,,,;③实数集合:.【考点】无理数的识别有理数的概念及分类实数正数和负数的识别【解析】(1)(−3,1)A ′(−2,−2)B ′(−1,−1)C ′(2)A(1,3),(−3,1)A ′A A ′1−(−3)=43−1=2A A ′42B B ′C C ′△ABC 42△A ′B ′C ′(3)ABC (2)P ′(a −4,b −2)(1)(−3,1)A ′(−2,−2)B ′(−1,−1)C ′(2)A(1,3),(−3,1)A ′A A ′1−(−3)=43−1=2A A ′42B B ′C C ′△ABC 42△A ′B ′C ′(3)ABC (2)P ′(a −4,b −2){0.32,}12{8–√12−−√π0.303003...}{−7,0.32,,0,,,−,π,0.303003...}128–√12−−√64−−√3根据实数的分类:实数分为有理数、无理数.或者实数分为正实数、、负实数.进行填空.【解答】解:①正有理数集合:;②无理数集合:,,,;③实数集合:.21.【答案】原方程组整理可得,①+②,得:=,解得:,将代入①,得:,得:,∴方程组的解为;原方程组整理为,①+②,得:=,解得:=,将=代入①,得:=,解得:=,∴方程组的解为.【考点】代入消元法解二元一次方程组二元一次方程组的解【解析】(1)将原方程组整理成一般式后,利用加减消元法求解可得;(2)将原方程组整理成一般式后,利用加减消元法求解可得.【解答】原方程组整理可得,①+②,得:=,解得:,0{0.32,}12{8–√12−−√π0.303003...}{−7,0.32,,0,,,−,π,0.303003...}128–√12−−√64−−√3{3x −y =5−3x +5y =64y 11y =114y =1143x −=5114x =3112 x =3112y =114{ 8x +9y =17x −3y =−2×311x 11x 1x 18+9y 17y 1{ x =1y =1{3x −y =5−3x +5y =64y 11y =114=11x −=511=31将代入①,得:,得:,∴方程组的解为;原方程组整理为,①+②,得:=,解得:=,将=代入①,得:=,解得:=,∴方程组的解为.22.【答案】解:设应安排天精加工,天粗加工,根据题意得,,解得:.所以应安排天精加工,天粗加工.则出售这些加工后的蔬菜一共可获利:(元).【考点】二元一次方程组的应用——销售问题【解析】设应安排天精加工,天粗加工,根据题意可得,精加工和粗加工共有天,加工吨蔬菜,据此列方程组求解,然后求出获利.【解答】解:设应安排天精加工,天粗加工,根据题意得,,解得:.所以应安排天精加工,天粗加工.则出售这些加工后的蔬菜一共可获利:(元).23.【答案】证明:∵平分,y =1143x −=5114x =3112 x =3112y =114{ 8x +9y =17x −3y =−2×311x 11x 1x 18+9y 17y 1{ x =1y =1x y {x +y =156x +16y =140{x =10y =51051500×6×10+800×16×5=154000x y 15140x y {x +y =156x +16y =140{x =10y =51051500×6×10+800×16×5=154000(1)CE ∠BCD 2=∠BCE =∠BCD1∴.∵,∴,∴,∴.证明:∵,∴.∵,∴.∵,∴,即,∴.解:∵,∴,即.∵,∴,解得.∵,∴.由可得,∴ .【考点】平行线的判定平行线的性质【解析】无无无【解答】证明:∵平分,∴.∵,∴,∴,∴.证明:∵,∴.∵,∴.∵,∴,即,∠2=∠BCE =∠BCD 12∠BCD =2∠3∠3=∠BCD 12∠2=∠3AF//EC (2)AF ⊥DE ∠DGF =90∘AF//EC ∠DEC =∠DGF =90∘∠1+∠D =90∘∠1+∠DEC +∠D =180∘∠DEB +∠D =180∘AB//CD (3)AB//CD ∠B +∠DCB =180∘∠B +2∠2=180∘∠B =∠2+30∘∠2++2∠2=30∘180∘∠2=50∘AB//CD ∠A =∠3(1)∠2=∠3∠A =∠2=50∘(1)CE ∠BCD ∠2=∠BCE =∠BCD 12∠BCD =2∠3∠3=∠BCD 12∠2=∠3AF//EC (2)AF ⊥DE ∠DGF =90∘AF//EC ∠DEC =∠DGF =90∘∠1+∠D =90∘∠1+∠DEC +∠D =180∘∠DEB +∠D =180∘AB//CD∴.解:∵,∴,即.∵,∴,解得.∵,∴.由可得,∴ .AB//CD (3)AB//CD ∠B +∠DCB =180∘∠B +2∠2=180∘∠B =∠2+30∘∠2++2∠2=30∘180∘∠2=50∘AB//CD ∠A =∠3(1)∠2=∠3∠A =∠2=50∘。
人教版七年级第二学期 第二次 月考检测数学试卷含答案
人教版七年级第二学期 第二次 月考检测数学试卷含答案一、选择题1.设[x]表示最接近x 的整数(x≠n+0.5,n 为整数),则[1]+[2]+[3]+…+[36]=( )A .132B .146C .161D .6662.若2a a a -=,则实数a 在数轴上的对应点一定在( )A .原点左侧B .原点或原点左侧C .原点右侧D .原点或原点右侧 3.现定义一种新运算:a ★b=ab+a-b ,如:1★3=1×3+1-3=1,那么(-2)★5的值为( )A .17B .3C .13D .-17 4.25的算术平方根是( )A .5±B .5C .52±D .5 5.若2(1)|2|0x y -++=,则x y +的值等于( )A .-3B .3C .-1D .16.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a b c ++就是完全对称式(代数式中a 换成b ,b 换成a ,代数式保持不变).下列三个代数式:①2()a b -;②ab bc ca ++;③222a b b c c a ++.其中是完全对称式的是( ) A .①② B .①③ C .②③ D .①②③ 7.在如图所示的数轴上,点B 与点C 关于点A 对称,A 、B 两点对应的实数分别是3和﹣1,则点C 所对应的实数是( )A .3B .3C .3 1D .38.下列各式中,正确的是( )A 91634B 91634;C 91638D 91634 9.下列判断中不正确的是( )A 37B .无理数都能用数轴上的点来表示C 174D 5510.有下列说法:(1164;(2)绝对值等于它本身的数是非负数;(3)某中学七年级有12个班,这里的12属于标号;(4)实数和数轴上的点一一对应;(5)一个有理数与一个无理数之积仍为无理数;(6)如果a ≈5.34,那么5.335≤a <5.345,其中说法正确的有( )个A .2B .3C .4D .5二、填空题11.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A 点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A 到达点A′的位置,则点A′表示的数是_______.12.a 10的整数部分,b 的立方根为-2,则a+b 的值为________.13.观察下列各式: 123415⨯⨯⨯+=; 2345111⨯⨯⨯+=; 3456119⨯⨯⨯+=;121314151a ⨯⨯⨯+=,则a =_____.14.313312+333123++33331234+++333312326++++=__________.15.对于三个数a ,b ,c ,用M{a ,b ,c}表示这三个数的平均数,用min{a ,b ,c}表示这三个数中最小的数.例如:M{-1,2,3}=123433-++=,min{-1,2,3}=-1,如果M{3,2x +1,4x -1}=min{2,-x +3,5x},那么x =_______. 16.一个数的立方等于它本身,这个数是__.17.比较大小:512__________0.5.(填“>”“<”或“=”) 18.为了求2310012222+++++的值,令2310012222S =+++++,则234101222222S =+++++,因此101221S S -=-,所以10121S =-,即231001*********+++++=-,仿照以下推理计算23202013333+++++的值是____________.19.已知,a 、b 互为倒数,c 、d 互为相反数,求31ab c d -+=_____.20.11133+=112344+=113455+=,……请你将发现的规律用含自然数n (n≥1)的等式表示出来__________________.三、解答题21.如图,用两个面积为2200cm 的小正方形拼成一个大的正方形.(1)则大正方形的边长是___________;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为5:4,且面积为2360cm ?22.观察下来等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,……在上面的等式中,等式两边的数字分别是对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据以上各等式反映的规律,使下面等式成为“数字对称等式”:52×_____=______×25;(2)设这类等式左边的两位数中,个位数字为a ,十位数字为b ,且2≤a +b≤9,则用含a ,b 的式子表示这类“数字对称等式”的规律是_______.23.观察下列各式的计算结果2113131-1-24422===⨯ 2118241-1-39933===⨯ 21115351-1-4161644===⨯ 21124461-1-5252555===⨯ (1)用你发现的规律填写下列式子的结果:211-6= × ; 211-10= × ; (2)用你发现的规律计算: 22222111111-1-1-1-1-23420162017⨯⨯⨯⋯⨯⨯()()()()() (3)计算()2222211111111112341n n ⎡⎤⎛⎫-⨯-⨯-⨯⨯-⨯-⎢⎥ ⎪⎝⎭-⎢⎥⎣⎦()()()(直接写出结果) 24.概念学习 规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把n a a a a a ÷÷÷÷个(a≠0)记作a ,读作“a 的圈n 次方”.初步探究 (1)直接写出计算结果:2③=________,1)2-(⑤=________; (2)关于除方,下列说法错误的是________ A .任何非零数的圈2次方都等于1; B .对于任何正整数n ,1=1; C .3④=4③ D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.深入思考我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=________;5⑥=________;1)2-(⑩=________. (2)想一想:将一个非零有理数a 的圈n 次方写成幂的形式等于________;(3)算一算:()3242162÷+-⨯④. 25.(12的一系列不足近似值和过剩近似值来估计它的大小的过程如下:因为2211,24==,所以122,<<因为21.4 1.96=,21.5 2.25=,所以1.42 1.5,<< 因为221.41 1.9881,1.42 2.0164==,所以1.412 1.42<< 因为221.414 1.999396,1.415 2.002225==,所以1.4142 1.415,<<2 1.41≈(精确到百分位),5(精确到百分位).(2)我们规定用符号[]x 表示数x 的整数部分,例如[]0,2.42,34=⎤⎢⎥⎦=⎡⎣①按此规定2⎤⎦= ;a ,b 求a b -的值.26.阅读下列材料: 问题:如何计算1111122334910++++⨯⨯⨯⨯呢? 小明带领的数学活动小组通过探索完成了这道题的计算.他们的解法如下:解:原式1111111(1)()()()22334910=-+-+-++- 1110=-910= 请根据阅读材料,完成下列问题: (1)计算:111112233420192020++++⨯⨯⨯⨯; (2)计算:111126129900++++; (3)利用上述方法,求式子111115599131317+++⨯⨯⨯⨯的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B【解析】分析:先计算出1.52,2.52,3.52,4.52,5.52,即可得出中有2个1,4个2,6个3,8个4,10个5,6个6,从而可得出答案.详解:1.52=2.25,可得出有2个1;2.52=6.25,可得出有4个2;3.52=12.25,可得出有6个3;4.52=20.25,可得出有8个4;5.52=30.25,可得出有10个5;则剩余6个数全为6.故=1×2+2×4+3×6+4×8+5×10+6×6=146.故选:B.点睛本题考查了估算无理数的大小.2.B解析:B【分析】根据非正数的绝对值是它的相反数,可得答案.【详解】解:由a-|a|=2a,得|a|=-a,故a是负数或0,∴实数a在数轴上的对应点在原点或原点左侧故选:B.【点睛】本题考查了实数与数轴,利用了非负数的绝对值,非正数与数轴的关系:非正数位于原点及原点的左边.3.D解析:D【分析】根据新运算的定义即可得到答案.【详解】∵a★b=ab+a﹣b,∴(﹣2)★5=(﹣2)×5﹣2﹣5=﹣17.故选D.【点睛】本题考查了基本的知识迁移能力,运用新定义,求解代数式即可,要灵活运用所学知识,要认真掌握.4.B解析:B【分析】直接根据算术平方根的定义计算即可.【详解】,∴5故选B.【点睛】此题主要考查了算术平方根,关键是掌握算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.解析:C【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】根据题意得,x-1=0,y+2=0,解得x=1,y=-2,所以x+y=1-2=-1.故选:C.【点睛】此题考查绝对值和算术平方根的非负数的性质,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.6.A解析:A【分析】在正确理解完全对称式的基础上,逐一进行判断,即可得出结论.【详解】解:根据信息中的内容知,只要任意两个字母交换,代数式不变,就是完全对称式,则:①(a-b)2=(b-a)2;是完全对对称式.故此选项正确.②将代数式ab+bc+ca中的任意两个字母交换,代数式不变,故ab+bc+ca是完全对称式, ab+bc+ca中ab对调后ba+ac+cb,bc对调后ac+cb+ba,ac对调后cb+ba+ac,都与原式一样,故此选项正确;③a2b+b2c+c2a 若只ab对调后b2a+a2c+c2b 与原式不同,只在特殊情况下(ab相同时)才会与原式的值一样∴将a与b交换,a2b+b2c+c2a变为ab2+a2c+bc2.故a2b+b2c+c2a不是完全对称式.故此选项错误,所以①②是完全对称式,③不是故选择:A.【点睛】本题是信息题,考查了学生读题做题的能力.正确理解所给信息是解题的关键.7.D解析:D【详解】设点C所对应的实数是x.根据中心对称的性质,对称点到对称中心的距离相等,则有()x1-,解得.故选D.8.A解析:A=±34,所以可知A选项正确;故选A.9.C解析:C【分析】运用实数大小的比较、绝对值有理数和无理数的定义和性质逐项分析即可.【详解】解:A是无理数,原说法正确,故此选项不符合题意;B、无理数都能用数轴上的点来表示,原说法正确,故此选项不符合题意;C44,原说法错误,故此选项符合题意;D故答案为C.【点睛】本题主要考查了实数大小的比较、绝对值有理数和无理数的定义和性质等知识点,灵活运用相关定义和性质是解答本题的关键.10.B解析:B【分析】根据算术平方根的定义、绝对值的性质、数轴的意义实数的运算及近似数的表示方法逐一判断即可得答案.【详解】,4的算术平方根是22,故(1)错误,绝对值等于它本身的数是非负数;故(2)正确,某中学七年级共有12个班级,是对于班级数记数的结果,所以这里的12属于记数,故(3)错误,实数和数轴上的点一一对应;故(4)正确,0与无理数的乘积为0,0是有理数,故(5)错误,如果a≈5.34,那么5.335≤a<5.345,故(6)正确,综上所述:正确的结论有(2)(4)(6),共3个,故选:B.【点睛】本题考查算术平方根的定义、实数的运算、绝对值的性质及近似数的表示方法,熟练掌握相关性质及运算法则是解题关键.二、填空题11.-4解:该圆的周长为2π×2=4π,所以A′与A的距离为4π,由于圆形是逆时针滚动,所以A′在A的左侧,所以A′表示的数为-4π,故答案为-4π.解析:-4π【解析】解:该圆的周长为2π×2=4π,所以A′与A的距离为4π,由于圆形是逆时针滚动,所以A′在A的左侧,所以A′表示的数为-4π,故答案为-4π.12.-5【解析】∵32<10<42,∴的整数部分a=3,∵b的立方根为-2,∴b=-8,∴a+b=-8+3=-5.故答案是:-5.解析:-5【解析】∵32<10<42,a=3,∵b的立方根为-2,∴b=-8,∴a+b=-8+3=-5.故答案是:-5.13.181【分析】观察各式得出其中的规律,再代入求解即可.【详解】由题意得将代入原式中故答案为:181.【点睛】本题考查了实数运算类的规律题,掌握各式中的规律是解题的关键.解析:181【分析】n=求解即可.观察各式得出其中的规律,再代入12由题意得()31=⨯++n nn=代入原式中将12a==⨯+=12151181故答案为:181.【点睛】本题考查了实数运算类的规律题,掌握各式中的规律是解题的关键.14.351【分析】先计算题干中四个简单式子,算出结果,找出规律,根据规律得出最后式子的的值.【详解】=1=3=6=10发现规律:1+2+3+∴1+2+3=351故答案为:351【点解析:351【分析】先计算题干中四个简单式子,算出结果,找出规律,根据规律得出最后式子的的值.【详解】=10+=1+2+3+n+=351=1+2+326故答案为:351【点睛】本题考查找规律,解题关键是先计算题干中的4个简单算式,得出规律后再进行复杂算式的求解.15.或【解析】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{ 2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}==2x+1解析:12或13【解析】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}=321413x x+++-=2x+1,∵M{3,2x+1,4x-1}=min{2,-x+3,5x},∴有如下三种情况:①2x+1=2,x=12,此时min{2,-x+3,5x}= min{2,52,52}=2,成立;②2x+1=-x+3,x=23,此时min{2,-x+3,5x}= min{2,73,103}=2,不成立;③2x+1=5x,x=13,此时min{2,-x+3,5x}= min{2,83,53}=53,成立,∴x=12或13,故答案为12或13.【点睛】本题考查了阅读理解题,一元一次方程的应用,分类讨论思想的运用等,解决问题的关键是读懂题意,依题意分情况列出一元一次方程进行求解.16.0或±1.【分析】根据立方的定义计算即可.【详解】解:∵(﹣1)3=﹣1,13=1,03=0,∴一个数的立方等于它本身,这个数是0或±1.故答案为:0或±1.【点睛】本题考查了乘方的解析:0或±1.【分析】根据立方的定义计算即可.【详解】解:∵(﹣1)3=﹣1,13=1,03=0,∴一个数的立方等于它本身,这个数是0或±1.故答案为:0或±1.【点睛】本题考查了乘方的定义,熟练掌握立方的定义是解题关键,注意本题要分类讨论,不要漏数.17.>【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【详解】∵,∵-2>0,∴>0.故>0.5.故答案为:>.【点睛】此题考查实数大小比较,解题关键在于解析:>【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【详解】12>0,∴22>0.>0.5.故答案为:>.【点睛】此题考查实数大小比较,解题关键在于掌握比较两个实数的大小,可以采用作差法、取近似值法等.18.【分析】令,然后两边同时乘以3,接下来根据题目中的方法计算即可.令则∴∴故答案为:.【点睛】本题考查了有理数的混合运算问题,掌握题目中的运算技巧以及有理数混合运算法则是解 解析:2021312- 【分析】令23202013333S =+++++,然后两边同时乘以3,接下来根据题目中的方法计算即可.【详解】令23202013333S =+++++ 则23202133333S =++++∴2021331S S -=- ∴2021312S -= 故答案为:2021312-. 【点睛】本题考查了有理数的混合运算问题,掌握题目中的运算技巧以及有理数混合运算法则是解题的关键.19.【分析】根据a 、b 互为倒数,c 、d 互为相反数求出ab =1,c+d =0,然后代入求值即可.【详解】∵a、b 互为倒数,∴ab=1,∵c、d 互为相反数,∴c+d=0,∴=﹣1+0+1=0.解析:【分析】根据a 、b 互为倒数,c 、d 互为相反数求出ab =1,c +d =0,然后代入求值即可.∵a、b互为倒数,∴ab=1,∵c、d互为相反数,∴c+d=0,∴1=﹣1+0+1=0.故答案为:0.【点睛】此题考查倒数以及相反数的定义,正确把握相关定义是解题关键.20.【分析】观察分析可得,,,则将此规律用含自然数n(n≥1)的等式表示出来是【详解】由分析可知,发现的规律用含自然数n(n≥1)的等式表示出来是故答案为:【点睛】本题主要考查二次根式,找(1)=+≥n n【分析】=+=(2=+n(n≥1)的等式表示出来是(3=+≥(1)n n【详解】由分析可知,发现的规律用含自然数n(n≥1)的等式表示出来是=+≥(1)n nn n=+≥(1)【点睛】本题主要考查二次根式,找出题中的规律是解题的关键,观察各式,归纳总结得到一般性规律,写出用n表示的等式即可.三、解答题21.(1)20cm ;(2)不能剪出长宽之比为5:4,且面积为2360cm 的大长方形,理由详见解析【分析】(1)根据已知得到大正方形的面积为4002cm ,求出算术平方根即为大正方形的边长; (2)设长方形纸片的长为5xcm ,宽为4xcm ,根据面积列得54360x x ⋅=,求出x =520x =>,由此判断不能裁出符合条件的大正方形.【详解】(1)∵用两个面积为2200cm 的小正方形拼成一个大的正方形,∴大正方形的面积为4002cm ,20cm =故答案为:20cm ;(2)设长方形纸片的长为5xcm ,宽为4xcm ,54360x x ⋅=,解得:x =520x =>,答:不能剪出长宽之比为5:4,且面积为2360cm 的大长方形.【点睛】此题考查利用算术平方根解决实际问题,利用平方根解方程,正确理解题意是解题的关键.22.(1)275,572;(2)(10b+a )[100a+10(a+b )+b]=(10a+b[100b+10(a+b )+a].【分析】(1)观察等式,发现规律,等式的左边:两位数所乘的数是这个两位数的个位数字变为百位数字,十位数字变为个位数字,两个数字的和放在十位;等式的右边:三位数与左边的三位数字百位与个位数字交换,两位数与左边的两位数十位与个位数字交换然后相乘,根据此规律进行填空即可;(2)按照(1)中对称等式的方法写出,然后利用多项式的乘法进行写出即可.【详解】解:(1)∵5+2=7,∴左边的三位数是275,右边的三位数是572,∴52×275=572×25,(2)左边的两位数是10b+a ,三位数是100a+10(a+b )+b ;右边的两位数是10a+b ,三位数是100b+10(a+b )+a ;“数字对称等式”为:(10b+a )[100a+10(a+b )+b]=(10a+b[100b+10(a+b )+a]. 故答案为275,572;(10b+a )[100a+10(a+b )+b]=(10a+b[100b+10(a+b )+a].【点睛】本题是对数字变化规律的考查,根据已知信息,理清利用左边的两位数的十位数字与个位数字变化得到其它的三个数字是解题的关键.23.(1)5766⨯;9111010⨯(2)10092017(3)12n n+ 【解析】 试题分析:(1)根据题目中所给的规律直接写出答案;(2)根据所得的规律进行计算即可;(3)根据所得的规律进行计算即可德结论.试题解析:(1)5766⨯ , 9111010⨯; (2)原式=1324352016201822334420172017⎛⎫⎛⎫⎛⎫⨯⨯⨯⨯⨯⨯⨯⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭() =1201822017⨯ =10092017 ; (3)12n n+. 点睛:本题是一个数字规律探究题,解决这类问题的基本方法为:通过观察,分析、归纳发现其中的规律,并应用规律解决问题.24.初步探究(1)12;—8;(2)C ;深入思考(1)213;415;28;(2)21n a -;(3)—1. 【解析】试题分析:理解除方运算,利用除方运算的法则和意义解决初步探究,通过除方的法则,把深入思考的除方写成幂的形式解决(1),总结(1)得到通项(2).根据法则计算出(3)的结果.试题解析:概念学习(1)2③=2÷2÷2=,(﹣)⑤=(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)=1÷(﹣)÷(﹣)÷(﹣)=(﹣2)÷(﹣)÷(﹣)=﹣8故答案为,﹣8;(2)A 、任何非零数的圈2次方就是两个相同数相除,所以都等于1; 所以选项A 正确; B 、因为多少个1相除都是1,所以对于任何正整数n ,1ⓝ都等于1; 所以选项B 正确;C 、3④=3÷3÷3÷3=,4③=4÷4÷4=,则 3④≠4③; 所以选项C 错误;D 、负数的圈奇数次方,相当于奇数个负数相除,则结果是负数,负数的圈偶数次方,相当于偶数个负数相除,则结果是正数.所以选项D 正确;本题选择说法错误的,故选C ;深入思考:(1)(﹣3)④=(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)=1×()2=;5⑥=5÷5÷5÷5÷5÷5=1×()4=; (﹣)⑩=(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)=1×2×2×2×2×2×2×2×2=28; 故答案为,,28.(2)a ⓝ=a ÷a ÷a…÷a=1÷a n ﹣2=. (3):24÷23+(﹣8)×2③=24÷8+(﹣8)×=3﹣4=﹣1.【点睛】本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序.25.(1)2.24;(2)①5,②35-【分析】(12近似值的方法解答即可;(210102的范围,再根据规定解答即可; 3的整数部分a 5b 的值,再代入所求式子化简计算即可.【详解】解:(1)因为2224,39==, 所以253,<<因为222.2 4.84,2.3 5.29==, 所以2.25 2.3<<,因为222.23 4.9729,2.24 5.0176==,所以2.23 2.24,<< 因为222.236 4.999696,2.237 5.004169==,所以2.236 2.237<<,2.24≈.(2)①因为3.12=9.61,3.22=10.24,所以3.1 3.2<<,所以5.12 5.2<<,所以2⎤⎦=5;故答案为:5;②因为12,23<<<,所以1,2a b ==,所以原式12=)12123=-== 【点睛】本题考查了利用夹逼法求算术平方根的近似值、对算术平方根的整数和小数部分的认识以及实数的简单计算,属于常考题型,正确理解题意、熟练掌握算术平方根的相关知识是解题关键.26.(1)原式=20192020 (2)原式=99100 (3)原式=417 【分析】(1)类比题目中的拆项方法,类比得出答案即可;(2)先把原式拆分成题(1)原式的样子,再根据(1)的拆项方法,类比得出答案即可; (3)分母是相差4的两个自然数的乘积,类比拆成以两个自然数为分母,分子为1的两个自然数差的14即可. 【详解】解:(1)原式=(1-12)+(12-13)+(13-14)+……+(12019-12020) =1-12020 =20192020; (2)原式=111112233499100++++⨯⨯⨯⨯ =(1-12)+(12-13)+(13-14)+……+(199-1100)=1-1 100=99 100(3)原式=14×(4444155********+++⨯⨯⨯⨯)=14×(1-15+15-19+19-113+113-117)=14×(1-117)=14×1617=4 17【点睛】本题考查算式的规律,注意分子、分母的特点,解题的关键是根据规律灵活拆项,并进一步用规律解决问题.。
人教版七年级下学期第二次月考数学试卷(含答案解析)
人教版七年级下学期第二次月考数学试卷一、选择题(本题共10小题,每题3分,共30分)1.下列计算正确的是()A.x2+x2=x4B.(2x)3=6x3C.(﹣2a﹣3)(2a﹣3)=9﹣4a2D.(2a﹣b)2=4a2﹣2ab+b22.如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3B.∠2=∠3C.∠4=∠5D.∠2+∠4=180°3.下列事件中,是必然事件的是()A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨4.如图,要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使BC=CD,再作出BF的垂线DE,使点A、C、E在同一条直线上(如图),可以说明△ABC≌△EDC,得AB=DE,因此测得DE的长就是AB的长,判定△ABC≌△EDC,最恰当的理由是()A.SAS B.HL C.SSS D.ASA5.某校八年级同学到距学校6千米的郊外春游,一部分同学步行,另一部分同学骑自行车,如图,l1、l2分别表示步行和骑车的同学前往目的地所走的路程y(千米)与所用时间x (分钟)之间的函数图象,则以下判断错误的是()A.骑车的同学比步行的同学晚出发30分钟B.步行的速度是6千米/时C.骑车的同学从出发到追上步行的同学用了20分钟D.骑车的同学和步行的同学同时到达目的地6.如图,已知方格纸中是4个相同的小正方形,则∠1+∠2的度数为()A.30°B.45°C.60°D.90°7.如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B 恰好落在AC边上的点E处,若∠A=26°,则∠CDE度数为()A.71°B.64°C.80°D.45°8.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论错误的是()A.BD平分∠ABC B.△BCD的周长等于AB+BCC.AD=BD=BC D.点D是线段AC的中点。
2022-2023学年新人教版七年级下数学月考试卷(含解析)
2022-2023学年初中七年级下数学月考试卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:120 分考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息;2.请将答案正确填写在答题卡上;卷I(选择题)一、选择题(本题共计 12 小题,每题 5 分,共计60分)1. √81的平方根等于( )A.9B.±9C.3D.±32. 在2017991,3.14159265,√13,−6,−3√7,0,√36,π3中无理数的个数是()A.1B.2C.3D.43. 下列式子中,正确的是( )A.3√−7=−3√7B.√36=±6C.−√3.6=−0.6D.√(−8)2=−84. 已知√a−1+|b+2|=0,则√(a+b)2的值为( )A.0B.3C.−1D.15. 如图是一跳远运动员跳落沙坑时留下的痕迹,则表示该运动员成绩的是( )A.线段AP1的长B.线段AP2的长C.线段BP3的长D.线段CP3的长6. 如图,对于图中标记的各角,下列条件不能够推理得到a//b的是( )A.∠1=∠2B.∠2=∠3C.∠1=∠3D.∠1+∠4=180∘7. 下列说法正确的有( )A.同一平面内,垂直于同一直线的两条直线互相平行B.同一平面内,过一点有且只有一条直线平行于已知直线C.两条直线被第三条直线所截,同位角相等D.直线外一点到这条直线的垂线段,叫做点到直线的距离8. 某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知AB//CD,∠BAE=87∘,∠DCE=121∘,则∠E的度数是( )A.28∘B.34∘C.46∘D.56∘9. 琪琪将一张正方形纸片按如图所示的顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),∠AOB的度数是( )A.22.5∘B.30∘C.45∘D.60∘10. 婴儿车的平面示意图,如图所示,其中AB//CD,∠1=120∘,∠3=40∘,那么∠2的度数为( )A. 80∘B.89∘C.59∘D.91∘11. 如图所示,直线a、b被直线c、d所截,且a//b,c与d相交于点O,则α=( )A.11∘B.33∘C.43∘D.68∘12. 如图,将周长为8的△ABC 沿BC 方向平移1个单位得到△DEF ,则四边形ABFD 的周长是( )A.8B.10C.12D.16卷II (非选择题)二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )13. 已知2x −5与3x +1的值互为相反数,则x =________.14. 如图的一个数据转换器,当输入的x =81时,输出的y =________.15. 如果3√3−6x =−3,则2x +6的算术平方根为________.16. 如图,已知直线AB 、CD 相交于点O ,OE 平分∠BOC ,若∠AOC =40∘,则∠BOC =________度,∠DOE =________度.17. 如图,将Rt △ABC 沿着点B 到A 的方向平移到△DEF 的位置,BC =8,FO =2,平移距离为4,则四边形AOFD 的面积为________.18. 如图,在下列条件中:①∠1=∠2;②∠BAD +∠ADC =180∘;③∠ABC =∠ADC ;④∠3=∠4,能判定AB//CD 的有________.三、 解答题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )19. 如图,数轴上A ,B 两点分别对应有理数a ,b ,A ,B 两点之间的距离表示为AB ,在数轴上A ,B 两点之间的距离AB=|a−b|,利用数形结合思想回答下列问题:(1)数轴上表示2和5两点之间的距离是________,数轴上表示2和−5两点之间的距离是________;(2)数轴上,表示________的点与表示________的点之间的距离是|x−1|;数轴上x和−2两点之间的距离是________;(3)若x表示一个有理数,则|x−1|+|x+2|有最小值吗?若有,请求出最小值,若没有,写出理由.20. 已知√2a−1=3,3a+b−1的平方根是±4,c是√10的整数部分.(1)求a+4b+c的算术平方根;(2)求a+b−5c的立方根.21. 已知直线AB与CD相交于点O,OM⊥AB于点O.(1)如图1,若OC平分∠AOM,求∠AOD的度数;(2)如图2,若∠BOC=4∠NOB,且OM平分∠NOC,求∠MON的度数.22.(1)化简:(x+5)(x−1)+(x−2)2;(2)如图,在四边形ABCD中,AB//CD,∠1=∠2,DB=DC.求证:AB=DE.23. 如图,已知点E,F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHD.(1)判断∠AED与∠D之间的数量关系,并说明理由;(2)若∠EHF=80∘,∠D=30∘,求∠AEM的度数.24. 在数学综合实践活动课上,老师让同学们以“两条平行直线AB,CD和一块含45∘的直角三角板EFG(∠EFG=90∘)”为背景,开展数学探究活动.如图,将三角板的顶点G放置在直线AB上.(1)如图①,在GE边上任取一点P(不同于点C,E),过点P作CD//AB,且∠2=4∠1,求∠1的度数.(2)如图②,过点E作CD//AB,请探索并说明∠AGF与∠CEF之间的数量关系.(3)将三角板绕顶点G旋转,过点E作CD//AB,并保持点E在直线AB的上方.在旋转过程中,探索∠AGF与∠CEF之间的数量关系,并说明理由.参考答案与试题解析2022-2023学年初中七年级下数学月考试卷一、 选择题 (本题共计 12 小题 ,每题 5 分 ,共计60分 )1.【答案】D【考点】算术平方根平方根【解析】先根据算术平方根的定义化简√81,再根据算术平方根的定义进行求解即可.【解答】解:∵92=81,∴√81=9,∵(±3)2=9,∴√81的平方根等于±3.故选D .2.【答案】C【考点】无理数的识别【解析】此题主要考查了无理数的定义.【解答】解:无理数有:√13,−3√7,π3共3个.故选C.3.【答案】A【考点】算术平方根立方根的性质【解析】根据平方根,立方根,算术平方根求出每个式子的值,再判断即可.【解答】解:A,3√−7=−3√7,故A正确;B,√36=6,故B错误;C,−√0.36=−0.6,故C错误;D,√(−8)2=8 ,故D错误.故选A.4.【答案】D【考点】非负数的性质:算术平方根非负数的性质:绝对值算术平方根【解析】直接利用绝对值以及算术平方根的性质得出a,b的值,代入计算得出答案.【解答】解:∵√a−1+|b+2|=0,又√a−1≥0,|b+2|≥0,∴a−1=0,b+2=0,解得a=1,b=−2,∴√(a+b)2=√(1−2)2=√(−1)2=√1=1.故选D.5.【答案】C【考点】垂线段最短【解析】利用垂线段最短求解.【解答】解:根据垂线段最短可知,表示该运动员成绩的BP3的长.故选C.6.【答案】C【考点】平行线的判定【解析】【解答】解:A、∵∠1=∠2,∴a//b(同位角相等,两直线平行),故A选项不符合题意;B、∵∠2=∠3,∴a//b(内错角相等,两直线平行),故B选项不符合题意;C、由∠1=∠3,不能得到a//b,故C选项符合题意;D、∵∠1+∠4=180∘,∠1=∠3,∴a//b(同旁内角互补,两直线平行),故D选项不符合题意.故选C.7.【答案】A【考点】点到直线的距离平行公理及推论【解析】依据平行线的判定和性质,两直线相交或平行问题,点到直线的距离等相关知识.【解答】解:A,在同一平面内,垂直于同一条直线的两条直线互相平行,故A正确;B,过直线外一点有且只有一条直线与已知直线平行,故B错误;C,两条平行直线被第三条直线所截,同位角相等,故C错误;D,直线外一点到这条直线的垂线段的长度,叫做这点到该直线的距离,故D错误.故选A.8.【答案】B【考点】平行线的性质【解析】延长DC交AE于F,依据AB//CD,∠BAE=87∘,可得∠CFE=87∘,再根据三角形外角性质,即可得到∠E=∠DCE−∠CFE.【解答】解:如图,延长DC交AE于F,过点C作GH//AE交AB于G,∵AB//CD,∠BAE=87∘,∴∠CFE=87∘,则∠DCH=∠EFC=87∘,又∵∠DCE=121∘,∴∠E=∠HCE=∠DCE−∠DCH=121∘−87∘=34∘.故选B.9.【答案】C【考点】翻折变换(折叠问题)【解析】此题暂无解析【解答】解:在折叠过程中,角一直是轴对称的折叠,180∘÷23=180∘÷8=22.5∘,∠AOB=22.5∘×2=45∘.故选C.10.【答案】A【考点】平行线的性质三角形内角和定理【解析】根据平行线性质求出∠A,根据三角形外角性质得出∠2=∠1−∠A,代入求出即可.【解答】解:如图,∵AB//CD,∴∠A=∠3=40∘,∵∠1=120∘,∴∠AFE=180∘−120∘=60∘,∴∠2=180∘−∠AFE−∠A=180∘−60∘−40∘=80∘.故选A.11.【答案】B【考点】平行线的性质三角形内角和定理【解析】由平行线的性质可得∠1=79∘,又由外角的性质可得∠1+α=112∘,可求得α.【解答】解:如图,∵,{\therefore}{\angle1=79^\circ},又{\because}{\angle1+\alpha=112^\circ},{\therefore}{\alpha=112^\circ-79^\circ=33^\circ}.故选{\text{B}}.12.【答案】B【考点】平移的性质【解析】根据平移的基本性质,得出四边形{ABFD}的周长{= AD+ AB+ BF+ DF= 1+ AB+ BC+ 1+ AC}即可得出答案.【解答】解:根据题意,将周长为{8}的{\triangle ABC}沿边{BC}向右平移{1}个单位得到{\triangle DEF},∴{AD= 1},{BF= BC+ CF= BC+ 1},{DF= AC}.又∵{AB+ BC+ AC= 8},∴四边形{ABFD}的周长{= AD+ AB+ BF+ DF}{= 1+ AB+ BC+ 1+ AC= 10}.故选{\rm B}.二、填空题(本题共计 6 小题,每题 5 分,共计30分)13.【答案】{\dfrac{4}{5}}【考点】相反数【解析】此题暂无解析【解答】解:因为{2x-5}与{3x+1}的值互为相反数,所以{2x-5+3x+1=0},解得{x=\dfrac{4}{5}}.故答案为:{\dfrac{4}{5}}.14.【答案】{\sqrt{3}}【考点】算术平方根【解析】根据算术平方根的概念进行计算即可.【解答】解:∵{\sqrt{81}= 9},{9}是有理数,{\sqrt{9}= 3},{3}是有理数,{\sqrt{3}}是无理数,∴输出的{y=\sqrt{3}},故答案为:{\sqrt{3}}.15.【答案】{4}【考点】算术平方根立方根的实际应用【解析】根据{3-6x}的立方根为{-3}可求出æ的值,继而可求出代数式{2x+6}的值,也可求出{2x+6}的算术平方根.【解答】解:∵{\sqrt[3]{3-6x}=-3},∴{3-6x=-27},解得:{x=5},∴{2x+6=2\times5+6=16},∴{16}的算术平方根为{4.}故答案为:{4}.16.【答案】{140},{110}【考点】对顶角角平分线的定义【解析】根据邻补角的性质求出{\angle BOC},根据对顶角相等得到{\angle BOD= \angle AOC= 40^{{\circ} }},根据角平分线的定义求出{\angle BOE},结合图形,计算即可.【解答】解:∵{\angle AOC= 40^{{\circ} }},∴{\angle BOC= 180^{{\circ} }-\angle AOC= 140^{{\circ} }},{\angle BOD= \angle AOC= 40^{{\circ} }},∵{OE}平分{\angle BOC},∴{\angle BOE= \dfrac{1}{2}\angle BOC= 70^{{\circ} }},∴{\angle DOE= \angle BOE+ \angle BOD= 110^{{\circ} }}.故答案为:{140};{110}.17.【答案】{28}【考点】平移的性质三角形的面积【解析】木题主要利用了平移的性质,找出所求部分和平行四边形与三角形面积之间的关系是关键.【解答】解:由平移的性质知,{AD=CF=BE=4} ,{AD//CF},{ \therefore}{S_{四边形ACFD}=AD\cdot BC=4\times 8= 32},{ \because}{FO=2},{ \therefore}{S_{\triangle FOC}=\dfrac{1}{2}OF\cdot BE=\dfrac{1}{2}\times 2\times 4=4},{ \therefore}{S_{四边形AOFD}=S_{四边形ACFD}- S_{\triangle FOC}=32- 4=28}.故答案为:{28.}18.【答案】①②【考点】平行线的判定【解析】依据同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,进行判断即可.【解答】解:依据{\angle 1}{=}{\angle 2},内错角相等,两直线平行,能判定{AB\,//\,CD};依据{\angle BAD+ \angle ADC}{=}{180^{{\circ} }},同旁内角互补,两直线平行,能判定{AB\,//\,CD};依据{\angle ABC}{=}{\angle ADC},不能判定{AB\,//\,CD};依据{\angle 3}{=}{\angle 4},内错角相等,两直线平行,能判定{AD//BC},不能判定{AB\,//\,CD}.故答案为:①②.三、解答题(本题共计 6 小题,每题 5 分,共计30分)19.【答案】{3},{7}{x},{1},{\left|x+2\right|}{(3)}根据绝对值的定义有:{| x-1 | + | x+2 |}可表示点{x}到{1}与{-2}两点距离之和,根据数轴分析可知:当{x}在{-2}与{1}之间时, {| x-1 | + | x+2 |}有最小值,为{-2}与{1}之间的距离,{|-2-1|=3}.【考点】绝对值数轴【解析】根据绝对值在数轴上的定义(绝对值定义是坐标轴上的点到原点的距离)下手,分别解出答案.根据绝对值在数轴上的定义(绝对值定义是坐标轴上的点到原点的距离)下手,解出答案.根据绝对值在数轴上的定义(绝对值定义是坐标轴上的点到原点的距离)下手,解出答案.【解答】解:{(1)}观察数轴:数轴上表示{2}和{5}两点之间的距离是{| 5-2 | =3},数轴上表示{2}和{-5}的两点之间的距离是{| 2-\left(-5\right) | =7}.故答案为:{3};{7}.{(2)}根据绝对值的定义可得:数轴上表示{x}和{1}的两点之间的距离表示为:{\left|x-1\right|}.数轴上表示{x}和{-2}两点之间的距离是{\vert x-\left(-2\right)\vert=\vert x+2\vert}或{\vert-2-x\vert=\vert x+2\vert}.故答案为:{x};{1};{\left|x+2\right|}.{(3)}根据绝对值的定义有:{| x-1 | + | x+2 |}可表示点{x}到{1}与{-2}两点距离之和,根据数轴分析可知:当{x}在{-2}与{1}之间时, {| x-1 | + | x+2 |}有最小值,为{-2}与{1}之间的距离,{|-2-1|=3}.20.【答案】解:{(1)}∵{\sqrt{2a-1}=3},∴{2a-1=9},解得{a=5}.∵{3a+b-1} 的平方根是{\pm 4}∴{3a+b-1=16},解得{b=2}.∵{9\lt 10\lt 16},∴{\sqrt{10}}的整数部分{c=3}.∵{a=5},{ b=2},{c=3},∴{a+4b+c}{=16},∵{16}的算术平方根是{4},∴{a+4b+c}的算术平方根为{4}.{(2)}由{(1)}得,{a=5},{b=2},{ c=3},∴{a+b-5c}{=-8},∵{-8}的立方根是{-2},∴{a+b-5c}的立方根为{-2}.【考点】算术平方根平方根估算无理数的大小立方根的性质【解析】无无【解答】解:{(1)}∵{\sqrt{2a-1}=3},∴{2a-1=9},解得{a=5}.∵{3a+b-1} 的平方根是{\pm 4}∴{3a+b-1=16},解得{b=2}.∵{9\lt 10\lt 16},∴{\sqrt{10}}的整数部分{c=3}.∵{a=5},{ b=2},{c=3},∴{a+4b+c}{=16},∵{16}的算术平方根是{4},∴{a+4b+c}的算术平方根为{4}.{(2)}由{(1)}得,{a=5},{b=2},{ c=3},∴{a+b-5c}{=-8},∵{-8}的立方根是{-2},∴{a+b-5c}的立方根为{-2}.21.【答案】解:{(1)}∵{\angle AOM= 90^{{\circ} }},{OC}平分{\angle AOM},∴{\angle AOC= \dfrac{1}{2} \angle AOM= \dfrac{1}{2} \times 90^{{\circ} }= 45^{{\circ} }}.∵{\angle AOC+ \angle AOD= 180^{{\circ} }},∴{\angle AOD= 180^{{\circ} }-\angle AOC= 180^{{\circ} }-45^{{\circ} }= 135^{{\circ} }},即{\angle AOD}的度数为{135^{{\circ} }}.{(2)}∵{\angle BOC= 4\angle NOB},∴设{\angle NOB= x},{\angle BOC= 4x},∴{\angle CON= \angle COB-\angle BON= 4x-x= 3x}.∵{OM}平分{\angle CON},∴{\angle COM= \angle MON= \dfrac{1}{2} \angle CON= \dfrac{3}{2} x}.∵{\angle BOM= \dfrac{3}{2} x+ x= 90^{{\circ} }},∴{x= 36^{{\circ} }},∴{\angle MON= \dfrac{3}{2} x= \dfrac{3}{2} \times 36^{{\circ} }= 54^{{\circ} }},即{\angle MON}的度数为{54^{{\circ} }}.【考点】角平分线的定义垂线余角和补角角的计算【解析】({1})根据角平分线的定义求出{\angle AOC=45^{\circ }},然后根据邻补角的定义求解即可;({2})设{\angle NOB=x^{\circ }, \angle BOC=4x^{\prime }},根据角平分线的定义表示出{\angle COM=\angle MON=\dfrac{1} {2}\angle CON},再根据{\angle BOM}{I}列出方程求解{x},然后求解即可.【解答】解:{(1)}∵{\angle AOM= 90^{{\circ} }},{OC}平分{\angle AOM},∴{\angle AOC= \dfrac{1}{2} \angle AOM= \dfrac{1}{2} \times 90^{{\circ} }= 45^{{\circ} }}.∵{\angle AOC+ \angle AOD= 180^{{\circ} }},∴{\angle AOD= 180^{{\circ} }-\angle AOC= 180^{{\circ} }-45^{{\circ} }= 135^{{\circ} }},即{\angle AOD}的度数为{135^{{\circ} }}.{(2)}∵{\angle BOC= 4\angle NOB},∴设{\angle NOB= x},{\angle BOC= 4x},∴{\angle CON= \angle COB-\angle BON= 4x-x= 3x}.∵{OM}平分{\angle CON},∴{\angle COM= \angle MON= \dfrac{1}{2} \angle CON= \dfrac{3}{2} x}.∵{\angle BOM= \dfrac{3}{2} x+ x= 90^{{\circ} }},∴{x= 36^{{\circ} }},∴{\angle MON= \dfrac{3}{2} x= \dfrac{3}{2} \times 36^{{\circ} }= 54^{{\circ} }},即{\angle MON}的度数为{54^{{\circ} }}.22.【答案】{(1)}解:原式{=x^2+4x-5+x^2-4x+4}{=2x^2-1}.{(2)}证明:∵{AB//CD},∴{\angle ABD=\angle EDC},在{\triangle ABD}和{\triangle EDC}中,{\left\{ {\begin{matrix} {\angle ABD=\angle EDC}, \\ {BD=DC} , \\ {\angle 1=\angle 2} ,\end{matrix}} \right.}∴{\triangle ABD\cong\triangle EDC(\rm ASA)},∴{AB=DE}.【考点】整式的混合运算——化简求值完全平方公式全等三角形的性质与判定平行线的性质【解析】(1)首先解出不等式,再利用数轴的出解集;(2)①作{\angle CBF= \angle ADE}即可得出答案;②利用在平行四边形{ABCD}中,{\angle A= \angle C},{AD= BC},进而利用三角形全等的判定定理得出即可.【解答】{(1)}解:原式{=x^2+4x-5+x^2-4x+4}{=2x^2-1}.{(2)}证明:∵{AB//CD},∴{\angle ABD=\angle EDC},在{\triangle ABD}和{\triangle EDC}中,{\left\{ {\begin{matrix} {\angle ABD=\angle EDC}, \\ {BD=DC} , \\ {\angle 1=\angle 2} ,\end{matrix}} \right.}∴{\triangle ABD\cong\triangle EDC(\rm ASA)},∴{AB=DE}.23.【答案】解:{\left ( {1} \right )}{∠ AED+ ∠ D= 180^{\circ}}.理由如下:∵{∠ CED= ∠ GHD},∴{CE\,//\,GF},∴{∠ C= ∠ FGD},∵{∠ C= ∠ EFG},∴{∠ FGD= ∠ EFG},∴{AB\,//\,CD},∴{∠ AED+ ∠ D= 180^{\circ}}.{\left ( {2} \right )}∵{CE//GF},∴{\angle CED=\angle EHF=80^{\circ }}.∵{AB//CD},∴{\angle BED=\angle D=30^{\circ }},∴{\angle CEB=\angle CED+\angle BED=110^{\circ }},∴{\angle AEM=\angle CEB=110^{\circ }}.【考点】平行线的判定与性质对顶角【解析】(1)根据同位角相等两直线平行,可证{CE\,//\,GF};(2)根据平行线的性质可得{\angle C= \angle FGD},根据等量关系可得{\angle FGD= \angle EFG},根据内错角相等,两直线平行可得{AB\,//\,CD},再根据平行线的性质可得{\angle AED}与{\angle D}之间的数量关系;【解答】解:{\left ( {1} \right )}{∠ AED+ ∠ D= 180^{\circ}}.理由如下:∵{∠ CED= ∠ GHD},∴{CE\,//\,GF},∴{∠ C= ∠ FGD},∵{∠ C= ∠ EFG},∴{∠ FGD= ∠ EFG},∴{AB\,//\,CD},∴{∠ AED+ ∠ D= 180^{\circ}}.{\left ( {2} \right )}∵{CE//GF},∴{\angle CED=\angle EHF=80^{\circ }}.∵{AB//CD},∴{\angle BED=\angle D=30^{\circ }},∴{\angle CEB=\angle CED+\angle BED=110^{\circ }},∴{\angle AEM=\angle CEB=110^{\circ }}.24.【答案】解:{(1)}因为{AB//CD},所以{\angle 1=\angle EGB}.因为{\angle 2+\angle FGE+\angle EGB=180^{\circ }},{ \angle 2=4\angle 1},{ \angle FGE=45^{\circ }},所以{4\angle 1+45^{\circ }+\angle 1=180^{\circ }},即{\angle 1=27^{\circ }}.{(2)}{\angle AGF+\angle CEF=90^{\circ }}.理由如下:过点{F}作{FM//AB},如图,因为{AB//CD},所以{AB//FM//CD},所以{\angle AGF=\angle GFM},{ \angle CEF=\angle MFE}.又因为{\angle EFM+\angle MFG=90^{\circ }},所以{\angle AGF+\angle CEF=90^{\circ }}.{(3)}①当{F}点在{CD}的上方时,过点{F}作{NM//AB},如图③,因为{AB//CD},所以{AB//NM//CD},所以{\angle CEF=\angle EFM},{ \angle AGF=\angle MFG},所以{\angle AGF-\angle CEF=90^{\circ }};②当{F}点在{AB}与{CD}的之间时,满足第{(2)}问的数量关系,即{\angle AGF+\angle CEF=90^{\circ }}.③当{F}点在{AB}的下方时,过点{F}作{NM//AB},如图④.因为{AB//CD},所以{AB//NM//CD},所以{\angle AGF=\angle GFM},{\angle CEF=\angle MFE},又因为{\angle MFE-\angle GFM=90^{\circ }},所以{\angle CEF-\angle AGF=90^{\circ }}.【考点】平行线的判定与性质角的计算【解析】【解答】解:{(1)}因为{AB//CD},所以{\angle 1=\angle EGB}.因为{\angle 2+\angle FGE+\angle EGB=180^{\circ }},{ \angle 2=4\angle 1},{ \angle FGE=45^{\circ }},所以{4\angle 1+45^{\circ }+\angle 1=180^{\circ }},即{\angle 1=27^{\circ }}.{(2)}{\angle AGF+\angle CEF=90^{\circ }}.理由如下:过点{F}作{FM//AB},如图,因为{AB//CD},所以{AB//FM//CD},所以{\angle AGF=\angle GFM},{ \angle CEF=\angle MFE}.又因为{\angle EFM+\angle MFG=90^{\circ }},所以{\angle AGF+\angle CEF=90^{\circ }}.{(3)}①当{F}点在{CD}的上方时,过点{F}作{NM//AB},如图③,因为{AB//CD},所以{AB//NM//CD},所以{\angle CEF=\angle EFM},{ \angle AGF=\angle MFG},又因为{\angle MFG-\angle EFM=90^{\circ }},②当{F}点在{AB}与{CD}的之间时,满足第{(2)}问的数量关系,即{\angle AGF+\angle CEF=90^{\circ }}.③当{F}点在{AB}的下方时,过点{F}作{NM//AB},如图④.因为{AB//CD},所以{AB//NM//CD},所以{\angle AGF=\angle GFM},{\angle CEF=\angle MFE},又因为{\angle MFE-\angle GFM=90^{\circ }},所以{\angle CEF-\angle AGF=90^{\circ }}.。
人教版七年级第二学期 第二次月考数学试题含答案
人教版七年级第二学期 第二次月考数学试题含答案一、选择题1.下列说法正确的个数有( )①过一点有且只有一条直线与已知直线平行; ②垂线段最短;③坐标平面内的点与有序实数对是一一对应的; ④算术平方根和立方根都等于它本身的数是0和1; ⑤5的小数部分是51-. A .1B .2C .3D .42.下列说法错误的是( )A .a 2与(﹣a )2相等B .33()a -与33a 互为相反数C .3a 与3a -互为相反数D .|a|与|﹣a|互为相反数 3.在有理数中,一个数的立方等于这个数本身,这种数的个数为( ) A .1B .2C .3D .44.25的算术平方根是( ) A .5± B .5C .52±D .55.已知280x y -++=,则x y +的值为( )A .10B .-10C .-6D .不能确定 6.已知|x |=2,y 2=9,且xy <0,则x +y 的值为( ) A .1或﹣1 B .-5或5 C .11或7 D .-11或﹣7 7.估计65的立方根大小在( ) A .8与9之间B .3与4之间C .4与5之间D .5与6之间8.下列说法中,正确的个数是( ).(1)64-的立方根是4-;(2)49的算术平方根是7±;(3)2的立方根为32;(4)7是7的平方根. A .1B .2C .3D .49.下列说法不正确的是( ) A .81的平方根是±3 B .12-是14的平方根 C .带根号的数不一定是无理数 D .a 2的算术平方根是a10.如图,数轴上表示实数3的点可能是( )A .点PB .点QC .点RD .点S二、填空题11.若x +1是125的立方根,则x 的平方根是_________. 12.已知M 是满足不等式36a -<<的所有整数的和,N 是满足不等式x ≤3722-的最大整数,则M +N 的平方根为________. 13.观察下列各式: (1)123415⨯⨯⨯+=; (2)2345111⨯⨯⨯+=; (3)3456119⨯⨯⨯+=;根据上述规律,若121314151a ⨯⨯⨯+=,则a =_____. 14.一个正数的平方根是21x -和2x -,则x 的值为_______.15.将1,2,3,6按下列方式排列,若规定(,)m n 表示第m 排从左向右第n 个数,则(20,9)表示的数的相反数是___16.对于这样的等式:若(x +1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5的值为_____.17.已知:103<157464<1003;43=64;53<157<63,则 315746454=,请根据上面的材料可得359319=_________.18.已知实数x 的两个平方根分别为2a +1和3-4a ,实数y 的立方根为-a ,则2x y +的值为______.19.如图,数轴上的点A 能与实数15,3,,22---对应的是_____________20.若x ,y 为实数,且|2|30x y ++-=,则(x+y) 2012的值为____________.三、解答题21.先阅读下面的材料,再解答后面的各题:现代社会会保密要求越来越高,密码正在成为人们生活的一部分,有一种密码的明文(真实文)按计算机键盘字母排列分解,其中,,,,,Q W E N M 这26个字母依次对应1,2,3,,25,26这26个自然数(见下表).给出一个变换公式:(126,3)3217(126,31)318(126,32)3J J J xx x x x x x x x x x x x x x ⎧=≤≤⎪⎪+⎪=+≤≤⎨⎪+⎪=+≤≤⎪⎩是自然数,被整除是自然数,被除余是自然数,被除余 将明文转成密文,如4+24+17=193⇒,即R 变为L :11+111+8=123⇒,即A 变为S .将密文转成成明文,如213(2117)210⇒⨯--=,即X 变为P :133(138)114⇒⨯--=,即D 变为F .(1)按上述方法将明文NET 译为密文.(2)若按上方法将明文译成的密文为DWN ,请找出它的明文. 22.阅读型综合题对于实数x y ,我们定义一种新运算(),L x y ax by =+(其中a b ,均为非零常数),等式右边是通常的 四则运算,由这种运算得到的数我们称之为线性数,记为(),L x y ,其中x y ,叫做线性数的一个数对.若实数 x y ,都取正整数,我们称这样的线性数为正格线性数,这时的x y ,叫做正格线性数的正格数对.(1)若(),3L x y x y =+,则()2,1L = ,31,22L ⎛⎫= ⎪⎝⎭; (2)已知(),3L x y x by =+,31,222L ⎛⎫=⎪⎝⎭.若正格线性数(),18L x kx =,(其中k 为整数),问是否有满足这样条件的正格数对?若有,请找出;若没有,请说明理由. 23.观察下列各式﹣1×12=﹣1+12﹣1123⨯=﹣11+23 ﹣1134⨯=﹣11+34(1)根据以上规律可得:﹣1145⨯= ;11-1n n += (n ≥1的正整数). (2)用以上规律计算:(﹣1×12)+(﹣1123⨯)+(﹣1134⨯)+…+(﹣1120152016⨯).24.已知2a -的平方根是2±,33a b --的立方根是3,整数c 满足不等式1c c <+. (1)求,,a b c 的值.(2)求2232a b c ++的平方根.25.阅读下列材料:小明为了计算22019202012222+++++的值,采用以下方法:设22019202012222s =+++++ ① 则22020202122222s =++++ ②②-①得,2021221s s s -==- 请仿照小明的方法解决以下问题: (1)291222++++=________;(2)220333+++=_________;(3)求231n a a a a ++++的和(1a >,n 是正整数,请写出计算过程).26.阅读下面的文字,解答问题:是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,而121的小数部分.请解答下列问题:(1_______,小数部分是_________;(2)的小数部分为a b ,求a b +(3)已知:100x y +=+,其中x 是整数,且01y <<,求24x y +-的平方根。
最新2022-2022年七年级下第二次月考数学试卷含答案
七年级(下)第二次月考数学试卷一、选择题1.(3分)下列说法(shuōfǎ)正确的是()A.若两个(liǎnɡ ɡè)角相等,则这两个角是对顶角B.若两个(liǎnɡ ɡè)角是对顶角,则这两个角是相等C.若两个角不是(bù shi)对顶角,则这两个角不相等D.所有(suǒyǒu)的对顶角相等2.(3分)已知一个圆的半径为Rcm,若这个圆的半径增加2cm,则它的面积增加()A.4cm2B.(2R+4)cm2C.(4R+4)cm2D.以上都不对3.(3分)在同一平面内,a、b、c是直线,下列说法正确的是()A.若a∥b,b∥c 则 a∥c B.若a⊥b,b⊥c,则a⊥cC.若a∥b,b⊥c,则a∥c D.若a∥b,b∥c,则a⊥c4.(3分)下列计算正确的是()A.(a4)3=a7B.a8÷a4=a2C.(ab)3=a3b3D.(a+b)2=a2+b2 5.(3分)已知∠α与∠β互为补角,∠α=120°30′,则∠β的余角是()A.29°30′B.30°30′C.31°30′D.59°30′6.(3分)下列式子正确的是()A.a2﹣4b2=(a+2b)(a﹣2b)B.(a﹣b)2=a2﹣b2C.(a+b)2=a2+b2D.(x+3y)(x﹣3y)=x2﹣3y27.(3分)下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.8.(3分)计算(jì suàn)的结果(jiē guǒ)是()A.﹣B.C.﹣D.9.(3分)在同一平面内,有8条互不重合(chónghé)的直线,l1,l2,l3 (8)若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推(yǐ cǐ lèi tuī),则l1和l8的位置(wèi zhi)关系是()A.平行B.垂直C.平行或垂直D.无法确定10.(3分)算式(2+1)×(22+1)×(24+1)×…×(232+1)+1计算结果的个位数字是()A.4 B.2 C.8 D.6二、填空题11.(3分)某学校有A、B、C三栋教学楼,B楼在A楼的正北方向上,与A 楼相距40米;C楼在A楼的东偏南30°方向上,与A楼相距80米,通过画图(用1厘米代表20米),量出B、C两楼间的距离为米(精确到米).12.(3分)如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数为整数,则∠C的度数为.13.(3分)直线a外有一定点A,A到直线a的距离是5cm,P是直线a上的任意一点,则AP5cm(填写<或>或=或≤或≥)14.(3分)若x2﹣16x+m2是一个完全平方式,则m=;若m﹣=9,则m2+=.15.(3分)若一个角是34°,则这个角的余角是°.16.(3分)如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作(cāozuò),分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点(jiāodiǎn)为E n.若∠E n=1度,那∠BEC等于(děngyú)度三、解答(jiědá)题17.在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数(jiā shù)起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2021(a≠0且a≠1)的值.18.如图,某工程队从A点出发,沿北偏西67°方向修一条公路AD,在BD路段出现塌陷区,就改变方向,由B点沿北偏东23°的方向继续修建BC段,到达C点又改变方向,从C点继续修建CE段,若使所修路段CE∥AB,∠ECB应为多少度?试说明理由.此时CE与BC有怎样的位置关系?以下是小刚不完整的解答,请帮她补充完整.解:由已知,根据得∠1=∠A=67°所以,∠CBD=23°+67°=°;根据当∠ECB+∠CBD=°时,可得CE∥AB.所以∠ECB=°此时CE与BC的位置关系为.19.一种电讯信号转发装置的发射直径为31km.现要求:在一边长为30km的正方形城区选择(xuǎnzé)若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到(dá dào)预设的要求?在图1中画出安装点的示意图,并用大写字母M、N、P、Q表示安装点;(2)能否找到这样(zhèyàng)的3个安装点,使得在这些点安装了这种转发装置后能达到预设的要求?在图2中画出示意图说明,并用大写字母M、N、P表示安装点,用计算、推理和文字来说明你的理由.20.如图,已知两条射线(shèxiàn)OM∥CN,动线段(xiànduàn)AB的两个端点A、B分别在射线OM、CN上,且∠C=∠OAB=108°,F在线段CB上,OB平分∠AOF,OE平分∠COF.(1)请在图中找出与∠AOC相等的角,并说明理由;(2)若平行移动AB,那么∠OBC与∠OFC的度数比是否随着AB位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=2∠OBA?若存在,请求出∠OBA度数;若不存在,说明理由.21.问题(wèntí)再现:数形结合是解决数学问题的一种(yī zhǒnɡ)重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.例如:利用图形(túxíng)的几何意义证明完全平方公式.证明:将一个边长为a的正方形的边长增加b,形成(xíngchéng)两个矩形和两个正方形,如图1:这个图形的面积可以(kěyǐ)表示成:(a+b)2或a2+2ab+b2∴(a+b)2 =a2+2ab+b2这就验证了两数和的完全平方公式.类比解决:(1)请你类比上述方法,利用图形的几何意义证明平方差公式.(要求画出图形并写出推理过程)问题提出:如何利用图形几何意义的方法证明:13+23=32?如图2,A表示1个1×1的正方形,即:1×1×1=13B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23而A、B、C、D恰好可以拼成一个(1+2)×(1+2)的大正方形.由此可得:13+23=(1+2)2=32尝试解决:(2)请你类比上述推导过程,利用图形的几何意义确定:13+23+33=.(要求写出结论并构造图形写出推证过程).(3)问题拓广:请用上面(shàng miɑn)的表示几何图形面积的方法探究:13+23+33+…+n3=.(直接(zhíjiē)写出结论即可,不必写出解题过程)22.计算(jì suàn):(1)(﹣)﹣2+(π﹣3.14)0+(﹣2)2(2)a•a3•(﹣a2)3.23.已知,AB∥CD,点E为射线(shèxiàn)FG上一点.(1)如图1,直接(zhíjiē)写出∠EAF、∠AED、∠EDG之间的数量关系;(2)如图2,当点E在FG延长线上时,求证:∠EAF=∠AED+∠EDG;(3)如图3,AI平分∠BAE,DI交AI于点I,交AE于点K,且∠EDI:∠CDI=2:1,∠AED=20°,∠I=30°,求∠EKD的度数.参考答案与试题(shìtí)解析一、选择题1.(3分)下列说法(shuōfǎ)正确的是()A.若两个(liǎnɡ ɡè)角相等,则这两个角是对顶角B.若两个(liǎnɡ ɡè)角是对顶角,则这两个角是相等C.若两个(liǎnɡ ɡè)角不是对顶角,则这两个角不相等D.所有的对顶角相等【解答】解:根据对顶角的定义:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角;∴选项A、C错误;根据对顶角的性质:对顶角相等;∴选项D错误;故选:B.2.(3分)已知一个圆的半径为Rcm,若这个圆的半径增加2cm,则它的面积增加()A.4cm2B.(2R+4)cm2C.(4R+4)cm2D.以上都不对【解答】解:∵S2﹣S1=π(R+2)2﹣πR2,=π(R+2﹣R)(R+2+R),=4π(R+1),∴它的面积增加4π(R+1)cm2.故选:D.3.(3分)在同一平面内,a、b、c是直线,下列说法正确的是()A.若a∥b,b∥c 则 a∥c B.若a⊥b,b⊥c,则a⊥cC.若a∥b,b⊥c,则a∥c D.若a∥b,b∥c,则a⊥c【解答】解:A、∵a∥b,b∥c,∴a∥c,故本选项符合(fúhé)题意;B、在同一(tóngyī)平面内,当a⊥b,b⊥c时,a∥c,故本选项不符合(fúhé)题意;C、当a∥b,b⊥c时,a⊥c,故本选项不符合(fúhé)题意;D、当a∥b,b∥c时,a∥c,故本选项不符合(fúhé)题意;故选:A.4.(3分)下列计算正确的是()A.(a4)3=a7B.a8÷a4=a2C.(ab)3=a3b3D.(a+b)2=a2+b2【解答】解:∵(a4)3=a12,∴选项A不符合题意;∵a8÷a4=a4,∴选项B不符合题意;∵(ab)3=a3b3,∴选项C符合题意;∵(a+b)2=a2+b2+2ab,∴选项D不符合题意.故选:C.5.(3分)已知∠α与∠β互为补角,∠α=120°30′,则∠β的余角是()A.29°30′B.30°30′C.31°30′D.59°30′【解答】解:∵∠α与∠β互为补角,∠α=120°30′,∴∠β=180°﹣120°30′=59°30′,∴∠β的余角=90°﹣59°30′=30°30′.故选:B.6.(3分)下列式子正确的是()A.a2﹣4b2=(a+2b)(a﹣2b)B.(a﹣b)2=a2﹣b2C.(a+b)2=a2+b2D.(x+3y)(x﹣3y)=x2﹣3y2【解答(jiědá)】解:A、a2﹣4b2=(a+2b)(a﹣2b),故原题分解(fēnjiě)正确;B、(a﹣b)2=a2﹣2ab+b2,故原题计算错误;C、(a+b)2=a2+2ab+b2,故原题计算错误;D、(x+3y)(x﹣3y)=x2﹣9y2,故原题计算错误;故选:A.7.(3分)下列图形中,线段(xiànduàn)AD的长表示点A到直线BC距离的是()A.B.C.D.【解答(jiědá)】解:线段AD的长表示点A到直线(zhíxiàn)BC距离的是图D,故选:D.8.(3分)计算的结果是()A.﹣B.C.﹣D.【解答】解:原式=(﹣×1.5)2021×(﹣1.5)=﹣1.5=﹣,故选:A.9.(3分)在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()A.平行B.垂直C.平行或垂直D.无法(wúfǎ)确定【解答(jiědá)】解:∵l2∥l3,l3⊥l4,l4∥l5,l5⊥l6,l6∥l7,l7⊥l8,∴l2⊥l4,l4⊥l6,l6⊥l8,∴l2⊥l8.∵l1⊥l2,∴l1∥l8.故选:A.10.(3分)算式(suànshì)(2+1)×(22+1)×(24+1)×…×(232+1)+1计算结果的个位数字是()A.4 B.2 C.8 D.6【解答(jiědá)】解:原式=(2﹣1)(2+1)×(22+1)×(24+1)×…×(232+1)+1=(22﹣1)×(22+1)×(24+1)×…×(232+1)+1=(24﹣1)×(24+1)×…×(232+1)+1=(232﹣1)×(232+1)+1=264﹣1+1=264,因为(yīn wèi)21=2,22=4,23=8,24=16,25=32,所以底数为2的正整数次幂的个位数是2、4、8、6的循环,所以264的个位数是6.故选:D.二、填空题11.(3分)某学校有A、B、C三栋教学楼,B楼在A楼的正北方向上,与A 楼相距40米;C楼在A楼的东偏南30°方向上,与A楼相距80米,通过画图(用1厘米代表20米),量出B、C两楼间的距离为106米(精确到米).【解答】解:在图形上测量知B,C两楼之间的距离为106米.12.(3分)如图,已知AB∥CD,F为CD上一点(yī diǎn),∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数(dù shu)为整数,则∠C的度数(dù shu)为36°或37°.【解答(jiědá)】解:如图,过E作EG∥AB,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,设∠CEF=x,则∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x﹣60°,又∵6°<∠BAE<15°,∴6°<3x﹣60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角(wài jiǎo),∠C的度数为整数,∴∠C=60°﹣23°=37°或∠C=60°﹣24°=36°,故答案为:36°或37°.13.(3分)直线a外有一定点A,A到直线a的距离(jùlí)是5cm,P是直线a 上的任意一点,则AP≥5cm(填写(tiánxiě)<或>或=或≤或≥)【解答(jiědá)】解:根据题意,得A到直线(zhíxiàn)a的垂线段的长是5cm,由垂线(chuí xiàn)段最短,得AP≥5cm.故填:≥.14.(3分)若x2﹣16x+m2是一个完全平方式,则m=±8;若m﹣=9,则m2+=83.【解答】解:∵x2﹣16x+m2是完全平方式,∴16x=2×8•x,∴m2=82,解得m=±8;∵m﹣=9,∴(m﹣)2=m2﹣2+=81,解得m2+=81+2=83.15.(3分)若一个角是34°,则这个角的余角是56°.【解答】解:若一个角是34°,则这个角的余角是90°﹣34°=56°,故答案为:56.16.(3分)如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点为E n.若∠E n=1度,那∠BEC等于2n 度【解答(jiědá)】解:如图①,过E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠1,∠C=∠2,∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE;如图②,∵∠ABE和∠DCE的平分线交点(jiāodiǎn)为E1,∴∠CE1B=∠ABE1+∠DCE1=∠ABE+∠DCE=∠BEC.∵∠ABE1和∠DCE1的平分线交点(jiāodiǎn)为E2,∴∠BE2C=∠ABE2+∠DCE2=∠ABE1+∠DCE1=∠CE1B=∠BEC;如图②,∵∠ABE2和∠DCE2的平分线,交点(jiāodiǎn)为E3,∴∠BE3C=∠ABE3+∠DCE3=∠ABE2+∠DCE2=∠CE2B=∠BEC;…以此类推(yǐ cǐ lèi tuī),∠E n=∠BEC.∴当∠E n=1度时,∠BEC等于2n度.故答案为:2n .三、解答(jiědá)题17.在求1+2+22+23+24+25+26的值时,小明发现(fāxiàn):从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后(ránhòu)在①式的两边(liǎngbiān)都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2021(a≠0且a≠1)的值.【解答(jiědá)】解:(1)1+3+32+33+34+35+36=[(1+3+32+33+34+35+36)×3﹣(1+3+32+33+34+35+36)]÷(3﹣1)=[(3+32+33+34+35+36+37)﹣(1+3+32+33+34+35+36)]÷2=(37﹣1)÷2=2186÷2=1093;(2)1+a+a2+a3+…+a2021(a≠0且a≠1)═[(1+a+a2+a3+…+a2021)×a﹣(1+a+a2+a3+…+a2021)]÷(a﹣1)=[(a+a2+a3+…+a2021+a2021)﹣(1+a+a2+a3+…+a2021)]÷(a﹣1)=(a2021﹣1)÷(a﹣1)=.18.如图,某工程队从A点出发,沿北偏西67°方向修一条公路AD,在BD路段出现塌陷区,就改变方向,由B点沿北偏东23°的方向继续修建BC段,到达C点又改变方向,从C点继续修建CE段,若使所修路段CE∥AB,∠ECB应为多少度?试说明理由.此时CE与BC有怎样的位置关系?以下是小刚不完整的解答,请帮她补充完整.解:由已知,根据两直线平行,同位角相等得∠1=∠A=67°所以,∠CBD=23°+67°=90°;根据(gēnjù)同旁内角(tónɡ pánɡ nèi jiǎo)互补,两直线平行当∠ECB+∠CBD=180°时,可得CE∥AB.所以(suǒyǐ)∠ECB=90°此时CE与BC的位置(wèi zhi)关系为垂直(chuízhí).【解答】解:由已知,根据两直线平行,同位角相等得:∠1=∠A=67°,所以,∠CBD=23°+67°=90°,根据同旁内角互补,两直线平行,当∠ECB+∠CBD=180°时,可得CE∥AB,所以∠ECB=90°,此时CE与BC的位置关系为垂直,故答案为:两直线平行,同位角相等,90,同旁内角互补,两直线平行,180,90,垂直.19.一种电讯信号转发装置的发射直径为31km.现要求:在一边长为30km的正方形城区选择若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到预设的要求?在图1中画出安装点的示意图,并用大写字母M、N、P、Q表示安装点;(2)能否找到这样的3个安装点,使得在这些点安装了这种转发装置后能达到预设的要求?在图2中画出示意图说明,并用大写字母M、N、P表示安装点,用计算、推理和文字来说明你的理由.【解答(jiědá)】解:(1)如图1,将正方形等分成如图的四个小正方形,将这4个转发装置(zhuāngzhì)安装在这4个小正方形对角线的交点处,此时(cǐ shí),每个小正方形的对角线长为,每个转发装置都能完全覆盖一个(yī ɡè)小正方形区域,故安装(ānzhuāng)4个这种装置可以达到预设的要求;(2)(画图正确给1分)将原正方形分割成如图2中的3个矩形,使得BE=31,OD=OC.将每个装置安装在这些矩形的对角线交点处,则AE=,,∴OD=,即如此安装三个这个转发装置,也能达到预设要求.20.如图,已知两条射线(shèxiàn)OM∥CN,动线段(xiànduàn)AB的两个端点A、B分别在射线OM、CN上,且∠C=∠OAB=108°,F在线段(xiànduàn)CB 上,OB平分∠AOF,OE平分(píngfēn)∠COF.(1)请在图中找出与∠AOC相等的角,并说明(shuōmíng)理由;(2)若平行移动AB,那么∠OBC与∠OFC的度数比是否随着AB位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=2∠OBA?若存在,请求出∠OBA度数;若不存在,说明理由.【解答】解:(1)∵OM∥CN,∴∠AOC=180°﹣∠C=180°﹣108°=72°,∠ABC=180°﹣∠OAB=180°﹣108°=72°,又∵∠BAM=∠180°﹣∠OAB=180°﹣108°=72°,∴与∠AOC相等的角是∠AOC,∠ABC,∠BAM;(2)∵OM∥CN,∴∠OBC=∠AOB,∠OFC=∠AOF,∵OB平分∠AOF,∴∠AOF=2∠AOB,∴∠OFC=2∠OBC,∴∠OBC:∠OFC=;(3)设∠OBA=x,则∠OEC=2x,在△AOB中,∠AOB=180°﹣∠OAB﹣∠ABO=180°﹣x﹣108°=72°﹣x,在△OCE中,∠COE=180°﹣∠C﹣∠OEC=180°﹣108°﹣2x=72°﹣2x,∵OB平分∠AOF,OE平分∠COF,∴∠COE+∠AOB=∠COF+∠AOF=∠AOC=×72°=36°,∴72°﹣x+72°﹣2x=36°,解得x=36°,即∠OBA=36°,此时(cǐ shí),∠OEC=2×36°=72°,∠COE=72°﹣2×36°=0°,点C、E重合(chónghé),所以(suǒyǐ),不存在.21.问题(wèntí)再现:数形结合是解决数学问题的一种重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数(dàishù)公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.例如:利用图形的几何意义证明完全平方公式.证明:将一个边长为a的正方形的边长增加b,形成两个矩形和两个正方形,如图1:这个图形的面积可以表示成:(a+b)2或a2+2ab+b2∴(a+b)2 =a2+2ab+b2这就验证了两数和的完全平方公式.类比解决:(1)请你类比上述方法,利用图形的几何意义证明平方差公式.(要求画出图形并写出推理过程)问题提出:如何利用图形几何意义的方法证明:13+23=32?如图2,A表示1个1×1的正方形,即:1×1×1=13B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23而A、B、C、D恰好可以拼成一个(1+2)×(1+2)的大正方形.由此可得:13+23=(1+2)2=32尝试(chángshì)解决:(2)请你类比上述推导(tuīdǎo)过程,利用图形的几何意义确定:13+23+33= 62.(要求写出结论(jiélùn)并构造图形写出推证过程).(3)问题(wèntí)拓广:请用上面的表示几何图形面积(miàn jī)的方法探究:13+23+33+…+n3=[n (n+1)]2.(直接写出结论即可,不必写出解题过程)【解答】解:(1)∵如图,左图的阴影部分的面积是a2﹣b2,右图的阴影部分的面积是(a+b)(a﹣b),∴a2﹣b2=(a+b)(a﹣b),这就验证了平方差公式;(2)如图,A表示1个1×1的正方形,即1×1×1=13;B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23;G与H,E与F和I可以表示3个3×3的正方形,即3×3×3=33;而整个图形恰好可以拼成一个(1+2+3)×(1+2+3)的大正方形,由此可得:13+23+33=(1+2+3)2=62;故答案(dá àn)为:62;(3)由上面表示几何图形的面积(miàn jī)探究可知,13+23+33+…+n3=(1+2+3+…+n)2,又∵1+2+3+…+n=n(n+1),∴13+23+33+…+n3=[n(n+1)]2.故答案(dá àn)为:[n(n+1)]2.22.计算(jì suàn):(1)(﹣)﹣2+(π﹣3.14)0+(﹣2)2(2)a•a3•(﹣a2)3.【解答(jiědá)】解:(1)(﹣)﹣2+(π﹣3.14)0+(﹣2)2=4+1+4=9;(2)a•a3•(﹣a2)3=a•a3•(﹣a6)=﹣a10.23.已知,AB∥CD,点E为射线FG上一点.(1)如图1,直接写出∠EAF、∠AED、∠EDG之间的数量关系;(2)如图2,当点E在FG延长线上时,求证:∠EAF=∠AED+∠EDG;(3)如图3,AI平分(píngfēn)∠BAE,DI交AI于点I,交AE于点K,且∠EDI:∠CDI=2:1,∠AED=20°,∠I=30°,求∠EKD的度数(dù shu).【解答(jiědá)】解:(1)∠AED=∠EAF+∠EDG.理由(lǐyóu):如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠EAF=∠AEH,∠EDG=∠DEH,∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)证明(zhèngmíng):如图2,设CD与AE交于点H,∵AB∥CD,∴∠EAF=∠EHG,∵∠EHG是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵AI平分(píngfēn)∠BAE,∴可设∠EAI=∠BAI=α,则∠BAE=2α,∵AB∥CD,∴∠CHE=∠BAE=2α,∵∠AED=20°,∠I=30°,∠DKE=∠AKI,∴∠EDI=α+30°﹣20°=α+10°,又∵∠EDI:∠CDI=2:1,∴∠CDI=∠EDK=α+5°,∵∠CHE是△DEH的外角(wài jiǎo),∴∠CHE=∠EDH+∠DEK,即2α=α+5°+α+10°+20°,解得α=70°,∴∠EDK=70°+10°=80°,∴△DEK中,∠EKD=180°﹣80°﹣20°=80°.内容总结(1)+a2021(a≠0且a≠1)的值.【解答】解:(1)1+3+32+33+34+35+36=[(1+3+32+33+34+35+36)×3﹣(1+3+32+33+34+35+36)]÷(3﹣1)=[(3+32+33+34+35+36+37)﹣(1+3+32+33+34+35+36)]÷2=(37﹣1)÷2=2186÷2=1093。
2022-2023学年新人教版七年级下数学月考试卷(含解析)
2022-2023学年初中七年级下数学月考试卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:115 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )1. 如图,要把河中的水引到水池中,应在河岸处开始挖渠才能使水渠的长度最短,这样做的依据是 A.两点之间线段最短B.点到直线的距离C.两点确定一条直线D.垂线段最短2. 下列方程是二元一次方程的是( )A.B.C.D.3. 下列说法正确的是( )A.是的算术平方根B.是的算术平方根C.的平方根是D.的立方根是4. 在如图所示的数轴上,点是线段的中点,,两点对应的实数分别为和,则点所对A B (AB ⊥CD)()x −=2y 23x +2y =1=y +11x+5y x 2−2(−2)23−916±427±3B AC A B −13–√C应的实数是( )A.B.C.D.5. 下列判断正确的是( )A.若,则B.若,则C.若,则一定不等于D.若,且,则6. 如图,长方形中放置个形状、大小都相同的小长方形,求图中阴影部分的面积( )A.B.C.D.卷II (非选择题)二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )7. 若是二元一次方程的一组解,则________.8. 如图, , , ,那么的度数为________.1+3–√2+3–√2−13–√2+13–√|−a |<|−b |a >ba <02a <aa ≠b a 2b 2a >0(1−b)a <0b <1ABCD 985cm82cm81cm80cm{x =a y =b2x −3y −5=04a −6b =AC//BD ∠C =72∘∠ABC =70∘∠ABD9. 在平面直角坐标系中,第二象限内有一点,点到轴的距离为,到轴的距离为,则点的坐标是_______.10. 在平面直角坐标系中,将点先向右平移个单位长度,再向上平移个单位长度,则所得点的坐标是________.11. 小红同学用元钱去买方便面包,甲种方便面每包元,乙种方便面每包元,则她最多可买甲种方便面________包.12. 关于的不等式的解集为,则的取值范围是________.三、 解答题 (本题共计 11 小题 ,每题 5 分 ,共计55分 )13. 某工厂生产某种产品,每天的生产成本包括固定成本和原料及加工成本.已知该工厂正常运转的固定成本为每天元,该产品的原料及加工成本合计为每件元,每件产品的出厂价为元.该厂每天生产多少件产品,该工厂才有盈利?若该厂要求每天的生产成本不超过元,则当每天生产多少件产品时,工厂所获的利润最大,并求出最大利润.14.已知:如图所示,,,,垂足分别为点,,求证:.15. 解方程组:.16. 一个正方体木块的体积是,现将它锯成块同样大小的正方体小木块,再把这些小正方体排列成一个如图所示的长方体,求这个长方体的表面积.M M x 5y 4M (3,−2)2320350.70.5x mx >m x <1m 120009001200(1)(2)66000∠1=∠2CF ⊥AB DE ⊥AB F E FG //BC {x +y =14x +y =10125cm 3817. 在由边长为的小正方形组成的网格中建立如图所示的平面直角坐标系,三角形的顶点都在格点上.点的坐标为________;三角形的面积为________;画出将三角形先向下平移个单位长度,再向右平移个单位长度得到的三角形. 18. 填空(请补全下列证明过程及括号内的依据)已知:如图,,.求证:.证明:∵(已知),且(________________),∴(_______________),∴(________________),∴________(________________),又∵(已知),∴________ (等量代换),∴(________________),∴(________________).19. 已知方程组和方程组的解相同,求的值.20. 如图,已知,.1xOy ABC (1)A (2)ABC (3)ABC 25A 1B 1C 1∠1=∠2∠B =∠C ∠B +∠BFC =180∘∠1=∠21=∠CGD ∠2=∠CGD CE//BF ∠∠C ∠B =∠C ∠=∠B AB//CD ∠B +∠BFC =180∘{2x +5y =−26mx −ny =−4{3x −5y =36nx +my =−8(m +2n)2020∠1=∠BDC ∠2+∠3=180∘求证:;若平分,于, ,求的度数. 21. 对于有理数、,定义运算.计算的值;计算的值.22. 金鑫服装店老板到厂家选购两种型号的服装,若购进种型号服装件,种型号服装件,需要元;若购进种型号服装件,种型号服装件,需要元求, 两种型号的服装每件进价分别为多少元?若销售件型服装可获利元,销售件型服装可获利元,根据市场需求,服装店老板决定,购进型服装的数量的倍与购进型服装的数量的倍之和为件,问有几种进货方案?哪种方案获利最多? 23.如图,平分.如图,求证:;如图,点为线段上一点,连接,求证:;如图,在的条件下,在射线上取点,连接,使得,当,时,求的度数.(1)AD//CE (2)DA ∠BDC CE ⊥AE E ∠FAB =55∘∠1x y x※y =xy −2x −2y +1(1)5※7(2)[(−2)※4]※(−3)A,B A 3B 2470A 9B 101810.(1)A B (2)1A 181B 30A 7B 4100AE ∠BAC ,∠CAE =∠CEA (1)1AB//CD (2)2F AC EF ∠BAF +∠AFE +∠DEF =360∘(3)3(2)AB G EG ∠GEF =∠C ∠AEF =35∘∠GED =2∠GEF ∠C参考答案与试题解析2022-2023学年初中七年级下数学月考试卷一、 选择题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )1.【答案】D【考点】垂线段最短【解析】根据垂线段的性质:垂线段最短进行解答.【解答】解:要把河中的水引到水池中,应在河岸处开始挖渠才能使水渠的长度最短,这样做的依据是:垂线段最短.故选.2.【答案】B【考点】二元一次方程的定义【解析】根据二元一次方程的定义求解即可.【解答】解:、是二元二次方程,故不符合题意;、是二元一次方程,故符合题意;、是分式方程,故不符合题意;、是多项式,故不符合题意;故选:.3.【答案】A B (AB ⊥CD)D A A B B C C D D BC【考点】立方根的性质算术平方根平方根【解析】、根据算术平方根的定义即可判定;、根据算术平方根的定义即可判定;、根据平方根的定义即可判定;、根据立方根的定义即可判定.【解答】解:,,的算术平方根是,故选项错误;,负数没有算数平方根,故选项错误;,的平方根是,故选项正确;,的立方根是,故选项错误.故选.4.【答案】D【考点】在数轴上表示实数数轴【解析】根据线段中点的性质,可得答案.【解答】解:,设点对应的实数为,则,所以.即点对应的实数是.故选.5.【答案】BA B C D A (−2=4)242A B B C 16±4C D 273D C BC =AB =+13–√C x +1=x −3–√3–√x =2+13–√C 2+13–√D不等式的性质【解析】根据不等式的性质分别判断得出即可.【解答】解:、若,则当,为负数时,,故此选项错误;、若,则,根据负数的性质得出,此选项正确;、若,则不一定不等于,故此选项错误;、若,且,则,则,故此选项错误.故选:.6.【答案】B【考点】二元一次方程组的应用——几何问题【解析】观察图形,根据一个小长方形的长个小长方形的宽;,而个小长方形的宽,一个小长方形的个小长方形的宽,设未知数列方程组,就可求出、的值;再由长方形中放置个形状、大小都相同的小长方形,因此可得到阴影部分的面积=矩形的面积×一个小长方形的面积,然后列式计算可求解.【解答】解:设小长方形的长为,宽为,根据题意得:解之::小正方形的长为,宽为;∴阴影部分的面积=矩形的面积×一个小长方形的面积阴影部分的面积故答案为:二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )7.【答案】A |−a |<|−b |a b a <bB a <02a <aC a ≠b a 2b 2D a >0(1−b)a <01−b <0b >1B DC =22=+4AD =BC =3AD −→−+7BC =加+2x y ABCD 9ABCD −9xcm ycm {x +4y =223x +7=x +2y {x =10y =310cm 3cm ABCD −9=(7+3×3)×22−9×10×3=82cm 2B10二元一次方程的解【解析】此题暂无解析【解答】解:是的一组解,,.故答案为:.8.【答案】【考点】平行线的性质【解析】根据两直线平行,同旁内角互补,以及角的和差关系即可解答.【解答】解:∵ ,,∴,∵ ,∴ .故答案为:.9.【答案】【考点】点的坐标【解析】根据第四象限内点的横坐标是正数,纵坐标是负数以及点到轴的距离等于纵坐标的长度,到轴的距离等于横坐标的长度解答.【解答】∵{x =a y =b2x −3y −5=0∴2a −3b =5∴4a −6b =2×(2a −3b)=2×5=101038∘AC//BD ∠C =72∘∠DBC =−=180∘72∘108∘∠ABC =70∘∠ABD =−=108∘70∘38∘38∘(−4,5)x y解:∵第二象限的点到轴的距离是,到轴的距离是,∴点的横坐标是,纵坐标是,∴点的坐标为.故答案为:.10.【答案】【考点】坐标与图形变化-平移【解析】直接利用平移的性质得出平移后点的坐标即可.【解答】∵将点先向右平移个单位长度,∴得到,∵再向上平移个单位长度,∴所得点的坐标是:.11.【答案】【考点】一元一次不等式的实际应用【解析】此题暂无解析【解答】解:设可购买甲种方便面包,则可购买乙种方便面包,根据题意得:,解得:.∵为整数,∴的最大值为,即小红最多可买甲种方便面包.故答案为:.12.【答案】【考点】M x 5y 4M −45M (−4,5)(−4,5)(5,1)(3,−2)2(5,−2)3(5,1)12x (35−x)0.7x +0.5(35−x)≤20x ≤12.5x x 121212m <0不等式的解集解一元一次不等式【解析】根据不等式的性质分析即可解答.【解答】解:.当时,不等式的解集为;当时,不等式的解集为.∵该不等式的解集为,∴.故答案为:.三、 解答题 (本题共计 11 小题 ,每题 5 分 ,共计55分 )13.【答案】解:设每天的生产总成本为元,每天的生产量为件,由题意得,∴,解得,∵为整数,∴每天生产超过件,该工厂才有盈利.依题意,,解得,当,取得最大利润为(元),∴当每天生产件产品时,工厂所获的利润最大,最大利润为元.【考点】解一元一次不等式根据实际问题列一次函数关系式一次函数的应用【解析】设每天的生产成本为元(包括固定成本与原料成本),每天的生产量为件,由题意,得,依题意,,解得方程即可得出结果;依题意,解得不等式,利用利润公式,进而得出结果.【解答】解:设每天的生产总成本为元,每天的生产量为件,由题意得,∴,mx >m m >0x >1m <0x <1x <1m <0m <0(1)y x y =900x +12000900x +12000<1200x x >40x 40(2)y =900x +12000≤66000x ≤60x =601200×60−(900×60+12000)=6000606000(1)y x y =900x +12000900x +12000<1200x (2)y =900x +12000≤66000,(1)y x y =900x +12000900x +12000<1200x解得,∵为整数,∴每天生产超过件,该工厂才有盈利.依题意,,解得,当,取得最大利润为(元),∴当每天生产件产品时,工厂所获的利润最大,最大利润为元.14.【答案】证明:,(已知) ,(垂直的定义),(同位角相等,两直线平行),(两直线平行,同位角相等).又(已知),(等量代换),(内错角相等,两直线平行).【考点】平行线的判定与性质【解析】因为,,所以,则,,又因为,所以,故可由内错角相等两直线平行判定.【解答】证明:,(已知) ,(垂直的定义),(同位角相等,两直线平行),(两直线平行,同位角相等).又(已知),(等量代换),(内错角相等,两直线平行).15.【答案】【考点】加减消元法解二元一次方程组代入消元法解二元一次方程组【解析】此题暂无解析x >40x 40(2)y =900x +12000≤66000x ≤60x =601200×60−(900×60+12000)=6000606000∵CF ⊥AB DE ⊥AB ∴∠BED =∠BFC =90∘∴DE //FC ∴∠1=∠BCF ∵∠1=∠2∴∠2=∠BCF ∴FG //BC CF ⊥AB DE ⊥AB ∠BED =∠BFC ED //FC ∠1=∠BCF ∠2=∠1∠2=∠BCF FG //BC ∵CF ⊥AB DE ⊥AB ∴∠BED =∠BFC =90∘∴DE //FC ∴∠1=∠BCF ∵∠1=∠2∴∠2=∠BCF ∴FG //BC【解答】此题暂无解答16.【答案】解:重新拼合后的物体,体积不变,设小正方体的棱长为.则,,解得,∴小正方体的棱长是,长方体的长是,宽是,高是,长方体的表面积是.答:这个长方体的表面积是.【考点】由三视图确定几何体的体积或面积几何体的表面积立方根的实际应用【解析】根据开方运算,可得大正方体的棱长,根据分割成个小正方体,可得小正方体的棱长,根据小正方体的组合,可得长方体的长、宽、高,根据长方体的表面积公式,可得答案.【解答】解:重新拼合后的物体,体积不变,设小正方体的棱长为.则,,解得,∴小正方体的棱长是,长方体的长是,宽是,高是,长方体的表面积是.答:这个长方体的表面积是.17.【答案】xcm 8=125x 3=x 31258x =52cm 5210cm cm 525cm (10×+10×5+×5)×2=1755252cm 2175cm 28xcm 8=125x 3=x 31258x =52cm 5210cm cm 525cm (10×+10×5+×5)×2=1755252cm 2175cm 2(−4,2)5.5(3)△A B C如图所示,即为所求.【考点】点的坐标三角形的面积作图-平移变换【解析】直接利用平面直角坐标系得出点坐标;利用的所在矩形面积减去多于三角形面积进而得出答案.直接利用平移的性质得出对应点位置进而画出图形,得出答案.【解答】解:由图可知,点的坐标为.故答案为:.的面积为:.故答案为:.如图所示,即为所求.18.【答案】证明:∵(已知),且(对顶角相等),∴(等量代换),∴(同位角相等,两直线平行),∴(两直线平行,同位角相等),(3)△A 1B 1C 1(1)A (2)ΔABC (3)(1)A (−4,2)(−4,2)(2)△ABC 3×4−×1×3−12×2×3−×1×4=5.512125.5(3)△A 1B 1C 1∠1=∠2∠1=∠CGD ∠2=∠CGD CE//BF ∠BFD =∠C ∠B =∠C又∵已知),∴(等量代换),∴(内错角相等,两直线平行),∴(两直线平行,同旁内角互补).【考点】平行线的判定与性质【解析】由已知条件和对顶角相等可先证明,再结合平行线的性质和条件可得,可证明,则可得到结论.【解答】证明:∵(已知),且(对顶角相等),∴(等量代换),∴(同位角相等,两直线平行),∴(两直线平行,同位角相等),又∵已知),∴(等量代换),∴(内错角相等,两直线平行),∴(两直线平行,同旁内角互补).19.【答案】解:方程组和方程组的解相同,两方程组的解也是方程组的解,解方程组得:分别把代入和中,得:.【考点】同解方程组有理数的乘方【解析】利用二元一次方程组的解的定义得到两个方程组的解也是方程组的解,再解方程∠B =∠C ∠BFD =∠B AB//CD ∠B +∠BFC =180∘CE//BF ∠BFD =∠C AB//CD ∠1=∠2∠1=∠CGD ∠2=∠CGD CE//BF ∠BFD =∠C ∠B =∠C ∠BFD =∠B AB//CD ∠B +∠BFC =180∘∵{2x +5y =−26,mx −ny =−4,{3x −5y =36,nx +my =−8,∴{2x +5y =−26,3x −5y =36,{2x +5y =−26,3x −5y =36,{x =2,y =−6,x =2,y =−6mx −ny =−4nx +my =−8{m =1,n =−1,∴(m +2n ==1)2020(−1)2020{2x +5y =−263x −5y =36组得到,接着分别把代入和中,得到关于、的方程组方程组,然后解此方程组得到、的值,最后代入计算即可.【解答】解:方程组和方程组的解相同,两方程组的解也是方程组的解,解方程组得:分别把代入和中,得:.20.【答案】证明:∵,∴.∴.∵,∴,∴.解:∵于,∴.∵∴.∴.∵平分,∴.【考点】平行线的判定与性质垂线角平分线的定义平行线的性质{2x +5y =−263x −5y =36{x =2y =−6x =2,y =−6mx −ny =−4nx +my =−8m n {2m +6n =−42n −6m =−8m n (m +2n)2020∵{2x +5y =−26,mx −ny =−4,{3x −5y =36,nx +my =−8,∴{2x +5y =−26,3x −5y =36,{2x +5y =−26,3x −5y =36,{x =2,y =−6,x =2,y =−6mx −ny =−4nx +my =−8{m =1,n =−1,∴(m +2n ==1)2020(−1)2020(1)∠1=∠BDC AB//CD ∠2=∠ADC ∠2+∠3=180∘∠ADC +∠3=180∘AD//CE (2)CE ⊥AE E ∠CEF =90∘AD//CE∠DAF =∠CEF =90∘∠ADC =∠2=∠DAF −∠FAB =35∘DA ∠BDC ∠1=∠BDC =2∠ADC =70∘【解析】【解答】证明:∵,∴.∴.∵,∴,∴.解:∵于,∴.∵∴.∴.∵平分,∴.21.【答案】解:..【考点】定义新符号有理数的混合运算【解析】本题考查定义答题,有理数混合运算.根据符号的定义,先将转化成有理数的运算,再根据地有理数混合运算法则计算即可.本题考查符号新定义,有理数混合运算.先按符号新定义把括号内的转化成有理数混合运算并计算出结果,再按符号新定义转化成有理数的混合运算,计算出结果即可.【解答】解:.(1)∠1=∠BDC AB//CD ∠2=∠ADC ∠2+∠3=180∘∠ADC +∠3=180∘AD//CE (2)CE ⊥AE E ∠CEF =90∘AD//CE∠DAF =∠CEF =90∘∠ADC =∠2=∠DAF −∠FAB =35∘DA ∠BDC ∠1=∠BDC =2∠ADC =70∘(1)5※7=5×7−2×5−2×7+1=35−10−14+1=12(2)[(−2)※4]※(−3)=[(−2)×4−2×(−2)−2×4+1]※(−3)=(−8+4−8+1)※(−3)=(−11)※(−3)=−11×(−3)−2×(−11)−2×(−3)+1=33+22+6+1=62※5※7(1)5※7=5×7−2×5−2×7+1=35−10−14+1=12(2)[(−2)※4]※(−3)=[(−2)×4−2×(−2)−2×4+1]※(−3).22.【答案】解:设, 两型号服装进价分别为元/件,元/件列方程得:得答:,两种型号的服装每件进价分别为元和元.设老板购进, 两型号服装数量分别为件,件.列方程得:,可得所以有三种方案:第一种型号件,型号件,可获利 (元);第二种型号件,型号件,可获利 (元);第三种型号件,型号件,可获利 (元);.答:有三种进货方案,第一种方案获利最多.【考点】二元一次方程组的应用——销售问题二元一次方程的解【解析】此题暂无解析【解答】解:设, 两型号服装进价分别为元/件,元/件列方程得:得答:,两种型号的服装每件进价分别为元和元.设老板购进, 两型号服装数量分别为件,件.列方程得:,可得所以有三种方案:第一种型号件,型号件,可获利 (元);第二种型号件,型号件,可获利 (元);第三种型号件,型号件,可获利 (元);.答:有三种进货方案,第一种方案获利最多.=[(−2)×4−2×(−2)−2×4+1]※(−3)=(−8+4−8+1)※(−3)=(−11)※(−3)=−11×(−3)−2×(−11)−2×(−3)+1=33+22+6+1=62(1)A B x y .{3x +2y =470,9x +10y =1810,{x =90,y =100,A B 90100(2)A B x y 7x +4y =100{x =4或8或12,y =18或11或4,A 4B 184×18+18×30=612A 8B 118×18+11×30=474A 12B 412×18+4×30=336612>474>336(1)A B x y .{3x +2y =470,9x +10y =1810,{x =90,y =100,A B 90100(2)A B x y 7x +4y =100{x =4或8或12,y =18或11或4,A 4B 184×18+18×30=612A 8B 118×18+11×30=474A 12B 412×18+4×30=336612>474>33623.【答案】证明:∵平分,∴∵ ,∴,∴ .证明:过点作,如图,∵,∴,∴,∴,即解:设.∵,∴∵,∴,∴,∵平分,∴,由知,,∴.∵,∴,解得,即.【考点】角平分线的定义平行线的判定与性质角的计算【解析】此题暂无解析【解答】证明:∵平分,∴∵ ,∴,∴ .证明:过点作,如图,(1)AE ∠BAC ∠BAE =∠CAE.∠CAE =∠CEA ∠CEA =∠BAE AB//CD (2)F FM//AB AB//CD AB//FM//CD ∠BAF +∠AFM =,∠DEF +∠EFM =180∘180∘∠BAF +∠AFM +∠DEF +∠EFM =360∘∠BAF +∠AFE +∠DEF =.360∘(3)∠GEF =∠C =x ∘∠GEF =∠C ,∠GED =2∠GEF ∠GED =2.x ∘AB//CD ∠C +∠BAC =180∘∠BAC =−180∘x ∘AE ∠BAC ∠BAE =∠BAC =(−)=−1212180∘x ∘90∘12x ∘(1)AB//CD ∠BAE +∠AED =180∘∠AEF =35∘90−x +x −35+2x =18012x =50∠C =50∘(1)AE ∠BAC ∠BAE =∠CAE.∠CAE =∠CEA ∠CEA =∠BAE AB//CD (2)F FM//AB∵,∴,∴,∴,即解:设.∵,∴∵,∴,∴,∵平分,∴,由知,,∴.∵,∴,解得,即.AB//CD AB//FM//CD ∠BAF +∠AFM =,∠DEF +∠EFM =180∘180∘∠BAF +∠AFM +∠DEF +∠EFM =360∘∠BAF +∠AFE +∠DEF =.360∘(3)∠GEF =∠C =x ∘∠GEF =∠C ,∠GED =2∠GEF ∠GED =2.x ∘AB//CD ∠C +∠BAC =180∘∠BAC =−180∘x ∘AE ∠BAC ∠BAE =∠BAC =(−)=−1212180∘x ∘90∘12x ∘(1)AB//CD ∠BAE +∠AED =180∘∠AEF =35∘90−x +x −35+2x =18012x =50∠C =50∘。
人教版七年级数学第二学期 第二次月考测试卷含答案
人教版七年级数学第二学期 第二次月考测试卷含答案一、选择题1.设记号*表示求,a b 算术平均数的运算,即*2a b a b +=,那么下列等式中对于任意实数,,a b c 都成立的是( )①()()()**a b c a b a c +=++;②()()**a b c a b c +=+;③()()()**a b c a b a c +=++;④()()**22a a b c b c +=+ A .①②③ B .①②④ C .①③④D .②④ 2.规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222÷÷,(3)(3)(3)(3)-÷-÷-÷-等,类比有理数的乘方,我们把222÷÷记作2③,读作“2的圈3次方”,把(3)(3)(3)(3)-÷-÷-÷-记作(3)-④,读作“3-的圈4次方”,一般地,把(0)a a a a a a ÷÷÷÷÷≠记作a ⓒ,读作“a 的圈c 次方”,关于除方,下列说法错误的是( ) A .任何非零数的圈2次方都等于1B .对于任何正整数a ,21()aa =④ C .3=4④④D .负数的圈奇次方结果是负数,负数的圈偶次方结果是正数.3.现定义一种新运算:a ★b=ab+a-b ,如:1★3=1×3+1-3=1,那么(-2)★5的值为( ) A .17 B .3 C .13 D .-174.25的算术平方根是( )A .5±B .5C .52±D .55.等边△ABC 在数轴上的位置如图所示,点A 、C 对应的数分别为0和-1,若△ABC 绕顶点沿顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为1,则连续翻转2019次后,则数2019对应的点为( )A .点AB .点BC .点CD .这题我真的不会 6.下列数中π、22733343 3.1416,3.2121121112…(每两个2之间多一个1),0.3中,无理数的个数是( ) A .1个B .2个C .3个D .4个 7.下列各组数中,互为相反数的是( )A .2-与12-B .|2|-与2C .2(2)-与38-D .38-与38- 8.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a b c ++就是完全对称式(代数式中a 换成b ,b 换成a ,代数式保持不变).下列三个代数式:①2()a b -;②ab bc ca ++;③222a b b c c a ++.其中是完全对称式的是( ) A .①② B .①③ C .②③ D .①②③9.如图,数轴上O 、A 、B 、C 四点,若数轴上有一点M ,点M 所表示的数为m ,且5m m c -=-,则关于M 点的位置,下列叙述正确的是( )A .在A 点左侧B .在线段AC 上 C .在线段OC 上D .在线段OB 上10.估算231﹣的值是在哪两个整数之间( ) A .0和1 B .1和2 C .2和3D .3和4 二、填空题11.一个正数的平方根是21x -和2x -,则x 的值为_______.12.对于这样的等式:若(x +1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5的值为_____.13.某校数学课外小组利用数轴为学校门口的一条马路设计植树方案如下:第k 棵树种植在点k x 处,其中11x =,当2k ≥时,112()()55k k k k x x T T ---=+-,()T a 表示非负实数a 的整数部分,例如(26)2T .=,(02)0T .=. 按此方案,第6棵树种植点6x 为________;第2011棵树种植点2011x ________.14.a※b 是新规定的这样一种运算法则:a※b=a+2b,例如3※(﹣2)=3+2×(﹣2)=﹣1.若(﹣2)※x=2+x,则x 的值是_____.15.3是______的立方根;81的平方根是________;32-=__________.16.对于实数a ,我们规定:用符号[]a 表示不大于[]a 的最大整数,称为a 的根整数,例如:,如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次: 10]33]1=→=这时候结果为1.则只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是__________.17.已知实数x 的两个平方根分别为2a +1和3-4a ,实数y 的立方根为-a 2x y +的值为______.1846________.19.已知a 、b 为两个连续的整数,且a 19b ,则a +b =_____.20.若x ,y 为实数,且|2|0x +=,则(x+y) 2012的值为____________.三、解答题21.定义:对任意一个两位数a ,如果a 满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“奇异数”.将一个“奇异数”的个位数字与十位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与11的商记为()f a例如:19=a ,对调个位数字与十位数字后得到新两位数是91,新两位数与原两位数的和为9119110+=,和与11的商为1101110÷=,所以()1910f =根据以上定义,完成下列问题:(1)填空:①下列两位数:10,21,33中,“奇异数”有 .②计算:()15f = .()10f m n += .(2)如果一个“奇异数”b 的十位数字是k ,个位数字是21k -,且()8f b =请求出这个“奇异数”b(3)如果一个“奇异数”a 的十位数字是x ,个位数字是y ,且满足()510a f a -=,请直接写出满足条件的a 的值.22.观察下列计算过程,猜想立方根.13=1 23=8 33=27 43=64 53=125 63=216 73=343 83=512 93=729(1)小明是这样试求出19683的立方根的.先估计19683的立方根的个位数,猜想它的个位数为 ,又由203<19000<303,猜想19683的立方根十位数为 ,验证得19683的立方根是(2)请你根据(1)中小明的方法,猜想 ; .请选择其中一个立方根写出猜想、验证过程。
2022-2023学年新人教版七年级下数学月考试卷(含解析)
2022-2023学年初中七年级下数学月考试卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:120 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 12 小题 ,每题 5 分 ,共计60分 )1. 若方程(a −3)x +3y |a|−2=1是关于x 、y 的二元一次方程,则a 的值为( )A.−3B.±2C.±3D.32. 若a >0,则点P(−a,2)位于( )A.第四象限B.第三象限C.第二象限D.第一象限3. 若a >b ,则下列不等式变形正确的是( )A.a +5<b +5B.−a3<−b3C.−4a >−4bD.3a −2≤3b −24. 如图,在下列条件中,能判定直线a 与b 平行的是( )A. ∠1=∠2B.∠1=∠3C.∠2=∠3D.∠2=∠45. 下列各数:−2,0,227,0.020020002⋯,π,3√−8,其中无理数的个数是( )A.4B.3(a −3)x+3=1y |a|−2x y a −3±2±33a >0P(−a,2)a >b a +5<b +5−<−a 3b3−4a >−4b3a −2≤3b −2a b ∠1=∠2∠1=∠3∠2=∠3∠2=∠4−202270.020020002⋯π−8−−−√343C.2D.1 6.如图,将“笑脸”图标向右平移4个单位,再向下平移2个单位,点P 的对应点P ′的坐标是 ( )A.(−1,6)B.(−9,6)C.(−1,2)D.(−9,2)7. 将一块含45∘角的直角三角尺ABC 按照如图所示的方式放置,点C 落在直线a 上,点B 落在直线b 上,a//b ,∠1=25∘,则∠2的度数是( )A.15∘B.20∘C.25∘D.30∘8. 下列说法:①平面内过一点有且只有一条直线和已知直线垂直;②垂线段最短;③平行于同一条直线的两条直线也互相平行;④同位角相等.其中正确的个数有( )A.1个B.2个C.3个D.4个9. 请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”若诗句中谈到的鸦为x 只,树为y 棵,则可列出方程组为( )A.B.C.32142PD.10. 如图所示,在平面直角坐标系中,平行四边形ABCD的顶点A,D的坐标分别是(0,0),(2,3),AB=5,则顶点C的坐标是( )A.(3,7)B.(5,3)C.(7,3)D.(8,2)11. 如图,已知直线AB//CD,BE平分∠ABC,交CD于点D,∠C=120∘,则∠CDE的度数为()A.120∘B.140∘C.150∘D.160∘12. 如图,平面直角坐标系中,△OA1B1是边长为2的等边三角形.作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此下去,则△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是( )A.(4n−1,√3)B.(2n−1,√3)C.(4n+1,√3)D.(2n+1,√3)卷II(非选择题)二、填空题(本题共计 6 小题,每题 5 分,共计30分)13. 一次智力测验,有20道选择题则小明至少答对的题数是________.14. 比大小:√5−16________13.15. 下列描述,能够确定一个点的位置的是________.①国家大剧院第三排②北偏东30∘③东经115∘,北纬35.5∘④北京市西南16. 我们定义||=ad−bc,例如||=2×5−3×4=−2.依据定义有||=________;若||=x+10,则x=________.17. 如图,∠1=∠2,∠4=58∘,则∠3=________.18. 已知{x=1,y=2,是方程3x+ay=2的解,则a=________.三、解答题(本题共计 6 小题,每题 5 分,共计30分)19.(1)计算:√(−2)2+|1−√2|−√8;(2)计算:2√12×√34+√24÷√6.20. 计算:{y=2x+1,3x+2y=16.21. 已知△ABC在平面直角坐标系中的位置如图所示.将△ABC向右平移6个单位长度,再向下平移6个单位长度得到△A1B1C1.(图中每个小方格边长均为1个单位长度).(1)在图中画出平移后的△A1B1C1;直接写出A1坐标.A1________;(2)求出△ABC的面积.22.已知:如图,AB//CD,∠B=∠D,AF,CE分别是∠BAD,∠BCD的平分线.(1)求证:∠BAD=∠BCD.(2)求证:AF//EC.23. 亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作.某大学计划组织本校全体志愿者统一乘车去会场,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?24. 如图,AB=AC=AD,(1)若∠C=2∠D,线段AD,BC有什么位置关系,证明你的结论;(2)在(1)的条件下;若AE⊥BC于点E, AB=5,BE=3,求△ABD的面积.参考答案与试题解析2022-2023学年初中七年级下数学月考试卷一、 选择题 (本题共计 12 小题 ,每题 5 分 ,共计60分 )1.【答案】A【考点】二元一次方程的定义【解析】依据二元一次方程的定义可得到a −3≠0,|a|−2=1,从而可确定出a 的值.【解答】解:∵(a −3)x +3y |a|−2=1是关于x 、y 的二元一次方程,∴a −3≠0,|a|−2=1.解得:a =−3.故选A.2.【答案】C【考点】点的坐标象限中点的坐标【解析】首先根据a >0,确定−a 的取值范围,再根据每个象限坐标符号的特点判断即可.【解答】解: a >0,∵a <0,∴点P(−a,2)在第二象限.故答案为:C .3.【答案】B【考点】不等式的性质【解析】根据不等式的性质逐项判定即可【解答】解:A,在不等式a>b的两边同时加上5,不等式仍成立,即a+5>b+5.故A选项错误;B,在不等式a>b的两边同时除以3,不等式仍成立,再同时乘−1,不等式符号改变,即−a3<−b3.故B选项正确;C,在不等式a>b的两边同时乘以−4,不等号方向改变,即−4a<−4b.故C选项错误;D,在不等式a>b的两边同时乘以3,再减去2,不等式仍成立,即3a−2>3b−2,故D选项错误.故选B.4.【答案】B【考点】平行线的判定【解析】此题暂无解析【解答】解:根据两条直线被一条直线所截,内错角相等,两直线平行可知B选项正确.故选B.5.【答案】C【考点】无理数的识别【解析】此题暂无解析【解答】此题暂无解答6.【答案】C【考点】平移的性质【解析】【解答】解:根据平移规律:横坐标,右移加,左移减;纵坐标,加,减.由题意P(−5,4),向右平移4个单位,再向下平移2个单位,点P的对应点P′的坐标是(−1,2),故选C.7.【答案】B【解析】利用两直线平行,同旁内角互补进行求解即可.【解答】解:如图:∵a//b,∴∠FBC+∠ECB=180∘,∴∠1+90∘+∠2+45∘=180∘,又∵∠1=25∘,∴∠2=20∘.故选B.8.【答案】C【考点】同位角、内错角、同旁内角平行公理及推论垂线段最短垂线【解析】据垂线的性质可判断①正确②错误;根据平行公理,可判断③错误;根据平行线的性质可判断④错误;即可得出结论.【解答】解::①平面内过一点有且只有一条直线和已知直线垂直;故①正确;②垂线段最短;故②正确;③平行于同一条直线的两条直线也互相平行;故③正确;④两直线平行,同位角相等,故④错误.故选C.9.【答案】D【考点】由实际问题抽象出二元一次方程组【解析】此题暂无解析10.【答案】C【考点】平行四边形的性质坐标与图形性质【解析】根据题意画出图形,进而得出C点横纵坐标得出答案即可.【解答】解:如图所示:∵▱ABCD的顶点A(0,0),D(2,3),AB=5,∴CD=AB=5,C点纵坐标与D点纵坐标相同,∴C点的横坐标=5+2=7,∴顶点C的坐标是:(7,3).故选C.11.【答案】C【考点】角平分线的定义平行线的判定与性质【解析】由题可得∠ABD=∠BDC,∠ABC+∠C=180∘,即可得到∠ABC=60∘,根据BE平分∠ABC,可得∠ABD=∠ABC2=30∘,则∠BDC=30∘,即可得解∠CDE=180∘−∠CBD.【解答】解:∵AB//CD,∴∠ABD=∠BDC,∠ABC+∠C=180∘,∴∠ABC=180∘−∠C=180∘−120∘=60∘,∵BE平分∠ABC,∴∠ABD=∠ABC2=30∘,∴∠BDC=30∘,∴∠CDE=180∘−∠CBD=180∘−30∘=150∘.故选C.12.C【考点】中心对称坐标与图形性质规律型:点的坐标【解析】首先根据△OA1B1是边长为2的等边三角形,可得A1的坐标为(1,√3),B1的坐标为(2,0);然后根据中心对称的性质,分别求出点A2、A3、A4的坐标各是多少;最后总结出A n的坐标的规律,求出A2n+1的坐标是多少即可.【解答】解:∵△OA1B1是边长为2的等边三角形,∴A1的坐标为(1,√3),B1的坐标为(2,0).∵△B2A2B1与△OA1B1关于点B1成中心对称,∴点A2与点A1关于点B1成中心对称.∵2×2−1=3,2×0−√3=−√3,∴点A2的坐标是(3,−√3).∵△B2A3B3与△B2A2B1关于点B2成中心对称,∴点A3与点A2关于点B2成中心对称.∵2×4−3=5,2×0−(−√3)=√3,∴点A3的坐标是(5,√3).∵△B3A4B4与△B3A3B2关于点B3成中心对称,∴点A4与点A3关于点B3成中心对称.∵2×6−5=7,2×0−√3=−√3,∴点A4的坐标是(7,−√3),…,∵1=2×1−1,3=2×2−1,5=2×3−1,7=2×4−1,…,∴A n的横坐标是2n−1,A2n+1的横坐标是2(2n+1)−1=4n+1.∵当n为奇数时,A n的纵坐标是√3,当n为偶数时,A n的纵坐标是−√3,∴顶点A2n+1的纵坐标是√3,∴△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是(4n+1,√3).故选C.二、填空题(本题共计 6 小题,每题 5 分,共计30分)13.【答案】15【考点】一元一次不等式的实际应用【解析】设小明答对的题数是x道,则答错或没答的为(20−x)道,根据总分才不会低于60分,这个不等量关系可列出不等式求解.【解答】设小明答对的题数是x道,则答错或没答的为(20−x)道,根据题意可得:5x−2(20−x)≥60,解得:x≥1427,∵x为整数,∴x的最小值为15.14.【答案】<【考点】实数大小比较【解析】由于两个实数的分母不相同,先化成同分母分数,再比较分子的大小即可求解此题主要考查了实数的大小的比较,在比较分数的时候,如果是分母相同的分数,比较分子的大小即可.【解答】解:∵2<√5<3,∴√5−1<2,√5−16<26,∴√5−16<13.∴故答案为:<.15.【答案】③【考点】位置的确定点的坐标【解析】根据点的坐标的定义,确定一个位置需要两个数据对各选项分析判断利用排除法求解.【解答】解:①国家大剧院第三排,不能够确定一个点的位置,故本说法错误;②北偏东30∘,不能够确定一个点的位置,故本说法错误;③东经115∘,北纬35.5∘,能够确定一个点的位置,故本说法正确;④北京市西南,不能够确定一个点的位置,故本说法错误.故答案为:③.16.【答案】1,或−10【考点】有理数的混合运算整式的混合运算【解析】原式利用题中的新定义计算即可求出值.【解答】根据题中的新定义得:||=(−1)×(−3)−1×2=3−2=1;已知等式||=x +10,化简得:2x 2+20x =x +10,即2x 2+19x −10=0,分解因式得:(2x −1)(x +10)=0,解得:x =或x =−10.17.【答案】58∘【考点】平行线的判定与性质【解析】由内错角相等,两直线平行得出a//b ,再由两直线平行,内错角相等得出∠3=∠4=58∘即可.【解答】解:∵∠1=∠2,∴a//b ,∴∠3=∠4=58∘.故答案为:58∘.18.【答案】−12【考点】二元一次方程的解【解析】把x 与y 的值代入方程计算即可求出a 的值.【解答】解:把{x =1,y =2,代入方程得:3+2a =2,解得:a=−12,故答案为:−12.三、解答题(本题共计 6 小题,每题 5 分,共计30分)19.【答案】解:(1)原式=2+√2−1−2√2=1−√2 .(2)原式=2×14×√12×3+√24÷6=3+2=5.【考点】绝对值二次根式的混合运算【解析】此题暂无解析【解答】解:(1)原式=2+√2−1−2√2=1−√2 .(2)原式=2×14×√12×3+√24÷6=3+2=5.20.【答案】解:二元一次方程组{y=2x+1①,3x+2y=16②,把①代入②得,3x+2(2x+1)=16,解得,x=2,把x=2代入①,可得y=5,故方程组的解为{x=2,y=5.【考点】代入消元法解二元一次方程组【解析】利用代入消元法解答即可.【解答】解:二元一次方程组{y=2x+1①,3x+2y=16②,把①代入②得,3x+2(2x+1)=16,解得,x=2,把x=2代入①,可得y=5,故方程组的解为{x=2,y=5.21.【答案】解:(1)如图所示:△A1B1C1,即为所求;由图知A1(4,−2).(2)△ABC的面积为:3×3−12×1×3−12×1×2−12×2×3=3.5.【考点】作图-平移变换点的坐标三角形的面积【解析】(1)直接利用平移的性质得出A,B,C平移后对应点位置.利用ΔABC所在矩形面积减去周围三角形面积即可得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;由图知A1(4,−2).(2)△ABC的面积为:3×3−12×1×3−12×1×2−12×2×3=3.5.22.【答案】证明:(1)由已知,∠B=∠D,因为AB//CD,所以∠B+∠BCD=180∘(两直线平行,同旁内角互补),∠D+∠BAD=180∘(两直线平行,同旁内角互补),所以∠BAD=∠BCD.(2)由(1)知,∠BAD=∠BCD,∴∠B+∠BAD=180∘,∴AD//BC(同旁内角互补,两直线平行),∴∠BCE=∠DEC(两直线平行,内错角相等),又∵AF,CE分别是∠BAD,∠BCD的平分线,∴∠EAF=∠BCE,∴∠EAF=∠DEC,∴AF//EC(同位角相等,两直线平行).【考点】平行线的性质平行线的判定【解析】此题暂无解析【解答】证明:(1)由已知,∠B=∠D,因为AB//CD,所以∠B+∠BCD=180∘(两直线平行,同旁内角互补),∠D+∠BAD=180∘(两直线平行,同旁内角互补),所以∠BAD=∠BCD.(2)由(1)知,∠BAD=∠BCD,∴∠B+∠BAD=180∘,∴AD//BC(同旁内角互补,两直线平行),∴∠BCE=∠DEC(两直线平行,内错角相等),又∵AF,CE分别是∠BAD,∠BCD的平分线,∴∠EAF=∠BCE,∴∠EAF=∠DEC,∴AF//EC(同位角相等,两直线平行).23.【答案】解:(1)设计划调配36座新能源客车x辆,该大学共有y名志愿者,则需调配22座新能源客车(x+4)辆,依题意,得:{36x+2=y,22(x+4)−2=y,解得:{x=6,y=218.答:计划调配36座新能源客车6辆,该大学共有218名志愿者.(2)设需调配36座客车m辆,22座客车n辆,依题意,得:36m+22n=218,∴n=109−18m11.又∵m,n均为正整数,∴{m=3,n=5.答:需调配36座客车3辆,22座客车5辆.【考点】二元一次方程组的应用——产品配套问题由实际问题抽象出二元一次方程【解析】(1)设计划调配36座新能源客车x辆,该大学共有y名志愿者,则需调配22座新能源客车(x+4)辆,根据志愿者人数=36×调配36座客车的数量+2及志愿者人数=22×调配22座客车的数量−2,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设需调配36座客车m辆,22座客车n辆,根据志愿者人数=36×调配36座客车的数量+22×调配22座客车的数量,即可得出关于m,n的二元一次方程,结合m,n均为正整数即可求出结论.【解答】解:(1)设计划调配36座新能源客车x辆,该大学共有y名志愿者,则需调配22座新能源客车(x+4)辆,依题意,得:{36x+2=y,22(x+4)−2=y,解得:{x=6,y=218.答:计划调配36座新能源客车6辆,该大学共有218名志愿者.(2)设需调配36座客车m辆,22座客车n辆,依题意,得:36m+22n=218,∴n=109−18m11.又∵m,n均为正整数,∴{m=3,n=5.答:需调配36座客车3辆,22座客车5辆.24.【答案】解:(1)AD//BC.理由如下:设∠D=x,则∠C=2∠D=2x,∵AB=AC,∴∠ABC=∠C=2x,∵AB=AD,∴∠ABD=∠D=x,∠DBC=∠ABC−∠ABD=2x−x=x,∠D=∠DBC=x,∴AD//BC.(2)在RtABE中,由勾股定理得:AE=√AB2−BE2=√52−32=4,S△ABD=12⋅AD⋅AE=12⋅AB⋅AE=12×5×4=10.∴△ABD的面积是10.【考点】三角形的面积勾股定理等腰三角形的性质平行线的判定【解析】此题暂无解析【解答】解:(1)AD//BC.理由如下:设∠D=x,则∠C=2∠D=2x,∵AB=AC,∴∠ABC=∠C=2x,∵AB=AD,∴∠ABD=∠D=x,∠DBC=∠ABC−∠ABD=2x−x=x,∠D=∠DBC=x,∴AD//BC.(2)在RtABE中,由勾股定理得:AE=√AB2−BE2=√52−32=4,S△ABD=12⋅AD⋅AE=12⋅AB⋅AE=12×5×4=10.∴△ABD的面积是10.。
2022-2023学年全国初中七年级下数学新人教版月考试卷(含解析)
2022-2023学年全国七年级下数学月考试卷考试总分:85 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 若,,且,那么的值为 A.或B.或C.或D.或2. 下列等式变形错误的是( )A.若=,则=B.若=,则=C.若=,则=D.若=,则=3. 据测算,我国因为土地沙漠化造成的经济损失平均每天为元,则数据用科学记数法表示为( )A.元B.元C.元D.元4. 当 时,代数式 的值为 ,则 的值为( )A.B.|a |=8|b |=5a +b >0a −b ()31313−133−3−313x −13x 4x −112x x −12x x −3y −3x −y 03x +42x 3x −2x −41500000001500000001.5×10815×1070.15×10101.5×1010x =−1a +bx +1x 2−1(1+2a −2b)(1−a +b)−915C.D.5. 已知直线上,两点相距,点是线段的中点,点与点相距,则的长度是()A.B.C.D.或6. 某商品的进价是元,销售价是元,则此商品的利润率是( )A.B.C.D.7. 把一副三角尺和按如图所示那样拼在一起,其中、、三点在同一直线上,为的平分线,为的平分线,则的度数为( )A.B.C.D.8. 如图,,,平分,则的度数是( )9−15A B 12cm C AB D B 8cm CD 2cm8cm14cm14cm 2cm11013215%20%25%10%ABC BDE A D B BM ∠ABC BN ∠CBE ∠MBN 30∘60∘55∘45∘∠AOB =90∘∠BOC =40∘OD ∠AOC ∠BODA.B.C.D.卷II (非选择题)二、 填空题 (本题共计 1 小题 ,共计5分 )9. (5分) 将两个正方形与直角三角板的一个直角顶点重合放置,如图所示,则的度数为________.三、 解答题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )10. 简便运算:(1);(2);(3);(4).11. 已知,.若,求的值;若的值与的值无关,求的值.12. 解方程:45∘20∘25∘30∘∠125×A =2+xy +3y x 2B =−xy x 2(1)(x +2+|y −3|=0)2A −2B (2)A −2B y x (1);.13. 为何值时,关于的方程的解是方程的解的倍. 14. 如图,已知点是线段的中点,点是线段的中点,点是线段的中点.若,求的长;若,求的长.15. 计算:.16. 如图,已知,、、在同一条线上,,.(1)若,求的度数;(2)若射线平分,求的度数.17. 化简.;.(1)3x +3=x +7(2)−=2x +23x +12k x −3k −2=2x k +x 22−3(x +1)=03C AB D AC E BC (1)AB =20cm DE (2)CE =4cm DB (−5)×2−(−3)+÷4(−2)2A O B ∠AOE =∠COD ∠EOD =30∘∠AOE =90∘∠BOC OC ∠EOB ∠AOD (1)÷1−a a −1a 2+a a 2(2)⋅ab +b 25ab 215ba 2−a 2b 2参考答案与试题解析2022-2023学年全国七年级下数学月考试卷一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】A【考点】绝对值【解析】绝对值的性质:正数的绝对值是它本身,负数的绝对值是它的相反数,的绝对值是.有理数的减法运算法则:减去一个数,等于加这个数的相反数.【解答】解:∵,,∴,,又∵,∴,.∴或.故选.2.【答案】B【考点】等式的性质【解析】利用等式的性质对每个式子进行变形,即可找出答案.【解答】、若=,根据等式的性质,等式两边都加,可得=,故选项正确;、若=,根据等式的性质,两边都乘以,可得=,故选项错误;、两边分别加上可得:=,故选项正确;、两边分别加上,可得:=,故选项正确;3.00|a |=8|b |=5a =±8b =±5a +b >0a =8b =±5a −b =313A A x −1311x 4A B x −112x 22x −22x B C 3−y x −y 0C D −2x −43x −2x −4D【答案】A【考点】科学记数法--表示较大的数【解析】本题考查用科学记数法表示较大的数.【解答】解:元.故选.4.【答案】A【考点】列代数式求值【解析】此题暂无解析【解答】解:由题意得:当 时,,可得 ,将 代入 得原式 .故选.5.【答案】D【考点】线段的和差线段的中点【解析】150000000=1.5×108A x =−1a −b +1=−1a −b =−2a −b =−2(1+2a −2b)(1−a +b)=(1−4)×(1+2)=−9A AB AB分在线段上和在线段的延长线上两种情况进行求解即可.【解答】解:因为,点是线段的中点,所以.①若在线段上,如图,则;①若在线段的延长线上,如图,则.综上所述,的长度是或.故选.6.【答案】B【考点】有理数的混合运算【解析】先算出此商品卖出时的利润,即,那么此商品的利润率为.【解答】解:此商品的利润为,那么商品的利润率为.故选.7.【答案】D【考点】角的计算角平分线的定义【解析】D AB D AB AB =12cm C AB AC =BC =AB =×12=6cm 1212D AB CD =BD −BC =8−6=2cm D AB CD =BD +BC =8+6=14cm CD 14cm 2cm D 132−110=22利润进价132−110=22===20%利润进价2211015B CBM =∠ABC =×11由角平分线的定义可知=,=,再利用角的和差关系计算可得结果.【解答】∵为的平分线,∴=,∵为的平分线,∴=,∴===.8.【答案】C【考点】角的计算角平分线的定义【解析】此题暂无解析【解答】此题暂无解答二、 填空题 (本题共计 1 小题 ,共计5分 )9.【答案】【考点】角的计算【解析】根据角的和差进行计算即可.【解答】如图∠CBM =∠ABC =×121260∘30∘∠CBN =∠EBC =×(+)121260∘90∘75∘BM ∠ABC ∠CBM =∠ABC =×121260∘30∘BN ∠CBE ∠CBN =∠EBC =×(+)121260∘90∘75∘∠MBN ∠CBN −∠CBM −75∘30∘45∘16∘∵===∴==.三、 解答题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )10.【答案】=))==.=()==.=))==.=+===.【考点】有理数的混合运算【解析】(1)根据加法交换律、加法结合律,求出算式的值是多少即可.∠1+α+β90∘∠1+α−90∘46∘∠1+β−90∘28∘∠1−+−−90∘46∘90∘28∘90∘16∘[−0.5−(+7]+[−(−3+2.75]−8+6−225×[25×(−40)]××6×3.79−100×1×3.79−379−24×(−−24×1−24×(−18−44+21−5×175−25××50×(175−25+50)×20025(2)根据乘法交换律、乘法结合律,求出算式的值是多少即可.(3)(4)根据乘法分配律,求出算式的值是多少即可.【解答】=))==.=()==.=))==.=+===.11.【答案】解:∵,,∴.∵,∴,,∴,,∴原式.由,与值无关,得到,解得:.【考点】非负数的性质:绝对值非负数的性质:偶次方[−0.5−(+7]+[−(−3+2.75]−8+6−225×[25×(−40)]××6×3.79−100×1×3.79−379−24×(−−24×1−24×(−18−44+21−5×175−25××50×(175−25+50)×20025(1)A =2+xy +3y x 2B =−xy x 2A −2B =2+xy +3y −2+2xy x 2x 2=3xy +3y (x +2+|y −3|=0)2x +2=0y −3=0x =−2y =3=3×(−2)×3+3×3=−9(2)A −2B =y(3x +3)y 3x +3=0x =−1整式的加减——化简求值【解析】(1)把与代入中,去括号合并得到最简结果,利用非负数的性质求出与的值,代入计算即可求出值;(2)由结果与值无关,确定出的值即可.【解答】解:∵,,∴.∵,∴,,∴,,∴原式.由,与值无关,得到,解得:.12.【答案】解:移项合并得:,解得:;去分母得:,移项合并得:,解得:.【考点】解一元一次方程【解析】(1)方程移项合并,把系数化为,即可求出解;(2)方程去分母,去括号,移项合并,把系数化为,即可求出解.【解答】解:移项合并得:,解得:;去分母得:,移项合并得:,解得:.13.【答案】解:方程,得:,又因关于的方程的解是方程的解的倍,A B A −2B x y A −2B y x (1)A =2+xy +3y x 2B =−xy x 2A −2B =2+xy +3y −2+2xy x 2x 2=3xy +3y (x +2+|y −3|=0)2x +2=0y −3=0x =−2y =3=3×(−2)×3+3×3=−9(2)A −2B =y(3x +3)y 3x +3=0x =−1(1)2x=4x=2(2)2x +4−3x −3=12−x =11x=−11x 1x 1(1)2x=4x=2(2)2x +4−3x −3=12−x =11x=−112−3(x +1)=0x =−13x −3k −2=2x k +x 22−3(x +1)=033k −2=2x k +x所以方程的解为,把代入,得 .【考点】一元一次方程的解【解析】此题暂无解析【解答】解:方程,得:,又因关于的方程的解是方程的解的倍,所以方程的解为,把代入,得 .14.【答案】解:点是线段的中点,.点是线段的中点,点是线段的中点,,,.,.答:的长为.由可知:,,.答:的长为.【考点】线段的和差线段的中点−3k −2=2x k +x 2x =−1x =−1−3k −2=2x k +x 2k =−152−3(x +1)=0x =−13x −3k −2=2x k +x 22−3(x +1)=03−3k −2=2x k +x 2x =−1x =−1−3k −2=2x k +x 2k =−15(1)∵C AB ∴AC =BC =AB 12∵D AC EBC ∴AD =CD =AC 12CE =BE =BC 12∴AD =CD =CE =BE =AB14∵AB =20cm ∴DE =DC +CE =AB =10(cm)12DE 10cm (2)(1)AD =CD =CE =BE =AB 14CE =4cm ∴DB =DC +CE +BE =3CE =3×4=12(cm)DB 12cm【解析】【解答】解:点是线段的中点,.点是线段的中点,点是线段的中点,,,.,.答:的长为.由可知:,,.答:的长为.15.【答案】解:原式.【考点】有理数的混合运算【解析】此题暂无解析【解答】解:原式.16.【答案】解:(1)∵,,∴,∵,∴,∴;(2)∵平分,∴,(1)∵C AB ∴AC =BC =AB 12∵D AC E BC ∴AD =CD =AC 12CE =BE =BC 12∴AD =CD =CE =BE =AB 14∵AB =20cm ∴DE =DC +CE =AB =10(cm)12DE 10cm (2)(1)AD =CD =CE =BE =AB 14CE =4cm ∴DB =DC +CE +BE =3CE =3×4=12(cm)DB 12cm =−10+3+4÷4=−10+3+1=−6=−10+3+4÷4=−10+3+1=−6∠AOE =90∘∠AOE =∠COD ∠COD =∠AOE =90∘∠EOD =30∘∠AOD =−=90∘30∘60∘∠BOC =−∠DOC −∠AOD =−−=180∘180∘90∘60∘30∘OC ∠BOE ∠COE =∠BOC ∠AOE =∠COD∵,∴,∴,∵,,∴.【考点】角的计算角平分线的定义【解析】(1)根据和求出的度数,求出,即可求出答案;(2)根据角平分线定义得出,求出,根据求出即可.【解答】解:(1)∵,,∴,∵,∴,∴;(2)∵平分,∴,∵,∴,∴,∵,,∴.17.【答案】解:原式.解:原式.【考点】非负数的性质:偶次方非负数的性质:绝对值整式的加减——化简求值【解析】∠AOE =∠COD ∠AOD +∠DOE =∠DOE +∠EOC ∠AOD =∠EOC =∠BOC ∠AOD +∠DOE +∠EOC +∠BOC =180∘∠EOD =30∘∠AOD =50∘∠AOE =90∘∠AOE =∠COD ∠COD ∠AOD ∠COE =∠BOC ∠AOD =∠EOC =∠BOC ∠AOD +∠DOE +∠EOC +∠BOC =180∘∠AOE =90∘∠AOE =∠COD ∠COD =∠AOE =90∘∠EOD =30∘∠AOD =−=90∘30∘60∘∠BOC =−∠DOC −∠AOD =−−=180∘180∘90∘60∘30∘OC ∠BOE ∠COE =∠BOC ∠AOE =∠COD ∠AOD +∠DOE =∠DOE +∠EOC ∠AOD =∠EOC =∠BOC ∠AOD +∠DOE +∠EOC +∠BOC =180∘∠EOD =30∘∠AOD =50∘=×=−11−a a a(a +1)(a +1)(a −1)=⋅=b(a +b)5ab 215b a 2(a +b)(a −b)3a a −b【解答】解:原式.解:原式.=×=−11−a a a(a +1)(a +1)(a −1)=⋅=b(a +b)5ab 215b a 2(a +b)(a −b)3a a −b。
2022-2023学年新人教版七年级下数学月考试卷(含解析)
2022-2023学年初中七年级下数学月考试卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:120 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 12 小题 ,每题 5 分 ,共计60分 )1. 下列说法中正确的个数有( )①是负分数;②不是整数;③非负有理数不包括零;④正有理数、负有理数统称为有理数;⑤是最小的有理数.A.个B.个C.个D.个2. 下列调查中,最适宜采用普查方式的是( )A.对我国初中学生视力状况的调查B.对量子科学通信卫星上某种零部件的调查C.对一批节能灯管使用寿命的调查D.对“最强大脑”节目收视率的调查3. 如果点在直角坐标系的轴上,那么点的坐标为 A.B.C.D.4. 如果,那么下列结论中错误的是( )A.B.−3.6 2.401234M(a +3,a +1)x M ()(0,−2)(2,0)(4,0)(0,−4)m <n <0m −9<n −9−m >−n11C.D.5. 对于等式,用含的代数式来表示,下列式子正确的是( )A.B.C.D.6. 已知是方程组’的解,则的值是()A.B.C.D.7. 不等式组的解集在数轴上表示为( )A.B.C.D.8. 不等式的非负整数解有 >1n 1m>1m n2x +3y =7x y y =7−2x3x =3y −72x =7−3y2y =2x −73{x =2y =1{ax +b =5bx +ay =1a +b −1234{3x −1>2,4−2x ≥0x −1≤2()D.个9. 北京年冬奥会会徽是以汉字“冬”为灵感来源设计的.在下面的四个图中,能由图经过平移得到的是 图 A. B.C. D.10. 某单位为加大“精准扶贫”力度,将名干部分成甲、乙、丙三个小组到村屯带领个贫困农户脱贫,若甲组每人负责个农户,乙组每人负责个农户,丙组每人负责个农户,则分组方案有( )A.种420221()11648431311. 若数使关于的不等式组,有且只有四个整数解,且使关于的方程的解为非负数,则符合条件的所有整数的和为 ( )A.B.C.D.12. 如图,,分别交,于点,,若,则的度数为( )A.B.C.D.卷II (非选择题)二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )13. 若方程是关于、的二元一次方程,则的值为________.14. 若代数式有意义,则实数的取值范围是________.a x<x −121+x35x −2≥x +ay +=2y +a y −12a1−y a −3−212AB//CD EF AB CD G H ∠1=39∘∠251∘39∘129∘78∘(a +3)+3y =1x −8a 2x y a x −2x −√x15. 为了了解某市八年级学生的体重情况,从中抽测了名学生的体重进行调查,在这次调查中,样本是________.16. 不等式的解集是________.17. 某种商品的进价为元,出售时标价为元,由于该商品积压,商店决定打折出售,但要保证利润率不低于,则至多可打________折.18. 如果在观察点测得点的仰角是,那么在点观测点,所测得的俯角的度数是________.三、 解答题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )19. 计算:; . 20. 解下列方程组:21. 在平面直角坐标系中,点的坐标为,线段的位置如图所示,其中点的坐标为,点的坐标为.将线段平移得到线段,其中点的对应点为点,点的对应点为点;①点在________轴上;②点的坐标为________;在的条件下,连接,,请直接写出三角形的面积;在轴上是否存在点,使得以点、点、点三点为顶点的三角形的面积为,若存在,请直接写出点的坐标;若不存在,请说明理由. 22. 文明交流互鉴是推动人类文明进步和世界和平发展的重要动力.年月“亚洲文明对话大会”在北京成功举办,引起了世界人民的极大关注.某市一研究机构为了了解岁年龄段市民对本次大会的关注程度,随机选取了名年龄在该范围内的市民进行了调查,并将收集到的数据制1000−x +1≤−5131000150020%A B 32∘B A (1)++(−1)2−−−−−√(−2)3−−−−−√3179−−−√(2)|1−|+−3–√(−2)23–√(1){ x −2y =5,2x +7y =−1;(2) 3(x −9)=2(y −2),−=2.x 4y +13A (6,4)MN M (3,0)N (−3,−1)(1)MN AB M A N B M B (2)(1)MA MB MAB (3)y P A B P 6P 2019510∼60100成了尚不完整的频数分布表、频数分布直方图和扇形统计图,如下所示:组别年龄段频数(人数)第组第组第组第组第组请直接写出________,________;求第组人数在扇形统计图中所对应的圆心角度数;请补全上面的频数分布直方图;假设该市现有岁的市民万人,问岁年龄段的关注本次大会的人数约有多少?23. 年月,全国“两会”召开以后,应势复苏的“地摊经济”带来了市场新活力,小丹准备购进、两种类型的便携式风扇到地摊一条街出售.已知台型风扇和台型风扇进价共元,台型风扇和台型风扇进价共元.求型风扇、型风扇进货的单价各是多少元?小明准备购进这两种风扇共台,根据市场调查发现,型风扇销售情况比型风扇好,小明准备多购进型风扇,但数量不超过型风扇的倍,购进,两种风扇的总金额不超过元.根据以上信息,小明有哪些进货方案?哪种进货方案费用最低?最低费用为多少元? 24. 已知,点.若点在轴上,点的坐标为________;若点的纵坐标比横坐标大,求点在第几象限?110≤x <205220≤x <30a 330≤x <4035440≤x <5020550≤x <6015(1)a=m=(2)3(3)(4)10∼6030040∼5020205A B 2A 5B 1003A 2B 62(1)A B (2)100A B A B 3A B 1170P(2m −6,m +2)(1)P y P (2)P 6P参考答案与试题解析2022-2023学年初中七年级下数学月考试卷一、 选择题 (本题共计 12 小题 ,每题 5 分 ,共计60分 )1.【答案】B【考点】有理数的概念及分类【解析】结合有理数的分类分析即可.【解答】①是负分数是正确的;②不是整数是正确的;③非负有理数包括零,原来的说法错误;④正有理数、、负有理数统称为有理数,原来的说法错误;⑤没有最小的有理数,原来的说法错误.故说法中正确的个数有个.2.【答案】B【考点】全面调查与抽样调查【解析】本题考查了抽样调查和全面调查的区别.【解答】解:、对我国初中学生视力状况的调查,人数太多,调查的工作量大,适合抽样调查,故此选项错误;、对量子科学通信卫星上某种零部件的调查,关系到量子科学通信卫星的运行安全,必须全面调查,故此选项正确;、对一批节能灯管使用寿命的调查具有破坏性,适合抽样调查,故此选项错误;、对“最强大脑”节目收视率的调查,人数较多,不便测量,应当采用抽样调查,故本选项错误;故选.−3.62.402A B C D B3.【答案】B【考点】象限中点的坐标【解析】根据轴上的点的纵坐标为,列式求出的值,即可得解.【解答】解:∵点在直角坐标系的轴上,∴,解得,则,点的坐标为.故选.4.【答案】C【考点】不等式的性质【解析】分析各个选项是由,如何变化得到的,根据不等式的性质即可进行判断.【解答】解:,,;成立;,两边同时乘以得到;成立;,,若设,验证不成立;,由,两边同时除以负数得到,成立;故选.5.【答案】A【考点】解二元一次方程x 0a M (a +3,a +1)x a +1=0a =−1a +3=−1+3=2M (2,0)B m <n A m <n m −9<n −9B −1−m >−n C m <n <0m =−2,n =−1>1n 1m D m <n <0n >1m n C二元一次方程的定义【解析】把看做已知数求出即可.【解答】解:方程,解得:.故选.6.【答案】【考点】代入消元法解二元一次方程组【解析】此题暂无解析【解答】解:把代入方程组得: 得:,则,故选.7.【答案】A【考点】在数轴上表示不等式的解集解一元一次不等式组【解析】此题暂无解析【解答】解:解得,,解,得.所以不等数组的解集为,解集在数轴上表示为:y x 2x +3y =7y =7−2x 3A {x =2y =1{2a +b =5a +2b =1①+②3(a +b)=6a +b =2B 3x −1>2x >14−2x ≥0x ≤21<x ≤2故选.8.【答案】D【考点】一元一次不等式的整数解【解析】直接解不等式,进而利用非负整数的定义分析得出答案.【解答】解:,解得,则不等式的非负整数解有:,,,共个.故选.9.【答案】B【考点】平移的性质【解析】此题暂无解析【解答】解:根据平移的定义可知,由题中的图经过平移得到的图如下:故选.10.【答案】C A x −1≤2x ≤3x −1≤201234D B【考点】二元一次方程的应用【解析】【解答】解:设甲组有人,乙组有人,则丙组有人,则,,∵,,是正整数,∴当时,,,符合题意;当时,,,符合题意;当时,,,符合题意;当时,,,符合题意;当时,,,符合题意.故分组方案有种.故选.11.【答案】C【考点】分式方程的解解一元一次不等式组【解析】表示出不等式组的解集,由不等式有且只有个整数解确定出的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数的值,进而求出之和.【解答】解:等式组整理得:由不等式组有且只有四个整数解,得到,解得:,即整数,,,,,分式方程去分母得:,解得:,由分式方程的解为非负数以及分式有意义的条件,得到为,,,之和为.故选.12.【答案】x y (16−x −y)4x +3y +(16−x −y)=483x +2y =32x y z x =2y =1316−x −y =1x =4y =1016−x −y =2x =6y =716−x −y =3x =8y =416−x −y =4x =10y =116−x −y =55C 4a a <,x −121+x 35x −2≥x +a, x <5,x ≥,a +240<≤1a +24−2<a ≤2a =−1012+=2y +a y −12a 1−yy +a −2a =2(y −1)y =2−a a −1021CB【考点】平行线的性质对顶角【解析】根据两直线平行,同位角相等,可得,再根据对顶角的性质,即可解答.【解答】解:∵,∴,∴.故选.二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )13.【答案】【考点】二元一次方程的定义【解析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是,像这样的方程叫做二元一次方程可得,且,再解即可.【解答】解:由题意得:,且,解得:,故答案为:.14.【答案】【考点】分式有意义、无意义的条件算术平方根∠AGH =∠1AB //CD ∠AGH =∠1=39∘∠2=∠AGH =39∘B 31|a |−2=1a +3≠0−8=1a 2a +3≠0a =33x >0【解析】此题暂无解析【解答】解:若代数式有意义,则,且,解得.故答案为:.15.【答案】名学生的体重【考点】总体、个体、样本、样本容量【解析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.【解答】解:为了了解某市八年级学生的体重情况,从中抽测了名学生的体重进行调查,在这次调查中,样本是名学生的体重.故答案为:名学生的体重.16.【答案】【考点】解一元一次不等式不等式的解集【解析】此题暂无解析【解答】解:原不等式移项,得:,系数化为,得:.故答案为:.x −2x −√x ≥0≠0x −√x >0x >01000100010001000x ≥18−x ≤−6131x ≥18x ≥1817.【答案】【考点】一元一次不等式的实际应用【解析】设至多可打折,然后根据“利润不低于”即可列出不等式解答.【解答】解:设至多可打折,根据题意,得,解不等式,得.故答案为:.18.【答案】【考点】平行线的性质【解析】据仰角,俯角的概念,平行线的性质可求俯角.【解答】解:如图,,两点的水平线分别为,,由题意,得,,由平行线的性质,得,即俯角为.故答案为:.三、 解答题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )19.【答案】8x 20%x 1500×−1000≥1000×20%x 10x ≥8832∘A B AM BN AM //BN ∠BAM =32∘∠ABN =∠BAM =32∘32∘32∘+−−−解:. .【考点】实数的运算立方根的性质算术平方根绝对值有理数的乘方【解析】()先化简二次根式,注意,再计算有理数的加法即可;()先化简绝对值、计算乘方,再合并同类二次根式即可.【解答】解:. .20.【答案】解:得:,即,把代入①得:,则方程组的解为方程组整理得:(1)++(−1)2−−−−−√(−2)3−−−−−√3179−−−√=1+(−2)+169−−−√=1−2+43=13(2)1−+−∣3–√∣(−2)23–√=−1+4−3–√3–√=31=a a 3−−√32(1)++(−1)2−−−−−√(−2)3−−−−−√3179−−−√=1+(−2)+169−−−√=1−2+43=13(2)1−+−∣3–√∣(−2)23–√=−1+4−3–√3–√=3(1){x −2y =5,①2x +7y =−1,②②−①×211y=−11y =−1y =−1x =3{ x =3,y =−1.(2){ 3x −2y =23,①3x −4y =28,②=−5得:,即,把代入①得:,则方程组的解为【考点】加减消元法解二元一次方程组【解析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:得:,即,把代入①得:,则方程组的解为方程组整理得:得:,即,把代入①得:,则方程组的解为21.【答案】,如图所示,所以.所以三角形的面积为.如图所示,①−②2y =−5y =−52y =−52x =6 x =6,y =−.52(1){x −2y =5,①2x +7y =−1,②②−①×211y=−11y =−1y =−1x =3{ x =3,y =−1.(2){ 3x −2y =23,①3x −4y =28,②①−②2y =−5y =−52y =−52x =6 x =6,y =−.52x (0,3)(2)=6×4−×1×6−×3×3−×3×4S △MAB 121212=24−3−−692=212MAB 212(3)设点,所以,即,所以,所以或,所以点或.【考点】坐标与图形变化-平移三角形的面积点的坐标【解析】此题暂无解析【解答】解:由图知,点在轴上,点向右平移个单位,再向上平移个单位得到点,所以点向右平移个单位,再向上平移个单位得到点,所以点.故答案为:;.如图所示,所以.所以三角形的面积为.如图所示,P(0,y)=×6×BP =6S △ABP 12×6×|3−y|=612|3−y|=2y =1y =5P(0,1)P(0,5)(1)M x M 34A N 34B B(0,3)x (0,3)(2)=6×4−×1×6−×3×3−×3×4S △MAB 121212=24−3−−692=212MAB 212(3)设点,所以,即,所以,所以或,所以点或.22.【答案】,第组人数在扇形统计图中所对应的圆心角是:.由知,有人,补全的频数分布直方图如图所示,(万人),答:岁年龄段的关注本次大会的人数约有万人.【考点】频数(率)分布直方图扇形统计图用样本估计总体【解析】(1)根据题意和频数分布表中的数据,可以求得、的值和第组人数在扇形统计图中所对应的圆心角的度数;(2)根据(1)中的值,可以将频数分布直方图补充完整;(3)根据频数分布表中的数据可以计算出岁年龄段的关注本次大会的人数约有多少.P(0,y)=×6×BP =6S △ABP 12×6×|3−y|=612|3−y|=2y =1y =5P(0,1)P(0,5)2520(2)3×=360∘35100126∘(3)(1)20≤x <3025(4)300×=602010040∼5060a m 3a 40∼50【解答】解:,,故答案为:;.第组人数在扇形统计图中所对应的圆心角是:.由知,有人,补全的频数分布直方图如图所示,(万人),答:岁年龄段的关注本次大会的人数约有万人.23.【答案】解:设型风扇进货的单价是元,型风扇进货的单价是元,依题意,得:解得:答:型风扇进货的单价是元,型风扇进货的单价是元.设购进型风扇台,则购进型风扇台,依题意,得: 解得: .又∵为正整数,∴可以取,,,,∴小明共有种进货方案,方案:购进型风扇台,型风扇台;方案:购进型风扇台,型风扇台;方案:购进型风扇台,型风扇台;方案:购进型风扇台,型风扇台.∵型风扇进货的单价大于型风扇进货的单价,∴方案:购进型风扇台,型风扇台的费用最低,最低费用为(元).【考点】二元一次方程组的应用——销售问题一元一次不等式组的应用【解析】(1)设型风扇进货的单价是元,型风扇进货的单价是元,根据“台型风扇和台型风扇进(1)a =100−5−35−20−15=25m%=(20÷100)×100%=20%2520(2)3×=360∘35100126∘(3)(1)20≤x <3025(4)300×=602010040∼5060(1)A x B y {2x +5y =100,3x +2y =62,{x =10,y =16.A 10B 16(2)A m B (100−m){m ≤3(100−m),10m +16(100−m)≤1170,71≤m ≤7523m m 7273747541A 72B 282A 73B 273A 74B 264A 75B 25B A 4A 75B 2575×10+25×16=1150A x B y 2A 5B A价共元,台型风扇和台型风扇进价共元”,即可得出关于,的二元一次方程组,解之即可得出结论;(2)设购进型风扇台,则购进型风扇台,根据“购进型风扇不超过型风扇数量的倍,购进、两种风扇的总金额不超过元”,即可得出关于的一元一次不等式组,解之即可得出的取值范围,再结合为正整数即可得出各进货方案.【解答】解:设型风扇进货的单价是元,型风扇进货的单价是元,依题意,得:解得:答:型风扇进货的单价是元,型风扇进货的单价是元.设购进型风扇台,则购进型风扇台,依题意,得: 解得: .又∵为正整数,∴可以取,,,,∴小明共有种进货方案,方案:购进型风扇台,型风扇台;方案:购进型风扇台,型风扇台;方案:购进型风扇台,型风扇台;方案:购进型风扇台,型风扇台.∵型风扇进货的单价大于型风扇进货的单价,∴方案:购进型风扇台,型风扇台的费用最低,最低费用为(元).24.【答案】根据题意可得,,解得,,∴点的坐标为,∴点在第二象限.【考点】象限中点的坐标点的坐标【解析】此题暂无解析【解答】解:∵点在轴上,∴,解得,∴点的坐标为.故答案为:.根据题意可得,,解得,,1003A 2B 62x y A m B (100−m)A B 3A B 1170m m m (1)A x B y {2x +5y =100,3x +2y =62,{x =10,y =16.A 10B 16(2)A m B (100−m){m ≤3(100−m),10m +16(100−m)≤1170,71≤m ≤7523m m 7273747541A 72B 282A 73B 273A 74B 264A 75B 25B A 4A 75B 2575×10+25×16=1150(0,5)(2)2m −6+6=m +2m =2P (−2,4)P (1)P y 2m −6=0m =3P (0,5)(0,5)(2)2m −6+6=m +2m =2(−2,4)∴点的坐标为,∴点在第二象限.P (−2,4)P。
2022-2023学年新人教版七年级下数学月考试卷(含解析)
2022-2023学年初中七年级下数学月考试卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:115 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1. 如图,在一块长方形草地上原有一条等宽的笔直小路,现在要把这条小路改为同样宽度的弯曲小路,则改造后草地部分的面积( )A.变大B.不变C.变小D.无法确定2. 如图,不能推出的条件是( )A.B.C.D.3. 在平面直角坐标系中,点的坐标为.如果将轴向上平移个单位长度,轴不变,得到新坐标系,那么点在新坐标系中的坐标是( )A.B.a //b ∠1=∠3∠2=∠4∠2=∠3∠2+∠3=180∘xOy P (1,1)x 2y P (1,−1)(−1,1)(3,1)4. 已知,则的值是( )A.B.C.D.5. 下列命题属于真命题的是( )A.若,则B.三个角对应相等的两个三角形是全等三角形C.无限小数都是无理数D.若,则6. 如图,动点在平面直角坐标系中按图中箭头所示方向运动,第次从原点运动到,第次接着运动到点,第次接着运动到点,按这样的运动规律,经过第次运动后,动点的坐标是( )A.B.C.D.7. 如果一元一次不等式组的解集是,那么的取值范围是( )A.+(b −1=0a +2−−−−√)2(a +b)20201−12015−2015a =b =a 2b 2|x|=|y|x =yP 1(1,1)2(2,0)3(3,2)2019P (2019,0)(2019,1)(2019,2)(2020,0){x >2,x >ax >2a a >2D.8. 已知,两数在数轴上对应的点如图所示,下列结论中正确的是 A.B.C.D.9. 我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸:屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余尺;将绳子对折再量木条,木条剩余尺,问木条长多少尺?如果设木条长尺,绳子长尺,那么可列方程组为( )A.B.C.D.10. 如图,点,点向上平移个单位,再向右平移个单位,得到点:点向上平移个单位,再向右平移个单位,得到点;点向上平移个单位,再向右平移个单位,得到点,,按这个规律平移得到点,则点的横坐标为( )A.B.C.a <2a b ()a <bab <0|a|<|b|a +b >04.51x y {y =x −4.5,y =2x −1{y =x +4.5,y =2x −1{y =x +4.5,0.5y =x −1{y =x −4.5,0.5y =x +1(1,1)A 1A 112A 2A 224A 3A 348A 4⋯⋯A n A n 2n2n−1−12n +12n卷II (非选择题)二、 填空题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )11. 估计无理数在连续整数________与________之间.12. 如果点到轴的距离与它到轴的距离相等,求:_______;点关于原点的对称点坐标是_______.13. 在静止的湖面上,东北风将一块四边形的竹排以每分钟米的速度向前推进,则分钟以后竹排沿着________方向,平移了________米.14. 如图,将长方形纸片沿着折叠后,点,分别落在点,的位置,的延长线交于点.若,则________.15. 一千官兵一千布,一官四尺无零数,四兵才得布一尺,请问官兵多少数?这首诗的意思是:一千名官兵分一千尺布,一名军官分四尺,四名士兵分一尺,正好分完,则军官有________名,士兵有________名.三、 解答题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )16. 解下列方程组. 17. 计算求不等式组的整数解.11−−√B(m +1,3m −5)x y (1)m =(2)B 0.510ABCD EF D C D ′C ′ED ′BC G ∠EFG =64∘∠EGB =(1){3x +4y =19,x −y =4;(2){2x +y =1,2x +3y +5=0.(1) 2(x −2)>3x −7,x +3>1−x 4323≤1 ,2x −15x +1解不等式组 并将解集表示在数轴上.18. 如图,已知:于点,于点,.求证:.19. 如图所示,为一条直线,是的平分线,在内,,,求的度数.20. 如图,在方格边长为的方格纸上画平面直角坐标系,若内任意一点经平移后对应点为,用一句话描述该点的平移过程:________.若将作同样的平移得到.完成下面问题:画出;求的面积.21. 已知的立方根是,的算术平方根是,是的整数部分.求,,的值求的平方根.22. 某学校计划购买排球、篮球,已知购买个排球与个篮球的总费用为元;个排球与2个篮球的总费用为元.(1)求购买个排球、个篮球的费用分别是多少元?(2)若该学校计划购买此类排球和篮球共 个,并且篮球的数量不超过排球数量的倍.求至少需要购买多少个排球?并求出购买排球、篮球总费用的最大值.23. 如图,已知, ,那么与相等吗?为什么?(2) −≤1 , 2x −135x +125x −1<3(x +1)CD ⊥AB D EF ⊥AB F ∠1=∠2DG //BC AB OC ∠AOD OE ∠BOD ∠AOC =30∘∠BOE =2∠DOE ∠BOE 1△ABC P (,)x 0y 0(+5,−3)P 1x 0y 0△ABC △A 1B 1C 1(1)△A 1B 1C 1(2)△A 1B 1C 15a +233a +b −14c 13−−√(1)a b c (2)3a −b +c 11180342011602∠C =∠AED BD//EF ∠B ∠1参考答案与试题解析2022-2023学年初中七年级下数学月考试卷一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1.【答案】B【考点】平移的性质【解析】根据平移的性质即可判断草地部分的面积变化.【解答】解:设长方形的草地的长为,宽为,第一个图形改造后草地的面积是,将第二个图形根据平移的性质可知改造后草地的面积也是,所以改造后草地部分的面积不变.故选.2.【答案】C【考点】平行线的判定【解析】在复杂的图形中具有相等关系或互补关系的两角首先要判断它们是否是同位角、内错角或同旁内角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【解答】解:、∵和为同位角,,∴,不符合题意;、∵和为内错角,,∴,不符合题意;、∵与是同旁内角,∴,不能证明两直线平行,符合题意;、∵和为同位角,,∴,不符合题意.故选.3.【答案】a b a (b −1)a (b −1)B A ∠1∠3∠1=∠3a //b B ∠2∠4∠2=∠4a //b C ∠2∠3∠2=∠3D ∠2∠3∠2+∠3=180∘a //b CA【考点】坐标与图形变化-平移【解析】将坐标系中的轴向上平移个单位,即相当于将点向下平移个单位,根据左加右减,上加下减的规律求解即可.【解答】解:如果将轴向上平移个单位长度,则其纵坐标减少,∴点在新坐标系中的坐标是,故选:4.【答案】A【考点】非负数的性质:算术平方根非负数的性质:偶次方【解析】根据非负数的性质列式求出、的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,,解得,,所以.故选.5.【答案】A【考点】真命题,假命题【解析】将各个命题逐一分析即可得到答案.【解答】x 2A 2x 22P (1,−1)A a b a +2=0b −1=0a =−2b =1(a +b =(−2+1=(−1=1)2020)2020)2020A =22解:,若,则,故正确;,三个角对应相等不能判定两个三角形全等,故错误;,无限小数不一定都是无理数,如无限循环小数是有理数,故错误;,若,则或,故错误.故选.6.【答案】C【考点】点的坐标【解析】分析点的运动规律,找到循环次数即可【解答】分析图象可以发现,点的运动每次位置循环一次.每循环一次向右移动四个单位.∴=,当第循环结束时,点位置在,在此基础之上运动三次到,7.【答案】C【考点】解一元一次不等式组【解析】根据不等式组的解集的确定方法,就可以得出的范围.【解答】解:因为不等式组的解集是,所以.故选.8.【答案】C【考点】在数轴上表示实数A a =b =a 2b 2AB BC CD |x|=|y|x =y x =−y D A P P 420194×504+3504P (2016,0)(2019,2)a {x >2,x >ax >2a ≤2C【解析】首先根据数轴判断、的符号,再按照实数运算的规律判断即可.【解答】解:由数轴可知,,则、在数轴上表示的两个实数,右边的总比左边的大,即,故选项错误;、同号相乘得正,即,故选项错误;、、两负数相加得负,即,故选项错误.故选.9.【答案】C【考点】由实际问题抽象出二元一次方程组【解析】设木条长尺,绳子长尺,根据绳子和木条长度间的关系,可得出关于的二元一次方程组,此题得解.【解答】解:设木条长尺,绳子长尺,依题意,由用一根绳子去量一根木条,绳子还剩余尺,可得;由将绳子对折再量木条,木条剩余尺,可得.故方程组为: 故选.10.【答案】C【考点】规律型:点的坐标【解析】先求出点的横坐标,再从特殊到一般探究出规律,然后利用规律即可解决问题.【解答】a b b <a <0A a >b B ab >0C D a +b <0C x y x ,y x y 4.5y =x +4.51x −1=0.5y {y =x +4.5,0.5y =x −1.C ,,,A 1A 2A 3A 41=−11解:点的横坐标为,点的横坐为标,点的横坐标为,点的横坐标为,按这个规律平移得到点的横坐标为.故选.二、 填空题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )11.【答案】,【考点】估算无理数的大小【解析】直接利用接近的有理数进而化简得出答案.【解答】∵,即,∴无理数在连续整数与之间.12.【答案】或或【考点】点的坐标关于原点对称的点的坐标【解析】(2)首先根据的值,求出点坐标,再根据两个点关于原点对称时,它们的坐标符号相反可得答案.【解答】解:由题意得或,解得:或.故答案为:或.当时,关于原点的对称点坐标,当时,关于原点的对称点坐标.A 11=−121A 23=−122A 37=−123A 415=−124A n −12n C 3411−−√<<9–√11−−√16−−√3<<411−−√11−−√3431(−4,−4)(−2,2)m B (1)m +1=3m −5m +1+3m −5=0m =3m =131(2)m =3B(4,4)(−4,−4)m =1B(2,−2)(−2,2)(−4,−4)(−2,2)故答案为:或.13.【答案】西南,【考点】生活中的平移现象【解析】由题意可知,东北风将竹排以每分钟米的速度向前推进,根据平移的性质可知,竹排以每分钟米的速度向西南平移.【解答】解:∵东北风把竹排吹向西南,∴分钟以后竹排沿着西南方向,平移了米.14.【答案】【考点】平行线的性质翻折变换(折叠问题)【解析】由,根据两直线平行,内错角相等,可求得么的度数,然后由折叠的性质,可得么的度数,进而再利用两直线平行内错角相等得到的度数.【解答】解:由题意得,,,∴.由折叠的性质可得,∴.故答案为:.15.【答案】,【考点】(−4,−4)(−2,2)50.50.5105128∘AD//BC,∠1=64∘DEF FEG 2AD//BC ∠EFG =64∘∠DEF =∠EFG =64∘∠DEF =∠GEF =64∘∠EGB =∠GEF +∠EFG =+=64∘64∘128∘128∘200800二元一次方程组的应用——其他问题【解析】设军官有人,士兵人.根据共有人,得方程 根据共有尺布,得方程,联立解方程组即可.【解答】解:设军官有人,士兵人.根据题意,得解得故军官有名,士兵有名.故答案为:;.三、 解答题 (本题共计 8 小题 ,每题5 分 ,共计40分 )16.【答案】解:①②得:,解得:,把代入②得:,则方程组的解为由得得,解得,把代入得:,解得,所以原方程组的解是【考点】加减消元法解二元一次方程组【解析】x y 1000x +y =1000;10004x +y =100014x y x +y =1000,4x +y =1000,14{x =200,y =800,200800200800(1){3x +4y =19①,x −y =4②,+×47x =35x =5x =5y =1{x =5,y =1;(2){2x +y =1①,2x +3y +5=0②,②2x +3y =−5③①−③−2y =6y =−3y =−3①2x −3=1x =2{x =2,y =−3.(1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:①②得:,解得:,把代入②得:,则方程组的解为由得得,解得,把代入得:,解得,所以原方程组的解是17.【答案】解:解不等式①得,解不等式②得,∴不等式组的解集为,∴不等式组的整数解是.由不等式①,得,由不等式②,得,故原不等式组的解集是,在数轴上表示为:【考点】(1){3x +4y =19①,x −y =4②,+×47x =35x =5x =5y =1{x =5,y =1;(2){2x +y =1①,2x +3y +5=0②,②2x +3y =−5③①−③−2y =6y =−3y =−3①2x −3=1x =2{x =2,y =−3.(1) 2(x −2)>3x −7,①x +3>1−x , ②4323x <3x >−1−1<x <30 , 1 , 2(2) −≤1 , ①2x −135x +125x −1<3(x +1) , ②x ≥−1x <2−1≤x <2一元一次不等式组的整数解解一元一次不等式组在数轴上表示不等式的解集【解析】此题暂无解析【解答】解:解不等式①得,解不等式②得,∴不等式组的解集为,∴不等式组的整数解是.由不等式①,得,由不等式②,得,故原不等式组的解集是,在数轴上表示为:18.【答案】证明:∵,,,∴.又∵,∴,∴.【考点】垂线平行线的判定与性质【解析】由垂直可证明,结合条件可得到=,可证明.【解答】证明:∵,,(1) 2(x −2)>3x −7,①x +3>1−x , ②4323x <3x >−1−1<x <30 , 1 , 2(2) −≤1 , ①2x −135x +125x −1<3(x +1) , ②x ≥−1x <2−1≤x <2CD ⊥AB EF ⊥AB ∴CD//EF ∠2=∠3∠1=∠2∠1=∠3DG //BC CD //EF ∠1∠DCE DG //BCCD ⊥AB EF ⊥AB CD//EF,∴.又∵,∴,∴.19.【答案】解:∵为的平分线,∴,∴,∵,∴,∴,∴.【考点】角的计算角平分线的定义【解析】根据题意,由角平分线的性质,计算得到的度数,继而由角的和差关系,求出答案即可.【解答】解:∵为的平分线,∴,∴,∵,∴,∴,∴.20.【答案】解:点向右平移个单位,再向下平移个单位后得到,如图所示,即为所求.∴CD//EF ∠2=∠3∠1=∠2∠1=∠3DG //BC OC ∠AOD ∠AOC =∠COD =30∘∠DOE +∠BOE =−−=180∘30∘30∘120∘∠BOE =2∠DOE 3∠DOE =120∘∠DOE =40∘∠BOE =2∠DOE =80∘|∠DOE +∠BOE OC ∠AOD ∠AOC =∠COD =30∘∠DOE +∠BOE =−−=180∘30∘30∘120∘∠BOE =2∠DOE 3∠DOE =120∘∠DOE =40∘∠BOE =2∠DOE =80∘(1)P (,)x 0y 053P (+5,−3)x 0y 0△A 1B 1C 15×5−×2×5−×3×4−111×51.【考点】作图-平移变换三角形的面积【解析】无无【解答】解:点向右平移个单位,再向下平移个单位后得到,如图所示,即为所求..21.【答案】解:∵的立方根是,的算术平方根是,∴,,∴,.∵是的整数部分,∴.将,,代入得:,∴的平方根是.【考点】估算无理数的大小立方根的应用算术平方根(2)=5×5−×2×5−×3×4−S △A 1B 1C 11212×1×512=25−5−6−2.5=11.5(1)P (,)x 0y 053P (+5,−3)x 0y 0△A 1B 1C 1(2)=5×5−×2×5−×3×4−S △A 1B 1C 11212×1×512=25−5−6−2.5=11.5(1)5a +233a +b −145a +2=273a +b −1=16a =5b =2c 13−−√c =3(2)a =5b =2c =33a −b +c =163a −b +c ±4平方根【解析】无无【解答】解:∵的立方根是,的算术平方根是,∴,,∴,.∵是的整数部分,∴.将,,代入得:,∴的平方根是.22.【答案】解:(1)设每个排球的价格是元,每个篮球的价格是元,根据题意得:,解得:答:每个排球的价格是元,每个篮球的价格是元.(2)设购买排球个,则购买篮球个,根据题意得:,解得,又∵排球的单价小于篮球的单价,∴时,购买排球、篮球的总费用最大,购买排球、篮球总费用的最大值为(元)【考点】二元一次方程组的应用——销售问题一元一次不等式的实际应用【解析】此题暂无解析【解答】解:(1)设每个排球的价格是元,每个篮球的价格是元,根据题意得:,解得:答:每个排球的价格是元,每个篮球的价格是元.(2)设购买排球个,则购买篮球个,根据题意得:,解得,又∵排球的单价小于篮球的单价,∴时,购买排球、篮球的总费用最大,购买排球、篮球总费用的最大值为(元)23.【答案】(1)5a +233a +b −145a +2=273a +b −1=16a =5b =2c 13−−√c =3(2)a =5b =2c =33a −b +c =163a −b +c ±4x y {x +y =180,3x +2y =420{x =60,y =12060120m (60−m)60−m ≤2m m ≥20m =2020×60+40×120=6000x y {x +y =180,3x +2y =420{x =60,y =12060120m (60−m)60−m ≤2m m ≥20m =2020×60+40×120=6000解:相等. 理由如下:因为,(已知)所以 ,(同位角相等,两直线平行)所以 ,(两直线平行,内错角相等)又因为 ,(已知)所以 ,(两直线平行,同位角相等)所以. (等量代换)【考点】平行线的判定与性质平行线的性质【解析】【解答】解:相等. 理由如下:因为,(已知)所以 ,(同位角相等,两直线平行)所以 ,(两直线平行,内错角相等)又因为 ,(已知)所以 ,(两直线平行,同位角相等)所以. (等量代换)∠C =∠AED DE//BC ∠1=∠EFC BD//EF ∠B =∠EFC ∠B =∠1∠C =∠AED DE//BC ∠1=∠EFC BD//EF ∠B =∠EFC ∠B =∠1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年河南省商丘市柘城中学七年级(下)第二次月考数学试卷一、选择题(每题3分,共24分)1.实数、、π﹣3.14、中,无理数有()A.1个B.2个C.3个D.4个2.如图,已知OC⊥AB,OD平分∠AOC,D、O、E三点在同一条直线上,那么∠AOE等于()A.45° B.50° C.135°D.155°3.已知a>b,则下列不等式成立的是()A.a﹣c>b﹣c B.a+c<b+c C.ac>bc D.4.下列调查中需要做普查的是()A.了解一批炮弹的命中精度B.调查全国中学生的上网情况C.审查某文章中的错别字 D.考查某种农作物的长势5.如果关于x、y的方程组的解是负数,则a的取值范围是()A.﹣4<a<5 B.a>5 C.a<﹣4 D.无解6.若是关于x、y的二元一次方程ax﹣3y=1的解,则a的值为()A.﹣5 B.﹣1 C.2 D.77.如果不等式组有解,那么m的取值范围是()A.m>8 B.m<8 C.m≥8 D.m≤88.某种商品的进价为800元,出售标价为1200元,后来由于该商品积压,商店准备打折销售,要保证利润率不低于5%,该种商品最多可打()A.9折B.8折C.7折D.6折二、填空题(每小题3分,共24分)9.已知点M(x,y)与点N(﹣2,﹣3)关于x轴对称,则x+y= .10.若x2=16,则x= ;若x3=﹣8,则x= ;的平方根是.11.若关于x,y的二元一次方程组的解满足x+y=1,则k= .12.若A(2x﹣5,6﹣2x)在第四象限,求x的取值范围.13.若不等式(a﹣3)x>1的解集为x<,则a的取值范围是.14.如果不等式3x﹣m≤0的正整数解是1,2,3,那么m的范围是.15.一次数学基础知识竞赛共有30道题,规定答对一道题得4分,答错或不答一道题扣1分,在这次竞赛中,某同学获得优秀(90分或90分以上),则这位同学至少答对了道题.16.有甲乙丙三种商品,若购甲3件,乙2件,丙1件共需315元,购甲1件,乙2件,丙3件共需285元,那么购甲乙丙三种商品各一件共需元.三、解答题(共52分)17.(1)解方程组(2)解不等式组.18.方程组的解满足x+y<0,求m的取值范围.19.已知AD⊥BC,FG⊥BC,垂足分别为D、G,且∠1=∠2,猜想DE与AC有怎样的位置关系,试说明理由.20.在校园文化建设中,某学校原计划按每班5幅订购了“名人字画”共90幅.由于新学期班数增加,决定从阅览室中取若干幅“名人字画”一起分发,如果每班分4幅,则剩下17幅;如果每班分5幅,则最后一班不足3幅,但不少于1幅.(1)该校原有的班数是多少个?(2)新学期所增加的班数是多少个?21.中学生骑电动车上学的现象越来越受到社会的关注,为此某媒体记者小李随机调查了城区若干名中学生家长对这种现象的态度(态度分为:A:无所谓;B:反对;C:赞成)并将调査结果绘制成图①和图②的统计图(不完整)请根据图中提供的信息,解答下列问题.(1)此次抽样调査中,共调査了名中学生家长;(2)将图①补充完整;(3)持“赞成”态度所对应的圆心角的度数为;(4)根据抽样调查结果,请你估计我市城区80000名中学生家长中有多少名家长持反对态度?22.“节能环保,低碳生活”是我们倡导的一种生活方式.某家电商场计划用11.8万元购进节能型电视机、洗衣机和空调共40台.(1)在不超出现有资金的前提下,若购进电视机的数量和洗衣机的数量相同,空调的数量不超过电视机数量的三倍,请问有哪几种进货方案?(2)若三种电器在活动期间全部售出,则(1)中哪种方案可使商场获利最多?最大利润是多少?2015-2016学年河南省商丘市柘城中学七年级(下)第二次月考数学试卷参考答案与试题解析一、选择题(每题3分,共24分)1.实数、、π﹣3.14、中,无理数有()A.1个B.2个C.3个D.4个【考点】无理数.【分析】根据无理数、有理数的定义即可判定选择项.【解答】解:是分数是有理数;,π﹣3.14是无理数;=5,是整数,是有理数.故无理数有:,π﹣3.14共2个.故选B.2.如图,已知OC⊥AB,OD平分∠AOC,D、O、E三点在同一条直线上,那么∠AOE等于()A.45° B.50° C.135°D.155°【考点】垂线.【分析】首先根据OC⊥AB可得到∠AOC的度数,再根据角平分线的性质求出∠AOD的度数,最后根据∠AOE+∠AOD=180°可得到∠AOE的度数.【解答】解:∵OC⊥AB,∴∠AOC=90°,∵OD平分∠AOC,∴∠AOD=∠AOC=45°,∴∠AOE=180°﹣45°=135°,故选:C.3.已知a>b,则下列不等式成立的是()A.a﹣c>b﹣c B.a+c<b+c C.ac>bc D.【考点】不等式的性质.【分析】分别根据不等式的基本性质对各选项进行逐一分析即可.【解答】解:A、∵a>b,∴a﹣c>b﹣c,故此选项正确;B、∵a>b,∴a+c>b+c,故此选项错误;C、∵a>b,当c>0时,ac>bc,当c<0时,ac<bc,故此选项错误;D、∵a>b,当c>0时,>,当c<0时,<,故此选项错误.故选:A.4.下列调查中需要做普查的是()A.了解一批炮弹的命中精度B.调查全国中学生的上网情况C.审查某文章中的错别字 D.考查某种农作物的长势【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解一批炮弹的命中精度具有破坏性,应用抽样调查,故A错误;B、调查全国中学生的上网情况,费人力、物力和时间较多,应用抽样调查,故B错误;C、审查某文章中的错别字,调查结果比较准确,应用普查,故C正确;D、考查某种农作物的长势,具有破坏性,应用抽样调查,故D错误;故选C.5.如果关于x、y的方程组的解是负数,则a的取值范围是()A.﹣4<a<5 B.a>5 C.a<﹣4 D.无解【考点】解二元一次方程组;解一元一次不等式组.【分析】首先将第一个方程变换成x=3﹣y和y=3﹣x,然后代入第二个方程,用a分别表示x,y;根据x,y都是负数求解a的取值范围.【解答】解:将x=3﹣y代入第二个方程用a表示y得:y=﹣由于y<0;则a>5;将y=3﹣x代入第二个方程用a表示x得:x=,由于x<0;则a<﹣4;综合以上a无解.故选D.6.若是关于x、y的二元一次方程ax﹣3y=1的解,则a的值为()A.﹣5 B.﹣1 C.2 D.7【考点】二元一次方程的解.【分析】根据题意得,只要把代入ax﹣3y=1中,即可求出a的值.【解答】解:把代入ax﹣3y=1中,∴a﹣3×2=1,a=1+6=7,故选:D,7.如果不等式组有解,那么m的取值范围是()A.m>8 B.m<8 C.m≥8 D.m≤8【考点】不等式的解集.【分析】解出不等式组的解集,根据已知解集比较,可求出m的取值范围.【解答】解:∵不等式组有解∴m<x<8∴m<8m的取值范围为m<8.故选B.8.某种商品的进价为800元,出售标价为1200元,后来由于该商品积压,商店准备打折销售,要保证利润率不低于5%,该种商品最多可打()A.9折B.8折C.7折D.6折【考点】一元一次不等式的应用.【分析】利润率不低于5%,即利润要大于或等于800×5%元,设商品最多打x折,根据打折之后利润率不低于5%,列不等式求解.【解答】解:设商品打x折,由题意得,1200×0.1x﹣800≥800×5%,解得:x≥7.即商品最多打7折.故选C.二、填空题(每小题3分,共24分)9.已知点M(x,y)与点N(﹣2,﹣3)关于x轴对称,则x+y= 1 .【考点】关于x轴、y轴对称的点的坐标.【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y).【解答】解:根据题意,得x=﹣2,y=3.∴x+y=1.10.若x2=16,则x= ±4 ;若x3=﹣8,则x= ﹣2 ;的平方根是.【考点】立方根;平方根.【分析】用直接开平方法进行解答;用直接开立方法进行解答;先求出的结果为3,再根据平方根的定义求解.【解答】解:若x2=16,则x=±4;若x3=﹣8,则x=﹣2;=3,3的平方根是±.故答案为:±4;﹣2;±.11.若关于x,y的二元一次方程组的解满足x+y=1,则k= 2 .【考点】二元一次方程组的解.【分析】直接将方程组中两方程相加得出3x+3y=3k﹣3,进而求出k的值.【解答】解:∵关于x,y的二元一次方程组的解满足x+y=1,∴3x+3y=3k﹣3,∴x+y=k﹣1=1,解得:k=2.故答案为:2.12.若A(2x﹣5,6﹣2x)在第四象限,求x的取值范围x>3 .【考点】点的坐标;解一元一次不等式组.【分析】根据平面直角坐标系中各个象限的点的坐标的符号特点:第四象限(+,﹣)解题.【解答】解:∵A(2x﹣5,6﹣2x)在第四象限,∴,解得x>3.故答案为x>3.13.若不等式(a﹣3)x>1的解集为x<,则a的取值范围是a<3 .【考点】不等式的解集.【分析】根据不等式的性质可得a﹣3<0,由此求出a的取值范围.【解答】解:∵(a﹣3)x>1的解集为x<,∴不等式两边同时除以(a﹣3)时不等号的方向改变,∴a﹣3<0,∴a<3.故答案为:a<3.14.如果不等式3x﹣m≤0的正整数解是1,2,3,那么m的范围是9≤m<12 .【考点】一元一次不等式的整数解.【分析】先求出不等式的解集,再根据其正整数解列出不等式,解此不等式即可.【解答】解:解不等式3x﹣m≤0得到:x≤,∵正整数解为1,2,3,∴3≤<4,解得9≤m<12.故答案为:9≤m<12.15.一次数学基础知识竞赛共有30道题,规定答对一道题得4分,答错或不答一道题扣1分,在这次竞赛中,某同学获得优秀(90分或90分以上),则这位同学至少答对了24 道题.【考点】一元一次不等式的应用.【分析】根据题意,设至少答对了x题,则答对获得的分数为4x,而答错损失的分数为30﹣x,由这次竞赛中,某同学获得优秀(90分或90分以上),列出不等式求解即可.【解答】解:设至少答对了x题,那么答错或者不答的有(30﹣x)题4x﹣(30﹣x)≥90解得x≥24答:至少答对了24题.故答案为:24.16.有甲乙丙三种商品,若购甲3件,乙2件,丙1件共需315元,购甲1件,乙2件,丙3件共需285元,那么购甲乙丙三种商品各一件共需150 元.【考点】三元一次方程组的应用.【分析】先设一件甲商品x元,乙y元,丙z元,然后根据题意列出方程,然后依据用加减法整体求解即可.【解答】解:设一件甲商品x元,乙y元,丙z元.根据题意得:①+②得:4x+4y+4z=600,所以x+y+z=150,故答案为:150.三、解答题(共52分)17.(1)解方程组(2)解不等式组.【考点】解一元一次不等式组;解二元一次方程组.【分析】(1)①×2+②×3得到一个关于x的方程,求出x,把x的值代入②求出y即可.(2)先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:,①×2+②×3得:13x=26,∴x=2,把x=2代入②,得6﹣2y=8,y=﹣1,∴方程组的解是(2)∵解不等式①得:x>﹣6,解不等式②得:x<6,∴不等式组的解集为﹣6<x<6.18.方程组的解满足x+y<0,求m的取值范围.【考点】解二元一次方程组;解一元一次不等式.【分析】分别求得用m表示的x,y的值,根据两个数的和为负数可得m的值.【解答】解:①×2得4x+2y=2+6m③③﹣②得3x=1+7m,解得x=,把x=代入②得2y=1﹣m﹣,解得2y=,y=,∵x+y<0,∴+<0,<0,∴2+2m<0,∴m<﹣1.19.已知AD⊥BC,FG⊥BC,垂足分别为D、G,且∠1=∠2,猜想DE与AC有怎样的位置关系,试说明理由.【考点】平行线的判定与性质;垂线.【分析】先根据垂线的定义得到∠ADG=∠FGC=90°,则根据同位角相等,两直线平行得到AD∥FG,接着根据两直线平行,同位角相等得∠1=∠CAD,由于∠1=∠2,所以∠CAD=∠2,然后根据内错角相等,两直线平行即可得到DE∥AC.【解答】解:DE∥AC.理由如下:∵AD⊥BC,FG⊥BC,∴∠ADG=∠FG C=90°,∴AD∥FG,∴∠1=∠CAD,∵∠1=∠2,∴∠CAD=∠2,∴DE∥AC.20.在校园文化建设中,某学校原计划按每班5幅订购了“名人字画”共90幅.由于新学期班数增加,决定从阅览室中取若干幅“名人字画”一起分发,如果每班分4幅,则剩下17幅;如果每班分5幅,则最后一班不足3幅,但不少于1幅.(1)该校原有的班数是多少个?(2)新学期所增加的班数是多少个?【考点】一元一次不等式组的应用.【分析】(1)根据每班5幅订购了“名人字画”共90幅,可得原有18个班;(2)设增加后的班数为x,则“名人字画”有4x+17,再由每班分5幅,则最后一班不足3幅,但不少于1幅,可得出不等式组,解出即可.【解答】解:(1)原有的班数为: =18个;(2)设增加后的班数为x,则“名人字画”有4x+17,由题意得,,解得:19<x≤21,∵x为正整数,∴x可取20,21,故新学期所增加的班数为2个或3个.21.中学生骑电动车上学的现象越来越受到社会的关注,为此某媒体记者小李随机调查了城区若干名中学生家长对这种现象的态度(态度分为:A:无所谓;B:反对;C:赞成)并将调査结果绘制成图①和图②的统计图(不完整)请根据图中提供的信息,解答下列问题.(1)此次抽样调査中,共调査了200 名中学生家长;(2)将图①补充完整;(3)持“赞成”态度所对应的圆心角的度数为54°;(4)根据抽样调查结果,请你估计我市城区80000名中学生家长中有多少名家长持反对态度?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用无所谓的人数除以其所占的百分比即可得到调查的总数;(2)用总数减去A、B两种态度的人数即可得到C态度的人数;(3)根据题意即可得出结果;(4)用家长总数乘以持反对态度的百分比即可.【解答】解:(1)调查中学生家长总数为:50÷25%=200人.故答案为200;(2)持赞成态度的学生家长有200﹣50﹣120=30人,图①补充图为:(3)360°×=54°,故答案为:54°;(4)持反对态度的家长有:80000×60%=48000(名).22.“节能环保,低碳生活”是我们倡导的一种生活方式.某家电商场计划用11.8万元购进节能型电视机、洗衣机和空调共40台.不超过电视机数量的三倍,请问有哪几种进货方案?(2)若三种电器在活动期间全部售出,则(1)中哪种方案可使商场获利最多?最大利润是多少?【考点】一次函数的应用.【分析】(1)设购进电视机x台,则洗衣机是x台,空调是(40﹣2x)台,根据空调的数量不超过电视机的数量的3倍,且x以及40﹣2x都是非负整数,即可确定x的范围,从而确定进货方案;(2)首先得出利润w与x的函数关系式,根据函数的性质,即可确定w的最大值,即可得出答案.【解答】解:(1)设购进电视机x台,则洗衣机是x台,空调是(40﹣2x)台,根据题意得:,解得:8≤x≤10,根据x是整数,则从8到10共有3个正整数,分别是8、9、10,因而有3种方案:方案一:电视机8台、洗衣机8台、空调24台;方案二:电视机9台、洗衣机9台、空调22台;方案三:电视机10台、洗衣机10台、空调20台.(2)三种电器在活动期间全部售出的利润为:w=x+x+(40﹣2x),=500x+160x+12000﹣600x=60x+12000,由一次函数性质可知:当x=10最大时,取到最大利润,最大利润是:12600元.。