数学建模聚类分析
数学建模-聚类分析46页PPT

6、法律的基础有两个,而且只有两个……公平和实用。——伯克 7、有两种和平的暴力,那就是法律和礼节。——歌德
8、法律就是秩序,有好的法律才有好的秩序。——亚里士多德 9、上帝把法律和公平凑合在一起,可是人类却把它拆开。——查·科尔顿 10、一切法律都是无用的,因为好人用不着它们,而坏人又不会因为它们而变得规矩起来。——德谟耶克斯
数学建模聚类分析

层次聚类
要点一
总结词
一种基于距离的聚类算法,通过构建层次结构来对数据进 行聚类。
要点二
详细描述
层次聚类算法的基本思想是,通过不断将相近的数据点合 并成新的集群,或者将现有的集群分裂成更小的集群,来 构建一个层次结构。算法首先将每个数据点视为一个独立 的集群,然后按照距离的远近逐步合并或分裂集群,直到 达到预设的停止条件。层次聚类算法有多种,其中最常用 的是凝聚层次聚类和分裂层次聚类。
密度峰值聚类
总结词
一种基于密度的聚类算法,通过识别密度峰值点来对 数据进行聚类。
详细描述
密度峰值聚类算法的基本思想是,通过识别数据集中的 密度峰值点来对数据进行聚类。算法首先计算每个数据 点在其邻域内的密度,并将密度最大的点视为密度峰值 点。然后,算法将每个密度峰值点作为中心点,将与其 相近的数据点归入同一个集群。通过这种方式,密度峰 值聚类算法能够识别出任意形状的集群,并处理异常值 和噪声点。与DBSCAN算法相比,密度峰值聚类算法 的计算复杂度较低,因此在处理大规模数据集时具有更 好的性能。
DBSCAN聚类
总结词
一种基于密度的聚类算法,通过识别高密度区域和低 密度区域来对数据进行聚类。
详细描述
DBSCAN聚类算法的基本思想是,通过识别高密度区 域和低密度区域来对数据进行聚类。算法首先从任意一 个未被访问过的数据点开始,搜索其邻域内的所有点, 如果邻域内的点数超过预设的阈值,则将该点标记为核 心点,并将其所在区域视为一个集群。然后,算法继续 搜索核心点的邻域内的点,并将这些点标记为边界点和 噪声点。通过这种方式,DBSCAN算法能够识别出任 意形状的集群,并处理异常值和噪声点。
通过分析不同群体的用户特征和行为模式,电商企业可以 制定更加精准的营销策略和个性化推荐方案,提高用户满 意度和忠诚度。
聚类分析在数学建模中的应用

聚类分析在数学建模中的应用聚类分析是一种无监督学习方法,主要用于发现数据中的潜在分组或模式。
它在数学建模中起着重要的作用,能够帮助研究人员在未知的数据集中发现隐藏的结构和关联。
本文将介绍聚类分析在数学建模中的应用,并详细讨论其几个典型的应用场景。
1.生物医学研究中的应用:聚类分析在生物医学研究中被广泛应用于基因表达数据、蛋白质相互作用网络、疾病分类等方面。
例如,基因表达数据通常具有高维度和复杂性,聚类分析可以将不同的基因分组,找到相关基因集合,从而帮助研究人员发现与特定疾病相关的生物过程和信号通路。
在药物研发过程中,聚类分析还可以帮助研究人员识别潜在药物靶点和候选靶向药物。
2.社交网络分析中的应用:聚类分析在社交网络分析中发挥着重要作用。
通过对社交网络数据进行聚类分析,可以将社交网络中的用户划分为不同的群体或社区,并发现隐藏的社交群体结构。
这可以帮助研究人员了解社交网络用户的行为、兴趣和关系,并为灵活的社交网络设计和推荐系统提供支持。
3.图像分析中的应用:聚类分析在图像分析中也有广泛的应用。
通过对图像数据进行聚类分析,可以将图像分组为具有相似特征的集合,从而实现图像分类、图像和图像压缩等任务。
例如,对于大规模的图像库,聚类分析可以帮助研究人员将图像分组为具有相似主题或特征的集合,从而提高图像的效率和精度。
4.金融风险管理中的应用:聚类分析在金融风险管理中也有着重要的应用。
通过对风险因素进行聚类分析,可以帮助金融机构识别风险因素的潜在结构和关联,并评估不同风险因素之间的相互作用。
这对于制定有效的风险管理策略和规避潜在风险非常重要。
例如,聚类分析可以帮助银行发现具有相似信用风险的客户群体,并采取相应的措施来降低风险。
5.消费者行为分析中的应用:聚类分析在消费者行为分析中也有重要的应用。
通过对消费者数据进行聚类分析,可以将消费者划分为不同的行为类型或偏好群体,并发现不同群体之间的行为模式和趋势。
这可以帮助企业了解消费者的需求和喜好,并制定相应的市场营销策略。
数学建模-聚类分析

满足输出;不满足循环;
(7)重复;
初始聚类中心的选择
初始聚类中心的选取决定着计算的迭代 次数,甚至决定着最终的解是否为全局最优, 所以选择一个好的初始聚类中心是很有必要 的。
(1)方法一:选取前k个样品作为初始凝聚点。
(2)方法二: 选择第一个样本点作为第一个聚类 中心。然后选取距离第一个点最远的点作为第二个 聚 类中心。……
数据变换:进行[0,1]规格化得到
初始类个数的选择; 初始类中心的选择;
设k=3,即将这15支球队分成三个集团。现抽取日 本、巴林和泰国的值作为三个类的种子,即初始化三 个类的中心为 A:{0.3, 0, 0.19}; B:{0.7, 0.76, 0.5}; C:{1, 1, 0.5};
样品到类中心的距离; 归类;
计算所有球队分别对三个中心点的欧氏 距离。下面是用程序求取的结果:
第一次聚类结果: A:日本,韩国,伊朗,沙特; B:乌兹别克斯坦,巴林,朝鲜; C:中国,伊拉克,卡塔尔,阿联酋,泰 国,越南,阿曼,印尼。
重新计算类中心;
下面根据第一次聚类结果,采用k-均值法调整各个类的 中心点。
A类的新中心点为:{(0.3+0+0.24+0.3)/4=0.21,
数据变换
(5)极差正规化变换:
x*ij
=
xij
min 1t n
xij
Rj
i 1,,2,...,,n; j 1,..., m
(6)对数变换x*:ij = log xij
i 1,,2,...,,n; j 1,..., m
k
样品间的距离
(1)绝对值距离:
m
dij
xit x jt
t 1
聚类分析(数学建模)

分类
俗语说,物以类聚、人以群分。 但什么是分类的根据呢? 比如,要想把中国的县分成若干类,就有很多 种分类法; 可以按照自然条件来分, 比如考虑降水、土地、日照、湿度等各方面; 也可以考虑收入、教育水准、医疗条件、基础 设施等指标; 既可以用某一项来分类,也可以同时考虑多项 指标来分类。
应用范围有限,要求用户制定分类数目(要告知),只能对 观测量(样本)聚类,而不能对变量聚类,且所使用的聚类变 量必须都是连续性变量。
数据标准化处理:
存储中间过程数据
数据标准 化处理, 并存储。
指定5类
收敛标准值
存储最终结果输出情况,在数据文件中(QCL-1、QCL-2)
初始聚心选项,输出方差分析表
得到矩阵
G 7 G 8 D3 G 7 0 G8 12 .80 0
最后合并为一个大类。这就是按最短距离定义类间距离的 系统聚类方法。最长距离法类似!
最长距离(Furthest Neighbor )
• x11• •
x21•
d12
• • •
•
20
组间平均连接(Between-group Linkage)
系统聚类法
Hierarchical Cluster
系统聚类法优点: 既可以对观测量(样品)也可对变量进行 聚类,既可以连续变量也可以是分类变量,提 供的距离计算方法和结果显示方法也很丰富。
聚类分析
1、系统聚类法------(分层聚类)系统聚类法是应 用最广泛的一种(Hierarchical Cluster过程) 1)、 聚类原则:都是相近的聚为一类,即距 离最近或最相似的聚为 一类。 2)、 分层聚类的方法可以用于样本聚类(Q) 型,也可以用于变量聚类(R型)。
数学建模聚类分析

用的类与类之间距离的定义。
1 、最短距离(Nearest Neighbor)
x11• x12•
x21• x22•
Dpq D(Gp ,Gq ) min dij i Gp , j Gq
即定义 G p 与 Gq 之间的距离为 G p 与 Gq 中最近的两个样品的距
x1, y1
x2, y2
•
•
设聚类到某一步,类p与 q分别有样品 n p 、nq 个,
将p和q合并为k,则k类的样品个数为 nk n p nq
它的重心是
1
xk nk np xp nq xq
某一类 r 的重心是 xr ,它与新类k的距离是
min D(G p , Gk ), D(Gq , Gk )
最短距离法进行聚类分析的步骤如下:
开始各样本自成一类
1、根据样品的特征,规定样品之间的距离 ,共 有 个。将所有列表,记为D(0)表,该表是一张 对称表。所有的样本点各自为一类。
2、选择D(0)表中最小的非零数,不妨假设 ,
于是将 和 合并为一类,记为
nine
ni
ten
ti
ni
negen neun
neuf nueve
nove dziewiec kilenc yhdeksan
ni
tien zehn
dix
diez dieci dziesiec tiz kymmenen
选择适用的距离
在聚类分析中通常要结合实际问题来选择适用的 距离, 有时应根据实际问题定义新的距离,
的距离来衡量各样品点之间的接近程度。
样品 xi 和 x j之间的距离 d (xi , x j ), 一般应满足如下条件:
聚类分析(数学建模)

三、系统聚类法基本步骤
1. 选择样本间距离的定义及类间距离的定义;
2. 计算n个样本两两之间的距离,得到距离矩阵
D
3. 构造个类,每类只含有一个样本;
d ij
4. 合并符合类间距离定义要求的两类为一个新类;
5. 计算新类与当前各类的距离。若类的个数为1,则转 到步骤6,否则回到步骤4;
青海 5 12.80 23.54 3.51 2.21 0
因此将3.4合并为一类,为类6,替代了3、4两类 类6与剩余的1、2、5之间的距离分别为:
d(3,4)1=min(d31,d41)=min(13.80,13.12)=13.12 d(3,4)2=min(d32,d42)=min(24.63,24.06)=24.06 d(3,4)5=min(d35,d45)=min(3.51,2.21)=2.21
得到矩阵
G7 G8
D3 G7 0
G8 12.80 0
最后合并为一个大类。这就是按最短距离定义类间距离的 系统聚类方法。最长距离法类似!
最长距离(Furthest Neighbor )
•
x11•
d12
•
•
x21•
• •
•
26
组间平均连接(Between-group Linkage)
聚类分析把分类对象按一定规则分成若干 类,这些类非事先给定的,而是根据数据 特征确定的。在同一类中这些对象在某种 意义上趋向于彼此相似,而在不同类中趋 向于不相似。
职能是建立一种能按照样品或变量的相似 程度进行分类的方法。
聚类分析
对于一个数据,人们既可以对变量(指标)进行 分类(相当于对数据中的列分类),也可以对观测值 (事件,样品)来分类(相当于对数据中的行分 类)。
数学建模聚类分析

聚类模型聚类,或称分集,即所谓“物以类聚”,它是按某种相似规则对给定样本集、指标簇进行某种性质的划分,使之成为不同的类.将数据抽象化为样本矩阵()ij n m X X ⨯=,ij X 表示第i 个样本的第j 个变量的值.聚类目的,就是从数据出发,将样本或变量分成类.其方法大致有如下几个.(1) 聚类法.即谱系聚类法.将n 个样本看成n 类,将性质最接近的两类并为一新类,得1-n 类;再从1-n 类中找出最接近的两类加以合并,得2-n 类;继之,最后所有样本都成一类,得一聚类谱系,从谱系中可确定划分多少类,每类含有哪些样本.(2) 分解法.它是系统聚类的逆过程,将所有样本视为一类,按某种最优准则将它分成两类,继之,每一类都分到只含一个样本为止.(3) 动态聚类.即快速聚类法.将n 个样本粗糙地分成若干类,然后用某中最优准则进行调整,直至不能调整为止.(4) 有序样本聚类.按时间顺序,聚在一类的样本必须是次序相邻的样本.(5) 模糊聚类.它是将模糊数学用于样本聚类.(6) 运筹学聚类.它是将聚类问题化为线性规划、动态规划、整数规划模型的聚类.(7) 神经网络聚类.它是将样本按自组织特征映射的方法进行,也是我们要加以叙述的一个重点.(8) 预测中聚类.它是聚类在预测中的应用,以弥补非稳定信号回归的预测与分析.这里主要介绍谱系聚类法和快速聚类法. 一、距离定义样本矩阵()ij n m X x ⨯=,是m 维空间中n 个点,以距离量度样本之间的贴近度,就是距离聚类方法.最常用的第i 个与第j 个样本的明考斯基距离为p mk p jk ik ij x x d /11)||(∑=-=式中p 为一正整数.当2=p , ij d 就是欧几里德距离;当1=p ,ij d 就是绝对距离,或称“城市街道”距离.而切比雪夫距离为||max 1jk ik mk ij x x d -=≤≤设m m C ⨯是变量的协方差矩阵,i x ,j x 为第i 行与第j 行m 个变量构成的向量,则马哈兰罗比斯距离定义为1()()T ij i j i j d x x C x x -=-- 根据距离的定义,就获得距离矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n n n n d d d d d d d d d d 212222111211 由距离性质可知,d 为实对称矩阵,ij d 越小,两样本就越相似,其中01211====nn d d d ,根据)(j i d ij ≠的n 个点分类,依聚类准则分为不同的类.对d 常用的系统聚类准则有: (1) 最短距离; (2) 最长距离; (3) 质心距离; (4) 平均距离;(5) 平方距离.根据我们讲述的多弹头导弹要求,这里以最短距离为例加以简要分析.其它几种距离的分析可见参考文献错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有时所用的距离不满足(ⅲ), 但在广义的角度上仍称为距
离。常用的距离有如下几种:
1、绝对距离(Block距离)
p
dij xik x jk k 1
2、欧氏距离(Euclidean distance)
显然,本例无法直接用上述公式来计算距离。但 可以发现前三种文字(英、挪、丹)很相似,
特别是每个单词的第一个字母。可以用10个数词 中第一个字母不同的个数来定义两种语言之间的距离。 例如:英语和挪威语中只有1和8的第一个字母不同, 则它们之间的距离为2。
E N Da Du G Fr Sp I P H Fi E0 N 20 Da 2 1 0 Du 7 5 6 0 G 6 45 5 0 Fr 6 6 6 9 7 0 Sp 6 6 5 9 7 2 0 I 6 6 5 9 7 110 P 7 7 6 10 8 5 3 4 0 H 9 8 8 8 9 10 10 10 10 0 Fi 9 9 9 9 9 9 9 9 9 8 0
当样品进行聚类时,“靠近”往往是距离。 同时对指标进行聚类时,根据相关系数或某种 关联性度量来聚类。
Q型样品间的“相似性”度量—距离
设每个样品有 p 个指标, 观察值记为
xi (x1i , x2i ,, xpi )T , i 1,2,, n
(1)
每个样品 xi 可看成是 p 维空间的一个点。于是, 可用各点之间
ot
viisi
six
seks
seks
zex sechs
six
seix
sei
szesc
hat
huusi
seven
sju
syv
zeven sieben
sept
siete
sette sieden
het seitseman
eight
atte
otte
acht
acht
huit ocho
otto osiem nyolc kahdeksan
dwa ketto kaksi
three
tre
tre
drie
drei
trios
tres
tre
trzy harom kolme
four
fire
fire
vier
vier quatre cuatro quattro cztery negy neua
five
fem
fem
vijf
funf
cinq cinco cinque piec
影响,可对数据标准化。
5.数据的标准化
xij
xij x j Sj
,
其中xj和S j是第j个指标的均值和样本标准差
6.马氏距离
di2j (M ) (x(i) x( j) ) ' S 1(x(i) x( j) )
例1 欧洲各国的语言有许多相似之处,有的十分 相似。为了研究这些语言的历史关系,也许通过比较 他们数字的表达式比较恰当。表列举出英语,挪威语, 丹麦语,荷兰语,德语,法语,西班牙语,意大利语, 波兰语,匈牙利语和芬兰语的1,2,…,10的拼法,希望 计算这11种语言之间的语言的距离.
基本思想
按相似程度的大小 把关系密切的样品聚合到一个小的分类单位, 关系疏远的样品聚合到一个大的分类单位, 直到把所有的样品(或指标)都聚合完毕。
把不同的类型一一划分出来, 形成一个由小到大 的分类系统。再把整个分类系统画成一张分群图(又 称谱系图), 用它把所有样品(或指标)间的亲疏关系 表示出来。
nine
ni
ten
ti
ni
negen neun
neuf nueve
nove dziewiec kilenc yhdeksan
ni
tien zehn
dix
diez dieci dziesiec tiz kymmenen
选择适用的距离
在聚类分析中通常要结合实际问题来选择适用的 距离, 有时应根据实际问题定义新的距离,
聚类分析
一、聚类分析(Cluster Analysis)简介
聚类分析是直接比较各事物之间的性质,将性质相 近的归为一类,将性质差别较大的归入不同的类的分析 技术。
数理统计中的数值分类有两种问题: • 判别分析:已知分类情况,将未知个体归入正确类别 • 聚类分析:分类情况未知,对数据结构进行分类
基本思想
1
d ij
p
( xik
x
jk
)2
2
k 1
3、明考斯基距离(Minkowski)
1
dij
p
( xik
x
jk
)
q
q
k 1
ቤተ መጻሕፍቲ ባይዱ
4、切比雪夫距离(Chebychev)
dij
()
max
1k p
xik
x jk
以上距离与各变量的量纲有关,为了消除量纲的
的距离来衡量各样品点之间的接近程度。
样品 xi 和 x j之间的距离 d (xi , x j ), 一般应满足如下条件:
(ⅰ) d (xi , x j ) 0 , 且 d (xi , x j ) 0 时当且仅当 xi x j ; (ⅱ) d (xi , x j ) d (x j , xi );
R型是对变量进行分类处理,其作用在于: 1. 可以了解变量间及变量组合间的亲疏关系 2. 可以根据变量的聚类结果及它们之间的关系, 选择主要变量进行回归分析或Q型聚类分析
2 相似性度量
进行“相关性”或“相似性”度量。在相似性 度量中常常包含有许多主观上的考虑,但是最重要 的是考虑指标性质或观测的尺度。
11种欧洲语言的数词
英语 挪威语 丹麦语 荷兰语 德语
(E)
(N)
(Da) (Du)
(G)
one
en
en
een
ein
法语 西班牙语 意大利语 波兰语 匈牙利语 芬兰语
(Fr)
(S)
(I)
(P)
(H)
(Fi)
un
uno
uno jeden
egy
yksi
two
to
to
twee
zwei
deux
dos
duc
二、聚类对象
要做聚类分析,首先得按照我们聚类的目的,从 对象中提取出能表现这个目的的特征指标;然后根据 亲疏程度进行分类。
聚类分析根据分类对象的不同可分为Q型和R型两大类
Q型是对样本进行分类处理,其作用在于: 1. 具有共同特点的样本聚在一起 2. 所得结果比传统的定性分类方法更细致、全面、 合理
聚类分析的基本思想: 对所研究的样品或指标 (变量)之间存在着程度不同的相似性(或亲疏关系)。 (1)根据一批样品的多个指标, 具体找出一些能够 度量样品或指标之间的相似程度的统计量。 (2)以这些统计量为分类的依据, 把一些相似程度 较大的样品(或指标)聚合为一类。
把另一些彼此之间相似程度较大的样品(或指标) 聚合为另一类。