概率论选做习题题解
概率论部分习题解答与提示、典型例题选讲
/ n
200
由于 u 1.875u1 1.645, 从而否定原假设 H 0 , 接受备择假设 H1, 即认为新工艺事
实上提高了灯管的平均寿命.
11
2.方差 2 未知情形 例 3 水泥厂用自动包装机包装水泥, 每袋额定重量是 50kg, 某日开工后随机抽查了 9 袋, 称得重量如下:
49.6 49.3 50.1 50.0 49.2 49.9 49.8 51.0 50.2 设每袋重量服从正态分布,问包装机工作是否正常 ( 0.05)?
解 (1) 建立假设 H0 : 50, H1 : 50.
(2) 选择统计量T X 0 ~ t(n 1). Sn / n 1
(3) 对于给定的显著性水平 , 确定 k, 使 P{| T |k} 查 t 分布表得 k t1 /2 t0.975 (8) 2.306, 从而拒绝域为 | t | 2.306.
570, 2 82 ; 今换了一批材料, 从性能上看估计折断力的方差 2 不会有什么变化 (即
仍有 2 82 ), 但不知折断力的均值 和原先有无差别. 现抽得样本, 测得其折断力为:
578 572 570 568 572 570 570 572 596 584
取 0.05, 试检验折断力均值有无变化?
本例中 0 21.5, n 6, 对于给定的显著性水平 0.05, 查附表得
t1 (n 1) t0.95 (5) 2.015.
再据测得的 6 个寿命小时数算得: x 20, sn*2 10.
由此计算 t x 0 20 21.5 6 1.162.
sn* / n
10
因为 t 1.162 2.015 t0.95 (5), 所以不能否定原假设 H 0 , 从而认为这种类型电池的
概率论练习题与解析
概率论练习题与解析十、概率论与数理统计一、填空题1、设在一次试验中,事件A 发生的概率为p 。
现进行n 次独立试验,则A 至少发生一次的概率为np )1(1--;而事件A 至多发生一次的概率为1)1()1(--+-n n p np p 。
2、 三个箱子,第一个箱子中有4个黑球1个白球,第二个箱子中有3个黑球3个白球,第三个箱子有3个黑球5个白球。
现随机地取一个箱子,再从这个箱子中取出1个球,这个球为白球的概率等于 。
已知取出的球是白球,此球属于第二个箱子的概率为 。
解:用iA 代表“取第i 只箱子”,i =1,2,3,用B 代表“取出的球是白球”。
由全概率公式⋅=⋅+⋅+⋅=++=12053853*********)|()()|()()|()()(332211A B P A P A B P A P A B P A P B P由贝叶斯公式⋅=⋅==5320120536331)()|()()|(222B P A B P A P B A P3、 设三次独立试验中,事件A 出现的概率相等。
若已知A 至少出现一次的概率等于19/27,则事件A 在一次试验中出现的概率为 。
解:设事件A 在一次试验中出现的概率为)10(<<p p ,则有2719)1(13=--p ,从而解得31=p4、已知随机事件A 的概率5.0)(=A P ,随机事件B 的概率6.0)(=B P 及条件概率8.0)|(=A B P ,则和事件B A Y 的概率)(B A P Y = 。
7.08.05.06.05.0)|()()()()()()()(=⨯-+=-+=-+=A B P A P B P A P AB P B P A P B A P Y 5、 甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5。
现已知目标被命中,则它是甲射中的概率为 。
用A 代表事件“甲命中目标”,B 代表事件“乙命中目标”,则B A Y 代表事件“目标被命中”,且8.06.05.06.05.0)()()()()()()()(=⨯-+=-+=-+=B P A P B P A P AB P B P A P B A P Y所求概率为75.08.06.0)()()|(===B A P A P B A A P Y Y6、 设随机事件A ,B 及其和事件B A Y 的概率分别是0.4,0.3和0.6。
概率论和数理统计练习题与答案解析
概率论与数理统计练习题集及答案一、选择题:1.某人射击三次,以i A 表示事件“第i 次击中目标〞,则事件“三次中至多击中目标一次〞的正确表示为〔 〕〔A 〕321A A A ++ 〔B 〕323121A A A A A A ++ 〔C 〕321321321A A A A A A A A A ++ 〔D 〕321A A A2.掷两颗均匀的骰子,它们出现的点数之和等于8的概率为〔 〕 〔A 〕365 〔B 〕364 〔C 〕363 〔D 〕3623.设随机事件A 与B 互不相容,且0)(,0)(>>B P A P ,则〔 〕〔A 〕)(1)(B P A P -= 〔B 〕)()()(B P A P AB P = 〔C 〕1)(=+B A P 〔D 〕1)(=AB P4.随机变量X 的概率密度为⎩⎨⎧<≥=-00)(2x x ce x f x ,则=EX 〔 〕〔A 〕21〔B 〕1 〔C 〕2 〔D 〕41 5.以下各函数中可以作为某随机变量的分布函数的是〔 〕〔A 〕+∞<<∞-+=x x x F ,11)(21 〔B 〕⎪⎩⎪⎨⎧≤>+=001)(2x x x x x F 〔C 〕+∞<<∞-=-x e x F x ,)(3 〔D〕+∞<<∞-+=x x x F ,arctan 2143)(4π6.随机变量X 的概率密度为)(x f X ,令X Y 2-=,则Y 的概率密度)(y f Y 为〔 〕〔A 〕)2(2y f X - 〔B 〕)2(y f X - 〔C 〕)2(21yf X --〔D 〕)2(21y f X -7.二维随机向量),(Y X 的分布及边缘分布如表hgp fe d x c b a x p y y y XY Y jX i 61818121321,且X 与Y 相互独立,则=h 〔 〕〔A 〕81 〔B 〕83 〔C 〕41 〔D 〕31 8.设随机变量]5,1[~U X ,随机变量)4,2(~N Y ,且X 与Y 相互独立,则=-)2(Y XY E 〔 〕〔A 〕3 〔B 〕6 〔C 〕10 〔D 〕129.设X 与Y 为任意二个随机变量,方差均存在且为正,假设EYEX EXY ⋅=,则以下结论不正确的选项是〔 〕〔A 〕X 与Y 相互独立 〔B 〕X 与Y 不相关 〔C 〕0),cov(=Y X 〔D 〕DY DX Y X D +=+)(答案:1. B2. A3.D4.A5.B6. D7. D8. C9. A1.某人射击三次,以i A 表示事件“第i 次击中目标〞,则事件“三次中恰好击中目标一次〞的正确表示为〔 C 〕 〔A 〕321A A A ++ 〔B 〕323121A A A A A A ++ 〔C 〕321321321A A A A A A A A A ++ 〔D 〕321A A A2.将两封信随机地投入4个邮筒中,则未向前两个邮筒中投信的概率为〔 A 〕〔A 〕2242 〔B 〕2412C C 〔C 〕24!2A 〔D 〕!4!23.设随机事件A 与B 互不相容,且0)(,0)(>>B P A P ,则〔 D 〕 〔A 〕)()|(A P B A P = 〔B 〕)()()(B P A P AB P = 〔C 〕)()()|(B P A P B A P = 〔D 〕0)|(=B A P4.随机变量X 的概率密度为⎩⎨⎧∈=其他),0(2)(a x x x f ,则=EX 〔 A 〕 〔A 〕32〔B 〕1 〔C 〕38 〔D 〕316 5.随机变量X 的分布函数⎩⎨⎧≤>+-=-0)1()(x x e x A x F x,则=A 〔 B 〕 〔A 〕0 〔B 〕1 〔C 〕2 〔D 〕3 6.随机变量X 的概率密度为)(x f X ,令X Y 3-=,则Y 的概率密度)(y f Y 为〔 D 〕〔A 〕)3(3y f X - 〔B 〕)3(yf X - 〔C 〕)3(31y f X -- 〔D 〕)3(31y f X - 7.二维随机向量),(Y X 的分布及边缘分布如表hgp fe d x c b a x p y y y XY Y jX i 61818121321,且X 与Y 相互独立,则=e 〔 B 〕〔A 〕81〔B 〕41 〔C 〕83 〔D 〕31 8.设随机变量Y X ,相互独立,且)5.0,16(~b X ,Y 服从参数为9的泊松分布,则=+-)12(Y X D 〔 C 〕〔A 〕-14 〔B 〕13 〔C 〕40 〔D 〕41 9.设),(Y X 为二维随机向量,则X 与Y 不相关的充分必要条件是〔 D 〕〔A 〕X 与Y 相互独立 〔B 〕EY EX Y X E +=+)( 〔C 〕DY DX DXY ⋅= 〔D 〕EY EX EXY ⋅= 一、填空题A ,B 是两个随机事件,5.0)(=A P ,8.0)(=+B A P ,)1(假设A 与B 互不相容,则)(B P = ;)2(假设A 与B 相互独立,则)(B P = .2.一袋中装有10个球,其中4个黑球,6个白球,先后两次从袋中各取一球〔不放回〕.第一次取出的是黑球,则第二次取出的仍是黑球的概率为 .X 的概率分布为}{k a k X P 3==, ,2,1=k ,则常数=a . X 的分布函数为 则常数=a ,}31{<<X P = .X 的概率分布为则)33(2+X E = .6.如果随机变量X 服从],[b a 上的均匀分布,且3)(=X E ,34)(=X D ,则a = ,b = .X ,Y 相互独立,且都服从参数为6.0的10-分布,则}{Y X P == .X ,Y 是两个随机变量,2)(=X E ,20)(2=X E , 3)(=Y E ,34)(2=Y E ,5.0=XY ρ,则)(Y X D - = .答案:1. 3.0,6.0 2. 313. 414.41,435. 5.46. 1,57. 8. 21A ,B 是两个随机事件,3.0)(=A P ,)()(B A P AB P =,则)(B P = .2.甲、乙、丙三人在同一时间分别破译某一个密码,破译成功的概率依次为0.8,0.7,0.6,则密码能译出的概率为 .X 的概率分布为,5,4,3,2,1,15}{===k kk X P 则}31123{<<X P = . 4.设随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤<=2,120,sin 0,0)(ππx x x x x F ,则=<}6{πX P .5.设随机变量X 服从]3,1[上的均匀分布,则X1的数学期望为 .21,X X 相互独立,其概率分布分别为 则}{21X X P == .7.设X ,Y 是两个随机变量,)3,0(~2N X ,)4,1(~2N Y ,X 与Y 相互独立,则~Y X + .8.设随机变量21,X X 相互独立,且都服从[0,1]上的均匀分布,则=-)3(21X X D .9.设随机变量X 和Y 的相关系数为5.0,=)(X E 0)(=Y E ,=)(2X E 2)(2=Y E ,则2)(Y X E + = . 答案:1. 0.72. 0.9763. 314. 0.55. 3ln 216.95 7. )5,1(2N 8. 659. 6二、有三个箱子,第一个箱子中有3个黑球1个白球,第二个箱子中有3个黑球3个白球,第三个箱子中有3个黑球5个白球. 现随机地选取一个箱子,再从这个箱子中任取1个球.〔1〕求取到的是白球的概率;〔2〕假设取出的球是白球,求它属于第二个箱子的概率.解:设事件i A 表示该球取自第i 个箱子)3,2,1(=i ,事件B 表示取到白球.三、某厂现有三部机器在独立地工作,假设每部机器在一天内发生故障的概率都是2.0. 在一天中,假设三部机器均无故障,则该厂可猎取利润2万元;假设只有一部机器发生故障,则该厂仍可猎取利润1万元;假设有两部或三部机器发生故障,则该厂就要亏损5.0万元. 求该厂一天可猎取的平均利润.设随机变量X 表示该厂一天所获的利润〔万元〕,则X 可能取5.0,1,2-,且512.08.0}2{3===X P ,384.08.02.0}1{213=⨯⨯==C X P ,104.0384.0512.01}5.0{=--=-=X P .所以356.1104.0)5.0(384.01512.02)(=⨯-+⨯+⨯=X E 〔万元〕 四、设随机向量),(Y X 的密度函数为⎩⎨⎧≤≤≤≤=其它,010,10,4),(y x xy y x f .)1(求}{Y X P <;)2(求Y X ,的边缘密度,并推断X 与Y 的独立性.解: (1)5.0)1(24),(}{102110=-===<⎰⎰⎰⎰⎰<dx x x xydy dx dxdy y x f Y X P x yx ;(2)由),()()(y x f y f x f Y X =知随机变量Y X ,相互独立.五、设随机变量X 的密度函数为⎩⎨⎧≤≤=其它,010,3)(2x x x f X ,求随机变量12+=X Y 的密度函数.解法一:Y 的分布函数为)21(}21{}12{}{)(-=-≤=≤+=≤=y F y X P y X P y Y P y F X Y ,两边对y 求导,得解法二:因为12+=x y 是10≤≤x 上单调连续函数,所以 注:21)(-==y y h x 为12+=x y 的反函数。
概率复习题-答案
<概率论>试题一、填空题1.设A、B、C是三个随机事件。
试用A、B、C分别表示事件1)A、B、C 至少有一个发生2)A、B、C 中恰有一个发生3)A、B、C不多于一个发生2.设A、B为随机事件,,,。
则=3.若事件A和事件B相互独立, ,则4. 将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量分布律为则A=______________7. 已知随机变量X的密度为,且,则________ ________8. 设~,且,则_________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为,则该射手的命中率为_________10.若随机变量在(1,6)上服从均匀分布,则方程x2+x+1=0有实根的概率是11.设,,则12.用()的联合分布函数F(x,y)表示13.用()的联合分布函数F(x,y)表示14.设平面区域D由y = x , y = 0 和x = 2 所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y)关于X的边缘概率密度在x = 1 处的值为。
15.已知,则=16.设,且与相互独立,则17.设的概率密度为,则=18.设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,22),X3服从参数为=3的泊松分布,记Y=X1-2X2+3X3,则D(Y)=19.设,则20.设是独立同分布的随机变量序列,且均值为,方差为,那么当充分大时,近似有~或~。
特别是,当同为正态分布时,对于任意的,都精确有~或~.21.设是独立同分布的随机变量序列,且,那么依概率收敛于.22.设是来自正态总体的样本,令则当时~。
23.设容量n = 10 的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值= ,样本方差=24.设X1,X2,…X n为来自正态总体的一个简单随机样本,则样本均值服从二、选择题1. 设A,B为两随机事件,且,则下列式子正确的是(A)P (A+B) = P (A);(B)(C)(D)2. 以A表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件为(A)“甲种产品滞销,乙种产品畅销”;(B)“甲、乙两种产品均畅销”(C)“甲种产品滞销”;(D)“甲种产品滞销或乙种产品畅销”。
《概率论与数理统计》(第四版)选做习题全解
A B 124题 15.8 图3 51.一打靶场备有5支某种型号的枪,其中3支已经校正,2支未经校正.某人使用已校正的枪击中目标的概率为1p ,使用未经校正的枪击中目标的概率为2p .他随机地取一支枪进行射击,已知他射击了5次,都未击中,求他使用的是已校正的枪的概率(设各次射击的结果相互独立).2.某人共买了11只水果,其中有3只是二级品,8只是一级品.随机地将水果分给C B A 、、三人,各人分别得到4只、6只、1只.(1)求C 未拿到二级品的概率.(2)已知C 未拿到二级品,求B A ,均拿到二级品的概率. (3)求B A ,均拿到二级品而C 未拿到二级品的概率.3.一系统L 由两个只能传输字符0和1的独立工作的子系统1L 和2L 串联而成(如图15.3),每个子系统输入为0输出为0的概率为)10(<<p p ;而输入为1输出为1的概率也是p .今在图中a 端输入字符1,求系统L 的b 端输出字符0的概率.题15.3图4.甲乙二人轮流掷一骰子,每轮掷一次,谁先掷得6点谁得胜,从甲开始掷,问甲、乙得胜的概率各为多少?5.将一颗骰子掷两次,考虑事件=A “第一次掷得点数2或5”,=B “两次点数之和至少为7”,求),(),(B P A P 并问事件B A ,是否相互独立.6.B A ,两人轮流射击,每次各人射击一枪,射击的次序为 A B A B A ,,,,,射击直至击中两枪为止.设各人击中的概率均为p ,且各次击中与否相互独立.求击中的两枪是由同一人射击的概率.7.有3个独立工作的元件1,元件2,元件3,它们的可靠性分别为.,,321p p p 设由它们组成一个“3个元件取2个元件的表决系统”,记为2/3].[G 这一系统的运行方式是当且仅当3个元件中至少有2个正常工作时这一系统正常工作.求这一2/3][G 系统的可靠性.8. 在如图15.8图所示的桥式结构电路中,第i 个继电器触点闭合的概率为i p ,.54321,,,,i =各继电器工作相互独立.求:(1)以继电器触点1是否闭合为条件,求A到B 之间为通路的概率.(2)已知A 到B 为通路的条件下,继电器触 点3是闭合的概率.9.进行非学历考试,规定考甲、乙两门课程,每门课考第一次未通过都允许考第二次.考生仅在课程甲通过后才能考课程乙,如两门课程都通过可获得一张资格证书.设某考生通过课程甲的各次考试的概率为1p ,通过课程乙的各次考试的概率为2p ,设各次考试的结果相互独立.又设考生参加考试直至获得资格证书或者不准予再考为止.以X 表示考生总共需考试的次数.求X 的分布律以及数学期望)(X E .10.(1)5只电池,其中有2只是次品,每次取一只测试,直到将2只次品都找到.设第2只次品在第)5,4,3,2(=X X 次找到,求X 的分布规律(注:在实际上第5次检测可无需进行).(2)5只电池,其中2只是次品,每次取一只,直到找出2只次品或3只正品为止.写出需要测试的次数的分布律.11.向某一目标发射炮弹设炮弹弹着点目标的距离为R (单位:10m ),R 服从瑞利分布,其概率密度为⎪⎩⎪⎨⎧≤>=-.0,0,0,252)(25/2r r er r f r R 若弹着点离目标不超过5m 时,目标被摧毁. (1)求发射一枚炮弹能摧毁目标的概率.(2)为使至少有一枚炮弹能摧毁目标的概率不小于0.94,问最少需要独立发射多少枚炮弹.12.设一枚深水炸弹击沉一潜水艇的概率为31,击伤的概率为21,击不中的概率为61.并设击伤两次也会导致潜水艇下沉.求释放4枚深水炸弹能击沉潜水艇的概率.(提示:先求击不沉的概率.)13. 一盒中装有4只白球,8只黑球,从中取3只球,每次一只,作不放回抽样.14.设元件的寿命T (以小时计)服从指数分布,分布函数为⎩⎨⎧≤>-=-.0,0,0,1)(03.0t t e t F t(1)已知元件至少工作了30小时,求它能再至少工作20小时的概率.(2)由3个独立工作的此种元件组成一个2/3][G 系统(参见第7题),求这一系统的寿命20>X 的概率.15.(1)已知随机变量X 的概率密度为,,21)(+∞<<-∞=-x e x f xX 求X 的分布函数. (2)已知随机变量X 的分布函数为),(x F X 另外有随机变量⎩⎨⎧≤->=,0,1,0,1X X Y 试求Y 的分布律和分布函数.16.(1)X 服从泊松分布,其分布律为,,2,1,0,!}{ ===-k k e k X P k λλ问当k 取何值时}{k X P =为最大. (2)X 服从二项分布,其分布律为.,2,1,0,)1(}{n k p p k n k X P kn k =-⎪⎪⎭⎫ ⎝⎛==- 问当k 取何值时}{k X P =为最大.17.. 若离散型随机变量X 具有分布律X 1 2 …nkp n n …n称X 服从取值为n ,,2,1 的离散型均匀分布.对于任意非负实数x ,记][x 为不超过x 的最大整数.记),1,0(~U U 证明1][+=nU X 服从取值为n ,,2,1 的离散型均匀分布.18.设),2,1(~-U X 求X Y =的概率密度. 19.设X 的概率密度⎪⎪⎪⎩⎪⎪⎪⎨⎧∞<≤<≤<=.1,21,10,21,0,0)(2x xx x x f X求XY 1=的概率密度. 20. 设随机变量X 服从以均值为λ1的指数分布.验证随机变量][X Y =服从以参数为λ--e1的几何分布.这一事实表明连续型随机变量的函数可以是离散型随机变量.21.投掷一硬币直至正面出现为止,引入随机变量 =X 投掷总次数.⎩⎨⎧=.,0,1若首次投掷得到反面若首次投掷得到正面,Y(1)求X 和Y 的联合分布律及边缘分布律. (2)求条件概率}.1|2{},1|1{====X Y P Y X P22.设随机变量),(~λπX 随机变量).2,max(X Y =试求X 和Y 的联合分布律及边缘分布律. 23. 设X ,Y 是相互独立的泊松随机变量,参数分别为,,21λλ求给定n Y X =+的条件下X 的条件分布.24. 一教授将两篇论文分别交给两个打字员打印.以X ,Y 分别表示第一篇第二篇论文的印刷错误.设),(~λπX ),(~μπY X ,Y 相互独立.(1)求X ,Y 的联合分布律;(2)求两篇论文总共至多1个错误的概率.25. 一等边三角形ROT (如图15.25)的边长为1,在三角形内随机地取点),(Y X Q (意指随机点),(Y X 在三角形ROT 内均匀分布).(1) 写出随机变量),(Y X 的概率密度.y(2) 求点Q 的底边OT 的距离的分布密度. 26. 设随机变量),(Y X 具有概率密度⎩⎨⎧>>=+-.,0,0,0,),()1(其他y x xe y x f y x(1) 求边缘概率密度).(),(y f x f Y X (2) 求条件概率密度).|(),|(||x y f y x f X Y Y X27. 设有随机变量U 和V ,它们都仅取1,1-两个值.已知,2/1}1{==U P}.1|1{3/1}1|1{-=-=====U V P U V P(1)求U 和V 的联合分布密度.(2)求x 的方程02=++V Ux x 至少有一个实根的概率.(3)求x 的方程0)(2=+++++V U x V U x 至少有一个实根的概率.28. 某图书馆一天的读者人数)(~λπX ,任一读者借书的概率为p ,各读者借书与否相互独立.记一天读者借书的人数为Y ,求X 与Y 的联合分布律.29. 设随机变量X 和Y 相互独立,且都服从U (0,1),求两变量之一至少为另一变量之值两倍的概率. 30. 一家公司有一份保单招标,两家保险公司竞标.规定标书的保险费必须在20万元至22万元之间.若两份标书保险费相差2千或2千以上,招标公司将选择报价低者,否则就重新招标.设两家保险公司的报价是相互独立的,且都在20万至22万之间均匀分布.试求招标公司需重新招标的概率.31. 设),0(~),,0(~2221σσN Y N X 且Y X ,相互独立,求概率}20{2112σσσσ<-<Y X P .32. NBA 篮球赛中有这样的规律,两支实力相当的球队比赛时,每节主队得分与客队得分之差为正态随机变量,均值为1.5,方差为6,并且假设四节的比分差是相互独立的.问 (1)主队胜的概率有多大?(2)在前半场主队落后5分的情况下,主队得胜的概率有多大? (3)在第1节主队赢5分得情况下,主队得胜的概率有多大?33. 产品的某种性能指标的测量值X 是随机变量,设X 的概率密度为⎪⎩⎪⎨⎧>=-其他.,0,0,)(221x xe x f x X测量误差Y~U (εε,-),X ,Y 相互独立,求Z=X+Y 的概率密度)(z f Z ,并验证du e Z P u⎰-=>εεε202/221}{34. 在一化学过程中,产品中有份额X 为杂质,而在杂质中有份额Y 是有害的,而其余部分不影响产品的质量.设)5.0,0(~),1.0,0(~U Y U X ,且X 和Y 相互独立,求产品中有害杂质份额Z 的概率密度. 35. 设随机变量),(Y X 的概率密度为⎩⎨⎧<<=-.0,,0,),(其他y x e y x f y(1) 求),(Y X 的边缘概率密度. (2) 问Y X ,是否相互独立. (3) 求Y X +的概率密度).(z f Y X + (4) 求条件概率密度).|(|y x f Y X (5) 求条件概率}.5|3{<>Y X P (6) 求条件概率}.5|3{=>Y X P36.设图书馆的读者借阅甲种图书的概率为p ,借阅乙种图书的概率为α,设每人借阅甲、乙图书的行动相互独立,读者之间的行动也相互独立.(1)某天恰有n 个读者,求甲、乙两种图书中至少借阅一种的人数的数学期望.37.某种鸟在某时间区间],0(0t 下蛋数为1~5只,下r 只蛋的概率与r 成正比.一个收集鸟蛋的人在0t 时去收集鸟蛋,但他仅当鸟窝多于3只蛋时他从中取走一只蛋.在某处有这种鸟的鸟窝6个(每个鸟窝保存完好,各鸟窝中蛋的个数相互独立).(1) 写出一个鸟窝中鸟蛋只数X 的分布率.(2) 对于指定的一只鸟窝,求拾蛋人在该鸟窝中拾到一只蛋的概率. (3) 求拾蛋人在6只鸟窝中拾到蛋的总数Y 的分布律及数学期望.(4) 求}4{},4{><Y P Y P(5) 当一个拾蛋人在这6只鸟窝中拾过蛋后,紧接着又有一个拾蛋人到这些鸟窝中拾蛋,也仅当鸟窝 中多于3只蛋时,拾取一只蛋,求第二个拾蛋人拾得蛋数Z 的数学期望.38. 设袋中有r 只白球,r N -只黑球.在袋中取球)(r n n ≤次,每次任取一只做不放回抽样,以Y 表示取到白球的个数,求)(Y E .39.抛一颗骰子直到所有点数全部出现为止,求所需投掷次数Y 的数学期望. 40.设随机变量Y X ,相互独立.且Y X ,分别服从以βα1,1为均值得指数分布.求).(2X Ye X E -+41.一酒吧间柜台前有6张凳子,服务员预测,若两个陌生人进来就坐的话,他们之间至少相隔两张凳子.(1) 若真有2个陌生人入内,他们随机地就坐,问服务员预言为真的概率是多少? (2) 设2个顾客是随机坐的,求顾客之间凳子数的数学期望.42.设随机变量10021,,,X X X 相互独立,且都服从),1,0(U 又设,10021X X X Y ⋅⋅⋅= 求概率}10{40-<Y P 的近似值.43.来自某个城市的长途电话呼叫的持续时间X (以分计)是一个随机变量,它的分布函数是⎪⎩⎪⎨⎧<≥--=--.0,0,0,e 21e 211)(]3[3x x x F x x(其中]3[x 是不大于3x的最大整数). (1) 画出)(x F 的图形.(2) 说明X 是什么类型的随机变量.(3) 求}6{},4{},3{},4{>>==X P X P X P X P (提示)0()(}{--==a F a F a X P ).44.一汽车保险公司分析一组(250人)签约的客户中的赔付情况.据历史数据分析,在未来一周中一组客户中至少提出一项索赔的客户数X 占10%.写出X 的分布,并求12.0250⨯>X (即30>X )的概率.设各客户是否提出索赔相互独立.45.在区间)1,0(随机地取一点X .定义}.75.0,min{X Y = (1) 求随机变量Y 的值域.(2) 求Y 的分布函数,并画出它的图形.(3) 说明Y 不是连续型随机变量,Y 也不是离散型随机变量.46.设21,X X 是数学期望为θ的指数分布总体X 的容量为2的样本,设21X X Y =,试证明θπ=)4(YE .47.设总体n X X X N X ,,,),,(~212 σμ是一个样本.2,S X 分别为样本均值和样本方差,试证[]⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=44222212)(σσμσn n S X E . 48.设总体X 具有概率密度:⎪⎩⎪⎨⎧≤>=-.0,0,0,1)(2x x xe x f x θθ其中0>θ为未知参数,n X X X ,,,21 是来自X 的样本,n x x x ,,,21 是相应的样本观察值.(1) 求θ的最大似然估计量. (2) 求θ的矩估计量.(3) 问求得的估计量是否是无偏估计量.49.设1,,,21n X X X 以及2,,,21n Y Y Y 为分别来自总体),(21σμN 与),(22σμN 的样本,且它们相互独立.221,,σμμ均未知,试求221,,σμμ的最大似然估计量.50.为了探究一批存贮着的产品的可靠性,在产品投入贮存时,即在时刻00=t 时,随机地选定n 只产品,然后在预先规定的时刻k t t t ,,,21 取出来进行检测(检测时确定已失效的去掉,将未失效的继续投入贮存),今得到以下的寿命试验数据.这种数据称为区间数据.设产品寿命T 服从指数分布,其概率密度为⎩⎨⎧>=-,,0,0,)(其它t e t f t λλ0>λ未知.(1) 试基于上述数据写出λ的对数似然方程.(2) 设.,1n s n d <<我们可以用数值解法求得λ的最大似然估计值.在计算机上实现是容易的.特别,取检测 时间是等间隔的,即取.,,2,1,1k i it t i ==验证,此时可得λ的最大似然估计为⎪⎪⎭⎫⎝⎛+--+=∑=ki i sk d i sn t 21)1(1ln 1ˆλ.51. 设某种电子器件的寿命(以小时计)T 服从指数分布,概率密度为:⎩⎨⎧>=-其他,,0,0,e )(t t f t λλ 其中0>λ未知.从这批器件中任取n 只在时刻0=t 时投入独立寿命试验,试验进行到预订时间0T 结束.此时有)0(n k k <<只器件失效,试求λ的最大似然估计.52.设系统由两个独立工作的成败型元件串联而成(成败型元件只有两种状态:正常工作或失效).元件1、元件2的可靠性分别为21,p p ,它们均未知.随机地取N 个系统投入试验,当系统中至少有一个元件失效时系统失效,现得到以下的试验数据:1n -仅元件1失效的系统数; 2n -仅元件2失效的系统数; 12n -元件1,元件2至少有一个失效的系统数;s -未失效的系统数.N s n n n =+++1221.这里12n 为隐蔽数据,也就是只知系统失效,但不知道是由元件1还是元件2单独失效引起的,还是由元件1,2均失效引起的,设隐蔽与系统失效的真正原因独立.(1)试写出21,p p 的似然函数.(2)设有系统寿命试验数据.11,1,3,5,201221=====s n n n N 试求21,p p 的最大似然估计. 53.(1)设总体X 具有分布律0>θ未知,今有样本1 1 1 3 2 1 3 2 2 1 2 2 3 1 1 2.试求θ得最大似然估计值和矩估计值.(2)设总体X 服从Γ分布,其概率密度为⎪⎩⎪⎨⎧>=--.,0,0,)(1)(1其他x e x x f x βαααΓβ其形状参数0>a 为已知,尺度参数0>β未知.今有样本值n x x x ,,,21 ,求β的最大似然估计值. 54.(1)设),,(~ln 2σμN X Z =即X 服从对数正态分布,验证.21exp )(2⎭⎬⎫⎩⎨⎧+=σμX E (2)设自(1)中总体X 中取一容量为n 的样本.,,,21n x x x 求)(X E 的最大似然估计,此处设2,σμ均为未知.(3)已知在文学家萧伯纳的《An Intelligent Women ’s Guide To Socialism 》一书中,一个句子的单词数近似地服从对数指数分布,设μ及2σ为未知.今自该书中随机地取20个句子.这些句子中的单词数分别为 52 24 15 67 15 22 63 26 16 32 7 33 28 14 7 29 10 6 59 30,问这本书中,一个句子的单词数均值的最大似然估计值等于多少?55.考虑进行定数截尾寿命试验,假设将随机抽取的n 件产品在时间0=t 时同时投入试验.试验进行 到m 件)(n m <产品失效时停止,m 件失效产品的失效时间分别为m t t t ≤≤≤≤ 210.m t 是第m 件产品失效的时间.设产品的寿命分布为韦布尔分布,其概率密度为⎪⎩⎪⎨⎧>=⎪⎪⎭⎫ ⎝⎛--其他0,)(1x e x x f x βηββηβ 其中参数β已知.求参数η的最大似然估计.56.设某大城市郊区的一条林荫道两旁开设了许多小商店,这些商店的开设延续时间(以月计)是一个随机变量,现随机地抽取30家商店,将它们的延续时间按自小到大排序,选其中前8家商店,它们的延续时间分别是3.2 3.9 5.9 6.5 16.5 20.3 40.4 50.9X1 2 3k pθ θ θ21-假设商店开设延续时间的长度是韦布尔随机变量. 其概率密度为⎪⎩⎪⎨⎧>=⎪⎪⎭⎫ ⎝⎛--其他0,)(1x e x x f x βηββηβ 其中,.8.0=β(1)试用上题结果,写出η的最大似然估计.(2)按(1)的结果求商店开始延续时间至少为2年的概率的估计.57.设分别自总体),(21σμN 和),(22σμN 中抽取容量21,n n 的两独立样本.其样本方差分别为.,2221S S 试证,对于任意常数2221,)1(,bS aS Z b a b a +==+都是2σ的无偏估计,并确定常数b a ,使)(Z D 达到最小.58.设总体n X X X N X ,,,),,(~212σμ是来自X 的样本.已知样本方差∑=--=ni I X X n S 122)(11 是2σ的无偏估计.验证样本标准差S 不是标准差σ的无偏估计.59.设总体X 服从指数分布,其概率密度为⎪⎩⎪⎨⎧>=-,,0,0,1)(/其他x e x f x θθ0>θ未知.从总体中抽取一容量为n 的样本.,,,21n X X X (1)证明.)2(~22n Xn χθ(2)求θ的置信水平为α-1的单侧置信下限.(3)某种元件的寿命(以小时计)服从上述指数分布,现从中抽得一容量为16-n 的样本,测得样本均值为 5010(小时),试求元件的平均寿命的置信水平为0.90的单侧置信下限.60. 设总体n X X X U X ,,,,),0(~21 θ是来自X 的样本.(1)验证),,,max(21n X X X Y =的分布函数为 ⎪⎩⎪⎨⎧≥<≤<=.,1,0,/,0,0)(θθθy y y y y F nn Y(2)验证θ/Y U =的概率密度为⎩⎨⎧≤≤=-. ,0,10,)(1其他u nu u f n U(3)给定正数,α10<<a ,求U 的分布的上2/α分位点2/αh 以及上2/1α-分位点.2/1α-h (4)利用(2)(3) 求参数θ的置信水平为α-1的置信区间. (5)设某人上班的等车时间θθ,),0(~U X 未知.现在有样本,4.2,2.1,7.1,5.3,2.454321=====x x x x x 求θ的置信水平为0.95的置信区间.61.设总体X 服从指数分布,概率密度为⎪⎩⎪⎨⎧>=-.,0,0,1)(/其他x e x f x θθ.0>θ设n X X X ,,,21 是来自X 的样本.试取59题中当0θθ=时的统计量022θχXn =作为检验统计量,检验假设 .:,:0100θθθθ≠=H H 取水平为α(注意:θ=)(X E ).设某种电子元件的寿命(以小时计)服从均值为θ的指数分布,随机取12只元件,测得它们的寿命分别为 340 , 430 , 560 , 920 , 1380 , 1520 , 1660 , 1770 , 2100 , 2320 , 2件350 , 2650 .试取水平,05.0=α检验假设.1450:,1450:10≠=θθH H62.经过十一年的试验,达尔文于1876年得到15对玉米样品的数据如下表,每对作物除授粉方式不同外,其它条件都是相同的.试用逐对比较法检验不同授粉方式对玉米高度是否有显著的影响(05.0=α).问应增设什么条件才能用逐对比较法进行检验?63.一内科医生声称,如果病人每天傍晚聆听一种特殊的轻音乐会降低血压(舒张压,以Hg mm -记).今选取了10个病人在试验之前和试验之后分别测量了血压,得到以下的数据:设)10,,2,1( =-=i Y X D i i i 为来自正态总体),(2D D N σμ的样本,2,D D σμ均已知.试检验是否可以认为医生的意见是对的(取05.0=α).64.以下是各种颜色汽车的销售情况:试检验顾客对这些颜色是否有偏爱,即检验销售情况是否是均匀的(取). 65.某种闪光灯,每盏灯含4个电池,随机地取150盏灯,经检测得到以下的数据:试取05.0=α检验一盏灯损坏的电池数),4(~θb X (θ未知).66.下面分别给出了某城市在春季(9周)和秋季(10周)发生的案件数.试取03.0=α,用秩和检验法检验春季发生的案件数的均值是否较秋季的为多.67.临界闪烁频率(cff)是人眼对于闪烁光源能够分辨出它在闪烁的最高频率(以赫计).超过cff 的频率,即使光源实际是在闪烁的,而人看起来是连续的(不闪烁的).一项研究旨在判定cff 的均值是否与人眼的虹膜颜色有关,所得数据如下: 临界闪烁频率(cff)分布,且方差相等,样本之间相互独立.68.下面列出了挪威人自1938~1947年间年人均脂肪消耗量,与患动脉粥样硬化症而死亡的死亡率之间相关的一组数据.设对于给定的Y x ,为正态变量,且方差与x 无关. (1) 求回归直线方程bx a y +=.(2) 水平05.0=α下检验假设0:,0:10≠=b H b H .(3)求13|=x y.(4) 求13=x 处)(x μ置信水平为0.95的置信区间.(5) 求13=x 处Y 的新观察值0Y 的置信水平为0.95的预测区间.69. 下面给出1924~1992年奥林匹克运动会女子100米仰泳的最佳成绩(以秒计)(其中1940年及1944年未举行奥运会):年份 1924 1928 1932 1936 1948 1952 1956 1960 成绩 83.2 82.2 79.4 78.9 74.4 74.3 72.9 69.3年份 1964 1968 1972 1976 1980 1984 1988 1992 成绩 83.2 82.2 79.4 78.9 74.4 74.3 72.9 69.3(1)画出散点图.(2)求成绩关于年份的线性回归方程.(3)检验回归效果是否显著(取05.0=α).70.设在时间区间],0(t 内来到某商店的顾客数)(t N 是强度为λ的泊松过程.每个来到商店的顾客购买某些货物的概率是p ,不买货物就离去的概率是p -1,且各个顾客是否购买货物是相互独立的.令)(t Y 为],0(t 内购买货物的顾客数.试证}0),({≥t t Y 是强度为p λ的泊松过程.71.设随机过程,),Ωcos()(∞<<-∞+=t t a t X Θ其中a 是常数,随机变量)2,0(~πΘU ,随机变量Ω具有概率密度)(x f ,设)(x f 连续且为偶函数,Θ与Ω相互独立.试证)(t X 是平稳过程,且其谱密度为)()(2ωπωf a S X =.。
高等数学(概率论)习题及解答
高等数学(概率论)习题及解答高等数学(概率论)题及解答
1. 题一
1.1. 题目
已知事件A和B的概率分别为P(A) = 0.2,P(B) = 0.3,且P(A∪B) = 0.4,求P(A∩B)。
1.2. 解答
根据概率的加法定理,有:
P(A∪B) = P(A) + P(B) - P(A∩B)
代入已知数据得:
0.4 = 0.2 + 0.3 - P(A∩B)
P(A∩B) = 0.1
所以,P(A∩B)的概率为0.1。
2. 题二
2.1. 题目
已知某城市一天中的天气分为晴天、阴天和雨天三种情况,其中晴天的概率为0.4,阴天的概率为0.3。
现已知,当下为晴天时,随后一天也是晴天的概率为0.7;当下为阴天时,随后一天为晴天的概率为0.5。
求当下为晴天时,随后一天为阴天的概率。
2.2. 解答
设事件A为当下为晴天,事件B为随后一天为阴天。
根据条件概率的定义,有:
P(B|A) = P(A∩B) / P(A)
已知 P(A) = 0.4,P(B|A) = 0.5,代入并整理得:
0.5 = P(A∩B) / 0.4
P(A∩B) = 0.5 * 0.4
P(A∩B) = 0.2
所以,当下为晴天时,随后一天为阴天的概率为0.2。
以上是高等数学(概率论)习题及解答的部分内容,如有更多问题或需要补充,请随时告知。
(完整版)《概率论与数理统计》习题及答案选择题
·151·《概率论与数理统计》习题及答案选 择 题单项选择题1.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为( ). (A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销”; (C )“甲种产品滞销或乙种产品畅销”; (D )“甲种产品滞销”.解:设B =‘甲种产品畅销’,C =‘乙种产品滞销’,A BC = A BC B C ===‘甲种产品滞销或乙种产品畅销’. 选C.2.设,,A B C 是三个事件,在下列各式中,不成立的是( ).(A )()A B B A B -=;(B )()AB B A -=; (C )()A B AB ABAB -=;(D )()()()A B C A C B C -=--.解:()()()A B B AB B A B BB A B -=== ∴A 对. ()()A B B A B B AB BB AB A B A -====-≠ B 不对()()().AB AB A B B A ABAB -=--= C 对 ∴选B.同理D 也对.3.若当事件,A B 同时发生时,事件C 必发生,则( ). (A )()()()1P C P A P B ≤+-; (B )()()()1P C P A P B ≥+-; (C )()()P C P AB =; (D )()().P C P AB =解:()()()()()()()1AB C P C P AB P A P B P A B P A P B ⊂⇒≥=+-≥+-∴ 选B.4.设(),(),()P A a P B b P AB c ===,则()P AB 等于( ).(A )a b -; (B )c b -; (C )(1)a b -; (D )b a -. 解:()()()()()()()P AB P A B P A P AB a P A P B P AB c b =-=-=--+=-·152· ∴ 选B.5.设,A B 是两个事件,若()0P AB =,则( ).(A ),A B 互不相容; (B )AB 是不可能事件; (C )()0P A =或()0P B =; (D )AB 未必是不可能事件. 解:()0P AB AB =⇒=∅/. ∴ 选D.6.设事件,A B 满足AB =∅,则下列结论中肯定正确的是( ). (A ),A B 互不相容; (B ),A B 相容; (C )()()()P AB P A P B =; (D )()()P A B P A -=. 解:,A B 相容 ∴ A 不对. ,,A B B A AB ===Φ ∴ B 错. ()0AB P AB =Φ⇒=,而()()P A P B 不一定为0 ∴ C 错. ()()()()P A B P A P AB P A -=-=. ∴ 选D. 7.设0()1,(|)(|)1P B P A B P A B <<+=,则( ) (A ),A B 互不相容; (B ),A B 互为对立; (C ),A B 不独立; (D ),A B 相互独立.解:()()()()()1()1()()()1()()1()P AB P AB P AB P A B P AB P A B P B P B P B P B P B P B -=+=+=+-- ()(1())()(1()()())()(1())P AB P B P B P A P B P AB P B P B -+--+=-⇒22()()()()()()()P B P B P AB P B P A P B P B -=+--()()()P AB P A P B ∴= ∴ 选D. 8.下列命题中,正确的是( ). (A )若()0P A =,则A 是不可能事件; (B )若()()()P A B P A P B =+,则,A B 互不相容; (C )若()()1P AB P AB -=,则()()1P A P B +=;(D )()()()P A B P A P B -=-. 解:()()()()P AB P A P B P AB =+-()()()()1P A B P AB P A P B ⇒-=+=由()0P A A =⇒=Φ/, ∴ A 、B 错.只有当A B ⊃时()()()P A B P A P B -=-,否则不对. ∴ 选C.·153·9.设,A B 为两个事件,且B A ⊂,则下列各式中正确的是( ). (A )()()P AB P A =; (B )()()P AB P A =;(C )(|)()P B A P B =; (D )()()()P B A P B P A -=-. 解:()()B A AB A P A B P A ⊂⇒=⇒= ∴选A.10.设,A B 是两个事件,且()(|)P A P A B ≤;(A )()(|)P A P A B =; (B )()0P B >,则有( ) (C )()(|)P A P A B ≥; (D )前三者都不一定成立.解:()(|)()P AB P A B P B =要与()P A 比较,需加条件. ∴选D. 11.设120()1,()()0P B P A P A <<>且1212(|)(|)(|)P A A B P A B P A B =+,则下列等式成立的是( ). (A )1212(|)(|)(|)P A A B P A B P A B =+; (B )1212()()()P A B A B P A B P A B =+; (C )1212()(|)(|)P A A P A B P A B =+;(D )1122()()(|)()(|)P B P A P B A P A P B A =+. 解1:121212(|)(|)(|)(|)P A A B P A B P A B P A A B =+-12(|)(|)P A B P A B =+ 1212(|)0()0P A A B P A A B ⇒=⇒=12121212()()()()()()P A B A B P A B P A B P A A B P A B P A B =+-=+ ∴ 选B. 解2:由1212{|}(|)(|)P A A B P A B P A B =+ 得1212()()()()()P A B A B P A B P A B P B P B +=可见 1212()()()P A B A B P A B P A B =+∴ 选B.12.假设事件,A B 满足(|)1P B A =,则( ). (A )B 是必然事件; (B )()1P B =; (C )()0P A B -=; (D )A B ⊂.解:()(|)1()()()()0()P AB P B A P AB P A P A P AB P A ==⇒=⇒-=()0P A B ⇒-= ∴ 选C.13.设,A B 是两个事件,且,()0A B P B ⊂>,则下列选项必然成立的是( ).·154· (A )()(|)P A P A B <; (B )()(|)P A P A B ≤; (C )()(|)P A P A B >; (D )()(|)P A P A B ≥.解:()()(|)()()()A B P AB P A P A B P A P B P B ⊂====≥ ()()0()1A B P A P B P B ⊂⇒≤<< ∴选B (或者:,()()()(|)(|)A B P A P AB P B P A B P A B ⊂==≤)14.设12()0,,P B A A >互不相容,则下列各式中不一定正确的是( ). (A )12(|)0P A A B =; (B )1212(|)(|)(|)P A A B P A B P A B =+; (C )12(|)1P A A B =; (D )12(|)1P A A B =.解:1212()0P A A A A =⇐=Φ1212()(|)0()P A A B P A A B P B == A 对.121212(|)(|)(|)(|)P A A B P A B P A B P A A B =+-12(|)(|)P A B P A B =+ B 对. 121212(|)(|)1(|)P A A B P A A B P A A B ==-121(|)(|)1P A B P A B =--≠ C 错.121212(|)(|)1(|)101P A A B P A A B P A A B ==-=-= D 对.∴ 选C.15.设,,A B C 是三个相互独立的事件,且0()1P C <<,则在下列给定的四对事件中不相互独立的是( ). (A )A B 与C ; (B )AC 与C ;(C )A B -与C ; (D )AB 与C . 解:[()]()()()()(1())(1())()P AB C P ABC P A P B P C P A P B P C ===--[1(()()()())]()()()P A P B P A P B P C P A B P C =-+-= A 对.()[()]()()()()P ACC P AC C P AC CC P AC P C P AC ===+-()()()P C P AC P C =≠ AC ∴与C 不独立 ∴ 选B.16.设,,A B C 三个事件两两独立,则,,A B C 相互独立的充分必要条件是( ).(A )A 与BC 独立; (B )AB 与AC 独立;(C )AB 与AC 独立; (D )A B 与A C 独立.·155·解:,,A B C 两两独立, ∴若,,A B C 相互独立则必有()()()()()()P ABC P A P B P C P A P BC == ∴A 与BC 独立.反之,如A 与BC 独立则()()()()()()P ABC P A P BC P A P B P C == ∴选A. 17.设,,A B C 为三个事件且,A B 相互独立,则以下结论中不正确的是( ). (A )若()1P C =,则AC 与BC 也独立; (B )若()1P C =,则A C 与B 也独立; (C )若()1P C =,则A C -与A 也独立;(D )若C B ⊂,则A 与C 也独立. 解:()()(),()1P AB P A P B P C ==∴概率为1的事件与任何事件独立AC ∴与BC 也独立. A 对. [()][()]()P AC B P A C B P AB BC ==()()()()()P AB P BC P ABC P A C P B =+-= ∴B 对.[()]()()()()P A C A P ACA P AC P A P C -===()()P A P AC =∴ C 对 ∴ 选D (也可举反例).18.一种零件的加工由两道工序组成. 第一道工序的废品率为1p ,第二道工序的废品率为2p ,则该零件加工的成品率为( ). (A )121p p --; (B )121p p -; (C )12121p p p p --+; (D )12(1)(1).p p -+- 解:设A =成品零件,i A =第i 道工序为成品 1,2.i = 11()1P A p =- 22()1P A p =-1212()()()()P A P A A P A P A ==12(1)(1)p p =-- 12121p p p p =--+ ∴ 选C.19.设每次试验成功的概率为(01)p p <<,现进行独立重复试验,则直到第10次试验才取得第4次成功的概率为( ).(A )44610(1)C p p -; (B )3469(1)C p p -; (C )4459(1)C p p -; (D )3369(1).C p p -解:说明前9次取得了3次成功 ∴ 第10次才取得第4次成功的概率为33634699(1)(1)C p p p C p p -=-∴ 选B.20.设随机变量X 的概率分布为(),1,2,,0kP X k b k b λ===>,则·156· ( ).(A )λ为任意正实数; (B )1b λ=+;(C )11b λ=+; (D )11b λ=-. 解:111()111k kk k k b P X K b b b λλλλλλ∞∞∞=========--∑∑∑ ∴ 11bλ=+ 选C .21.设连续型随机变量X 的概率密度和分布函数分别为()f x 和()F x ,则下列各式正确的是( ).(A )0()1f x ≤≤; (B )()()P X x f x ==; (C )()()P X x F x ==; (D )()()P X x F x =≤. 解:()()()F x P X x P X x =≤≥= ∴ 选D. 22.下列函数可作为概率密度的是( ). (A )||(),x f x ex R -=∈; (B )21(),(1)f x x R x π=∈+; (C)22,0,()0,0;xx f x x -⎧≥=<⎩(D )1,||1,()0,|| 1.x f x x ≤⎧=⎨>⎩解:A :||0222x x x e dx e dx e dx +∞+∞+∞----∞===⎰⎰⎰∴ 错.B :211arctan []1(1)22dx x x πππππ+∞+∞-∞-∞==+=+⎰ 且 21()0(1)f x x R x π=≥∈+ ∴ 选B. 23.下列函数中,可作为某个随机变量的分布函数的是( ). (A )21()1F x x =+; (B )11()arctan 2F x x π=+; (C )1(1),0()2,0;x e x F x x -⎧->⎪=⎨⎪≤⎩·157·(D )()()x F x f t dt -∞=⎰,其中() 1.f t dt +∞-∞=⎰解:对A :0()1F x <≤,但()F x 不具有单调非减性且()0F +∞= ∴A 不是. 对B :arctan 22x ππ-≤≤∴ 0()1F x ≤≤.由arctan x 是单调非减的 ∴ ()F x 是单调非减的.11()()022F ππ-∞=+⋅-= 11()122F ππ+∞=+⋅=.()F x 具有右连续性. ∴ 选B.24.设12,X X 是随机变量,其分布函数分别为12(),()F x F x ,为使12()()()F x aF x bF x =-是某一随机变量的分布函数,在下列给定的各组数值中应取( ).(A )32,55a b ==-; (B )22,33a b ==; (C )13,22a b =-=; (D )13,22a b ==.解:12()()()0F aF bF -∞=-∞--∞=,()1F a b +∞=-=,只有A 满足∴ 选A25.设随机变量X 的概率密度为()f x ,且()(),()f x f x F x -=是X 的分布函数,则对任意实数a 有( ). (A )0()1()a F a f x dx -=-⎰;(B )01()()2a F a f x dx -=-⎰;(C )()()F a F a -=;(D )()2()1F a F a -=-. 解:()()()()a a a F a f x dx f du f u du μ-+∞-∞+∞-==--=⎰⎰⎰()()a f x dx f x +∞-∞-∞=-⎰⎰001(()())a dx f x dx f x dx -∞=-+⎰⎰00111()()22a a f x dx f x dx =--=-⎰⎰由()2()1f x dx f x dx +∞+∞-∞==⎰⎰001()()2f x dx f x dx +∞-∞⇒==⎰⎰∴ 选B.26.设随机变量2~(1,2)X N ,其分布函数和概率密度分别为()F x 和·158· ()f x ,则对任意实数x ,下列结论中成立的是( ).(A )()1()F x F x =--; (B )()()f x f x =-; (C )(1)1(1)F x F x -=-+; (D )11122x x F F -+⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭. 解:2~(1,2)()X N f x ∴以1x =为对称轴对称.(1)(1)P X x P X x ∴>+=≤-即 (1)1(1)1(1)F x P X x F x -=-≤+=-+ ∴ 选C.27.设22~(,4),~(,5)X N Y N μμ,设1(4)P X p μ≤-=,2(5)P Y p μ≥+=,则( ).(A )对任意实数μ有12p p =; (B )12p p <;(C )12p p >; (D )只对μ的个别值才有12.p p =解:14(4)(1)1(1)4p P X μμμ--⎛⎫=≤-=Φ=Φ-=-Φ⎪⎝⎭25(5)1(5)11(1)5p P Y P Y μμμμ+-⎛⎫=≥+=-<+=-Φ=-Φ ⎪⎝⎭∴ 12p p = ∴ 选A (or 利用对称性)28.设2~(,)X N μσ,则随着σ的增大,概率(||)P X μσ-<的值( ).(A )单调增大; (B )单调减少; (C )保持不变; (D )增减不定.解:1)1(2)1()1()(|)(|-Φ=-Φ-Φ=+<<-=<-σμσμσμX P X P ∴ 不随σ变 ∴ 选C.29.设随机变量X 的分布函数为)(x F X ,则35-=X Y 的分布函数 )(y F Y 为( ).(A ))35(-y F X ; (B )3)(5-y F X ; (C )⎪⎭⎫⎝⎛+53y F X ; (D ).3)(51+y F X解:))3(51()35()()(+≤=≤-=≤=y X P y X P y Y P y F Y ⎪⎭⎫⎝⎛+=53y F X ∴ 选C.·159·30.设X 的概率密度为)1(1)(2x x f +=π,则X Y 2=的概率密度为( ). (A ))41(12y +π; (B )2)4(1y +π;(C ))4(22y +π; (D ))1(22y +π.解:⎪⎭⎫⎝⎛=≤=≤=≤=2)2()2()()(y F y X P y X P y Y P y F X Y∴ )4(2)41(121221)(22y y y f y f X Y +=+⋅=⎪⎭⎫ ⎝⎛=ππ ∴ 选C. 31.设随机变量X 与Y 相互独立,其概率分布分别为212111P X - 212111PY -则下列式子正确的是( ).(A )Y X =; (B )0)(==Y X P ;(C )21)(==Y X P ; (D )1)(==Y X P . 解:A 显然不对. )1,1()1,1()(==+-=-===Y X P Y X P Y X P2121212121)1()1()1()1(=⋅+⋅===+-=-==Y P X P Y P X P ∴ 选C.32.设)1,1(~),1,0(~N Y N X ,且X 与Y 相互独立,则( ).(A )21)0(=≤+Y X P ; (B )21)1(=≤+Y X P ; (C )21)0(=≤-Y X P ; (D )21)1(=≤-Y X P .解:)1,1(~)1,0(~N Y N X 且独立 ∴ )2,1(~N Y X +21)0()1()1(=Φ=>+=≤+Y X P Y X P ∴ 选B. 33.设随机变量2,1,412141101~=⎪⎪⎭⎫⎝⎛-i X i且满足1)0(21==X X P ,则==)(21X X P ( ).·160· (A )0; (B )1/4; (C )1/2; (D )1. 解:(2121P∴ )0()1()(212121==+-====X X P X X P X X P )1(21==+X X P0000=++= ∴ 选A.34.设随机变量X 取非负整数值,)1()(≥==n a n X P n ,且1=EX ,则a 的值为( ).(A )253+; (B )253-; (C )253±; (D )5/1.解:∑∑∑∑∞=∞=∞===-∞='-='====1111)1()(1n n n aX n aX nn n nX a X a naa naEX2)1(11a ax x a a X -='⎪⎭⎫⎝⎛-==∴ 253,013,)1(22±==+--=a a a a a ,但1<a . ∴ 253-=a . ∴ 选B. 35.设连续型随机变量X 的分布函数为⎪⎩⎪⎨⎧<≥-=,1,0,1,11)(4x x x x F则X 的数学期望为( ).(A )2; (B )0; (C )4/3; (D )8/3.解:⎪⎩⎪⎨⎧<≥=-114)(5x x xx f3541114144(3dx EX x dx x x x ∞∞∞-=⋅==⨯-⎰⎰34= ∴ 选C.36.已知44.1,4.2),,(~==DX EX p n B X ,则二项分布的参数为( ). (A )6.0,4==p n ; (B )4.0,6==p n ; (C )3.0,8==p n ; (D )1.0,24==p n .解:4.06.04.244.144.14.2=⇒=÷=⇒⎭⎬⎫====p q npq DX np EX 6=n∴ 选B.37.已知离散型随机变量X 的可能值为1,0,1321==-=x x x ,且89.0,1.0==DX EX ,则对应于321,,x x x 的概率321,,p p p 为( ).(A )5.0,1.0,4.0321===p p p ;(B )1230.1,0.1,0.5p p p ===; (C )4.0,1.0,5.0321===p p p ;(D )1230.4,0.5,0.5.p p p ===⎪⎭⎪⎬⎫+==+=⇒-=+-==312222319.0)1.0(89.0)(1.0p p EX EX EX DX p p EX 1230.40.10.5p p p ⎧=⎪⇒=⎨⎪=⎩ ∴ 选A.38.设)1,1(~),1,2(~-N Y N X ,且Y X ,独立,记623--=Y X Z ,则~Z __________.(A ))1,2(N ; (B ))1,1(N ; (C ))13,2(N ; (D ))5,1(N . 解:)1,1(~)1,2(~-N Y N X 且独立∴ 2)623(=--=Y X E EZ .949413DZ DX DY =+=+=.又独立正态变量的线性组合仍为正态变量,∴ ~(2,13)Z N ∴ 选C.39.设6)(),1,2(~),9,2(~=XY E N Y N X ,则)(Y X D -之值为( ).(A )14; (B )6; (C )12; (D )4. 解:),cov(2)(Y X DY DX Y X D -+=-, 246),cov(=-=-=EXEY EXY Y X 62219)(=⨯-+=-Y X D . ∴ 选B.40.设随机变量X 的方差存在,则( ).(A )22)(EX EX =; (B )22)(EX EX ≥; (C )22)(EX EX >; (D )22)(EX EX ≤.解:0)(22≥-=EX EX DX ∴ 22)(EX EX ≥. ∴ 选D. 41.设321,,X X X 相互独立,且均服从参数为λ的泊松分布,令)(31321X X X Y ++=,则2Y 的数学期望为( ).(A )λ31; (B )2λ; (C )231λλ+; (D )λλ+231.解:321X X X 独立)(~λP )3(~)(321λP X X X ++∴λ3)()(321321=++=++X X X D X X X E3)(91)](31[321321λ=++=++X X X D X X X D 2222)(λ-=-=EY EY EY∴ 322λλ+=EY ∴选C.42.设Y X ,的方差存在,且EXEY EXY =,则( ).(A )DXDY XY D =)(; (B )DY DX Y X D +=+)(;(C )X 与Y 独立; (D )X 与Y 不独立. 解:),cov(2)(Y X DY DX Y X D ++=+DY DX EXEY EXY DY DX +=-++=)(2 ∴选B.43.若随机变量Y X ,满足)()(Y X D Y X D -=+,且0>DXDY ,则必有( ).(A )Y X ,独立; (B )Y X ,不相关; (C )0=DY ; (D )0)(=XY D .解:Y X P Y X Y X D Y X D ,00),cov()()(⇒=⇒=⇒-=+不相关. ∴ 选B.44.设Y X ,的方差存在,且不等于0,则DY DX Y X D +=+)(是YX ,( ).(A )不相关的充分条件,但不是必要条件; (B )独立的必要条件,但不是充分条件; (C )不相关的必要条件,但不是充分条件; (D )独立的充分必要条件.解:由()cov(,)00D X Y DX DY X Y X ρ+=+⇔=⇔=⇔与Y 不相关 ∴ DY DX Y X D +=+)(是不相关的充要条件. A 、C 不对. 由独立DY DX Y X D +=+⇒)(,反之不成立 ∴ 选B.45.设Y X ,的相关系数1=XY ρ,则( )(A )X 与Y 相互独立; (B )X 与Y 必不相关; (C )存在常数b a ,使1)(=+=b aX Y P ; (D )存在常数b a ,使1)(2=+=b aX Y P . 解:⇔=1||XY ρ存在b a ,使1)(=+=b aX Y P ∴ 选C.46.如果存在常数)0(,≠a b a ,使1)(=+=b aX Y P ,且+∞<<DX 0,那么Y X ,的相关系数ρ为( ).(A )1; (B )–1; (C )||1ρ=; (D )||1ρ<. 解:aDX X X a b aX X Y X ==+====),cov(),cov(),cov(1以概率 DX a DY 21以概率==== ||||),cov(1a a DX a aDX DYDX Y X XY=====⋅=以概率ρ||1ρ∴=,以概率1成立. ∴ 选C.47.设二维离散型随机变量),(Y X 的分布律为则( ).(A )Y X ,不独立; (B )Y X ,独立; (C )Y X ,不相关; (D )Y X ,独立且相关.解:1.0)0,0(===Y X P)2.01.0)(25.005.01.0()0()0(+++===Y P X P 12.03.04.0=⨯= )0()0()0,0(==≠==Y P X P Y X P ∴ X 与Y 不独立. ∴ 选A.48.设X 为连续型随机变量,方差存在,则对任意常数C 和0>ε,必有( ).(A )εε/||)|(|C X E C X P -=≥-; (B )εε/||)|(|C X E C X P -≥≥-; (C )εε/||)|(|C X E C X P -≤≥-; (D )2/)|(|εεDX C X P ≤≥-. 解:||||||(||)()()X C X C X C P X C f x dx f x dx εεεε-≥-≥--≥=≤⎰⎰||1()||X C f x dx E X C εε+∞-∞-≤=-⎰∴ 选C.49.设随机变量X 的方差为25,则根据切比雪夫不等式,有)10|(|<-EX X P ( ).(A )25.0≤; (B )75.0≤; (C )75.0≥; (D )25.0≥. 解:75.0431002511)10|(|2==-=-≥<-εDXEX X P ∴ 选C.50.设 ,,21X X 为独立随机变量序列,且i X 服从参数为λ的泊松分布,,2,1=i ,则( ).(A ))(lim 1x x n n X P n i i n Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑=∞→λλ;(B )当n 充分大时,∑=ni iX1近似服从标准正态分布; (C )当n 充分大时,∑=ni iX1近似服从),(λλn n N ;(D )当n 充分大时,)()(1x x XP ni iΦ≈≤∑=.解:由独立同分布中心极限定理∑∞→=⇒nn i iX1近似服从),(λλn n N∴ 选C51.设 ,,21X X 为独立随机变量序列,且均服从参数为λ的指数分布,则( ).(A ))(/lim 21x x n n X P n i i n Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑=∞→λλ; (B ))(lim 1x x n n X P n i i n Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑=∞→λ;(C ))(/11lim 21x x X P n i i n Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑=∞→λλ; (D )).(lim 1x x n n X P n i i n Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑=∞→λ解:λ1=i EX 21λ=i DX λnX E n i =⎪⎭⎫ ⎝⎛∑1 21λn X D n i =⎪⎭⎫ ⎝⎛∑由中心极限定理⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑∞→x n nX P n i n 21lim λλ⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-=∑∞→x n n X P n i n 1lim λ)(x Φ=. ∴ 选B.52.设4321,,,X X X X 是总体),(2σμN 的样本,μ已知,2σ未知,则不是统计量的是( ).(A )415X X +; (B )41ii Xμ=-∑;(C )σ-1X ; (D )∑=412i iX.统计量是不依赖于任何未知参数的连续函数. ∴ 选C.53.设总体n X X X p B X ,,,),,1(~21 为来自X 的样本,则=⎪⎭⎫ ⎝⎛=n k X P ( ).(A )p ; (B )p -1;(C )k n k k n p p C --)1(; (D )k n k k n p p C --)1(.解:n X X X 21相互独立且均服从),1(p B 故 ∑=ni ip n B X1),(~即 ),(~p n B X n 则()()(1)k k n k n k P X P nX k C p p n-====- ∴ 选C.54.设n X X X ,,,21 是总体)1,0(N 的样本,X 和S 分别为样本的均值和样本标准差,则( ).(A ))1(~/-n t S X ; (B ))1,0(~N X ;(C ))1(~)1(22--n S n χ; (D ))1(~-n t X n .解:∑==ni i X n X 11 0=X E ,)1,0(~112n N X n n n X D ∴== B 错 )1(~)1(222--n S n χσ )1(~)1(1)1(2222--=-∴n S n S n χ)1(~-n t n SX . ∴ A 错.∴ 选C.55.设n X X X ,,,21 是总体),(2σμN 的样本,X 是样本均值,记=21S∑∑∑===--=-=--n i n i n i i i i X n S X X n S X X n 1112232222)(11,)(1,)(11μ,∑=-=n i i X n S 1224)(1μ,则服从自由度为1-n 的t 分布的随机变量是( ).(A )1/1--=n S X T μ; (B )1/2--=n S X T μ;(C )nS X T /3μ-=; (D )n S X T /4μ-=解:)1(~)(2212--∑=n X Xni iχσ)1,0(~N n X σμ-)1(~1)(1122----=∑=n t n X XnX T ni iσσμ)1(~11/)(222---=--=n t n S X n nS n X T μμ ∴ 选B.56.设621,,,X X X 是来自),(2σμN 的样本,2S 为其样本方差,则2DS 的值为( ).(A )431σ; (B )451σ; (C )452σ; (D ).522σ 解:2126,,,~(,),6X X X N n μσ= ∴)5(~5222χσS由2χ分布性质:1052522=⨯=⎪⎪⎭⎫ ⎝⎛σS D即442522510σσ==DS ∴ 选C.57.设总体X 的数学期望为n X X X ,,,,21 μ是来自X 的样本,则下列结论中正确的是( ).(A )1X 是μ的无偏估计量; (B )1X 是μ的极大似然估计量; (C )1X 是μ的一致(相合)估计量; (D )1X 不是μ的估计量. 解:11EX EX X μ==∴是μ的无偏估计量.∴ 选A.58.设n X X X ,,,21 是总体X 的样本,2,σμ==DX EX ,X 是样本均值,2S 是样本方差,则( ).(A )2~,X N n σμ⎛⎫ ⎪⎝⎭; (B )2S 与X 独立;(C ))1(~)1(222--n S n χσ; (D )2S 是2σ的无偏估计量. 解:已知总体X 不是正态总体 ∴(A )(B )(C )都不对.∴ 选D.59.设n X X X ,,,21 是总体),0(2σN 的样本,则( )可以作为2σ的无偏估计量.(A )∑=n i i X n 121; (B )∑=-n i i X n 1211; (C )∑=n i i X n 11; (D )∑=-ni i X n 111. 解:2222)(,0σ==-==i i i i i EX EX EX DX EX22121)1(σσ=⋅=∑n nX n E n i∴ 选A.60.设总体X 服从区间],[θθ-上均匀分布)0(>θ,n x x ,,1 为样本,则θ的极大似然估计为( )(A )},,max {1n x x ; (B )},,min{1n x x (C )|}|,|,max {|1n x x (D )|}|,|,min{|1n x x解:1[,]()20x f x θθθ⎧∈-⎪=⎨⎪⎩其它似然正数∏==ni i n x f x x L 11),();,,(θθ 1,||1,2,,(2)0,i nx i n θθ⎧≤=⎪=⎨⎪⎩其它此处似然函数作为θ函数不连续 不能解似然方程求解θ极大似然估计∴ )(θL 在)(n X =θ处取得极大值 |}|,|,max{|ˆ1nn X X X ==θ ∴ 选C.。
概率论课后习题解答
一、习题详解:1.1 写出下列随机试验的样本空间:(1) 某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数;解:连续5 次都命中,至少要投5次以上,故}{ ,7,6,51=Ω;(2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和;解:}{12,11,4,3,22 =Ω;(3) 观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{,2,1,03=Ω; (4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故:()}{;51,4≤≤=Ωj i j i(5) 检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω;(6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ()}{216,T y x T y x ≤≤=Ω ;(7) 在单位圆内任取两点, 观察这两点的距离;解:}{207 x x =Ω;(8) 在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度.解:()}{l y x y x y x =+=Ω,0,0,8 ;1.2 设A ,B ,C 为三事件, 用A;B;C 的运算关系表示下列各事件:(1) A 与B 都发生, 但C 不发生; C AB ;(2) A 发生, 且B 与C 至少有一个发生;)(C B A ⋃;(3) A,B,C 中至少有一个发生; C B A ⋃⋃;(4) A,B,C 中恰有一个发生;C B A C B A C B A ⋃⋃;(5) A,B,C 中至少有两个发生; BC AC AB ⋃⋃;(6) A,B,C 中至多有一个发生;C B C A B A ⋃⋃; (7) A;B;C 中至多有两个发生;ABC ;(8) A,B,C 中恰有两个发生.C AB C B A BC A ⋃⋃ ;注意:此类题目答案一般不唯一,有不同的表示方式。
概率论与数理统计练习题附答案详解
第一章《随机事件及概率》练习题一、单项选择题1、设事件A 与B 互不相容,且P (A )>0,P (B )>0,则一定有( )(A )()1()P A P B =-; (B )(|)()P A B P A =;(C )(|)1P A B =; (D )(|)1P A B =。
2、设事件A 与B 相互独立,且P (A )>0,P (B )>0,则( )一定成立 (A )(|)1()P A B P A =-; (B )(|)0P A B =;(C )()1()P A P B =-; (D )(|)()P A B P B =。
3、设事件A 与B 满足P (A )>0,P (B )>0,下面条件( )成立时,事件A 与B 一定独立(A )()()()P AB P A P B =; (B )()()()P A B P A P B =;(C )(|)()P A B P B =; (D )(|)()P A B P A =。
4、设事件A 和B 有关系B A ⊂,则下列等式中正确的是( )(A )()()P AB P A =; (B )()()P AB P A =;(C )(|)()P B A P B =; (D )()()()P B A P B P A -=-。
5、设A 与B 是两个概率不为0的互不相容的事件,则下列结论中肯定正确的是( ) (A )A 与B 互不相容; (B )A 与B 相容;(C )()()()P AB P A P B =; (D )()()P A B P A -=。
6、设A 、B 为两个对立事件,且P (A )≠0,P (B ) ≠0,则下面关系成立的是( ) (A )()()()P AB P A P B =+; (B )()()()P A B P A P B ≠+;(C )()()()P AB P A P B =; (D )()()()P AB P A P B =。
7、对于任意两个事件A 与B ,()P A B -等于( )(A )()()P A P B - (B )()()()P A P B P AB -+; (C )()()P A P AB -; (D )()()()P A P B P AB +-。
概率论课后习题解答
一、习题详解:写出下列随机试验的样本空间:(1)某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数;解:连续5 次都命中,至少要投5次以上,故}{ ,7,6,51=Ω;(2)掷一颗匀称的骰子两次, 观察前后两次出现的点数之和;解:}{12,11,4,3,22 =Ω;(3)观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{ ,2,1,03=Ω;(4)从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故:(5)检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω;(6)观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ()}{216,T y x T y x ≤≤=Ω ;(7)在单位圆内任取两点, 观察这两点的距离;解:}{207 x x =Ω;(8)在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度.解:()}{l y x y x y x =+=Ω,0,0,8 ;设A ,B ,C 为三事件, 用A;B;C 的运算关系表示下列各事件:(1) A 与B 都发生, 但C 不发生; C AB ;(2) A 发生, 且B 与C 至少有一个发生;)(C B A ⋃;(3) A,B,C 中至少有一个发生; C B A ⋃⋃;(4) A,B,C 中恰有一个发生;C B A C B A C B A ⋃⋃;(5) A,B,C 中至少有两个发生; BC AC AB ⋃⋃;(6) A,B,C 中至多有一个发生;C B C A B A ⋃⋃; (7) A;B;C 中至多有两个发生;ABC ;(8) A,B,C 中恰有两个发生.C AB C B A BC A ⋃⋃ ;注意:此类题目答案一般不唯一,有不同的表示方式。
概率论解析答案习题解答
第二章 随机变量及其分布I 教学基本要求1、了解随机变量的概念以及它与事件的联系;2、理解随机变量的分布函数的概念与性质;理解离散型随机变量的分布列、连续型随机变量的密度函数及它们的性质;3、掌握几种常用的重要分布:两点分布、二项分布、泊松分布、均匀分布、指数分布、正态分布,且能熟练运用;4、会求简单随机变量函数的分布.II 习题解答A 组1、检查两个产品,用T 表示合格品,F 表示不合格品,则样本空间中的四个样本点为1(,)F F ω=、2(,)T F ω=、3(,)F T ω=、4(,)T T ω=以X 表示两个产品中的合格品数.(1) 写出X 与样本点之间的对应关系;(2) 若此产品的合格品率为p ,求(1)p X =? 解:(1) 10ω→、21ω→、31ω→、42ω→;(2) 12(1)(1)2(1)p X C p p p p ==-=-.2、下列函数是否是某个随机变量的分布函数?(1) 021()2021x F x x x <-⎧⎪⎪=-≤<⎨⎪≥⎪⎩; (2) 21()1F x x =+ ()x -∞<<+∞. 解:(1) 显然()F x 是单调不减函数;0()1F x ≤≤,且()0F -∞=、()1F +∞=;(0)()F x F x +=,故()F x 是某个随机变量的分布函数.(2) 由于()01F +∞=≠,故()F x 不是某个随机变量的分布函数. 3、设X 的分布函数为(1)0()00x A e x F x x -⎧-≥=⎨<⎩求常数A 及(13)p X <≤?解:由()1F +∞=和lim (1)xx A e A -→+∞-=得1A =;(13)(3)(1)(3)(1)p X p X p X F F <≤=≤-≤=- 3113(1)(1)e e e e ----=---=-.4、设随机变量X 的分布函数为200()0111x F x Ax x x ≤⎧⎪=<≤⎨⎪>⎩求常数A 及(0.50.8)p X <≤?解:由(10)(1)F F +=得1A =;(0.50.8)(0.8)(0.5)(0.8)(0.5)p X p X p X F F <≤=≤-≤=- 220.80.50.39=-=.5、设随机变量X 的分布列为()ap X k N==(1,2,,)k N =L 求常数a ?解:由11ii p+∞==∑得11Nk aN ==∑ 1a ⇒=.6、一批产品共有100个,其中有10个次品,求任意取出的5个产品中次品数的分布列? 解:设X 表示5个产品中的次品数,则X 是离散型随机变量,其所有可能取值为0、1、…、5,且0510905100(0)C C p X C ==、1410905100(1)C C p X C ==、2310905100(2)C C p X C ==、3210905100(3)C C p X C ==、4110905100(4)C C p X C ==、5010905100(5)C C p X C ==于是X 的分布列为510905100()k k C C p X k C -== (0,1,,5)k =L . 7、设10件产品中有2件次品,进行连续无放回抽样,直至取到正品为止,以X 表示抽样次数,求(1) X 的分布列; (2) X 的分布函数?解:(1) 由题意知X 是离散型随机变量,其所有可能取值为1、2、3,且84(1)105p X ===、288(2)10945p X ==⨯=、2181(3)109845p X ==⨯⨯=于是X(2) 由(1)可知的分布函数为014125()44234513x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩.8、设随机变量X 的分布函数为010.211()0.3120.52313x x F x x x x <-⎧⎪-≤<⎪⎪=≤<⎨⎪≤<⎪≥⎪⎩ 求X 的分布列?解:X 9、求在同一时刻(1) 恰有2个设备被使用的概率; (2) 至少有3个设备被使用的概率; (3) 至多有3个设备被使用的概率?解:设X 表示被同时使用的供水设备数,则~(5,0.1)X b (1) 恰有2个设备被使用的概率为2235(2)(0.1)(0.9)0.0729p X C ===;(2) 至少有3个设备被使用的概率为(3)(3)(4)(5)p X p X p X p X ≥==+=+=33244550555(0.1)(0.9)(0.1)(0.9)(0.1)(0.9)0.00856C C C =++=;(3) 至多有3个设备被使用的概率为(3)1(4)(5)p X p X p X ≤=-=-=44550551(0.1)(0.9)(0.1)(0.9)0.99954C C =--=.10、经验表明:预定餐厅座位而不来就餐的顾客比例为20%,如今餐厅有50个座位,但预定给了52位顾客,求到时顾客来到餐厅而没有座位的概率是多少?解:设X 表示预定的52位顾客中不来就餐的顾客数,则~(52,0.2)X b ,由于“顾客来到餐厅没有座位”等价于“52位顾客中至多有1位不来就餐”,于是所求概率为005211515252(1)(0)(1)(0.2)(0.8)(0.2)(0.8)p X p X p X C C ≤==+==+0.0001279=.11、设某城市在一周内发生交通事故的次数服从参数为的泊松分布,求 (1) 在一周内恰好发生2次交通事故的概率; (2) 在一周内至少发生1次交通事故的概率?解:设X 表示该城市一周内发生交通事故的次数,则~(0.3)X P (1) 在一周内恰好发生2次交通事故的概率20.30.3(2)0.03332!p X e -===;(2) 在一周内至少发生1次交通事故的概率00.30.3(1)1(0)10.2590!p X P X e -≥=-==-=.12、设X 服从泊松分布,已知(1)(2)p X p X ===,求(4)p X =? 解:由(1)(2)p X p X ===得22ee λλλλ--=2λ⇒=422(4)0.09024!p X e -⇒===.13、一批产品的不合格品率为,现从中任取40件进行检查,若发现两件或两件以上不合格品就拒收这批产品,分别用以下方法求拒收的概率:(1) 用二项分布作精确计算;(2) 用泊松分布作的似计算?解:设X 表示抽取的40件产品中的不合格品数,则~(40,0.02)X b (1) 拒收的概率为(2)1(0)(1)p X p X p X ≥=-=-=0040113940401(0.02)(0.98)(0.02)(0.98)0.1905C C =--=;(2) 由于400.020.8λ=⨯=,于是拒收的概率为(2)1(0)(1)p X p X p X ≥=-=-= 0.80.810.80.1912e e --≈--=.14、设随机变量X 的密度函数为201()0x x f x ≤≤⎧=⎨⎩其它求X 的分布函数?解:由()()xF x f t dt -∞=⎰得当0x <时()()00xxF x f t dt dt -∞-∞===⎰⎰当01x ≤≤时2200()()02|x xxF x f t dt dt tdt t x -∞-∞==+==⎰⎰⎰当1x >时0121001()()020|1x xF x f t dt dt tdt dt t -∞-∞==++==⎰⎰⎰⎰于是所求分布函数为200()0111x F x x x x <⎧⎪=≤≤⎨⎪>⎩. 15、设随机变量X 的密度函数为212(1)12()0x f x x⎧-≤≤⎪=⎨⎪⎩其它求X 的分布函数?解:由()()xF x f t dt -∞=⎰得当1x <时()()00xxF x f t dt dt -∞-∞===⎰⎰当12x ≤≤时1121111()()02(1)2()|2(2)xxx F x f t dt dt dt t x t t x-∞-∞==+-=+=+-⎰⎰⎰ 当2x >时122121211()()02(1)02()|1xx F x f t dt dt dt dt t t t-∞-∞==+-+=+=⎰⎰⎰⎰于是所求分布函数为011()2(2)1212x F x x x x x <⎧⎪⎪=+-≤≤⎨⎪>⎪⎩. 16、设随机变量X 的密度函数为cos ()220A x x f x ππ⎧-≤≤⎪=⎨⎪⎩其它求(1) 常数A ;(2) X 的分布函数;(3) (0)4p X π<≤?解:(1) 由()1f x dx +∞-∞=⎰得2222220cos 0sin |21dt A xdx dt A x A ππππππ-+∞--∞-++===⎰⎰⎰12A ⇒=; (2) 当2x π<-时()()00xxF x f t dt dt -∞-∞===⎰⎰当22x ππ-≤≤时2221111()()0cos sin |sin 2222x xxF x f t dt dt tdt t x πππ---∞-∞-==+==+⎰⎰⎰当2x π>时22222211()()0cos 0sin |122xx F x f t dt dt tdt dt t ππππππ---∞-∞-==++==⎰⎰⎰⎰ 于是所求分布函数为0211()sin 222212x F x x x x ππππ⎧<-⎪⎪⎪=+-≤≤⎨⎪⎪>⎪⎩;(3) (0)()(0)()(0)444p X p X p X F F πππ<≤=≤-≤=-1111sin sin 0242224π=+--=. 17、设随机变量X 的分布函数为1()ln 11x F x xx e x e<⎧⎪=≤≤⎨⎪>⎩求(1) (03)p X <≤、(2)p X <、(2 2.5)p X <<;(2) X 的密度函数?解:(1) (03)(3)(0)(3)(0)101p X p X p X F F <≤=≤-≤=-=-=(2)(2)(2)(2)ln 2p X p X p X F <=≤-===5(2 2.5)(2 2.5)(2.5)(2)ln 2.5ln 2ln 4p X p X F F <<=<≤=-=-=;(2) 由于在()F x 的可导点处,有()()f x F x '=,于是X 的密度函数为11()0x ef x x⎧≤≤⎪=⎨⎪⎩其它.18、设~(1,6)K U ,求方程210x Kx ++=有实根的概率? 解:由~(1,6)K U 得K 的密度函数为116()5k f k ⎧<<⎪=⎨⎪⎩其它又由于方程210x Kx ++=有实根等价于240K -≥,即||2K ≥,于是方程有实根的概率为22(||2)(2)(2)()()p K p K p K f k dk f k dk -+∞-∞≥=≤-+≥=+⎰⎰621455dk ==⎰. 19、调查表明某商店从早晨开始营业起直至第一个顾客到达的等待时间X (单位:分钟)服从参数为0.4的指数分布,求下述事件的概率(1) X 至多3分钟; (2) X 至少4分钟;(3) X 在3分钟至4分钟之间; (4) X 恰为3分钟?解:(1) X 至多3分钟的概率为0.43 1.2(3)(3)11p X F e e -⨯-≤==-=-;(2) X 至少4分钟的概率为0.44 1.6(4)1(4)1(4)1(1)p X p X F e e -⨯-≥=-<=-=--=;(3) X 在3分钟至4分钟之间的概率为(34)(4)(3)(4)(3)p X p X p X F F ≤≤=≤-<=- 0.440.43 1.2 1.6(1)(1)e e e e -⨯-⨯--=---=-;(4) X 恰为3分钟的概率为(3)0p X ==.20、设~(0,1)X N ,求下列事件的概率( 2.35)p X ≤;( 1.24)p X ≤-;(|| 1.54)p X ≤?解:( 2.35)(2.35)0.9906p X ≤=Φ=;( 1.24)( 1.24)1(1.24)10.89250.1075p X ≤-=Φ-=-Φ=-=; (|| 1.54)( 1.54 1.54)(1.54)( 1.54)p X p X ≤=-≤≤=Φ-Φ- (1.54)[1(1.54)]2(1.54)120.938210.8764=Φ--Φ=Φ-=⨯-=.21、设~(3,4)X N ,(1) 求(25)p X <≤、(||2)p X >、(3)p X >;(2) 确定c ,使得()()p X c p X c >=≤;(3) 若d 满足()0.9p X d >≥,则d 至多为多少?解:(1) 23353(25)()222X p X p ---<≤=≤≤ (1)(0.5)(1)(0.5)10.84130.691510.5328=Φ-Φ-=Φ+Φ-=+-=23323(||2)1(||2)1()222X p X p X p ---->=-≤=-≤≤1(0.5)( 2.5)1(0.5)(2.5)=-Φ-+Φ-=+Φ-Φ10.69150.99380.6977=+-= 333(3)1(3)1()22X p X p X p -->=-≤=-≤ 1(0)10.50.5=-Φ=-=;(2) 由()()p X c p X c >=≤得1()()p X c p X c -≤=≤3330.5()()()222X c c p X c p ---⇒=≤=≤=Φ 3032c c -⇒=⇒=; (3) 由()0.9p X d >≥得3330.9()1()1()1()222X d d p X d p X d p ---≤>=-≤=-≤=-Φ 33()0.11()0.122d d--⇒Φ≤⇒-Φ≤ 33()0.9 1.2820.43622d d d --⇒Φ≥⇒≥⇒≤.22、从甲地飞住乙地的航班,每天上午10:10起飞,飞行时间X 服从均值为4h ,标准差为20min 的正态分布.(1) 该航班在下午2:30以后到达乙地的概率; (2) 该航班在下午2:20以前到达乙地的概率;(3) 该航班在下午1:50至2:30之间到达乙地的概率? 解:(1) 该航班在下午2:30以后到达乙地的概率为240260240240(260)()1(1)202020X X p X p p ---≥=≥=-< 1(1)10.84130.1587=-Φ=-=;(2) 该航班在下午2:20以前到达乙地的概率为240250240(250)()(0.5)0.69152020X p X p --≤=≤=Φ=; (3) 该航班在下午1:50至2:30之间到达乙地的概率为220240240260240(220260)()202020X p X p ---≤≤=≤≤(1)(1)2(1)120.841310.6826=Φ-Φ-=Φ-=⨯-=.23、某地抽样调查结果表明,考生的外语成绩(百分制)近似地服从2(72,)N σ,已知96分以上的人数占总数的%,试求考生的成绩在60分至84分之间的概率?解:设考生的外语成绩为X ,则2~(72,)X N σ 由96分以上的人数占总数的%得0.023(96)p X =>729672240.977(96)()()X p X p σσσ--⇒=≤=≤=Φ242σ⇒=12σ⇒=于是,考生的成绩在60分至84分之间的概率为6072728472(6084)()121212X p X p ---≤≤=≤≤ (1)(1)2(1)120.841310.6826=Φ-Φ-=Φ-=⨯-=.24求cos Y X =的分布列?解:由X于是Y25求2Y X =的分布列?解:由26、设随机变量的密度函数为2311()2X xx f x ⎧-<<⎪=⎨⎪⎩其它求随机变量3Y X =+的密度函数?解:由题意知,当2y ≤时,有()()0Y F y p Y y =≤=当24y <<时,有()()(3)(3)(3)Y X F y p Y y p X y p X y F y =≤=+≤=≤-=-当4y ≥时,有()()1Y F y p Y y =≤=即Y 的分布函数02()(3)2414Y X y F y F y y y ≤⎧⎪=-<<⎨⎪≥⎩于是,Y 的密度函数()()Y Y f y F y '=(3)240X F y y '-<<⎧=⎨⎩其它23(3)2420y y ⎧-<<⎪=⎨⎪⎩其它.27、设随机变量~(0,1)X U ,求随机变量XY e =的密度函数? 解:由题意知,当1y ≤时,有()()0Y F y p Y y =≤=当1y e <<时,有()()()(ln )(ln )X Y X F y p Y y p e y p X y F y =≤=≤=≤=当y e ≥时,有()()1Y F y p Y y =≤=即Y 的分布函数1()(ln )11Y X y F y F y y e y e≤⎧⎪=<<⎨⎪≥⎩于是,Y 的密度函数()()Y Y f y F y '=(ln )10XF y y e'<<⎧=⎨⎩其它110y ey ⎧<<⎪=⎨⎪⎩其它.28、随机变量X 的密度函数为()0xX e x f x x -⎧>=⎨≤⎩ 求随机变量2Y X =的密度函数?解:由于20Y X =≥,故当0y <时,有()()0Y F y p Y y =≤=;当0y ≥时,有2()()()(Y F y p Y y p X y p X =≤=≤=≤≤0()1x X f x dx dx e -===-即Y 的分布函数10()0Y e y F y y ⎧-≥⎪=⎨<⎪⎩于是,Y 的密度函数0()()00Y Y y f y F y y >'==≤⎩.29、设随机变量~(0,1)X N ,试求随机变量||Y X =的密度函数? 解:由于||0Y X =≥,故当0y <时,有()()0Y F y p Y y =≤=; 当0y ≥时,有()()(||)()2()1Y F y p Y y p X y p y X y y =≤=≤=-≤≤=Φ-即Y 的分布函数2()10()00Y y y F y y Φ-≥⎧=⎨<⎩于是,Y 的密度函数()()Y Y f y F y '=2()00y y y 'Φ>⎧=⎨≤⎩22000yy y ->=≤⎩.B 组1、A2、B3、D4、B5、B6、B7、C8、C9、C10、C11、设随机变量X 的分布函数为0111()21232x a x F x a x a b x <-⎧⎪-≤<⎪⎪=⎨-≤<⎪⎪+≥⎪⎩且1(2)2p X ==,求常数a 、b ? 解:由()1F +∞=及()()(0)p X a F a F a ==--得()121(2)(2)(20)()()32F a b p X F F a b a +∞=+=⎧⎪⎨==--=+--=⎪⎩1726a b a b +=⎧⎪⇒⎨+=⎪⎩1656a b ⎧=⎪⎪⇒⎨⎪=⎪⎩.12求常数a ?解:由11ii p+∞==∑得20.5121a a +-+=12a ⇒=±再由11202a a -≥⇒≤,可得12a =-. 13、口袋中有5个球,编号为1、2、3、4、5,从中任取3个,以X 表示取出的3个球中的最大号码.(1) 求X 的分布列; (2) 求X 的分布函数?解:(1) 由题意知X 是离散型随机变量,其所有可能取值为3、4、5,且22351(3)10C p X C ===、23353(4)10C p X C ===、24356(5)10C p X C ===于是X(2) 由(1)可知的分布函数为030.134()0.44515x x F x x x <⎧⎪≤<⎪=⎨≤<⎪⎪≥⎩.14、设随机变量X 的密度函数为||()x af x Ce -= (0)a >求(1) 常数C ;(2) X 的分布函数;(3) (||2)p X <?解:(1) 由()1f x dx +∞-∞=⎰得||0()2221x x aaf x dx C e dx C e dx aC +∞+∞+∞---∞====⎰⎰⎰12C a⇒=; (2) 当0x <时 ||111()()222t t xa a a x x x F x f t dt e dt e dt e a a --∞-∞-∞====⎰⎰⎰当0x ≥时||||0011()()22t t a a xx F x f t dt e dt e dt a a---∞-∞==+⎰⎰⎰ 001111222t t x a a a x e dt e dt e a a ---∞=+=-⎰⎰于是102()1102xa x a e x F x e x -⎧<⎪⎪=⎨⎪-≥⎪⎩;(3) 22211(||2)(22)(2)(2)1122a a a p X p X F F e e e ---<=-<<=--=--=-. 15、设随机变量X 的密度函数为201()0xx f x ≤≤⎧=⎨⎩其它以Y 表示对X 的三次独立重复观察中事件1{}2X ≤出现的次数,求(2)P Y =?解:由题意知:事件1{}2X ≤在一次观察中出现的概率为1112222001()02|4p f x dx dt xdx x -∞-∞==+==⎰⎰⎰ 且~(3,)Y b p ,于是223139(2)()()4464P Y C ===. 16、设顾客在某银行的窗口等待服务的时间X (单位:分钟)服从指数分布,其密度函数为510()5x e x f x x -⎧>⎪=⎨⎪≤⎩某顾客在窗口等待服务,若超过10分钟他就离开.他一个月要到银行5次,以Y 表示一个月内他未等到服务而离开窗口的次数,求(1)p Y ≥?解:由题意知:顾客在窗口等待服务的时间超过10分钟的概率为5521010101()|5x x p f x dx e dx e e +∞+∞--+∞-===-=⎰⎰且~(5,)Y b p ,于是02025255(1)1(0)1()(1)1(1)0.5167P Y P Y C e e e ---≥=-==--=--=.17、设随机变量2~(2,)X N σ且(24)0.3p X <<=,求(0)p X <? 解:由2~(2,)X N σ得224242(24)()()(0)0.3p X p X σσσ---<<=<<=Φ-Φ=2()0.8σ⇒Φ=0222(0)()()1()10.80.2p X p X σσσ-⇒<=<=Φ-=-Φ=-=.18、设随机变量X 的分布函数为()F x ,试求随机变量()Y F X =的密度函数? 解:由于0()1F X ≤≤,故当0Y <时,有()()0Y F y p Y y =≤=; 当01y ≤≤时,有11()()(())(())(())Y F y p Y y p F X y p X F y F F y y --=≤=≤=≤==当1y >时,有()()1Y F y p Y y =≤= 即Y 的分布函数00()0111Y y F y yy y <⎧⎪=≤≤⎨⎪>⎩于是,Y 的密度函数()()Y Y f y F y '=101y <<⎧=⎨⎩其它即随机变量Y 服从区间(0,1)上的均匀分布.。
概率论典型题解
概率论典型题解1甲乙两人独立地对同一目标射击一次,命中率分别为0.6和0.5,现已知目标被击中,则它是甲击中的概率为 . 2考虑一元二次方程02=++C Bx x ,其中C B ,分别是将一枚骰子连续抛掷两次后出现的点数,求该方程有实根和有重根的概率.3假设n 张体育彩票中只有一张“中奖”,n 个人依次排队摸彩,求:(1) 已知前)(1n k k ≤-个人都未“中奖”,求第k 个人“中奖”的概率;(2) 求第)(n k k ≤个人“中奖”的概率.4三个箱子中,第一个箱子中有4个黑球1个白球,第二个箱子中有3个黑球3个白球,第三个箱子中有3个黑球5个白球,现随机地取一个箱子,再从该箱子中取出一个球,则该球为白球的概率为 ;已知取出的是白球,则此球属于第二个箱子的概率为 .5设随机变量),(~2σu N X ,则σ增大时概率)(σ u X P -应(A ) 单调增大;(B )单调减少;(B ) 保持不变; (D )增减不定6设随机变量X 服从参数为θ的指数分布,则对随机变量}2,min{X Y =的分布函数,下列结论正确的是()(A ) 是连续函数;(B )至少有一个间断点(B ) 是阶梯函数;(D )恰有两个间断点7设随机变量),6,1(~U X 则方程012=++Xt t 有实根的概率为 .8从)1,0(中随机地取两个数,求下列概率:(1) 两数之和小于1.2;(2)两数之积小于0.25;(2) 以上两个要求同时满足.9若),(ηξ的密度函数为:⎩⎨⎧=+-else y x Ae y x f y x ,00,0,),()2( 试求:(1)常数A;(2))1;2( ηξP ;(3)ξ的边缘分布;(4))2( ηξ+P ;(5))/(y x f ;(6)).1/2( ηξP10.(1)若),(ηξ的联合密度函数为:⎩⎨⎧≤≤≤≤=else y x xy y x f ,010,10,4),( 问ξ和η是否相互独立.(2)若),(ηξ的联合密度函数为:⎩⎨⎧≤≤≤≤=else y y x xy y x f ,010,0,8),( 问ξ和η是否相互独立.11.若ηξ,是相互独立的随机变量,均服从)1,0(N ,试求: ηξηξ-=+=V U ,的联合密度函数.12.设n X X X ,,,21⋅⋅⋅是相互独立的随机变量,且有,,...,2,1,)(,)(2n i X D u X E i i ===σ记.)(11,12121X X n S X n X n i i n i i --==∑=∑= (1) 验证;)(,)(2n X D u X E σ== (2) 验证);(112122n X n S n i i --=∑= (3) 验证.)(22σ=S E13.设随机变量X 的概率密度为R x e x f x ∈=-,21)( 求(1)X 的数学期望)(X E 和方差)(X D ;(2)X 与X 的协方差,并问X 与X 是否不相关;(3)问X 与X 是否独立,为什么?14.设二维随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧≤≤+=elsex y x A y x f ,0;20),sin(),(π (1) 求系数A;(2)求);(),(),(),(Y D X D Y E X E(3)求.XY ρ15.若),(~),(~22221221n n χχχχ且2221,χχ独立,则~2221χχ+ .16.若)(~22n χχ,则=)(2χE ,)(2χD . =≤-∞→}2{lim 2x n n P n χ .17.),,(~21n n F F 则~1F. 18若事件B A ,相互独立,且4.0)(,6.0)(==B P A P ,则=)(B A P . 19若)(~λπX ,则=)(X E ,)(X D = .20.设随机变量n X X X ,...,,21相互独立,服从同一分布,且具有数学期望和方差:,...)2,1(0)(,)(2===k X D u X E k k σ,则=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤-∑=∞→x n nu X P n k k n σ1lim . 21若离散性随机变量X 的分布律为,....)2,1(,!}{===k k c k X P ,则c = . 22已知)4.0,0(~),2.0,1(~22N Y N X ,且Y X ,相互独立,则~2Y X - .23设),5,0(~U K 则关于x 的方程02442=+++K Kx x 有实根的概率为 .24.已知一袋中有白球a 个,黑球b 个,采用不放回摸球,则第)2(2b a +≤次摸到黑球的概率为 .25根据以往资料表明,某一3口之家,患某种传染病的概率有以下规律性:P{孩子得病}=0.6,P{母亲得病/孩子得病}=0.5,P{父亲得病/母亲及孩子得病}=0.4}.求母亲及孩子得病但父亲未得病的概率. 26设随机变量X 的概率密度为⎪⎩⎪⎨⎧=else x x x f ,00,2)(2ππ ,求X Y sin =的概率密度.27设二维随机变量),(Y X 的概率密度为⎩⎨⎧≤≤=else y x y cx y x f ,01,),(22 (1) 试确定常数c ;(2)求边缘概率密度. 28设二维随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧≤+=else y x y x f ,01,1),(22π试验证X 和Y 是不相关的,但X 和Y 不是相互独立的.29设随机变量),(Y X 具有概率密度⎩⎨⎧≤=else x x y y x f ,010,,1),( 求).,(),(),(Y X Cov Y E X E 30已知)(~n t X ,求证).,1(~2n F X 31设n X X X p b X ,...,,).,1(~21是来自X 的一个样本,试求参数p 的最大似然估计. 32设总体X 的均值为u ,方差02 σ均未知,证明:样本方差212)(11X X n S n i i --=∑=是总体方差2σ的无偏估计.。
概率论第一章习题解答
概率论第一章习题解答一、填空题:1.设,()0.1,()0.5,A B P A P B ⊂==则()P AB = ,()P A B = , ()P A B = 。
分析:()(,)0.1;A P B P AB A ==⊂()()0.5;P A B P B ==()()()1()0.9P A B P A B P AB P AB ===-=2.设在全部产品中有2%是废品,而合格品中有85%是一级品,则任抽出一个产品是一级品的概率为 。
分析:设A 为抽正品事件,B 为抽一级品事件,则条件知()1()0.98P A P A =-=,()0.85P B A =,所求为()()()0.980.850.833P B P A P B A ==⨯=;3.设A ,B ,C 为三事件且P(A)=P(B)=P(C)=41,81)(,0)()(===AC P BC P AB P ,则A,B,C 中至少有一个发生的概率为 .分析:,()()0,()0ABC AB P ABC P AB P ABC ⊆≤=∴= 所求即为5()()()()()()()()8P A B C P A P B P C P AB P BC P AC P ABC =++---+=; 4.一批产品共有10个正品和2个次品,不放回的抽取两次,则第二次取到次品的概率 为 .分析:第二次取到次品的概率为112111211C C ⨯或者为111110*********C C C C +=⨯ 5. 设A ,B 为两事件, ()0.4,()0.7,P A P A B == 当A ,B 不相容时, ()P B = 当A ,B 相互独立时, ()P B = 。
分析: (1)当A ,B 不相容时, ()0P AB =;()()()()P A B P A P B P AB =+- 由;则()()()()0.3P B P A B P A P AB =⋃-+=;(2)当A ,B 相互独立时, ()()()()()()()P AB P A P B P A B P A P B P AB =⎧⎨=+-⎩ ;则()(()(()))P A B P A P P P B B A =+- 由,代入求得()0.5P B =二.、选择题2.每次试验成功的概率为p (0< p <1),进行重复试验,直到第10次试验才取得4次成功的概率为( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.一打靶场备有5支某种型号的枪,其中3支已经校正,2支未经校正.某人使用已校正的枪击中目标的概率为1p ,使用未经校正的枪击中目标的概率为2p .他随机地取一支枪进行射击,已知他射击了5次,都未击中,求他使用的是已校正的枪的概率(设各次射击的结果相互独立).解 以M 表示事件“射击了5次均未击中”,以C 表示事件“取得的枪是已经校正的”,则,5/3)(=C P,5/2)(=C P 又,按题设,)1()|(51p C M P -=52)1()|(p C M P -=,由贝叶斯公式)()()|(M P MC P M C P =)()|()()|()()|(C P C M P C P C M P C P C M P +=52)1(53)1(53)1(525151⨯-+⨯-⨯-=p p p.)1(2)1(3)1(3525151p p p -+--=2.某人共买了11只水果,其中有3只是二级品,8只是一级品.随机地将水果分给C B A 、、三人,各人分别得到4只、6只、1只.(1)求C 未拿到二级品的概率.(2)已知C 未拿到二级品,求B A ,均拿到二级品的概率. (3)求B A ,均拿到二级品而C 未拿到二级品的概率.解 以,,,C B A 分别表示事件C B A ,,取到二级品,则C B A,,表示事件C B A ,,未取到二级品.(1).11/8)(=C P(2)就是需要求).|(C AB P 已知C 未取到二级品,这时B A ,将7只一级品和3只二级品全部分掉.而B A 、均取到二级品,只需A 取到1只至2只二级品,其它的为一级品.于是.5441027234103713)|(=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=C AB P (3).55/32)()|()(==C P C AB P C AB P3.一系统L 由两个只能传输字符0和1的独立工作的子系统1L 和2L 串联而成(如图15.3),每个子系统输入为0输出为0的概率为)10(<<p p ;而输入为1输出为1的概率也是p .今在图中a 端输入字符1,求系统L 的b 端输出字符0的概率.题15.3图解 “系统L 的输入为1输出为0”这一事件(记)01(→L )是两个不相容事件之和,即),00()01()01()11()01(2121→→→→=→L L L L L 这里的记号“)11(1→L ”表示事件“子系统1L 的输入为1输出为1,其余3个记号的含义类似.于是由子系统工作的独立性得)}00()01({)}01()11({)}01({2121→→+→→=→L L P L L P L P)}00({)}01({)}01({)}11({2121→→+→→=L P L P L P L P ).1(2)1()1(p p p p p p -=-+-=4.甲乙二人轮流掷一骰子,每轮掷一次,谁先掷得6点谁得胜,从甲开始掷,问甲、乙得胜的概率各为多少?解 以i A 表示事件“第i 次投掷时投掷者才得6点”.事件i A 发生,表示在前1-i 次甲或乙均未得6点,而在第i 次投掷甲或乙得6点.因各次投掷相互独立,故有.6165)(1-⎪⎭⎫⎝⎛=i i A P 因甲为首掷,故甲掷奇数轮次,从而甲胜的概率为 }{}{531 A A A P P =甲胜 +++=)()()(531A P A P A P ),(21两两不相容因 A A⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+= 426565161.116)6/5(11612=-=同样,乙胜的概率为}{}{642 A A A P P =乙胜 +++=)()()(642A P A P A P.1156565656153=⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+=5.将一颗骰子掷两次,考虑事件=A “第一次掷得点数2或5”,=B “两次点数之和至少为7”,求),(),(B P A P 并问事件B A ,是否相互独立.解 将骰子掷一次共有6种等可能结果,故.3/16/2)(==A P 设以i X 表示第i 次掷出骰子的点数,则}).6({1})7({)(2121≤+-=≥+=X X P X X P B P因将骰子掷两次共有36个样本点,其中621≤+X X 有6,5,4,3,221=+X X 共5种情况,这5种情况分别含有1,2,3,4,5个样本点,故.12/712/5136/)54321(1)(=-=++++-=B P以),(21X X 记两次投掷的结果,则AB 共有(2,5),(2,6),(5,2),(5,3)(5,4),(5,5),(5,6)这7个样本点.故.36/7)(=AB P 今有).(36/7)12/7)(3/1()()(AB P B P A P === 按定义B A ,相互独立.6.B A ,两人轮流射击,每次各人射击一枪,射击的次序为 A B A B A ,,,,,射击直至击中两枪为止.设各人击中的概率均为p ,且各次击中与否相互独立.求击中的两枪是由同一人射击的概率.解 A 总是在奇数轮射击,B 在偶数轮射击.先考虑A 击中两枪的情况.以12+n A 表示事件“A 在第12+n 轮),2,1( =n 射击时又一次击中,射击在此时结束”. 12+n A 发生表示“前n 2轮中A 共射击n 枪而其中击中一枪,且A 在第12+n 轮时击中第二枪”(这一事件记为C ),同时“B 在前n 2轮中共射击n 枪但一枪未中”(这一事件记为D ),因此)()()()(12D P C P CD P A P n ==+nn p p p p n )1()1(11-⎥⎦⎤⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛=- .)1(122--=n p np注意到 ,,,753A A A 两两互不相容,故由A 击中了两枪而结束射击(这一事件仍记为A )的概率为∑∑∞=-∞=++∞=-===1122112121)1()()()(n n n n n n p np A P A P A P1122])1[()1(-∞=∑--=n n p n p p.)2(1])1(1[1)1(2222p pP p p --=---=(此处级数求和用到公式.1,)1(1112<=-∑∞=-x nx x n n 这一公式可自等比级数1,110<=-∑∞=x x x n n 两边求导而得到.)若两枪均由B 击中,以)1(2+n B 表示事件 “B 在第)1(2+n 轮),2,1( =n 射击时又一次击中,射击在此时结束”. )1(2+n B 发生表示在前12+n 轮中B 射击n 枪其中击中一枪,且B 在第)1(2+n 轮时击中第2枪,同时A 在前12+n 轮中共射击1+n 枪,但一枪未中.注意到 ,,,864A A A 两两互不相容,故B 击中了两枪而结束射击(这一事件仍记为B )的概率为 ∑∞=+-+∞=--⎪⎪⎭⎫ ⎝⎛==111)1(21)1()1(1)()(n n n n n p p p p n B P B P 12112222])1[()1()1(-∞=∞=--=-=∑∑n n n np n p p p np.)2()1(])1(1[1)1(222222p p p p p --=---= 因此,由一人击中两枪的概率为222)2()1()2(1)()()(p p p p B P A P B A P --+--=+= .21pp--=7.有3个独立工作的元件1,元件2,元件3,它们的可靠性分别为.,,321p p p 设由它们组成一个“3个元件取2个元件的表决系统”,记为2/3].[G 这一系统的运行方式是当且仅当3个元件中至少有2个正常工作时这一系统正常工作.求这一2/3][G 系统的可靠性.解 以i A 表示事件“第i 个元件正常工作”,以G 表示事件“2/3][G 系统正常工作”,则G 可表示为下述两两互不相容的事件之和:321321321321A A A A A A A A A A A A G = 因321,,A A A 相互独立,故有)()()()()(321321321321A A A P A A A P A A A P A A A P G P +++=AB124题 15.8 图)()()()()()()()()()()()(321321321321A P A P A P A P A P A P A P A P A P A P A P A P +++= .)1()1()1(321321321321p p p p p p p p p p p p +-+-+-=8. 在如图15.8图所示的桥式结构电路中,第i 个继电器触点闭合的概率为i p ,.54321,,,,i =各继电器工作相互独立.求:(1)以继电器触点1是否闭合为条件,求A 到B 之间为通路的概率.(2)已知A 到B 为通路的条件下,继电器触 点3是闭合的概率.解 以F 表示事件“A 到B 为通路”,以i C 表示事件 “继电器触点i 闭合”,.54321,,,,i =各继电器工作相互独立. (1)得.()|(()|()(1111))C P C F P C P C F P F P +=而 )()|(545321C C C C C P C F P =)()()()()(54253254532C C C P C C C P C C P C C P C P --++=)()(5432543C C C C P C C C P +-543254354253254532p p p p p p p p p p p p p p p p p p +---++=)()|(432541C C C C C P C F P =543243254p p p p p p p p p -+=故 ),1)(|()|()(1111p C F P p C F P F P -+=其中)|(1C F P 543254354253254532p p p p p p p p p p p p p p p p p p +---++=, )|(1C F P 543243254p p p p p p p p p -+=. (2)令,1i i p q -=则)()()]([1)()()|()|(35241333F P C P C C C C P F P C P C F P F C P -==.)()1(354215241F P p q q q q q q q q +--=)(F P 的表达式由(1)确定.9.进行非学历考试,规定考甲、乙两门课程,每门课考第一次未通过都允许考第二次.考生仅在课程甲通过后才能考课程乙,如两门课程都通过可获得一张资格证书.设某考生通过课程甲的各次考试的概率为1p ,通过课程乙的各次考试的概率为2p ,设各次考试的结果相互独立.又设考生参加考试直至获得资格证书或者不准予再考为止.以X 表示考生总共需考试的次数.求X 的分布律以及数学期望)(X E .解 按题意知考试总共至少需考2次而最多只考4次.以i A 表示事件“课程甲在考第i 次时通过”,以i B 表示事件“课程乙在考第i 次时通过”,2,1=i .事件}2{=X 表示考试总共考2次,这一事件只在下列两种互不相容的情况下发生,一种是课程甲、乙都在第一次考试时通过.亦即11B A 发生(此时他得到证书);另一种是课程甲在第一次、第二次考试均未通过,亦即21A A 发生(此时他不准再考).故2111}2{A A B A X ==,同样211121211}3{B B A B A A B B A X ==, 21212121}4{B B A A B B A A X ==.得X 的分布律为)(}2{2111A A B A P X P ==)()(2111A A P B A P +=)()()()(2111A P A P B P A P ++=)1)(1(2121p p p p --+=;)(}3{211121211B B A B A A B B A P X P ==)(12111B A A B A P =21121)1()1(p p p p p -+-=;)(}3{211121211B B A B A A B B A P X P ==)(12111B A A B A P =21121)1()1(p p p p p -+-=;)(}4{21212121B B A A B B A A P X P ==)(121B A A P =)1()1(211p p p --=.)1()1(4])1()1([3])1([2)(211211212121p p p p p p p p p p p X E --+-+-+-+=)]2(1)[2(211p p p -+-=.例如,若431=p ,212=p ,则有66.2)(=X E (次).10.(1)5只电池,其中有2只是次品,每次取一只测试,直到将2只次品都找到.设第2只次品在第)5,4,3,2(=X X 次找到,求X 的分布规律(注:在实际上第5次检测可无需进行).(2)5只电池,其中2只是次品,每次取一只,直到找出2只次品或3只正品为止.写出需要测试的次数的分布律.解 (1)X 可能取的值为2,3,4,5.P X P ==}2{{第1次、第2次都取到一只次品}.1014152=⨯=P X P ==}3{{(前两次取到一只次品) (第3次取到一只次品)}=P {第3次取到一只次品|前两次取到一只次品}P ⨯{前两次取到一只次品} .102)42534352(31=⨯+⨯⨯=P X P ==}4{{(前3次取到一只次品) (第4次取到一只次品)}=P {第4次取到一只次品|前3次取到一只次品}P ⨯{前3次取到一只次品} .103)324253324253324352(21=⨯⨯+⨯⨯+⨯⨯⨯=}4{}3{}2{1}5{=-=-=-==X P X P X P X P .10/4=得分布律为X 2 3 4 5k p 101 102 103 104(2)以Y 表示所需测试的次数,则Y 的可能取值为2,3,4. .10/1}2{}2{====X P Y P}3{=Y 表示“前3次取到都是正品”或“第二只次品在第3次取到”,故 }3{}3{}3{=+==X P P Y P 次取到的都是正品前.103102314253=+⨯⨯ 1031011}3{}2{1}4{--==-=-==X P X P X P . Y 的分布律为Y 2 3 4k p 101103 10611.向某一目标发射炮弹设炮弹弹着点目标的距离为R (单位:10m ),R 服从瑞利分布,其概率密度为⎪⎩⎪⎨⎧≤>=-.0,0,0,252)(25/2r r er r f r R若弹着点离目标不超过5m 时,目标被摧毁.(1)求发射一枚炮弹能摧毁目标的概率.(2)为使至少有一枚炮弹能摧毁目标的概率不小于0.94,问最少需要独立发射多少枚炮弹. 解 (1)所求概率为⎰⎰-∞-==≤525/52252)(}5{dr e r dr r f R P r R .632.01|1525/2=-==--e er(2)设发射n 枚炮弹,则这n 枚炮弹都不能摧毁目标的概率为n)632.01(-,故至少有一枚炮弹能摧毁目标的概率为n )632.01(1--.按题意需求最小的n ,使得.94.0)632.01(1≥--n即.81.2)368.0/(ln )06.0(ln ,06.0368.0=≥≤n n故最少需要独立发射3枚炮弹.12.设一枚深水炸弹击沉一潜水艇的概率为31,击伤的概率为21,击不中的概率为61.并设击伤两次也会导致潜水艇下沉.求释放4枚深水炸弹能击沉潜水艇的概率.(提示:先求击不沉的概率.)解 “击沉”的逆事件为事件“击不沉”,击不沉潜水艇仅出现于下述两种不相容的情况:(1)4枚深水炸弹全击不中潜水艇(这一事件记为A ),(2)一枚击伤潜水艇而另三枚击不中潜水艇(这一事件记为B ).各枚炸弹袭击效果被认为是相互独立的.故有,61)(4⎪⎭⎫⎝⎛=A P ,612114)(3⎪⎭⎫ ⎝⎛⨯⎪⎪⎭⎫ ⎝⎛=B P (因击伤潜水艇的炸弹可以是4枚中的任一枚),又A ,B 是互不相容的,于是,击不沉潜艇的概率为.613)()()(4=+=B P A p B A P 因此,击沉潜艇的概率为.97989.06131)(14=-=-=B A P p 13. 一盒中装有4只白球,8只黑球,从中取3只球,每次一只,作不放回抽样. (1)求第1次和第3次都取到白球的概率.(提示:考虑第2次的抽取.) (2)求在第1次取到白球的条件下,前3次都取到白球的概率. 解 以,1A ,2A 3A 分别表示1,2,3次取到白球.(1))()()]([)(321321223131A A A P A A A P A A A A p A A P +==)()|()|()()|()|(112213112213A P A A P A A A P A P A A P A A A P +=.111124118103124113101=⨯⨯+⨯⨯=(2)124102113124)()()|(13211321⨯⨯==A P A A A P A A A A P .5531106== 14.设元件的寿命T (以小时计)服从指数分布,分布函数为⎩⎨⎧≤>-=-.0,0,0,1)(03.0t t e t F t(1)已知元件至少工作了30小时,求它能再至少工作20小时的概率.(2)由3个独立工作的此种元件组成一个2/3][G 系统(参见第7题),求这一系统的寿命20>X 的概率.解 (1)由指数分布的无记忆性(参见教材)1(第56页)知所求概率为 }20{}30|50{>=>>=T P T T P p .5488.0)20(16.0==-=-eF(2)由第7题知2/3][G 系统的寿命20>X 的概率为 .5730.0)23()1(3}20{232=-=+-=>p p p p p X P15.(1)已知随机变量X 的概率密度为,,21)(+∞<<-∞=-x e x f xX 求X 的分布函数. (2)已知随机变量X 的分布函数为),(x F X 另外有随机变量⎩⎨⎧≤->=,0,1,0,1X X Y 试求Y 的分布律和分布函数.解 (1)由于⎪⎪⎩⎪⎪⎨⎧+∞<≤<<∞-=-.0,21,0,21)(x e x e x f x xX当0<x 时,分布函数,212121)()(|x x x xx x X X e e dx e dx x f x F ====∞-∞-∞-⎰⎰当0≥x 时,分布函数.2112121212121)()(0x x xx x xX X e e dx e dx e dx x f x F ---∞-∞--=-+=+==⎰⎰⎰故所求分布函数为⎪⎪⎩⎪⎪⎨⎧≥-<=-.0,211,021)(x e x e x F x xX (2),21)0(}0{}1{==≤=-=X F X P Y P .21211}1{1}1{=-=-=-==Y P Y P分布律为Y -1 1 k p 21 21 分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤--<=.1,1,11,21,10)(y y y y F Y 16.(1)X 服从泊松分布,其分布律为,,2,1,0,!}{ ===-k k e k X P k λλ问当k 取何值时}{k X P =为最大. (2)X 服从二项分布,其分布律为.,2,1,0,)1(}{n k p p k n k X P kn k =-⎪⎪⎭⎫ ⎝⎛==-问当k 取何值时}{k X P =为最大. 解 (1)由λλλλ----⨯=-==ek k e k X P k X P k k 1)!1(!}1{}{⎪⎩⎪⎨⎧><===<>=,,1,,2,1,,1,,1λλλλk k k k k 当当当 知道,当λ<k 时,}{k X P =随k 增大而递增; 当λ>k 时,}{k X P =随k 增大而递减.从而,若λ为正整数,则当λ=k 时,}1{}{-===λλX P X P 为概率的最大值,即当1-==λλk k 或时概率都取到最大值.若λ不是正整数,令的整数部分),是即λλ00]([k k =则,100+<<k k λ此时有},1{}{},{}1{0000+=>==<-=k X P k X P k X P k X P因此不难推得]}[{}{0λ===X P k X P 为概率的最大值. (2)由⎪⎩⎪⎨⎧+><=+==+<>--++=---=-==,)1(,1,,2,1,)1(,1,)1(,1)1()1(1)1()1(}1{}{p n k n k p n k p n k p k k p n p k p k n k X P k X P 当当当知道,当p n k )1(+<时, }{0k X P =随k 增大而递增; ,当p n k )1(+>时,}{0k X P =随k 增大而递减.从而,若p n )1(+为正整数,则当p n k )1(+=时,}1)1({})1({-+==+=p n X P p n X P 为概率的最大值,即当1)1()1(-+=+=p n k p n k 或时概率都取到最大值.若p n )1(+不是正整数,令])1[(0p n k +=,则1)1(00+<+<k p n k ,此时有},{}1{00k X P k X P =<-= },1{}{00+=>=k X P k X P不难推得]})1[({}{0p n X P k X P +===为概率的最大值.17.. 若离散型随机变量X 具有分布律X 1 2 … nk pn 1 n 1 … n1 称X 服从取值为n ,,2,1 的离散型均匀分布.对于任意非负实数x ,记][x 为不超过x 的最大整数.记),1,0(~U U 证明1][+=nU X 服从取值为n ,,2,1 的离散型均匀分布.证 对于,,,2,1n i =}1]{[}1]{[)(-===+==i nU P i nU P i X P.1}1{}1{nn i U n i P i nU i P =<≤-=<≤-= 证毕. 18.设),2,1(~-U X 求X Y =的概率密度. 解 X 的概率密度为⎩⎨⎧<<-=.,0,21,3/1)(其他x x f X记X 的分布函数为).(x F X 先来求Y 的分布函数).(y F Y当0≤y 时,,0}{)(=≤=y Y P y F Y当0>y 时,}{}{)(y X y P y X P y F Y ≤≤-=≤= ).()(y F y F X X --= 将)(y F Y 关于y 求导可得Y 的概率密度)(y f Y 如下:⎩⎨⎧>-+=.,0,0),()()(其他y y f y f y f X X Y当10<<y 时, 01<-<-y .因而,3/1)(,3/1)(=-=y f y f X X 此时.3/13/1)(+=y f Y当21<<y 时, 12-<-<-y .因而,0)(,3/1)(=-=y f y f X X 此时.3/1)(=y f Y当2>y 时,,0)(,0)(=-=y f y f X X 因而.0)(=y f Y 故⎪⎩⎪⎨⎧<≤<<=.,0,21,3/1,10,3/2)(其他y y y f Y19.设X 的概率密度⎪⎪⎪⎩⎪⎪⎪⎨⎧∞<≤<≤<=.1,21,10,21,0,0)(2x xx x x f X求XY 1=的概率密度. 解 因函数xx g y 1)(==严格单调减少,它的反函数.1)(y y h =当∞<<x 0时, ∞<<y 0.由第二章)2(公式(2.1)得Y 的概率密度为⎩⎨⎧≤∞<<'⋅=.0,0,0,)()]([y y y h y h f f X Y⎪⎩⎪⎨⎧≤∞<<⎪⎪⎭⎫ ⎝⎛=.0,0,0,112y y yy f X 因而⎪⎪⎪⎩⎪⎪⎪⎨⎧∞<≤<<≤=.1,1)/1(121,110,121,0,0)(222y y y y y y y f Y 即⎪⎪⎪⎩⎪⎪⎪⎨⎧∞<≤≤<≤=.1,21,10,21,0,0)(2y y y y y f Y本题X 和X1的概率密度相同. 20. 设随机变量X 服从以均值为λ1的指数分布.验证随机变量][X Y =服从以参数为λ--e 1的几何分布.这一事实表明连续型随机变量的函数可以是离散型随机变量.解 X 的概率密度为⎩⎨⎧>=-.,0,0,)(其他x e x f x X λλ,X 的值域为)(∞,0,故][X Y =的值域为},2,1,0{ ,Y 是离散型随机变量.对于任意非负整数y ,有}1{}]{[}{+<≤====y X y P y X P y Y P)1(1d +--+--==⎰y y y yx e e x e λλλλ2,1,0,))(1(==--y e e y λλ- .2,1,0,))1(1)(1( =--=--y e e y λλ-这就是说Y 服从以λ--e1为参数的几何分布.这表示一个连续型随机变量经过变换变成了离散型随机变量.21.投掷一硬币直至正面出现为止,引入随机变量 =X 投掷总次数. ⎩⎨⎧=.,0,1若首次投掷得到反面若首次投掷得到正面,Y(1)求X 和Y 的联合分布律及边缘分布律. (2)求条件概率}.1|2{},1|1{====X Y P Y X P解 (1)Y 的可能值是0,1,X 的可能值是.,3,2,1 }1{}1|1{}1,1{======X P X Y P Y X P .2/12/11=⨯= (因1=X 必定首次得正面,故).1}1|1{===X Y P 若1>k ,}{}|1{}1,{k X P k X Y P Y k X P ====== .0)2/1(0=⨯=k(因,1>=k X 首次得正面是不可能的,故).,3,2,0}|1{ ====k k X Y P }1{}1|0{}0,1{======X P X Y P Y X P 0)2/1(0=⨯=(因1=X 必须首次得正面,故).0}1|0{===X Y P 当1>k}{}|0{}0,{k X P k X Y P Y k X P ====== ,3,2),2/1(1=⨯=k k (因,1>=k X 必定首次得反面,故).1}|0{===k X Y P 综上,得),(Y X 的分布律及边缘分布律如下:XY 1 2 3 4 … }{j Y P =0 0 221 321421 (21)1 21 0 0 0 (21)}{i X P = 21 221 321421 (1)(2).12/12/1}1{}1,1{}1|1{========Y P Y X P Y X P.0}1{}2,1{}1|2{=======X P Y X P X Y P22.设随机变量),(~λπX 随机变量).2,max (X Y =试求X 和Y 的联合分布律及边缘分布律. 解 X 的分布律为 .,2,1,0,!}{ ===-k k e k X P k λλX 的可能值是 ,2,1,0;Y 的可能值为.,4,3,2}0{}0|2{}2,0{======X P X Y P Y X P .}0{1λ-==⋅=e X P}1{}1|2{}2,1{======X P X Y P Y X P .}1{1λλ-==⋅=eX P2≥i 时}{}|{},{i X P i X j Y P j Y i X P ======,4,3,2,,0,,!},{0},{1=⎪⎩⎪⎨⎧≠==⎩⎨⎧≠=⋅==⋅=-j i j i j i e i j i X P i j i X P i λλ即得Y X ,的联合分布律及边缘分布律为 XY 0 1 2 3 4 5 … }{j Y P =2 λ-e λλ-e!22λλ-e 0 0 0 …∑=-2!i i i e λλ3 0 0 0!33λλ-e 0 0 …!33λλ-e4 0 0 0 0!44λλ-e 0 …!44λλ-e}{i X P = λ-e λλ-e!22λλ-e!33λλ-e!44λλ-e ... (1)23. 设X ,Y 是相互独立的泊松随机变量,参数分别为,,21λλ求给定n Y X =+的条件下X 的条件分布.解 }|{n Y X k X P =+=}{},{n Y X P n Y X k X P =+=+==}{},{n Y X P k n Y k X P =+-===独立性}{}{}{n Y X P k n Y P k X P =+-== 1)(2121!)()!(!2121-+----⎥⎦⎤⎢⎣⎡+-⋅=n e k n e k e n k n k λλλλλλλλnkn k k k n n )(!)!(!2121λλλλ+-=- .)(2122112121kn kn kn k k n k n --⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=+⎪⎪⎭⎫ ⎝⎛=λλλλλλλλλλ这就是说给定n Y X =+的条件下X 的条件分布为以)/(,211λλλ+n 为参数的二项分布.24. 一教授将两篇论文分别交给两个打字员打印.以X ,Y 分别表示第一篇第二篇论文的印刷错误.设),(~λπX ),(~μπY X ,Y 相互独立.(1)求X ,Y 的联合分布律;(2)求两篇论文总共至多1个错误的概率. 解 (1)X ,Y 的联合分布律为,!!!!},{)(y x e y e x e y Y x X P y x y x μλμλμλμλ+---=⋅===.,2,1,0, =y x(2) 两篇论文总共至多1个错误的概率为})1{}0({}1{=+=+=≤+Y X Y X P Y X P}1,0{}0,1{}0,0{==+==+===Y X P Y X P Y X P ).1()()()()(μλμλμλμλμλμλ++=++=+-+-+-+-e e e e25. 一等边三角形ROT (如图15.25)的边长为1,在三角形内随机地取点),(Y X Q (意指随机点),(Y X 在三角形ROT 内均匀分布).(1) 写出随机变量),(Y X 的概率密度. (2) 求点Q 的底边OT 的距离的分布密度.解 (1)因三角形ROT 的面积为4/3,故),(Y X 的概率密度为⎩⎨⎧--≤≤≤≤=.,0),1(30,30,3/4),(其他x y x y y x f(2)点),(Y X Q 到底边OT 的距离就是Y ,因而求Q 到OT 的距离的分布函数,就是求),(Y X 关于Y 的 边缘分布函数,现在xyo题15.25图,230,32134),()(3.13/<<⎪⎪⎭⎫ ⎝⎛-==⎰-y y dx y x f y f y y Y 从而⎪⎩⎪⎨⎧<<⎪⎪⎭⎫ ⎝⎛-=.,0,230,32134)(其他y y y f Y Y 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤-<=.23,1,230,3434,0,0)(2y y y y y y F Y 26. 设随机变量),(Y X 具有概率密度⎩⎨⎧>>=+-.,0,0,0,),()1(其他y x xe y x f y x(1) 求边缘概率密度).(),(y f x f Y X (2) 求条件概率密度).|(),|(||x y f y x f X Y Y X 解 (1)当0>x 时, ,)()(0)1(x y y xy x y x X e e e dy xe x f -∞==--∞+-===⎰当0>y 时,dx xe y y xe dx xey f y x x x y x y x Y ⎰⎰∞+-∞==+-∞+-+++-==0)1(0)1(0)1(111)( .)1(1)1(22)1(+=+-=∞==+-y y xe x x y x故边缘概率密度分别是⎩⎨⎧>=-.,0,0,)(其他x e x f x X ⎪⎩⎪⎨⎧>+=.,0,0,)1(1)(2其他y y y f Y(2)条件概率密度: 当0>x 时,⎪⎩⎪⎨⎧>=-+-.,0,0,)|()1(|取其他值y y e xe x y f xy x X Y⎩⎨⎧>=-.,0,0,取其他值y y xe xy当0>y 时,⎪⎩⎪⎨⎧>+=+-.,0,0,)1/(1)|(2)1(|取其他值x x y xe y x f y x Y X⎩⎨⎧>+=+-.,0,0,)1()1(2取其他值x x e y x y x27. 设有随机变量U 和V ,它们都仅取1,1-两个值.已知 ,2/1}1{==U P}.1|1{3/1}1|1{-=-=====U V P U V P (1)求U 和V 的联合分布密度.(2)求x 的方程02=++V Ux x 至少有一个实根的概率.(3)求x 的方程0)(2=+++++V U x V U x 至少有一个实根的概率. 解 (1).6/1)2/1)(3/1(}1{}1|1{}1,1{========U P U V P V U P }1{}1|1{}1,1{-=-=-==-=-=U P U V P V U P.6/1)2/1)(3/1(}]1{1[)3/1(===-⨯=U P}1{}1|1{}1,1{==-==-==U P U V P V U P.3/1)2/1)(3/2(}1{}]1|1{1[=====-=U P U V P }1{}1|1{}1,1{-=⋅-====-=U P U V P V U P.3/1)2/1()3/2(}1{}]1|1{1[=⨯=-=-=-=-=U P U V PV U ,的联合分布密度为UV -1 1 -1 1/6 2/6 1 2/6 1/6xy题 15.30图(2) 方程02=++V Ux x 当且仅当在042≥-=∆V U 时至少有一实根,因而所求的概率为 .2/1}1{}04{}0{2=-==≥-=≥∆V P V U P P(3) 方程0)(2=+++++V U x V U x 当且仅当在0)(4)(2≥+-+=∆V U V U 时至少有一实根,因而所求的概率为.6/5}1,1{}1,1{}1,1{}0{=-==+=-=+-=-==≥∆V U P V U P V U P P28. 某图书馆一天的读者人数)(~λπX ,任一读者借书的概率为p ,各读者借书与否相互独立.记一天读者借书的人数为Y ,求X 与Y 的联合分布律.解 读者借书人数的可能值为}{}|{},{,,,2,1,0k X P k X i Y P i Y k X P X Y Y ======≤==.,,2,1,2,1,!)1(k i k k e p p i k k i k i ==-⎪⎪⎭⎫ ⎝⎛--λλ 29. 设随机变量X 和Y 相互独立,且都服从U (0,1),求两变量之一至少为另一变量之值两倍的概率. 解 按题意知,(X,Y )在区域:}10,10|),{(<<<<=y x y x G 服从均匀分布,其概率密度为其它10,10,0,1),(<<<<⎩⎨⎧=y x y x f 所求概率为}2{}2{Y X P X Y P p >+>==⎰⎰⎰⎰+12),(),(G G dxdy y x f dxdy y x f=G 1的面积+G 2的面积=1/2, G 1 ,G 2见图15.29.30. 一家公司有一份保单招标,两家保险公司竞标.规定标书的保险费必须在20万元至22万元之间.若两份标书保险费相差2千或2千以上,招标公司将选择报价低者,否则就重新招标.设两家保险公司的报价是相互独立的,且都在20万至22万之间均匀分布.试求招标公司需重新招标的概率. 解 设以X ,Y 分别表示两家保险公司提出的保费. 由假设X 和Y 的概率密度均为⎪⎩⎪⎨⎧<<=.,0,2220 ,21)(其他μμf因X ,Y 相互独立,故),(Y X 的概率密度为⎪⎩⎪⎨⎧<<<<==.,0,2220 ,2220 ,41)()(),(其他y x y f x f y x f Y Xoy题15.29图按题意需求概率为}.2.0{≤-Y X P 画出区域:},2.0|),{(≤-Y X y x 以及矩形},2220 ,2220|),{(<<<<y x y x 如图15.30,它们公共部分的面积G 为G =正方形面积-2×三角形面积=4-1.8×1.8=0.76.所求概率=.19.02276.0=⨯ 31. 设),0(~),,0(~2221σσN Y N X 且Y X ,相互独立,求概率}20{2112σσσσ<-<Y X P . 解 因Y X ,独立,其线性组合Y X 12σσ-仍为正态变量,而 0)()()(1212=-=-Y E X E Y X E σσσσ 22212122122)()()(σσσσσσ=+=-Y D X D Y X D 故 ).2,0(~222112σσσσN Y X - 因而 }20{2112σσσσ<-<Y X P =}202200{222121222112σσσσσσσσ-≤--<Y X P=5.0)2()0()22(222121-=-ΦΦσσσσΦ=4207.05.09207.0=-32. NBA 篮球赛中有这样的规律,两支实力相当的球队比赛时,每节主队得分与客队得分之差为正态随机变量,均值为1.5,方差为6,并且假设四节的比分差是相互独立的.问 (1)主队胜的概率有多大?(2)在前半场主队落后5分的情况下,主队得胜的概率有多大? (3)在第1节主队赢5分得情况下,主队得胜的概率有多大? 解 以)4,3,2,1(=i X i 记主队在第i 节的得分与客队在第i 节的得分之差,则有),6,5.1(~N X i ).64,5.14(~41⨯⨯∑=N Xi i记Z 为标准正态随机变量.(1)⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⨯->⨯⨯=>∑∑==646645.14}0{4141-i i i i X P X P.7889.0}7224.1{=->=Z P(2)由独立性}5{}5|0{432141>+=-=>∑∑==X X P X X P i i i i}33{123562343>=⎭⎬⎫⎩⎨⎧->⨯-+=Z P X X P .8281.0}5577.0{=>=Z P(3)}05{}5|0{432141>+++==>∑=X X X P X XP i i}5{432->++=X X X P⎭⎬⎫⎩⎨⎧-->⨯-++=185.45635.4432X X X P.4987.0}239.2{}185.9{=->=->=Z P Z P 33. 产品的某种性能指标的测量值X 是随机变量,设X 的概率密度为⎪⎩⎪⎨⎧>=-其他.,0,0,)(221x xe x f x X测量误差Y~U (εε,-),X ,Y 相互独立,求Z=X+Y 的概率密度)(z f Z ,并验证du e Z P u⎰-=>εεε202/221}{解 (1)Y 的概率密度为其他.,εεε<<-⎪⎩⎪⎨⎧=y y f Y ,0,21)(故Z =X+Y 的概率密度为⎰+∞∞--=dx x z f x f z f Y X Z )()()(仅当⎩⎨⎧<-<->εεx z x 0即⎩⎨⎧+<<->εεz x z x 0时,上述积分的被积函数不等于零,参考图15.33, 即得⎪⎪⎩⎪⎪⎨⎧≥<<-=⎰⎰+--+-其他,,,,0,21,21)(2212210εεεεεεεεz dx xe z dx xez f z z x z x Z题15.33图题 15.34 图=⎪⎪⎪⎩⎪⎪⎪⎨⎧≥-<<--+---+-其他,,,,0],[21],1[21221221221)()()(εεεεεεεεz e e z ez z z (2)⎰∞=>εεdz z f Z P Z )(}{=][212121)()(⎰⎰∞+-∞---εεεεεdz e dz e z zε21记成[Ⅰ+Ⅱ] 其中Ⅰ=⎰⎰∞-∞--=-0)(,2121du euz eu dz z εεε令Ⅱ=⎰⎰∞-∞+--=+-εεεε2)(2121du euz dzeu z 令于是εε21}{=>Z P [Ⅰ+Ⅱ]=⎰-εε2022121du eu34. 在一化学过程中,产品中有份额X 为杂质,而在杂质中有份额Y 是有害的,而其余部分不影响产品的质量.设)5.0,0(~),1.0,0(~U Y U X ,且X 和Y 相互独立,求产品中有害杂质份额Z 的概率密度. 解 因,XY Z =)5.0,0(~),1.0,0(~U Y U X 且X 和Y 相互独立,于是Z 的概率密度为,d )()(1)(21-x x zf x f x z f Z ⎰+∞∞= )1(* 其中,⎩⎨⎧<<=. 0,0.1,0 ,10)(1其他x x f ,⎩⎨⎧<<=.0,0.5,0 ,2)(2其他x x f易知仅当⎩⎨⎧<<<<0.5,00.1,0z/x x 即⎩⎨⎧<<<<,200.1,0x z x 时,)1(*中的被积函数不等于零,参考题15.34图,即得 ⎪⎩⎪⎨⎧<<⋅⋅=⎰.0, 0.05,0 ,d 1210)(1.02其他z x xz f z ⎪⎩⎪⎨⎧<<=.0, 0.05,0 ,ln 201.02其他z x zy题 15.35 图1⎩⎨⎧<<-=. 0, 0.05,0 ),20ln(20其他z z35. 设随机变量),(Y X 的概率密度为⎩⎨⎧<<=-.0,,0,),(其他y x e y x f y(1) 求),(Y X 的边缘概率密度. (2) 问Y X ,是否相互独立. (3) 求Y X +的概率密度).(z f Y X + (4) 求条件概率密度).|(|y x f Y X (5) 求条件概率}.5|3{<>Y X P (6) 求条件概率}.5|3{=>Y X P解 (1)⎪⎩⎪⎨⎧>==⎰∞.0, 0,,d )(其他x e y e x f -x x -y X⎪⎩⎪⎨⎧>==⎰.0, 0,,d )(0其他y ye x e y f -y y-y Y (2)Y X ,不是相互独立的. (3)⎰+∞∞-+-=.d ),()(y y y z f z f Y X仅当,0y y z <-<即⎪⎩⎪⎨⎧<>>z y y zy 02时被积函数不为零.如图15.35图1,得⎪⎩⎪⎨⎧>-==⎰+.0, 0, ,d )(2/2/其他z e ey e z f -z -z zz -y Y X (4)对于,0>y⎪⎩⎪⎨⎧<<==--. 0, ,0 ,1)|(|其他y x y ye e y x f y yY X即对于固定的)0(>y y X 的条件分布是区间),0(y 上的均匀分布.y 题 15.35 图2(5)如图15.35图2,条件概率为}5{}5,3{}5|3{<<>=<>Y P Y X P Y X P,)d (d d 50⎰⎰⎰-=yy f xy e Y D y分子=⎰⎰⎰=5355x 53d )(-e d d ex x y x-y -y,e e 3)d e (-e 35535--+-=+⎰x -x -=分母=⎰⎰=5Y5d e (y)d y y y f -y x,1e 6d e e 555+-=+-=⎰--y -yy y故.82030.0}5|3{=<>Y X P(6)⎪⎩⎪⎨⎧<<=.0, ,50 ,51)5|(|其他x x f Y X.52d 51}5|3{53===>⎰x Y X P36.设图书馆的读者借阅甲种图书的概率为p ,借阅乙种图书的概率为α,设每人借阅甲、乙图书的行动相互独立,读者之间的行动也相互独立.(1)某天恰有n 个读者,求甲、乙两种图书中至少借阅一种的人数的数学期望.解 (1)以X 表示某天读者中借阅甲种图书的人数,因各人借阅甲种图书的概率均为p ,且由题设各人是否借阅相互独立,故np X E p n b X =)(),,(~因此.(2)以A 表示事件“读者借阅甲种图书”,以B 表示事件“读者借阅乙种图书”,则就读者而言,有 ).()()()(AB P B P A P B A P -+=借阅两种图书的行动相互独立,故ααp p B P A P B P A P B A P -+=-+=⋃)()()()()(. 以Y 表示至少借阅一种图书的人数,由题设各人是否借阅相互独立,知),(~ααp p n b Y -+,故).()(ααp p n Y E -+=也可这样做.引入随机变量:⎩⎨⎧=.,0,,1种图书的任一种位读者不借阅甲、乙两若第两种图书的一种位读者至少借阅甲、乙若第i i Z in i ,,2,1 =)()(][)(,111ααp p n Z E Z E Y E Z Y ni i n i i n i i -+====∑∑∑===.这里不需假设读者之间的行动相互独立.37.某种鸟在某时间区间],0(0t 下蛋数为1~5只,下r 只蛋的概率与r 成正比.一个收集鸟蛋的人在0t 时去收集鸟蛋,但他仅当鸟窝多于3只蛋时他从中取走一只蛋.在某处有这种鸟的鸟窝6个(每个鸟窝保存完好,各鸟窝中蛋的个数相互独立).(1) 写出一个鸟窝中鸟蛋只数X 的分布率.(2) 对于指定的一只鸟窝,求拾蛋人在该鸟窝中拾到一只蛋的概率. (3) 求拾蛋人在6只鸟窝中拾到蛋的总数Y 的分布律及数学期望.(4) 求}4{},4{><Y P Y P(5) 当一个拾蛋人在这6只鸟窝中拾过蛋后,紧接着又有一个拾蛋人到这些鸟窝中拾蛋,也仅当鸟窝 中多于3只蛋时,拾取一只蛋,求第二个拾蛋人拾得蛋数Z 的数学期望.解 (1)设该中鸟在],0(0t 内下蛋数为X 按题意,5,4,3,2,1,}{===r Cr r X P 其中C 为待定常数.因∑===51,1}{r r X P 即有,11551==∑=C Cr r 所以15/1=C ,因此X 的分布律为.5,4,3,2,1,151}{===r r r X P (2)因当且仅当窝中蛋数多于3时,某人从中取走一只蛋,故拾蛋人在该窝中拾取一只蛋的概率为53155154}5{}4{}3{=+==+==>X P X P X P (3)记拾蛋人在6只鸟窝中拾到蛋的总数为Y ,则)53,6(~b Y ,故518)53(6)(=⨯=Y E (4)}6{}5{}4{1}4{=-=-=-=<Y P Y P Y P Y P=6524535253565253461⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=0.456,(6) 第2个拾蛋人仅当鸟窝中最初有5只蛋时,他才能从该窝中拾到一只蛋,故他在一个鸟窝中拾到 一只蛋的为,31}5{===X P p 以Z 记第2个拾蛋人拾到蛋的总数,则),31,6(~b Z 故有2)31(6)(=⨯=Z E .38. 设袋中有r 只白球,r N -只黑球.在袋中取球)(r n n ≤次,每次任取一只做不放回抽样,以Y 表示取到白球的个数,求)(Y E .解 引入随机变量i X :⎩⎨⎧=,,0,,1次取球得到不是白球若第次取到白球若第i i X i ,,,2,1n i =则n 次取球得到的白球数.21n X X X Y +++=而的分布律为次取球得到白球第i i X Nri P X P ,}{}1{=== i X 0 1 k p Nr-1 N r.,,2,1n i = 即知i X 的数学期望为NrX E i =)(.于是得Y 得数学期望为NnrN r n X E X E Y E ni i ni i =⨯===∑∑==11)()()(. 本题也可按以下方式写出Y 的表达式,从而求得)(Y E ,将球编号,引入随机变量:i X⎩⎨⎧=号白球未被取到若第号白球被取到若第i i X i ,0,,1 r i ,,2,1 =则 r X X X Y +++= 21.事件}1{=i X 发生,表示在袋中取球n 次,若每次任取一只不放回抽样时,第i 号白球被取到.因为事件}1{=i X 可以在第一次、第二次、…、第n 次取球,这n 种两两互不相容的情况发生,且每次取到第i 号白球的概率都是N 1.因此r i NnN N N X P i ,,2,1,111}1{ ==+++==, 这样N nX E i =)(,从而N nr X E Y E ri i ==∑=1)()(.39.抛一颗骰子直到所有点数全部出现为止,求所需投掷次数Y 的数学期望. 解 引入随机变量.6,5,4,3,2,1,=i X i 如下:,11=X,,2待次数等待第二不同点所需等是第一点得到后X3X 是第一、第二两点得到后,等待第三个不同点所需等待次数, 654,,X X X 的意义类似.则所需投掷的总次数为621X X X Y +++= .因第一点得到后,掷一次得第二个不同的点的概率为65,因此2X 的分布律为,,2,1,)61(65}{12 ===-k k X P k 即2X 服从参数65=p 的几何分布,又因得到两个不同的点后,掷一次得第三个不相同点的概率为64,故3X 服从参数64=p 的几何分布,其分布律为,2,1,)62(64}{13===-k k X P k 同样,654,,X X X 的分布律分别为.,2,1,)63(63}{14 ===-k k X P k .,2,1,)64(62}{15 ===-k k X P k .,2,1,)65(61}{16 ===-k k X P k 因几何分布 ,2,1,)1(}{1=-==-k p p k X P k 的数学期望为(参见第四章)2(习题选解19题)pX E 1)(=. 所以∑∑==+==62161)()()()(i ii i X E X E X E Y E =7.14]1626364656[1=+++++. 40.设随机变量Y X ,相互独立.且Y X ,分别服从以βα1,1为均值得指数分布.求).(2X Ye X E -+解 )()()()(22X X e E Y E X E Ye X E --+=+ dt ee Y E X E X D ttαα-∞-⎰⋅⋅++=02)()]([)(⎰∞+-++=0)1(22111d te t ααβαα.)1(22++=αβαα41.一酒吧间柜台前有6张凳子,服务员预测,若两个陌生人进来就坐的话,他们之间至少相隔两张凳子.(1) 若真有2个陌生人入内,他们随机地就坐,问服务员预言为真的概率是多少? (2) 设2个顾客是随机坐的,求顾客之间凳子数的数学期望.解 (1)将凳子按自左至右编号,设服务员预言为真.)(A 若第一顾客就坐于1号,则另一顾客可坐4或5或6号共三种坐法,)(B 若第一顾客就坐于2号,则另一顾客可坐在5或6号共两种坐法,)(C 若第一顾客就坐于6号,只有一种坐法.综合)(),(),(C B A 三种情况共计6种坐法.同样,若第一顾客分别就坐于6号,5号,4号,则另一顾客也有6种坐法,因此两人共有1226=⨯种坐法,若两人随机就坐共有3026=A 种坐法,故服务员预言为真的概率是523012==p .(2)若两顾客是随机坐的,以Y 记两顾客间的凳子数,则Y 可能取的值为0,1,2,3,4.可知Y 的分布律为Y 0 1 2 3 4k p155 154 153 152 151 于是3415141523153215411550)(=⨯+⨯+⨯+⨯+⨯=Y E .42.设随机变量10021,,,X X X 相互独立,且都服从),1,0(U 又设,10021X X X Y ⋅⋅⋅= 求概率}10{40-<Y P 的近似值.解 所求概率为}.1.92ln {}10ln 40{ln }10ln 40{ln }10{1001100140-<=-<=-<=<=∑∏==-i i i i X P X P Y P Y P p因n X X X ,,,21 相互独立且都服从),1,0(U 知n X X X ln ,,ln ,ln 21 也相互独立,且服从同一分布,又),1,0(~U X i 其概率密度为⎩⎨⎧<<=其他,,010,1)(x x f故有.112)(,2d ln )(ln ,1d ln )(ln 1221=-===-==⎰⎰i i i X D x x X E x x X E由中心极限定理得}1.92ln {1001-<=∑=i i X P p⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧+-<-⨯-=∑=11001001.921100)1(100ln 1001i i X P.7852.0)97.0()1001001.92(=Φ=+-Φ≈43.来自某个城市的长途电话呼叫的持续时间X (以分计)是一个随机变量,它的分布函数是⎪⎩⎪⎨⎧<≥--=--.0,0,0,e21e 211)(]3[3x x x F x x(其中]3[x是不大于3x的最大整数). (1) 画出)(x F 的图形.(2) 说明X 是什么类型的随机变量.(3) 求}6{},4{},3{},4{>>==X P X P X P X P (提示)0()(}{--==a F a F a X P ). 解 (1)(2))(x F 的所有不连续点为),,2,1(3 =k k X 取这些值的概率的总和为∑∑∞=∞=--==11)]03()3([}3{k k k F k F k X P∑∞=-----⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛--=1)133(33]33[33e 21e 211e 21e 211i k k k k∑∑∞=∞=---=-=-=111.21e )1e (21)e e (21i k kk k注意到,在)(x F 的任一连续点a 处有;0}{==a X P 又由于∑∞===121}3{k k X P ,因此,不可能取到可列多个值,,,21 x x 使得∑∞===1,1}{k kx X P 故X 不是离散型随机变量.又由于)(x F 不是连续函数,故X也不是连续型随机变量. (3) .0}4{==X P)03()3(}3{--==F F X P ⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛--=-----)11(111e 21e 211e 21e 211 .316.0)e 1(211=-=- .684.00e 21e 211}4{)4(}4{134=---==-=<--X P F X P .0.0.0.0.1题15.43图.135.0e 21e 2111)6(1}4{222==⎪⎭⎫⎝⎛---=-=>---e F X P 44.一汽车保险公司分析一组(250人)签约的客户中的赔付情况.据历史数据分析,在未来一周中一组客户中至少提出一项索赔的客户数X 占10%.写出X 的分布,并求12.0250⨯>X (即30>X )的概率.设各客户是否提出索赔相互独立.解 按题意知)10.0,250(~b X .现在需要求 ∑=-⎪⎪⎭⎫ ⎝⎛=>2503125090.010.0250}30{x x x x X P 即需求 ∑=-⎪⎪⎭⎫ ⎝⎛-=>30025090.010.02501}30{x xx x X P 由拉普拉斯定理得⎪⎪⎭⎫ ⎝⎛⨯⨯⨯-Φ-≈>90.010.025010.0250301}30{X P.1469.08531.01)054.1(1=-=Φ-=45.在区间)1,0(随机地取一点X .定义}.75.0,min{X Y = (1) 求随机变量Y 的值域.(2) 求Y 的分布函数,并画出它的图形.(3) 说明Y 不是连续型随机变量, Y 也不是离散型随机变量.解 (1)因},75.0,min{X Y =故X Y ≤且.75.0≤Y 又由于X 的值域是)1,0(,知Y 的值域为]75.0,0(.(2) 由(1)知当0<y 时,0}{)(=≤=y Y P y F Y 当75.0≥y 时, .1}{)(=≤=y Y P y F Y 当75.00<≤y 时,事件}{y Y ≤表示X 是在],0(y 随机取的一点.故有⎪⎩⎪⎨⎧≥<≤<=75.0,175.00,0,0)(y y y y y F Y)(y F Y 的图形如题15.45图所示.(3) 从题15.45图看出, )(y F Y 在点75.0=y 处不连续, 故它不是连续型随机变量. )(y F Y 只有一个不连续点75.0=y .注意到在)(y F Y 的任一连续点a 处,有,0}{==a Y P 而在不连续点75.0=y 处,.01题15.45图。