概率论课后习题答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题1解答
1、 写出下列随机试验的样本空间Ω:
(1)记录一个班一次数学考试的平均分数(设以百分制记分); (2)生产产品直到有10件正品为止,记录生产产品的总件数;
(3)对某工厂出厂的产品进行检查,合格的记为“正品”,不合格的记为“次品”,如连续查出了2件次品就停止检查,或检查了4件产品就停止检查,记录检查的结果; (4)在单位圆内任意取一点,记录它的坐标、
解:(1)以n 表示该班的学生人数,总成绩的可能取值为0,1,2,…,100n ,所以该试验的样本空间为
{|0,1,2,
,100}i
i n n
Ω==、
(2)设在生产第10件正品前共生产了k 件不合格品,样本空间为
{10|0,1,2,}k k Ω=+=,
或写成{10,11,12,
}.Ω=
(3)采用0表示检查到一个次品,以1表示检查到一个正品,例如0110表示第一次与第四次检查到次品,而第二次与第三次检查到的就是正品,样本空间可表示为
{00,100,0100,0101,0110,1100,1010,1011,0111,1101,1110,1111}Ω=、
(3)取直角坐标系,则有2
2
{(,)|1}x y x y Ω=+<,若取极坐标系,则有
{(,)|01,02π}ρθρθΩ=≤<≤<、
2.设A 、B 、C 为三事件,用A 、B 、C 及其运算关系表示下列事件、 (1) A 发生而B 与C 不发生; (2) A 、B 、C 中恰好发生一个; (3) A 、B 、C 中至少有一个发生; (4) A 、B 、C 中恰好有两个发生; (5) A 、B 、C 中至少有两个发生; (6) A 、B 、C 中有不多于一个事件发生、
解:(1)ABC 或A B C --或()A B C -;
(2)ABC ABC ABC ;
(3)A
B C 或
ABC
ABC
ABC
ABC
ABC
ABC
ABC ;(4)ABC
ABC ABC 、
(5)AB
AC BC 或ABC ABC ABC ABC ;
(6)ABC ABC
ABC
ABC 、
3.设样本空间{|02}x x Ω=≤≤,事件{|0.51}A x x =≤≤,{|0.8 1.6}B x x =<≤,具体写出下列事件:
(1)AB ;(2)A B -;(3)A B -;(4)A B 、
解:(1){|0.81}AB x x =<≤; (2){|0.50.8}A B x x -=≤≤;
(3){|00.50.82}A B x x x -=≤<<≤或; (4){|00.5 1.62}A
B x x x =≤<<≤或、
4、 一个样本空间有三个样本点, 其对应的概率分别为2
2,,41p p p -, 求p 的值、 解:由于样本空间所有的样本点构成一个必然事件,所以
2241 1.p p p ++-=
解之得1233p p =-=-,又因为一个事件的概率总就是大于0,所以
3p =-
5、 已知()P A =0、3,()P B =0、5,()P A B =0、8,求(1)()P AB ;(2)()P A B -;
(3)()P AB 、
解:(1)由()()()()P A
B P A P B P AB =+-得
()()()()030.50.80P AB P A P B P A B =+-=+-=、
(2) ()()()0.300.3P A B P A P AB -=-=-=、 (3) ()1()1()10.80.2.P AB P AB P A
B =-=-=-=
6、 设()P AB =()P AB ,且()P A p =,求()P B 、 解:由()P AB =()1()1()1()()()P AB P AB P A
B P A P B P AB =-=-=--+得
()()1P A P B +=,从而()1.P B p =-
7
、
设
3
个
事
件
A
、
B
、
C ,()0.4P A =,()0.5P B =,()0.6P C =,()0.2P AC =,()P BC =0.4且AB =Φ,求
()P A B C 、
解:
()
()()()()()()()0.40.50.600.20.400.9.
P A B C P A P B P C P AB P AC P BC P ABC =++---+=++---+=
8、 将3个球随机地放入4个杯子中去,求杯子中球的最大个数分别为1,2,3的概率、 解:依题意可知,基本事件总数为3
4个、
以,1,2,3i A i =表示事件“杯子中球的最大个数为i ”,则1A 表示每个杯子最多放一个球,共有3
4A 种方法,故
34136
().416
A P A ==
2A 表示3个球中任取2个放入4个杯子中的任一个中,其余一个放入其余3个杯子中,
放法总数为211
343C C C 种,故
21134323
9
().416
C C C P A == 3A 表示3个球放入同一个杯子中,共有1
4C 种放法,故